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ABSTRACT OF THE DISSERTATION

Community-Based Multi-Sensory Structural Health Monitoring

By

Ahmed Ali M Alzughaibi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2022

Professor Fadi Kurdahi, Chair

Assessing the structural integrity of buildings after an earthquake is necessary for citizens

to be able to use these facilities safely after the event. The currently available structural

health monitoring (SHM) systems use a dense network of sensors installed in buildings to

monitor their behavior during earthquakes. Such a network is impractical with respect to cost

and deployment time for the vast majority of buildings; therefore, most structures remain

uninstrumented. However, a massive network of citizen-owned smart devices, such as tablets

and smartphones that contain cameras and vibration sensors, has already been deployed.

This research develops a framework that can crowdsource readings from distributed citizen-

owned smart devices and convert these readings into actionable information. Although prior

community-based seismic research focused on using smartphones to provide early disaster

warnings, the proposed system focuses specifically on using video captured on a smartphone

to directly assess the structural health of buildings post-earthquake, thus providing citizens

and emergency personnel with immediate relevant information regarding the health state of

buildings. This research presents a novel self-calibration technique for a smartphone camera

using its internal accelerometer readings. The system’s performance is studied using shake-

table experiments with different shaking scenarios. Shake table experiments show that the

proposed technique can achieve sub-millimeter accuracy, demonstrating its suitability for

SHM applications.

xii



Chapter 1

Introduction

1.1 Introduction and Background

The prolific construction of multi-story buildings over the past century has enabled cities to

grow and fulfill the demands of people and businesses. However, given the lack of large-scale

structural health assessment methods, unsound infrastructure in earthquake-prone areas

could threaten millions of lives when they are hit by an earthquake [3]. In the United

States, 28 million people live in areas classified as being at high risk of earthquakes [4].

The United States Geological Survey (USGS) and the Structural Engineers Association of

Northern California reported that about one-tenth of multi-story structures in San Francisco

would likely collapse in response to a major earthquake similar to the one that struck the

city in 1906 [5]. A reliable method for detecting hidden building damage is essential as many

damaged buildings do not collapse at the time the earthquake strikes, but rather, days or

weeks afterwards [6]. Structural health monitoring (SHM) systems, which are automated

methods to continually track a structure’s safety, have received significant attention lately

because of the systems’ potential impacts from both economic and safety standpoints [7, 8, 9].

1



There are multiple types of SHM systems. Vibration-based SHM systems use vibration-based

sensors to detect damage in structures by tracking variations in modal parameters (i.e., nat-

ural frequencies and mode shapes) [10, 11]. In [12], a wireless network of accelerometer

sensors connected via radio-frequency identification (RFID) tags was used to continuously

record the acceleration of a structure. The records were then used to estimate the structure’s

damage state via variations in natural frequencies. The system was then extended by [13]

by adding a strain gauge to the sensing chip as an additional measure of natural frequency

variations because strain readings identify the local damage to the structure (e.g., cracks,

corrosion) with a higher sensitivity. In [14], a wired network of accelerometers and piezo-

electric transducers was constructed to track variations in mode shapes for structural fault

localization. In [15] and [16], a network of accelerometers mounted to floors of a building

was constructed to detect damage to nonstructural elements, such as gas pipes and built-in

medical equipment.

Vibration-based methods are relatively low cost, which is the main reason for their adoption

in most SHM systems [10]; however, they are vulnerable to ambient conditions, i.e., variations

in the modal parameters could occur for reasons other than structural damage, such as

changes in humidity and temperature [17]. In contrast, studies showed that displacement-

based SHM, specifically the inter-story drift ratio (IDR), which is the relative translational

displacement between two consecutive floors [17], correlates best to both global and local

structural damage due to earthquakes [18, 19, 17].

Several displacement-based SHM systems have been presented in the literature and use var-

ious direct displacement measurement sensors, such as cameras, lasers, and radar. In [20],

a frequency-modulated continuous-wave (FMCW) radar-based SHM system was installed in

a building to measure the IDR. The system works by transmitting a signal to a reflector

placed in the opposite corner of the building and measuring changes in the returned echo’s

time of travel, which is related to the inter-story displacement. Additionally, an SHM system

2



that uses a camera as the displacement measuring tool was created [21]. The system uses

action cameras to capture the movement of a bridge in response to crossing trucks to assess

its structural integrity, considering the weight of the truck. In another system, a smart-

phone camera, mounted on a reference steel frame, was used to infer the displacement of a

suspension bridge model in a laboratory by tracking a pre-installed target with predefined

dimensions [22].

Relatively recently, several buildings’ SHM systems started using cameras to track the hor-

izontal movement of floors during earthquake shaking. Feng et. al. [23], created a SHM

setup using a camera, optical lens and a Laptop computer. The camera is set up on a stand

outside of a building (off-structure) to estimate the floors horizontal movements by track

multiple artificial or natural (e.g. bolts) targets. Park et. al. [24], used a setup containing 3

cameras placed in different predetermined locations outside of a building (off-structure) to

monitored its 3-dimensional movement. Zhang et. al. [25] proposed tracking the inter-story

drifts by installing cameras on the outside walls of a building (on-structure) and markers on

each floor level; removing the need for an off-structure reference point.

However, the displacement-based systems that are currently in use require either manual

harvesting of sensor records or a wired/wireless local network to connect the sensors. Because

of the cost and time required, achieving widespread deployment of such networks is infeasible.

As a result, most currently standing structures remain unmonitored [26]; therefore, the only

post-earthquake assessment method currently used for these structures is physical on-site

inspection by teams of engineers. Manual assessment can take months to be completed

after a major seismic event, which could potentially lead to structural failure when internal

structural damage is present despite the lack of visible external signs.

To tackle the scalability issue, this paper proposes the use of community-owned smart de-

vices to monitor the structural health of buildings during earthquakes. Several studies

have proposed the use of community-based sensor-integrated devices for seismic applica-

3



tions, a system that would benefit from the widespread availability of smart devices that

are connected to the Internet. An early earthquake warning (EEW) system, referred to as

MyShake, was developed using citizen-owned smartphone accelerometer data [27, 28, 29].

MyShake successfully detected and provided a 20-second warning for a magnitude 5 (M5)

earthquake. Additionally, an earthquake monitoring system, Community Seismic Network

(CSN), creates dense ground-shaking map using community-hosted mini-seismometers and

smartphones [30, 31, 32].

Going well beyond the efforts of MyShake and CSN, which use smartphones to communicate

early warnings and create shaking maps, respectively, this paper proposes using smartphones

to detect earthquake events and smartphone cameras to track a structure’s movement. The

records are then uploaded to a cloud server for post-earthquake processing in order to help

infer the structure’s health state. Damaged structures are reported to first responder officials

and visualized on a publicly available website in the form of a disaster map where structures

are marked with their most likely damage state.

In this research, an SHM system that can handle inputs from multiple smartphones across

different floors of a building and across multiple buildings was constructed. The proposed

system is fully scalable to cover additional cities, states, and countries due to the use of

a cloud-based server that can process thousands of readings. The system’s performance

is studied using several shake-table experiments of different shaking scenarios. The pro-

posed SHM system achieves sub-millimeter accuracy, which far exceeds the SHM accuracy

requirements previously reported [33, 34]. The performance of the proposed SHM system,

quantified by the probability of classification errors is discussed and compared with other

recently developed SHM systems. For the purposes of this work, it was assumed that citizens

would be motivated to install the required application on their devices, as they will benefit

directly from the early warning. Table 1.1 summarizes main earthquake monitoring methods
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currently in use.

Table 1.1: Main earthquake monitoring methods currently in use

SHM methods Speed Accuracy Initial cost Operational

cost

Scalability

Physical Inspection slow moderate N/A very high very low

Traditional SHM systems

(dedicated sensors and net-

work)

fast high very high high low

Community seismic net-

work (dedicated sensors but

community-based network)

fast moderate moderate moderate moderate

Smartphone-accelerometer-

based SHM

fast low low low high

The main contributions of this work can be summarized as follows:

1. Proposing an SHM mechanism that estimates a building’s IDR using smartphones

within the structure;

2. Proposing a novel self-calibration technique for a smartphone camera using the smart-

phone’s internal accelerometer readings;

3. Developing a community-based SHM network that consists of a smartphone applica-

tion, a cloud-based server, and a website-integrated disaster map;

4. Validating the reliability and accuracy of the proposed multi-sensory algorithm using

a seismic shake table;

5



5. Estimating the probability of structural health misclassification using the proposed

SHM system.

