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ABSTRACT OF THE DISSERTATION

Healthcare Decision Making and Stochastic Model Predictive Control:
Output-Feedback, Optimality, and Duality

by

Martin Arno Sehr

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Robert Bitmead, Chair

Model Predictive Control has become a prevailing technique in practice by virtue

of its natural inclusion of constraint enforcement in sub-optimal feedback design through

repeated solution of finite-horizon, open-loop control problems. However, many ap-

proaches are lacking in proper accommodation of output feedback using imperfect mea-

surements, as is normally required in practice. The conventional workaround for this

disconnect between control theory and practice is the use of certainty equivalent control

laws, which subsume best available state estimates in place of the system state in order

xvi



to salvage methods available for state-feedback Model Predictive Control.

This dissertation explores Stochastic Model Predictive Control in the general,

nonlinear output-feedback setting. Starting the receding horizon development from

Stochastic Optimal Control, we attain inherent accommodation of imperfect measure-

ment data through propagation of the conditional state density, the information state.

This setup further results in the control signals being of dual, probing nature: the control

balances the typically antagonistic requirements of regulation and exploration. How-

ever, these conflicting tasks inherent to Stochastic Optimal Control also embody the as-

sociated computational intractability. While properties such as optimal probing and nu-

merical performance bounds on the infinite time-horizon require solution of Stochastic

Optimal Control problems, obtaining these solutions is typically not possible in practice

due to the exorbitant computational demands.

We suggest two methods for tractable Stochastic Model Predictive Control. Firstly,

we propose approximation of the information state update by a Particle Filter, which

may be merged naturally with scenario optimization to generate control laws. While

computationally tractable, this method does not maintain duality without additional

measures. Alternatively, the nonlinear output-feedback problem can be approximated

– or even cast – as a Partially Observable Markov Decision Process, a special class of

systems for which Stochastic Optimal Control is numerically tractable for reasonable

problem size, enabling dual optimal control with provable infinite-horizon properties.

Throughout this dissertation, we examine two classes of examples from health-

care: individualized appointment scheduling, a problem not requiring duality; medical

xvii



treatment decision making, where dual control decisions are often required to balance

optimally when to order diagnostic tests and when to apply medical intervention.

xviii



Introduction

Background and Motivation

Model Predictive Control (MPC) is well applied and popular partially because

of its capacity to handle constraints and its simple formulation as an open-loop, finite-

horizon optimization problem evaluated on the receding horizon [1, 2]. There are a few

areas in which MPC is wanting for more complete results, notably in the area of output

feedback control and the associated requirement to manage the duality of the control

signal in stochastic MPC (SMPC) problems.

While MPC, in its original formulation, is a full-state feedback law [3], there has

been a number of approaches to output-feedback MPC. Most approaches hinge on re-

placement of the measured true state by a state estimate, which is computed via Kalman

filtering (e.g. [4]), moving-horizon estimator (e.g. [5, 6]), tube-based minimax estima-

tors (e.g. [7]), etc. These designs, often for linear systems, often separate the estimator

design from the control design. The control problem may be altered to accommodate

state estimation errors by methods such as: constraint tightening as in [4], chance/prob-

1
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abilistic constraints as in [8, 9], and so forth. Likewise, for nonlinear problems, where

the state estimation behavior is affected by control signal properties, the control may be

modified to enhance the excitation properties of the estimator, as suggested in [10, 11].

Each of these aspects of accommodation is made in an isolation.

When output-feedback SMPC is developed as a logical extension of finite-horizon

Stochastic Optimal Control, which demands computation of closed-loop policies, it

inherits the computational intractability of this latter subject via the inclusion of the

Bayesian filter, required to propagate the conditional state densities, and the stochas-

tic dynamic programming equation. In the general nonlinear setting, Stochastic Opti-

mal Control involves the propagation of the conditional probability density of the state

given the input signal and output measurements. This density is known as the informa-

tion state in controls and as the belief state in artificial intelligence and robotics. The

choice of control signal affects the information state so that state observability becomes

control-dependent. Thus, the feedback control law needs to include aspects of probing

in addition to, or more accurately in competition with, its function in regulation. This is

called duality of the control. In the linear case, this connection is not problematic since

the control signal simply translates or recenters the conditional density without other

effects. But for nonlinear systems, this complication renders all but the simplest optimal

control problems computationally intractable. The usual recourse is to drop optimal-

ity and to use a more simply computed or approximated statistic from the conditional

density, such as the conditional mean, and to move on from there.

This dissertation explores the origin and accommodations of duality in Stochas-
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tic Optimal Control and, by implication, in SMPC. The development is guided by a

number of practical examples in healthcare, which can be classified into two categories:

problems not demanding duality in the control solution, and those that inherently require

dual control laws. We start our discussion by exploring the particular issue of appoint-

ment scheduling in individualized healthcare, which constitutes Part I of this disserta-

tion. Appointment scheduling requires solution of challenging optimization problems

which do not lead to duality in the resulting open-loop decisions, the origin of which

property we elucidate.

In contrast, Part II of the dissertation discusses problems involving duality ex-

plicitly and develops a set of theoretical results and practical algorithms. The second

part of the dissertation starts with motivation for the development of SMPC through

Stochastic Optimal Control in Chapter 3 and proofs of a number of key results for dual

optimal SMPC laws in Chapter 4. Unfortunately, this variant of SMPC is computation-

ally intractable, requiring further measures for practical implementation. To this end, we

motivate two approaches. Firstly, we suggest a particle-based scenario approximation

with loss of duality in Chapter 5. Secondly, we specifically discuss Partially Observable

Markov Decision Processes (POMDPs) in Chapter 6. This class of systems makes up

one of the few special cases in which Stochastic Optimal Control may be computation-

ally tractable. Chapter 6 further explores a numerical example in medical treatment of

a patient treated for a hypothetical disease, requiring the health professional to trade off

diagnostics and medical intervention, an inherently dual decision problem. We next give

a more detailled preview of the chapters making up this dissertation.
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Chapter Contents and Contributions

In Chapter 1, we consider the problem of scheduling patients for visits at a can-

cer infusion room throughout a regular day. We suggest the use of high and low patient

acuity indicators to account for punctuality and service uncertainties in the scheduling

process. These supportive classifications can be used easily by schedulers to allow more

efficient, individualized service. Based on patient acuity data and clinical observations,

we propose two intuitive though somewhat conflicting scheduling guidelines on a qual-

itative basis and argue their benefits. We make use of analogies with standard queueing

theory and strings of interconnected dynamic systems to introduce two separate surro-

gate problems allowing analysis of the effects resulting from our scheduling rules on the

operation of the infusion room. As part of the theme of this thesis, acuity information is

state information whose application leads to improved performance results.

In Chapter 2, we consider scheduling finite numbers of patients for visits to a

medical clinic throughout a workday. Use of individual patient acuity level indicators in

the scheduling process is explored to accomodate fluctuations in service requirements.

These acuity classifications can be used by schedulers to enable more efficient, indi-

vidualized service. After analyzing sojourn time behavior for patient populations with

arbitrary deterministic arrivals and Erlang service time distributions in a queueing setup,

we motivate and develop a Markov model suitable to account for general time-varying

service time distributions in the scheduling process. The significance of this work is

that it provides a mathematical basis for the analysis of acuity-based scheduling rules
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currently applied and proven effective in healthcare. This provides a foundation from

which to develop and validate new scheduling rules in individualized medicine. The

linkage to the proposed Markov model permits the conversion of particular scheduling

questions into Markov Decision Problems.

There are several aspects of Model Predictive Control (MPC) which are often

ignored: use of state estimates, stochastic disturbances, robustness outside of full state

availability. In Chapter 3, we raise awareness of one of these issues. The appeal of MPC

in applications rests primarily with its capacity to accommodate constraints, which in

turn equips the designer with both an objective function and a higher-priority set of

constraints, which meshes well with the engineering control formulation. Yet, MPC

in industrial applications is principally a disturbance rejection controller targeted at the

regulation of plant set points in the face of stochastic environmental disturbances. Per-

versely for such an implementation, MPC is also posed as a full-state feedback problem,

where this state should include the disturbance process state, necessitating the use of

approximate state estimates. The chapter considers the interplay between state estima-

tion errors and constraints in MPC and exposes the feedthrough of these errors to the

MPC input signals resulting from the solution of finite-horizon constrained optimization

problems. We show how the MPC solution injects measurement noise directly into the

control signal entering the plant and demonstrate the increased sensitivity to this noise

when the plant is operating on active constraints. This reveals a downside of the use of

constrained control with state estimation that is generally flouted in MPC.

In Chapter 4, a new formulation of Stochastic Model Predictive Output Feed-
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back Control is presented and analyzed as a translation of Stochastic Optimal Output

Feedback Control into a receding horizon setting. This requires lifting the design into a

framework involving propagation of the conditional state density, the information state,

via the Bayesian Filter and solution of the Stochastic Dynamic Programming Equation

for an optimal feedback policy, both stages of which are computationally challenging in

the general, nonlinear setup. The upside is that the clearance of three bottleneck aspects

of Model Predictive Control is connate to the optimality: output feedback is incorpo-

rated naturally; dual regulation and probing of the control signal is inherent; closed-loop

performance relative to infinite-horizon optimal control is guaranteed. While the meth-

ods are numerically formidable, our aim is to develop an approach to Stochastic Model

Predictive Control with guarantees and, from there, to seek a less onerous approxima-

tion.

In Chapter 5, we combine conditional state density construction with an exten-

sion of the Scenario Approach for stochastic Model Predictive Control to nonlinear sys-

tems to yield a novel particle-based formulation of stochastic nonlinear output-feedback

Model Predictive Control. Conditional densities given noisy measurement data are prop-

agated via the Particle Filter as an approximate implementation of the Bayesian Filter.

This enables a particle-based representation of the conditional state density, or infor-

mation state, which naturally merges with scenario generation from the current system

state. This approach attempts to address the computational tractability questions of gen-

eral nonlinear stochastic optimal control. The Particle Filter and the Scenario Approach

are shown to be fully compatible and – based on the time- and measurement-update
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stages of the Particle Filter – incorporated into the optimization over future control se-

quences. A numerical example is presented and examined for the dependence of solu-

tion and computational burden on the sampling configurations of the densities, scenario

generation and the optimization horizon.

In Chapter 6, we revisit closed-loop performance guarantees for Model Predic-

tive Control in the deterministic and stochastic cases, which extend to novel perfor-

mance results applicable to receding horizon control of Partially Observable Markov

Decision Processes. While performance guarantees similar to those achievable in de-

terministic Model Predictive Control can be obtained even in the stochastic case, the

presumed stochastic optimal control law is intractable to obtain in practice. However,

this intractability relaxes for a particular instance of stochastic systems, namely Par-

tially Observable Markov Decision Processes, provided reasonable problem dimensions

are taken. This motivates extending available performance guarantees to this particular

class of systems, which may also be used to approximate general nonlinear dynamics

via gridding of state, observation, and control spaces. We demonstrate applicability of

the novel closed-loop performance results on a particular example in healthcare deci-

sion making, which relies explicitly on the duality of the control decisions associated

with Stochastic Optimal Control in weighing appropriate appointment times, diagnostic

tests, and medical intervention for treatment of a disease modeled by a Markov Chain.

In summary, the contributions of this thesis are twofold: we first discuss open-

loop decision problems in healthcare and then transition to closed-loop stochastic output-

feedback problems, which provide motivation for the novel work on Stochastic Model
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Predictive Control. The appointment scheduling problems discussed in Part I of the the-

sis do not require dual solutions and probing because the full state is accessible whenever

decisions have to be made. This property is in contrast with the examples discussed in

Part II of the thesis and in particular Chapter 6, where instantaneous medical treatment

decisions have to be made, requiring careful balancing of diagnostic tests and medical

intervention, an inherently dual problem. Open-loop solutions such as those observed in

appointment scheduling do not enable the necessary use of diagnostic tests, which serve

to enhance our state knowledge at a given cost without altering the patient state. We

use these dual decision problems as motivation for developing the theoretical results in

Chapters 4 and 6 as well as the practical algorithm presented in Chapter 5.



Part I

Modeling for Analysis in Healthcare

9



Chapter 1

Multi-class Appointments in

Individualized Healthcare: Analysis for

Scheduling Rules

1.1 Introduction

We consider the problem of scheduling a certain number of patients for visits to

a cancer infusion room throughout a usual business day. The infusion room has lim-

ited numbers of chairs and nurses to service patients and every patient has to receive an

individual, prescribed number of infusion bags, all of which require the same amount

of time. Some patients have to go through phlebotomy and additional health checks to

ensure their medical condition permits the infusion procedure. Currently, patients are

scheduled for infusion room visits on a first-come, first-served basis for a time deter-

10
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mined by their prescription. Individual patient characteristics apart from the number of

prescribed infusion bags are not taken into account by the scheduler when organizing the

workload throughout the day. This scheduling policy results in significant fluctuations

when comparing waiting times, patient throughput or satisfaction and other performance

measures over the course of multiple days. On some days, all chairs are occupied for

most of the time and the nurses spend little to no time idle. However, on other days,

approximately one third of the chairs are unoccupied while all nurses are at their con-

strained maximal workload and the waiting room is overflowing.

A cause for these discrepancies may be the unavailability of individual patient

acuity information in the scheduling procedure and the unawareness of the appropriate

scheduling action were it to be available. While most physicians have a good idea of

which of their patients may present a higher uncertainty in the sense of fluctuations

in punctuality and unexpected service requirements, the scheduler does not currently

have access to this information. We suggest the classification of the patient population

into acuity classes, which can be performed reliably by the corresponding doctor. High

acuity in the infusion room setup refers to high severity of the prescribed medication

and usually equates with advanced stages of disease. High-acuity patients frequently

have; a level of frailty and impairment which causes them to fail pre-infusion lab tests,

which themselves introduce an uncontrolled delay; and, a propensity to require nurse

intervention during the infusion. Individual patient acuity is a professional assessment

which is instinctive for treating physicians but largely undocumented for the schedulers.

From the perspective of the analysis in this chapter, high acuity is equated with high
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variability and vice versa. Successful strategies for the inclusion of individual patient

acuity into scheduling are proposed and studied, while the prime focus is on unearthing

the appropriate mathematical tools capable of yielding these strategies.

Using patient acuity information in the scheduling process allows the scheduler

to ensure a steadier operation of the infusion room. In the following, we consider the

special case of two distinct acuity classes, namely high- and low-acuity. The difference

between these two classes is that high-acuity patients are less likely to be on time and

have less predictable service requirements than low-acuity patients. That is, both service

and arrival variances are higher for high-acuity patients. To use patient acuity data, we

propose the following qualitative scheduling rules:

Rule 1: Avoid scheduling many high-acuity patients at once.

Rule 2: Schedule high-acuity patients later in the day.

Rule 1 aims to avoid periods of large accumulated uncertainty, while Rule 2 avoids dis-

turbances from being propagated through the workday1. Issues closely related to Rule 2

are also discussed in the literature concerning surgical procedure scheduling, where it

was observed that performing high-variance procedures after their low-variance coun-

terparts yields better operating room performance (e.g., [12, 13]). As we are going to

illustrate in this chapter, Rules 1 and 2 for appointment scheduling permit more efficient

service, directly leading to reduced and more predictable waiting times. In combination
1Interestingly, physicians often prefer having their harder cases scheduled early in the day, contrary

to the observation that their performance tends to be better at later times. The preference for treating
harder cases early in the day comes from the impression of being more alert at that time. Given that the
operation of the infusion room does not actively involve the treating doctors, we do not discuss this issue
any further.
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with improved exchange of patient data, the two rules were implemented temporarily

at UCSD Moores Cancer Center, leading to improvements of approximately 26% in the

total number of patient visits per day, while the number of no-shows decreased from

approximately 13% to below 1% and the number of late arrivals (15 minutes or more)

dropped from 12% to less than 1%. While improvements in late arrivals and no-shows

were attributed mainly to an increased exchange of information regarding other, poten-

tially conflicting, appointments patients had on the same day, the increased numbers of

patients seen per day were ascribed to the two scheduling rules above. After resuming

with the conventional scheduling procedure (i.e., first-come, first-served appointments),

the numbers of patients seen per day returned to the previous levels.

Perhaps surprisingly, mathematical analysis suggesting Rules 1 and 2 for ap-

pointment scheduling is not straightforward and even though the setup appears to be

similar to standard queueing problems, there are some key differences requiring a dif-

ferent type of analysis, which is the aim of this chapter. Core reasons why the scheduling

problems discussed here are different from standard queueing problems are the explicit

finite-horizon and transient characteristics of the problem, while queueing theory deals

primarily with infinite-horizon, steady-state results (e.g., [14, 15]). For instance, Rule 2

relies explicitly on an analysis capturing transition from busy operation of the infusion

room to the end of the workday, which cannot be captured using an infinite-horizon sta-

tionary analysis. However, we can use an analysis strongly related to queueing problems

but allowing for non-stationary behavior to estimate the effects of Rule 1 on the schedul-

ing process, which is discussed in Section 1.2. Another body of analysis displaying par-



14

allels to the problem at hand is the study of interconnected dynamic systems (e.g., [16]),

where disturbances are propagated through leader-follower strings of coupled dynamic

systems. Although these problems may appear farther from the multi-class appointment

scheduling problem discussed here, they show some useful similarities with respect to

finite-horizon patient ordering as required to synthesize Rule 2, which will be examined

in Section 1.3. For practical implementation, the scheduling rules introduced here are

conflicting to some degree, requiring the scheduler to perform a tradeoff decision when

adding appointments to a given day. Such implementation issues will be the focus of

future studies and only hinted at in this chapter.

