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Abstract

Understanding the mobility pattern and network flow provides fundamental knowledge for

decision making in transportation planning and operations. These insights play a critical

role in travel demand modeling, traffic management and control, and processes in the devel-

opment of robust and sustainable transportation systems. There has been a long history of

developing estimation methods to better understand networked data. However, direct obser-

vations often suffer from several challenges: high-dimensionality, limited coverage, and low

fidelity. Furthermore, existing literature tends to separate data with data-driven methods

and domain knowledge with behavioral-based and physics-informed models.

This dissertation focuses on statistical learning on high-dimensional networked data in trans-

portation. We consider signal from direct observations and the interdependence among var-

ious components in the network, under the regularization of the domain knowledge and

structural information. The goal of the research is to develop a methodology to improve the

quality, efficiency, and robustness of the estimation of high-dimensional networked data in

transportation systems. Based on the interdependency of data from various network levels,

the development of the statistical learning frameworks targets the following specific key ob-

jectives : 1) estimating unknown OD demand from observable link flow in the networks; 2)

learning meaningful data representations in networks for critical information extraction and

anomaly detection; and 3) statistical filtering for data on directed graphs.

In OD estimation, we present a modeling framework for OD demand estimation based on ob-

served traffic flow data in a transportation network, from a fresh angle of stochastic program-

ming. The proposed two-stage stochastic programming method is flexible for incorporating

various design principles and risk preferences into domain knowledge regarding travel behav-

ioral and physical rules. Besides, a benefit comes from the scenario representation, where
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the point estimate can be combined with estimation of the discrete approximation to the

demand distribution. We demonstrate that under the proposed framework, well-established

theories and methods for stochastic programming, including epi-convergence and scenario-

decomposition, can be exploited to advance the analytical and computational capability of

the estimation model. The applicability and efficiency of the proposed method are illustrated

via numerical examples based on highway and transit networks of various sizes.

In representation learning, we introduce a new perspective that the critical information of the

data should reflect how the data is used in downstream applications, which carries a different

research design philosophy adopted in most existing data representation learning methods.

We propose an application-driven representation learning framework by incorporating infor-

mation loss for the downstream application into the data encoding-decoding process. The

proposed approach is formulated as a Stiefel manifold optimization problem. The effective-

ness of the proposed framework is demonstrated through three case studies: transportation

network performance assessment, vehicular emission estimation, and anomaly detection of

travel demand. Experiments show that our proposed approach performs better than classi-

cal representation learning approaches, especially in applications involving complex network

interdependence.

In graph signal filtering, we developed a Continuous-time Markov chain based filtering meth-

ods on directed graphs using nonparametric regression technique. Through bridging the

stochastic process and algebraic graph theory, we utilize the transition matrix basis that is

dependent on the connectivity of points across varied density regions. Compared with meth-

ods dedicated to undirected graph and spatial filtering methods, our approach is capable of

capturing directional information flows and local asymmetric structure in data observations.

The performance of our approach is evidenced through a series of synthetic and real-world

case studies on network traffic flow. This work demonstrates the potential for incorporating

heterogeneous structures for data defined on irregular domains.
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Chapter 1

Introduction

1.1 Motivation and Background

Mobility, travel demand, and traffic flow have been some of the major areas of focus in

transportation science for many years. Travel demand information serves as a critical input

in almost all levels of mobility planning, design, and control applications. The increasing

prevalence of ride-sharing and car-sharing services further necessitates the development of

statistical tools for understanding demand and network flow. Ideally, travel demand should

tell individuals’ travel needs from an origin to a destination during a certain time period.

However, due to financial and mobility constraints imposed on travelers, not all potential

travel can be realized. Unlike travel demand information, which is not usually vastly available

to planners and decision makers, traffic flow information is more accessible thanks to the

advancement in sensing technologies. As the realization of the interactions of travel demand

and infrastructure supply, traffic flow directly reveals the state of transportation systems,

enabling various real-time traffic management and control strategies.

Opportunities come with significant challenges when it comes to the management, pro-

cessing, storage, and utilization of large-scale high-dimensional transportation data (Vla-

hogianni, 2015; Cuzzocrea, 2019). Some of the major challenges lie in the aspects on how
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to mitigate the uncertainties within these raw data and effectively utilize them to extract

useful information that can be carried further to down stream applications for planning and

operational purposes. Here we summarize three main challenges:

• High dimensionality: Understanding complex spatio-temporal pattern of trans-

portation data is challenging as transportation systems are often highly stochastic

and transportation related data usually live in high dimensional space. In addition,

measurements from different views, such as link flow, demand, vehicle ID tracking, path

level trajectory, pose uncertainties in data fusion and inference from indirect measure-

ments. Conventional approaches may not be directly applicable to high-dimensional

transportation systems.

• Limited coverage and partial view: Fixed location sensors, despite having high

temporal resolution, can only capture a partial picture of the transportation system

spatially. They are limited in their ability to provide comprehensive data across dif-

ferent areas. On the other hand, mobile sensors have the potential to measure both

the spatial and temporal dimensions of the system more effectively. However, they are

more expensive to deploy widely and are prone to noise and fluctuations.

• Noise and low fidelity: Observations in transportation data are rarely free of noise.

The presence of noise and fluctuations from various sources poses challenges in build-

ing models that can generalize well to real-world scenarios. Furthermore, the lack of

regular maintenance of sensors and infrastructure can result in missing data, further

complicating the analysis and interpretation of transportation data. Addressing the

noise and low-fidelity issues requires more robust methods.

In transportation science community, there are mainly two categories of philosophy in

modeling the transportation systems: model-based approaches and data-driven approaches.

Tremendous effort has been dedicated to developing realistic physical-based or behavior-

based models that can capture the mechanism of transportation systems. For example,
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the widely used BRP volume-delay function (Bureau of Public Roads, 1964) measures the

relationship between travel flow and link travel time. Car following models can be used

to capture the microscopic flow dynamics (Newell, 1961; Gipps, 1981). Traffic assignment

models translate the travel demand to traffic flow, given the cost function and network supply

(Daganzo and Sheffi, 1977; Shao et al., 2006). Nested logit models capture the behavioral

decisions on travel mode choice (Wen and Koppelman, 2001).

In another school of thoughts, data-driven approaches has gained increasing attention as

information technologies advance recently. For example, wavelet transform is used to detect

the characteristics of traffic state and bottlenecks (Zheng et al., 2011). For data measured

in transportation networks, several studies use spatio-temporal techniques to investigate

different aspects of link-based traffic flow, including volume (Tan et al., 2016; Ran et al.,

2016; Tan et al., 2013), speed (Goulart et al., 2017; Asif et al., 2016) and accidents (Ke et al.,

2019). For spatio-temporal mobility pattern mining,Sun and Axhausen (2016) and Wang

et al. (2021) developed decomposition methods that can discover latent variables dominating

the interactions of demand and supply.

In some cases, the model assumptions are not realistic given the high uncertainty and

stochasticity of the systems. On the other hand, data-driven methods may suffer from over-

fitting to noise and lack of interpretability and generalizability. In this dissertation, we

incorporate model-based domain knowledge into estimation tasks, leveraging the underlying

physics and variations caused by spatial and temporal uncertainties. We investigate some

fundamental challenges in noisy high-dimensional networked data in transportation systems

using optimization and statistical learning tools. We hope to bridge several gaps in discov-

ering the underlying phenomenon of high-dimensional networked traffic flow. Specifically,

based on the interdependency of data on various levels of network components, we try to

answer three main questions for high-dimensional networked data:

1. Can we benefit from multiple sources of data in high-dimensional networked flow esti-

mation?
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2. Can we extract representative critical information from high-dimensional data in trans-

portation networked systems?

3. Can we leverage structural information to inform high-dimensional estimations?

1.2 Research Objectives and Significance

Although a fair amount of research has been dedicated to understanding networked data us-

ing both model-based and data-driven approaches, the integration of domain-specific knowl-

edge, structural information, and latent data patterns has not received enough attention.

Domain-specific knowledge, for instance, can provide a valuable contextual understanding of

the underlying phenomenon of the observations. It often contributes model-based insights

to the conceptualization of the estimation steps. Similarly, structural information provides

crucial regularization or constraints that help restrict the feasibility region of the potential

solution. Latent patterns in the data can uncover hidden relationships and complex interac-

tions that may not be immediately evident from the raw observations. These patterns can

often offer invaluable information on the generative mechanism of networked data, leading

to more fundamental insights.

In this dissertation, we classify the various components of the transportation system

by their generative mechanism in the networks, as link-based data, node-based data, path-

based data and node-to-node-based data. Node-based and link-based data are among the

most widely available types. These include microscopic traffic flow density, flow rate, and

speed. Path-based data are becoming more prevalent due to advances in sensing technology,

including GPS traces for travelers and high-resolution lane-level vehicle trajectory. Node-

to-node data, including OD demand, often require special treatment because of the highly

correlated underlying decision-making processes. In Figure 1.1, we present an illustration of

various types of networked data and their relationships. Travel Demand and infrastructure

supply communicate through the underlying directed network. The observations of various

levels in the network are consequences of the steady and transition states of the demand and
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supply. By considering the data generation mechanism and the network operation knowledge,

we can provide better understandings of the network systems. Based on the connection of the

information with the networks, we identify three main research tasks, which we now explain

here. This dissertation aims to address three research gaps through the pursuit of various

Network

Link flow 

OD flow 

(demand)

Path flow 

Demand
(node-to-node)

Directed network

Traveler
Physical and cyber 

infrastructure

T1: Demand

estimation

Link-based 
data

Networked data

Node-based  
data

Path-based 
data

T2:

Representation 

learning

T3: Filtering

Operation

Figure 1.1: Research framework

optimization and statistical machine learning methodologies, with a focus on estimation tasks

in transportation networks. Among the broad application opportunities, we demonstrate

the capability of purposed methods through understanding the characteristics of networked

traffic flow, from Origin-Destination (OD) demand to link/path flow, vehicle trajectories,

and others. We focus on different types of observable networked data for different tasks, and

they are connected through the underlying directed network structure and network operation

domain knowledge. Specifically, we are interested in these tasks:

1. Estimating OD demand from link flow observations (node-based to link-based infor-

mation),
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2. Discover latent patterns and critical information in networked data (connection be-

tween information at various levels),

3. Noise filtering for flow on directed graphs (node-based information).

Although these tasks are directly aimed at different levels of information, the network struc-

ture and domain knowledge remain the underlying theme that connects various objectives.

OD estimation 
(stochastic programming)

Representation learning
(manifold optimization)

Link flow

Node-based  
data

OD demand

Filtered 
node-based data

Networked 
data

Given

Filtering on directed graphs
(nonparametric regression)

Estimation

Task 1

Example Direct Applications

Task 2

Task 3

Critical information

Result

• Highway/transit planning
• Demand management
• Fleet optimization

• Demand pattern
• Emission estimation
• Anomaly detection

• Large-scale denoising
• Sensor error correction

Figure 1.2: Research Tasks

These tasks are shown in Figure 1.2. Specifically, we start by developing a novel stochastic

programming OD estimation method which bridges the philosophy of statistical inference

and stochastic programming. We also develop an application-driven representation learning

combining the intrinsic structure of the data and the complex relationship that dominates

the data generation mechanism. Furthermore, we develop a statistical filtering method on

directed graphs that can take advantage of the structural information and the varied levels

of local correlation in the observations.

These objectives are centered on the decomposition principle, where large-scale high-

dimensional data can be decomposed into more meaningful or more manageable pieces to
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draw conclusions based on. They would help uncover the underlying pattern of daily traffic

evolution in the network setting. The learned critical signals and latent patterns could

further benefit much broader operation and planning tasks.

1.3 Dissertation Organization

The structure of this dissertation is as follows.

Chapter 2: Stochastic OD Demand Estimation Using Stochastic Program-

ming This chapter aims to address the OD estimation problem based on link flow counts.

We approach the problem from a fresh angle based on two-stage stochastic programming

(SP) framework, where demand parameter estimation is treated as the first stage decision

and demand reconstruction as the scenario-dependent recourse decision. The performance

of the proposed framework is demonstrated for both highway and transit networks.

Chapter 3: Application-Driven Representation Learning for Feature Extrac-

tion and Anomaly Detection in Transportation Systems This chapter deals with

the problem of finding meaningful representation of high-dimensional transportation flow

data. A new method of finding dominant features is established through incorporating both

information in data and structure in downstream applications. We show that the applica-

tion metric can help with revealing hidden structure in high-dimensional raw observations,

through a series of tasks, including feature extraction of mobility data, emission estimation

based vehicle trajectory and anomaly detection on travel demand.

Chapter 4: Continuous-time Markov Chain based Filtering on Directed Graphs

We propose Continuous-time Markov Chain (CTMC) based filtering as a novel approach for

high-dimensional estimation on directed graphs from noisy observations. We approach the

graph signal filtering problem under the synthesis framework by leveraging a continuous-time

transition basis. The method can be easily applied to the cases where the graph structures

are given as prior or to the more general applications by leveraging the KNN or proximity

graphs. Compared with standard methods dedicated to undirected graphs and spatial infor-
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mation, we show that the CTMC filtering developed for directed graph can reveal asymmetric

structure and can generate varied levels of adaptivity of data observations.

1.4 Summary of Contribution

This dissertation is primarily dedicated to the methodological and theoretical improvement

of high-dimensional estimation methods and is readily generalizable to various real-world

applications. Although the context and case studies of this dissertation are networked traffic

flow, its benefits go far beyond what is experimented here. Our proposed methods are capa-

ble of capturing complex interactions among high-dimensional observed data and revealing

critical information through hidden structures discovered. Here we list boarder aspects of

methodological and practical contributions

• A multistage estimation framework leveraging multiple observation sets that exploits

structural information in data,

• A scalable decomposition solution for large-scale high-dimensional estimation task,

• A representation learning and feature extraction method that incorporate information

in both data and downstream applications,

• A dimensionality reduction based trajectory level emission estimation method,

• An anomaly detection method based on latent structure within the data observations,

• A nonparametric regression based high-dimensional filtering on directed graphs.
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Chapter 2

Stochastic OD Demand Estimation

Using Stochastic Programming

2.1 Introduction

Travel demand plays a critical role in almost all transportation planning and operations

decision processes. In the transportation network literature, estimating the network-level

Origin Destination (OD) travel demand based on directly measurable local traffic states,

such as aggregated link traffic flows, has attracted much attention in recent years. From

a system identification perspective, the main challenges involved in those OD estimation

problems are 1) translating link-level flow information to the network-level OD demand is

not simple, rather it builds on complicated travel behaviors and network physics relations;

and 2) link-level flow information alone may not lead to a unique estimation of the OD

demand. Consequently, standard statistical techniques for estimation and imputation with

limited and indirect data cannot be directly applied; there is a need to explore tailored

estimation approaches for the specific context of transportation network level OD demand

problem.

Urban transportation system data typically come with high variability across spatial and
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temporal dimensions. Considering the uncertain nature of the estimation, we will not dis-

cuss previous studies that approached the problem from a deterministic manner and only

provided point estimates. Among the many studies on OD estimation that stemmed from

statistical estimation approaches, an early paper by Lo et al. (1996) considered using the full

likelihood function from link flows based on an independent Poisson distribution assump-

tion. Vardi (1996) further took inter-link dependency into account, while the fixed routing

and Markovian routing assumptions are not exactly comparable in a transportation network

setting. Hazelton (2000) derived a full likelihood function and applied multivariate normal

approximation to simultaneously estimate OD matrix as well as route choice probabilities.

Hazelton (2008) took a Bayesian approach with multivariate normal distributed travel de-

mand and provided Bayesian hypothesis testings to measure the precision of estimation.

Shao et al. (2015) proposed a weighted least squares approach using first and second order

properties of flow observation for multi-class OD demands. Ma and Qian (2018) took an

iterative generalized least squares (IGLS) approach to estimate mean and covariance of a

probabilistic demand directly from multiple observation sets. Yang et al. (2019) proposed a

Generalized Moment Matching (GMM) based estimation framework to infer the probability

density function of OD demand using traffic counts in a network. These studies shed light on

choices of a conceptual stochastic estimation framework for the demand estimation problem

discussed in this study. Within the statistical estimation framework, additional information

could be exploited. In the context of network flow estimation, besides the hard data di-

rectly collected as filed observations, soft information representing domain knowledge, such

as network flow relation and behavioral models, can provide an extra layer of information.

Utilization of domain knowledge for transportation network estimation has been reported in

the literature. For example, Wang et al. (2016a) investigated network resilience by identify-

ing critical vulnerable links. Liu et al. (2019) tried to understand key nodes in the network

using the knowledge from network topology. Wang et al. (2016b) incorporated Stochastic

User Equilibrium (SUE) into the estimation for origin-destination (OD) matrix, link choice
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proportion, and dispersion parameter. Yang et al. (2018) presented an estimation method

that incorporates both transportation operation, route choice and network structure. These

studies demonstrated the benefits of using domain knowledge to improve estimation quality

for network flows. How to systematically and effectively incorporate various knowledge and

information pieces in a statistically meaningful manner remains an active research area.

In a seemingly separate stream of scientific pursuit, we start to see converged thoughts

from perspectives of operations research and statistics, mainly stochastic programming and

statistical inference in this context. Stochastic programming was initially created as a mod-

eling framework for decision making under uncertainty (Birge and Louveaux, 2011), now

with a very broad spectrum of application areas reported in the literature including civil

infrastructure (Huang and Loucks, 2000; Liu et al., 2009), supply chain design and manage-

ment (Santoso et al., 2005; Azaron et al., 2008), process systems (Li and Grossmann, 2021),

just to name a few. Beyond the central attention on modeling and computational challenges

representing the main-stream OR perspective, several studies paid attention to the statistical

properties of the solution to stochastic programs. Among the pioneers, Shapiro (1989) ex-

amined the asymptotic of the optimal solution to the stochastic programs and linked it with

maximum likelihood estimators. King and Wets (1991) established the epi-consistence for

stochastic program with recourse. King and Rockafellar (1993) approached the asymptotic

problem using local sensitivity analysis of the generalized equations. Pflug (2003) sum-

marized the consistency, convergence rate, asymptotic distribution and universal bounds

for stochastic programs in general. Xu (2010) extended the analysis of the convergence of

statistical estimators to the stochastic Nash equilibrium problem and the stochastic gener-

alized equation problem. Later on in the textbook by Shapiro et al. (2021), the statistical

properties of sample average approximation estimators and various sampling methods were

discussed in great details. These studies opened a door for us to conceptualize and analyze

the transportation network estimation problem in the stochastic programming framework.