1.2 Structural Damage Indicator

According to the Federal Emergency Management Agency (FEMA), the relative horizontal

displacement between adjacent floors is related to building health [2] via the IDR, which

can be used to classify structures into three categories—immediate occupancy (IO), collapse

prevention (CP), or collapse likely (CL)—depending on the peak value of the IDR. The IDR

of two consecutive floors of a multi-story building is the inter-story drift divided by the floor

height, as shown in Fig. 1.1. IDR is calculated using Equation (1.1). The peak IDR value is

then compared to the classification limits, as shown in Table 1.2. This process is repeated

for all adjacent floors in a given building.

Table 1.2: Classification thresholds of steel moment-frame buildings using peak IDR [2].

Peak IDR % Building State

IDR < 0.7% Immediate occupancy (IO)

0.7% < IDR < 5% Collapse prevention (CP)

IDR > 5% Collapse likely (CL)

IDR =

∣∣∣∣displacementupperfloor − displacementlowerfloor

FloorHeight

∣∣∣∣ (1.1)

For example, for a steel moment frame building with a 4m floor height, a drift of over 200mm

(IDR > 5%, also written as 0.05 IDR) between any adjacent floors in the building makes it

unsafe; therefore, it is classified as CL. If the drift is between 28 and 200 mm (0.7% < IDR

6



Floor height

Inter-story
Drift

Figure 1.1: Typical story drifts under earthquake excitation.

< 5%), the building is classified as CP (requiring further assessment); a building with drifts

less than 28 mm (IDR 0.7%) is considered IO (safe).The building type and the floor heights

are available from the city tax assessor’s office, popular GPS tools, or reported by building

owners or managers. For buildings with no currently reported building type or floor heights,

the IDRs could be based upon the best available estimates until those are refined as more

data becomes available.

1.3 Hidden Structural Damage

When a major earthquake hit a city, few building would partially or completely collapse.

However, many more buildings would not show any visible damage, despite suffering from

a severe structural damage; which make them vulnerable to collapse during the earthquake
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aftershocks or future events. For example, a hotel in Van Nuys, California has been damaged

during the Northridge earthquake in 1994. Although there is no noticeable damage when

seen from a distance (Figure 1.2), the main columns of the building have been severely

damaged (Figure 1.3).

Figure 1.2: Holiday Inn Van Nuys, California seen from distance after 1994 Northridge
earthquake.
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(a) Exterior up-close view of
the column damage cased by
the earthquake

(b) Interior up-close view of
the column damage cased by
the earthquake

Figure 1.3: Holiday Inn Van Nuys, California after 1994 Northridge earthquake.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces the initial accelerometer-

based SHM system. Chapter 3 reviews the proposed vision-based structural health monitor-

ing methodology. Finally, chapter 4 presents the proposed community-based multi-sensory

SHM system.
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Chapter 2

Initial Accelerometer-Based SHM

System (Version 1.0)

This section reviews the development initial accelerometer-based SHM system. The system

was designed using client-server architecture. The user application is used to detect, store

and then send recorded sensor data to a centralized cloud server. Then, the server sorts,

organizes and stores data in a database. When requested by the user, the server computes

the IDR value for each building and classifies the building to IO, LS or CP. Then, the server

generates a map that displays buildings tagged with their structural health status. The

rest of the chapter is organized as follows. Section 2.1 gives an overview of the mobile-

phone application. Section 2.2 covers the server’s architecture. the classification process

is presented in section 2.3. Finally, the experiments conducted for the initial system are

reported in section 2.5.
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(a) Welcome page (b) Main UI

Figure 2.1: Screenshots of the Client Application. The seismic sensing is performed silently
in the background. The information is fed back to the user in the form of a disaster map.

2.1 Client Mobile-phone Application

As part of this work, we developed a mobile-phone application that detects an earthquake

and sends sensor readings to a centralized cloud computing server along with the exact time,

device ID, user email address, building’s street address, and floor number. Screen-shot of

the iOS application are in Figure 4.3.

The app consists of 3 modes: steady mode, trigger mode, and streaming mode. The app has

to enter a steady state before it can be active and available to get excited by an earthquake

to avoid any additional noise in the reading. The app enters the steady mode when the

absolute sensed acceleration in the x-y direction is below a certain threshold for certain time

window. Trigger stage starts once an earthquake is detected,i.e. predetermined threshold
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Figure 2.2: Mobile-phone Application Flowchart. The left hand side shows different appli-
cation modes.

(0.1g) has been crossed in the x-y direction. This is the same technique that has been used

in iShake [27]. The app stores readings for a specific duration. After that, the app begins

sending the recorded event information and readings to the centralized cloud-server. An

overview of how the app works is shown in Figure 2.2. The detailed detection mechanism

and signal processing of the mobile-phone application is presented in Algorithm 1.

Sampling Rate

According to Apple developers documentation, The maximum frequency at which you can

request updates is hardware-dependent [35]. In our experiments, the highest sampling fre-
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Algorithm 1 Mobile-phone Application

1: INPUT shaking, and location information
2: OUTPUT acceleration as a function of time
3: for i← 1, 2, ..., fs ∗ Tsteady do ▷ fs is the sampling rate, and Tsteady is the

pre-defined duration of the steady state condition
4: axi

, ayi , and azi ← accelerometer reading in the x-axis, y-axis, and z-axis, respectively
5: axyi ←

√
a2xi

+ a2yi
6: end for
7: while max{axy} < Θsteady AND azi > 9.0 do ▷ Θsteady is the pre-defined

threshold of the steady state condition
8: if axy > Θdetection then ▷ Θdetection is the pre-defined earthquake

detection threshold
9: for i← 1, 2, ..., fs ∗ Tstoring do ▷ Tsteady is the pre-defined duration of the

earthquake readings
10: axi

, ayi , and azi ← accelerometer reading in the x-axis, y-axis, and z-axis, re-
spectively

11: ati ← current NTP epoch time
12: end for
13: else
14: Check steady state conditions again
15: end if
16: end while
17: Raw readings database← ax, ay, az, at, and location information

13



quency for both devices is 100 Hz, so this was used in the experiment. This frequency is

twice as much as what was used in MyShake [28].

Pre-Trigger

If the data is recorded at the start of the trigger time, the prior data will be lost. It is worth

noting that an error at the beginning of the acceleration time window is amplified by double

integration, which is needed to calculate the displacement (see section 2.3 for the details).

For that reason, a moving buffer was added to store accelerometer data for 30 seconds. The

stored data is then sent to the server when the app is triggered.

NTP-Time Synchronization

Calculating relative displacements (IDR) requires millisecond accuracy for precision phas-

ing. Therefore, a synchronization technique is required across phones to avoid clock drift.

The proposed application uses Network Time Protocol (NTP) timing to ensure an accu-

rate simultaneous reference for all devices [36], [37]. NTP is the Internet protocol used to

synchronize the clocks of computers to some time reference. The time reference used in

the proposed system is epoch time which is the total number of seconds since midnight of

January 1, 1970. The error in calculating the displacement using the mobile-phone internal

clock for Synchronization compared with using NTP clock is discussed in the section 2.5.

Running in the Background

One key feature of the application is the ability to detect earthquakes while running in the

background. In other words, even if the user is not directly interacting with the application

interface the app is still sensing the acceleration and can switch between the internal modes.

14



2.2 Cloud Server

Using a cloud server has major advantages over using a standard server. One advantage is the

scalability of the cloud server which is crucial property in seismic related systems because it

is hyperactive for a short period of time during and after an event [38]. Low operational cost

is another attractive feature of cloud servers compared to standard servers. In addition, in

cloud services maintenance and back up are usually offered by the service provider. Amazon

Web Services (AWS) is one of the major cloud computing service providers which make

it suitable for the proposed system. An Amazon Elastic Compute Cloud (EC2) is used as

a base for all computations and processes needed. An overview of how the EC2 server is

presented in Figure 2.3.

Request raw data from the database

Apply the classification process (section 3.3)

Store

Raw 
readings 
database

Classification 
Status 

database

Debugging 
Database

Figure 2.3: The EC2 Cloud Server Flowchart
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2.2.1 Database

The system uses a cloud-based MySQL database because of its ability to store and organize

thousands of readings to be called back when needed. The data is organized by zip code,

street address, and floor number. The system consists of 3 different databases. One database

is used to store raw sensor data received from the app along with the location information.

Another database used to store the resultant IDRs for each building along with the exact

time and date of the incident (earthquake). The last database is used as checkpoints for

system debugging.

Raw Readings Database

The raw readings database is used to store raw sensor data received from the app along with

the NTP timing of the readings. Location, date, and time of the incident are registered as

well.

Classification Status Database

The classification status database is used to store the resultant IDRs for each building along

with the exact time and date of the incident (earthquake).