1.2 Rule 1: Balancing Workload

The aim of this section is the synthesis of Rule 1 using ideas from calculus

of variations, stochastic differential equations and queueing theory. To approach this

goal, we consider the surrogate problem displayed in Figure 1.1, where two streams of

customers arrive continuously at a single deterministic server with incremental service

rate

S = m + ε

for some number ε > 0 and ε � m. The two streams of customers are mixed and arrive

with random incremental amounts of workload to be serviced in the same buffer, which

operates on a first-come first-served basis. The customer streams are distinguished by

having the same mean incremental workload but differing variances; the aim is to model
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scheduling of patients with high and low acuity levels. The low-variance stream of

customers has a workload generation rate of Xt for t ≥ 0, where (Xt)t≥0 is a stationary

nonnegative left-continuous stochastic process with mean value E[Xt] = m and variance

Var(Xt) = σ2
l for all t ≥ 0. Analogously, customers from the high-variance stream

have workload generation rate Yt, where (Yt)t≥0 is another stationary nonnegative left-

continuous stochastic process, independent from (Xt)t≥0, with mean value E[Yt] = m

and variance Var(Yt) = σ2
h ≥ σ

2
l . The long-run average fraction of customers from the

highly variable stream is µ and that from the less variable stream is 1 − µ, respectively.

Workload and arrival processes for this setup are described by the stochastic differential

equation

dWt

dt
= max{At − S ,−Wt}, (1.1)

At = (1 − ft)Xt + ftYt, (1.2)

for some W0 ≥ 0 and a deterministic mixture process ft with t ∈ [0,T ] satisfying

ft ∈ [0, 1] ∀t ∈ [0,T ],
1
T

∫ T

0
ft dt = µ. (1.3)

(1 − ft) Xt

ftYt

At

Wt

S

Figure 1.1: Workload process with mixed arrival streams.
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Interpretation of this workload process with mixed arrivals is the potentially non-

stationary scheduling of high- and low-acuity patients in the operation of the infusion

room via ft, where the highly variable stream Yt with mean value m and variance σ2
h

models high-acuity and the less variable stream Xt with mean value m and variance σ2
l

models low-acuity patients, respectively. In particular, this auxiliary model allows us

to synthesize the stationary Rule 1. Keeping the problem of unsteady operation of the

infusion room in mind, we are interested in finding a mixture function ft that minimizes

the variance of the workload buffer length (i.e., total amount of workload in the system)

over the time interval t ∈ [0,T ]. As is the case in standard queueing theory,

E[S − At] = ε > 0

for all t ≥ 0 implies that the workload process is stable over time for any mixing process

ft satisfying the constraints (1.3) for t ∈ [0,T ]. However, since ε � m, the server is busy

most of the time, which is the case when operating the infusion room near its maximum

capacity and suggests that the variance of dWt/dt and thus that of Wt is dominated by

the variance of the arrival process At. From (1.2), we have

Var(At) = E
[
((1 − ft)Xt + ftYt − m)2

]
= E
[
((1 − ft)Xt + ftYt)2

]
− m2

= (1 − ft)2
(
σ2

l + m2
)
+ f 2

t

(
σ2

h + m2
)

+ 2 ft (1 − ft) m2 − m2

=
(
σ2

l + σ
2
h

)
f 2
t − 2 ftσ

2
l + σ

2
l
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for all t ≥ 0. Having deterministic service at the buffer, we can indirectly minimize

the overall workload variance by choosing a mixture process ( ft)t≥0 satisfying (1.3) and

minimizing the average variance of the arrival process over time. On the fixed time

horizon t ∈ [0,T ], this yields the finite-horizon functional optimization problem

min
( ft)T

t=0

∫ T

0

((
σ2

l + σ
2
h

)
f 2
t − 2σ2

l ft + σ
2
l

)
dt

s.t. 0 ≤ ft ≤ 1 ∀t ∈ [0,T ],

1
T

∫ T

0
ft dt = µ.

(1.4)

The global solution f ∗t of this functional optimization problem minimizes the cumulative

and thus average arrival variance over the time interval t ∈ [0,T ]. The solution to this

problem is summarized by the following result.

Theorem 1.1. Given µ ∈ [0, 1], the unique global minimizer of problem (1.4) for all

parameters σ2
h ≥ σ

2
l ≥ 0 and T ≥ 0 is f ∗t = µ for all t ∈ [0,T ]. The resulting average

variance of the arrival process At over the interval t ∈ [0,T ] is then given by

1
T

∫ T

0
Var(At) dt = (µ − 1)2 σ2

l + µ
2σ2

h.

Proof. Define

J( ft) :=
1
T

∫ T

0
Var(At) dt

for all mixing processes ft satisfying the constraints (1.3) on the interval t ∈ [0,T ].

Moreover, write

ft := µ + ηt = f ∗t + ηt (1.5)
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for some function ηt and t ∈ [0,T ]. Notice that the construction (1.5) encompasses all

mixing processes satisfying the constraints (1.3) on the compact set 0 ≤ t ≤ T if and

only if the function ηt is confined to

ηt ∈ [−µ, 1 − µ] ∀t ∈ [0,T ],
∫ T

0
ηt dt = 0.

Evaluating J( ft) for any feasible function ηt, we then have

J( ft) =
(
(µ − 1)2 σ2

l + µ
2σ2

h

)
T + 2

(
(µ − 1)σ2

l + µσ
2
h

) ∫ T

0
ηt dt +

(
σ2

l + σ
2
h

) ∫ T

0
η2

t dt

=
(
(µ − 1)2 σ2

l + µ
2σ2

h

)
T +
(
σ2

l + σ
2
h

) ∫ T

0
η2

t dt.

Clearly, η2
t ≥ 0 for all t ≥ 0, implying that J( ft) has a global minimum

J( f ∗t = µ) =
(
(µ − 1)2 σ2

l + µ
2σ2

h

)
T

with ηt = 0 for all t ∈ [0,T ], which concludes the proof. �

As anticipated, the analysis of the surrogate problem introduced in this section

leads to Rule 1 for patient appointment scheduling in the infusion room setup, which

serves as the running example in this chapter. Given a large population with a certain

fraction of high-acuity patients who can be mixed in continuously, the optimal schedul-

ing strategy when concerned with average arrival variance is to distribute the high-acuity

patients evenly throughout the day. Rule 1 says there is no benefit in average arrival

variance to lumping together high-acuity patients in a non-stationary arrival scenario

with continuous mixing. The function ft is the open-loop control which admits the pos-

sibility, but not the optimality, of leaving the high-acuity patients unserved until late
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in the day. The formulation operates under a heavy-traffic assumption as common in

scheduling theory, so that the workload rarely returns to zero. This is consistent with

the efficient operation of the infusion room. Under stationary arrivals of high- and low-

acuity patients and continuous, potentially non-stationary mixing via ft, the resulting

optimal open-loop control with respect to average workload arrival variance is precisely

the stationary Rule 1.

While the analysis of the auxiliary problem introduced in this section justifies

Rule 1 for patient appointment scheduling, it does not serve as a tool to synthesize

Rule 2. The central reason for being unable to distinguish effects of Rule 2 using the

mixing process scenario is the limitation of the analysis to the workload arrival process

through our heavy-traffic assumption. This assumption is based on the service rate being

only slightly higher than the mean arrival rate, which is constant for any open-loop con-

trol ft. Using this assumption, we were able to conclude that the workload rarely returns

to zero, such that we diverted our analysis from the variance of the workload process

Wt to the variance of the arrival process At. While this indeed reasonable assumption

allows for simplified analysis of the problem, it blends out downstream-effects of large

accumulated workload early in the day on the total workload variance late in the day

through the system dynamics (1.1). Hence, a different type of modeling and analysis is

required in order to examine the effects of Rule 2, which is discussed in the following

section.

When concerned with scheduling small numbers of patients, further need for

a non-stationary scheduling guideline such as Rule 2 is related to implementation is-
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sues arising with respect to the range of the open-loop control ft in (1.4), allowing

for arbitrary fractions of low- and high-acuity patients to be scheduled at any point in

time. Contrary to the setup used in this section, implementing a scheduling rule requires

scheduling either a high- or a low-acuity patient for service with a single nurse at any

given time, not fractions of both. The assumption of scheduling fractions of patients

becomes more reasonable when the server in Figure 1.1 models nurses helping multiple

patients simultaneously. However, even in this case only a finite range for the func-

tion ft would be admissible for a given finite number of nurses. That is, the solution in

Theorem 1.1 may not produce a feasible scheduling policy for operation of the infusion

room, consequently requiring us to come up with an additional, non-stationary schedul-

ing guideline such as Rule 2. Finally, notice that the above mixing process scenario

extends easily to the case of discrete-time arrivals and mixing, provided the structural

properties of the problem do not change drastically (ie. stable process under heavy traf-

fic etc.). The resulting discrete-time version of Theorem 1.1 may be more intuitive in

relation to the queueing relationships of the examined patient scheduling problem. How-

ever, we chose to present the more general continuous-time result and leave the details

of this extension to the reader. Another aspect that should be kept in mind is that we

considered the continuous, cumulative arrival of workload at the server, while in reality

there may be a high number of patients associated with little cumulative workload and

vice versa, which becomes a factor when taking limited numbers of nurses and chairs in

waiting and infusion rooms into account. However, this issue is not thematized further

in this chapter.
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1.3 Rule 2: Disturbance Propagation

As we have seen in the previous section, we need to take the dynamics of our

workload buffer into account when attempting to analyze Rule 2 for patient scheduling

in the infusion room setup. In this section, we first show how to extend the mixing

process introduced above for a particular example. To solve for workload variances

at different time instances, we have to take the distributions of the two patient arrival

processes into account. To get a more general and easily applicable setup, we make use

of parallels with strings of vehicles with different dynamics in leader-follower formation.

This setup results in Rule 2 for individual patient appointment scheduling and gives rise

to approaches for combining the two scheduling rules.

1.3.1 Discrete-Time Mixing Process

Consider a particular instance of the discrete-time version of (1.4) with confined

range of fk corresponding to eight patients being scheduled for service by two nurses

sharing the workload buffer (see Figure 1.1) over four time instances. If one of the eight

patients has high acuity, we have µ = 1/8, leading to the discrete optimization problem

min
f1,..., f4

4∑
k=1

((
σ2

l + σ
2
h

)
f 2
k − 2σ2

l fk + σ
2
l

)
s.t. fk ∈ {0, 1/2, 1} k ∈ {1, . . . , 4},

4∑
k=1

fk = 1/2.

(1.6)

By the range constraints on fk, this problem does not admit the solution suggested by

Rule 1, requiring us instead to find a non-stationary policy fk, where k ∈ {1, . . . , 4}. In
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total, there exist four feasible, non-stationary policies for problem (1.6) with

f (1) = {1/2, 0, 0, 0}, f (2) = {0, 1/2, 0, 0},

f (3) = {0, 0, 1/2, 0}, f (4) = {0, 0, 0, 1/2}.

(1.7)

One can easily see that these four policies are permutations of each other and indistin-

guishable through the cost

J( f (i)
k ) =

4∑
k=1

((
σ2

l + σ
2
h

) (
f (i)
k

)2
− 2σ2

l f (i)
k + σ

2
l

)
. (1.8)

However, if we analyze the variance of the discrete-time workload process

Wk+1 = max{Wk + Ak+1 − S , 0} with W0 ≥ 0

instead of the variance of the discrete-time arrival process

Ak+1 =
(
1 − f (i)

k+1

)
Xk+1 + f (i)

k+1Yk+1

corresponding to (1.2), the policies f (i) are indeed distinguishable in that the variances

of initial arrivals have influence on the variances of the overall workload at later times.

However, solving for Var(Wk) requires knowledge of the distributions of the discrete-

time arrival processes Xk and Yk, not only their respective means and variances. Consider

for instance problem (1.6) with initial condition W0 = m/2 and the independent and

finitely distributed arrival processes

P(Xk = 0) = 1/8, P(Yk = 0) = 3/8,

P(Xk = m) = 3/4, P(Yk = m) = 1/4,

P(Xk = 2m) = 1/8, P(Yk = 2m) = 3/8,
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where k ∈ {0, 1, 2, 3}. For the four feasible scheduling policies (1.7), we can use ε � m

to obtain the approximate workload variances summarized in Table 1.1. These variances

indicate clearly how policy f (4) yields the lowest workload variance at any given time.

Hence, scheduling policy f (4) is the preferable strategy in this case, even though the four

policies are indistinguishable through the cost (1.8).

Table 1.1: Workload variances for policies (1.7) and W0 = m/2.

Schedule Var(W1) Var(W2) Var(W3) Var(W4)

{1/2, 0, 0, 0} 0.214 m2 0.341 m2 0.459 m2 0.570 m2

{0, 1/2, 0, 0} 0.152 m2 0.328 m2 0.450 m2 0.564 m2

{0, 0, 1/2, 0} 0.152 m2 0.289 m2 0.435 m2 0.553 m2

{0, 0, 0, 1/2} 0.152 m2 0.289 m2 0.415 m2 0.539 m2

The average variances

Var(W (i)) :=
1
4

4∑
k=1

Var(Wk( f (i)))

for the four scheduling policies are

Var(W (1)) ≈ 0.396 m2, Var(W (2)) ≈ 0.374 m2,

Var(W (3)) ≈ 0.357 m2, Var(W (4)) ≈ 0.349 m2.

Hence, we observe the trend that for the given setup, the average workload variance de-

creases as the single high-acuity patient is scheduled later in the day, which is precisely

the motivation of Rule 2 for patient appointment scheduling. However, to arrive at this

conclusion, we had to take the explicit workload arrival distributions corresponding to

the two patient classes into account. We seek to find a more general, qualitative answer
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to this issue that does not involve distributions of random processes that would have to

be estimated for practical implementation. Thus, we proceed by introducing a second

surrogate problem.

1.3.2 Vehicle Traffic

To examine how variances in the operation of the infusion room are propagated

downstream in time, we make use of parallels with interconnected dynamic systems

theory, which finds application in a number of problems including highway traffic [17],

which in turn has similar characteristics to the appointment scheduling issue. In the

appointment scheduling case, we try to find desirable time arrangements of different

patients each subject to individual disturbances and following one another, whereas in

the vehicle traffic case one may venture to find preferable relative orderings of individual

vehicles each subject to their own perturbations.

In the following, we attempt to extract Rule 2 from a highway traffic platooning

example, which is related to the example discussed in [17]. This problem serves as a

parallel replacement problem to analyze effects of having larger disturbances at the front

or end of a string of interconnected dynamic systems. However, we are interested in

leader-follower formations with different individual dynamics, whereas [17] examines

the case of formations with identical dynamics. Consider now a leader-follower platoon

of vehicles on a freeway modeled as

mi ẍi(t) = ui(t) + wi(t), i = 1, . . . ,N,
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where mi, xi(t), ui(t) and wi(t) are the ith vehicle’s mass, position, control input and per-

turbation, respectively. That is, the vehicle dynamics differ in their masses and thus

susceptibilities to the disturbances wi(t), where the lighter vehicle is more sensitive and

thus associated with higher state variance. We interpret these vehicles as more or less

variable patients scheduled for sequential service with a nurse. A state-space represen-

tation of this system with state

z1(t) =


x1(t)

ẋ1(t)

 , zi(t) =


xi(t) − xi−1(t)

ẋi(t) − ẋi−1(t)


for i = 2, . . . ,N is

ż(t) =


0 I

0 0

 z(t) +


0

B

 u(t) +


0

B

w(t),

where

bi j =



1/mi, for i = j

−1/mi−1, for i = j + 1

0, else

.

We assume that each vehicle’s control input ui(t) depends only on relative distance and

velocity information with respect to the vehicle ahead or a potential tracking reference.

We thus introduce a decentralized feedback control law of the form

u(t) =
[
K K

]
z(t), K = − diag(m1, . . . ,mN).

We then have

ż(t) =


0 I

BK BK

 z(t) +


0

B

w(t)
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with the particular structure

BK =



−1

1 −1

. . .
. . .

1 −1


.

The individual vehicle positions and velocities can be recovered from z(t) using the

transformation 
x(t)

ẋ(t)

 =

T 0

0 T

 z(t),

where T is a lower triangular matrix of ones. Notice that we have T−1 = −BK, such that
ẋ(t)

ẍ(t)

 =


0 I

BK BK



x(t)

ẋ(t)

 +


0

−K−1

w(t)

and the steady-state covariance matrix P � 0 for stationary white noise w(t) with covari-

ance W � 0 can be obtained by solving the Lyapunov matrix equation
0 I

BK BK

 P + P


0 KT BT

I BK

 =


0

K−1

W
[
0 K−1

]
,

where

P =


X ZT

Z V

 .
Figure 1.2 shows the velocity variances diag(V) for a platoon of four vehicles

with W = I, ordered by increasing (blue curves) and decreasing (green curves) vehicle
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Figure 1.2: Vehicle velocity variances diag(V) arranged by platoon position (upper plot)
and by vehicle weight (lower plot) with the blue curves depicting the case where the
vehicles are arranged by increasing weight and the green curves by decreasing weight.

weights, respectively. As one can see clearly in the bottom picture, the average variance

decreases drastically when heavy vehicles are placed ahead of lighter vehicles. This

effect is caused by the variances being propagated downstream, where the base variances

of heavier vehicles are lower due to their smaller susceptibility to the input noise w(t).

In this setup, only the lightest vehicle is slightly better off when placed ahead of the

other vehicles, while the remaining variances increase significantly. This hints at the

trend that less variable patients should be placed ahead of more variable patients when

scheduling appointments to the infusion room, as is suggested in Rule 2.

The trend observed above is illustrated further in Figure 1.3, which compares the
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Figure 1.3: Vehicle position variances diag(X) and velocity variances diag(V) for pla-
toons with a single light vehicle of mass 1 and three heavier vehicles with mass 2.

four possible relative orderings of four vehicles, one of which is lighter and thus more

susceptible to its individual disturbance wi(t), where as in the previous example, we have

W = I. Clearly, this setup corresponds to the initial example considered in this section,

where four possible scheduling policies were compared with respect to the resulting

workload variances. The four policies in Figure 1.3 are precisely those corresponding

to (1.7) and Table 1.1. The figure confirms that the relative ordering with the highly

variable patient at the end is preferable from an average variance standpoint, which is

the motivation for Rule 2 in the scheduling problem.