From a fresh angle using stochastic optimization, we will present an OD estimation ap-

11



proach that provides new modeling, theoretical, and computational capabilities to cope with

data uncertainty in the transportation network context. Following the stochastic program-

ming convention, the distribution parameters can be considered as the first-stage decision

and a set of reconstructed demand corresponding to link flow observations in the interested

time interval can be treated as second-stage resource variables. As a result, this approach

is capable of estimating the population parameters of an underlying probability distribution

of the OD demand and simultaneously reconstructing OD trip tables associate with each

individual data sample. Besides, the estimation approach provides a great flexibility to ac-

commodate various behavior and operational assumptions and rules as constraints, making

it easier to exploit both hard data and soft information. To demonstrate the scalability of

the proposed method, we exploit a popular stochastic programming decomposition approach,

progressive hedging to address computational challenges due to the problem size and data

dimension.

Compared with existing approaches, the major contributions of this study lie in the

following:

• From a conceptual perspective, approaching the problem from a fresh stochastic pro-

gramming (SP) framework, we are able to make connection between the new estimation

and the well-studied SP problems. Through analytical and computational results, we

demonstrated how the theoretical and computational advancements in stochastic pro-

gramming can be exploited in the new network estimation problem context.

• From a modeling perspective, we emphasize the importance of having modeling flexibil-

ity to incorporate domain knowledge in data-driven estimation processes. As demon-

strated from the numerical experiments, by incorporating both network topology in-

formation and network operation knowledge in the estimation process, the estimation

quality can be largely improved.

The rest of the chapter is structured as follows. We first present a stochastic programming

based OD estimation model, accompanied by a consistency analysis. We then implement a
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scenario decomposition approach via Progressive Hedging to solve the problem in a scalable

manner. Last, we demonstrate the applicability of the proposed network-level demand es-

timation framework through several numerical case studies, including one highway network

and two transit networks.

2.2 A Stochastic Programming based OD Demand Es-

timation Framework

2.2.1 Stochastic Programming Estimation Model

In this section, we present a fresh angle of using stochastic optimization techniques for OD

demand estimation. Recall a general two stage stochastic nonlinear program (Ruszczyński

and Shapiro, 2003)

min
x

L(x) + Eξ[Q(x, ξ)]

s.t. g1i (x) ≤ 0

with

Q(x, ξ) = min
y

f(y;x, ξ)

s.t. g2i (y;x, ξ) ≤ 0

(2.2.1)

Typically, the goal can be interpreted as to make a planning decision that minimizes the total

costs including the current and the expected future costs. The first stage planning decision

x with cost L(x) has to be made before any possible outcome of the random parameter

ξ becomes certain. In the second stage, the actual realization of ξ becomes known and

a recourse decision y can be taken. Q(x, ξ) is the objective function of the second stage

problem given a particular choice of x and a realization of ξ.

In the new context of OD estimation problem, let us approach the demand estimation as a

stochastic decision making problem. Consider a transportation network G(N , E) with N OD

pairs and S links, where N and E represent the node set and link set, respectively. Consider
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that we have K observations of the link flows v(k) ∈ RS, with k = 1, 2, . . . , K. An example

could be the link flow observations of morning peak period across K days. Our goal is to find

a ‘good’ point estimate for OD demand across K observation intervals. In the meantime,

we also want to reconstruct all OD flow for each observation interval k = 1, 2, . . . , K. Thus

we can have not only the aggregated statistics to quantify the stochastic OD demand, but

also we will have a discrete approximation of the probability distribution of the demand.

Adapting to the common stochastic programming language, each link flow observation v(k)

can be considered as the results from a particular realization of OD demand y(k) in scenario k.

Let x be the ‘best’ estimate of OD demand that we want to estimate following some specific

risk measure. The difference between x and the estimated OD demand y(k) in scenario k can

be interpreted as a scenario-dependent adjustment/recourse.

The relationship between the kth demand y(k) ∈ RN and its ‘best’ estimated value x can

be expressed as

y(k) = x+ π(k) (2.2.2)

where π(k) denotes the deviation of the kth scenario from the best estimate of OD flow. The

deviation, following the convention of stochastic programming terminology, can be inter-

preted as a scenario-dependent recourse/adjustment.

Let us express the kth observation of link flow with noise as

v(k) = z(k) + ϵ(k),∀k = 1, 2, ..., K (2.2.3)

where z(k) is the denoised link flow to be estimated. We assume ϵ(k) is iid zero-mean error

across k. Note that this assumption does not conflict with the fact that the elements ϵ
(k)
i

of each vector ϵ(k) do not have to be identical across the links (∀1 ≤ i ≤ S), and that the

magnitude of noise may be dependent on the magnitude of v(k) for each element i.

In our design of the loss function, we consider the following three main criteria:

• Estimated OD flow should align with our prior belief or knowledge of OD demand. Prior

knowledge/belief on the OD demand may be incorporated either in the loss function
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as a penalty or in the estimation model as constraints on the deviation from historical

observations.

• Estimated OD flow should produce approximately similar link flow results compared to

link flow observations. For this, we will need to exploit network operation and travel

behavior relations to link the OD flow space and link flow space.

• The estimation process should recognize the uncertain nature of the OD flow and reflect

the modeler’s risk attitude. The choice of the risk measures, whether being risk neutral

or risk averse, should be a part of the design principle and have a corresponding

statistical interpretation.

Following these considerations, and given observations of link flow v(k) (k = 1, 2, . . . , K)

and an unreliable historical prior belief on OD demand, denoted as w ∈ RN , we now present

our estimation model in a stochastic programming framework. The first stage decision

considers the ‘best’ estimate of demand parameters x following certain risk preference. Prior

knowledge on the demand parameters can be incorporated in the first stage via introducing

a loss term l(x;w), which is the distortion between the estimated demand parameter x and

the prior knowledge input as vector w. Besides the prior knowledge of the demand, there

are two other places where domain knowledge could be captured:

• Feasibility sets for the decision variables. Denote the feasible region of demand x as

F1 and y(k) as F2. These feasibility sets may include box constraints (such as directly

requiring x or y(k) to be within an allowable range), or/and general linear inequality

constraints (such as requiring the total trips generated from an origin must be within

a certain range). In our numerical experiments in the following section, only non-

negativity constraints are included in F1 and F2 for illustration purpose.

• The network assignment mapping, denoted as G(·), that captures the relation between

OD demand y(k) and link flow z(k). Under a normal situation, we do not expect the

assignment rules to change from day to day, in which case the mapping G(·) does

15



not need to be k specific. However, in case there are major disruptions to the system

supply side on a certain day k, which may impact the network topology, one will need to

express the mapping G(k)(·) differently. In the transportation science literature, there

are several popular network assignment models. Without loss of generality, in our

numerical case studies, we implemented the classic static traffic assignment mapping,

expressed as

min
z

∑
e

∫ ze

0

te(a)da

s.t.
∑
p

f j
p = yj, ∀j

ze =
∑
p

∑
j

f j
pδ

j
e,p, ∀e

f j
p ≥ 0, ∀j, p

(2.2.4)

where z is link flow, e is link index in the network, j is OD pair index, p is path index,

te(·) is link performance function on link e, f j
p is path flow on path p connecting OD

pair j. yj is OD flow on OD pair j. δje,p = 1 if link e is on path p connecting OD pair

j and δje,p = 0 otherwise.

Following the two stage stochastic programming design, we include the scenario depen-

dent decision and domain knowledge in the second stage problem. Given the first stage

decision x, the second stage decision for each scenario k is to find reconstructed OD y(k)

based on observed link flow v(K), where y takes a discrete empirical distribution with prob-

ability Pr(Y = y(k)) = 1
K
. The second stage objective aims for two considerations: 1) to

impose the closeness between the first stage variable x and the second stage variable y(k),

i.e. to reduce recourse; and 2) to ensure the demand y(k) could produce link flow close to

the observations. Then we have the second stage objective of scenario k as

Q(y;x, v(k)) = min
y(k)∈F2

r(x, y) + t(y, v(k)) (2.2.5)
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By incorporating the assignment mapping G(·), we can translate information on OD demand

to link flow, thus the second stage problem can be reduced to

Q(x, v(k)) = min
y(k)∈F2,z(k)≥0

r(x, y(k)) + ρs(z(k), v(k))

s.t. z(k) ∈ G(k)(y(k))

(2.2.6)

The first term in Q(·) measures the scenario-dependent fluctuations, and the second term

measures the discrepancy between the observed and estimated link flows. Weighting param-

eter ρ controls the contribution of the two loss terms. Adopting a risk-neutral preference,

plugging in the first stage cost weighted by parameter µ and the number of scenarios for

computational convenience,the two-stage stochastic programming estimation (SPE) can be

formulated as

SPE(w, v(1), . . . , v(K)) : min
x∈F1

1

K
µl(x,w) + E[Q(x, v(k))]

with

Q(x, v(k)) = min
y(k)∈F2,z(k)≥0

r(x, y(k)) + ρs(z(k), v(k))

s.t. z(k) ∈ G(k)(y(k)), ∀k = 1, . . . , K

(2.2.7)

Functions l(·), r(·), s(·) represent the general risk measures. Here, we adopt a least-squares

form. The balance between these error terms is controlled by the weighting factor µ and

ρ. The first term in Eq. 2.2.7 is attached with 1/K simply for computational convenience.

The objective is to minimize the total expected estimation loss while requiring that both the

first-stage and second stage decision variables satisfying all feasibility constraints including

the network assignment mapping G(k).

It is clear that the above model falls within the classic two-stage stochastic programming

framework mentioned above, where x can be considered as the first-stage decision and y(k),

z(k) as the second-stage scenario-dependent recourse decision. A deterministic equivalent
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program of SPE (2.2.7) then can be expressed as

min
x∈F1,y(k)∈F2,z(k)≥0

1

K

(
µl(x,w) +

K∑
k=1

r(x, y(k)) + η
K∑
k=1

s(z(k), v(k))

)

s.t. z(k) ∈ G(k)(y(k)), ∀k = 1, . . . , K

(2.2.8)

For the convenience of the readers, below is a summary of key assumptions used for the

proposed SPE OD estimation method:

• OD demand is static and evenly distributed within one observation interval k, and it

repeats over K observation intervals.

• The link flow observation errors are iid Gaussian across time horizon K.

• The variations of link flow observations results only from variations of OD flows from

multiple observations and observation noise. Changes in network supply and configu-

rations are beyond the scope of this study.

• Network structure and cost parameters associated with generalized travel costs are

known as input used in the assignment mapping. In addition, travelers are rational

and the route choice is based on the generalized travel cost.

• The system analyst adopts a risk neutral attitude for the estimation.

We acknowledge that in reality, it is nearly impossible to expect an assignment model that

could perfectly match real-world relation between travel demand and network flows, since

motorists are not always rational. In the literature, assignment model specification errors

have been considered in studies by Cascetta (1984) and Sherali et al. (1994). In this study,

we do not explicitly consider model specification errors, because whether or not to consider

such model specification error would not give rise to new challenges in terms of estimation

problem structure — model specification errors can be combined with measurement errors

and viewed as random fluctuation of flows.

We should also point out that rich stochastic programming literature has demonstrated

that different design principles and emphasis can be achieved by plugging in different risk
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measures, i.e. how to quantify loss and uncertainties in the objective function and constraints

(Eichhorn and Römisch, 2005; Rockafellar, 2018). Some examples include conditional Value-

at-Risk (VaR) (Schultz and Tiedemann, 2006), risk averse functional (Noyan, 2012), chance

constraints (Kataoka, 1963) and the field of distributional robust optimization (Wiesemann

et al., 2014). Even though we only implemented a risk neutral measure, our proposed SPE

approach under the stochastic programming framework can flexibly incorporate different risk

measures, making it generalizable for various needs in real-world applications. In addition,

various estimation principles could fit into the estimation framework, including maximum

likelihood estimation from the field of statistics inference and cross entropy based estimation

from the field of information theory. These statistical principles have close relationship with

risk measures in stochastic programming. In a statistical sense, the ‘best’ estimate x from our

SPE model is equivalent to the mean value of OD demand across K observation sets under a

risk neutral preference. The result of y(k) can be interpreted as a discrete set of representative

scenarios of OD flow, and they form a discrete probability distribution of OD demand x.

Furthermore, the sample covariance of the OD could be estimated using reconstructed OD

flow y(k) across the entire observation horizon. Note that in Yang et al. (2018), an estimation

approach was developed based on a modeling philosophy that integrates the estimation

and reconstruction problems, two problems that had been previously studied separately.

In this study, we approach the estimation problem from a fresh stochastic programming

perspective. It is valuable to note that the two formulations are fundamentally equivalent,

even though we approached the problem formulation from a different angle. An advantage

of formulating the estimation problem in a stochastic programming framework is that it

opens up future opportunities to exploit the rich literature from stochastic programming

community in terms of modeling (such as how risks are quantified), analytical (such as proof

of statistical properties), and computational (such as decomposition methods) issues, which

will be demonstrated in later sections.
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2.2.2 Consistency Analysis

We want to show that when the number of observations K increase indefinitely, the sequence

of estimator for x̂K from discrete version of SPE converges in probability to x̂∗. Such esti-

mate is obtained by solving the following problem where every single possible value of V is

considered, as

x̂∗ = argmin
x∈F1

1

K
µl(x,w) + EV [Q(x; v)] with Q(x, v) = min

y∈F2,z≥0
r(x, y) + ρs̃(y, v) (2.2.9)

where the original s(·, ·) and constraints z(k) ∈ G(k)(y(k)) in SPE 2.2.7 are absorbed into

one function s̃(·, ·) for compactness. With finite number of scenarios, the expectation of the

second stage problem in SPE 2.2.7 can be approximated by the discrete version as

Ek[Q(x; v(k))] ≈
K∑
k=1

Pr(V = v(k))Q(x, v(k))

=
1

K

K∑
k=1

Q(x, v(k))

=
1

K

K∑
k=1

min
y(k)∈F2,z(k)≥0

r(x, y(k)) + ρs̃(y(k); v(k))

(2.2.10)

Let us write the best estimate of x as the solution to SPE from K iid observations as

x̂K = argmin
x∈F

1

K
µl(x,w) +

1

K

K∑
k=1

Q(x; v(k))

withQ(x, v(k)) = min
y(k)∈F ,z(k)≥0

r(x, y(k)) + ρs̃(y(k), v(k))

(2.2.11)

We can also write the feasibility constraints into the indicator functions (also named as

characteristics function in the field of convex analysis (Rockafellar, 1970)) respectively as

I1(x) =


0, x ∈ F1

+∞, x /∈ F1

(2.2.12)

I2(y) =


0, y ∈ F2

+∞, y /∈ F2

(2.2.13)
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Then we can rewrite SPE as the minima of the expected value of the following function

with respective to x

ω(x; v, w) = µl(x,w)+Q(x; v)+ I1(x), with Q(x; v) = min
y

r(x, y)+ s̃(y; v)+ I2(y) (2.2.14)

As a convenient notation, we denote ω(x; v(k), w) for each observation set as ω(k).

Therefore, to prove that x̂K P→ x∗, we only need to show the problem 2.2.11 converges

to 2.2.9 asymptotically. The ideas are built based on the law of large numbers in lower

semicontinuous (lsc) functions (Artstein and Wets, 1995; Korf and Wets, 2001).

Theorem 1. If ω(k) is a sequence of lsc iid functions, the sample mean of ω(k) will epi-

converge to the expected function

1

K

K∑
k=1

ω(k) epi−→ E(ω(x; v, w)) µ− a.s. (2.2.15)

The minima of the corresponding optimization problem converges in probability

x̂K = argmin
1

K

K∑
k=1

ω(k) a.s.→ x∗ = argminEV (ω(x; v, w)) (2.2.16)

and this indicates the strong consistency of the SPE.

Proof refer to Theorem 5.2 in Attouch and Wets (1994).

In order to apply the Theorem, we only need to show ω is a lsc function. By the fact

that the sum of real-valued lsc functions is still lsc, we could check the components of ω

individually.

• In the context of convex analysis, the characteristic function of any closed set is lower

semicontinuous, and the characteristic function of any open set is upper semicontinu-

ous. For closed sets F , the characteristics functions I1(·) and I2(·) are lsc.

• We know l-p norm is continuous, thus it is also lsc function. And our least squares loss

functions l(·, ·) and r(·, ·) fit into this category.
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• We have Q(·, ·) as the value function of the optimization problem in the second stage.

From Theorem 1.17 in Rockafellar and Wets (2009), we know the following two argu-

ments are true: a) the lsc property can be inherited through the minimization, as

s̃(y, v) = s(z, v) with z = g(y) = argmin
z

G(z, y) (2.2.17)

as the result from equilibrium assignment with optimization based g(y) and b) the

convex property of function G(z, y) can lead to lsc g(y) as the minima point of G with

respect to z.

Therefore, with lsc statistical functions and closed constraint sets on both stages, ω is lsc if

g is closed form and lsc, or g is based on a convex program. Thus, we have the estimator of

SPE converges to the ‘best’ point in probability following the proof described above.

2.3 A Decomposition Method Using Progressive Hedg-

ing

It is apparent that considering many data samples (scenarios) simultaneously could impose

computational challenges, as the size of the problem becomes much larger than the counter-

part based on a single scenario. Motivated by the effort in large scale stochastic programming

literature (Carøe and Schultz, 1999; Collado et al., 2012), we leverage a scenario decomposi-

tion approach to cope with the scalability issue for our demand estimation problem. Among

the decomposition methods, progressive hedging (PH) is a scenario-based decomposition

technique that can be used to solve large scale stochastic programs (Rockafellar and Wets,

1991). The scenario decomposition is performed by relaxing the non-anticipativity con-

straints, allowing solving each scenario sub-problem independently. More specifically, the

non-anticipativity constraints are included in the revised objective function as penalty along

with multiplier terms, and are progressively enforced by an iterative procedure. For each

scenario sub-problem, we obtain approximate solutions for the problem of minimizing the
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deterministic component plus terms that penalize lack of implementability, subject to the

constraints. Algorithm 1 summarizes the PH algorithm for the SPE problem.

