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ARTICLE

Assortative mating biases marker-based
heritability estimators
Richard Border 1,2,3✉, Sean O’Rourke4, Teresa de Candia2, Michael E. Goddard5,6, Peter M. Visscher 7,

Loic Yengo7, Matt Jones8,9 & Matthew C. Keller 2,8,9✉

Many traits are subject to assortative mating, with recent molecular genetic findings con-

firming longstanding theoretical predictions that assortative mating induces long range

dependence across causal variants. However, all marker-based heritability estimators

implicitly assume mating is random. We provide mathematical and simulation-based evi-

dence demonstrating that both method-of-moments and likelihood-based estimators are

biased in the presence of assortative mating and derive corrected heritability estimators for

traits subject to assortment. Finally, we demonstrate that the empirical patterns of estimates

across methods and sample sizes for real traits subject to assortative mating are congruent

with expected assortative mating-induced biases. For example, marker-based heritability

estimates for height are 14% – 23% higher than corrected estimates using UK Biobank data.
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Positive primary phenotypic assortative mating (hereafter
simply “AM”), the phenomenon whereby mate-choice is
based on phenotypic similarity, has been observed for a

variety of heritable traits in human and non-human animals1–4. A
century ago, Fisher demonstrated that AM induces long-range
positive correlations between trait-increasing allele counts at
causal loci across the genome, thereby increasing genetic variance
across successive generations until it approaches a stable
equilibrium5. Since Fisher’s time, it has been established that
many human traits are subject to AM, and that estimates of
genetic and environmental variance from twin and family
designs, which assume random mating, can be biased in the
presence of AM6. Recently, there has been increased focus on how
AM can influence results based on measured genetic data, in part
due to the recognition that AM may contribute to observed
discrepancies between population-based versus family-based
estimates in genome-wide association studies (GWAS)7–10 and
Mendelian randomization studies11,12. However, despite hun-
dreds of publications reporting estimates of SNP-heritability, no
study has yet investigated how AM influences these estimates.
Moreover, many benchmark traits central to the scientific dis-
course regarding the “still-missing heritability”—for example,
height and educational attainment—are precisely those for which
phenotypic and genetic data is consistent with AM4,13–15, raising
the possibility that conclusions about SNP-heritability could be
biased in systematic but as yet poorly understood ways.

Here, we characterize the impact of AM on the two families
of marker-based heritability estimators, which we generically
denote ĥ

2

SNP. The first uses the method of moments (MoM) and is

typified by univariate Haseman-Elston (HE) regression (ĥ
2

HE)
16

but includes PCGC regression17 and linkage disequilibrium (LD)
score regression18. The second uses residual maximum likelihood
(REML)19 to estimate heritability (ĥ

2

REML) and is implemented in
software such as by GCTA20 and BOLT-REML21. We assume
Fisher’s classical model of AM, which describes the equilibrium
properties of a heritable trait for which mates’ genotypes are
conditionally independent given the heritable components of
their phenotypes and for which offspring environments are
independent of parental phenotypes. This model has formed the
theoretical foundation for recent investigations of AM using
measured genetic data4,14,22. We provide mathematical and
simulation-based arguments demonstrating that AM induces a
modest yet non-negligible bias in both classes of estimators that is
not addressed by conventional methods of accounting for
population structure. In the process, we extend results in random
matrix theory and classical quantitative genetics by characterizing
the higher-order moments of causal variants and the limiting
spectral distribution of the genomic relatedness matrix (GRM)
under AM, which clarifies why genomic principal components
fail to capture the effects of AM. Additionally, we provide
empirical results using data from the UK Biobank that are con-
gruent with our theoretical predictions. Finally, we provide
guidelines for estimating and interpreting ĥ

2

SNP when traits are
subject to AM.

Results
Our theoretical results depend on several key parameters: r
denotes the phenotypic correlation between mates on an additive
phenotype y with a heritable component Zu; h20 denotes the
panmictic heritability, what the narrow-sense heritability of
the phenotype would be in the absence of AM; h21 denotes the
equilibrium narrow-sense heritability approached under multiple
generations of AM; and Z denotes the n ´mmatrix of n unrelated
individuals’ standardized genotypes at m causal loci with effects
vector u. We initially assume that all causal variants are present in

Z (i.e., that the heritability is fully explained by measured var-
iants); the reason for this is that the dynamics of AM across
generations depend on the true heritability of the trait, irrespec-
tive of the fraction of genetic variation tagged by SNPs. We later
employ simulations to demonstrate that our major qualitative
conclusions remain valid when this assumption is relaxed.

The rows of Z (individuals’ genotypes) are independent ran-
dom vectors with m ´m covariance matrix ϒ, which quantifies
the correlation between loci. Under random mating, ϒ:¼ϒ0 is
approximately block diagonal such that causal variants are largely
(aside from LD between nearby variants) stochastically inde-
pendent. However, under equilibrium AM, ϒ:¼ϒ1 is dense due
to the presence of positive long-range correlations among trait-
increasing allele counts within and across chromosomes. As the
elements of ϒ1 agree in sign with the corresponding elements of
uuT (i.e., trait increasing alleles are positively correlated), the
equilibrium additive genetic variance under AM, σ2g;1, is con-
siderably greater than the panmictic additive genetic variance,
σ2g;0. That is, σ2g;1 ¼ uTϒ1u> σ2g;0 � uTu (Fig. 1 and Supple-
mentary Notes 1, 2).