Debugging Database

The debugging database provides checkpoints. Debugging database A is used to compare

the received data to the data that was sent by the app. Debugging database B is used to

ensure that the displacement calculation was done correctly. Finally, debugging database C

is used to check the synchronization and relative displacement processes.
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Figure 2.4: Website Screenshot. A detailed map is shown containing buildings tagged with
their most likely structural health status.

2.2.2 Web page

A list of the tested buildings along with their classification status is displayed on the system’s

website which is also hosted by the EC2 server. In addition, the website includes a map of

the buildings tagged with their structural health state making it easier for the public to check

their buildings in the aftermath of an event. A screen-shot of the web page is shown in Figure

4.4. Furthermore, the list and the map are available in the app. A satellite view showing

the terrain of the building surroundings is also provided in the webpage, as in Figure 2.5.

The street-view is another option provided in the website to make it easier for the public to

search for their building’s structural health status. Figures 2.6, 2.7 present the street-view

feature in the website and the smart-phone’s application, respectively.
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Figure 2.5: Satellite view showing the terrain surrounding the targeted buildings.

Figure 2.6: Street-view feature makes searching for buildings even easier for the public

18



(a) a list of the tested buildings
search-able by street address or zip
code in addition to the detailed
map containing buildings tagged
with their structural health status

(b) the street view feature allows
the user to use phone’s orienta-
tion to clearly point to the building

Figure 2.7: Screenshots of the Client Application Disaster Map. The information is fed back
to the user in the form of a disaster map.
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2.3 Classification Process

The system loops over all the buildings that have active users during the disaster to categorize

them into IO, LS or CP using FEMA standard [39]. Classifying a building is done through

several stages. These stages are:

Removing the Bias

Phone accelerometers usually have a constant bias. The first step is removing the bias for

each axis of the acceleration which is estimated by long-term averaging. First the long-term

mean (bias) needs to be calculated for each axis. After that, the long-term mean (bias) has

to be subtracted from each reading in every axis. The pseudo-code for removing the bias

process is given in Algorithm 2.

Algorithm 2 Removing the Bias

1: INPUT axrow [n], ayrow [n]
2: OUTPUT ax[n], ay[n]
3: µx ← mean(axrow [n])
4: µy ← mean(ayrow [n])
5: for i← 1, 2, ..., N do
6: ax[i]← axrow [i]− µx ▷ removing the long-term average from every reading in x-axis
7: ay[i]← ayrow [i]− µx ▷ removing the long-term average from every reading in y-axis
8: end for

Displacement Calculation

Finding velocity as a function of time v(t) from raw accelerometer data a(t) is done using

equation 2.1

v(t) = v0 +

t∫
0

a(t) dt (2.1)
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The initial velocity (v0) = 0 because of the steady mode conditions. Furthermore, displace-

ment d(t) is found using equation 2.2

d(t) = d0 +

t∫
0

v(t) dt (2.2)

The initial displacement (d0) = 0 because of the steady mode conditions. In short, integrat-

ing the acceleration results in velocity while double integrating the acceleration calculates

displacement as in equation 2.3.

d(t) =

t∫
0

 t∫
0

a(t) dt

 dt (2.3)

Integration is done numerically by summation in the case of digital (discrete) signals. Equa-

tions 2.1, 2.2, and 2.3 can be rewritten as follows

v[n] = dt
n∑
0

a[n] (2.4)

d[n] = dt

n∑
0

v[n] (2.5)

d[n] = (dt)2
n∑
0

n∑
0

a[n] (2.6)

where dt is the inverse of the sampling rate (fs) ; dt = 1/fs . d[n] is the displacement at

time n. The function cumsum (cumulative summation) is used to approximate integration.
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cumsum is defined in 2.7.

cumsum(g[n])[i] =
i∑

k=1

g[k] for i = 1, 2, ..., N (2.7)

Where g[n] is a discrete sequence. For example, the cumulative sums of the sequence

{a, b, c, d, e, ...}, are {a, a + b, a + b + c, a + b + c + d, a + b + c + d + e, ....}. Further-

more, the double cumulative sums (double integration) of the sequence {a, b, c, d, e, ...}, are

{a, 2a+ b, 3a+2b+ c, 4a+3b+2c+ d, 5a+4b+3c+2d+ e, ....}. Note that the effect of the

noise in the beginning of a signal distorts the resultant signal much more severely than the

noise at the middle or end of it. The pseudo-code for displacement calculation procedures is

given in Algorithm 3.

Algorithm 3 Displacement Calculation

1: INPUT fs, t[n], a[n]
2: OUTPUT d[n]

3: fs ← round( t[N ]−t[1]
N

)
4: dt← 1/fs
5: for i← 1, 2, ..., N do

6: cumsum(a[n])[i] =
i∑

k=1

a[k]

7: cumsum(v[n])[i] =
i∑

k=1

v[k]

8: end for
9: v[n]← dt ∗ cumsum(a[n]) ▷ v0 = 0 because of the steady mode conditions
10: d[n]← dt ∗ cumsum(v[n]) ▷ d0 = 0 because of the steady mode conditions

Data Synchronization

Data must be aligned before relative displacement calculation. NTP time that was sent from

the app, as mentioned in section 2.1, is used as the base of alignment.
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Relative Displacement Computation

The server loops over every adjacent floor in every building containing active devices during

an earthquake. Then, the IDR is computed using equation (2.8).

IDRi = max

{∣∣∣∣d[n]i − d[n]i+1

h

∣∣∣∣} (2.8)

Where IDRi is the maximum IDR value between floor i and floor i + 1. d[n]i and d[n]i+1

are the calculated displacements in meters for floor i and floor i + 1, respectively. h is the

floor height in meters. After that, an equivalent IDR value is calculated for every building

using equation (2.9).

IDRb = max {IDRi : i = 1, 2, ...,M − 1} (2.9)

Where IDRb is the maximum IDR value recorded between any adjacent floors in building b

and M is number of floors in building b. Finally, a class is given to the building by compar-

ing IDRb with the FEMA reference values. The pseudo-code for relative displacement and

IDRb calculation procedures is given in Algorithm 4.

Algorithm 4 IDR calculation

1: INPUT h, d[n]S
2: OUTPUT IDRb

3: for i← 1, 2, ...,M − 1 do
4: for j ← 1, 2, ..., N do

5: d[j]irelative ←
d[j]Si

−d[j]Si+1

h
▷ where d[j]irelative is the relative displacement between

floors i and i+ 1
6: end for
7: IDRi ← max {|d[n]irelative |}
8: end for
9: IDRb ← max {IDRm} ▷ m = 1, 2, ..., M-1
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Figure 2.8: The EC2 Cloud Server Flowchart. The chart shows signal processing of received
phone acceleration signals.

An overview of how the server classification process is given in Figure 2.8. The pseudo-code

for the classification process is given in Algorithm 5.

2.4 Initial Accelerometer-based System Overview

A post-earthquake automated assessment system was built using client-server architecture.

For the client side, an iPhone application was designed for earthquake detection. Once the

earthquake is detected, the application saves the accelerations of the shaking. When the

recording is finished, they are sent to the raw readings database which is used to register the

unprocessed sensors readings, NTP timing and location details.
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Algorithm 5 Structural health classification process

1: INPUT accelerometer readings, and building heights
2: OUTPUT structural health status
3: for Building in the targeted area do
4: for floors in the building do
5: ai[n]← airow [n] ▷ Filtering out the bias using Algorithm 2
6: di[n]← ai[n] ▷ the displacement is calculated for every floor using Algorithm 3
7: d[n]Si

← t[n]i, d[n]i ▷ reading synchronization
8: d[n]irelative ← d[n]Si

, d[n]Si+1
▷ Relative displacement between every adjacent

floors is calculated using Algorithm 4
9: IDRi ← d[n]irelative ▷ Local IDR is calculated between every adjacent floors

using Algorithm 4
10: end for
11: IDRb ← IDRi ▷ Building IDRb is calculated for The building using Algorithm 4
12: IO, LS, or CP ← IDRb ▷ A classification status is given to the building using

FEMA standards
13: end for

On the other side, a cloud server was built for implementing all the signal processing needed

for structural health assessment. Then the resultant building damage state along with loca-

tion information are sent to the building health database. Finally, the resultant classifications

are visualized using a detailed interactive map including buildings tagged with the most likely

structural health status. The system flowchart is presented in Figure 2.9.

2.5 Initial system Experimental Validation

Several tests were conducted to determine the phone’s ability to track phone displacement.

A few more experiments were done in which different features were added to the system to

test for improvement. The experiments were repeated for durations ranging from 5 to 30

seconds.
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Figure 2.9: System Flowchart. The left hand side shows the mobile-phone application modes.
The right hand side describes the signal processing of received phone acceleration signals.