While we were able to conclude Rule 2 with this second surrogate problem, we

are unable to capture the benefits of Rule 1 in this setup. This issue is connected to string
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instability effects in the vehicle platoon (see [16]), which dominate the behavior for

larger strings of vehicles. A solution for practical implementation could be scheduling

in multiple strings separated by a period of low workload arrival, for example during

lunch break.

1.4 Conclusions

We introduced two surrogate problems that illustrate the benefits of acuity-based

scheduling rules for visits to an infusion room. The first rule suggests distributing

high-acuity patients evenly throughout given periods of time and can be analyzed us-

ing methods from calculus of variations applied to a stochastic mixing process under

heavy traffic. The second rule requires scheduling high-acuity patients late in the day

and is analyzed using parallels to strings of interconnected systems and a vehicle platoon

in particular.

Clearly, all observations made regarding our two scheduling rules and in par-

ticular the corresponding surrogate problems extend beyond the infusion room, which

served as the running example in this chapter. However, a number of extensions are of

interest in particular for practical implementation of our scheduling rules. For instance,

a tradeoff has to be made between violations of the two rules in the actual scheduling

process. One could think of summarizing violations in each of the guidelines in penalty

functions and summarizing those in a weighted cost functional evolving as the schedule

is made based on patient requests. Moreover, not all patients may be compliant with
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ideal schedule positioning for a multitude of reasons such as other appointments on the

same day, such that their restrictions may have to be taken into account additionally. One

could also think of extensions requiring further transient rules comparable to Rule 2, in-

cluding variable numbers of nurses throughout the day, for example to include lunch

times into the scheduling procedure. Another factor is that in a real workday, the frac-

tion of patients from the high-acuity group may not be precisely µ but lower or higher,

depending on daily fluctuations and the quality of the estimate µ for the actual patient

population. Another direction for future work is the extension to results from queueing

theory such as in [18] to the appointment scheduling problems occurring in healthcare.
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Chapter 2

A Framework for Acuity-Based,

Individualized Patient Scheduling

2.1 Introduction

Scheduling policies for patient visits at health centers are well known to have sig-

nificant effects on various performance measures such as patient waiting times and idle

times of medical personnel. The surveys [19] and [20] give a comprehensive overview

of literature on medical appointment scheduling. In [19], references are grouped into

analytic, simulation-based and case studies, where perhaps surprisingly, the majority

of analytic approaches listed focus on scheduling patients drawn from homogeneous

populations for visits to a clinic. That is, most analytic studies are aimed at determin-

ing desirable arrival times and inherent appointment lengths for consecutive service of

patients with independent and identically distributed service times. Patient arrivals are

31
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usually assumed to occur deterministically at scheduled times, in particular for elec-

tive patients, who do not require immediate medical intervention and can be scheduled

for service well in advance. Analysis with respect to scheduling patients from het-

erogeneous populations is closely related to scheduling different surgical procedures in

sequence. The survey paper [21] and the discussion in [22] give an overview of recent

developments and open problems in surgical procedure scheduling.

In most common approaches to patient scheduling, individual patient charac-

teristics apart from durations of certain procedures are not taken into account by the

scheduler when organizing workload throughout a particular day. This scheduling ap-

proach often results in significant fluctuations when comparing waiting times, patient

satisfaction and other performance measures over the course of multiple days. Causes

for these discrepancies may be unavailability of information regarding individual patient

characteristics in the scheduling procedure and unawareness of the appropriate schedul-

ing action were it to be available. In many cases, knowledge of patient characteristics

allowing further individualization can be made available rather easily given that doctors

generally have a good idea of which patients are more uncertain in terms of fluctua-

tions in punctuality and service requirements. We suggest the classification of patient

populations into acuity classes, which can be performed reliably by the corresponding

physician and then provided to the scheduler. High acuity could refer to high severity

of prescribed treatment and usually equates with advanced stages of disease. From the

perspective of the analysis in this chapter, high acuity is equated with high variability

and vice versa. This is related to surgical procedure scheduling, where classification of



33

procedures into ones with low and high variances is discussed for instance in [13].

Strategies for the inclusion of patient acuity data into scheduling were proposed

and studied in [23] for the special case of two acuity classes. The main results of this

study are the following two qualitative ad hoc scheduling rules.

Rule 1: Avoid scheduling many high-acuity patients at once.

Rule 2: Schedule high-acuity patients later in the day.

Rule 1 aims to avoid periods of large accumulated uncertainty, which might cause over-

flowing waiting rooms and inherently long patient waiting times. Rule 2 hinders distur-

bances from being propagated through the workday and is closely related to the discus-

sion in [13] and observations reported in [12]. The advantages of each rule were demon-

strated in [23] using closely related surrogate problems. While these two scheduling

rules require tradeoff decisions, they yield easily applicable heuristics for appointment

scheduling.

This chapter aims to formulate a mathematical basis to address scheduling issues

when dealing with multiple classes of individual patients which can be attributed with

distinct service demand characteristics. While the analysis in Section 2.2 benefits the

general understanding of scheduling systems with deterministic arrivals and indepen-

dent Erlang and exponential service times, we use Section 2.3 to pose a Markov chain

model that can be used in appointment systems with more general service time distribu-

tions. We anticipate models of the form motivated below to yield scheduling rules such

as those reported in [23] when equipped with reasonable cost functions, which will be
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part of a future study.

2.2 Sojourn Time Analysis for Erlang Service Time Dis-

tributions

Suppose we have a number of patients arriving for consecutive service at a clinic

throughout a day. We assume patient arrivals to occur deterministically with scheduled

interarrival times Tk ≥ 0, where Tk = 0 for some k indicates multiple patients arriving

simultaneously. Patient service times Xk are assumed independent and Erlang distributed

[24] with constant rate parameter µ ∈ R+ and varying shape parameters dk ∈ N used

to model individual patient acuities. Probability density and cumulative distribution

functions of Erlang random variables with rate µ and shape d for x ≥ 0 are

γµ,d(x) =
µd xd−1e−µx

(d − 1)!
, Γµ,d(x) = 1 −

d−1∑
n=0

(µx)n

n!
e−µx. (2.1)

The Erlang distribution is a special case of the Gamma distribution with d ∈ N instead

of d ∈ R+. Moreover, there are two appealing links between the Erlang and exponential

distributions. Firstly, the Erlang distribution subsumes the exponential distribution in

the special case d = 1. Secondly, an Erlang random variable with shape d and rate µ is

equal in distribution to the sum of d independent and exponentially distributed random

variables with rate µ.

Using different rate and shape parameters, one can construct Erlang random vari-

ables with arbitrary positive means and variances, making them a powerful distribution
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Figure 2.1: Probability density functions of Erlang random variables with varying shape
parameters and rate parameter µ = 2.

in modeling service requirements of patients with different acuity levels. This is further

underlined by Figure 2.1, which shows probability density functions of Erlang random

variables for a set of shape parameters and rate µ = 2. Shapes d > 1 (i.e., those de-

viating from the exponential distribution) allow for service time distributions that seem

reasonable in describing patient time demands modulo the unbounded tails.

In the following, let the sojourn time S k denote the random total duration patient

number k has to spend at the clinic. That is, S k is the combined waiting time Wk and

service time Xk encountered by the kth patient arriving for service. Hinting at perfor-

mance of particular scheduling rules, we are particularly interested in the cumulative
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distribution functions Fk(x) , P(S k ≤ x), mean values E[S k] and variances Var(S k) for

all patients scheduled throughout the day.

2.2.1 Stationary Behavior for Exponential Service Times

First consider stationary behavior of the underlying appointment system in the

special case d = 1 (i.e., exponentially distributed service times) with constant rate µ > 0

and interarrival times T . This particular case is interesting in that it provides a link

to classic queueing and scheduling literature, where such D/M/1 queues are frequently

used. Moreover, results about long-run stationary behavior can be used to approximate

sections of schedules filled with small numbers of patients. The remainder of this sub-

section is based on the following set of assumptions.

A.I: Patient arrivals occur deterministically with constant interarrival time T > 0.

A.II: Patient service times Xk are independent and exponentially distributed with

rate parameter µ > 0.

A.III: T and µ satisfy the stability condition µT > 1.

Notice that in particular Assumption A.A.III: is often undesirable in scheduling as it

goes in hand with an increased fraction of idle time for medical personnel. Given As-

sumptions A.I:-A.III:, the sojourn times have a stationary distribution

F∞(x) , P(S∞ ≤ x), where S∞ , lim
k→∞

S k .
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The following result characterizes the stationary distribution of the closely related wait-

ing times Wk.

Theorem 2.1 (Jansson, 1966 [25]). Suppose Assumptions A.A.I:-A.III: hold and let

W∞ , limk→∞Wk. The stationary distribution of the waiting times W∞ is then given

by

P(W∞ = 0) = 1 − δ0,

P(0 < W∞ ≤ x) = δ0(1 − e−µx(1−δ0))

for x ≥ 0, where δ0 is the root of the equation

δ = e−µT (1−δ) (2.2)

which has the smallest absolute value.

Stationary behavior of the sojourn times S k under the stable D/M/1 queueing

setup with µT > 1 follows directly from the above result.

Corollary 2.1. Under Assumptions A.A.I:-A.III:, the stationary cumulative distribution

function of the sojourn times S∞ is

F∞(x) = 1 − e−µx(1−δ0)

for x ≥ 0, where δ0 is the root of (2.2) with smallest absolute value. Moreover, we have

E[S∞] =
1

µ(1 − δ0)
, Var(S∞) =

1
µ2(1 − δ0)2 .
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Proof. The sojourn time of patient k is S k = Wk + Xk, where Wk and Xk are the waiting

time and the exponentially distributed service time for patient k, respectively. By Theo-

rem 2.2, we get the stationary distribution for the sojourn time using the convolution

P(S∞ ≤ x) =
d
dx

(P(W∞ ≤ x) ∗ P(Xk ≤ x))

=
d
dx

∫ x

0
(1 − δ0e−µz(1−δ0))(1 − e−µ(x−z)) dz

= 1 − e−µx(1−δ0).

Mean value E[S∞] and variance Var(S∞) follow directly. �

2.2.2 Transient Behavior for Erlang Service Times

So far, we have discussed stationary behavior in the special case of exponential

service distributions under the stability condition µT > 1. However, in a scheduling

setup with limited numbers of patients over a finite time horizon, we are usually more

interested in the unstable case µT ≤ 1, corresponding to lower idling times of medical

personnel at the cost of patient waiting times potentially building up faster throughout

the day. In this case, stationary distributions do not exist. Moreover, given the explicit

transient nature of the scheduling problem, we are particularly interested in distribution

functions Fk(x) for rather small integers k ∈ N. For the remainder of this discussion

about transient behavior of the scheduled queueing system with Erlang service demands,

we make the following assumptions.

B.I: Patient arrivals occur deterministically with interarrival times Tk ≥ 0, where

Tk is the time between consecutive appointments for patients k and k + 1.
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B.II: Patient service times Xk are independent and Erlang distributed with rate µ >

0 and shapes dk ∈ N.

Notice that Assumptions A.A.I:-A.II: in the previous section are a special case of As-

sumptions B.B.I:-B.II: with dk = 1 and Tk = T for k ∈ N. However, Assumptions

B.B.I:-B.II: allow for a substantially larger set of possible scheduling scenarios to be

analyzed. For instance, Tk = 0 for some k ∈ N could be imposed to account for multiple

patients arriving at once.

In the following, we replace the analysis of Erlang distributed patient service

times with shapes dk by an equivalent non-stationary problem in which each patient is

decomposed into a sum of dk individual sub-patients arriving simultaneously and each

of whom has service time which is exponentially distributed with rate µ. The sequence

{T̃ j} is the sequence of interarrival times of these collections of sub-patients.

T̃ j ,
∞∑

i=1

1{ j = τi}Ti, where τi ,
i∑

k=1

dk (2.3)

and 1{A} denotes the indicator function of event A. The interarrival time between sub-

patients n and j is then

T̃ j
n ,

j∑
i=n

T̃i.

This problem with exponentially distributed sub-patients is equivalent to the original

problem with Erlang distributed patients and allows application of the memoryless prop-

erty of the exponential distribution. The transient behavior of the scheduled queueing

model given Assumptions B.B.I:-B.II: is then described by the following result for the

sojourn times S k.
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Theorem 2.2. Suppose Assumptions B.B.I:-B.II: hold. The transient cumulative distri-

bution functions Fk(x) of the sojourn times S k are then given by

Fk(x) = F̃τk(x), (2.4)

where

F̃ j(x) , 1 −

1 + j−1∑
n=1

(
1 − F̃ j−n

(
T̃ j−1

j−n

)) (µx)n

n!

 e−µx (2.5)

for x ≥ 0 and j ∈ N.

Proof. Following the above discussion, we can equivalently analyze a problem with

interarrival times (2.3) and exponentially distributed service times with rate µ. In the

following, let S̃ j and F̃ j(x) denote the sojourn times and their cumulative distribution

functions in this surrogate problem. Reapplying the correspondence between exponen-

tial and Erlang distributions (2.1) in combination with the memoryless property of the

exponential distribution yields

F̃ j(x) = P
(
S̃ j−1 ≤ T̃ j−1

j−1

)
Γµ,1(x)

+

j−1∑
n=2

P
(
S̃ n > T̃ j−1

n , S̃ n−1 ≤ T̃ j−1
n−1

)
Γµ, j+1−n(x) + P

(
S̃ 1 > T̃ j−1

1

)
Γµ, j(x). (2.6)

That is, F̃ j(x) is a convex combination of cumulative distribution functions for Erlang

random variables with increasing shape parameters but equal rate parameter µ. The

coefficients in this convex combination for F̃ j(x) depend on {F̃1(x), . . . , F̃ j−1(x)}. Now

notice that by (2.1) the cumulative distribution functions Γµ, j(x) of Erlang distributed

random variables satisfy the recursion

Γµ,1(x) = 1 − e−µx, Γµ, j+1(x) = Γµ, j(x) −
(µx) j

j!
e−µx
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for j ∈ N. Hence, the cumulative distribution function of the sojourn time for patient j

in the surrogate problem with exponential service demands can be written

F̃ j(x) = 1 − e−µx −

j−1∑
n=1

cn
(µx)n

n!
e−µx,

where the coefficients cn follow from (2.6) as

c1 = 1 − P
(
S̃ j−1 ≤ T̃ j−1

j−1

)
= 1 − F̃ j−1

(
T̃ j−1

j−1

)
,

c2 = c1 − P
(
S̃ j−1 > T̃ j−1

j−1 , S̃ j−2 ≤ T̃ j−1
j−2

)
= 1 − P

(
S̃ j−2 ≤ T̃ j−1

j−2

)
= 1 − F̃ j−2

(
T̃ j−1

j−2

)
,

c3 = 1 − F̃ j−3

(
T̃ j−1

j−3

)
,

...

c j−1 = 1 − F̃1

(
T̃ j−1

1

)
.

�

As demonstrated above, Theorem 2.2 allows for two distinct interpretations of

the scheduled Erlang queueing process. Firstly, we can interpret the process as patients

with Erlang service distributions of equal rate µ but potentially varying shapes dk arriv-

ing at deterministic times for consecutive service. This interpretation allows for analysis

of a multi-class scheduled queue. Secondly, using the correspondence between Erlang

distributed random variables and sums of i.i.d. exponentials with equal rate µ, we can

interpret the process as numbers dk of sub-patients with independent exponential service
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demands arriving simultaneously in each time period. This duality allows for a variety

of scheduling problems to be analyzed using Theorem 2.2. This is further demonstrated

in the following example.

Example 2.1. Consider scheduling four patients for successive service at a clinic. Of

the four patients, one is classified as a high-acuity patient and all others as low-acuity

patients, respectively. In addition to the four possible orders in which the patients can

be scheduled, we have to choose a sequence of interarrival times. In this example, we

use mean service times of the patients to determine desirable interarrival times. Using

Erlang rate parameter µ = 2 for all patients, shape parameter dh = 3 for the high-acuity

patient and shape parameter dl = 2 for the low-acuity patients, mean service times are

E[Xl] =
dl

µ
= 1 and E[Xh] =

dh

µ
= 3/2.

Now suppose we choose interarrival times to match these mean service times multiplied

by a constant scaling factor α ≥ 0. That is, patient k + 1 is scheduled to arrive

Tk = αE[Xk]

later than patient k, where E[Xk] is the expected service duration for patient k. Using

this scheduling approach leaves us with choice of α and the order in which patients are

scheduled to arrive. Mean sojourn times corresponding to α = 0.75 (left) and α = 1.0

(right) are displayed for the patient orders in Figure 2.2. Based on these results, we can

make a number of observations about the scheduled queues. For instance, we see that for

either choice of α, Rule 2 from [23] transpires. That is, all patients except for the high-

acuity patient are better off provided the high-acuity patient is scheduled later in the day.
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Figure 2.2: Mean sojourn times for different patient orders and interarrival time scaling
factors α.

This property is most apparent for small scaling factors α and disappears gradually as α

grows. Moreover, we can see how mean sojourn times build up throughout the schedule,

with a large increase where the high-acuity patient is placed. For larger α, the sojourn

times recover slightly after the high-acuity patient.

The following result is an immediate consequence of Theorem 2.2, and (2.5)

in particular, when dealing with a setup as in Corollary 2.1. However, the stability

condition µT > 1 is not required at this point.
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Corollary 2.2. Under Assumptions A.A.I:-A.II:, the cumulative distribution functions

Fk(x) of the sojourn times S k are

Fk(x) = 1 −

1 + k−1∑
n=1

(1 − Fk−n (nT ))
(µx)n

n!

 e−µx

for x ≥ 0 and integers k ∈ N. The corresponding transient means and variances of the

sojourn times are

E[S k] =
1
µ

k − k−1∑
n=1

Fk−n(nT )

 ,
Var(S k) =

1
µ2

k + 2
k−1∑
n=1

(k − n − 1)Fk−n(nT ) −

 k−1∑
n=1

Fk−n(nT )

2
 .