Algorithm 1: Progressive hedging for SPE OD estimation

Data: Data w, v(k), ∀k = 1, 2, . . . , K, penalty weight r, loss weighting parameter µ
and η, tolerance ϵ

Initialize: Vector x̂0, vector ρ0, G
(k) computed using historical OD flow w

for Iteration index i = 1 to max iteration do
for Scenario index k = 1, . . . , K do

Let (x(k),i+1, y(k),i+1) solve the quadratic program for kth subproblem

min
(x(k),y(k))

1

K

(
µ∥x(k) − w∥22 + ∥x(k) − y(k)∥22 + η∥z(k) − v(k)∥22

+ρ(k),i
⊤
x(k) +

r

2
∥x(k) − x̂i∥22

)
s.t. z(k) = G(k)(y(k))

x(k) ∈ F1

y(k) ∈ F2

end

Update G(k) using newly estimated y(k) for all k = 1, . . . , K

From the solution for K subproblems, compute x̂i+1 =
∑K

k=1 Pr(k)(x(k),i+1)

Update dual variable estimates ρ(k),i+1 = ρ(k),i + r(x(k),i+1 − x̂i+1)

Terminate if ∥x(k),i+1 − x(k),i∥ < ϵ and ∥ρi+1 − ρi∥ < ϵ, otherwise continue

end

1

Significant computation time can be saved using these parallelizable smaller-scale sub-

problems, as will be demonstrated later in the numerical section. Another benefit of scenario-

decomposition approaches comes to its equivalent manner as sequential learning (Shalev-

Shwartz et al., 2012) – since we can decompose the master problem SPE 2.2.7 into subprob-

lems for each observation as scenario, we can sequentially update the estimates in an online

fashion whenever a new batch of observations arrives. This feature is out of the scope of the

1In our numerical examples, the assignment matrix did not vary after one iteration, therefore we fixed
G(k) after one iteration in the PH algorithm to speed up the process. There are other speedup procedures
reported in the PH literature, including fixing certain elements of the unknown vectors if they do not change
after some iterations.
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current study, thus will not be exploited in this study.

PH is based on the proximal point method. Theoretically, it is proven to converge to

a global optimal solution for convex problems (Rockafellar and Wets, 1991), and a local

optimal for a nonconvex problem. Numerically, it is known that PH is sensitive to the choice

of the penalty parameter, in our case r in the subproblem. The penalty parameter weighs

the penalty term in the augmented Lagrangian function and specifies the step size in the

dual variable updates. There is not yet theoretical support of the best choice of the penalty

parameter. In practice, dynamic adjustment of the parameter across iterations turned out

to be beneficial (Mulvey and Vladimirou, 1991; Hvattum and Løkketangen, 2009; Zehtabian

and Bastin, 2016), which was implemented in our case studies.

2.4 Numerical Case Studies

In this section, we present three case studies on OD estimation for one highway network and

two transit networks to demonstrate the applicability and effectiveness of our proposed SPE

method.

2.4.1 OD Estimation for Highway Network

We begin with a city-scale highway network of Berlin Friedrichshain (Transportation Net-

works for Research Core Team, 2021). The highway network consists of 23 zones, 529 OD

pairs, 523 links and 224 nodes, as shown in Figure 2.1. In our case study, we use equilibrium-

based traffic assignment to simulate traffic flows in the network and use our SPE method

to estimate the unknown demand, assuming we only have an unreliable historical demand

vector and K observations of link flows. The synthetic true OD demand is assumed to follow

a multivariate normal distribution N (µ,Σ). We allow a block diagonal covariance structure,

meaning the OD pairs are more correlated with themselves and nearby locations compared to

locations farther away. With given synthetic OD flow, the observed link flow is obtained by

running congested User Equilibrium traffic assignment, following the BPR link performance
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functions. The K = 400 counts of OD demand, covariance matrix and observed link flows

are shown in Figure 2.2. Each column in the heatmap ‘Y true’ and ‘V observed’ represents

a data column vector, totaling K = 400 columns. Each row in ‘Y true’ represents one OD

pair, and each row in ‘V observed’ represents one link in the network.

In our experiments, we varied the number of unknown OD pairs P ≤ N , to mimic

different problem sizes. Consider P unknown OD pairs and full knowledge of the rest N −P

OD pairs. For each choice of P , we randomly select without replacement P OD pairs that

are unknown. The process is repeated 10 times.

Figure 2.3 reports the box plot of the mean absolute percentage error (MAPE) of the

mean estimate as P varies. From the results, we can see that the quality of the mean

estimates is consistently good across varying P with sufficient number of scenarios (K = 600

in this case). On the other hand, the error of the reconstructed scenario-dependent demand

increases while the number of unknown increases, as shown in Figure 2.4.

Figure 2.1: Berlin-Friedrichshain network

The PH decomposition method has shown promising improvement in computational time
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Figure 2.2: True OD demand, covariance of OD demand, and observed link flow

Figure 2.3: MAPE for mean estimates x for experiments of P

Figure 2.4: MAPE for all K = 600 OD flow estimates y(k) for experiments of P
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over standard solvers. For example, on a MacBook pro 2019 with 16 GBmemory, the machine

runtime ranges from 10 seconds to 2.4 hours for problem sizes with P from 50 to 400 and

K from 200 to 400. As a comparison, a standard solver CVXOPT library2 took more than

2.5 hours to converge for the problem with K = 50 and P = 500. When K is increased to

200, out-of-memory issue occurred as a large number of large-scale demand vectors to be

estimated all at once.

2.4.2 OD Estimation for Transit Network

Similar as for highway networks, understanding OD demand is also important for transit

systems, since network-level transit demand serves as a critical input in transit planning

and operation decision processes. Traditionally, transit operators heavily relied on costly

passenger travel surveys for demand forecasting and transit system planning, which could

potentially involve relatively high level of bias (Cascetta, 1984). More recently, advanced

automatic passenger counting (APC) systems are brought into transit operators to help

understand passengers’ travel demand. APC provides a full spatial and temporal coverage

of passenger counts across the system compared to other data sources, where the extracted

information can be utilized to estimate OD matrices. Different from the highway network

case, there are transfer options in transit systems that would involve more complicated

network modeling and route choice behavior. In this section, we implement the proposed

OD estimation model in two transit networks to explore its applicability in the transit

context, which tends to have different network structures and behavior assumptions from

the highway situation.

Transit OD flow estimation problem based on passenger counts can be categorized into

two categories: route-level OD estimation (Ben-Akiva et al., 1985; McCord et al., 2010;

Hazelton, 2010; Ji et al., 2014) and network-level OD estimation (Nguyen et al., 1988; Wong

and Tong, 1998; Wong et al., 2005). The case studies reported here focus on network-level

OD estimation. In this context, the passenger counts are analogous to the aggregated link

2https://cvxopt.org/
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flows in a general road network. Since the APC data are collected at a vehicle level, which

is not directly equivalent to link-level passenger flow in the network, we had to first conduct

a data transformation to accommodate the difference in data collection as described in the

following section.

2.4.2.1 Transit and automatic passenger counting data

A transit line is determined by a sequence of stops, and it can be further described using

the frequency of transit vehicles and vehicle types. Passengers can choose to board and

alight at transit stops along the transit line. Figure 2.5 illustrates a toy transit system with

four transit lines and four transit stops. The transit network can be described as a directed

graph GLS(N , LSE). The node set N represents transit stops where passengers can board

and alight, and the link set LSE represents transit line segments. A line segment LSe(i,j) , with

i, j ∈ N is defined as the directed link between two consecutive transit stops i and j along

a specific transit line. The transit lines and stops can be converted to collections of links

in the network representation, as shown in Figure 2.6. In the example network, transit line

1 serves stop n1 → n4, as an express transit service using dedicated infrastructure. Transit

line 2 serves node n1 → n2 → n3, transit line 3 serves node n2 → n3 → n4 and transit

line 4 serves node n3 → n4. Transit line 2,3, and 4 share the same roadway infrastructure.

Notice that traveling in a transit network usually consists of several steps: 1) arrival at a

transit stop; 2) waiting for the bus to get on board; 3) traveling on the bus; 4) transfer

when necessary; and 5) arrive at the destination stop. Thus the one stop node ni ∈ N

can be decomposed into arriving/alighting node (denoted as na
i ), waiting links and boarding

node to line j (denoted as nb
ij) associated with each transit line, shown in Figure 2.6. For

example, consider a passenger who wants to travel from stop n1 to stop n3. She would first

arrive at the transit stop na
1 (arrival node) and wait for the arrival of the bus in waiting link

(na
1, n

b
12). After she gets on board the bus at node nb

12 (boarding node), she would travel

in-vehicle through link (nb
12, n

a
2), (n

a
2, n

b
21), (n

b
21, n

a
3) using transit line L2 and then get off
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the bus at the destination n3. She has two options at node na
2, staying in transit line L2

through link (na
2, n

b
22) or transferring to line L3 through link (na

2, n
b
23). Since we assume all

passengers are rational, meaning no one would alight and board at the same stop for the

same transit line, the second option of transferring can be omitted. Here, the no-transfer

behavior at stop n2 along transit line L2 can be implemented by assigning zero waiting time

for waiting link (na
2, n

b
22). The transfer behavior can then be presented by assigning positive

waiting time instead. Note there is a one-to-one relationship between a waiting link and the

immediate next traveling line segment link. Thus, for simplicity, the network representation

with waiting links (shown in Figure 2.6) can collapse into a simpler representation (shown in

Figure 2.8). Another complication is due to the common line problem where some parallel

transit lines serve the same group of links and stops, a detailed discussion and treatment on

network transformation is included in the next section. All the transit experiments below

are conducted based on transformed transit network using route-section representation.

Figure 2.5: Example transit system

APC, denoted as the set {I, O}, records the numbers of passengers’ boarding Ini
and

alighting Oni
at transit stop ni. We assume passengers are rational,in the sense that 1) no

passenger alights at the first stop, or 2) boards at the last stop or 3) boards and then alights

at the exact same stop. For one bus run u from the starting to the end terminals, the line

segment link flow vLSe for a line segment LSe(m−1,m)
∈ LSE connecting consecutive stops
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Figure 2.6: Example transit network with waiting links

m − 1 and m can be obtained by accumulating all the boarding counts and subtracting all

the alighting counts along this transit line until the interested stop nm,

vuLSe
=


∑m−1

i=1 (Iuni
−Ou

ni
) m > 1

Iun1
m = 1

(2.4.1)

where in is the boarding counts at stop n, on is the alighting counts at stop n, m is the tail

node (downstream stop) of interested segment LSe(m−1,m)
, u is a specific transit bus run (bus

trip) with total runs U in the interested time interval. Consider there may be multiple bus

runs in the interested time interval, we have aggregated line segment link flow vLSe as

vLSe =
∑
u∈U

vuLSe (2.4.2)

where u is a specific bus run out of total number of bus runs U . Through tracing the

number of boarding and alighting along the bus runs for all transit routes, we can have the

line segment link flow for the entire network.

2.4.2.2 Frequency-based transit network construction and transformation

Often times, there exist several transit lines running parallel with some stops in common. In

the network example shown in Figure 2.8, sections between node 2 and node 3 and sections

between node 3 and node 4 are both served by two different transit lines. Chriqui and Robil-

lard (1975) referred this phenomenon as the common line problem: there exist some common

sections shared by multiple transit lines and passengers need to select the bus (belong to
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certain transit lines) they want to take. From the network modeling perspective, having only

one directed link connecting two consecutive nodes would make network representation and

transit assignment analysis simpler. Therefore, we adopt the concept of network transfor-

mation previously suggested in De Cea and Fernández (1993), and we designed a computer

algorithm to fully automate this transformation process.

Let us use a four-node directed network (See Figure 2.7), which was originally presented

in De Cea and Fernández (1993), as an example to illustrate the transformation process.

Denote the transformed route section network as G̃(N , RSA), with N as the node set (same

as the node set N in the original network GLS(N , LSE)) and RSA as the set for route section

links. Let LSe ∈ LSE be a line segment for original network GLS(N , LSE), RSa ∈ RSA

as a route section in modified network G̃(N , RSA) and Li as a transit line i. The original

network includes 6 line segment links LS1, LS2 . . . LS6 and 6 OD pairs (n1 → n4), (n1 → n3),

(n1 → n2), (n2 → n4), (n2 → n3) and (n3 → n4). It is served by 4 transit lines L1, L2, L3, L4,

as described in the previous section. The route section is defined as a portion of a transit

line between two consecutive transfer/boarding-alighting stops. Note one route section can

correspond to multiple transit lines. In the example, route section RS1 from n1 to n4 is served

by line L1. Route section RS2 from n1 to n3 is served by line L2. Route section RS3 from n1

to n2 is served by line L2. Route section RS4 from node n2 to n3 is served jointly by L2 and

L3. Route section RS5 from node n3 to n4 is served jointly by L3 and L4. Route section RS6

from node n2 to n4 is served by L3. Following the logic of route-section representation, this

transit network can be transformed into a modified network with 6 route-section links, where

the shortest paths (including transfers) connecting each OD pairs can be easily identified

and computed.

Now let us construct the relation of passenger flows between line segments LSE and route

sections RSA in the network transformation. Note that some route sections are served by

multiple lines, such as route section n2 → n3 (served by line L2 and L3), and route section

n3 → n4 (served by line L3 and L4) respectively. It is reasonable to assume that a transit
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Figure 2.7: Transit network transformation

line with higher frequency takes higher proportion of aggregated passenger flow of the route

section, expressed as

vLSe =
∑

URSa∈Se

fLSe∑
LSi∈Sa

fLSi

uRSa , (2.4.3)

where vLSe represents the passenger flow of line segment link LSe (Upper half of Figure2.7).

uRSa represents the aggregated passenger flow of the corresponding route section link RSa

(lower half of Figure 2.7) and Se represents the set of transit route sections corresponds to

route line segment LSe. Sa denote the set of transit frequencies of transit lines included in

route section RSa. fLSe represents the frequency of transit line serving line segment LSe.

In the example, for line segment link LS1 in transit route L1, the flow LSv1 is preserved
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to route section RS1, as route section flow RSu1, thus line segment flow equals route section

flow, vLS1 = uRS1 . The flow passing through the line segment link LS2 using transit route L2

can be decomposed into: traveling from stop n1 to stop n3 through route L2 and from stop

n1 to stop n2 through route L2 (in the route section representation), thus vLS2 = uRS2+uRS3 .

For line segment link LS3, it includes: the passenger flow traveling from stop n1 to stop n3

using route L2 (since the flow traverses both LS2 and LS3) and the flow traveling from stop

n2 to stop n3 using route L2 (as the blue arrows in the upper half of Figure 2.7). Since the

route section RS4 is shared by transit routes L2 and L3 (blue and green arrows in the upper

half of Figure 2.7), the line segment link flow is re-distributed based on the relative frequency

of these two transit routes, as vLS3 = uRS2 +
fLS2

fLS2
+fLS3

uRS4 . Similarly, we have line segment

flows as vLS4 =
fLS3

fLS2
+fLS3

uRS4 + uRS6 , vLS5 =
fLS3

fLS3
+fLS4

uRS5 + uRS6 and vLS6 =
fLS4

fLS3
+fLS4

uRS5 .

Follow the transformation described, we obtain a system of equations between link flows of

the two different network representations in a vector-matrix form



v1

v2

v3

v4

v5

v6


S×1

=



1 0 0 0 0 0

0 1 1 0 0 0

0 1 0 f2
f2+f3

0 0

0 0 0 f3
f2+f3

0 1

0 0 0 0 f3
f3+f4

1

0 0 0 0 f4
f3+f4

0


S×L



u1

u2

u3

u4

u5

u6


L×1

(2.4.4)

Thus the topological relationship between the original transit network GLS(N , LSE) and

the transformed network G̃(N , RSA) can be written compactly as

v = Mu, (2.4.5)

where link flow vector of the original line segment based network is v ∈ RS and link flow vec-

tor of the modified route section based network is u ∈ RL. Note that line segment flow vector

v can be calculated based on APC data, as described in the next section. Usually we have

S ≤ L, since auxiliary links are added to the modified network during the transformation
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process, and the transformation matrix M ∈ RS×L is full row rank. We designed an algo-

rithm to calculate the transformation matrix M , as shown in Algorithm 2. This automated

procedure helps prepare a route-representation network ready for the transit assignment

model.

Algorithm 2: Computing Network Transformation M

Data: LRS: A 2D matrix of route section set representing the transit network, with
column index as route id, and row index as route section index in the route.
LRS[i][j] represents the route section i on the transit route j.

Initialize: Transformation matrix M ← all zero array of dimension S × L
for j = 1 to L do

Ltemp ← empty list
s← source node of link j
t← target node of link j
Assign transit routes served by route section j to list R, R← LRS[j][:] // R is

the list consists of all routes passing through route section j if
length(R) = 1 then

Lselected ← LRS[:][routeid = R.id]
Search link id Llb ∈ Lselected whose source node = s
Search link id Lub ∈ Lselected whose target node = t
Ltemp ← integer sequence from Llb to Lub

for i in Ltemp do
M [i][j]← 1

end

else
Calculate cumulative frequency of link j, F =

∑
fk, ∀k ∈ R

for k in R.id do
Ltemp ← empty list
Lselected ← LRS[:][routeid = k]
Search link id Llb ∈ Lselected whose source node = s
Search link id Lub ∈ Lselected whose target node = t
Ltemp ← integer sequence from Llb to Lub

for i in Ltemp do

M [i][j]← fk
F

end

end

end

end
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2.4.2.3 Experiments based on a toy transit network

The first experiment of transit OD estimation is based on the toy transit example, as shown in

Figure 2.8. Different from a road network, a transit network consists of transit lines (transit

routes) and transit stops. The APC provides passenger flow observations across the transit

system. The APC dataset was synthesized with K = 250 assuming the true OD demands

follow independent normal distributions. Table 2.1 lists the 6 OD pairs and 11 possible paths

of the route-representation transit network. The observation errors of passenger counts follow

a set of independent and identically distributed (iid) normal distribution N (0, 22) with mean

value to be 0 and variance to be 4. The route choice parameter in the MNL model β is set

to be 0.8, and the weighting parameter ρ of the cost function is 1. The link travel times are

[10, 6, 11, 5, 10, 4.45] minutes for the six line segments. Other operation related parameters

related to the network are given in Table 2.2.

Figure 2.8: Example transit network

Three synthetic examples are generated using different standard deviation values of the

true OD demand (σi =
√
µi/5, σi =

√
µi/10, σi =

√
µi/20). Figure 2.9 compares the density

plots of the true OD demand (solid curve) and the reconstructed demand (dashed curve3)

for each OD pair. The RMSE of reconstructed OD demands is 0.77, 0.47, 0.42 for the three

testing cases, respectively. The true mean demands and the estimated mean values of the

demands, θ, are reported in Table 2.3. These results demonstrate the estimation quality when

3For clean visualization purpose, we used the ‘kernel density estimation’ feature from python density
plot function ‘seaborn.distplot’ (where the function fits Gaussian kernel density estimate to make it look
continuous), alternatively it would show a discrete set of bars for the histogram.
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Table 2.1: OD and path for the small transit network

Path No. OD No. From To Path
1 1 1 4 [1, 4]
2 1 1 4 [1, 2, 4]
3 1 1 4 [1, 3, 4]
4 1 1 4 [1, 2, 3, 4]
5 2 1 3 [1, 3]
6 2 1 3 [1, 2, 3]
7 3 1 2 [1, 2]
8 4 2 4 [2, 4]
9 4 2 4 [2, 3, 4]
10 5 2 3 [2, 3]
11 6 3 4 [3, 4]

Table 2.2: Operation information of the small transit system

Route No. Headway (min) Stop
1 8 1-4
2 6 1-2-3
3 6 2-3-4
4 5 3-4

information of both network topology and operations, as transportation domain knowledge,

is taken into account in the SPE demand estimation model.