Case I: At Rest

The first experiment conducted determines the effect that pure phone accelerometer noise has

on the calculation of the relative displacement between two non-moving floors containing one

device each. The two devices are triggered manually and left at rest for the whole experiment

period. Ideally, the resultant relative displacement should be zero. However, the noise from

phone accelerometer accumulated rapidly due to double integration. This error increased

sharply as the the duration of the recorded event increased.

Case II: Using Mobile-Phone’s Internal Clock for Synchronization

Relying on the phone’s internal clock slightly enlarges the error in the IDR calculation. As

explained in section 2.3 the best available option for indoor synchronization is using NTP

as a common reference for all devices in the system. Figure 2.10 displays the average of the

repeated full system tests relying on the mobile-phone’s internal clocks for data alignment.
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The IDR calculation error in the system in the case of using the internal clock was larger

than the case of using NTP time.

Case III: Identical Motion with NTP Synchronization

The last test applies an identical shaking motion to the two phones. The two devices are both

bonded to a horizontal shaking slider. Ideally, they should get triggered at the same time

and record the same acceleration. Additionally, since both phones are attached together,

their relative displacement should be perfect zero. Consequently, any measured relative

displacement is due to several other factors such as: trigger delay, amplitude-dependent

accelerometer noise in addition to the accelerometer noise. As shown in Figure 2.10, the

error is still tolerable for short durations (roughly 3 cm for periods shorter than 10 seconds).
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Figure 2.10: Error in IDR Using Smart-phone Accelerometer. Different settings and features
were tested.

2.6 Conclusion

A smartphone accelerometer-based post-earthquake automated assessment system was built

using client-server architecture. For the client side, an iPhone application was designed for

earthquake detection. Once the earthquake is detected, the application saves the acceler-

ations of the shaking. When the recording is finished, they are sent to the raw readings

database which is used to register the unprocessed sensors readings, NTP timing and lo-

cation details. On the other side, a cloud server was built for implementing all the signal

processing needed for structural health assessment. Then the resultant building damage

28



state along with location information are sent to the building health database. Finally, the

resultant classifications are visualized using a detailed interactive map including buildings

tagged with the most likely structural health status.

To validate the feasibility of the system for structural health assessment, shake-table ex-

periments were conducted showing a moderate accuracy in estimating the inter-story drifts.

Next, methods to build on the proposed system to improve accuracy is presented in the

following chapters.
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Chapter 3

Vision-based Monitoring

Although smartphone accelerometers have been proven to detect earthquake shaking [40, 41,

42, 28, 22, 43, 29], estimating displacement from acceleration is vulnerable to error due to the

double integration process, which amplifies low-frequency noise to undesired limits [44, 45].

An option to improve the accuracy of these accelerometers is to use the phone’s camera,

since it can measure displacement directly without the need for a double integration process.

This technique proposes using the internal accelerometers of smartphones within a building

to detect an earthquake, which then trigger the use of the smartphone’s cameras in order to

track the movement of the floors. The movement captured by a smartphone camera facing

the ceiling of an upper floor actually shows the inter-story drift. An advantageous feature of

using smartphones is that they have both front and back cameras, which makes it possible

to use whichever camera is facing the ceiling. Since there is no control over the distance

between the camera and the ceiling, the proposed system uses the smartphone accelerometer

to estimate that distance, as discussed in details in chapter 4.

The remainder of the chapter is organized as follows. Section 3.1 presents the use vision-

based techniques in previously developed SHM Systems. Section 3.2 presents development of
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the proposed vision-based approach and the associated video processing. Section 3.3 reviews

the experimental setup and validation of the vision-based tracking technique. Finally, the

conclusion is drawn in section 3.4.

3.1 The use of Vision-based Techniques in SHM

Lately, vision-based structural health monitoring has gained traction due to the high accu-

racy afforded by directly measuring the displacement of structures during earthquake events

instead of estimating displacement using accelerometer readings, which may not be accu-

rate due to a bias in low-frequency contents. [21] developed a structural health monitoring

(SHM) system by installing action cameras onto a beam that is 22m away from a bridge

to capture the movement of the bridge in response to crossing trucks in order to assess the

structural integrity, taking into account the weight of the truck. In another work, [22] used

a smart-phone camera that was fixed a few centimeters away from a suspension-bridge’s

cable to measure the resonance frequency, as well as, its horizontal and vertical movement.

The purpose of these two projects was to estimate the structural damage in non-earthquake

scenarios.

The use of SHM systems that was designed to be used in non-earthquake scenarios faces

three major challenges when used to estimate damage due to earthquake events. First,

they require the camera to be stationary during the recording of the event, which is not

achievable during earthquakes. Second, they are not feasible for large scale deployment due

to the cost of installation and wired/wireless connection. Third, they are installed outdoors

making them sensitive to weather conditions and visibility range (i.e. not feasible for dark

or foggy conditions). Unlike other vision-based systems, our proposed system uses citizen

owned smart-phone cameras to track the movement of structures during the earthquake, from
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within the structure itself. The system analyzes collected videos to calculate the horizontal

movements of structures in the targeted area in order to infer their state.

3.2 The Development of Vision-based SHM Method

The proposed vision-based SHM method uses several image processing techniques.

3.2.1 Feature Extraction

The previously developed vision-based SHM systems [22, 25] use a target that needs to be

attached to the monitored structure, which complicates large-scale deployment. Additionally,

the system in [21] requires manually choosing a region of interest (ROI) in the camera view

to be tracked. In the proposed approach, the algorithm tracks identifiable objects on the

ceiling. For example, in an office setting, ceiling tiles could be targeted, whereas in a home

setting, recessed light fixtures could be targets. Thus, to simplify deployment, the proposed

system uses an automated algorithm to detect the main features of the ceiling and uses them

as targets for image processing feature extraction techniques. The system uses features from

the accelerated segment test (FAST) method [46], which is a robust and computationally

efficient sharp corner detector. The FAST corner detector uses a 16-pixel circle to identify

whether a candidate point p is a corner or not. The point p is classified as a corner if a

set of 12 contiguous pixels in the circle are all brighter (or darker) than the intensity of the

candidate pixel p, plus (or minus) a threshold. The color videos captured are converted to

grayscale to reduce computational complexity. Figure 3.1 shows a typical frame displaying

what a smartphone may capture in an office setting. The red crosses in the image are the

features detected using the FAST algorithm. Shake table experiments of standard office tile

ceilings show minimal deformation at high levels of shaking [47]. Although some tiles fell
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Figure 3.1: Image of a typical office ceiling. Red crosses in the image are the detected
features from the accelerated segment test (FAST) algorithm.

during the shake table tests, the main beams that holds the ceiling tiles showed minimal

damage [47].

3.2.2 Feature Tracking

Once the main features are detected, the Kanade–Lucas–Tomasi (KLT) algorithm [48] is used

to track changes in the location of the detected features frame by frame for the duration

of the earthquake. The KLT algorithm uses spatial intensity information and a pyramidal

scheme to direct the search for the tracked feature.

3.2.3 Scaling Factor (SF)

One of the most challenging steps is to identify a scaling factor (mm/pixel) to convert the

extracted displacement from pixels to displacement units (i.e. mm). In our experiments, the

scaling factor is calculated using the reading of the phone’s internal accelerometer to estimate

the scaling factor since it is already pre-calibrated by the manufacturer to engineering units

(i.e. mm/s2), which is presented in details in chapter 4.
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A summary of the vision-based structural health monitoring algorithm is presented in Fig-

ure 3.2.

0 0.2 0.4 0.6 0.8 1
Time (s)

-300

-200

-100

0

100

200

300

Di
sp

lac
em

en
t (

pix
els

)

Feature extraction Feature tracking

Main features marked to be trackedRaw Video

Displacement (mm)Displacement (pixels)

0 0.2 0.4 0.6 0.8 1
Time (s)

-100

-50

0

50

100

D
isp

la
ce

m
en

t (
m

m
)

Scaling to engineering units (meter)C D

C D

B

BA

A

Figure 3.2: Vision-based Structural Health Monitoring algorithm Process

3.3 Vision-based Tracking Experimental Setup and Re-

sults

A series of experiments of floor movement during an earthquake were conducted using a shake

table. Different shaking frequencies and amplitudes were used to simulate real earthquake

shaking. The shaking table is laid horizontally on the ground and a smart phone is attached

to the top of the shaking table as shown in Figure 3.3. When the shaking table starts

moving, the smart-phone application begins recording data and video of the ceiling. After

the shaking ends, the proposed algorithm analyzes the video and extracts movement the

phone experience since the ceiling is not moving (what is being measured is, in fact, the
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Figure 3.3: Shake table setup used in the experiment

relative displacement between the phone and the ceiling). A seismic-grade accelerometer

is attached to the shake table as a reference to determine the accuracy of the proposed

vision-based approach.