Haseman–Elston regression estimates under AM. We first

characterize the influence of AM on ĥ
2

HE, perhaps the simplest
marker-based MoM heritability estimator. Let ey denote the

standardized phenotype. ĥ
2

HE is the slope of the subdiagonal ele-
ments of the phenotypic outer product, eyeyT, regressed on the
subdiagonal elements of the GRM, m�1ZZT. Assuming that all
genetic variance is explained by measured variants, we establish
the following general result (see Supplementary Note 3):

E ĥ
2

HE

h i
¼ m � uTϒ1ϒ1u

σ2g;1 � tr ϒ1ϒ1
� �

 !
h21 ≥ h21 ≥ h20: ð1Þ

Under AM, the bracketed quantity is greater than one, and

thus ĥ
2
HE is upwardly biased relative to both h20 and h21.

Intuitively, this bias occurs because AM influences the outcome
(eyeyT) differently than the predictor (m�1ZZT). The AM-induced
positive correlations between all causal variants inflate genetic
(co-)variance, and this inflation is accurately reflected in eyeyT.
However, the elements of m�1ZZT represent the average
correlation between pairs of individuals at homologous loci taken
one at a time. Thus, the elements of m�1ZZT are governed almost
completely by the correlations within loci; correlations between
different loci have almost no influence. Because the vast majority
of the inflation in genetic (co-)variation is caused by the
correlations between and not within loci, AM on phenotype has
a negligible impact on the GRM for polygenic traits in a
genetically homogenous population. This latter point is itself
noteworthy because some studies have claimed that inflated
genomic similarity between friends or mates22 is evidence for
phenotypic assortment, but the actual increase is trivial (of order
O m�1
� �

relative to the increase in genetic variance) and such
observations have more probable explanations, such as imper-
fectly controlled stratification23.

Under the stricter assumption of exchangeable loci (i.e., each
causal variant explains equal phenotypic variance), we derive the
following approximate expression, dependent only on r and h20
(see Supplementary Note S3):

E ĥ
2

HE

h i
� 1

1�rh21

� �
h21: ð2Þ

Under exchangeable loci for known r and ĥ
2

HE, we further
define corrected estimators of the panmictic and equilibrium
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heritability values:

ĥ
2
0 : ¼ E h20jĥ

2
HE

h i
¼ ĥ

2

HE

1 þ 2rĥ
2

HE þ rðr � 1Þĥ4HE

;

ĥ
2
1 : ¼ E h21jĥ2HE

h i
¼ ĥ

2

HE

1 þ rĥ
2

HE

:

ð3Þ

Large-scale simulations using realistic genotype data (see
Online Methods) with p ¼ 106 SNPs of which m ¼ 104 were

causal with effects u �i:i:d:Nð0; σ2g;0=mÞ demonstrate that these
approximations are accurate even when the exchangeable loci
assumption is violated (Figs. 1,2). Results were nearly identical
when setting m ¼ 105 causal variants. In addition, our simula-
tions confirmed that LDSC, which is mathematically equivalent to
HE regression when LD scores are exact24, is similarly biased
upwards under AM (Fig. 3a). However, the impact of this bias in
real world applications depends not only on the extent of AM, but
also on the degree to which estimated LD scores reflect the true
LD structure in a given population.

Residual maximum likelihood estimates under AM. In contrast

to ĥ
2

HE, the value of ĥ
2

REML changes as a function of sample size
under AM. Using the same simulation approach described above,

we found that ĥ
2

REML exhibits upward biases similar in magnitude

to those of ĥ
2

HE in small samples (e.g., n � 10;000). In large

samples (e.g., n > 200;000), however, ĥ
2

REML drops below h21
(Fig. 2a). More formally, under the assumption of exchangeable
loci, we prove that

ĥ
2

REML !
p
h20; as n;m ! 1; ð4Þ

where n=m ! c 2 0;1ð Þ; i.e., ĥ2REML is a consistent estimator of

h20 for highly polygenic traits (Supplementary Note 3). On the
other hand, the number of causal variants and the total number of

measured SNPs have no apparent influence on the bias of ĥ
2
REML

(Supplementary Fig. 1). In essence, the parameter values that
maximize the residual likelihood function depend only on the
eigenvalues of the GRM, and the long-range dependence among
causal variants induced by AM is “weak” in the sense that the
distributions of the eigenvalues (i.e., spectral distributions) of the
GRM under random mating and under AM are asymptotically

equivalent. Thus, in large samples, ĥ
2

REML converges to what the
heritability would be if the causal variants were independent, i.e.,
to h20. However, in finite samples, we show via simulation that this
convergence can be extremely gradual, requiring samples

approaching millions of individuals before ĥ
2

REML approaches h20
(Fig. 2b).

Conventional methods do not mitigate AM-induced bias.
Inclusion of ancestral PCs as covariates fails to mitigate the AM-
induced bias in both the MoM and the REML estimates (Fig. 3a).
Indeed, we demonstrate that AM has a negligible effect on the
spectral distribution of the GRM in large samples with many variants
(see Supplementary Note 2). Similarly, these biases are not mitigated
by modeling multiple genetic variance components that partition
SNPs according to LD score and minor allele frequency (Fig. 3a).