Example 2.2. To illustrate Corollaries 2.1 and 2.2 in the special case of independent

exponential service time distributions, consider the following example with fixed service

rate µ = 4/3, corresponding to an average service duration of 3/4 and stable behavior

of the queue given interarrival times T > 3/4. Figure 2.3 shows cumulative distribution

functions of the sojourn times for patients k = 1, 5, 10 and the corresponding stationary

distribution in the stable case with T = 1. As we can see, the distributions Fk(x) strongly

resemble the stationary distribution.

A central point unaddressed so far is the behavior of the scheduled queueing sys-

tem when varying the rate parameter µ of the underlying Erlang service time distribu-

tions. The following result summarizes a scaling property of the cumulative distribution

functions (2.4) for different rate parameters.

Theorem 2.3. Suppose Assumptions B.B.I:-B.II: hold for a rate parameter µ1 and a
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Figure 2.3: Transient and steady-state distributions of sojourn times S k for stable expo-
nential configuration µ = 4/3 and T = 1.

sequence of interarrival times Tk,1. Moreover, let β > 0 and

µ2 = µ1/β, Tk,2 = βTk,1, dk = dk,2 = dk,1

for k ∈ N. If Fk,1(x) denotes the cumulative distribution function of the sojourn time for

patient k in the scheduled queue with interarrival times Tk,1 and rate parameter µ1 and

Fk,2(x) its counterpart with interarrival times Tk,2 and rate parameter µ2, then

Fk,1(x) = Fk,2(βx) (2.7)

for x ≥ 0 and k ∈ N.

Proof. Recall that in the proof of Theorem 2.2, we defined a surrogate problem with

exponential service times. If suffices to verify (2.7) for this equivalent problem which
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has cumulative distribution functions F̃ j as in (2.5). First notice that

F̃1,2(βx) = Γµ2,1(βx) = 1 − e−µ2βx = Γµ1,1(x) = F̃1,1(x),

verifying (2.7) in the auxiliary problem for j = 1. Now suppose (2.7) holds for all

positive integers j ≤ m − 1 in the auxiliary problem. We then have

F̃m,2(βx) = 1 −

1 + m−1∑
n=1

(
1 − F̃m−n,2

(
T̃ m−1

n,2

)) (µ1x)n

n!

 e−µ1 x,

where

F̃m−n,2

(
T̃ m−1

n,2

)
= F̃m−n,2

(
β T̃ m−1

n,1

)
= F̃m−n,1

(
T̃ m−1

n,1

)
for n ∈ {1, 2, . . . ,m − 1}, which completes the proof. �

The next result is a consequence of Theorem 2.3 for means and variances of the

sojourn times S k,1 and S k,2.

Corollary 2.3. Suppose the assumptions in Theorem 2.3 hold. Then

E[S k,2] = βE[S k,1], Var(S k,2) = β2 Var(S k,1)

for k ∈ N.

In this section, we have reported a number of results for transient behavior of

sojourn times in scheduled queues with Erlang service distributions, which can be used

to model either patients with varying service demand characteristics or patient groups

of varying size but equal service characteristics arriving at a clinic. The results in this

section allow for analysis of a wide range of scheduling problems. We can also use the
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results as a first approximation to the optimization problems of interest when searching

for optimal scheduling policies, where especially Theorem 2.3 gives some insight into

choosing relative appointment lengths if patients with distinct characteristics are to be

scheduled. However, the iterative form of the results reported in this section is not

very suitable for computing optimal policies with multiple acuity classes, where both

ideal arrival orders and arrival times need to be determined. An alternative model more

suitable to finding optimal scheduling policies for general service time distributions is

suggested below.

2.3 Markov Model for Appointment Scheduling

As discussed in the previous section, the iterative form of the result reported in

Theorem 2.2 is more suitable for analysis than determination of desirable scheduling

policies. To address this issue, we can approximate the behavior of our queueing system

with scheduled arrivals from different patient classes using a finite number D of waiting

time intervals of length ∆ each. This time-discretization allows for approximate analysis

using a simple Markov chain model to propagate the probabilities of patient k’s waiting

time being within one of a number of fixed time intervals. For the following discussion

of this Markov chain model, we restrict ourselves to scheduling a total number N+1 ∈ N

of patients for the workday of interest and impose the following assumptions.

C.I: There are D waiting time intervals of length ∆ each, where D is a sufficiently

large integer multiple of N.



48

C.II: Patient arrivals occur deterministically with interarrival times Tk, where Tk is

an integer multiple of ∆ and measures the time difference between appoint-

ments for patient k and patient k + 1.

C.III: Patient service times Xk are independent random variables satisfying P(Xk ≥

Tk +∆D/N) = 0. That is, the scheduled service period cannot be exceeded by

∆D/N or more.

C.IV: Regardless of when within a given time period patient k finishes service, pa-

tient k + 1 is not served until the beginning of the following time period.

Notice that the last assumption above increases the waiting time of patient k + 1 by

some random value X < ∆, resulting in a potentially conservative approximation of the

waiting times for larger time increments ∆ and higher patient numbers N. However, the

assumption is reasonable provided time increments and schedule lengths are sufficiently

short. Based on Assumptions C.C.I:-C.IV:, we can cast a Markov chain model with state

Wk ,



W0,k

W1,k

W2,k

...

WD,k



=



P(k starts on time)

P(k starts ∆ late)

P(k starts 2∆ late)

...

P(k starts D∆ late)



,

initial conditions W0,0 = 1 and Wi,0 = 0 for i ∈ {1, 2, . . . ,D} and WT
k+1 = WT

k Pk for a

potentially time-varying state transition matrix with elements

(Pi, j)k = P(W j,k+1 = 1 | Wi,k = 1).
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Notice at this point that if we allow for a countable state space, Assumption C.C.III:

can be dropped. However, having an upper bound on patient service times does in fact

coincide with actual scheduling applications. Notice also that given the total number of

patients N + 1 and the correspondence of the time index k in this Markov model with

the successive patient index, it only makes sense to evolve the state Wk through N time

steps. That is, we initialize the model at W·,0 and terminate the state evolution at W·,N .

The elements of the transition matrices Pk follow as

(Pi, j)k = P (Xk ∈ [Tk + ( j − i − 1)∆,Tk + ( j − i)∆)) .

While the last D/N rows of the state transition matrix do not sum up to one, we only

evolve the state over N iterations from the given initial conditions, such that these el-

ements of the state transition matrix never come into play. The following example il-

lustrates how the Markov model based on Assumptions C.C.I:-C.IV: can be used to

approximate the behavior observed in Example 2.2 above.

Example 2.3. Consider the following setup in the spirit of Example 2.2. To approximate

the queueing process from the previous section, we choose interarrival times Tk = T and

let the service times Xk be independent and identically distributed truncated exponential

random variables with support on (0, b ], such that the cumulative distribution function

for each service time is

F(x) =



0, x ≤ 0

1
1−e−µb (1 − e−µx) , x ∈ (0, b]

1, x > b

.



50

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x, sojourn time

F
k(x

)

 

 

F
1
(x)

F
5
(x)

F
10

(x)

Figure 2.4: Transient distributions of sojourn times S k for unstable exponential con-
figuration µ = 4/3 and T = 1/2. Solid lines for exact distributions via Corollary 2.2;
dashed lines for approximation using Markov model with ∆ = T/6 = 1/12 and truncated
exponential service times with b = 4.

Choosing the parameters µ = 4/3 and T = 1/2, we can approximate the behavior of

our scheduled queueing system with N = 9 and D = N(b − T )/∆ by evolving the

state N times and taking convolutions with the distribution of the truncated exponential

service times Xk to obtain distributions of the sojourn times per patient. For b = 4

and ∆ = T/6 = 1/12, we obtain the cumulative distribution functions displayed in

Figure 2.4, which closely resemble those in the exact case computed using Corollary 2.2.
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2.4 Conclusions

We have reported a number of results regarding analysis of scheduled queue-

ing systems, where arrivals occur deterministically and service times are random. In

particular, we have focused on setups allowing for patients with a number of different

service distributions within the same queue. The significance of this work is that it pro-

vides a mathematical basis for the analysis of acuity-based scheduling rules applied in

medicine. This provides a foundation from which to develop new scheduling rules in

individualized medicine.
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Chapter 3

Sumptus Cohiberi: The Cost of

Constraints in MPC with State

Estimates

3.1 Introduction

Model Predictive Control (MPC) invites the practitioner to insert constraints, a

natural technique for engineering design. In this chapter we offer a cautionary analysis

of the potential performance cost of active constraints when state estimates are used

in control implementation; the active constraints can amplify the extant state estimate

error in the control signal and inject this into the closed-loop system affecting achieved

performance. MPC is posed as full-state feedback control even though its application

invariably uses erroneous state estimates. The performance of MPC controlled systems

53
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Figure 3.1: Closed-loop system architecture for state-estimate feedback control based
on perturbed output measurements.

has been addressed by only a few, including [26, 27, 28], and similarly the effect of state

estimation errors has been largely eschewed or circumvented [2]. We analyze how the

number of constraints influences sensitivity of the control inputs to estimation errors for

general closed-loop architectures such as displayed in Figure 3.1.

In [4], it is explored how stochastic output-feedback MPC can be tackled using

Gaussian assumptions on the state-estimates. The stochastic problem is converted to a

deterministic counterpart with tightened constraints to ensure all constraints can be sat-

isfied with sufficiently large probability. The procedure prescribed leads to controllers

depending explicitly on state-estimate covariance data. Robust output feedback MPC

is explored in [29], where a simple Luenberger state observer is paired with tube-based

MPC. Using tightened constraints for an invariant bound on the estimation error, the au-

thors establish robust exponential closed-loop stability of an invariant set. The results are

extended in [7] to drop steady-state assumptions on the underlying state observer. More

recently, [6] presents an approach to nonlinear output feedback MPC based on Moving
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Horizon Estimation (MHE, [30]), where state-estimates are based on a fixed number of

past measurements subject to state-estimate constraints. Linear output-feedback MPC

via MHE is discussed for instance in [5]. In [31], robust output feedback MPC for

systems with unstructured model uncertainty is considered. Based on a linear state esti-

mator and quadratic cost, the authors propose Linear Matrix Inequality (LMI) conditions

involving the cost parameters to guarantee robust closed-loop stability.

To analyze how the interplay of estimation errors and constraints can impact

closed-loop MPC behavior, we make use of several results from the explicit MPC lit-

erature. In case system dynamics, constraints and value function are time-invariant,

explicit solutions are appealing for problems of sufficiently small size. That is, given

that the optimal control inputs for this setup depend only on the current state, there is a

static mapping from feasible states to feasible controls summarizing all solutions of the

MPC problem. This parametrization of the MPC optimization problem by feasible states

leads to multiparametric programs. In [32, 33], the explicit MPC problem was famously

solved for linear time-invariant systems with quadratic cost and polytopic constraints.

The optimal control inputs are piecewise affine over polytopic regions, where each poly-

tope corresponds to a set of active constraints at the optimal solution. This allows re-

duction of online quadratic programming to evaluation of a piecewise affine function.

Parallel results for 1- and ∞-norms in the cost function have been presented in [34],

where on-line solution of linear programs reduces to evaluation of a static piecewise

affine function as in [33]. An overview of explicit MPC and multiparametric program-

ming is given in the surveys [35, 36]. In practice, computing explicit MPC solutions for
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most problems still is an exceedingly demanding task computationally, making such so-

lutions viable only for low-dimensional problems. Applicability can be extended based

on approximate methods.

3.2 Linear Quadratic Model Predictive Control

3.2.1 Motivation and Problem Setup

We consider model predictive control based on noisy state-estimate feedback us-

ing an implicit state estimator which is not further specified for the remainder of this

chapter – it could, for instance, be a Kalman filter. We examine interactions between

state estimation errors and active constraints, leading to perturbed control inputs gen-

erated by the MPC solutions. We consider time-invariant systems mostly to simplify

notation in the technical discussion. However, the observations generally hold for time-

varying systems, constraints and cost functions. At time instant t, a linear system is

modeled by linear difference equation

x(t + 1) = Ax(t) + Bu(t), (3.1)

where A ∈ Rn×n and B ∈ Rn×m. Within the MPC optimization problem, future states are

propagated as

x̂k+1(t) = Ax̂k(t) + Buk(t),

x̂0(t) = x(t) − x̃(t),

(3.2)
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where the signal x̃(t) is the state estimation error and uk(t) denotes the prospective MPC

control action k time instants along the control horizon. As indicated above, the current

state estimate x̂0(t) is generated by an arbitrary state estimator, e.g. a Kalman Filter.

Below, we omit dependencies on time t when possible to simplify notation. Further

denoting

u =
[
u0 u1 · · · uN−1

]T
,

we aim to describe perturbations of the optimal receding horizon solution arising from

the MPC optimization problem

min
u

x̂T
N Px̂N +

N−1∑
k=0

x̂T
k Qx̂k + uT

k Ruk

 ,
s.t. Cuuk ≤ du, k = 0, . . . ,N − 1;

Cx x̂k ≤ dx, k = 1, . . . ,N − 1;

C f x̂k ≤ d f , k = N;

x̂k+1 = Ax̂k + Buk, k = 0, . . . ,N − 1;

x̂0 = x(t) − x̃(t).

(3.3)

The first element of this optimal solution is the control input at time instant t, i.e.

u(t) = u∗0(t).

The MPC optimization problem (3.3) at time t can equivalently be posed as a multi-

parametric quadratic program (mpQP) dependent on x̂0. The question analyzed in this

chapter is how the control inputs of such state estimate based MPC schemes differ from
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the control inputs generated by problem (3.3) were the real state to be known precisely,

i.e. x̂0 = x(t).

3.2.2 Perturbed mpQP Formulation

In [33], it was shown that the optimal control input u∗(t) arising from the MPC

problem (3.3) is piecewise affine over a finite polyhedral partition, {Ri}, of the set of

states for which feasible solutions exist. Each polytope in this partition is characterized

by a particular set of active constraints. Transitioning a boundary between adjacent poly-

topes results in additional constraints becoming active or some of the previously active

constraints becoming inactive. These observations allow us to reduce the multipara-

metric quadratic program arising from (3.3) to an equality-constrained multiparametric

program with identical cost but a reduced set of constraints corresponding to the con-

straints active in the polytopic region enclosing x̂0. The equivalent equality-constrained

mpQP with state estimate confined to the ith polytope, i.e. x̂(t) ∈ Ri, can be written in

the form

QPi(x̂(t)) : min
u

{
1
2

uT Hu + fT u + c
}
,

s.t. Ciu − di = 0.

(3.4)

The parameters defining the cost in this problem are

H = 2
(
BT diag (IN−1 ⊗ Q, P)B + IN ⊗ R

)
,

f = 2BT diag (IN−1 ⊗ Q, P)Ax̂0,

c = x̂T
0

(
Q +AT diag (IN−1 ⊗ Q, P)A

)
x̂0,

(3.5)
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where IN is the N-dimensional identity matrix, diag(X,Y) denotes the block-diagonal

composition of matrices X and Y , (X ⊗ Y) is the Kronecker product of X and Y , and

A =


A

...

AN


, B =



B 0 · · · 0

AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B


,

such that

x̂ =
[
x̂1 x̂2 · · · x̂N

]T
= Ax̂0 + Bu.

Notice that only the linear term f and constant term c of the mpQP cost depend on

the state estimate x̂0. While perturbations in the quadratically dependent constant term

c do not alter the optimal solution u∗ of (3.4), disturbances in the linearly dependent

linear term f cause translational shifts of the level sets associated with the mpQP cost.

This causes explicit dependency of u∗ and thus u(t) on the estimation error x̃(t). The

constant matrix describing the quadratic terms in (3.4) satisfies H � 0 under standard

assumptions on the MPC problem (3.3), implying convexity of the mpQP (3.4) for all

x̂0 ∈ Ri. In fact, we know from [33] that the problem is convex for all x̂0 in the feasible

region. The equality constraints in problem (3.4) are parametrized by the quantities

Ci = Cx,iB +Cu,i,

di = di −Cx,iAx̂0,

(3.6)

where the matrices Cx,i,Cu,i and vectors di depend on which sets of constraints in (3.3)

are active at the solution for x̂0 throughout the control horizon. That is, the matrices
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Ci remain constant and the vectors di depend linearly on the state estimate x̂0 for all

x̂0 ∈ Ri. We assume without loss of generality that Ci has linearly independent rows, as

otherwise the pair
[
Ci di

]
could be replaced by another pair

[
Ĉi d̂i

]
with fewer rows

without altering the set of feasible control sequences u.

3.2.3 Effects of Estimation Errors

Only the parameters Ci,di and f in (3.4) depend on the estimation error x̃(t)

through the state estimate x̂0. The two fundamental means by which the estimation error

perturbs the solution of (3.4), and thus the closed-loop control signals, are as following.

1. State and state estimate may lie within the same polytopic region Ri. If x̃ is within

a – potentially small – polytopic neighborhood enclosing the origin, the estimation

error affects the vectors di and f linearly.1

2. State and state estimate may lie within different polytopic regions. If x̃ is such that

x̂0 ∈ R j and x(t) ∈ Ri with i , j, the mpQP (3.4) is additionally perturbed by a

change in the equality constraints with Ci → C j and di → d j.

We explore these two mechanisms in the following. Suppose first that the state and its

estimate belong to the same polytopic region, Ri. Within this polytope, the estimation

1Joint perturbation in the linear cost term f and the constant term d of the equality constraints corre-
sponds to a right-hand side perturbation of the underlying KKT system[

H CT

C 0

] [
u∗
λ∗

]
=

[
−f
d

]
.