Next, based on t-statistic, we construct confidence intervals of the difference between

two population means, as µ1 from true OD flow used for the synthetic example and µ2

from reconstructed OD flow by solving the OD estimation SPE. Here we assume the data

samples from these two populations are normally distributed and the variances of the two

independent population groups are equal. We also assume independence for OD flows among

6 OD pairs. Denote µi
1,∀i = 1, 2, . . . , 6 and µi

2,∀i = 1, 2, . . . , 6 as the population mean of true

OD flow and reconstructed for OD pair i, respectively. The confidence intervals of µi
1 − µi

2,
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with α = 0.05, are shown in Table 2.4 for the 6 OD pairs. Each confidence interval may

be interpreted as that we are 95% confident that the true value of µi
1 − µi

2 falls within the

interval. One can see that most of the confidence intervals reported in the table have a small

range that covers 0 value, meaning µi
1 and µi

2 are close to each other within an acceptable

tolerance. The only exception is OD pair 5 with variance 20, though the interval is still very

close to 0. These consistent results demonstrate confidence in our estimation results.

Table 2.3: Estimation comparison of mean demand θ

OD Pair True Mean Est Mean θ (Var=5) Est mean θ (Var=10) Est mean θ (Var=20)
OD 1 150.00 150.10 150.05 150.02
OD 2 120.00 120.01 119.98 119.96
OD 3 100.00 100.01 100.05 100.07
OD 4 80.00 80.05 80.05 80.05
OD 5 60.00 60.09 60.08 60.07
OD 6 50.00 49.95 49.99 50.01

Table 2.4: Confidence intervals of the difference between the true and the estimated mean
values of the demand

OD Pair C.I. (Var=5) C.I. (Var=10) C.I. (Var=20)
OD 1 (-0.42, 0.36) (-0.26, 0.19) (-0.19, 0.13)
OD 2 (-0.53, 0.16) (-0.38, 0.01) (-0.32, -0.05)
OD 3 (-0.30, 0.31) (-0.17, 0.18) (-0.12, 0.13)
OD 4 (-0.38, 0.14) (-0.27, 0.04) (-0.24, 0.00)
OD 5 (-0.13, 0.34) (-0.03, 0.24) (0.01, 0.20)
OD 6 (-0.16, 0.26) (-0.09, 0.18) (-0.06, 0.15)
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Figure 2.9: Comparison between true demand and reconstructed demand incorporating
both topology and transit network operations information

2.4.2.4 An example of real-world scale

The second numerical example for transit is based on Bay Area Rapid Transit (BART)4,

a real-world transit system in San Francisco Bay Area in California, USA. Note that even

though the BART system does not use APC based counting system, it serves an ideal

test case for our study because of the rare availability of the ground truth demand data

collected from Clipper cards. The BART network configuration is shown in Figure 2.10.

The operation information (route, travel time and frequency) was obtained from General

Transit Feed Specification (GTFS) open source data based on 2019 schedules. For a typical

weekday, BART network consists of 48 transit stops/terminals and 7 transit lines. There

are 181 directed links in the line segment representation and we obtained 1464 route section

4https://www.bart.gov/
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links after network transformation using the algorithm we developed 2. Each stop serves as

an origin and a destination, respectively. Since no trip in the transit system starts and ends

at the same station, we have 48 × (48 − 1) = 2256 OD pairs in the network. For each OD

pair, up to four shortest paths were computed. Two OD pairs turned out to have only a

single path for each. Totally there are 9018 paths considered in the network.

In the synthesized example, we assume the true demands for all the OD pairs across

the network follow a set of independent normal distributions Ni(µi, σi),∀i ≤ D. The mean

demand parameters µi follow the ground truth of BART system collected from on and off

tapping of the Clipper cards. For each OD pair, we tested four different standard deviation

settings, including σi = 0, σi = µi/3, σi = µi/5, σi = µi/10, σi = µi/20. APC observations

are synthesized for K = 250 observation time periods. Weighting parameter ρ is set to 1.

Box plots of the difference between the true and the reconstructed OD flows are given in

Figure 2.11, and the comparisons for the true mean values and estimated values are plotted

in Figure 2.12. These results indicate reasonably good estimation quality.

Table 2.5: Estimation error for different numbers of scenarios K and standard deviation σi

Std. σi = 0 σi = µi/20 σi = µi/10 σi = µi/5 σi = µi/3

RMSE K = 100 216.14 229.08 237.17 251.58 275.44
K = 250 237.33 242.50 242.42 231.57 260.46
K = 500 228.52 226.96 220.56 222.18 260.77

To study the impact on the sample size and data variation, Table 2.5 includes the es-

timation error under different combinations of sample size K and standard deviation σi for

BART network. Here we pick root mean squared error (RMSE) metric to compare among

the different settings, since it is more sensitive to variations and at the same scale of the

original data. It is clear that RMSE increases as the standard deviation increases in the

synthetic demand data x(k). This is because larger variation in x(k) would lead to more

uncertainties in observed passenger flow z(k) via transit assignment step G(·), thus causing
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Figure 2.10: BART system map in year 2018 (Source: https://www.bart.gov/system-map)

Figure 2.11: Comparison between true and reconstructed demand

variation in the demand reconstruction process in our estimation framework. As for the

impact of K on RMSEs, we have observed some improvement in RMSEs when the sample

size increased from 250 to 500 in most cases, but the result is too limited to be generalized,

considering the sample size of 500 is relatively small for the problem of such dimension.
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Figure 2.12: Comparison between true mean demand and estimated mean demand

Yet the promising results from these numerical experiments in terms of estimation quality

and computational efficiency demonstrated potential applicability of the proposed estimation

framework in real-world problems.

2.5 Conclusions and Discussions

In this chapter, we establish a stochastic programming based demand estimation method for

network level OD demand estimation using multiple sets of observed link flow data. This

method simultaneously estimates the expected demand and reconstruct OD trips through-

out the observation time intervals. There are several major contributions to highlight. From

a conceptual perspective, approaching the problem from a fresh angle based on two-stage

stochastic programming (SP) framework, where demand parameter estimation is treated as

the first stage decision and demand reconstruction as the scenario-dependent recourse deci-

sion, we are able to make connection between the new estimation and the well-studied SP

problems. The advantages of conceptualizing the problem from a systematic approach in the

SP framework, rather than a problem-specific ad hoc approach in a previous study (Yang

et al., 2018), mainly lie in the opportunities this will open up for exploiting the very rich

knowledge already established by the stochastic programming community, including solu-

tion methods for large-scale problems and modeling choices for incorporating additional risk
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preferences. For example, we have demonstrated the computational benefit via exploiting

a scenario decomposition methods from the stochastic programming literature that was de-

signed for coping with computational challenges brought by large scenarios (Rockafellar and

Wets, 1991; Ruszczyński, 1997; Fan and Liu, 2010). Also, there are various SP modeling

choices to incorporate different risk preferences (Ahmed, 2004). In this study, the estimation

objective is set to be risk neutral based on expectation, while confidence interval analysis

is conducted as a post-model analysis. Building on the mean-risk SP literature, one may

consider explicitly incorporating confidence level (corresponding to a critical threshold) as

a chance constraint, for which efficient and scalable solution methods are available (Watson

et al., 2010). All of these advancements in SP could directly benefit the estimation problem

studied here. From a modeling perspective, we emphasize the importance of incorporating

transportation network domain knowledge in data-driven estimation processes. As illus-

trated in the numerical experiments, by incorporating both network topology information

and network operation knowledge in the estimation process, the estimation quality can be

largely improved. Results from the numerical experiments are promising and demonstrate

the effectiveness of the proposed method.

Despite the exciting new estimation model and results reported here, there are several

immediate steps for future research. For example, the proposed estimation framework is

flexible to incorporate network operational domain knowledge. One may explore other type

of traffic assignment rules. Also, we adopted a least squares based loss functions in this

study. One may consider applying the proposed framework with other risk functions used

in statistics and information theory. Opportunities in sensor technology can also be incor-

porated in the future to mitigate the uncertainties and noise in observed data. For example,

in-motion weight sensors for trains would provide information on link flow directly beyond

APC system. Most interestingly, as demonstrated in the numerical experiments, information

pieces collected from various components of the network can play different roles for different

OD pairs’ estimation quality. A more proactive approach to seek critical information needed
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to ensure a good estimation quality would be a worthy next step.
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Chapter 3

Application-Driven Representation

Learning for Feature Extraction and

Anomaly Detection on Networked

Flows

3.1 Introduction

Modern transportation systems have benefited from rich spatial and temporal data related to

vehicle and pedestrian flows, travel behaviors and demands, and infrastructure performance

measurements. For example, a vast amount of traffic and vehicle trajectory/dynamics data

is continuously collected by a wide coverage of infrastructure-based and mobile sensors in

the highway system and local roadways. However, because of limitation in computing or

hardware power and data storage capability, it is nearly impossible to store and process all the

data directly in its original high spatiotemporal dimension. Also, repetitive measurements

for daily mobility data may be redundant in terms of key information and can lead to waste

in storage space and communication bandwidth if all raw data is saved. Therefore, finding
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representative underlying patterns for high-dimensional data has attracted much research

effort, especially for data with high spatial and temporal correlations, which is common for

most mobility-related data.

Representation learning has shown promise in coping with high dimensional data. First,

by learning the lower dimensional representation from the original high dimensional data, the

learned representation can capture dominant information in the original dataset, thus serving

as a denoising procedure. Second, some familiar concepts that work well in low dimensional

cases may not transcend to high dimensional situation. For example, the distance measure,

which is often needed in data learning algorithms, can be ill-posed in high dimension. As

Aggarwal et al. (2001) showed, the Lk norm degenerates fast with increasing dimensionality

for higher values of k. Domingos (2012) argued that most of the mass of a high-dimensional

space is in the corner, not the central area. Thus, the samples are more likely to appear

closer to a face of the hypercube than to their nearest neighbor. Representation learning helps

address these challenges by revealing key data features and better capturing relationships

within data samples.

Representation learning methods can be categorized into linear methods and nonlinear

methods. Linear methods assume that the data actually lie on a low dimensional subspace.

One popular example is Principal Component Analysis (PCA), where the objective is to max-

imally preserve data variance in the embedding space (Wold et al., 1987). Low-dimensional

representations can be obtained by projecting the high-dimensional data onto the subspaces

spanned by a subset of an eigenbasis. Nonlinear methods usually assume the data live in

one or a few manifolds. The core assumption driving those methods is the manifold hy-

pothesis, as most relevant information is concentrated in small number of low dimensional

manifolds for high dimensional structures. The major difference among nonlinear dimen-

sionality reduction techniques lies in the preservation of various metrics about the distance

of the data in the embedding space. For example, Isomap preserves the pairwise geodesic

distance along the submanifold (Tenenbaum et al., 2000). Local linear embedding (LLE)
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assumes data can be represented as linear combinations of nearest neighbors on a locally

linear manifold (Roweis and Saul, 2000). Laplacian eigenmaps uses a graph as the discrete

approximation of the low-dimensional manifold (Belkin and Niyogi, 2002). Conformal eigen-

maps computes optimal angle-preserving map using partial basis from graph Laplacian (Sha

and Saul, 2005). Several recent studies explored deep learning techniques for representation

learning, including auto-encoder (Hinton and Salakhutdinov, 2006), convolutional neural

network (Shamsolmoali et al., 2019) and others. However, it is still an ongoing research

question about how the dominant features are selected in the model training step and how

they contribute to the task of interest for the deep learning approaches.

In terms of applications of the general representation learning methods specifically for

transportation domain problems, several limitations are observed. 1) Only structural pe-

nalizations are considered. As widely shown in statistical estimation tasks, the only way

to overcome the curse of dimensionality is to incorporate addition assumptions about the re-

gression function beyond the samples themselves (Györfi et al., 2002). However, often times

only assumptions on structural penalties are considered for the data analysis, for example L1

penalty in LASSO (Tibshirani, 1996), sparsity penalty on wavelet coefficients (Donoho and

Johnstone, 1995) and ’roughness’ penalty for smoothing splines (Unser et al., 1993). Limited

attention has been paid to how to design a representation learning method taking advantage

of domain knowledge. In fact, domain knowledge could provide information about the data

generation mechanisms and dominant underlying patterns from knowledge in traffic flow dy-

namics, network operations, built-environment and so on. 2)How the data is represented

is often treated separately with how the data should be used for downstream

applications. Representation learning techniques have been discussed in the transporta-

tion community, especially related to data mining ((Djukic et al., 2012),(Yang et al., 2017)

and measurements for vehicles and systems (Saffari et al., 2020). However, the way the

compressed data are used in downstream tasks is rarely jointly considered when trying to

find a good underlying pattern of the data. The information loss of data itself is usually the
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only criterion when designing dimension reduction or data compression algorithms. On the

other hand, it is widely recognized that due to complex network behaviors and interactions,

different data elements may impact the downstream application performance differently. As

a result, generic data-driven approaches that focus only on the data itself might not always

provide the most effective data representation and compression schemes for the downstream

applications.

In this study, we aim to establish an application-driven representation learning (ADRL)

approach to find the dominant features in observed traffic data by incorporating down-

stream applications into the estimation process. This research design philosophy aligns with

the general concept of end-to-end learning, which promotes the integration of various data

processing and learning steps/tasks in a holistic manner (Cai et al., 2016; Zhou and Tuzel,

2018). Our proposed conceptual method leads to a constrained optimization problem which

could be effectively solved using Stiefel manifold optimization techniques if sparsity exists

in the manifold space. Through the implementation of three case studies, besides validating

our approach by comparing the quality of results with existing methods, we are particularly

interested in exploring the following three questions/hypotheses. First, it is well known that

traffic data have strong spatial and temporal features in the original Euclidean space. Do

they also have dominant features that live in the manifold to enable effective utilization of

manifold optimization techniques? Second, is it true that downstream applications matter

for the representation learning of traffic data? Lastly, if the answer to the second question

is mixed, what kind of applications and data would matter more to incorporate downstream

applications?

The rest of the chapter is organized as follows. In Section 2, we present the ADRL

framework, which can be solved by Stiefel manifold optimization approach. Then we use

network travel time and vehicular emission estimation to demonstrate the effectiveness for

ADRL on data compression in Section 3, and a network flow case study to demonstrate

the application of ADRL in anomaly detection in Section 4. The last section concludes this
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study with high-level insights and possible future directions.

3.2 An Application-Driven Representation Learning Ap-

proach

In an abstract manner, the representation learning problem may be stated as follows. Con-

sider a data matrix X ∈ Rn×d that includes n samples of d-dimensional data, with each

row x⊤
i as an observation, one aims to learn an orthogonal transformation matrix Φ ∈ Rd×k

(with k < d) from d-dimensional space to a k-dimensional space, so that the low-dimensional

representation of the data Y ∈ Rn×k can be obtained as Y = XΦ.

X =



| x⊤
1 |

| x⊤
2 |

| ... |

| x⊤
n |


∈ Rn×d Φ =


| | · · · |

ϕ1 ϕ2 · · · ϕp

| | · · · |

 ∈ Rd×k

3.2.1 An Application-Driven Representation Learning (ADRL)

Model

Consider the following optimization problem,

min
Φ∈Rd×k

Q
(
X,Dec(Enc(X))

)
+ γR

(
X,Dec(Enc(X))|A

)
s.t. ΦTΦ = Ik×k

(3.2.1)

where X ∈ Rn×d is the data matrix. Encoding transformation Φ ∈ Rd×k represents the

mapping from original feature space Rd to low dimensional space Rk. The data reconstruc-

tion error is characterized using an encoder-decoder fashion, as X̂ ∈ Rn×d = Dec(Enc(X)).

The encoder Enc(·) carries the learned representation of data , the decoder Dec(·) recon-

structs the data from the encoding representation. Let Q(X, X̂) represent the information

loss in the data itself (from the original data to the reconstructed data). The second term
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R(X, X̂|A) accounts for the impact of the information loss of data on the downstream appli-

cation. Application metric A consists of the coefficients determined by a specific downstream

application of interest. For now, one may think that A is known exogenously. Later, we will

discuss how to use approximation techniques combined with augmented data to relax this

assumption. The weighting parameter γ controls the balance of two sources of information

loss. The constraint ensures the projection Φ is orthogonal, to ensure data stability and

enable a wide range of other applications, including linear filter for smoothing. An alterna-

tive approach is to include the soft shrinkage as in L2 penalty ∥Φ∥22 in the objective, which

can reduce the solution complexity, but it will sacrifice the orthogonality. The goal is to

minimize the error caused by the representation learning process, which includes the error in

the data itself as well as the error in the downstream application caused by the information

loss of the compressed data.

Following the minimum reconstruction error criteria in the Euclidean sense for the loss

functions Q and R, our proposed framework can be implemented as

ADRL. min
Φ∈Rd×k

∥X −XΦΦ⊤∥2F + γ
n∑

i=1

wi(x
T
i ai − xT

i ΦΦ
⊤ai)

2

s.t. Φ⊤Φ = Ik×k

(3.2.2)

The resulting estimates of low-dimensional encoding is obtained as Enc(X) = Y = XΦ.

Reconstructed data X̂ is cast as the rank-K approximation of the original data, as X̂ =

Dec(Enc(X)) = XΦΦT . The minimum data reconstruction error can be written as the

squared distortion measure in the Frobenius sense as Q(X,Dec(Enc(X))) = ∥X−XΦΦ⊤∥2F .