AM-induced bias persists when not all causal variants are
measured. In real-world applications, measured genotypes will
often include only a fraction of the total number of causal variants
(or at least good proxies in high LD). Previous work has
demonstrated that the extent to which marker data imperfectly tag

causal variants will bias ĥ
2

REML estimates in random mating
populations25,26; these circumstances are further complicated
under AM as imperfect tagging will not only corrupt the

Fig. 1 Theoretical and empirical behavior of existing and corrected estimators. HE regression (ĥ
2

HE) and REML (ĥ
2

REML) estimates for varying phenotypic
mate correlations (r) in simulated datasets (n = 64,000) assuming that h20 ¼ :5, that all causal variants are measured, and that AM has reached
equilibrium. Values of ĥ

2

HE are consistent with our closed-form approximation (E½ĥ2HE�) under the assumption of exchangeable loci. Our corrected
estimators, ĥ

2
and ĥ

2

0, which are based on ĥ
2

HE and r and assume equilibrium, recover the true equilibrium (h21) and panmictic (h20) heritabilities. Further, for
a given observation of ĥ

2

HE for a trait under disequilibrium AM, the current generation heritability (h2t ) and h20 are probabilistically bounded in expectation
(teal and red regions respectively; see main text).
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relationship between a given marker and proximal causal variants,
but between a given marker and all other causal variants. To assess
the impact of AM when not all variants are measured, we com-

pared ĥ
2

HE and ĥ
2

REML in simulated data that randomly dropped
π = 0, 50, or 75% of all p ¼ 106 variants, including both causal
(m ¼ 104) and non-causal (p�m ¼ 990;000) SNPs (Fig. 3b). As
expected, this resulted in attenuated estimates commensurate
with, but not proportional to the fraction of missing data: on

average across methods, ĥ
2

SNP was 8.4% (s.e. 0.009%) and 17.6%
(s.e. 0.009%) lower after randomly dropping 50% and 75% of
SNPs, respectively (the degree of attenuation was smaller than the
proportion of SNPs dropped due to LD between retained SNPs
and discarded causal variants). Though future work is required to
fully characterize the relationship between heritability estimates
and the degree of missing heritability under AM, the pattern of
bias due to AM when some of the heritability is missing is qua-
litatively similar to that when all causal variants are present.

The differential influence of sample size on ĥ
2
HE and ĥ

2
REML in

real traits. To investigate whether our theoretical predictions are
observable in real data, we examined the relationship between

sample size and ĥ
2

SNP in a sample of 335,551 unrelated European-
ancestry individuals in the UK Biobank27. We a priori selected
four phenotypes based on evidence (height, years of education) or
lack of evidence (body mass index, bone mineral density) for
primary phenotypic AM in a previous study14. We then com-

puted ĥ
2

HE and ĥ
2

REML in pairs of small (nsmall = 16,000) versus
large (nlarge = n–16,000) disjoint subsamples, where n denotes the
total available sample size for each phenotype. Consistent with

theory and simulation results, the effect of sample size on ĥ
2

REML

was significantly different from the effect of sample size on ĥ
2

HE for
height (p = 5.24e−4) and for years of education (p = 3.94e−4);
this was not observed for body mass index (p = 0.094) or for bone
mineral density (p = 0.302; see “Methods” section, Fig. 4). These

Fig. 2 REML and HE estimates across varying sample sizes in simulated data. a Comparison of HE regression and REML heritability estimates as
functions of sample size for varying phenotypic mating correlation (rpheno) and fixed panmictic heritability (h20 ¼ 0:5) in simulated data. We computed
multiple estimates per sample size for each estimator and parameter combination by applying estimators to independent sub-samples. Whereas HE
regression estimates are upwardly biased independent of sample size, REML estimates slowly converge to the panmictic heritability as sample sizes
increase. b Extended simulations demonstrating high-dimensional behavior of the REML estimator as a function of sample size. Forward time simulations
required a larger population size (Nsim ¼ 3 ´ 106) to obtain samples of up to n ¼ 648;000 unrelated individuals. Obtaining REML estimates for samples
larger than this was not computationally feasible, but the dashed red line shows predicted values for larger sample sizes extrapolated from a regression
model including first and second order log-linear components. Results are consistent with theoretical predictions that the REML estimator converges to the
panmictic heritability in very large samples.
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height results are congruent with those of Mandal and colleagues,

who independently observed that ĥ
2

REML decreased with increasing
sample size28. Unlike previous approaches which quantified the
degree of AM for traits by correlating polygenic scores between
mates4 or within-individuals but between chromosomes14, our
approach does not require the calculation of polygenic scores
and is agnostic with respect to variant direction and effect size.

Thus, calculating ĥ
2

REML across subsamples of varying sizes pro-
vides an alternative and independent way to detect genomic
signatures of AM.

Interpretation of ĥ
2
SNP in the presence of AM. As we have

shown, AM complicates the interpretation of ĥ
2

SNP. This com-

plication is due not only to the differential effect AM has on ĥ
2

HE

and ĥ
2

REML as a function of sample size, but also because AM
changes the true heritability in the population. This means that

ĥ
2
SNP can be compared to two different population parameters: the

equilibrium heritability h21, and the panmictic heritability h20. We

input ĥ
2

HE and previously reported spousal correlations for
height2 and educational attainment4 into Eq. (3) to estimate h21
and h20. ĥ

2

HE was inflated by 14% for height and 7% for years of

education relative to ĥ
2

1 and by 21 and 14% relative to ĥ
2

0
(Table 1). We note that this underestimates the absolute bias of

ĥ
2

HE with respect to h21 and h20 to the extent that causal variants
are missing from our measured genotype data.