Sensitivity of the cost objective to such perturbations is analyzed e.g. in [37].
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error perturbs the vectors di and f linearly. For x̂0 ∈ Ri, all u satisfying the equality-

constraints in (3.4) are given by

u = CT
i

(
CiCT

i

)−1
di + Ziw = C+i di + Ziw, (3.7)

where w ∈ RN·m−pi , Zi ∈ R
N·m×(N·m−pi) can be any basis for the null spaceN{Ci} of Ci and

the integer-valued pi denotes the number of active constraints associated with the region

Ri, i.e. the number of equality-constraints in (3.4). We can now rewrite the mpQP for

x̂0 ∈ Ri as an equivalent lower-dimensional, unconstrained quadratic program in w with

cost

1
2

wT ZT
i HZiw +

(
dT

i (C+i )T H + fT
)

Ziw +
1
2

dT
i (C+i )T HC+i di + fT C+i di + c,

where the quantity ZT
i HZi is the reduced Hessian. Since H � 0 and Zi has full rank, we

have ZT
i HZi � 0, which yields the optimal solution, w∗, of the subspace QP as

w∗ = −
(
ZT

i HZi

)−1
ZT

i
(
f +HC+i di

)
,

and thus the optimal predicted control trajectory

u∗ = C+i di − Zi

(
ZT

i HZi

)−1
ZT

i
(
f +HC+i di

)
= αi + βi x̂0,

where

αi =

(
Im − Zi

(
ZT

i HZi

)−1
ZT

i H
)

C+i di,

βi = −

(
C+i Cx,i + Zi

(
ZT

i HZi

)−1
ZT
(
2BT diag (IN−1 ⊗ Q, P) −HC+i Cx,i

))
A.

(3.8)

Hence, provided x̃(t) is sufficiently small such that x̂0 remains within the region associ-

ated with x(t), the anticipated optimal control sequence u∗ and thus the injected control
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inputs u(t) are perturbed linearly in x̃. Notice that when more constraints are imposed in

the MPC problem (3.3) or the control horizon N is increased, the polytopic regions par-

titioning the feasible subset of the state-space shrink. That is, both control horizon and

primal inequality constraints influence sizing of the polytopic regions for which the so-

lution of (3.4) is computed. The following corollary to the results from [33] summarizes

the effects of x̃ on the closed-loop control inputs as outlined in this section.

Corollary 3.1. If the estimation errors x̃(t) are such that x(t) and x̂0 lie within the same

region Ri, then the computed optimal control sequence u is perturbed by the linear

function

ũ(x̃(t)) = u(x(t)) − u(x̂0) = βi x̃(t) (3.9)

with βi as in (3.8).

Example 3.1. To illustrate the effects of small estimation errors such that {x(t), x̂0} ⊂ Ri,

consider the following example of a multiparametric quadratic program as in (3.4). The

problem could correspond to a single-input single-output MPC problem with horizon

N = 2 and a single active constraint on the polytopic region Ri. Suppose

H =


2 1

1 1

 � 0, Ci =

[
1 2

]

are constant matrices. Given that we are not interested in the optimal cost but the optimal

control sequence u, we choose c = 0 without effect on the remainder of this example.

Perturbations enter linearly through the vectors f and di. Changes of f amount to trans-

lations of the level sets associated with the cost index, whereas perturbations in di equal
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orthogonal translations of constraint hyperplanes. To capture these effects, we compare

the two linear cost terms

f =


0

0

 , f̂ = f + f̃ = −


10

6

 (3.10)

as well as the two constraint right-hand sides

di = 2, d̂i = di + d̃ = −3. (3.11)

The quantities f and di are associated with the original, unperturbed quadratic program.

That is, they are associated with a equality-constrained mpQP problem at time t were

the state x(t) to be known perfectly. Conversely, the quantities f̂ and d̂i are associated

with a perturbed version of this quadratic program under the assumption that Ci remains

constant.

By linearity, we can interpret the joint perturbation geometrically as a sequence

of the effects with perturbing f and di. This sequence is illustrated for the perturbations

in (3.10) and (3.11) in Figure 3.2. The change f → f̂ by itself results in a translation of

the level sets with shape associated only with the same H. The resulting perturbation of

the anticipated control sequence u is a projection of the variation −H−1f̃ associated with

the unconstrained problem onto the single active constraint

u1 = 1 − 0.5 u0.

Similarly, if only the right-hand side of the active constraint is perturbed via di → d̂i,

we experience a change of the optimal control sequence along a line connecting the
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Figure 3.2: Shifts of level sets, constraint and optimal solution for linearly perturbed
QP in Example 3.1. Unperturbed level sets and constraint in black, perturbed level sets
in blue, perturbed constraint in red. Optimal solutions are marked with x’s, where black
corresponds to the unperturbed problem, blue to an intermediate problem with only the
level sets perturbed, red to an intermediate problem with only the constraint perturbed
and green to the full perturbed quadratic program.

unconstrained optimizer and the unperturbed constrained optimizer. As in (3.7), this

corresponds to picking a point on the constraint and moving it with respect to a reduced-

order unconstrained quadratic program on the constraint manifold.

The outcome of the joint perturbation (f,di)→ (f̂, d̂i) is a superposition of these

two individual perturbation effects, as can be seen in Figure 3.2. In comparison, the

effect of estimation errors on control inputs generated by unconstrained quadratic pro-

gramming is determined solely by the first effect without the projection component given
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that the unconstrained case automatically ensures that x(t) and x̂0 lie within a shared re-

gion.

Suppose now that x̃(t) is such that x(t) ∈ Ri and x̂0 ∈ R j for some pair i , j.

In this situation, the assumption for Corollary 3.1 and (3.9) does not hold. Instead, the

outcome of such estimation errors x̃(t) is a function explicitly depending on both state

and state estimation error. This function is affine in the state with parameters depending

on the difference between the affine control laws on Ri and R j and linear in the estimation

errors. Corollary 3.1 and (3.9) are a particular case of (3.12) for i = j of the following

result.

Corollary 3.2. If x(t) ∈ Ri and x̂0 ∈ R j, then

ũ(x(t), x̃(t)) = u(x(t)) − u(x̂0) =
(
αi − α j

)
+
(
βi − β j

)
x(t) + β j x̃(t). (3.12)

This corollary demonstrates that the state estimation error has the capacity to

shift the active constraints for x̂0 versus those intended for x(t). This could have sig-

nificant consequences for the applied control were the state constraints truly important.

Indeed, the computed u(t) could be infeasible for the full MPC mpQP at x(t). On the

other hand, if the difference between sets of active constraints occurs only for optional

or discretionary constraints (included simply because MPC invites us to), there might

be little consequence to this violation.

Building on this observation, a question not adressed so far is how the MPC

solution and its sensitivity to estimation errors change when we add extra constraints to

the initial MPC problem (3.3). In this case, we get a new partition of the feasible region
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which is nested in the previously computed partition. That is, each of the new polytopic

regions is either identical to or a polytopic subset of a region associated with the initial

problem. This results in estimation errors of smaller size being able to change the active

region Ri. This is a price paid for enforcing additional constraints in MPC problems.

We next analyze a numerical example in which we demonstrate the effects esti-

mation errors can have on closed-loop performance of a controlled system.

Example 3.2. Consider the system
x(t + 1)

y(t + 1)

 =

1 0

0 1



x(t)

y(t)

 +

1 0

0 1



u(t)

v(t)

 ,
and linear quadratic MPC problem

min
u0,v0

{
x̂2

1 + ŷ2
1 + r

(
u2

0 + v2
0

)}
s.t. x̂1 − ŷ1 ≤ 1,

x̂1 = x̂0 + u0,

ŷ1 = ŷ0 + v0,

x̂0 = x(t) − x̃(t)

ŷ0 = y(t) − ỹ(t).

That is, we aim to achieve x(t) − y(t) ≤ 1 while minimizing the quadratic objective

function. Suppose we choose the control penalty r > 0 sufficiently small such that the

problem operates on the constraint for all time. Under this assumption, the optimal

solution resulting from the above MPC problem is the affine state-estimate feedback
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control law 
u0

v0

 =

− 2+r

2+2r
r

2+2r

r
2+2r − 2+r

2+2r



x̂0

ŷ0

 +


1/2

−1/2

 .
This affine control leads to the closed-loop dynamics

x(t + 1)

y(t + 1)

 =


r
2+2r

r
2+2r

r
2+2r

r
2+2r



x(t)

y(t)

 +


1/2

−1/2

 +


2+r
2+2r − r

2+2r

− r
2+2r

2+r
2+2r



x̃(t)

ỹ(t)


The optimal controls produced by the constrained MPC problem lead to coupling be-

tween the state elements x(t) and y(t) in closed loop through the active constraint. The

stable closed-loop system matrix has eigenvalues λ1 = 0 and λ2 = r/(1 + r), with un-

perturbed steady-state solution x∞ = 1/2 and y∞ = −x∞ = −1/2. Given white random

zero-mean disturbances x̃(t) and ỹ(t) with covariance matrix

W =


1 0

0 1

 ,

the closed-loop system state has mean
[
1/2 −1/2

]T
and motion around the unperturbed

steady-state solution. The closed-loop covariance matrix X is determined by the Lya-

punov equation
r

2+2r
r

2+2r

r
2+2r

r
2+2r

 X


r
2+2r

r
2+2r

r
2+2r

r
2+2r

 − X +


2+r

2+2r − r
2+2r

− r
2+2r

2+r
2+2r




2+r
2+2r − r

2+2r

− r
2+2r

2+r
2+2r

 = 0,

which for r = 1 yields

X =
1
3


2 −1

−1 2

 ,
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with eigenvalues λ1 = 1/3 and λ2 = 1. Now suppose we replace our original MPC

problem by the following problem with modified cost to track the point
[
0 4

]T
.

min
u0,v0

{
x̂2

1 + (ŷ1 − 4)2 + r
(
u2

0 + v2
0

)}
s.t. x̂1 − ŷ1 ≤ 1,

x̂1 = x̂0 + u0,

ŷ1 = ŷ0 + v0,

x̂0 = x(t) − x̃(t)

ŷ0 = y(t) − ỹ(t).

In this case, the cost function ensures that the constraint will never be active. That is, we

compute the optimal control inputs by solving the unconstrained version of a modified

problem. The resulting affine optimal control signals are
u0

v0

 =

− 1

1+r 0

0 − 1
1+r



x̂0

ŷ0

 +


0

4
1+r

 ,
yielding the decoupled, stable closed-loop dynamics

x(t + 1)

y(t + 1)

 =


r
1+r 0

0 r
1+r



x(t)

y(t)

 +


0

4
1+r

 +


1
1+r 0

0 1
1+r



x̃(t)

ỹ(t)

 .
Solving for the closed-loop covariance matrix with W = I and r = 1 now yields

X =
1
3


1 0

0 1

 ,
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Figure 3.3: Closed-loop simulation of actual state values for Example 3.2, MPC with
state estimate feedback. The shaded area is the constraint region y ≥ x − 1 in the real
state variables. Red crosses indicate state values for state estimate feedback MPC with
active constraint. Blue crosses are for state estimate feedback without active constraint.
Mean values are marked by black xs. Both sets of solutions exhibit the effect of state
estimate errors. Note the proportion of infeasible state values for the actively constrained
problem. Note also the amplification of the variance of the solutions orthogonal to the
active constraint when compared to the unconstrained solution.

which has eigenvalues λ1 = λ2 = 1/3. That is, the modified (no longer actively con-

strained) MPC problem leads to decreased closed-loop variance with respect to the orig-

inal problem. This demonstrates how the presence of an active constraint in the MPC

formulation can potentially cause increased closed-loop sensitivity to estimation errors.

Closed-loop behavior for both systems is displayed jointly in Figure 3.3 for zero-mean,

normally distributed estimation errors with covariance matrix W = I.
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3.3 Nonlinear Model Predictive Control

In this section, we discuss briefly how our observations for linear quadratic MPC

extend to nonlinear MPC problems, where system, constraints and cost can take more

general forms. Suppose our system is described by

x(t + 1) = f (x(t), u(t))

and future states from time t are predicted via

x̂k+1(t) = f (x̂k(t), uk(t)),

x̂0(t) = x(t) − x̃(t),

where x̃(t) again functions as an additive estimation error produced by an unspecified

state estimator. The general nonlinear MPC counterpart to (3.3) takes the form

min
u

p(x̂N) +
N−1∑
k=0

l(x̂k, uk)

 ,
s.t. gk(x̂k, uk) ≤ d, k = 0, . . . ,N − 1;

x̂k+1 = f (x̂k(t), uk(t)), k = 0, . . . ,N − 1;

x̂0 = x(t) − x̃(t).

(3.13)

Just as in the linear quadratic case, this MPC formulation leads to a multiparametric op-

timization problem. Using all possible collections of active constraints, we can decom-

pose this optimization problem into a number of local equality-constrained optimization

problems with equal parametric cost function. Under mild regularity assumptions on

the constraints, the implicit function theorem then states that the cost for each collec-



71

tion of active constraints can be optimized over a subspace resulting from the equality-

constraints, where each non-redundant active constraint reduces the subspace dimension

by one. We then arrive at an explicit state-estimate feedback solution over a partition of

the feasible region. This partition is generally not polytopic, just as the feasible region

cannot be expected to be a polytope. However, the means by which estimation errors

can perturb the closed-loop are structurally the same as in the linear quadratic case.

1. State and state estimate may lie within the same region Ri. If x̃ is within a given

set including the origin, the estimation error affects the optimal control sequence

through the local control law on Ri.

2. State and state estimate may lie within different constraint regions. If x̃ is such

that x̂0 ∈ R j and x(t) ∈ Ri with i , j, the nonlinear MPC problem is additionally

perturbed by a change in the set of active equality constraints, resulting in an effect

depending on the local control laws on both Ri and R j.

3.4 Conclusions

In this chapter, we have explored how constraints in model predictive control do

not generally come for free. While the commonly employed assumption of full state-

feedback masks this drawback, it becomes apparent when dealing with state-estimate

feedback control. In this case, larger numbers of active constraints result in extra chan-

nels through which estimation errors might be propagated into the control inputs and

subsequently perturb the closed-loop dynamics. These observations apply universally
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to model predictive control and suggest careful consideration when imposing constraints

on optimal control problems.
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Chapter 4

Stochastic Model Predictive Control:

Output-Feedback, Duality and

Performance

4.1 Introduction

MPC, in its original formulation, is a full-state feedback law. This underpins

two theoretical limitations of MPC: accommodation of output feedback, and extension

to include a cogent robustness theory since the state dimension is fixed. This chapter

addresses the first question. There have been a number of approaches, mostly hing-

ing on replacement of the measured true state by a state estimate, which is computed

via Kalman filtering [38, 4], moving-horizon estimator [6, 5], tube-based minimax es-

timators [7], etc. Apart from [6], these designs, often for linear systems, separate the

73
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estimator design from the control design. The control problem may be altered to ac-

commodate the state estimation error by methods such as: constraint tightening [4],

chance/probabilistic constraints [8], and so forth.

In this chapter, we first consider Stochastic Model Predictive Control (SMPC),

formulated as a variant of Stochastic Optimal Output Feedback Control (SOOFC), with-

out regard to computational tractability restrictions. By taking this route, we establish a

formulation of SMPC which possesses central features: accommodation of output feed-

back and duality/probing; examination of the probabilistic requirements of deterministic

and probabilistic constraints; guaranteed performance of the SMPC controller applied to

the system. Performance bounds are stated in relation to the infinite-horizon-optimally

controlled closed-loop performance.

This chapter does not seek to provide a comprehensive survey of the myriad

alternative approaches proposed for Stochastic Model Predictive Control (SMPC). For

that, we recommend the numerous available references such as [39, 40, 2, 41]. Rather,

we present a new algorithm for SMPC based on SOOFC and prove, particularly, per-

formance properties relative to optimality. As a by-product, we acquire a natural treat-

ment of output feedback via the Bayesian Filter and of the associated controller duality

required to balance probing for observability enhancement and regulation. The price

we pay for general nonlinear systems is the suspension of disbelief in computational

tractability. However, the approach delineates a target controller with assured properties.

Approximating this intractable controller by a more computationally amenable variant,

as opposed to identifying soluble but indirect problems without guarantees, holds the
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prospect of approximately attracting the benefits. Such a strategy, using a particle im-

plementation of the Bayesian filter and scenario methods at the cost of losing duality of

the control inputs, is discussed in [42].

The structure of the chapter is as follows. Section 4.2 briefly formulates SOOFC,

as used in Section 4.3 to present a new SMPC algorithm. After discussing recursive

feasibility of this algorithm in Section 4.4, we proceed by establishing conditions for

boundedness of the infinite-horizon discounted cost of the SMPC-controlled nonlinear

system in Section 4.5. Section 4.6 ties the performance of SMPC to the infinite-horizon

SOOFC performance. Section 4.7 provides a brief encapsulation and post-analysis of

the results and the set of technical assumptions in the chapter. We conclude the chapter

in Section 4.8.

Notation

R and R+ are real and non-negative real numbers, respectively. The set of non-

negative integers is denoted N0 and the set of positive integers by N1. We write se-

quences as tm , {t0, t1, . . . , tm}, where m ∈ N0; t∞ is an infinite sequence of the same

form. pdf(X) denotes the probability density function of random variable X while

pdf(X|Y) denotes the conditional probability density function of random variable X

given jointly distributed random variable Y . The acronyms a.s., a.e. and i.i.d. stand

for almost sure, almost everywhere and independent and identically distributed, respec-

tively.
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4.2 Stochastic Optimal Output-Feedback Control

We consider stochastic optimal control of nonlinear time-invariant dynamics of

the form

xk+1 = f (xk, uk,wk), x0, (4.1)

yk = h(xk, vk), (4.2)

where k ∈ N0, xk ∈ R
nx denotes the state with initial value x0, uk ∈ R

nu the control

input, yk ∈ R
ny the measurement output, wk ∈ R

nw the process noise and vk ∈ R
nv the

measurement noise. We denote by

π0|−1 , pdf(x0) (4.3)

the known a-priori density of the initial state and by

ζk , {y0, u0, y1, u1, . . . , uk−1, yk}, ζ0 , {y0}

the data available at time k. We make the following standing assumptions on the random

variables and system dynamics.