The focus of this experiment is to test the feasibility of using the camera for displacement

estimation, rather than the accuracy in finding the Scaling (SF), which is discussed in details

in chapter 4. For that reason, the scaling factor (SF) is calculated manually using the

technique discussed in [21].

The first shaking experiment was performed using a 4 Hz 36 mm peak-to-peak sinusoidal

shaking for 30 seconds. The mobile-phone app successfully triggered and captured the move-

ment of the shaking table, while targeting ceiling tiles as anchor points. Figure 3.4 shows

the horizontal displacement of the smart-phone as measured using the proposed vision-based

tracking technique in red. The displacement distilled from the reference accelerometer is plot-

ted in blue showing great tracking. The deviation in estimating the displacement using the

proposed algorithm is presented in Figure 3.5. One cycle of the displacement is presented in

Figure 3.6 showing an agreement with slight variation between the estimated displacement

of the proposed tracking technique and the reference. The RMS of the error of the proposed

vision-based method was 0.16 mm. The vision-based tracking method was tested using dif-
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Table 3.1: Sinusoidal shaking of different amplitudes and frequencies

Shaking Frequency Peak-to-peak Shaking Amplitude RMS of the error

4 Hz 36.8 mm 0.156 mm
5 Hz 26.8 mm 0.139 mm
6 Hz 19.7 mm 0.121 mm
7 Hz 14.6 mm 0.097 mm
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Figure 3.4: Displacement extracted using proposed camera based SHM approach in red, and
reference in blue

ferent scenarios of shaking amplitudes and frequencies. TABLE 3.1 lists the parameters of

the shaking signals as well as the RMS of the error in each experiment.

After the relative displacement was estimated for adjacent floors in the building, the IDR

value is calculated using (1.1). Buildings are then categorized into IO, LS or CP using

FEMA standards [2]. For a standard 4 m floor height building, an error of 0.16 mm in

displacement calculation will result in 4e-5% IDR error, which is negligible compared to the

classification limits. The effect of displacement estimation error to the status classification

has been exhaustively studied in Section 4.4 and in [44].
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3.4 Conclusion

A post-disaster vision-based structural health monitoring methodology has been developed

utilizing cameras of smart-phones. The smart-phone’s accelerometers were used to detect

earthquakes and the cameras were used to track the movements of the upper floor during

earthquake shaking. This method avoids the necessity for an off-structure reference point,

in addition to making it insensitive to weather conditions and visibility range. To validate

the method feasibility, shaking table experiments were conducted. Sub-millimeter accuracy

was achieved using the proposed vision-based SHM method which is considered to be ultra-

high accuracy in structural monitoring standards and outperforms accelerometer based SHM

systems. The calibration of the smartphone camera using the accelerometer readings is

discussed in the next chapter, which remove the need of manually finding the scaling factor

and easing the path for large scale deployment.
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Chapter 4

Multi-sensory System (Version 2.0)

This system proposes using the internal accelerometers of smartphones within a building to

detect an earthquake, which then trigger the use of the smartphone’s cameras in order to

track the movement of the floors. Since there is no control over the distance between the

camera and the ceiling, the proposed system uses the smartphone accelerometer to estimate

that distance.

The remainder of the chapter is organized as follows: Section 4.1 presents the structural

damage classification process, including video processing, camera self-calibration, and the

phone’s sliding detection algorithms. The architecture of the proposed community-based

SHM network is detailed in section 4.2, including the smartphone application and the cloud-

based server. Section 4.3 reviews the shake table experimental setup and validation. The

performance of the proposed SHM system in identifying structural damage is presented and

compared with other recently developed SHM systems in section 4.4. Finally, the conclusions

are drawn in section 4.5.
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4.1 Structural Health Classification Process

As mentioned earlier , this system proposes using the internal accelerometers of smartphones

within a building to detect an earthquake, which then trigger the use of the smartphone’s

cameras in order to track the movement of the floors. The movement captured by a smart-

phone camera facing the ceiling of an upper floor actually shows the inter-story drift. The

image processing techniques required to estimate the movement of floors using video records

is discussed in section 4.1.1 Since there is no control over the distance between the camera

and the ceiling, the proposed system uses the smartphone accelerometer to estimate that

distance, as discussed in Section 4.1.3. Additionally, because smartphones are not mounted

to the structure, sliding of the phone over the surface it is resting on is possible; sliding

detection and how to mitigate it’s effect are discussed in section 4.1.2.

4.1.1 Vision Algorithm

In the proposed approach, the algorithm uses cameras of smart-phone that are laid horizon-

tally of tables to tracks identifiable objects on the ceiling. For example, in an office setting,

ceiling tiles could be targeted, whereas in a home setting, recessed light fixtures could be

targets. Thus, to simplify deployment, the proposed system uses an automated algorithm to

detect the main features of the ceiling and uses them as targets for image processing feature

extraction techniques. The system uses features from the accelerated segment test (FAST)

method [46], which is a robust and computationally efficient sharp corner detector. Fig-

ure 3.1 shows a typical frame displaying what a smartphone may capture in an office setting.

The red crosses in the image are the features detected using the FAST algorithm. Once

the main features are detected, the Kanade–Lucas–Tomasi (KLT) algorithm [48] is used to

track changes in the location of the detected features frame by frame for the duration of the

earthquake. Section 3.2 details the video processing techniques used the proposed system.
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4.1.2 Smartphone Sliding Detection

Smartphones may slide during an earthquake if they are placed on a smooth enough surface.

This issue has been addressed in prior work [49, 50, 51], where a sliding detection algorithm

was developed that detects whether the phone is sliding while recording an event, in addition

to the time window of the sliding. The algorithm is an accelerometer-based stick–slip motion

classification framework based on a machine learning approach. The algorithm was experi-

mentally tested using a series of shake table experiments under different shaking scenarios.

Additionally, the proposed algorithm has been experimentally proven to detect sliding of

the table on which the smartphone was placed. Consequently, segments with sliding can be

rejected.

To minimize sliding leading to rejected readings, several guidelines are recommended for

users and building managers, especially in earthquake-prone areas. Smart-phone cases with

high kinetic coefficients of friction (KCOF), such as leather or silicone cases, are recom-

mended. In [50], the sliding of a smartphone without a case (KCOF = 0.164), with a

leather case (KCOF = 0.237), and with a silicone case (KCOF = 0.508) was tested using a

shake-table, showing a better sticking performance with higher KCOF. Additionally, work-

places and building owners in earthquake-prone areas are recommended to install in-ground

mounted tables and workstations with high KCOF surface materials, such as laminate [52] or

rough-sawn wood tabletops [53], to minimize the number of rejected readings due to sliding.

Having a high KCOF surfaces can be achieved by applying a high KCOF coating to existing

tables and workstations [54]. Moreover, workplaces and building owners are recommended

to incentivize employees and residents to use the system to enhance safety management in

the case of an earthquake. Having a high enough number of active devises on each floor

increases the likelihood of having valid readings in each floor.
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It is possible that some floors may not have valid readings of their movement due to sliding

or unavailability of active devices. In this case, it is reasonable to indirectly estimate the

movement based on the displacements of adjacent floors. Conventionally, motions of the

noninstrumented floors are estimated by an interpolation procedure [55], e.g., by using a

piece-wise cubic polynomial interpolation (PWCPI) procedure.

4.1.3 Camera Self-Calibration

One of the most challenging issues is converting the extracted displacement from pixels to

displacement units, i.e., mm. In the proposed system, calibration is performed automatically

using readings from the phone’s internal accelerometer, which was already pre-calibrated by

the manufacturer. The scaling factor k is defined as the gain between the pixel displacement

(pixel inter-story drift) inferred from the camera readings and the physical mm displacement

(inter-story drift), which is defined as:

s =
1

k
s̆p, (4.1)

where s is a column vector of the mm-displacement samples for the observation instance

m ∈ [0,M), s =

[
s0 s1 . . . sM−1

]T
; s̆p is a vector of the pixel-displacement samples,

s̆p =

[
s̆p0 s̆p1 . . . s̆pM−1

]T
.

However, since converting acceleration to displacement by double integration amplifies low-

frequency noise, the system directly calculates the scaling factor using accelerations. The

system converts the camera-inferred pixel-displacement (̆sp) to pixel-acceleration (ăp) as:

ăp = H s̆p, (4.2)
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where the square matrix H is the centered difference approximation of the second derivative

of a column vector [56], which is defined as:

H = f 2
s



1 −2 1 0 · · ·

0 1 −2 1 · · ·

0 0 1 −2 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


,

where fs is the sampling rate. Since k is a constant, Equation (4.1) can be rewritten using

Equation (4.2) as:

ă =
1

k
ăp,

where ă is a column vector of the mm-acceleration samples for the observation instance

m ∈ [0,M), ă =

[
ă0 ă1 . . . ăM−1

]T
; ăp is a vector of the pixel-acceleration samples,

ăp =

[
ăp0 ăp1 . . . ăpM−1

]T
.