Although these estimates of h21 and h20 rely on the assumption
that AM has reached equilibrium, theoretically-sound bounds for
h2 can be derived for traits where AM is at disequilibrium.
Specifically, the current heritability for a population having
undergone t generations of AM, h2t , is bounded in expectation

from above by ĥ
2

HE, with equality at t ¼ 0 (panmixis), and from

below by ĥ
2

1 ¼ E h21jĥ2HE; t ¼ 1
h i

, with equality as t ! 1
(equilibrium). Likewise, h20 is bounded in expectation from below

Fig. 3 Naïve approaches to addressing AM induced bias and the impact of missing data. a Simulations employing the same parameters described in Fig. 1
demonstrate that neither partitioned nor principal component adjusted approaches mitigate the impact of AM on HE (ĥ

2

HE) or REML (ĥ
2

REML) heritability
estimates. Additionally, simulations confirm that LDSC is subject to equivalent biases. Single component: standard single genomic variance component
models. Single comp. + 10 PCs: included the first ten within-sample PCs as covariates. Partitioned: included four annotation-based variance components
generated by median splits of within-sample minor allele frequencies and LD scores. b Simulations demonstrate that conclusions regarding estimator bias
do not change when some of the influence of causal variants is not captured by measured SNPs. Simulations employed the same parameters as above
except that 0, 50, or 75% of randomly selected SNPs (both causal and non-causal) were dropped. As expected, estimates were attenuated when SNPs
were dropped but overall patterns remained consistent.
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by ĥ
2

0 ¼ E h20jĥ
2

HE; t ¼ 0
h i

with equality as t ! 1, and from

above by ĥ
2

REML with equality at all generations. This latter bound
will narrow as sample size increases. Thus, regardless of whether
AM is at equilibrium, so long as the strength of AM has not

decreased across generations, [ĥ
2
1; ĥ

2
HE] provides probabilistic

bounds for the present day h2 whereas [ĥ
2

0; ĥ
2

REML] provides
probabilistic bounds for h20 (Fig. 1).

Discussion
Summary of findings. In the last decade, there has been much

interest in the interpretation of ĥ
2

SNP and the factors that can
influence it29. Such factors include the number of causal variants
and their typical levels of LD compared to the LD of SNPs used in
the analysis30,31, the relationship between causal variant effect sizes
and minor allele frequencies32, and passive gene–environment
correlation arising from population stratification33 or genetic

nurture7. Despite this activity and the recent evidence corroborating
long-standing theoretical expectations that AM alters the genetic

architecture of heritable traits14, the effects of AM on ĥ
2

SNP have
remained a matter of speculation9,30,34. In the present investigation,

we clarify how AM influences ĥ
2

SNP and show that these influences
are different for MoM versus REML estimators as a function of
sample size. By characterizing the full joint distribution of causal
variants at equilibrium, we prove that REML produces a consistent
estimator of h20 (the heritability in the ancestral random-mating
population), not h21 (the present generation heritability for a trait at
equilibrium), in large samples (see Supplementary Notes 2 and 3).

However, under AM, ĥ
2

REML behaves oddly in finite samples. It is
higher than h21 in sample sizes typical of those published in the
literature but drops below h21 in sample sizes that are large by
current standards (e.g., n > 200;000). On the other hand, MoM
estimators yield estimates that are biased upwards with respect to
both h21 and h20 and remain stable across sample sizes. Using UK

Fig. 4 REML and HE estimates across varying sample sizes in UK Biobank data. Comparison of HE (ĥ
2

HE) and REML (ĥ
2

REML) heritability estimates as a
function of sample size for real traits in a sample of unrelated European ancestry UK Biobank participants. Points connected by thin lines represent
estimates derived from pairs of non-overlapping subsamples of size 16,000 and n−16,000, whereas thick lines reflect average log-linear trends. Two traits
with previous evidence for AM (height and years of education) and two negative control traits (body mass index and bone mineral density) were selected
for analysis a priori. Consistent with theoretical predictions, height and years of education demonstrated significant estimator divergence with increasing
sample size whereas body mass index and bone mineral density did not.

Table 1 Inflation of heritability estimates and their corrected values for select UK Biobank traits.

Phenotype r n ĥ
2

HE [s.e.] ĥ
2

REML [s.e.] ĥ
2
[s.e.] ĥ

2

0 [s.e.] ĥ
2

HE=ĥ
2
[s.e.]

Body mass indexa 0.228 334,429 0.257 [3.15e−3] 0.256 [2.29e−3] – – –
Bone mineral
densitya,b

– 191,330 0.277 [4.37e−3] 0.295 [3.28e−3] – – –

Height 0.240 334,798 0.567 [4.68e−3] 0.525 [2.22e−3] 0.499 [4.23e−3] 0.467 [3.37e−3] 1.14 [8.70e−4]
Years of education 0.412 332,198 0.174 [2.64e−3] 0.155 [2.01e−3] 0.163 [2.46e−3] 0.153 [2.06e−3] 1.07 [9.46e−4]

Spousal correlations (r) as previously reported in British cohorts2,4 and heritability estimates for selected UK Biobank phenotypes (n denotes sample size). Height and years of education were selected a
priori on the basis of previous evidence for primary phenotypic AM whereas body mass index and bone mineral density were selected a priori as negative controls. Assuming equilibrium, the equilibrium (ĥ

2
)

and panmictic (ĥ
2

0) heritability estimates (defined in Eq. 3) provide unbiased estimates of the present day and panmictic heritabilites, respectively. Under disequilibrium, they respectively provide probabilistic
lower bounds, with the HE regression (ĥ

2

HE) and REML (ĥ
2

REML) estimates providing complementary upper bounds. The ratio ĥ
2

HE=ĥ
2
reflects the extent to which HE regression overestimates the true

heritability under the assumption of equilibrium.
aAdjusted equilibrium and panmictic heritability estimates omitted for negative control traits.
bNo estimates of the phenotypic mating correlation for bone mineral density were available.
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Biobank data, we observed this differential behavior of ĥ
2

HE and

ĥ
2

REML for two traits with previous evidence of primary phenotypic
AM but not for two negative control traits. We further showed how
the two population parameters of interest, h21 and h20, can be
estimated under the assumption of equilibrium given spousal cor-

relations and ĥ
2

HE, and that, at disequilibrium, the likely ranges of h2

in the current generation and h20 can also be estimated.