Assumption 4.1. The dynamics (4.1-4.2) satisfy

1. f (·, u, ·) is differentiable a.e. with full rank Jacobian ∀ u ∈ Rnu .

2. h(·, ·) is differentiable a.e. with full rank Jacobian.

3. wk and vk are i.i.d. sequences with known densities.

4. x0,wk, vl are mutually independent for all k, l ≥ 0.
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Assumption 4.2. The control input uk at time instant k ≥ 0 is a function of the data ζk

and π0|−1.

As there is no direct feedthrough from uk to yk, Assumptions 4.1 and 4.2 assure

that system (4.1-4.2) is a controlled Markov process [43]. Assumption 4.1 further en-

sures that f and h enjoy the Ponomarev 0-property [44] and hence that xk and yk possess

joint and marginal densities.

4.2.1 Information State & Bayesian Filter

Definition 4.1. The conditional density of state x given data ζk,

πk , pdf
(
xk | ζ

k
)
, k ∈ N0, (4.4)

is the information state of system (4.1-4.2).

For a Markov system such as (4.1-4.2), the information state is propagated via

the Bayesian Filter (e.g. [45, 46]):

πk =
pdf(yk | xk) πk|k−1∫

pdf(yk | xk) πk|k−1 dxk
, (4.5)

πk+1|k ,

∫
pdf(xk+1 | xk, uk) πk dxk, (4.6)

for k ∈ N0 and density π0|−1 as in (4.3). For linear dynamics and Gaussian noise, the

recursion (4.5-4.6) yields the Kalman Filter.

Definition 4.2. The recursion (4.5-4.6) defines the mapping

πk+1 = T (πk, yk+1, uk) , k ∈ N0. (4.7)
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4.2.2 Cost and Constraints

Definition 4.3. Ek[ · ] and Pk[ · ] are expected value and probability with respect to state

xk – with conditional density πk – and i.i.d. random variables {(w j, v j+1) : j ≥ k}.

Given the available data ζ0, we aim to select non-anticipatory (i.e. subject to

Assumption 4.2) control inputs uk to minimize

JN(π0,uN−1) , E0

N−1∑
j=0

α jc(x j, u j) + αNcN(xN)

 , (4.8)

where N is the control horizon, c : Rnx × Rnu → R+ the stage cost, cN : Rnx → R+

the terminal cost and α ∈ R+ a discount factor. Drawing from the literature (e.g. [47,

43]), optimal controls in (4.8) must inherently be separated feedback policies. That is,

control input uk depends on data ζk and initial density π0|−1 solely through the current

information state πk, leading to the closed-loop architecture displayed in Figure 4.1.

Optimality thus requires propagating πk and policies gk, where

uk = gk(πk). (4.9)

Cost (4.8) then reads

JN(π0, gN−1) = E0

N−1∑
j=0

α jc(x j, g j(π j)) + αNcN(xN)

 . (4.10)

Extending stochastic optimal control problems with cost (4.10) to the infinite horizon

(see [47, 48]) typically requires α < 1 and omitting the terminal cost term cN(·), leading

to

J∞(π0, g∞) , E0

 ∞∑
j=0

α jc(x j, g(π j))

 . (4.11)
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System (4.1-4.2)

x0, vk,wk

Filter (4.5-4.6)

π0|−1 = pdf(x0)

Control (4.9)
πk ykuk

z−1
uk−1

Output-Feedback Controller

Figure 4.1: Closed-loop system architecture for stochastic optimal output-feedback
control based on information state πk.

In addition to minimizing the expected value cost (4.10), we impose probabilistic

state constraints of the form

Pk [xk ∈ Xk] ≥ 1 − εk, k ∈ N1 (4.12)

for εk ∈ [0, 1). That is, we enforce constraints with respect to the known distributions of

the future noise variables and the conditional density of the current state xk, captured by

the information state πk. Moreover, we consider input constraints of the form

uk = gk(πk) ∈ Uk, k ∈ N0. (4.13)

When discussing infinite-horizon optimal control with cost (4.11), we replace the state

constraints (4.12) by the stationary probabilistic state constraints

Pk [xk ∈ X∞] ≥ 1 − ε∞, k ∈ N1 (4.14)
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for ε∞ ∈ [0, 1) and the input constraints (4.13) by

uk = gk(πk) ∈ U∞, k ∈ N0.

Definition 4.4. Denote by D the set of all densities on Rnx . Further define Ck ⊆ D, k ∈

N1, to be the set of all πk of xk satisfying the probabilistic constraint (4.12). Define C∞

likewise for (4.14).

4.2.3 Stochastic Optimal Control

Definition 4.5. Given dynamics (4.1-4.2), α ∈ R+ and horizon N ∈ N1, define the

finite-horizon stochastic optimal control problem

PN(π0) :



infgN−1 JN(π0, gN−1)

s.t. P j

[
x j ∈ X j

]
≥ 1 − ε j, j = 1, . . . ,N.

g j(π j) ∈ U j, j = 0, . . . ,N − 1.

Definition 4.6. Given dynamics (4.1-4.2) and α ∈ R+, define the infinite-horizon

stochastic optimal control problem

P∞(π0) :



infg∞ J∞(π0, g∞)

s.t. P j

[
x j ∈ X∞

]
≥ 1 − ε∞, j ∈ N1.

g j(π j) ∈ U∞, j ∈ N0.

Definition 4.7. π0 is feasible for PN(·) if there exists a sequence of policies gN−1 such

that, {w j, v j+1} j≥0-a.s., u j = g j(π j) satisfy the constraints and JN(π0, gN−1) is finite. Define

feasibility likewise for P∞(π0).
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In Stochastic Optimal Control, feasibility entails the existence of policies gk(·)

such that for any πk ∈ Ck, gk(πk) ∈ Uk and

πk+1 = T (πk, yk+1, gk(πk)) ∈ Ck+1, (wk, vk+1) − a.s.

Even though the state constraints (4.12) are probabilistic, this condition results in an

equivalent almost sure constraint on the conditional state densities. The stochastic op-

timal feedback policies in PN(π0) may now be computed in principle by solving the

Stochastic Dynamic Programming Equation (SDPE),

Vk(πk) , inf
gk(·)
Ek
[
c(xk, gk(πk)) + αVk+1(πk+1)

]
,

s.t. πk+1 ∈ Ck+1, (wk, vk+1) − a.s.

gk(πk) ∈ Uk

(4.15)

for k = 0, . . . ,N − 1 and πk ∈ Ck. The equation is solved backwards in time, from its

terminal value

VN(πN) , EN [cN(xN)] , πN ∈ CN . (4.16)

Solution of the SDPE is the primary source of the restrictive computational de-

mands in Stochastic Optimal Control. The reason for this difficulty lies in the depen-

dence of the future information state in each step of (4.15-4.16) on the current and future

control inputs. While the dependence on future control inputs is limiting even in deter-

ministic control, the computational burden is drastically worsened in the stochastic case

because of the complexity of the operator Tk in (4.7). On the other hand, optimality

via the SDPE leads to a control law of dual nature. Dual optimal control connotes the
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compromise in optimal control between the control signal’s function to reveal the state

and its function to regulate that state. These dual actions are typically antagonistic [49].

The duality of stochastic optimal control is a generic feature, although there exist some

problems – called neutral – where the probing nature of the control evanesces, linear

Gaussian control being one such case.

Notice that, while the Bayesian Filter (4.5-4.6) can be approximated to arbi-

trary accuracy using a Particle Filter [46], the SDPE cannot be easily simplified without

loss of optimal probing in the control inputs. While control laws generated without

solution of the SDPE can be modified artificially to include certain excitation proper-

ties, as discussed for instance in [50, 11], such approaches are suboptimal and do not

generally enjoy the theoretical guarantees discussed below. For the stochastic optimal

control problems considered here, excitation of the control signal is incorporated auto-

matically and as necessary through the optimization. The optimal control policies, g?j (·),

will inherently inject excitation into the control signal depending on the quality of state

knowledge embodied in πk.
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4.3 Stochastic Model Predictive Control

Algorithm 1 *
(Dual Optimal) SMPC

Given: π0|−1 ∈ D and α ∈ R+

1: Offline: Solve PN(·) for g?0 (·) via (4.15-4.16)

2: Online:

3: for k ∈ N0 do

4: Measure yk

5: Compute πk

6: Apply first optimal control policy, uk = g?0 (πk)

7: Compute πk+1|k

8: end for

Notice how this algorithm differs from common practice in SMPC [51, 41] in

that we explicitly use the information states πk ∈ D. Throughout the literature, these

information states – conditional densities – are replaced by best available, or certainty-

equivalent state estimates in Rnx . While this makes the problem more tractable, one no

longer solves the underlying stochastic optimal control problem. As we shall demon-

strate in this chapter, using information state πk and optimal policy g?0 (·) resulting from

solution of Problem PN(πk) at each time instance leads to a number of results regarding

closed-loop performance on the infinite horizon.
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4.4 Recursive Feasibility

Assumption 4.3. π0|−1 yields π0 feasible for PN(·), v0-a.s.

Assumption 4.4. The constraints in PN(·) and P∞(·), for j = 1, . . . ,N − 1, satisfy

C j+1 ⊆ C j ⊆ C∞, U j ⊆ U j−1 ⊆ U∞.

Assumption 4.5. For all densities πk ∈ CN , there exists a policy g̃(πk) satisfying

g̃(πk) ∈ UN−1,

T (πk, yk+1, g̃(πk)) ∈ CN , (wk, vk+1) − a.s.,

c(xk, g̃(πk)) < ∞.

Theorem 4.1. Given Assumptions 4.3-4.5, SMPC yields πk feasible for PN(·),

{w j, v j+1} j≥0-a.s., for all k ∈ N1.

Proof. It is sufficient to verify that, provided feasible initial information state π0, infor-

mation state π1 remains feasible for PN(·). By feasibility of π0 (Assumption 4.3), there

exists a sequence of policies gN−1 such that

P j+1

[
x j+1 ∈ X j+1

]
≥ 1 − ε j+1,

u j = g j(π j) ∈ U j,

JN(π0, gN−1) < ∞,

a.s. for j = 0, . . . ,N − 1. Now consider information state π1, propagated via (4.5-4.6),

and feedback policies

ĝN−1 , {g1, g2, . . . , gN−1, g̃}.
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By Assumptions 4.4 and 4.5, we have

P j+2

[
x j+2 ∈ X j+1

]
≥ 1 − ε j+1,

u j+1 = ĝ j(π j+1) ∈ U j,

JN(π1, ĝN−1) < ∞,

a.s. for j = 0, . . . ,N − 1, confirming feasibility of π1 for PN(·). �

The above proof follows directly as a stochastic version of the corresponding

result in deterministic MPC, e.g. [27]. Notice that recursive feasibility and compact X1

immediately implies a stability result independent of the cost (4.10), i.e.

Pk[xk ∈ X1] ≥ 1 − ε1, {w j, v j+1} j≥0 − a.s., (4.17)

for k ∈ N1.

4.5 Convergence and Stability

Assumption 4.6. For a given α ∈ R+, the terminal feedback policy g̃(π) specified in

Assumption 4.5 satisfies

αEπ
[
cN( f (x, g̃(π),w))

]
− cN(x)

a.s.
≤ −c(x, g̃(π)) (4.18)

for all densities π of x with π ∈ CN . The expectation Eπ[·] is with respect to state x –

with density π – and w.
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For α ≥ 1, Assumption 4.6 can be interpreted as the existence of a stochastic

Lyapunov function on the terminal set of densities, CN . If (4.18) holds for α ≥ 1, it

naturally holds for all α ∈ (0, 1].

Theorem 4.2. Given Assumptions 4.3-4.6, SMPC yields

lim
M→∞

M∑
k=0

αkc(xk, g?0 (πk))
a.s.
< ∞. (4.19)

Proof. Denote by Mk the discounted PN-cost-to-go,

Mk ,
k+N−1∑

j=k

α jc(x j, g?j−k(π j)) + αk+NcN(xk+N)

= αk

N−1∑
j=0

α jc(xk+ j, g?j (πk+ j)) + αNcN(xk+N)

 ,
where g?j (·), j = 0, . . . ,N − 1, are the optimal feedback policies in Problem PN(·).

Moreover, define Fk as the σ-algebra generated by the initial state x0 with density π0|−1

and the i.i.d. noise sequences w j and v j for j = 0, . . . , k + N − 1. Then Mk is Fk-

measurable and Mk ≥ 0 by non-negativity of stage and terminal cost. Then,

E0 [Mk+1 | Fk] = αk+1E0

[ N−1∑
j=0

α jc(x j+k+1, g?j (π j+k+1)) + αNcN(xk+N+1) | Fk

]
,

and, by optimality of the policies g?j (·) in PN(·),

E0[Mk+1 | Fk]
a.s.
≤ E0

[
Mk − α

kc(xk, g?0 (πk)) − αk+NcN(xk+N) +

αk+Nc(xk+N , g̃(πk+N)) + αk+N+1cN( f (xk+N , g̃(πk+N),wk+N)) | Fk

]
,

where g̃(·) denotes the terminal feedback policy, specified by Assumptions 4.5 and 4.6,

and feasibility follows as in the proof of Theorem 4.1. Given that

Mk − α
kc(xk, g?0 (πk)) − αk+NcN(xk+N) + αk+Nc(xk+N , g̃(πk+N))
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is Fk-measurable, we then have

E0[Mk+1 | Fk]
a.s.
≤ Mk − α

kc(xk, g?0 (πk)) − αk+NcN(xk+N)+

αk+Nc(xk+N , g̃(πk+N)) + αk+N+1E0[cN( f (xk+N , g̃(πk+N),wk+N)) | Fk].

By Assumption 4.6, this yields

E0 [Mk+1 | Fk]
a.s.
≤ Mk − α

kc(xk, g?0 (πk)). (4.20)

Taking expectations in (4.20) further gives

E0 [Mk+1] ≤ E0

[
Mk − α

kc(xk, g?0 (πk))
]
,

where E0 [M0] < ∞ via feasibility of π0 for P(·). By positivity of the stage cost, this

yields

sup
k∈N0

E0 [|Mk|] < ∞. (4.21)

Inequalities (4.20) and (4.21) with non-negativity of the stage cost show that Mk is a

non-negative L1-supermartingale on its filtration Fk and thus, by Doob’s Martingale

Convergence Theorem (see [52]), converges almost surely to a finite random variable,

Mk
a.s.
→ M∞ < ∞, as k → ∞. (4.22)

Now define Zk to be the discounted sample PN cost-to-go plus the achieved MPC cost

at time k,

Zk , Mk +

k−1∑
j=0

α jc(x j, g?0 (π j)) ≥ 0.
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Then,

E0 [Zk+1 | Fk]
a.s.
≤ Mk − α

kc(xk, g?0 (πk)) +
k∑

j=0

α jc(x j, g?0 (π j)) = Zk.

That is, recognizing that Z0 = M0 so that E0[|Z0|] < ∞, Zk also is a non-negative L1-

supermartingale and converges almost surely to a finite random variable

Zk
a.s.
→ Z∞ < ∞, as k → ∞.

However, by definition of Zk and (4.22), this implies (4.19). �

While the discount factor α may not seem to play a major role in this result,

notice that small values of α may be required to satisfy Assumption 4.6. For α ≥ 1,

(4.19) implies almost sure convergence to 0 of the achieved stage cost.

Assumption 4.7. State x is detectable via the stage cost:

c(xk, uk)
a.s.
→ 0 as k → ∞ =⇒ xk

a.s.
→ X as k → ∞.

Theorem 4.3. Given Assumptions 4.3-4.7, SMPC with α ≥ 1 yields

lim
M→∞

M∑
k=0

c(xk, g?0 (πk))
a.s.
< ∞

and

xk
a.s.
→ X, as k → ∞. (4.23)

Proof. First proceed as in the proof of Theorem 4.2. By Doob’s Decomposition The-

orem (see [53]) on (4.22), there exists a martingaleMk and a decreasing sequence Ak
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such that Mk = Mk + Ak, where Ak → A∞ a.s. by (4.22). Using this decomposition,

(4.20) yields

c(xk, g?0 (πk)) ≤ αkc(xk, g?0 (πk))
a.s.
≤

Mk − E0 [Mk+1 | Fk] = Ak − E0 [Ak+1 | Fk]
a.s.
≤ Ak − E0 [A∞ | Fk] .

Taking limits as k → ∞ and re-invoking non-negativity of the stage cost then leads to

c(xk, g?0 (πk)) → 0 a.s., which by the detectability condition on the stage cost (Assump-

tion 4.7) verifies (4.23). �

While (4.23) holds only for α ≥ 1, notice that SMPC for α ∈ [0, 1) with re-

cursive feasibility possesses the default stability property (4.17). For zero terminal cost

cN(x) ≡ 0, Assumption 4.8 replaces Assumption 4.6 to guarantee (4.19), a finite dis-

counted infinite-horizon SMPC cost.

Assumption 4.8. The terminal feedback policy g̃(π) specified in Assumption 4.5 satis-

fies

c(x, g̃(π)) a.s.
= 0

for all densities π of x with π ∈ CN .

Corollary 4.1. Given Assumptions 4.3-4.5 and 4.8, SMPC with zero terminal cost

cN(x) ≡ 0 yields

lim
M→∞

M∑
k=0

αkc(xk, g?0 (πk))
a.s.
< ∞.
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Moreover, if α = 1 and Assumption 4.7 is added, we have

xk
a.s.
→ X, as k → ∞.

4.6 Infinite-Horizon Performance Bounds

In the following, we establish performance bounds for SMPC, implemented on

the infinite horizon as a proxy to solving the infinite-horizon stochastic optimal control

problemP∞(π). These bounds are in the spirit of previously established bounds reported

for deterministic MPC in [26] and the stochastic full state-feedback case in [28].

Assumption 4.9. There exist γ ∈ [0, 1] and η ∈ R+ such that

E0
[
V0(T (π0, y1, g?0 (π0))) − V1(T (π0, y1, g?0 (π0)))

]
≤ γE0

[
c(x0, g?0 (π0))

]
+ η (4.24)

for all densities π0 of x0 which are feasible in PN(·).