For the ith sample, the metric for downstream application may be represented using a linear

model Ji = x⊤
i ai. Note that we allow the application measure ai ∈ Rd×1 to be sample

dependent, which accounts for cases when the downstream performance measure is nonlinear

to x. Similarly, the application metric for the reconstructed data is xT
i ΦΦ

⊤ai. Thus, the error

term for the downstream task can be written as R(X,= Dec(Enc(X))|A) =
∑n

i=1wi(x
T
i ai−

xT
i ΦΦ

⊤ai)
2. Note that other differentiable loss functions can also be applied, such as Pseudo-
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Huber loss and Kullback–Leibler divergence. To balance the unequal covariance in the

residuals, we associated a weight wi to each application error term. Motivated by weighted

linear regression (Johansen, 1980), we let the weight wi be a surrogate to the reciprocal of

sample covariance estimate

wi =
1

(x⊤
i ai − µ̄)2/(n− 1)

(3.2.3)

with sample mean estimate of the application measure as µ̄ = 1
n

∑n
i x

⊤
i ai. A robust version

can also be used as

wi =
1

|x⊤
i ai − µ̄|/n

(3.2.4)

3.2.2 Numerical Solution

The constrained optimization 3.2.2 is nonconvex and difficult to solve due to the orthogonal

constraint Φ⊤Φ = I. This class of nonconvex problems with orthogonal constraints is of

great importance in signal processing and statistical learning communities (Absil et al., 2009;

Jiang and Dai, 2015). The feasible set Ld,k = {Φ ∈ Rd×k : Φ⊤Φ = I} is often referred to as

the Stiefel manifold. Similar to many convex optimization methods, an effective manifold

optimization procedure usually has two iterative steps: 1) find a tangent vector as the search

direction; 2) invoke a retraction that maps the tangent vector onto a point on the manifold.

We adopt the manifold optimization method based on Cayley transformation proposed by

Wen and Yin (2013). Denote G = (∂F(Φ)
∂Φi,j

) as the gradient for the differentiable objective

function F with respect to the decision variables Φ in 3.2.2. The gradient of the objective

function can be evaluated in the closed form for two terms as

G = G1 + γG2 (3.2.5)

with the first term

G1 = −2X⊤XΦ (3.2.6)

and the second term

G2 =
n∑

i=1

wi[−2(xix
⊤
i aia

⊤
i + aia

⊤
i xix

⊤
i )Φ + 2(aia

⊤
i ΦΦ

⊤xix
⊤
i + xix

⊤
i ΦΦ

⊤aia
⊤
i )Φ] (3.2.7)
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Define the gradient of the objective function in the tangent space as

∇F = SΦ (3.2.8)

where S = GΦ⊤−ΦG⊤ is a skew symmetric matrix as one metric of the tangent space of the

manifold Ld,k. The iterative update scheme can be determined by the Crank-Nicholson-like

scheme, which smoothly maps a tangent vector to the manifold, as

Y(τ) = Φ− τ

2
S(Φ + Y(τ)) (3.2.9)

where Y(τ) is the curve on the manifold, τ is the step size in the descent updating path. The

updating scheme Y(τ) can be evaluated in the closed form, known as Cayley transformation

Y(τ) = (I +
τ

2
S)−1(I − τ

2
S)Φ (3.2.10)

The Cayley transformation possesses nice properties in that 1) the updating curve Y(τ)

is smooth in τ ; 2) the new trial point stays in the feasible set (Y(τ))⊤Y(τ) = Φ⊤Φ for all

τ ∈ R; and 3) d
dτ
Y(0) equals the projection of the negative gradient direction −G into the

tangent space of the manifold Ld,k at Φ. Next, the iterative procedure can be implemented

with these core steps:

Algorithm 3: Curvilinear Search based Gradient Descent Method

Result: Φ∗

Initialization: k ← 0, ;
while do

Evaluate gradient D ← ∇F (Φk);
Compute S ← DΦ⊤ − ΦD⊤;
Choose step size τk call curvilinear line search module;
Compute update rule Y (τk) = BΦ with B = (I + τk

2
S)−1(I − τk

2
S);

Update Φk+1 = Y (τk)
Stopping criteria: if ∥∇F (Φk)∥ ≥ ϵ, where ∇F (Φk) = SΦ then

STOP
else

k ← k + 1
end

end
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Algorithm 4: BB Curvilinear Search

Result: τ ∗

Initialization: k ← 0, ρ1, δ, η, ϵ ∈ (0, 1);
while ∥∇F(Φk)∥ ≥ ϵ do

// Curvilinear search

while F (Yk(τ)) ≥ Ck + ρ1τF ′ (Yk(0)) do
τ ← δτ

end
// Update scheme

Φk+1 ← Yk(τ);
// Regulating step size

Qk+1 = ηQk + 1 ;
Ck+1 ← (ηQkCk + F (Xk+1)) /Qk+1 ;

Set τ ← max (min (τk+1, τmax) , τmin): Choose closet point to τk =
tr((Tk−1)

⊤Tk−1)
|tr((Tn−1)

⊤Uk−1)|
in the interval [τmin, τmax], with Tk−1 = Φk − Φk−1 and
Uk−1 = ∇F(Φk)−∇F(Φk−1)

end

3.3 Feature Extraction

3.3.1 Case Study 1: ADRL - Network Travel Time

In this section, we present the first case study with ADRL on network travel time. Consider

the data as the OD flow X ∈ Rn×d, where xi ∈ Rd represents one observation of OD flow

for all given OD pairs in the network. Link flow vi can be computed as a result of traffic

assignment Hi. In this case study, we adopt the user equilibrium (UE) traffic assignment

as an illustrative example to compute Hi exogenously. In UE, for each OD pair, all used

routes have equal and minimal travel time. Other traffic assignments can also be applied

here, including system optimal (SO), stochastic user equilibrium (SUE), and all-or-nothing

assignment (AON). For link cost function in the UE program, we take the classic BRP link

performance function. The link travel time te for link e in the network can be computed as

te = fe(1 + α(
ve
κe

)β) (3.3.1)
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where fe is free flow travel time, ve is link flow, κe is link capacity, α, β are coefficients. As

a result of UE, we have OD-link network assignment as a linear system

vi = Hixi (3.3.2)

where Hi ∈ Rl×d is linear proportional mapping of traffic assignment from OD flow xi ∈ Rd

to link flow vi ∈ Rl. Denote ci ∈ Rl as the vector of network travel time, with each element

being the travel time te computed using the BPR function in Eq.(3.3.1) for each link based

on the link flow vi. The application metric as network cost coefficients can be written as

ai = H⊤
i ci. Therefore, the total network cost can be cast into a linear function for the ith

observation of OD flow xi,

x⊤
i ai = x⊤

i H
⊤
i ci (3.3.3)

The same cost coefficients ai is applied onto the reconstructed OD flow x⊤
i ΦΦ

⊤ for corre-

sponding elements. Note that in this case study, ai is data dependent because both H and

c vary as the OD flows change.

Next, we show an example network modified based on the Sioux-Falls network (Suwan-

sirikul et al., 1987), in Figure 3.1. We allow three high density central business districts

(CBDs) centered around nodes 8, 11 and 22. The link performance functions for the CBD

regions are adjusted to be more sensitive to congestion to mimic the active stop-and-go and

pedestrian crossing movements. The OD flow X is synthesized following groups of multi-

variate normal distributions with several block structures in covariance matrix. The sample

size n is 400, dimension d (number of covariates as OD pairs) is 552 and low dimensional

budget k is 30. The data X and sample covariance matrix of X are shown in Figure 3.2.

The network costs ai, for i = 1, . . . , n are stacked into the matrix form as column vectors.

The deviations of ai from their mean vector are shown in Figure 3.3. Note that the devia-

tions are relatively small in scale, because the collective routing behavior is relatively stable

even given fluctuations in OD demand in the network. However, what is worth noting is

the variations among the OD pairs (rows of A matrix), such that different OD pairs would
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have different contributions to the total network travel time, which is the second term of the

objective function in the optimization program 3.2.2.

1 2

3 4 5 6

8 79

12 11 10 16 18

17

14 15 19

23 2213 20

24 21

CBD

CBD

CBD

Figure 3.1: Modified Sioux-Falls network

First, we compare the transformation matrix obtained from ADDR Φ with the PCA

transformation Pk, shown in Figure 3.4. There are major differences for the first dominant

components (columns) in subplot (a). This is due to the fact that PCA implicitly associates

higher weights on the first computed components. For example, the power method iteratively

computes the dominant eigenvectors according to the order of deceasing eigenvalues |λi|.

Differently, our ADRL approach allows same weights for all dominant components, i.e. they

are simultaneously computed via the manifold optimization. Therefore, we have decreasing

differences over the columns of the transformation matrices Φ−Pk. The reconstruction errors

(shown in subplot (b)) of the first term in the objective function for program 3.2.2 computed

from ADRL and PCA show a similar behavior. However, for the second term regarding the
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Figure 3.2: OD flow and its sample covariance

Figure 3.3: Application metric and deviations from mean values

application distortion, PCA yields a much higher error than ADRL. This result indicates the

benefit of incorporating application-driven performance measures in the design of learning

approaches as emphasized in this study.

Next, we show the convergence results for ADDR using the Stiefel manifold optimization

technique. Figure 3.5 plots the convergence of the solution algorithm in terms of 1) objective

function, 2) ∇F and 3) changes in Φ. The zoomed-in first 50 iterations are also attached

for each subplot. The speed of convergence is fast for the first several iterations, and then
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slows down afterwards. Based on multiple runs on a Macbook Pro machine with 8 core CPU

and 16 GB memory, the first 50 iterations took around 2.5 minutes on average, where the

majority of the optimal results were reached. The average computation time until the final

convergence (around iteration 1,700) was 73 minutes.

Finally, we present the sensitivity results against γ in Figure 3.6 and dimension budget

k in Figure 3.7. When the weighting parameter γ increases, the model emphasizes more the

application based cost in the objective 3.2.2. Therefore, we observe deceasing cost associated

with the second term and increasing cost with the first term. Due to the magnitude of these

two terms, the optimal objective values is still driven mainly by the first term. When the low

dimension budget k increases, we observe decreasing optimal objective loss function, since

more information can be preserved.

(a) ADDR Phi vs PCA (b) Reconstruction error

Figure 3.4: ADRL vs. PCA

3.3.2 Case Study 2: ADRL - Emission

In the second case study, we present the application ADRL in emission estimation. In gen-

eral, emission models can be categorized into macroscopic models and microscopic models.

Macroscopic emission models generally use vehicle average speed and vehicle miles traveled

(VMT) for the large network emissions estimation, for example the Emission Factors Model
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Figure 3.5: Convergence plot

Figure 3.6: Optimal objective values vs. weighting parameter γ

(EMFAC) developed by California Air Resource Board (CARB).1 Microscopic models are

aimed at disaggregated measures, including vehicle dynamics and instantaneous speed, for

example, Motor Vehicle Emission Simulator (MOVES)2 and Comprehensive Modal Emis-

sions Model (CMEM) (Barth et al., 2000).

Typically, a macroscopic emission model would be input with aggregated speed distribu-

tion (or VMT by speed bins and spatial regions) to save computational burden at a price

of sacrificed accuracy. In this case study, we demonstrate that ADRL approach can provide

the compressed low dimensional data on vehicle instantaneous speeds to enable accurate

quantification of vehicular emission using EMFAC model. The observed vehicle trajectory

1https://arb.ca.gov/emfac/
2https://www.epa.gov/moves
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Figure 3.7: Optimal objective values vs. dimension budget k

data are obtained from NGSIM 3. Figure 3.8shows the relationship between common cri-

teria pollutants and vehicle speeds in EMFAC model. The emission factors differ between

regions as they are estimated based on characteristics by region. Here we use factors from

Alameda County for illustration purpose. Figure 3.9 shows the trajectory data of a segment

on I-80 retrieved from NGSIM (only the auto mode from NGSIM dataset is included for this

analysis).

Figure 3.8: Emission rates

Next, we implement the ADRL method to the vehicular emission estimation application.

We discretize the road section into spatial intervals of feet length. The speed data are

3https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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Figure 3.9: Vehicular trajectories with instantaneous speeds (inspired by Li et al, 2020)

mapped to these internals, where missing values or multiple values are imputed using linear

interpolation of the nearest observations. Thus the resulting speed data matrix X represents

the instantaneous speed (mph) of all n vehicle samples by d spatial intervals (feet) in the

roadway section. The emission metric A represents emission rates (g/mile) by instantaneous

speed (mph).

Emissions are generally not a linear function of speed. Take PM2.5 as an example, the

nonlinear relationship between emission rates and speed can be represented as a polynomial

function,

y = −1.350× 10−8x+ 2.000× 10−10x2 − 0.955× 10−13x3 + 3.228× 10−7 (3.3.4)
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where x is the speed (feet/second) and y is the emission rate of PM2.5 (milligram/feet).

Our proposed method is flexible to accommodate nonlinear performance measure through

construction of an augmented data matrix

x̃i = [xJ
i , x

J−1
i , . . . , xi] (3.3.5)

The nonlinear function for quantifying emissions can be written as

zi = x̃iβ (3.3.6)

With this setting, for PM2.5, ai = [β1, β2, β3]
⊤. Note that if the downstream performance

measure is in other nonlinear form, one may use a polynomial regression model to approxi-

mate it.

(a) ADRL Phi vs PCA

(b) Reconstruction error

Figure 3.10: EM ADRL vs. PCA

We standardize the input data X for ADRL to mitigate the unequal variance across

the covariates. The results obtained for standardized data can be reconstructed by adding
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back the mean value and multiplying the covariance. The comparison of ADDR and PCA

is shown in Figure 3.10. The difference in the estimated emission from the two models

is negligible (at about 4.6 × 10−10 milligram). The estimated total emission 1790563.008

milligram from both models is identical to the total emission computed from the original data.

The similarity between results from ADRL and PCA is not surprising for this application.

Unlike the previous case study where network interactions take place to cause variations in

elements of matrix A across different samples and different OD pairs, the relative contribution

to the total reconstruction error, ai, does not change between samples or road sections.

Therefore, preserving information for the downstream application metric would be close to

the information in the data itself. This result reinforces our emphasis on application-driven

representation learning in problems with network structure, where variables interact with

each other in a more complex manner and are often not easily separable.

3.4 ADRL based Anomaly Detection

A primary goal in anomaly detection is to separate data variation and noise within nor-

mal instances from true anomaly instances (Pimentel et al., 2014). Thus, it is typically

not recommended to apply anomaly detection directly on the original dataset in the high

dimensional case as data variation and observation noise would negatively impact the effec-

tiveness. Therefore, anomaly detection can be performed onto the low dimensional data since

they capture the dominant information in the data and act as a denoising procedure. For

more comprehensive reviews of the anomaly detection problem, see, for example, Chandola

et al. (2009) and Agrawal and Agrawal (2015). There are four main categories of anomaly

detection methods:

• Probabilistic density based methods: build on generative probability density function

of the data (e.g. Extreme Value Theory (Clifton et al., 2011) and kernel density

estimation (Subramaniam et al., 2006);

• Distance based methods: build on distance or similarity to local dense neighborhood
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or cluster (e.g. k-nearest neighbor KNN graph (Hautamaki et al., 2004));

• Subspace and reconstruction based methods: build on the underlying representation

of the data (e.g. kernel PCA (Hoffmann, 2007) and self-organising network (Marsland

et al., 2002)); and

• Information theoretic methods: build on the information content of the data (e.g.

Kolmogorov complexity (Keogh et al., 2004)).

In this section, we demonstrate the capability of our ADRL method for anomaly detection

using the problem context described in Case Study 1 as an example. Unlike existing anomaly

detection studies that build on data features obtained from established dimension reduction

methods, the low dimensional representation from ADRL captures relationship among OD

flows X and their impacts on the overall network performance measured by the total travel

time. Later, the experiments conducted in this section suggest that anomaly detection based

on data X alone are more likely to lead to ’false alarm’ of false positive anomaly instances.

Adding the application metric from domain knowledge, i.e. using the learned representation

from ADRL, could serve as a regularizer to amplify the difference between the normal and

anomaly instances.

Different types of supervision exist for anomaly detection: 1) Supervised: Training data

consists of ‘normal’ and ‘anomaly’ instances, and are labeled with ‘normal’ or ‘anomaly’

accordingly. The labels of test data are unknown and need to be determined. 2) Unsuper-

vised: Training data consists of ‘normal’ and ‘anomaly’ instances, but no label is given in

prior for either training set or testing set. 3) Semi-supervised : Training data consists of

only ‘normal’ instances or only anomaly instances, and test data contains both ‘normal’ and

‘abnormal’ instances. This is suitable for a situation where previously unobserved patterns

(not included in training data) need to be learned and labeled for new observations in the

test dataset. We adopt the semi-supervised setting here, with an assumption that the train-

ing data are free of anomaly samples and testing data include a combination of ‘normal’ and

‘abnormal’ data points. The semi-supervised setting is also referred as novelty detection in
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scikit learn 4.

Given a data point yi, we define the anomaly score as the average distance between yi

and its k nearest neighbors

S(yi) =
1

k

k∑
j=1

d(yi, y
j
i ) =

1

k

k∑
j=1

∥yi − yji ∥ (3.4.1)

Here we let d(·) be the Euclidean distance, other measures can also be used, including

Manhattan distance and Chebyshev distance. Our method depends on the following two

widely accepted assumptions in the literature. Assumption 1: Data can be embedded into

lower dimensional subspace where normal instances and abnormal instances are significantly

different. Assumption 2: Normal data instances occur in dense local neighborhoods of the

dataset, and anomaly instances are far from these dense regions. Our ADRL based KNN

anomaly detection is described in Algorithm 5.

Algorithm 5: ADRL based KNN anomaly detection

Input: Training data Xtr ∈ Rn×d, testing data Xte ∈ Rm×d, application metric A ;
Result: Transformation Φtr ∈ Rp×p, low-dimensional data Ytr ∈ Rn×p, Yte ∈ Rm×p

anomaly label zi = {0, 1},∀0 ≤ i ≤ m
Compute Φtr from ADDR equation 3.2.2 using Xtr and A;
Obtain low-dimensional data as Ytr = XtrΦtr, Yte = XteΦtr;

Compute KNN distance matrix Dy{yte, ytr} ∈ R(n+m)×(n+m) using the distance
metric dy(yi, y

k
i ) for all yi as anomaly score; Distance (anomaly score) criteria:

yi = 1 if Dy(i, j) > d̃; yi = 0 otherwise;

Let us now compare our ADRL-KNN based anomaly detection approach with existing

KNN-based approaches, including the KNN base approach (which uses the KNN distance

metric for data X in the original space) and the PCA-KNN approach (which uses the KNN

distance metric after PCA transform of the data). Note that for the semi-supervised exper-

iments, we omit the confusion matrix often used in binary classification setting and instead

present the distribution of the anomaly scores to better highlight the separability of the

normal and anomaly samples.

4https : //scikit− learn.org/stable/modules/outlierdetection.html
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First, we show that ADRL can correctly identify the anomaly samples, as true positives.