Implications. The impact that AM has on ĥ
2

SNP may often be
negligible simply because AM is very low or nonexistent for many
traits. For other traits, however, this does not appear to be the case,
including “benchmark” traits like height and educational attainment
as well as many behavioral and psychiatric traits. For example, the
tetrachoric correlations between Swedish spouses for attention deficit
hyperactive disorder (r = 0.31), autism spectrum disorder (r = 0.28),
schizophrenia (r = 0.26), and substance use disorder (r = 0.30) are
all higher than those typically observed for height35. Furthermore,
many social attitudes such as conservatism-liberalism (r = 0.61) and
religiosity (r = 0.71) exhibit extremely high spousal correlations, and
available evidence is more consistent with a primary phenotypic
model than social homogamy or convergence36. Such social attitude

traits appear to be moderately heritable (ĥ
2 � 0.20–0.30) in extended

twin family designs robust to biases caused by AM37, although no

values of ĥ
2

SNP for such social attitude traits are yet available.
Our findings suggest caution is warranted when comparing ĥ

2

SNP
for traits subject to AM when characteristics of the populations,
samples, or designs differ. First, the effect that AM has on causal
variant correlations is rapid—about half of its effect occurs after a
single generation and it approaches equilibrium within 5–15
generations; as such, both the true heritability and the extent to

which ĥ
2

SNP is biased will differ across populations that vary in
strength or duration of AM. Second, because the expectation of

ĥ
2

REML decreases monotonically in n, comparing ĥ
2

REML across
samples of different sizes can create artifactual discrepancies. Third,

though both ĥ
2

REML and ĥ
2

HE are expected to increase as the fraction
of causal variants included in the model increases, the relative bias

of ĥ
2

REML will further increase if the inclusion of additional markers
comes at the cost of decreased sample size. Therefore, the difference
in REML estimates from a smaller sample of whole-genome
sequence data (which ostensibly includes previously missing causal
variants) versus those derived from a larger sample of SNP array
data will appear artificially greater, though we note that additional
factors, such as differences in the extents to which array versus
sequence data are corrupted by subtle forms of population
structure, might also contribute to such discrepancies. Fourth, our
results demonstrate that the controlling for genomic principal
components does not mitigate AM-induced biases; indeed, the
asymptotic distributions of the eigenvalues of the GRM under
random versus assortative mating are equivalent. As AM is in
essence a form of population structure, our results reveal that our
current understanding of the extent to which residual population
structure might impact estimators of quantitative genetic para-
meters is incomplete. Finally, our results suggest that AM

complicates comparisons of ĥ
2
SNP to estimates of heritability derived

from family-based methods (mostly from twins, hence ĥ
2

twin). On

one hand, as we have shown, AM reduces the gap between ĥ
2
twin and

ĥ
2

SNP by biasing ĥ
2

SNP up. However, AM also influences ĥ
2

twin
depending on the design, biasing it downwards in “ACE” models
that estimate additive genetic and shared environmental variance

and upwards in “ADE” models that estimate additive genetic and
dominance genetic variance. Together with the previously discussed

dependence of ĥ
2

SNP on method and sample size, this further
problematizes efforts to quantify the “still-missing” heritability

(ĥ
2

twin � ĥ
2

SNP).

Limitations and future directions. There are several limitations
of the current approach. First among these are assumptions
inherent to the primary phenotypic AM model. Some of these
assumptions, including equilibrium and constancy of the phe-
notypic mating correlations across generations, aid with mathe-
matical tractability but are to some extent inessential to the
resulting phenomena. For example, while the problem of char-
acterizing the joint distribution of causal variants is more difficult
in a population subject to disequilibrium AM, we observed that
estimators behave in a similar, albeit less extreme, fashion relative
to their behavior in an equilibrium population. Other assump-
tions, such as the absence of gene–environment correlation
(which may occur, for example, in the presence of vertical
transmission) and the conditional independence of mates’ geno-
types given the heritable components of their phenotypes (which
may be violated in structured populations), are more difficult to
evaluate and deserve consideration in future investigations. For
instance, when environmental influences are transmitted from
parents to offspring, the dependence between causal variants will
extend to non-heritable factors such that, in subsequent genera-
tions, all trait-increasing allele-counts and trait-increasing envir-
onmental factors will become positively correlated, and the linear
mixed model assumed by both the REML and MoM estimators
will be further misspecified.