Definition 4.8. Denote by gMPC the SMPC implementation of policy g?0 (·) on the infinite

horizon, i.e.

gMPC , {g?0 , g
?
0 , g

?
0 , . . .}.

Similarly, g?N−1
and g?∞ are the optimal sequences of policies in Problems PN(·) and

P∞(·), respectively.

Theorem 4.4. Given Assumptions 4.3-4.5 and 4.9, SMPC with α ∈ [0, 1) yields

(1 − αγ) J∞(π0, g?
∞

) ≤ (1 − αγ) J∞(π0, gMPC) ≤ JN(π0, g?
N−1

) +
α

1 − α
η. (4.25)
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Proof. The optimal value function in the SDPE (4.15) satisfies V0(π0) = JN(π0, g?
N−1

),

so that optimality of policy g?0 (·) in Problem PN(π0) implies

V0(π0) = E0
[
c(x0, g?0 (π0)) + αV1(T (π0, y1, g?0 (π0)))

]
+ αE0

[
V0(T (π0, y1, g?0 (π0)))

]
− αE0

[
V0(T (π0, y1, g?0 (π0)))

]
,

which by Assumption 4.9 yields

(1 − αγ)E0
[
c(x0, g?0 (π0))

]
≤ V0(π0) − αE0

[
V0(T (π0, y1, g?0 (π0)))

]
+ αη. (4.26)

Now denote by JM
∞ (π0, gMPC) the first M ∈ N1 terms of the infinite-horizon cost

J∞(π0, gMPC) subject to the SMPC implementation of policy g∗0(·). By (4.26), we have

(1 − αγ)JM
∞ (π0, gMPC) = (1 − αγ)E0

M−1∑
k=0

αkc(xk, g?0 (πk))

 ≤
E0

[
V0(π0) − αV0(π1) + αη + αV0(π1) − α2V0(π2)+

α2η + . . . + αM−1V0(πM−1) − αMV0(πM) + αMη
]
,

such that

(1 − αγ)JM
∞ (π0, gMPC) ≤ JN(π0, g?

N−1
) − αME0

[
JN(πM, g?

N−1
)
]
+
(
α + . . . + αM

)
η,

which by non-negativity of the stage cost confirms the right-hand inequality in (4.25) in

the limit as M → ∞. The left-hand inequality follows directly from optimality. �

In the special case γ = 0, we impose the following assumption on the terminal

cost to obtain an insightful corollary to Theorem 4.4.
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Assumption 4.10. For α ∈ [0, 1), there exists η ∈ R+ such that the terminal policy g̃(·)

specified in Assumption 4.5 satisfies

Eπ
[
α cN( f (x, g̃(π),w)) − cN(x)

]
≤ −Eπ

[
c(x, g̃(π))

]
+
η

αN−1 ,

for all densities π of x with π ∈ CN . The expectation Eπ[·] is with respect to state x –

with density π – and w.

Corollary 4.2. Given Assumptions 4.3-4.5 and 4.10, SMPC with α ∈ [0, 1) yields

J∞(π0, g?
∞

) ≤ J∞(π0, gMPC) ≤ JN(π0, g?
N−1

) +
α

1 − α
η.

Proof. For conditional densities π1 of x1 such that π1 ∈ C1, use optimality and subse-

quently Assumption 4.10 to conclude

V0(π1) − V1(π1) = E1

[ N−1∑
k=0

αkc(xk+1, g?k (πk+1)) + αNcN(xN+1)


−

N−2∑
k=0

αkc(xk+1, g?k+1(πk+1)) + αN−1cN(xN)

 ]

≤ E1[αN−1c(xN , g̃(πN)) + αNcN( f (xN , g̃(πN),wN)) − αN−1cN(xN)]

≤ η,

which by (4.17) implies V0(πk) − V1(πk) ≤ η for k ∈ N1. However, this means Assump-

tion 4.9 is satisfied with γ = 0 and thus completes the proof by Theorem 4.4. �

This Corollary relates the following quantities: design cost, JN(π0, g∗
N−1

), which

is known as part of the SMPC calculation, optimal cost J∞(π0, g∗
∞

) which is unknown

(otherwise we would use g∗∞), and unknown infinite-horizon SMPC achieved cost

J∞(π0, gMPC).
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4.7 Discussion and Remarks

4.7.1 Interpretation of Results

SMPC is cast as a variant of stochastic optimal output feedback control (SOFC).

This is a closed-loop calculation which does not involve the computation of an open-

loop: control sequence, state sequence, or state density sequence. SMPC consists of

two distinct pieces: the Bayesian filter recursion (4.5-4.6) yielding the conditional state

density πk and the optimal feedback policy, g?0 (·). This is reminiscent of an explicit

implementation of MPC [35, 33], uk = κ(xk), with two central distinctions. The (finite-

dimensional) full-state measurement is replaced by the (infinite-dimensional) density

πk, and the explicit feedback law is computed as a closed-loop quantity via the SDPE

(4.15) in place of open-loop criterion minimization. Conventional MPC is a memoryless

nonlinear state-feedback controller, while SMPC has memory via πk and, therefore, may

include probing for state observability. This dual action of the control signal captured in

g?0 (·) is inherent to stochastic optimal control. The presented SMPC algorithm is new,

as are its performance and stability guarantees.

To our knowledge, the feasibility analysis of the stochastic optimal control prob-

lem via consideration of density classes is new. This permits treatment of recursive fea-

sibility for SMPC. Notably, constraints – whether probabilistic or almost sure – require

almost sure satisfaction with respect to the propagated information states. Performance

guarantees of SMPC are made in comparison to performance of the infinite-horizon

stochastically optimal controlled system and are presented in Theorem 4.4 and Corol-
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lary 4.2. These results extend those of [28], which pertain to full state stochastic optimal

feedback. Other examples of stochastic performance bounds are mostly restricted to lin-

ear systems and, while computable, do not relate to the optimal constrained control.

Linear gaussian systems collapse the SMPC algorithm into standard structure.

The Bayesian filter is identical to the Kalman filter since the conditional state density is

gaussian and therefore described by its conditional mean and covariance alone. The as-

sociated optimal control problem exhibits the Separation Principle of Wonham [54, 55],

which establishes that, for these systems with not-necessarily quadratic cost functions,

the optimal control is a function of the conditional mean of the information state. Fur-

ther, with quadratic costs, the optimal feedback control function is linear feedback [56].

Separation in this case means that the optimal output feedback controller comprises the

optimal (mean-square) estimator together with the optimal state feedback law. More

generally, the Bayesian filter possesses no optimality property itself just as the feedback

policy g?0 in isolation is not optimal.

4.7.2 Analysis of Assumptions

The sequence of assumptions becomes more inscrutable as our study progresses.

However, they deviate only slightly from standard assumptions in MPC, suitably

tweaked for stochastic applications. Assumptions 4.1 and 4.2 are regularity conditions

permitting the development of the Bayesian filter via densities and restricting the con-

trols to causal policies. Assumptions 4.3 and 4.4 limit the constraint sets and initial state

density to admit treatment of recursive feasibility.
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Assumptions 4.5, 4.6, 4.8 and 4.10 each concerns a putative terminal control pol-

icy, g̃(·). Assumption 4.5 implies positive invariance of the terminal constraint set under

g̃. Using the martingale analysis of the proof of Theorem 4.3, Assumption 4.6 ensures

that the extant g̃ achieves finite cost-to-go on the terminal set. The cost-detectability

Assumption 4.7 is familiar in Optimal Control to make the implication that finite cost

forces state convergence. Assumption 4.8 temporarily replaces Assumption 4.6 only to

consider the zero terminal cost case. Assumptions 4.9 and 4.10 presume monotonicity

of the finite-horizon cost with increasing horizon, firstly for the optimal policy g?0 and

then for the putative terminal policy, g̃ on the terminal set. These monotonicity assump-

tions mirror those of, for example, [26] for deterministic MPC and [28] for full-state

stochastic MPC. They underpin the deterministic Lyapunov analysis and the stochastic

Martingale analysis based on the cost-to-go.

4.7.3 Duality in Optimal Control

Apart from linear systems, state observability properties depend on the control

inputs [57, 58]. The following system is a distillation of a network congestion control

problem studied in [58].

x1
k+1 = w1

k + uk, w1
k ∼ U[0, 1],

x2
k+1 = w2

k , w2
t ∼ U[5, 6],

yk = max
[
x1

k , x
2
k

]
+ vk.
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Evidently, there are control sequences, {ut}, which render x1
t or x2

t unobservable from

{ut, yt}. Control ut ≡ 0 is one such sequence. Duality is a property of output feedback

control with or without parameter estimation.

Dual optimal control connotes the compromise in optimal control between the

control signal’s function to reveal the state and its function to regulate the state. The

dependence of the information state on the control signal is evident from (4.6). These

dual actions are typically antagonistic [49], leading Florentin [59], Jacobs and Patchell

[60], Bar-Shalom and Tse [61, 62] to introduce the notions of caution and probing in

stochastic optimal control. The duality of stochastic optimal control is a generic feature,

but there exist some circumstances where the probing nature of the control evanesces

due to the specific case at hand. Fel’dbaum [63, 64] classifies such problems as neutral.

The linear Gaussian stochastic optimal control problem is one instance given that in this

case the conditional mean and variance of the state provide a sufficient statistic with

respect to the conditional state density.

When system identification is combined with control, even in linear systems,

the state includes both the plant state and the parameters. Identifiability of the system

parameters depends on the signal excitation properties. A number of papers [65, 50, 11]

seek to impose artificially excitation conditions on the system input signals as part of the

constraints of MPC design. These are not optimal controls. For the stochastic optimal

control problems considered here, excitation of the control signal is incorporated into the

control, if necessary, as part of the optimization. The optimal control policy functions,

g?j (·), will inherently inject excitation into the control signal depending on the quality of
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state knowledge as embodied in πk. So these policies are complicated mappings of the

information state, which explains the difficulty of solving the SDPE.

4.7.4 Other Variants of Stochastic MPC

In their recent book [40], Kouvaritakis and Cannon provide a thorough analysis

of approaches to stochastic MPC, particularly in regard to linear systems. Their survey

includes Tube MPC for probabilistic constraints and uncertain systems with specified

state dimension. For stochastic output feedback control they adopt a certainty equiva-

lence control approach where a (finite-dimensional) state estimate, x̂k, replaces the ac-

tual state in the MPC calculations. Traditionally, the conditional mean, Eπk(x), is used.

Scenario methods deal with optimization of difficult, non-convex problems in

which the initial task is recast as a parametrized collection of simpler convex prob-

lems. Robust control can be formulated in this fashion. Random sampling of the pa-

rameter is performed and the resulting collection or union of optimizations is solved.

This sampling can occur by drawing from a known distribution or by repeated exper-

iments. In the MPC context, this has been proposed by a number of authors includ-

ing [66, 67, 68, 69, 70] with emphasis on stochastic dynamics and robustness with the

random parameter varying with time. The focus has been on full state feedback for

systems with linear dynamics and with probabilistic state constraints. The technical

construction is to take a sufficient number of samples (scenarios) to provide an adequate

reconstruction of future state distributions for design. These distribution are, however,

inherently open-loop constructions.
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From the perspective of this chapter, the scenario approach is best connected

with a possible numerical implementation of the prediction step of the Bayesian fil-

ter (4.6). [The measurement update stage (4.5) can be approximated by a resampling

process with the combined calculation yielding the Particle Filter.] It is interesting to

note that scenarios here occur in the state conditional density calculation, while the sce-

nario approach to MPC deals exclusively with full state feedback and uses sampling to

compute control signals, not control policies. The material presented here is not cap-

tured by the scenario MPC literature because, in the latter approach, the densities of

future (randomized) parameters depend in no way on the control signals, while this con-

trol duality is at the core of SMPC as in the present chapter. The focus on linear systems

in the scenario literature is stronger evidence of this distinction.

A better comparison to the present work than the scenario approach to MPC are

tube-based methods as discussed for instance in [9, 40, 29, 7]. These methods treat

perturbed linear systems with noise-corrupted output measurements. The disturbance

signals are typically bounded and may be either deterministic or stochastic in nature.

The forward propagation of the system dynamics with disturbance yields tubes in the

state space within which the actual states lie. Feedback control is then designed to

operate across all the tubes in a receding horizon fashion. This results in a robustness

to the actual disturbances. The achieved closed-loop performance of such tube MPC

controlled systems can be calculated (or bounded) from the system information. The

results extend to the stochastic case, especially with quadratic criteria.

These authors treat state estimate feedback via certainty equivalence for systems
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with linear dynamics. Under certainty equivalence, the control signal is a function of

a finite-dimensional statistic, usually the conditional mean, of the state, as opposed to

maintaining a copy of the entire conditional density. This state estimate can be derived

from a number of possible sources: Kalman filter, Luenberger observer, MHE, etc. Once

one restricts attention to systems with linear dynamics, duality drops from the picture.

Closed-loop output-feedback optimality of these methods is not considered.

4.8 Conclusions

The central contribution of the chapter is the presentation of an SMPC algo-

rithm based on SOOFC. This yields a number of theoretical properties of the controlled

system, some of which are simply recognized as the stochastic variants of results from

deterministic full-state feedback MPC with their attendant assumptions, including for

instance Theorem 4.1 for recursive feasibility. Theorem 4.2 is the main stability re-

sult in establishing the finiteness of the discounted cost of the SMPC-controlled system.

Theorem 4.3 and Corollary 4.1 deal with consequent convergence of the state in special

cases.

Performance guarantees of SMPC are made in comparison to performance of the

infinite-horizon stochastically optimally controlled system and are presented in Theo-

rem 4.4 and Corollary 4.2. These results extend those of [28], which pertain to full-state

feedback stochastic optimal control and which therefore do not accommodate duality.

Other examples of stochastic performance bounds are mostly restricted to linear systems
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and, while computable, do not relate to the optimal constrained control. While the for-

mal stochastic results are traceable to deterministic predecessors, the divergence from

earlier work is also notable. This concentrates on the use of the information state to ac-

commodate measurements and the exploration of control policy functionals stemming

from the Stochastic Dynamic Programming Equation. The resulting output feedback

control possesses duality and optimality properties which are either artificially imposed

in or absent from earlier approaches.

We further suggest two potential strategies to ameliorate the computational in-

tractability of the Bayesian filter and SDPE, famous for its curse of dimensionality.

Firstly, one may use the Particle filter implementation of the Bayesian filter, which has

many examples of fast execution for small state dimensions, which with a loss of duality

can be combined with scenario methods. This approach is discussed in [42] as an ap-

proximation of the algorithm in this chapter. Secondly, we point out that our algorithm

becomes computationally tractable for the special case of Partially Observable Markov

Decision Processes (POMDPs), which may be used either to approximate a nonlinear

model or to model a given system in the first place. This strategy inherits the dual nature

of our SMPC algorithm for general nonlinear systems.
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Chapter 5

Particle Model Predictive Control:

Tractable Stochastic Nonlinear

Output-Feedback MPC

5.1 Introduction

Model Predictive Control (MPC), in its original formulation, is a full-state feed-

back law (see [1, 2, 3]). This underpins two theoretical limitations of MPC: accom-

modation of output-feedback, and extension to include a compelling robustness theory

given the state dimension is fixed. This chapter addresses the first of these issues in a

rather general, though practical setup.

There has been a number of approaches to output-feedback MPC, mostly hing-

ing on the replacement of the measured true state by a state estimate, which is computed

102
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via Kalman filtering (e.g. [38, 4]), moving-horizon estimator (e.g. [6, 5]), tube-based

minimax estimators (e.g. [7]), etc. Apart from [6], these designs, often for linear sys-

tems, separate the estimator design from the control design. The control problem may

be altered to accommodate the state estimation error by methods such as: constraint

tightening as in [4], chance/probabilistic constraints as in [9] or [8], and so forth. Like-

wise, for nonlinear problems, where the state estimation behavior is affected by control

signal properties, the control may be modified to enhance the excitation properties of

the estimator, as suggested in [10, 11]. Each of these aspects of accommodation is made

in an isolated fashion.

The stochastic nonlinear output-feedback MPC algorithm presented in this chap-

ter is motivated by the structure of Stochastic Model Predictive Control (SMPC) via

finite-horizon stochastic optimal control. The latter method requires propagating con-

ditional state densities using a Bayesian Filter (BF) and solution of the Stochastic Dy-

namic Programming Equation (SDPE). By virtue of implementing a truly optimal finite-

horizon control law in a receding horizon fashion, one can deduce a number of proper-

ties of the closed-loop dynamics, including recursive feasibility of the SMPC controller,

stochastic stability and bounds characterizing closed-loop infinite-horizon performance,

as discussed in [71].

Unfortunately, solving for the stochastic optimal output-feedback controller,

even on the finite horizon, is computationally intractable except for special cases such as

linear quadratic Gaussian MPC because of the need to solve the SDPE, which incorpo-

rates the duality of the optimal control law in its effect on state observability. While the
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BF, required to propagate the conditional state densities, is readily approximated using

a Particle Filter (PF), open-loop solution of the SDPE results in the loss of the duality

of the optimal control. While not discussed in this chapter, this effect can be mitigated

sub-optimally by imposing excitation requirements as in [10, 11].

Approximately propagating the conditional state densities by means of the PF

naturally invites combination with the more recent advances in Scenario Model Predic-

tive Control (SCMPC), as discussed for instance by [72, 66, 67, 68, 69, 70]. Scenario

methods deal with optimization of difficult, non-convex problems in which the initial

task is recast as a parametrized collection of simpler, generally convex problems. Ran-

dom sampling of uncertain signals and parameters is performed and the resulting col-

lection of deterministic problem instances is solved. The focus has been on full state

feedback for systems with linear dynamics and probabilistic state constraints. The tech-

nical construction is to take a sufficient number of samples (scenarios) to provide an

adequate reconstruction of future controlled state densities for design.