ăp is found using the camera-inferred pixel-displacement using Equation (4.2). ă, the relative

acceleration between adjacent floors, is found by subtracting raw accelerometer readings from

smartphones on consecutive floors as:

ă = ăai − ăai+1
, (4.3)

where ăai is the (absolute) acceleration measured by the internal accelerometer of the phone

on floor i.
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Then, k can be found as:

k =

√∑
M(ăpm)

2∑
M(ăm)2

, (4.4)

where m ∈ [0,M) and 0 represent the beginning of the earthquake.

After finding k, the inter-story drift s is calculated using Equation (4.1). After that, IDR,

which is a column vector of the IDR samples for the observation instance m ∈ [0,M), is

calculated as:

IDR =
s

h
, (4.5)

where h is the floor height in mm. Finally, a class is assigned to the building by comparing

the peak IDR with the Federal Emergency Management Agency (FEMA) reference values

shown in Table 1.2.

4.1.4 Signal Preconditioning

To fuse readings from both the accelerometer and the camera, the following issues have to

be considered:

• Typically, the sampling rates are different: a camera samples at rates that are typically

30 frames per second (fps), whereas the sampling rate of the accelerometer is typically

100 Hz.

• Practically, there might be a slight delay between the triggering of the camera versus

that of the accelerometer.
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• Smartphones on different floors do not necessarily have the same directional alignment,

for example, one might be positioned heading north while the other is positioned

heading east.

Figure 4.1 highlights the approach proposed to address these issues. First, the sampling

frequency is unified by resampling the reading with a higher sampling rate. Second, the

cross-correlation between the camera reading and the accelerometer reading is used to find

the lag that maximizes the cross-correlation. Then, readings are aligned by time-shifting

according to the lag time. Third, the smartphone’s internal magnetometer is used to align

(rotate) the acceleration and the camera records towards the north.

4.1.5 Sensor Fusion Flow

Figure 4.1 presents the flow of the proposed building’s health classification algorithm. First,

the accelerometer and camera records of smartphones that are within a given building are

accessed. Second, the relative acceleration between adjacent floors is found by synchronizing

readings using the network time protocol (NTP) time stamps attached to each acceleration

reading, then subtracting the accelerometer reading of the smartphone on the upper floor

from the reading of the one on the lower floor. Third, the vision algorithm discussed in

Section 4.1.1 is applied to the camera records of each floor to infer the pixel inter-story drift

(green block, Figure 4.1). Fourth, the scaling factor k is found using the self-calibration algo-

rithm discussed in Section 4.1.3, preceded by the signal preconditioning mentioned in Section

4.1.4 (blue block, Figure 4.1). Fifth, the inter-story drift is found using Equation (4.1). Fi-

nally, the IDR is calculated using Equation (4.5) and a class is assigned to the building using

the limits in Table 1.2. If there are multiple phones on the same floor, the scaling factor k

is found for each smartphone’s readings individually; then the system averages the readings

before finding the IDR. Therefore, the upper-floor’s displacement calculation is independent

45



of whether the smartphone is placed on a high or a low table. The processes discussed in this

section are performed by the cloud server, which is explained in Section 4.2. Additionally,

the details of the databases mentioned in Figure 4.1 are discussed in Section 4.2.

In summary, the proposed algorithm uses the readings of smartphones on two adjacent

floors, i.e., accelerometer readings on the two floors, in addition to the camera records of

the smartphone on the lower floor, to estimate the structural health of a given floor of a

building. A network of smartphones on each floor of the building being monitored is needed;

the scaling up of this network is discussed in Section 4.2.

4.2 Community-Based SHM Network

To achieve low-cost and large-scale deployment, the proposed system uses the network of

smart devices that has already been deployed. The system was developed using a client–

server architecture. The user application is used to detect earthquakes, store sensor data,

and upload records to a cloud-based database. The server uses uploaded sensor records to

estimate the severity of the damage to structures. The server then generates a disaster map

that displays buildings tagged with their damage state.

4.2.1 Smartphone Application

Part of this work was the development of a mobile phone application that detects an earth-

quake and sends sensor readings to a centralized cloud computing server. When the app is

installed, the user is asked to confirm the address and floor number; the app works silently

in the background afterwords. The app becomes active to record earthquakes if steady-state

conditions are satisfied, i.e., the smartphone has to be horizontally laid on a flat surface, such

as a table, and stay stationary for at least 30 seconds. This steady state is needed to ex-
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Figure 4.1: Overview of the structural health classification process used in the proposed
multi-sensory structural health monitoring (SHM) system. The red labels on the arrows
represent the quantity being measured and its units. The dashed-green block in the upper
right highlights the vision algorithm, which obtains the camera records of the ceiling move-
ment and outputs pixel inter-story drift data. The dashed-blue block in the middle (on the
left) highlights the self-calibration algorithm preceded by signal preconditioning; this block
obtains the inter-story acceleration and pixel inter-story drift and outputs the scaling factor
k.
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clude phones that might lead to inaccurate readings, such as phones held by users or placed

in suitcases. The app starts recording sensor data as soon as an earthquake is detected,

i.e., when the predetermined threshold (0.1g) has been crossed in the x–y direction. This

technique was used in several seismic smartphone apps such as iShake [27] for earthquake

detection because of its power efficiency. Then, the records are sent to the centralized cloud

server.

A smartphone’s camera and accelerometer sampling rates are variables that are set by the

application (app) developer. In the proposed system, the camera sampling rate is set to

30 fps, while the accelerometer samples at 100 Hz. Additionally, calculating relative dis-

placements (IDR) requires millisecond accuracy for proper synchronization between devices.

Therefore, a synchronization technique is required across phones to avoid clock drift. The

proposed application uses network time protocol (NTP) timing to ensure that there is an

accurate simultaneous reference for all devices [36]. An overview of how the app works is

shown in Figure 4.2. Screenshots of the smartphone application are presented in Figure 4.3.

4.2.2 Cloud Server

Using a cloud server provides major advantages over using a standard server in terms of

scalability, cost, and availability. The proposed system uses an Amazon web services (AWS)

elastic compute cloud (EC2) as the basis for all computations and processes needed, which

are described in Section 4.1.

4.2.3 Database

The system uses the cloud-based MySQL database because of its ability to store and organize

thousands of readings that can be recalled as and when required. The system consists of
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Figure 4.2: The smartphone application process. Seismic sensing is performed silently in the
background.
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Email : alzughaa@uci.edu 

Building Number: 5200 

Street Name: engineeringhall 

Zip Code: 92697 

Floor: 4   

Update Address Disaster Map 

x: 0.32 

y: -2.4
z: -9.77 

time: 1524068999.66199 

Figure 4.3: Screenshots of the smartphone application. The seismic sensing is performed
silently in the background. The building’s structural safety status is fed back to the user in
the form of a disaster map.

three different databases. One database is used to store raw data received from the app,

along with location information. Another database is used to store the resulting damage

state for each building, along with the time and date of the incident (earthquake). The last

database contains checkpoints for system debugging. Raw sensor readings can be used in

other applications, such as constructing a higher-resolution ground shaking map [30, 31, 32].

Additionally, acceleration readings of floors can be used for nonstructural damage detection,

such as in [15] and [16] where the acceleration of a given floor is used in the damage prediction

of nonstructural elements.

4.2.4 Visualization

Buildings, along with their structural health status, are listed on the system’s website, which

is also hosted by the AWS server. In addition, the website includes a map of the buildings
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Figure 4.4: Website screenshot. A detailed map is shown containing buildings tagged with
their most likely structural health status.

tagged with their structural health state, thus making it easier for the public to check

buildings in the aftermath of an earthquake. A screenshot of the web page is shown in

Figure 4.4.

Figure 4.5 shows the flow of the system from detecting an earthquake to creating the disaster

map.

4.3 Shake Table Validation

To validate the proposed SHM system, a series of experiments were performed. This section

reports the experimental setup, procedures, and results. A seismic shake table was used to

test the system’s ability to estimate the inter-story drift of a building under dynamic shaking
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Server process (Fig. 3)

Building health database

Visualization as disaster map

Figure 4.5: The proposed community-based SHM network layout. The smartphone app
process is explained in Section 4.2.1 and Figure 4.2. The server process is discussed in
Section 4.1 and Figure 4.1. The disaster map is visualized in Figure 4.3 and Figure 4.4.
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Table 4.1: The tested smartphones’ technical specifications.