We have also not investigated the impact that AM has on
polygenic scores or within-family classes of estimators. For
example, LD-score regression can be estimated based upon
regression estimates from within-sibling analyses. The estimated
genetic variance from such an analysis would be that in the base
population (because it is based on the segregation variance), but
the estimated phenotypic variance would be that in in the current
population. This would also lead to a bias in heritability
estimation (and similarly for heritability estimates using related-
ness disequilibrium regression10), as was pointed out in ref. 38.
This bias is different than those described here in that it is lower
than either the base population or equilibrium population
heritability. Additionally, we have not found closed-form

solutions to ĥ
2

REML that would allow us to correct REML estimates
in the same way we have corrected HE estimates under the
assumption of equilibrium AM. Further, we have not investigated
the impact that natural selection has on the long-range
correlations between causal variants and SNPs and what impact

this might have on ĥ
2

SNP. Finally, we have not considered the
effects of multivariate AM or the impact of AM on marker-based
genetic correlation estimators, which will also be misspecified
under cross-trait AM. As such, these results should provide
motivation and a starting place for the development of new
methods that can provide unbiased estimates of genomic variance
in the presence of AM and other factors that can influence the
long-range correlations between SNPs.

Methods
Theoretical framework
The primary phenotypic assortment model. Here we introduce the model of AM as
proposed by Fisher5 and further developed by Nagylaki and others39,40 (see Sup-
plementary Note 1 for a detailed exposition). Briefly, we consider a phenotype as a
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random vector composed of independent heritable and non-heritable components:

y ¼ Zuþ e; e �i:i:d:Nð0; σ2e Þ; ð5Þ
where the rows of Z, representing individuals’ standardized genotypes, are inde-
pendent m-dimensional random vectors following a multivariate discrete dis-
tribution with finite moments and finite support and which we assume are
independent under panmixis. The vector of allele substitution effects u, which we
treat as fixed, is such that uTu ¼ σ2g;0. Further, we assume that 1.
parent–parent–offspring trios’ phenotypes are jointly Gaussian; 2. the phenotypic
correlation between mates, r is constant across generations; and 3. there exists
c0 2 0;1ð Þ such that max

k¼1;¼ ;m
uk
�� ��≤ c0 �m�1=2; that is, as traits become increasingly

polygenic, the maximal variance attributable to individual variants decreases
commensurately.

The equilibrium distribution of causal variants. Over successive generations, the
correlation between mates’ phenotypes induces positive correlations across trait
increasing allele counts independent of physical position on the genome and
thereby increases the total genetic variance of the trait. The genetic variance rapidly
approaches a stable equilibrium after several generations (typically within ten
generations), at which point the within-individual and cross-mate correlations
among causal variants are equal to one another. Using the results of Nagylaki39, we
can express the equilibrium covariance matrix between causal variants as a low
rank perturbation of a diagonal matrix of the form: ϒ1 ¼ Dþ 2ϕϕT, where ϕ is a
known vector-valued function of the substitution effects and mating correlation
(see Supplementary Note 1.2) with elements ϕk ¼ Oðm�1=2Þ uniformly.

Higher order moments and the limiting spectral distribution of GRM. Employing
tools from the study of thermodynamic equilibria, we extend these classical results
to bound moments of higher orders (see Supplementary Note 2). Using these
results, we extend the widely-known Marčenko-Pastur theorem, which describes
the limiting distribution of the spectrum of sample covariance matrices corre-
sponding to random matrices with independent sub-Gaussian elements41, to the
case of random matrices with independent rows meeting particular moment
conditions (see Supplementary Note 2). Together, these results establish the lim-
iting spectral distribution of the sample GRM (i.e., the distribution of the eigen-
values of the sample GRM as both sample size and polygenicity increase) under
AM, providing the necessary theoretical foundation to characterize the asymptotic
behavior of the REML estimator. Further, these results explain why controlling for
principal components fails to remove AM-induced biases: the impact of AM on the
spectrum of the GRM is asymptotically negligible.

Haseman-Elston regression under AM. The HE regression estimator42 is obtained
by regressing the subdiagonal elements of the standardized phenotypic outer
product eyeyT on the subdiagonal elements of the GRM m�1ZZT. Whereas elements
of the outcome (the phenotypic outer product) reflect the dependences among all
pairs of causal loci:

E feyeyTgi;j<1h i
/ ∑

m

k¼1
∑
m

l¼1
ukulE zikzjl

h i
; ð6Þ

elements of the GRM only capture the dependences within loci:

E ZZT
	 


i;j<1

h i
/ ∑

m

k¼l
E zikzjl
h i

ð7Þ
As a result, the variance of the outcome increases whereas the variance of

predictor remains largely unaffected, leading to overestimation of h2SNP (Fig. 1; see
Supplementary Note 3 for further details and proof).

REML and the spectrum of the GRM under AM. The REML estimator19 models the
phenotype as a random vector with marginal distribution,

y�MVN Xβ;m�1ZZTσ2g þ Iσ2e

� �
; ð8Þ

where X is an n ´ c matrix of covariates with fixed effects β and the covariance
structure is comprised of a heritable component (σ2g times the GRM) and a non-

heritable component (σ2e times the identity). The heritability estimator ĥ
2
REML ¼

σ̂2g=ðσ̂2g þ σ̂2e Þ is derived by finding the values of the variance components that
satisfy the equation,