Anomaly cases with extremely high demand in the city’s CBD areas were created and added

to the normal samples. The data is shown in 3.11, in terms of its original form X, lower-

dimensional representation Y from ADRL, and Y from PCA. Figure 3.12 and Figure 3.13

show the density of anomaly scores computed using the original data X and the lower-

dimensional representation Y , respectively. It is reassuring to see that our result is consistent

with PCA-KNN result in the context of binary classification of anomaly instances, with a

slightly better separability compared to PCA-KNN. Even though we aim for an approach

that will provide better estimation for the downstream application, it would be concerning if

the binary classification result is too sensitive against one’s choice of the dimension reduction

approach.

Figure 3.11: Data for X, Y using ADRL and Y using PCA

In addition, we compare the ADRL based anomaly detection with other open-source

tools available in PyOD library (Zhao et al., 2019). As reported in Table 3.1, our results

are consistent with the ground truth and mostly consistent with other methods. Note that

different methods use different anomaly criteria and have different ways to compute the score

functions, so we only report the predicted labels for these methods.

Second, we show that ADRL can reduce the noise in true negatives. We add small

perturbations N (0, 52) to normal instances, and then check whether these false anomaly

instances might be misclassified as false positive. The data is shown in Figure 3.14, with
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Figure 3.12: Density of Anomaly Scores Using X

Figure 3.13: Density of Anomaly Scores Using Y

the first 400 samples (rows) for normal instances and the bottom 200 samples (rows) for

false anomaly instances. The three panels in Figure 3.14 correspond to the original data

X, the low dimensional representation Y computed using our proposed ADDR, and the low

dimensional representation Ỹ computed using PCA-KNN baseline. Figure 3.15 shows the

density of anomaly scores computed using original data X and Figure 3.16 shows the density

of scores computed using PCA and our ADDR approach. Clearly, there is a larger overlaps

for the anomaly scores using low-dimensional data compared to the result using the original

data X. This is consistent with the common understanding that a carefully designed low

dimensional representation could potentially reduce the risk of false positives in the binary
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Method # of Inliers # of Outliers

True Label 300 200
ADRL 300 200

Angle-based Outlier Detector (ABOD) 295 205
Cluster-based Local Outlier Factor (CBLOF) 300 200
Histogram-base Outlier Detection (HBOS) 300 200

Isolation Forest 300 200
Feature Bagging 306 194

Table 3.1: Comparison with anomaly detection methods

classification of anomaly incidents.

Figure 3.14: Data for X, Y from ADDR and Y from PCA

3.5 Discussion

In this chapter, we have established a new representation learning framework that incorpo-

rates consideration of data usage in the downstream application in the methodology design.

This study has expanded the literature on data-driven methods in transportation science to

support the widely recognized need for end-to-end data analytics. Besides representation

learning focused in this study, the philosophy aligning with end-to-end analytics may be

transferable to data clustering, classification and other similar tasks. The promising results

from the numerical examples demonstrated that the traffic data we tested possess sparsity

and dominant features in the manifold, for which manifold optimization techniques can be
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Figure 3.15: Density of Anomaly Scores from KNN (Using X)

Figure 3.16: Density of Anomaly Scores from PCA and ADRL Using Y

effective. We also learned that adding application-driven terms in the loss function would

matter more significantly when the application metric varies with the data. This is often

the case for most large-scale transportation network problems, where data pieces interact

with each other over a complex network structure. On the other hand, the same data might

be used for several different applications. An interesting question would be how to draw

some general rules or insights for feature representation for a certain class of problems. Also,

how would the application metric or network properties impact the representation selection?

What are the critical features that should be preserved despite applications? These will be

worthy questions for future efforts.
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Chapter 4

Continuous-time Markov Chain based

Filtering on Directed Graphs

4.1 Introduction

The growing interest in statistical machine learning on irregular domain has attracted much

attention in many fields, including signal processing, transportation and geospatial systems,

and social and behavior analysis. The use of graph structures for data analysis provides a

natural way to encode the relationships or similarities between data points, offering many

benefits for tasks such as noise reduction and feature extraction. Standard statistical smooth-

ing techniques for noise reduction operate through estimating an underlying signal from noisy

observations, often by moving averages or spline regression (Györfi et al., 2002). However,

one of the limitations lies in the fact that the localized correlation and heterogeneity of the

data samples are often not well captured.

Recent advances in graph machine learning and graph signal processing have demon-

strated the effectiveness of utilizing the underlying graph structure to reveal patterns in

the data, as discussed in several review papers on graph signal processing (GSP) (Ortega

et al., 2018), graph neural networks (Zhou et al., 2020) and network embedding (Cui et al.,
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2018). Key to the development of these techniques has been the increasing recognition of

the importance of the underlying graph structure in understanding data patterns. Many of

these methods are based on the adjacency matrix A and graph Laplacian L, rooted from

foundational concepts from algebraic graph theory (Chung, 1997; Godsil and Royle, 2001).

The adjacency matrix A provides a binary representation of the relationships between the

nodes in the graph. The Laplacian graph, a matrix representation of a graph encoding the

degree of each node and the connectivity between nodes, can be used to capture the local

relationship between data measured on the nodes.

When natural graphs are available at hand, such as sensor networks and highway net-

works, one can directly obtain the graph structures. Furthermore, the construction of

proximity-type or KNN-type (K-Nearest Neighbor) graphs enables the broader application

of these methods to more general point cloud data (Maier et al., 2008; Jebara et al., 2009).

This opens up new avenues for nonparametric regression and estimation on graphs, with the

goal of choosing optimal functions over the graph from observed data.

Several techniques have been proposed for linear smoothing on graphs, including spectral

filters (Defferrard et al., 2016) and spatial filters (Subbian and Banerjee, 2013). Spectral

graph filters operate in the spectral domain, leveraging the eigenvalues and eigenvectors of

the graph Laplacian or other graph matrices to filter signals. On the other hand, spatial

graph filters operate directly in the graph domain and filter signals based on their spatial

neighborhood relationships. Each of these methods offers unique advantages, and the choice

between them often depends on the specific characteristics of the data and the task at hand.

In this paper, we approach these methods from the signal processing standpoint and

summarize them into analysis and synthesis classes, following the discussion on (Chen et al.,

2001; Elad et al., 2007). The first class of filtering is the so-called analysis framework. In

analysis, the regularization or constraint is applied to the fitted signal across nodes. For

undirected graphs, the graph Laplacian and its associated eigenvectors have been widely

used in graph signal processing for filtering, regression, and many other applications. In
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the context of nonparametric regression, variation-based constraints are often introduced

to preserve the intrinsic structure of the data. One seminal example is Laplacian-based

smoothing where the graph Laplacian is used to approximate the low-dimensional manifold

(Smola and Kondor, 2003). A graph signal f : V → RN is a real-value function defined on

the graph vertex domain V . Denote fn as the signal value at the n-th vertex vn ∈ V . The

Laplacian regularization can be expressed the divergence of neighboring data samples on the

graph globally

S2(f) =
1

2

∑
i∈V

∑
j∈Ni

Wi,j[fj − fi]
2

=
∑

(i,j)∈E

Wi,j[fj − fi]
2

= f⊤Lf.

(4.1.1)

with the undirected combinatorial Laplacian defined as L = D −W , for degree matrix D

and weighted node-node adjacency matrix W . Thus, the corresponding ℓ2-based Laplacian

smoothing can be written as

min
x∈Rn
∥f − x∥22 + λx⊤Lx (4.1.2)

Other regularization has been used for signal denoising. For example, Chambolle (2004)

and Chambolle and Pock (2011) used total variation denoising for image denoising and

zooming, as

J(u) =
∑

1≤i,j≤N

|(∇u)i,j| , (4.1.3)

with the discrete gradient operator (∇u)i,j =
(
(∇u)1i,j, (∇u)2i,j

)
and

(∇u)1i,j =


ui+1,j − ui,j if i < N,

0 if i = N,

(∇u)2i,j =


ui,j+1 − ui,j if j < N,

0 if j = N,

.

(4.1.4)

In another example, Wang et al. (2015) generalized the ℓ1 trend filtering to the undirected

graphs, motivated by piecewise polynomial approximation to the graph signal. The intro-
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duction of the ℓ1 penalty of the difference operator helps to exploit local adaptivity with

varying local degree of smoothness.

β̂ = argmin
β∈Rn

1

2
∥f − β∥22 + λ

∥∥∆(k+1)β
∥∥
1

(4.1.5)

where ∆(k+1) is the order-k+1 graph difference operator, constructed based on the recursion

of first order oriented incidence matrix of undirected graph G, as

∥∥∆(1)β
∥∥
1
=
∑

(i,j)∈E

|βi − βj| (4.1.6)

and

∆(k+1) =


(
∆(1)

)⊤
∆(k) = L

k+1
2 for odd k

∆(1)∆(k) = DL
k
2 for even k

(4.1.7)

The second class of methods approach the filtering from the synthesis framework, where

one would first construct a suitable basis over the domain and regress the observed signals

over the basis. In the more classical setting when graph structure is not incorporated,

methods such as splines can be used for filtering in the Euclidean domain

min
β∈Rn
∥f − Φβ∥22 + λβ⊤Ωβ (4.1.8)

where Φ is the basis matrix and penalty matrix Ω measures the roughness of the functions.

When a graph structure is incorporated, for example, Sharpnack et al. (2013) constructed

the (undirected) graph wavelet basis based on the spanning tree. The filtering is given as

min
β∈Rn

1

2
∥y −Wβ∥22 + λ∥β∥1 (4.1.9)

The graph wavelet basis W is capable of capturing spatially localized smoothness at different

locations in the input domain.

From a signal processing viewpoint, the emerging field of GSP is one example of taking

the underlying graph structure into the design of the basis on data (Shuman et al., 2013;

Ortega et al., 2018). GSP can be seen as a decomposition based approach, where signals
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defined on graphs can be decomposed based on their graph harmonics. While dimensionality

reduction methods mainly turn the relationship between data samples into a matrix for

further analysis, graph signal processing (GSP) techniques treat the networked data as an

input to the graph-based filter. The graph shift operator is central to many GSP methods,

as it act as the basis of all shift-invariant linear filtering operations on graphs. Shuman et al.

(2013) defined the graph Fourier modes as eigenbasis of the graph Laplacian matrix. This

treatment leads to the orthonormal eigenvectors, thus brings desirable algebraic proprieties.

Irion and Saito (2015) pointed out that the spectrum of graph Laplacian can be misleading if

treated as the frequency counterparts for general undirected graphs. They further developed

two types of multiscale basis dictionaries on graphs, hierarchical graph Laplacian eigenbasis

and generalized Haar-Walsh wavelet packet based on recursive graph partitionings. In a

later study, the extended generalized Haar–Walsh transform was proposed to simultaneously

consider the time domain and the frequency domain of the input graph signal (Saito and

Shao, 2022).

One major limitation of the above studies is that the methods developed based on undi-

rected graphs ignore the directed information in the system. The asymmetric feature is

especially non-negligible for traffic flow in transportation networks. Several methods have

been proposed to deal with the directness of edges. Singh et al. (2016) considered Jor-

dan eigenvectors of directed Laplacian as graph harmonics and corresponding eigenvalues as

graph frequencies. The natural frequency definition is maintained, meaning that the eigen-

values corresponding to eigenvectors with small variations are treated as low frequencies and

vice versa. Deri and Moura (2016) defined the graph Fourier transform based on Jordan

decomposition of adjacency matrix. However, several issues are still unsolved if using Jor-

dan decomposition for adjacency matrix. One issue is that the resulting Fourier basis is not

orthonormal. Also, the notion of frequency cannot be carried by the Fourier basis, mean-

ing that low frequency does not necessarily represent slowly varied graph signals. To deal

with the drawbacks of Jordan decomposition based graph Fourier transform, several studies
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focused on other graph operators. Sevi et al. (2018) investigated the eigenfunctions based

on the random walk matrix. Furutani et al. (2019) extended graph Laplacian to Hermitian

Laplacian, where the orthonormality can be preserved. Optimization based approach are

also used to design GSP for directed graphs. Sardellitti et al. (2017) imposed the orthonor-

mality of the graph Fourier basis and formulated a non-convex optimization problem. They

formulated the objective as the Lov́asz extension, a continuous extension of graph cut size,

and orthogonality is controlled by constraints. Following similar intuition, Shafipour et al.

(2018) formulated a constrained non-convex optimization to obtain the orthonormal Fourier

basis such that corresponding frequencies are maximally spread over the entire spectral do-

main. However, due to the limitation of the nonconvex formulation, the uniqueness of the

solution cannot be guaranteed.

Existing studies have demonstrated the capability of nonparametric regression and graph

based filtering. However, challenges and opportunities remain. Most existing studies focus

on undirected graphs, yielding well-behaved eigenfunctions of the graph matrices. Yet, this

treatment would naturally ignore the asymmetric structure of the data, including traffic

flows in the highway networks, sensor networks with directional information propagation

such as wind or water flow measurements, network traffic and routing. For the same reason,

undirected GSP might lead to the loss of crucial information about the data structure or

the system dynamics. For instance, in social media networks, the ‘following’ relationships

are often not mutual, and the direction of the relationship can provide valuable information.

Furthermore, undirected graphs cannot represent causality in systems where the order of

events or the direction of information flow matters, such as citation networks, web page

networks, or dynamical systems. Therefore, there could be benefits in incorporating the

directional structure into the estimation and filtering tasks.

In this study, we focus on univariate nonparametric regression for estimation on large-

scale directed graphs. We approach the graph signal filtering problem under the synthesis

framework by leveraging a Continuous-time Markov Chain (CTMC) based basis. The di-
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rected combinatorial Laplacian can act as the negative generator matrix of the CTMC. The

method can be easily applied to the cases where the graph structures are given as prior or

to the general point cloud data by leveraging the KNN or proximity graphs.

The remainder of this chapter is organized as follows. In section 2, we introduce the

Continuous-time Markov Chain (CTMC) based filtering on directed graphs. In section 3,

we further discuss some characteristics of the proposed methods, including the kernel inter-

pretation and computation acceleration. In section 4, we present the performance on both

synthetic and real-world case studies. Section 5 offers conclusions and possible extensions.

4.2 CTMC Filtering on Directed Graphs

4.2.1 Directed Graphs and Continuous-time Markov Chain

Let G(V , E) be a directed graph, with vertices (nodes) V = v1, . . . , vn and directed edges

(links) E = e1, . . . , eu. The adjacency matrix A captures the pairwise similarity among the

nodes. In practice, the graph G can either be provided directly from domain applications

or be derived from relational data or nearest-neighbor proximity. When a graph structure

is not known as prior, one can construct a proximity graph or KNN graph from given data.

One example of the proximity graph is defined as

Ai,j =


e−∥xi−xj∥22/c if xi and xj are close,

0 otherwise

(4.2.1)

From the given graph structure, we have di =
∑n

j=1Aij. The degree matrix is then given

as D = diag(di) and the corresponding combinatorial graph Laplacian can be obtained as

L = D − A. For the directed graph case, we use the out-degree D := Dout = diag(
∑

j Aij).

This would ensure the sum of each row of L is zero, i.e.
∑

i,j∈N Lij = 0, as required for

the generator matrix Q for Continuous-time Markov Chain (CTMC) to be discussed below.

Note that in-degree is equal to out-degree for undirected graphs, thus our methods are still

applicable for undirected cases.
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Next, let us shift our attention to CTMC. Consider a stochastic process {X(t), t ∈

[0,∞)]} with a countable state space S ⊂ {0, 1, 2, . . . }. A CTMC consists of three com-

ponents, a jump chain as a discrete-time Markov chain with the set of states and transition

probabilities pij and a set of holding time parameters τi that controls the amount of dwelling

time at each state. If X(t) = i, the time until the state changes follows Exponential(τi)

distribution. The probability of going from state i to state j is denoted as pij, defined as

Pij(t) = P (X(t+ s) = j | X(s) = i)

= P (X(t) = j | X(0) = i), for all s, t ∈ [0,∞)

(4.2.2)

and P (0) equals to the identity matrix P (0) = In.

An effective way to understand CTMC is built on the concept of the generator matrix Q.

The generator represents the transition rate from state i to state j as gij = τipij, with diagonal

elements gii = −
∑

j ̸=i gij = −τi. The sum of the rows in Q is zero, i.e.
∑

j Qij = 0,∀i.

Then we have the forward relationship

P ′
t = PtQ (4.2.3)

and backward relationship

P ′
t = QPt (4.2.4)

The matrix-valued differential equation has a unique solution for the transition matrix

function as

Pt = etQ =
∞∑
n=0

(tQ)n

n!
(4.2.5)

for all t ≥ 0,

One may recognize that the infinitesimal generator Q is the key bridge between CTMC

and the graph Laplacian originated from algebraic graph theory. If we let the graph Lapla-

cian be L = −Q, the directed graph G can be modeled as a CTMC, with state space S

matching node space N . Thus, we have the transition matrix for a directed graph G as the
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exponentiation of the negative combinatorial graph Laplacian over time.

Pt = etQ = e−tL =
∞∑
n=0

(−tL)n

n!
= I + (−t)L+

1

2
t2L2 + (−1

6
t3)L3 + . . . (4.2.6)

for all t ≥ 0.

There has been effort to use spectral connectivity analysis for kernel smoothing based on

the random walk from discrete-time Markov chain (Lee and Wasserman, 2010). However,

the discrete random walk is not directly applicable to the directed graphs, because of the

fundamental assumption where the probability of transitioning from one node to another

is equal in both directions if there is an edge connecting them. For a directed graph, this

assumption generally does not hold, because an edge might only allow movement in one

specific direction. Therefore, while discrete random walks provide a powerful tool for signal

processing undirected graphs, their usefulness is limited when it comes to directed graphs

for directed information flows.

4.2.2 CTMC Filtering on Directed Graphs

In this section, we present the CTMC filtering framework. Assume we observe node-based

data f ∈ Rn defined based on the given directed graph. Consider the normal error model

fi = r(xi) + ϵi, i = 1, . . . , N (4.2.7)

with iid sub-Gaussian random error ϵi with parameter σ. The moment generating function

of X is upper bounded by the moment generating function of a Gaussian random variable

with mean 0 and variance σ2 .

E[etϵ] ≤ e
σ2t2

2 (4.2.8)

Our goal is to estimate the nonparametric regression function r(·) that produces a de-

noised version of observations f .

f = P⊤
t β + ϵ (4.2.9)
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CTMC Filtering: min
β
∥f − P T

t β∥22 + λ∥β∥22 (4.2.10)

The first term measures the distortion between the observed signal f and the estimated

signal. The row stochastic matrix Pt is used as the basis for the filtering operation. The

ℓ2 regularized term is included to prevent overfitting and promote numerical stability. The

gradient of the objective is given as

∂h

∂β
= −2Ptf + 2PtP

⊤
t β + 2λβ (4.2.11)

Thus we have the solution

β̂ = (PtP
⊤
t + λI)−1Ptf (4.2.12)

Finally, we obtain the CTMC filtering estimate is

f̂ = P⊤
t β̂

= P⊤
t (PtP

⊤
t + λI)−1Ptf

= Sλ,tf

(4.2.13)

with Sλ,t = P⊤
t (PtP

⊤
t + λI)−1Pt as the linear smoother.