SMG900T SMG920V

Operating system Android V5.1.1 Android V7

Camera sensor ISOCELL S5K2P2 [59] ISOCELL S5K2L1 [60]

Video resolution 1080p 1080p

Accelerometer
chip

InvenSense
MPU-6050 [61]

InvenSense
MPU-6500 [62]

Commercial name Samsung Galaxy S5 Samsung Galaxy S6

(e.g., an earthquake). Shake table validation is the testing methodology used in most SHM

studies [10, 20, 22].

Three different smartphones were used in the experiments: SMG900T and two different

SMG920V devices. Table 4.1 lists the operating system, the commercial name, the cam-

era sensor manufacturer, the video resolution, and the accelerometer chip manufacturer

of the devices used in the experiments. A seismic-grade accelerometer (PCB Piezotroincs

Model393C [1]) was used as a reference. The smartphones and the reference were attached

to the shaking table, as shown in Figure 4.6. The shake table was used to perform 4 different

experiments; in each of the experiments, a sinusoidal signal with a frequency of 4, 5, 6, or 7

Hz was used to excite the shake table. This specific range of frequency was chosen based on

many previous research studies reporting that both the strong motion of earthquakes and

the natural frequency of buildings have a frequency of less than 10 Hz [57, 58]. The labo-

ratory in which the experiment was conducted was chosen to have a ceiling that is typically

found in office settings, as shown in Figure 3.1. Since smartphones on a given floor do not

necessarily have the same distance from the ceiling, the scaling factor algorithm is applied

for each smartphone’s readings individually.
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Reference Accelerometer 

Smartphones 

Figure 4.6: Shake table experimental setup. The reference accelerometer (Model393C [1])
was attached to the shake table, which is shown on the right hand side.

The sampling rates for the sensors used in the experiments were: 30 fps for the smart-

phone camera, 100 Hz for the smartphone accelerometer, and 20 kHz for the reference

accelerometer. The procedures for each experiment were as follows: first, the displacement

was calculated as described in Section 4.1.5 and summarized in Figure 4.1; in the performed

experiments, the accelerometer readings were considered as the relative acceleration since

the ceiling was not moving; second, the estimated displacement was up-sampled using a

cubical interpolation of the reference sampling rate; third, the reference displacement was

inferred by double integrating the reference acceleration; fourth, the reference displacement

was time-shifted by the lag that maximizes the cross-correlation; finally, errors was found by

subtraction. The experimental procedure is summarized in Figure 4.7.

Figure 4.8 presents the estimated drifts using the proposed system for different devices for

different experiments. Ground truth drifts are included for comparison. The inter-story drift

estimated using the SHM system (s) can be expressed as:

s = st + e, (4.6)
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Figure 4.7: The procedures followed in each experiment.

where st is the true inter-story drift and e is the error, which is approximated as a zero-mean

Gaussian distribution with variance σ2
e , e ∼ N (0, σ2

e) .

Table 4.2 lists the different experimental parameters and accuracy achieved by each phone de-

scribed by the standard deviation of the error (σe). Several studies [33, 34, 20] have reported

the suggested SHM system accuracy as 0.002 IDR (8 mm); the proposed system consistently

achieved sub-millimeter (0.0002 IDR) accuracy and is thus suitable for SHM purposes.

4.4 System Performance

This section studies the overall performance of the proposed SHM system and compare it to

other currently available SHM systems. The performance of the SHM system was evaluated

by calculating the system’s probability of classification error (pe) using the formula derived
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(a) (b)

(c) (d)

Figure 4.8: True inter-story drifts (dashed black lines) plotted with the drift estimated using
the proposed algorithm (solid red lines). The drifts estimated using the proposed algorithm
show good agreement with the ground truth. The smartphone model and excitation signal
for each experiment were: (a) SMG900T with a sinusoidal excitation of 34.7 mm peak-
to-peak amplitude and 4 Hz frequency, (b) SMG920V#1 with a sinusoidal excitation of
25.6 mm peak-to-peak amplitude and 5 Hz frequency, (c) SMG920V#2 with a sinusoidal
excitation of 18.2 mm peak-to-peak amplitude and 6 Hz frequency, and (d) SMG920V#2
with a sinusoidal excitation of 13.0 mm peak-to-peak amplitude and 7 Hz frequency.
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Table 4.2: Experimental parameters and accuracy achieved by each phone represented by
the standard deviation of the error (σe). Excitation in the form of sinusoidal shaking of
different amplitudes and frequencies was applied to the shake table.

shaking peak-to-peak SMG900T SMG920V#1 SMG920V#2
frequency amplitude σe σe σe

(Hz) (mm) (mm) (mm) (mm)

4 34.7 0.47 0.40 0.46

5 25.6 0.86 0.84 0.87

6 18.2 0.85 0.80 0.84

7 13.0 0.75 0.74 0.72

in [44]:

pe = (P (CP |IO) + P (CL|IO))P (IO)

+ (P (IO|CP ) + P (CL|CP ))P (CP )

+ (P (IO|CL) + P (CP |CL))P (CL),

(4.7)

where P (CP |IO) is the probability that the system classifies the building as CP , while

its true classification is IO. P (IO), P (CP ), and P (CL) are the portion of buildings that

have peak IDRs below 0.7%, between 0.7% and 5%, and above 5%, respectively. P (IO),

P (CP ), and P (CL) are calculated using the classification limits in Table 1.2 and the typical

peak inter-story drifts for several types of buildings under earthquake excitations of different

intensities. As discussed in Appendix A, the peak inter-story drifts can be approximated as

a normal distribution with a specific mean and variance for each hazard level, N (µs, σ
2
s) ;

the values of which are reported in Appendix A.

In practice, to evaluate the performance of a given SHM system, the following information

is necessary:
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1. the expected (typical) inter-story drifts for several types of buildings under earthquake

excitations of different intensities (reported in Figure A.2).

2. the expected error in estimating the inter-story drift using the SHM system (reported

in Table 4.2).

3. the classification boundaries that map inter-story drifts to the structural health state

of the building (reported in Table 1.2).

Figure 4.9 presents the pe of the SHM system in different scenarios. The pe was calculated

using Equation (4.7) for each earthquake intensity (i.e., for each distribution of inter-story

drifts with a specific µs and σs; N (µs, σ
2
s) ). The pe of the proposed SHM system is plotted

as white-edged heat-scale grid in Figure 4.9. Additionally, pe values for the hazard levels,

corresponding to 2% probability of exceedance in 50 years, 10% probability of exceedance

in 50 years, and 50% probability of exceedance in 50 years, are listed in Table 4.3 and

highlighted in Figure 4.9. As expected, misclassification was highest when the IDRs were

densely clustered around classification boundaries, such as the peak at µs = 2.8 cm, which is

equivalent to IDR = 0.7% (the boundary between IO and CP). The proposed multi-sensory

SHM system achieved high performance (pe ≤ 0.005) for almost all hazard levels. The

proposed system achieved a slightly lower performance (pe ≈ 0.02) when IDRs were highly

clustered at the classification boundaries.

The performance of the proposed system was then compared with the performance of two

other SHM systems: one that uses a network of seismic-grade accelerometers (KB12VD [63])

and one that uses a network of smartphones’ internal accelerometers (MPU-6500 [62]). Figure

4.9 shows that the proposed system achieved a slightly lower (but comparable) performance

than the system using seismic-grade accelerometers (black-edged gray grid in Figure 4.9);

however, they both achieve the desired SHM accuracy reported in [33, 34] and [20]. A

trade-off exists for accuracy with complexity and cost. For vulnerable buildings where extra
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Figure 4.9: The performance of the proposed SHM system, plotted as the pe for different
distributions of inter-story drifts with a specific µs and σs (i.e., for different building types
and under earthquake excitations of different intensities). The expected pe values when an
8-story building is hit by an earthquake with hazard levels corresponding to a 2% probability
of exceedance in 50 years, 10% in 50 years, and 50% in 50 years are highlighted in the plot.
The performance of the system that uses seismic-grade accelerometers (KB12VD) is plotted
for comparison.

accuracy is needed, the use of high-vitality seismic-tailored sensors, such as KB12VD, is rec-

ommended. Table 4.3 shows that the system that uses smartphones’ internal accelerometers

does not achieve the suggested SHM accuracy.
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Table 4.3: Probability of structural damage classification error pe using the proposed SHM
system for different earthquake hazard levels; pe values for other SHM systems for the same
earthquake hazard levels are listed for comparison.