∇l σ̂2g ; σ̂
2
e jATy

� �
¼ 0; ð9Þ

where l denotes the marginal log likelihood of the transformed random variable
ATy for AT : Rn ! ðcolXÞ? � Rn�c, ATA ¼ I. The conditional expectation of
∇l given the genotypes is a function of the eigenvalues of the GRM and, as a result,

the asymptotic behavior of ĥ
2
REML is governed by the asymptotic distribution of the

eigenvalues of m�1ZZT. A foundational result in random matrix theory states that
for zero-mean unit-variance sub-Gaussian random matrices W 2 Cn ´m with
independent elements, the empirical spectral distribution function of m�1WWT

converges almost surely to the Marčenko-Pastur distribution41. Employing this
result, Jiang and colleagues43 demonstrated that, in the case of independent causal
variants, REML consistently estimates the true heritability in high dimensional
settings and is robust to certain forms of model misspecification. In Supplementary
Note 2, we demonstrate that even though AM induces dependence among causal
variants, this dependence is “weak” in the sense that it doesn’t change the limiting
spectral distribution of the GRM, thereby allowing us to apply arguments in line
with those of Jiang and colleagues’ (see Supplementary Note 3). Intuitively our
result can be summarized as follows: as the sample size and the number of causal
variants become large, the eigenvalues of the GRM under AM behave as if the
causal variants were independent (as is largely the case under random mating). The
behavior of the REML estimator is determined by the behavior of the eigenvalues of

the GRM, and thus ĥ
2
REML converges to what the heritability would be if the causal

variants were independent, i.e., the panmictic heritability.

Simulation studies. We employed a realistic forward-time simulation framework
to generate genotypic and phenotypic data. We then used these data to motivate
and verify theoretical results. Below, we describe the general framework and spe-
cific simulations we performed.

Simulation framework. Given a recombination map and ninput individuals’ phased
biallelic genotypes at p diploid loci as input, we divided the genome into k � p
contiguous, non-overlapping 50kB intervals to obtain a collection of blocks, the
disjoint union of which comprises the genome. Recombination events, which
occurred with probabilities dictated by the recombination map, were restricted to
interval boundaries, thus dramatically reducing the number of haplotypes that to
keep track of while maintaining high genomic resolution and realistic LD. To
achieve a target population size Nsim >ninput, Nsim pairs of the ninput individuals
were non-monogamously ‘mated’ (i.e., matched and subject to meiosis), resulting
in a new generation of Nsim individuals whose genomes were could be represented
in terms of the which of the ninput haplotype blocks they inherited at each of the k
intervals. We then repeated this random mating procedure for an additional five
generations, resulting in N sim chimeric combinations of the original ninput geno-
types while maintaining the LD structure of the original data. These chimeric
genotypes comprised the input for the principal AM simulations.

At the beginning of each particular AM simulation with prespecified panmictic
heritability h20 ¼ σ2g;0=ðσ2g;0 þ σ2e Þ; phenotypic correlation between mates r, p SNPs,
and m diploid causal loci z1; ¼ ; zm , m � p, the standardized allele substitution
effects u1; ¼ ; um were independently drawn from a Gaussian distribution with
expectation zero and variance σ2g;0=m. Unless otherwise stated, all simulations used
p = 106 SNPs. At each generation, phenotypes were constructed via y ¼ Zuþ e
where e was i.i.d. Gaussian with zero expectation and variance σ2e . Next, mates
were matched according to their respective phenotypes yi , yj such that

corr yi; yj

� �
� r44. This was achieved by drawing N sim independent doubles

f w	;w		ð ÞTgNsim

k¼1�N
0
0

� �
;

1 r
r 1

� � �
from which Nsim pairs of indices

f i; j
� �gNsimk¼1 were constructed such that i; j

� �
k were the positions of w	

k and w		
k

after concatenating and sorting each element of f w	;w		ð ÞTgNsim

k¼1 . Similarly, N sim
indices l ¼ l1; ¼ ; lNsim

were constructed such that lk indexed the kth largest of

the N sim simulated phenotypes. Finally, each kth mating pair was determined by
taking the lbik=2cth and lbij=2cth replicates. Having chosen mates, meiosis occurred as

previously detailed to construct the next generations’ genotypes. All simulations
were conducted in Python v3.6.845 using the numpy v1.16.246, scipy v1.2.147, and
dask v1.1.448 libraries.

Simulations using UK Biobank data. For each simulation, the input data were
derived from phased, imputed genotypes at p = 106 randomly selected imputed
SNP loci in a sub-sample of ninput = 435,301 European UK Biobank participants27.
Retained SNPs met the following criteria: minor allele frequency >0.01,
Hardy–Weinberg p-value >10−6, INFO score >0.95, and presence on the 1000
Genomes Phase 3 (1KG3) reference panel49. Genotype data were then phased to
the 1KG3 reference panel in batches of 40,000 individuals using Eagle v2.450. Data
were then grown to a population of Nsim = 106 chimeric genotypes and subjected
to an additional five generations of random mating as described above before being
subject to AM.

We conducted AM simulations for varying mating correlations, r 2
f0; :25; :5; :75g and numbers of causal variants, m 2 104; 105

	 

, with panmictic

heritability fixed at h20 ¼ :5. Each simulation consisted of fifteen generations of AM
and produced results congruent with classical theory. Prior to heritability
estimation, close relatives π̂ ≥ :05, were removed using GCTA v1.93.120, resulting in
an average sample size of 141,667 across simulated datasets. Additionally, we ran a
limited number of larger, more computationally intensive simulations (Nsim =
3 × 106) with mating correlations fixed at r ¼ :5 to investigate the large sample
behavior of the REML estimator, resulting in at least 648,000 unrelated individuals
across simulated datasets. There were no apparent differences across simulations as
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a function of m, p, or Nsim (Supplementary Fig. 1). We note that these simulations
assume a homogenous population without any population structure apart from
that induced by primary phenotypic AM; thus, the irrelevance of p here does not
necessarily speak to the consequences of increasing the number of variants under
consideration by decreasing allele frequency or imputation quality score thresholds,
as is common practice, if the additional variants capture additional fine-scale
population structure.