The probability distribution of the random walk at time t,given that it started at node i

(state i) is given by the row vector Pt(i, :) = Prob{S(t)|S(0) = i}, the element Pt(i, j) is the

probability of transition from i to j within time t. This also matches the motivations from

the semi-supervised smoothness assumption (Wasserman and Lafferty, 2007), which states

as the regression function m(x) = E[Y |X = x] is smooth where the density p(x) of X is

large. Yi and Yj should be similar with high probability if there is a path connecting Xi and

Xj on which p(x) is large. In fact, in the next section, we will show the CTMC embedding

can be viewed as a type of kernel ridge regression.

This design incorporates both local and higher-order neighborhood (multi-hop) infor-

mation enabling heterogeneous degree of smoothness and varying levels of adaptive of the
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estimated signal. When t is small, we have Pt ≈ I − tL. The transition matrix depends on

the local topology of the graph. When t is large, we have Pt ≈ e−tλ2ϕ2ϕ
T
2 with λ2 being the

smallest non-zero eigenvalue and ϕ2 being the eigenvector associated to the Laplacian. Thus

the transition is governed by the global graph structure.

4.2.3 Selecting Parameters

We know that a Markov chain is irreducible if and only if its state graph is strongly connected.

A chain is irreducible if one can go from any state to any other state in finite time. An

irreducible chain is recurrent if the probability that we return to this state in finite time

is one, i.e. rij = Pr[Tj < ∞|Xo = i] = 1. If a Markov chain is irreducible and positive

recurrent, then it has a unique stationary distribution π.

That is, if the directed graph G is strongly connected, we could obtain a nice convergent

behavior for the transition matrix Pt. A strongly connected graph is one where there is a

directed path from any node to any other node. This is a common characteristic shared

among transportation networks and sensor networks.

Therefore, we can achieve the stationary distribution for a large enough t following the

Theorem in Chapter 20 by Levin and Peres (2017), which we now restate here

Theorem 2. For an irreducible CTMC, there exist a unique stationary distribution, such

that πPt = ϕ and the total variation distance is monotone non-increasing in t

max
x∈X
∥Pt(x, ·)− π∥TV → 0 as t→∞ (4.2.14)

Note this theorem does not require P is aperiodic for CTMC.

The transition probability matrix P(t) is continuous for all t ≥ 0. When the random

walks become long (large t), the distribution of the data on vertices will converge to the

stationary distribution. This would lead to a rank-1 projection basis in 4.2.10. In this

study, assume we have q observations of f , we choose to select parameters t and λ using

cross-validation.
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4.3 Properties and Extensions

4.3.1 Kernel Ridge Regression Interpretations

In this section, we show that the proposed CTMC filtering can be viewed as a type of kernel

ridge regression (Zhang et al., 2013; Alaoui and Mahoney, 2015). First, recall the standard

ridge regression for data (X, y)

min ∥y −Xw||22 + λ∥w∥2 (4.3.1)

the solution can be as

ŵ = (XTX + λID)
−1XTy

= XT (XXT + λID)
−1y

(4.3.2)

The last step is because

(
XTX + λI

)
XT = XTXXT + λXT = XT

(
XXT + λI

)
(4.3.3)

we can write this as

XT =
(
XTX + λI

)−1
XT

(
XXT + λI

)
(4.3.4)

thus we have

XT
(
XXT + λI

)−1
=
(
XTX + λI

)−1
XT (4.3.5)

Now, let a set of dual variables be

µ = (XXT + λIN)
−1y (4.3.6)

we can write the solution with dual variables as the linear combination of training data

vectors

ŵ = XTµ =

ND∑
n=1

µnxn (4.3.7)

If we define the feature vector using ith row of transition matrix Pt as xi → ϕ(xi) = Pt(i).

After replacing X in standard ridge regression to the kernelized version as ϕ(x), the solution
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to the kernel ridge form is identical to our solution to CTMC smoothing 4.2.10

β̂ = (ϕ(X)Tϕ(X) + λID)
−1ϕ(X)Ty

= (PtP
⊤
t + λI)−1Ptf

(4.3.8)

we can also write β̂ as

β̂ = Pt(P
⊤
t Pt + λI)−1f matrix inversion lemma

= Ptγ

(4.3.9)

with dual variable as γ = (P⊤
t Pt + λI)−1f .

if we have a new test data vector, the prediction can be obtained by the representer

theorem,

fnew = β̂Tϕ(xnew) =
N∑

n=1

γnK(xn, xnew) = κT (K + λI)−1f (4.3.10)

with kernel K(xi, xj) = ϕ(xi)
Tϕ(xi) and κ = [K(xnew, x1), . . . , K(xnew, xN)] and γ = (K +

λI)−1f

Now we have shown the CTMC smoothing is exactly a type of kernel ridge regression

with CTMC transition matrix as the kernel.

4.3.2 Computation

We have shown that CTMC filtering as a linear smoother has a closed-form solution 4.2.13.

The main computational challenge is that the transition matrix Pt = e−tL and the combi-

natorial Laplacian L are not simultaneously diagonalizable, because L is not normal for a

general directed graph. Therefore, to select the tuning parameter t, one needs to enumerate

the computationally expensive matrix exponential operations.

Here we introduce some ways to improve the computational efficiency. We start with the

symmetric case, where the graph G has symmetric combinatorial Laplacian L. In practice,

this can come from 1) undirected graphs naturally with symmetric graph Laplacian; or

2) directed graphs with symmetric pairwise relationship, such as friendship and relative

networks.

80



For a symmetric graph, we can write the spectral decomposition of the Laplacian as

L = V ΛV −1, where Λ is the diagonal matrix of distinct eigenvalues. Then the matrix

exponential can be computed efficiently over a grid of t as

Pt = e−tL

=
∞∑
n=0

(−tL)n

n!

= V
∞∑
n=0

1

n!



−λn
1 0 0 0

0 −λn
2 0 0

0 0 . . . 0

0 0 0 −λn
N


V −1

= V



−eλ1t 0 0 0

0 −eλ2t 0 0

0 0 . . . 0

0 0 0 −eλN t


V −1

(4.3.11)

For the general case, where L and Pt are asymmetric, we need to reply on other methods to

efficiently compute the matrix exponential. Krylov subspace methods have been widely used

in linear algebra and matrix operations (Saad, 1981; Watkins, 2007; Bai, 2015). Among them,

the Arnoldi iteration finds an approximation to the matrices and eigensystem by constructing

an orthonormal basis of the Krylov subspace (Arnoldi, 1951). Here we use Arnoldi iteration

to approximate the matrix exponential following the design in Saad (1992).

The goal here is to efficiently approximate the action of a matrix exponential on a vector

Ptf . For convenience of notation, we write v := f as the initial vector. We first use the

Arnoldi iteration to obtain an orthogonal basis Vm as {v1, v2, . . . , vm}, which is an orthonor-
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mal basis of subspace Km.

1. Compute v1 = v/∥v∥

2. For j = 1, 2, . . . ,m

w := Lvj

For i = 1, 2, . . . , j

hi,j := (w, vj)

w := w − hi,jvj

3. Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j

(4.3.12)

As the result, we obtain Vm := {v1, v2, · · · , vm} of dimensions n×m as an orthonormal basis

of the Krylov subspace Km with m ≪ n. Let Hm := [hij] be the m ×m upper Hessenberg

matrix, by Arnoldi iteration, we have

LVm = VmHm + hm+1,mvm+1e
T
m (4.3.13)

i.e. vm+1 satisfies an (m+1)-term recurrence relation involving itself and the previous Krylov

vectors.

Lvm = h1mv1 + · · ·+ hmmvm + hm+1,mvm+1 (4.3.14)

By the orthogonality of Vm (as V ⊤
m Vm = Im, and v⊤mvm+1 = 0), we have

Hm = V T
mLVm (4.3.15)

which represents the projection of L onto the Krylov subspace Km, with respect to the basis

Vm.

The relationship with the subsequent iterations

LVm = Vm+1H̃m (4.3.16)

H̃m is given by appending hm+1,m to the last row of the upper Hessenberg matrix Hm.
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Hm =



h1,1 h1,2 h1,3 · · · h1,m

h2,1 h2,2 h2,3 · · · h2,m

0 h3,2 h3,3 · · · h3,m

...
. . . . . . . . .

...

0 · · · 0 hm,m−1 hm,m


(4.3.17)

Then the matrix is projected onto a smaller space, with the exp is applied to the reduced

matrix.

eLv ≈ βVme
Hme1 (4.3.18)

with β = ∥v∥2. The matrix exponential on v can be approximated as (O(MN2)). The

detailed theoretical analysis remains to be shown in future work.

4.4 Case Studies in Networked Data

In this section, we present two case studies of CTMC filtering on directed graphs, including

a synthetic example based on Boston highway network and a real-world example based on

the Los Angeles (LA) sensor network.

4.4.1 Synthetic examples on Boston Highway Network

We first present the performance of CTMC filtering on Boston network. The network has 74

nodes and 258 directed links, as shown in Figure 4.1. In the figure, we use color to show the

number of connections of each node, i.e. symmetric version of node degree. Clearly, there

exist three high-density hubs that are closely connected nearby nodes. These hubs are also

inter-connected by several corridors among them. When constructing the edge weight A, we

first simulate a set of traffic link flows following User Equilibrium traffic assignment (Sheffi,

1985). Then we use the link flow as the edge weights with Aij representing the number

of vehicles traversing from node i to node j. The assumption is that the signals on the

nodes should be more closely connected when there is more traffic in between. Based on the

constructed graph G, we can obtain the directed combinatorial graph Laplacian L. Figure 4.2
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shows the difference of the Laplacian for directed and its undirected version L−1/2(L+L⊤)

with each row and column representing a node in set V . This quantity provides information

on how the incidence edges change when we transform undirected graphs to directed graphs,

effectively measuring the degree of asymmetry of the graph G.
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Figure 4.1: Boston Network
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Figure 4.2: Asymmetric structure of L

Next, we use two different experiments to simulate the signal and noise on the graph.

First, we present the experiment on a homogeneous continuous-time random walk. The
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procedure is designed s follows: 1) simulate a set of underlying standard Gaussian zi; 2)

apply a CTMC transition P0 to the standard Gaussian with random t; and 3) add iid

Gaussian noise ϵi N (0, σ2). These steps would generate a noisy observation of the graph

signal f ∈ Rn. These steps are repeated to generate total q samples for the noisy signals

F ∈ Rn×q, which is further separated to cross-validation set and evaluation set. One example

of the ‘true’ noiseless signal is shown in Figure.4.3.
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Figure 4.3: One example of underlying true graph signal

For the second experiment, we apply N-Random Walks onto the graph, following the

procedure: 1) randomly select a node in the graph; 2) run discrete-time random walk with

random step length ρ ∈ N+; 3) apply indicator function to the nodes visited i.e. the graph

signal of a node is the number of times the node is visited by this random walk; and 4)

repeat the steps from 1 to 3 and obtain one observation of graph signal vector f ∈ ⋉ as the

summation of multiple random walk indicator functions. At last, similarly, the procedure is

repeated for q times, producing the noisy data matrix F ∈ Rn×q.

For comparison purpose, we implement the Laplacian smoothing in 4.1.2, which is ded-
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icated to undirected graphs by design. Besides, we also compare the results with a spatial

smoothing technique, Gaussian Kernel Smoothing.

f(x) =
1

N

N∑
i=1

K

(
x− xi

h

)
(4.4.1)

where the Gaussian kernel is defined as

K(u) =
1√
2π

e−
u2

2 (4.4.2)

In order to apply these two methods, we need to convert the directed graphs to its undi-

rected version. We take every directed edge and replace it with two edges with opposite

orientation of half of the original weight. This is the typical treatment in practice when one

can transform directed graphs to undirected graphs, and apply undirected ‘vanilla’ GSP and

filtering methods.

Next, we present results with varying negative SnR to demonstrate the performance of

CTMC Filtering, defined as 10log10(nσ
2/∥f∥22) with σ2 being the variance of the noise. Our

method generates the smallest log MSE compared to the other two methods.
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4.4.2 Real world example - Los Angeles Sensor Network

Next, we present a case study based on real-world data of the traffic flow sensor measurements

in the Los Angeles County. The sensor data is retrieved from Performance Measurement

System (PeMS), an online system developed and maintained by the California Department

of Transportation (Caltrans)1. These detectors provide information on traffic volume, vehicle

classification, speed, and occupancy, and the system also collects and displays incident and

lane closure information. We use the traffic flow data of the first two weeks in October

2022 for LA county region. For this study, we focus on mainline sensors, totaling 1906

sensors in the region. Here we show the example sensor readings on traffic flow for morning

peak, afternoon peak and evening off-peak on October 3rd 2022, in Figure 4.6, 4.7 and 4.8

respectively. The color in the figure represent the aggregated total traffic flow in the 5-min

interval. For example, Figure 4.6 shows the total flow that passes through each sensor from

9:00 a.m. to 9:05 a.m.

1https : //pems.dot.ca.gov/
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Figure 4.6: Sensor flow in Los Angeles County in the morning (9 a.m.)
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Figure 4.7: Sensor flow in Los Angeles County in the afternoon (5 p.m.)
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Figure 4.8: Sensor flow in Los Angeles County in the evening (10 p.m.)

In this case study, we focus on the sensor network for the detectors deployed throughout

the region, and treat sensor readings as the graph signal f . Different from the first exper-

iment, we do not directly use the underlying road network where the sensors are deployed

for several considerations. First, PeMS system doesn’t have sensors deployed on all road

sections, i.e. links in the context of highway graph representation. This results in an in-

complete set of observations, where only a subset of links within the graph provide signal

observations. This particular characteristic contradicts our setting, where we assume the

availability of a complete set of observations. Second, in the road network setting, the po-

sitioning of sensors on road segments would produce link-based data. This is different from

our node-based signal-noise model. One alternative is to leverage the link-node incidence

matrix to transform the observations to the node space. However, the noise model will be

impacted due to the linear transformation. For those reasons, we directly work with sensor

detection and corresponding sensor networks. We recognize the opportunities in incorporat-
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ing the underlying physical road network and leave the incorporation of the physical road

network to future research.

The asymmetric structure for transportation sensor network comes from several sources.

The first factor contributing to the asymmetry structure is the irregular spatial distribution

of the sensors. Specifically, for a node ni that falls within the K-neighborhood region Nj of

another node nj, it’s not guaranteed that the neighborhood Ni of ni will include nj. This is

due to varying densities of sensor placement throughout the spatial region. Second, on the

same route, node (sensor) pairs installed on upstream-downstream vs. downstream-upstream

can have different local correlation since the shockwave and congestion propagation of the

traffic flow can be asymmetric for different directions. Furthermore, the travel time faced

by a driver is heavily dependent on the traffic condition in front of them (downstream)

and very little on the traffic condition behind them (upstream), known as the anisotropic

property. The third cause for asymmetry arises from the sensors located on different routes

or different directions. Depending on the relative directions of the routes - whether they’re

opposite or more parallel to each other - the relationships between the sensors can differ

significantly. Besides, there may be strongly directional origin-destination travel demand

during peak hours, such as morning commute period where travelers drive from residential

areas to business areas. While the asymmetric travel demand might be less prominent during

off-peak periods.

We construct a directed KNN-based graph for sensor networks that leverage the local

structure of flow information. First, we compute the pairwise hasrsine distance for all nodes

in the region as D ∈ Rn×n. Next, based on the relationship between the spatial positioning of

the sensor network and the underlying highway network, we make the following adjustment

to the distance D based on several heuristics: 1) if two sensors ni and nj are on the same

highway route with the same direction, the distance is discounted by α1 as D̃ij = Dij/α1;

2) if two sensors ni and nj are on the same route but on opposite directions, the distance is

increased as D̃ij = Dij×α2; 3) if two sensors are on different routes and on different directions,
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we also increase the distance as D̃ij = Dij × α3. In the LA example, we let α1 = 5, α2 = 10

and α3 = 2. Then, we construct a KNN graph based on the adjusted distance D̃. Further, a

Gaussian RBF kernel is applied to D to translate the distance for similarity A. Finally, the

combinatorial Laplacian L and the transition matrix Pt are computed based on the similarity

matrix A.

We show the asymmetric structure for L− 1/2(L+ L⊤), as in Figure 4.9. Incorporating

these asymmetries through directed graphs allows us to capture more accurate and nuanced

relationships between nodes, enhancing the performance of graph-based filtering techniques.

Figure 4.9: Asymmetric Structure

For this experiment, we apply a rolling aggregation window T , ranges from 5 minutes to

1 hour to mimic different signal to noise ratio. That is, we aggregate the original 5-minute

observations ft to f ′ =
∑

t∈T ft, with τ ∈ {5, 10, 15, 20, 30, 60}. We assume the larger the

aggregation window is, the smaller the noise level. This is because the aggregation window

acts like a moving average low-pass filter.

The performance of our CTMC filtering is again compared with the Laplacian smoothing

4.1.2 and spatial kernel smoothing 4.4.1. After the filtering, we can further break down the

aggregation window, obtaining the original 5-minute level unit MSE and RMSE.

In this case, due to the low noise level in the real world data, we show the MSE improve-
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ment over baseline as raw observations, defined as ∆MSE = MSEbaseline − MSECTMC .

The MSE and unit MSE improvement results for the rolling window evaluation are shown in

Figure 4.10 and 4.11. The RMSE and unit RMSE improvements results are shown in Figure

4.12 and 4.13. Among the methods tested, our CTMC filtering generates the best results.
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Figure 4.10: MSE improvement over baseline
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Figure 4.11: Unit MSE improvement over
baseline
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Figure 4.12: RMSE improvement over baseline
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Figure 4.13: Unit RMSE improvement over
baseline
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4.5 Conclusion and Discussion

In this work, we propose a novel CTMC filtering approach for estimation on directed graphs.

Built on the nonparametric regression, we bridge the stochastic process and graph theory

through the directed combinatorial graph Laplacian and transition matrix in CTMC. Com-

pared to filtering methods based on spatial information and undirected graph structure, our

method is capable of capturing local asymmetric structure in data observations. We demon-

strate the performance through synthetic and real-world case studies, showing the potential

to incorporate heterogeneous structure in data.