SHM system pe (50% in pe (10% in pe (2% in

based on 50 years) 50 years) 50 years)

Seismic-grade
accelerometer
KB12VD [63] 0.0057 0.0018 0.0015

Proposed
multi-sensory SHM 0.0146 0.0048 0.0038

Phone internal
accelerometer
MPU-6500 [62] 0.6706 0.2892 0.3279

4.5 Conclusions

A community-based multi-sensory SHM system was developed to allow for the large-scale

monitoring of buildings after earthquakes. The system consists of a smartphone application

and a cloud server. The app uses a smartphone’s internal accelerometer to detect earthquakes

and trigger both a recording of the acceleration data and video footage. The acceleration

data and the video footage are then fused in order to estimate the inter-story drift of the

building in question, which is directly related to the structural safety of the building. This

method avoids the need for an off-structure reference point, and is insensitive to weather

conditions and visibility range. Damaged buildings are reported to emergency personnel as

well as to the public in the form of a disaster map, with buildings tagged by their most likely

health state. Validated by shake table experiments, the proposed SHM systems achieve

sub-millimeter accuracy, far exceeding structural monitoring standards. The probability of
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classification errors using the proposed SHM system is discussed and compared with that

of other SHM systems. The analysis showed that the proposed system achieves comparable

accuracy to seismic-grade accelerometers in the identification of structural damage.
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Conclusion

A community-based multi-sensory SHM system was developed to allow for the large-scale

monitoring of buildings after earthquakes. The system consists of a smartphone application

and a cloud server. The app uses a smartphone’s internal accelerometer to detect earthquakes

and trigger both a recording of the acceleration data and video footage. The acceleration

data and the video footage are then fused in order to estimate the inter-story drift of the

building in question, which is directly related to the structural safety of the building. To

the best of our knowledge, using smartphone cameras within a structure to monitor the

response of floors during earthquakes is a novel technique. This method avoids the need for

an off-structure reference point, and is insensitive to weather conditions and visibility range.

Damaged buildings are reported to emergency personnel as well as to the public in the form

of a disaster map, with buildings tagged by their most likely health state.

Validated by shake table experiments, the proposed SHM systems achieve sub-millimeter

accuracy, far exceeding structural monitoring standards. The probability of classification

errors using the proposed SHM system is discussed and compared with that of other SHM

systems. The analysis showed that the proposed system achieves comparable accuracy to

a system that used costly seismic-grade accelerometers in the identification of structural

damage. While using high-fidelity SHM systems to monitor all buildings in earthquake-

prone areas is optimal, achieving that goal is infeasible with respect to cost and deployment

time. The proposed system is intended to be used in buildings that currently do not use
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any form of SHM (in some cases, because they are awaiting instrumentation), which are the

majority of buildings in the USA and around the world.
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[46] Miroslav Trajković and Mark Hedley. Fast corner detection. Image and vision comput-
ing, 16(2):75–87, 1998.

[47] Hiram Badillo-Almaraz, Andrew S Whittaker, and Andrei M Reinhorn. Seismic fragility
of suspended ceiling systems. Earthquake Spectra, 23(1):21–40, 2007.

[48] Carlo Tomasi and T Kanade Detection. Tracking of point features. Technical report,
Tech. Rep. CMU-CS-91-132, Carnegie Mellon University, 1991.

[49] Yunsu Na, Sherif El-Tawil, Ahmed Ibrahim, and Ahmed Eltawil. Stick-slip classifica-
tion based on machine learning techniques for building damage assessment. Journal of
Earthquake Engineering, pages 1–18, 2021.

67



[50] Yunsu Na, Sherif El-Tawil, Ahmed Ibrahim, and Ahmed Eltawil. Automated assess-
ment of building damage from seismic events using smartphones. Journal of Structural
Engineering, 146(5):04020076, 2020.

[51] Yunsu Na, Sherif El-Tawil, Ahmed Ibrahim, and Ahmed Eltawil. Identifying stick-slip
characteristics of a smart device on a seismically excited surface using on-board sensors.
Journal of Earthquake Engineering, pages 1–19, 2019.

[52] Yl Xiao, Wen-Xue Wang, Yoshihiro Takao, and Takashi Ishikawa. The effective fric-
tion coefficient of a laminate composite, and analysis of pin-loaded plates. Journal of
composite materials, 34(1):69–87, 2000.

[53] WM McKenzie and H Karpovich. The frictional behaviour of wood. Wood science and
technology, 2(2):139–152, 1968.

[54] Olga P Terleeva, Aleksandra I Slonova, Aleksey B Rogov, Allan Matthews, and Aleksey
Yerokhin. Wear resistant coatings with a high friction coefficient produced by plasma
electrolytic oxidation of al alloys in electrolytes with basalt mineral powder additions.
Materials, 12(17):2738, 2019.

[55] Farzad Naeim. Performance of extensively instrumented buildings during the january
17, 1994 northridge earthquake. An Interactive Information System, Report No. 97,
7530, 1997.

[56] HM Antia. Numerical methods for scientists and engineers, volume 2. Springer, 2012.

[57] N Fukuwa, R Nishizaka, S Yagi, K Tanaka, and Y Tamura. Field measurement of
damping and natural frequency of an actual steel-framed building over a wide range of
amplitudes. Journal of wind engineering and industrial aerodynamics, 59(2-3):325–347,
1996.

[58] Yanchun Ni, Xilin Lu, and Wensheng Lu. Operational modal analysis of a high-rise
multi-function building with dampers by a bayesian approach. Mechanical Systems and
Signal Processing, 86:286–307, 2017.

[59] Smg900t datasheet.

[60] Smg920v datasheet.

[61] Mpu-6050 six-axis (gyro + accelerometer) mems motiontracking devices.

[62] Mpu-6500 six-axis (gyro + accelerometer) mems motiontracking devices.

[63] Kb12vd accelerometer datasheet.

[64] Charles Kircher, Gregory Deierlein, John Hooper, Helmut Krawinkler, Steve Mahin,
Benson Shing, and John Wallace. Evaluation of the fema p-695 methodology for quan-
tification of building seismic performance factors. Technical report, 2010.

68



[65] Dominic Kelly. Seismic site classification for structural engineers. Structure, 21:21–24,
2006.

[66] Altair engineering, hypermesh.

[67] Livermore software technology corporation, ls-dyna.

[68] Tung-Yu Wu, Sherif El-Tawil, and Jason McCormick. Seismic collapse response of steel
moment frames with deep columns. Journal of Structural Engineering, 144(9):04018145,
2018.

[69] Applied Technology Council and United States. Federal Emergency Management
Agency. Quantification of Building Seismic Performance Factors. U.S. Department
of Homeland Security, FEMA, 2009.

69



Appendix A

Inter-Story Drift Distribution

Building responses under earthquake excitation were simulated to model the inter-story

drift distributions. Four- and eight-story steel-frame buildings designed by NIST [64] were

considered in the simulation; the buildings’ plans are presented in Figure A.1. The lateral

load-resisting system used in the building consisted of three-bay perimeter steel special-

moment frames (SMFs) with reduced beam sections on each side of the building. Site class

D, the most common site class throughout the United States [65], is a mixture of dense

clay, silt, and sand, and was used as the type of soil in the simulated construction site.

Finite element models of the SMFs were created using HyperMesh [66] and analyzed using

the commercial code LS-DYNA [67]. The steel used in the building was ASTM-A992; its

engineering stress–strain properties were converted into true stress–strain data, then assigned

to the finite elements. A mass weighted damping of 2.5% was assumed at the first mode

period of the SMFs. Additional modeling details are provided in [68].

The distributions of peak relative displacement were computed for three seismic hazard lev-

els: 2% probability of exceedance in 50 years, 10% in 50 years, and 50% in 50 years. Eleven

seismic records were selected from the far-field ground motion record set in FEMA [69] and
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(a) (b)

(c)

Figure A.1: (a) Plan configuration, (b) elevation view of a 4-story prototype special-moment
frame (SMF), and (c) elevation view of an 8-story prototype SMF.
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scaled to the three specified hazard levels, resulting in 33 records. Each building was then

subjected to the scaled seismic records for each hazard level and the peak relative displace-

ment was computed. The histogram of peak relative displacement is shown in Figure A.2.

The distribution can be approximated as Gaussian with a mean of µs and a variance of σ2
s ,

st ∼ N (µs, σ
2
s) , depending on the hazard level, with slight variations depending on the

building type.
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(a) µs ≈ 1.92 cm, σs ≈ 0.72 cm

(b) µs ≈ 5.2 cm, σs ≈ 1.68 cm

(c) µs ≈ 12 cm, σs ≈ 9.6 cm

Figure A.2: Histogram of peak relative displacement of 4- and 8-story moment frame steel
buildings resulting from an earthquake intensity that corresponds to hazard levels of (a) a
50% probability of exceedance in 50 years, (b) 10% in 50 years, and (c) 2% in 50 years.
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