Heritability estimation in simulated data. We split each simulated
genotype–phenotype dataset into collections of random subsamples mutually
exclusive within collection but not across collections, yielding 16 samples of 16,000
individuals, eight samples of 16,000, four samples of 32,000 individuals, two
samples of 64,000 individuals, and one sample of 128,000 individuals. We then
performed HE regression and single-component REML for each subsample
(Fig. 2a). We used GCTA v1.91.3b20 to construct genomic related matrices and

perform HE regression. We obtained ĥ
2

REML using BOLT-LMM v2.3.451 for com-
putational efficiency; though BOLT-LMM uses a randomized algorithm, its
numerical accuracy is comparable to that of the exact algorithm implemented
GCTA52.

We also performed a variety of supplementary analyses for a limited set of
simulation parameters (r ¼ :5, h20 ¼ :5, and m 2 104; 105

	 

;N ¼ 106). To

demonstrate that including genomic PCs as covariates does not mitigate the impact
of AM, we included ten PCs as covariates in the HE regression and REML analyses.
For the former, HE regression was conducted in LDAK v5.053, as the HE regression
implementation in GCTA cannot accommodate covariates. To demonstrate that
the behavior of LDSC under AM is equivalent to that of HE regression (assuming
that the LD scores accurately reflect the LD structure of the sample), we used
PLINK v1.954 to obtain GWAS summary statistics and LDSC v1.0.118 to estimate
within-sample LD scores using a one centiMorgan sliding window and to perform
LDSC regression (Fig. 4a). To demonstrate that multiple variance component (also
known as partitioned approaches30,55) do not mitigate the impact of AM, we fit
multicomponent HE regression and REML after partitioning SNPs by minor allele
frequency and LD score (Fig. 4a). Finally, to assess the scenario wherein a non-
trivial fraction of causal variants are missing from Z, we estimated HE regression
and REML models after removing 50 or 75% of simulated SNPs at random
(Fig. 4b).

Statistics
Sampling procedures. We analyzed 1,211,273 biallelic 1KG3 SNPs with in-sample
minor allele frequency >0.01, Hardy–Weinberg p-value >10−6, and INFO scores
>0.95, in a sample of 335,551 unrelated European UK Biobank participants27. We
selected phenotypes a priori on the basis of previous evidence for AM; we chose
height (n ¼ 334,798) and years of education (n ¼ 332,198) as traits with previous
evidence of primary phenotypic AM, whereas we chose body mass index (n ¼
334,429) and bone mineral density (n ¼ 191,330) as negative control traits14. We
measured years of education following the procedures detailed in ref. 9. For the
results reported in Table 1, we used previously reported estimates of phenotypic
spousal correlations2,4. For height specifically, we combined the estimates from
multiple British cohorts included in a meta-analysis2 via inverse variance
weighting.

Analysis/resampling. We tested for evidence of AM by comparing ĥ
2
HE and ĥ

2
REML in

small and large samples. We randomly selected ten mutually exclusive subsamples
of nsmall = 16,000 individuals for each trait and compared HE and REML estimates
in each subsample to the non-overlapping complementary subsample comprised of
the remaining nlarge ¼ n−16,000 individuals, controlling for sex, age, genotyping
batch, testing center, and the first ten genomic ancestry PCs. To eliminate variance
in heritability estimates due to chance differences in covariate effect estimates
across subsamples, we adjusted genotypes and phenotypes in the full sample prior
to all following analyses. To our knowledge, existing software is incapable of effi-
cient REML analysis using adjusted genotypes (analogous to dosages) in large
samples; e.g., BOLT-REML requires hard-calls as input, whereas GCTA and LDAK
have cubic complexity in the number of individuals and markers and would require
weeks to run on a high thread-count server. We therefore utilized a modified
Python implementation of the REML algorithm presented in ref. 52 (available at
https://github.com/rborder/SL_REML56). We used LDAK v5.0 to obtain adjusted

HE regression estimates53. In order to quantify the divergence of ĥ
2

HE and ĥ
2

REML as
a function of n, we performed the following test, analogous to a t-test of the
interaction effect in a 2 × 2 within-subjects experimental design:

H0 :
�δ :¼ ðĥ2REMLðSÞ � ĥ

2

REMLðSCÞÞ � ðĥ2HEðSÞ � ĥ
2

HEðSCÞÞ ¼ 0;
H1 :

�δ≠0;
where S denotes a given large subsample and Sc its complementary small
subsample. Though this procedure accounts for the dependence among estimates
derived in the same subsamples, the individual observations were derived from
various partitionings of the same data and do not constitute truly independent
observations. Therefore, the p-values for this test reported in the main text should
be interpreted as descriptive despite our application of inferential procedures.

All statistical analyses and visualizations were conducted in R v3.5.057 using the
ggplot2 v3.3.358 and MASS v7.3.4959 libraries.

Ethical approval. Ethics approval for the UK Biobank study was obtained by the
UK Biobank team from the North West Center for Research Ethics Committee (11/
NW/0382). Access to the UK Biobank data was granted to principal investigator
Dr. Matthew C. Keller (researcher ID 16651).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data are available through the UK Biobank Access Management System (https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access). A full catalogue of the
data examined, including raw materials and descriptive statistics, is available via the
online showcase (https://biobank.ndph.ox.ac.uk/ukb). A full description of the study
protocols has been provided by the UK Biobank team60.

Code availability
The REML implementation utilized is available online (https://github.com/rborder/
SL_REML56).
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