For next steps, we will explore the conditions where directed graphs provide the most

benefit compared to the undirected counterpart. For instance, in scenarios where the un-

derlying graph is inherently undirected or where global trends are more relevant than local

variations, undirected Laplacian smoothing or spatial smoothing might still be a reasonably

simplified choice.
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Chapter 5

Conclusions

With the rapid advancement of information technology and the surge in data availability,

transportation systems have evolved into complex, large-scale networks characterized by

complex dynamics and interactions. The information era generates vast amounts of diverse

data, including traffic flows, vehicle trajectories, and travel behavior information, which

present unprecedented opportunities for optimization and machine learning applications.

This dissertation work fills some important research gaps in understanding high-dimensional

networked data in transportation systems. We have demonstrated the opportunities and po-

tential challenges that come with applying optimization and statistical machine learning to

high-dimensional networked data in transportation systems. The proposed methodologies

have shown promising results in improving the efficiency, resilience, and sustainability of

these systems.

In Chapter 2, we have developed a method for estimating OD demand at a network

level by utilizing stochastic programming and multiple sets of observed link flow data. This

methodology enables the simultaneous estimation of anticipated demand and the reconstruc-

tion of OD trips throughout observed time intervals. A novel aspect of our approach lies

in viewing the problem through the lens of a two-stage stochastic programming framework.

In this setting, demand parameter estimation is considered the first-stage decision, while
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demand reconstruction is treated as a recourse decision that depends on various scenar-

ios. This new perspective allows us to draw parallels between our estimation technique and

the well-established field of stochastic programming, leading to several noteworthy advan-

tages. Primarily, this systemic approach unlocks a wealth of pre-existing knowledge from

the stochastic programming community, providing opportunities to leverage established solu-

tion methods for large-scale high-dimensional problems and modeling options for integrating

additional risk preferences. We demonstrate the computational benefits of this approach

by implementing a scenario decomposition method designed to address computational chal-

lenges posed by extensive scenarios.

In Chapter 3, we have proposed a novel representation learning framework that is specif-

ically designed to incorporate the needs of downstream applications. We highlight the im-

portance of incorporating application-driven knowledge in the loss function, especially when

the application metric exhibits a different pattern compared to the raw data. This is a

common occurrence in high-dimensional transportation network problems, where data ele-

ments interact with each other across a complex network structure. This extension to the

body of literature on data-driven methods in transportation science addresses the growing

demand for end-to-end data analytics, in line with our focus on high-dimensional networked

data and machine learning. We demonstrated the capability of proposed methods through

mobility demand estimation, emission estimation and anomaly detection tasks. The philos-

ophy embedded in this approach could be extended beyond representation learning, finding

applicability in data clustering, classification, and other related tasks. Our numerical results

show promising indications of the existence of sparsity and dominant features in the traffic

data, illustrating the potential effectiveness of manifold optimization techniques.

In Chapter 4, we have presented a CTMC based filtering framework on directed graphs.

This novel method builds on nonparametric regression methods, via utilizing key components

such as the directed combinatorial graph Laplacian and transition matrix. The method is

capable of capturing heterogeneity in local adaptivity and asymmetries. CTMC filtering
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provides an important advancement over traditional filtering methods, which typically only

rely on spatial information or are limited to undirected graphs. As we have demonstrated in

the case studies, these standard techniques, while robust in certain settings, often fall short

when faced with the complex, heterogeneous, and asymmetric structures commonly found

in data from large-scale networks, such as transportation networks. On the contrary, CTMC

filtering is specifically designed to handle these complexities. It effectively leverages the

structural information embedded in directed graphs, enabling it to capture the nuanced local

and asymmetric features that are prevalent in real-world data observations. Our proposed

CTMC filtering method represents a step forward in the field of estimation on directed

graphs, providing a more powerful tool that can handle the heterogeneous and irregular

structures of real-world data. As we continue to explore and refine this method, we believe

that it will open up new possibilities to exploit the structure of high-dimensional networked

data in various applications.
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Chapter 6

Future Research Opportunities

In this dissertation we have developed tools in stochastic programming, representation learn-

ing and nonparametric regression to explore for mobility and networked data in transporta-

tion systems. This opens up several avenues for future research.

1. Estimation and Decision Making with Heterogeneous Information

Most of the topics we have explored thus far predominantly operate under the assumption

of homogeneous data types, including networked traffic flow (OD/path/link flow), vehicle

trajectory, as well as emission rates.

There could be opportunities to improve estimation quality if we can expand the scope

to incorporate multiple data sources. These include mobile sensors enabled by connected

and automated vehicles (CAV), image and video data collected by roadside units or mobile

camera, and human behavior information on travel demand.

Representation learning and data fusion tools could help reveal the underlying structure

of the data based on heterogeneous media observation for the same object. These approaches

allow us to effectively extract and leverage meaningful information from a rich array of data

sources, providing a more robust and complete representation of the observed phenomena.

Nonetheless, several challenges and uncertainties require more careful considerations:

• Data Quality and Confidence Levels: When multiple data sources are integrated, the
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quality and confidence level of the information can vary significantly from one source

to another. The question then arises: how do we determine the reliability of each

data source and decide which to trust most? Addressing this issue requires developing

sophisticated methods for assessing and comparing data quality across diverse sources.

• Spatial and Temporal Discrepancies: There might be discrepancies in the spatial or

temporal information obtained from different sources. For example, congestion ob-

served on the road segment ei at the time t could be caused by an incident captured

elsewhere on the segment ej or a surge in demand that occurred much earlier than t, or

both effect combined. Understanding and accounting for these discrepancies is crucial

in order to ensure accurate interpretation and meaningful utilization of the data.

2. Information Acquisition, Partial Observations, and Semi-supervised Learning

The second future direction is on partial observations. This happens everywhere in

transportation systems. For example, the loop sensors and cameras are only installed on

selected locations in the network. Demand survey can only cover limited population or

market segmentation. Certain locations in the region have been neglected for many planning

and operation decision makings due to lack of data, outdated physical infrastructure, or

limited software support and usage, especially for underserved or disadvantaged communities.

Opportunities exist in the estimation of unobserved information through inference on

passively collected data or through active information acquisition. For example, CTMC

filtering we developed can be extended to semi-supervised learning setting if we incorporate

harmonic functions on the graph that measures the information propagation in the networks.

Also, one can actively route CAVs on the road to collect critical information in under-

observed areas. This strategy could potentially alleviate issues arising from low spatial-

temporal sampling rates by enhancing the richness and diversity of the data collected.

Therefore, several questions are worth considering:

• Critical Information: What constitutes critical information that could significantly
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enhance our understanding of the current state or anticipated state of the system?

• Information Acquisition: What is the most effective and cost-effective way to acquire

this critical information? How can we optimally balance the trade-off between the cost

of information acquisition and the potential value of the data collected? How can we

prioritize the collection of this information to maximize its utility in decision-making

processes?

3. Applications to Operation, Sustainability, and Equity

While this dissertation primarily focuses on the methodology aspects, the developed

frameworks also open the door to several practical applications, including

• Operation: These techniques allow for the creation of more robust and efficient trans-

portation systems. For instance, OD estimation can be used to better understand the

travel patterns within a transportation network, which in turn can inform the efficient

allocation of resources and optimization of route planning. Furthermore, representa-

tion learning can reveal patterns and relationships in the data that were previously

unrecognizable, thus improving the performance of predictive models used for opera-

tion management and control. Similarly, CTMC filtering can assist in real-time traffic

prediction and monitoring, facilitating the quick detection of congestion, incidents, and

service disruptions, and enabling rapid, effective responses.

• Sustainability: By understanding and predicting travel patterns and network dynam-

ics, these methods can inform strategies to reduce traffic congestion, thereby lowering

vehicle emissions and contributing to environmental sustainability. Furthermore, the

insights gained from these techniques can guide the planning and development of more

sustainable transportation options, such as public transit systems or cycling infrastruc-

ture.
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• Equity: These techniques can also play a significant role in promoting equity in trans-

portation systems. OD demand estimation, for instance, can reveal discrepancies in

the use of transit services across different communities, highlighting areas where service

improvements are mostly needed. Similarly, representation learning can identify pat-

terns of inequality in transportation systems, such as the disproportionate impacts of

traffic congestion or poor public transit services on disadvantaged communities. This

can inform the development of policies aimed at improving transportation equity.
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Ruszczyński, A. (1997). Decomposition methods in stochastic programming. Mathematical

programming, 79(1):333–353.

Ruszczyński, A. and Shapiro, A. (2003). Stochastic programming models. Handbooks in

operations research and management science, 10:1–64.

109



Saad, Y. (1981). Krylov subspace methods for solving large unsymmetric linear systems.

Mathematics of computation, 37(155):105–126.

Saad, Y. (1992). Analysis of some krylov subspace approximations to the matrix exponential

operator. SIAM Journal on Numerical Analysis, 29(1):209–228.

Saffari, E., Yildirimoglu, M., and Hickman, M. (2020). A methodology for identifying critical

links and estimating macroscopic fundamental diagram in large-scale urban networks.

Transportation Research Part C: Emerging Technologies, 119:102743.

Saito, N. and Shao, Y. (2022). eghwt: The extended generalized haar–walsh transform.

Journal of Mathematical Imaging and Vision, 64(3):261–283.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic program-

ming approach for supply chain network design under uncertainty. European Journal of

Operational Research, 167(1):96–115.

Sardellitti, S., Barbarossa, S., and Di Lorenzo, P. (2017). On the graph fourier transform

for directed graphs. IEEE Journal of Selected Topics in Signal Processing, 11(6):796–811.

Schultz, R. and Tiedemann, S. (2006). Conditional value-at-risk in stochastic programs with

mixed-integer recourse. Mathematical programming, 105(2):365–386.

Sevi, H., Rilling, G., and Borgnat, P. (2018). Harmonic analysis on directed graphs and

applications: from fourier analysis to wavelets. arXiv preprint arXiv:1811.11636.

Sha, F. and Saul, L. K. (2005). Analysis and extension of spectral methods for nonlinear

dimensionality reduction. In Proceedings of the 22nd international conference on Machine

learning, pages 784–791.

Shafipour, R., Khodabakhsh, A., Mateos, G., and Nikolova, E. (2018). Digraph fourier

transform via spectral dispersion minimization. In 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6284–6288. IEEE.

110



Shalev-Shwartz, S. et al. (2012). Online learning and online convex optimization. Foundations

and Trends® in Machine Learning, 4(2):107–194.

Shamsolmoali, P., Zareapoor, M., and Yang, J. (2019). Convolutional neural network in

network (cnnin): hyperspectral image classification and dimensionality reduction. IET

Image Processing, 13(2):246–253.

Shao, H., Lam, W. H., Sumalee, A., and Hazelton, M. L. (2015). Estimation of mean and co-

variance of stochastic multi-class od demands from classified traffic counts. Transportation

Research Part C: Emerging Technologies, 59:92–110.

Shao, H., Lam, W. H., and Tam, M. L. (2006). A reliability-based stochastic traffic assign-

ment model for network with multiple user classes under uncertainty in demand. Networks

and Spatial Economics, 6:173–204.

Shapiro, A. (1989). Asymptotic properties of statistical estimators in stochastic program-

ming. The Annals of Statistics, 17(2):841–858.

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2021). Lectures on stochastic programming:

modeling and theory. SIAM.

Sharpnack, J., Singh, A., and Krishnamurthy, A. (2013). Detecting activations over graphs

using spanning tree wavelet bases. In Artificial intelligence and statistics, pages 536–544.

PMLR.

Sheffi, Y. (1985). Urban transportation networks, volume 6. Prentice-Hall, Englewood Cliffs,

NJ.

Sherali, H. D., Sivanandan, R., and Hobeika, A. G. (1994). A linear programming approach

for synthesizing origin-destination trip tables from link traffic volumes. Transportation

Research Part B: Methodological, 28(3):213–233.

111



Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2013). The

emerging field of signal processing on graphs: Extending high-dimensional data analysis

to networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98.

Singh, R., Chakraborty, A., and Manoj, B. (2016). Graph fourier transform based on directed

laplacian. In 2016 International Conference on Signal Processing and Communications

(SPCOM), pages 1–5. IEEE.

Smola, A. J. and Kondor, R. (2003). Kernels and regularization on graphs. In Learning

Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel

Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings,

pages 144–158. Springer.

Subbian, K. and Banerjee, A. (2013). Climate multi-model regression using spatial smooth-

ing. In Proceedings of the 2013 SIAM International Conference on Data Mining, pages

324–332. SIAM.

Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., and Gunopulos, D.

(2006). Online outlier detection in sensor data using non-parametric models. In Pro-

ceedings of the 32nd international conference on Very large data bases, pages 187–198.

Sun, L. and Axhausen, K. W. (2016). Understanding urban mobility patterns with a prob-

abilistic tensor factorization framework. Transportation Research Part B: Methodological,

91:511–524.

Suwansirikul, C., Friesz, T. L., and Tobin, R. L. (1987). Equilibrium decomposed optimiza-

tion: a heuristic for the continuous equilibrium network design problem. Transportation

science, 21(4):254–263.

Tan, H., Feng, G., Feng, J., Wang, W., Zhang, Y.-J., and Li, F. (2013). A tensor-based

method for missing traffic data completion. Transportation Research Part C: Emerging

Technologies, 28:15–27.

112



Tan, H., Wu, Y., Shen, B., Jin, P. J., and Ran, B. (2016). Short-term traffic prediction based

on dynamic tensor completion. IEEE Transactions on Intelligent Transportation Systems,

17(8):2123–2133.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework

for nonlinear dimensionality reduction. science, 290(5500):2319–2323.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

Transportation Networks for Research Core Team (2021). Transportation networks for

research. Transportation Network Test Problems. Available online: https://github.

com/bstabler/TransportationNetworks (accessed on 10 September 2021).

Unser, M., Aldroubi, A., and Eden, M. (1993). B-spline signal processing. i. theory. IEEE

transactions on signal processing, 41(2):821–833.

Vardi, Y. (1996). Network tomography: Estimating source-destination traffic intensities from

link data. Journal of the American statistical association, 91(433):365–377.

Vlahogianni, E. I. (2015). Computational intelligence and optimization for transportation

big data: challenges and opportunities. In Engineering and Applied Sciences Optimization,

pages 107–128. Springer.

Wang, D. Z., Liu, H., Szeto, W., and Chow, A. H. (2016a). Identification of critical com-

bination of vulnerable links in transportation networks–a global optimisation approach.

Transportmetrica A Transport Science, 12(4):346–365.

Wang, Y., Ma, X., Liu, Y., Gong, K., Henricakson, K. C., Xu, M., and Wang, Y. (2016b).

A two-stage algorithm for origin-destination matrices estimation considering dynamic dis-

persion parameter for route choice. PloS one, 11(1):e0146850.

113



Wang, Y., Zhang, Y., Wang, L., Hu, Y., and Yin, B. (2021). Urban traffic pattern anal-

ysis and applications based on spatio-temporal non-negative matrix factorization. IEEE

Transactions on Intelligent Transportation Systems, 23(8):12752–12765.

Wang, Y.-X., Sharpnack, J., Smola, A., and Tibshirani, R. (2015). Trend filtering on graphs.

In Artificial Intelligence and Statistics, pages 1042–1050. PMLR.

Wasserman, L. and Lafferty, J. (2007). Statistical analysis of semi-supervised regression.

Advances in Neural Information Processing Systems, 20.

Watkins, D. S. (2007). The matrix eigenvalue problem: GR and Krylov subspace methods.

SIAM.

Watson, J.-P., Wets, R. J., and Woodruff, D. L. (2010). Scalable heuristics for a class of

chance-constrained stochastic programs. INFORMS Journal on Computing, 22(4):543–

554.

Wen, C.-H. and Koppelman, F. S. (2001). The generalized nested logit model. Transportation

Research Part B: Methodological, 35(7):627–641.

Wen, Z. and Yin, W. (2013). A feasible method for optimization with orthogonality con-

straints. Mathematical Programming, 142(1):397–434.

Wiesemann, W., Kuhn, D., and Sim, M. (2014). Distributionally robust convex optimization.

Operations Research, 62(6):1358–1376.

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemometrics

and intelligent laboratory systems, 2(1-3):37–52.

Wong, K., Wong, S. C., Tong, C., Lam, W., Lo, H. K., Yang, H., and Lo, H. (2005).

Estimation of origin-destination matrices for a multimodal public transit network. Journal

of advanced transportation, 39(2):139–168.

114



Wong, S. and Tong, C. (1998). Estimation of time-dependent origin–destination matrices

for transit networks. Transportation Research Part B: Methodological, 32(1):35–48.

Xu, H. (2010). Uniform exponential convergence of sample average random functions under

general sampling with applications in stochastic programming. Journal of Mathematical

Analysis and Applications, 368(2):692–710.

Yang, C., Yan, F., and Xu, X. (2017). Daily metro origin-destination pattern recognition

using dimensionality reduction and clustering methods. In 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), pages 548–553. IEEE.

Yang, Y., Fan, Y., and Royset, J. O. (2019). Estimating probability distributions of travel

demand on a congested network. Transportation Research Part B: Methodological, 122:265–

286.

Yang, Y., Fan, Y., and Wets, R. J. (2018). Stochastic travel demand estimation: Improving

network identifiability using multi-day observation sets. Transportation Research Part B:

Methodological, 107:192–211.

Zehtabian, S. and Bastin, F. (2016). Penalty parameter update strategies in progressive

hedging algorithm. Cirrelt Montreal, QC, Canada.

Zhang, Y., Duchi, J., and Wainwright, M. (2013). Divide and conquer kernel ridge regression.

In Conference on learning theory, pages 592–617. PMLR.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable outlier

detection. Journal of Machine Learning Research, 20(96):1–7.

Zheng, Z., Ahn, S., Chen, D., and Laval, J. (2011). Applications of wavelet transform for

analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations. Trans-

portation Research Part B: Methodological, 45(2):372–384.

115



Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. (2020).

Graph neural networks: A review of methods and applications. AI open, 1:57–81.

Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d

object detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4490–4499.

116


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Research Objectives and Significance
	Dissertation Organization
	Summary of Contribution

	Stochastic OD Demand Estimation Using Stochastic Programming
	Introduction
	A Stochastic Programming based OD Demand Estimation Framework
	A Decomposition Method Using Progressive Hedging
	Numerical Case Studies
	Conclusions and Discussions

	Application-Driven Representation Learning for Feature Extraction and Anomaly Detection on Networked Flows
	Introduction
	An Application-Driven Representation Learning Approach
	Feature Extraction
	ADRL based Anomaly Detection
	Discussion

	Continuous-time Markov Chain based Filtering on Directed Graphs
	Introduction
	CTMC Filtering on Directed Graphs
	Properties and Extensions
	Case Studies in Networked Data
	Conclusion and Discussion

	Conclusions
	Future Research Opportunities
	Bibliography