In contrast to solving the SDPE underlying the stochastic optimal control prob-

lem, the future controlled state densities in SCMPC are open-loop constructions. How-

ever, they present a natural fit combined with the particle-based conditional density

approximations generated by the PF, where individual particles can be interpreted as

scenarios from an estimation perspective. Moreover, while SCMPC is typically for-

mulated in the linear case, the basic idea extends to the nonlinear case, albeit with the

loss of many computation-saving features. In this chapter, we propose and discuss this

output-feedback version of SCMPC combined with the PF, which we call Particle Model
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Predictive Control (PMPC). Compared with the stochastic optimal output-feedback con-

troller (computed via BF and SDPE), the PMPC controller is suboptimal in not accom-

modating future measurement updates and thereby losing both exact constraint violation

probabilities along the horizon and the probing requirement inherent to stochastic opti-

mal control. On the other hand, PMPC enables a generally applicable and, at least for

small state dimensions, computationally tractable alternative for nonlinear stochastic

output-feedback control.

The structure of the chapter is as follows. We briefly introduce the problem

setup in Section 5.2 and SMPC in Section 5.3 and proceed by introducing the PMPC

control algorithm based on its individual components and parameters in Section 5.4.

After describing the algorithm and its correspondence to SMPC, we use a challenging

scalar nonlinear example to demonstrate computational tractability and dependence of

the proposed PMPC closed-loop behavior on a number of parameters in Section 5.5.

The example features nonlinear state and measurement equations and probabilistic state

constraints under significant measurement noise. Finally, we conclude with Section 5.6.
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5.2 Stochastic Optimal Control – Setup

We consider receding horizon output-feedback control for nonlinear stochastic

systems of the form

xt+1 = f (xt, ut,wt), x0 ∈ R
n, (5.1)

yt = h(xt, vt), (5.2)

starting from known initial state probability density function, π0|−1 = pdf(x0). To this

end, we denote the data available at time t by

ζ t , {y0, u0, y1, u1, . . . , ut−1, yt}, ζ0 , {y0}.

The information state, denoted πt, is the conditional density of state xt given data ζ t.

πt , pdf
(
xt | ζ

t) . (5.3)

We further impose the following standing assumption on the random variables and con-

trol inputs.

Assumption 5.1. The signals in (5.1-5.2) satisfy:

1. {wt} and {vt} are sequences of independent and identically distributed random vari-

ables.

2. x0,wt, vl are mutually independent for all t, l ≥ 0.

3. The control input ut at time instant t ≥ 0 is a function of the data ζ t and given initial

state density π0|−1.



107

Denote by Et[ · ] and Pt[ · ] the conditional expected value and probability with

respect to state xt – with conditional density πt – and random variables {(wk, vk+1) : k ≥

t}, respectively, and by εk the constraint violation level of constraint xk ∈ Xk. Our goal

is to solve the finite-horizon stochastic optimal control problem (FHSOCP)

PN(πt) :



infut ,...,ut+N−1 Et

[∑t+N−1
k=t c(xk, uk) + cN(xt+N)

]
,

s.t. xk+1 = f (xk, uk,wk),

xt ∼ πt,

Pk+1 [xk+1 ∈ Xk+1] ≥ 1 − εk+1,

uk ∈ Uk,

k = t, . . . , t + N − 1.

In theory, solving the FHSOCP at each time t and subsequently implementing the first

control in a receding horizon fashion leads to a number of desirable closed-loop proper-

ties, as discussed in [71]. However, solving the FHSOCP is computationally intractable

in practice, a fact that has led to a number of approaches in MPC for nonlinear stochastic

dynamics. We propose a novel strategy that is oriented at the structure of SMPC based

on the FHSOCP, but numerically tractable at least for low state dimensions.

As a result of the Markovian state equation (5.1) and measurement equation

(5.2), the optimal control inputs in the FHSOCP must inherently be separated feedback

policies (e.g. [47, 43]). That is, control input ut depends on the available data ζ t and

initial density π0|−1 solely through the current information state, πt. Optimality thus
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requires propagating πt and policies gt, where

ut = gt(πt). (5.4)

Motivated by this two-component separated structure of stochastic optimal output-

feedback control, we propose an extension of the SCMPC approach to nonlinear sys-

tems, merged with a numerical approximation of the information state update via par-

ticle filtering. Before proceeding with this novel approach, we briefly revisit the two

components of SMPC via solution of the FHSOCP.

5.3 Stochastic Model Predictive Control

The information state is propagated via the Bayesian Filter (see e.g. [45, 46]):

πt =
pdf(yt | xt) πt|t−1∫

pdf(yt | xt) πt|t−1 dxt
, (5.5)

πt+1|t ,

∫
pdf(xt+1 | xt, ut) πt dxt, (5.6)

for t ∈ {0, 1, 2, . . .} and initial density π0|−1. The recursion (5.5-5.6) has the following

features:

• The measurement update (5.5) combines the a priori conditional density, πt|t−1,

and pdf(yt | xt), derived from (5.2) using knowledge of: the function h(·, ·), the

density of vt, and the value of yt.

• The time update (5.6) combines πt and pdf(xt+1|xt, ut), derived from (5.1) using

knowledge of: control input ut, function f (·, ·, ·), and the density of wt.
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• For linear Gaussian systems, the filter recursion (5.5-5.6) reduces to the well-

known Kalman Filter.

Combined with solution of the FHSOCP, this leads to the following SMPC algorithm,

as discussed in [71].

Algorithm 2 Stochastic Model Predictive Control
1: Offline:

2: Solve PN(·) for the first optimal policy, g?0 (·).

3: Online:

4: for t = 0, 1, 2, . . . do

5: Measure yt

6: Compute πt

7: Apply first optimal control policy, ut = g?0 (πt)

8: Compute πt+1|t

9: end for

Notice how this algorithm differs from common practice in stochastic model

predictive control in that it explicitly uses the information states πt. Throughout the

literature, these information states – conditional densities – are commonly replaced by

state estimates. While this makes the problem more tractable, one no longer solves the

underlying stochastic optimal control problem.The central divergence however lies in

Step 2 of the algorithm, in which the SDPE is presumed solved offline for the optimal

feedback policies, gt(πt), from (5.4). This is an extraordinarily difficult proposition in

many cases but captures the optimality, and hence duality, as a closed-loop feedback



110

control law. The complexity of this step lies not only in computing a vector functional

but also in the internal propagation of the information state within the SDPE.

5.4 Tractable Nonlinear Output-Feedback Model Pre-

dictive Control

In this section, we motivate a novel approach to output-feedback MPC that main-

tains the separated structure of SMPC while being numerically tractable for modest

problem size.

5.4.1 Approximate Information State & Particle Filter

The BF (5.5-5.6) propagates the information state πt to implement a necessarily

separated stochastic optimal output-feedback control law. While implementing this re-

cursion precisely is possible only in special cases such as linear Gaussian systems, where

the densities can be finitely parametrized, the BF can be implemented approximately by

means of the Particle Filter, with the approximation improving with the number of par-

ticles, as described for instance in [46]. In parallel with the BF, the PF consists of two

parts: the forward propagation of the state density, and the resampling of the density

using the next measurement.

The following algorithm describes a version of the PF amenable to PMPC in the

context of this chapter. This is a slightly modified version of the filter design described



111

by [46].

Algorithm 3 Particle Filter (PF)
1: Sample Np particles, {x−0,p, p = 1, . . . ,Np}, from density π0|−1.

2: for t = 0, 1, 2, . . . do

3: Measure yk.

4: Compute the relative likelihood qp of each particle x−t,p conditioned on the mea-

surement yt by evaluating pdf(yt | x−t,p) based on (5.2) and pdf(vt).

5: Normalize qp → qp/
∑Np

p=1 qp.

6: Sample Np particles, x+t,p, via resampling based on the relative likelihoods qp.

7: Given ut, propagate x−t+1,p = f (x+t,p, ut,wt,p), where wt,p is generated based on

pdf(wt).

8: end for

While a number of variations – such as roughening of the particles and differing

resampling strategies, including importance sampling – of this basic algorithm may be

sensible depending on the system at hand, this basic algorithm suffices in presenting a

numerical method of approximating the Bayesian Filter to arbitrary degree of accuracy

with increasing number of particles Np (see e.g. [73]). For a more detailed discussion

on the PF for use in state-estimate feedback control, see [74].

5.4.2 Scenario MPC and Particle Model Predictive Control

The Scenario Approach to MPC (e.g. [66, 67, 68, 69, 70]) commences from state

xt or state estimate, x̂t|t. It propagates, i.e. simulates, an open-loop controlled stochastic
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system with sampled process noise density pdf(wt). These propagated samples are then

used to evaluate controls for constraint satisfaction and for open-loop optimality with

probabilities tied to the sampled wt densities. In many regards, this is congruent to

repeated forward propagation of the PF via (5.6) without measurement update (5.5) and

commencing from a singular density at xt or x̂t|t. Particle MPC simply replaces the

starting point, x̂t|t, by the collection of particles {x+t,p, p = 1, . . . .Np} distributed as πt, as

illustrated in Figure 5.1.

time

futurepast

Figure 5.1: State density evolution in: Scenario MPC calculations (dots and solid out-
lines) and, Particle MPC (dashed outlines), for three steps into the future.

Before introducing the PMPC algorithm, we define a sampled, particle version
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of the FHSOCP, with Ns scenarios and Np available a posteriori particles at time t,

P̃N({x+t,p, p = 1, . . . ,Np}) :



infut ,...,ut+N−1

∑Ns
s=0

(∑t+N−1
k=t c(xk,s, uk) + cN(xt+N,s)

)
,

s.t. xk+1,s = f (xk,s, uk,wk,s),

xt,s ∈ {x+t,p, p = 1, . . . ,Np},

P̃k+1 [xk+1 ∈ Xk+1] ≥ 1 − εk+1,

uk ∈ Uk,

s = 1, . . . ,Ns, k = t, . . . , t + N − 1,

where statement

P̃k+1 [xk+1 ∈ Xk+1] ≥ 1 − εk+1

means that xk+1,s ∈ Xk+1 for at least (1 − εk+1)Ns scenarios. Following the approach in

[75], one may also choose to replace this constraint by xk+1 ∈ Xk+1 and select the number

of scenarios Ns according to the desired constraint violation levels εk+1. We are now in

position to formulate the PMPC algorithm following the schematic in Figure 5.1.
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Algorithm 4 Particle Model Predictive Control (PMPC)
1: Generate Np a priori particles, x−0,p, based on π0|−1.

2: for t = 0, 1, 2, . . . do

3: Measure yt.

4: Compute the relative likelihood qp of each particle x−t,p conditioned on the mea-

surement yt by evaluating pdf(yt | x−t,p) based on (5.2) and pdf(vt).

5: Normalize qp → qp/
∑Np

p=1 qp.

6: Generate Np a posteriori particles, x+t,p, via resampling based on the relative like-

lihoods qp.

7: Solve P̃N({x+t,p, p = 1, . . . ,Np}) for the optimal scenario control values

u?t , . . . , u
?
t+N−1.

8: Given u?t , propagate x−t+1,p = f (x+t,p, u
?
t ,wt,p), where wt,p is generated based on

pdf(wt).

9: end for

5.4.3 Computational Demand

Computational tractability of PMPC deteriorates with increasing: number of

particles; number of scenarios; system dimensions; control signal grid spacing; MPC

horizon. While the number of particles required for satisfactory performance of the PF

grows exponentially with the state dimension (e.g. [76]), it is unclear how to select an

appropriate number of scenarios in the nonlinear case. Suppose the state and input di-

mensions are n and m and that the numbers of particles and scenarios are chosen as
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Np = Pn and Ns = S n for positive integers P and S , respectively, and that the MPC

horizon is N. Further assuming a grid of Um points in the control space and brute-force

evaluation of all possible sequences, the order of growth for PMPC is approximately

O(Pn + S nUmN).

Notice that the computational demand associated with the conditional density

approximation in PMPC is additive in terms of the overall computational demand. This

indicates that, provided the PF is computationally tractable for given state dimensions,

tractability of PMPC is roughly equivalent to tractability of standard state-feedback

SCMPC. In the example below, we found that scenario optimization tends to be the

computational bottleneck at least for low system dimensions. Clearly, this observation

holds only when the scenario optimization is performed by explicit enumeration of all

feasible sequences over a grid in the control space, which may be avoided for particular

problem instances. But the experience also confirms that in the nonlinear case the open-

or closed-loop control calculation dominates the computational burden in comparison

to state estimation.

5.5 Numerical Example

Consider the scalar, nominally unstable nonlinear system

xt+1 = 1.5 xt + atan
(
(xt − 1)2

)
ut + wt,

yt = x3
t − xt + vt,
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where x0,wt and vl are mutually independent random variables for all t, l ≥ 0 and

x0 ∼ U(1, 2), wt ∼ U(−2, 2), vt ∼ N(0, 5),

for all t ≥ 0. We aim to minimize the quadratic cost function

JN(πt, ut, . . . , ut+N−1) = Et

t+N−1∑
k=t

(
100 x2

k + u2
k

)
+ 100 x2

t+N

 ,
while satisfying the constraints

Pk+1[xk+1 ≥ 1] ≥ 0.9, −5 ≤ uk ≤ 5,

along the control horizon N, that is k ∈ {t, . . . , t+N−1} for t ≥ 0. Notice how this system

has both limited observability and controllability close to the constraint but infeasible

unconstrained optimal states. In combination with the very noisy measurements, this

is a challenging control problem. To implement PMPC as described in Section 5.4

for this nonlinear stochastic output-feedback control problem, we further restrict the

control inputs to integer values, such that ut ∈ {−5,−4, . . . , 4, 5}. Figures 5.2- 5.5 display

simulated closed-loop state trajectories, control values and measurement values for four

PMPC controllers with differing parameters subject to the same realizations of process

and measurement noise, respectively.

Figure 5.2 displays closed-loop simulation results under PMPC with horizon

N = 3, Np = 5, 000 particles and Ns = 1, 000 scenarios. While the poor observability

properties of the system show close to the probabilistic constraint, it is satisfied at all

times in this simulation. This is still the case when decreasing the number of particles

to Np = 100 in the simulation displayed Figure 5.3. However, we see how in this case,
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the decreased accuracy of the PF leads to larger state-values in closed-loop. Similar

behavior is observed in Figure 5.4 when reducing the number of scenarios to Ns = 50.

Additionally, the controller violates the probabilistic constraint 3 times in this case. This

trend continues when reducing the horizon to N = 2, as displayed in Figure 5.5.

5.6 Conclusion

We presented PMPC as a novel approach to output-feedback control of stochas-

tic nonlinear systems. Generating scenarios not only from the distribution of the pro-

cess noise but also from the particles of the Particle Filter, PMPC combines the bene-

fits of the Particle Filter and Scenario MPC in a natural fit, allowing for a numerically

tractable version of stochastic MPC with general nonlinear dynamics, cost and prob-

abilistic constraints. Given a particular system instance, the algorithm and its prop-

erties may be adapted to exploit specific problem structure. Such extensions include:

sub-optimal probing via additional constraints; scenario removal; provable closed-loop

properties such as constraint satisfaction with specified confidence levels; optimization

over parametrized policies.
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Figure 5.2: Simulation data for example in Section 5.5 over 30 samples, running PMPC
with control horizon N = 3, number of particles Np = 5, 000 and number of scenar-
ios Ns = 1, 000. State, control and measurement values (blue), probabilistic and hard
constraints (red), 95% confidence interval of PF (black).
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Figure 5.3: Simulation data for example in Section 5.5 over 30 samples, running PMPC
with control horizon N = 3, number of particles Np = 100 and number of scenarios Ns =

1, 000. State, control and measurement values (blue), probabilistic and hard constraints
(red), 95% confidence interval of PF (black).
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Figure 5.4: Simulation data for example in Section 5.5 over 30 samples, running PMPC
with control horizon N = 3, number of particles Np = 5, 000 and number of scenarios
Ns = 50. State, control and measurement values (blue), probabilistic and hard con-
straints (red), 95% confidence interval of PF (black).
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Figure 5.5: Simulation data for example in Section 5.5 over 30 samples, running PMPC
with control horizon N = 2, number of particles Np = 5, 000 and number of scenar-
ios Ns = 1, 000. State, control and measurement values (blue), probabilistic and hard
constraints (red), 95% confidence interval of PF (black).
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Chapter 6

Performance of Model Predictive

Control of POMDPs

6.1 Introduction

Model Predictive Control (MPC) is well applied and popular because of its ca-

pacity to handle constraints and its simple formulation as an open-loop finite-horizon

optimization problem evaluated on the receding horizon [1, 2]. There are a few ar-

eas in which MPC is wanting for more complete results, notably in the area of output

feedback control and the associated requirement to manage the duality of the control

signal in stochastic MPC (SMPC) problems. When SMPC is developed as a logical

extension of finite-horizon Stochastic Optimal Control, which demands computation of

closed-loop policies, it inherits the computational intractability of this latter subject via

the inclusion of the Bayesian filter, required to propagate the conditional state densities,

123
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and the stochastic dynamic programming equation.

Results exist relating the infinite-horizon performance of MPC to both the op-

timal performance and the performance computed as part of the finite-horizon opti-

mization. These performance bounds are available in both the deterministic [26] and

the stochastic [71] settings, were one ever able to solve the underlying finite-horizon

stochastic problem computationally. While approximation of SMPC based on Stochas-

tic Optimal Control via more tractable surrogate problems is possible, such as for in-

stance in [5, 7, 72, 42], one generally loses the associated closed-loop guarantees, in

particular regarding infinite-horizon performance of the generated control laws.

In this chapter, we derive new performance results for SMPC of systems de-

scribed by Partially Observable Markov Decision Processes (POMDPs, see e.g. [77,

78]). POMDP system models of small to moderate dimensions admit tractable com-

putation of finite-horizon stochastic optimal control laws while preserving the control

signal duality, and so are attractive propositions with which to approach implementable

SMPC [79, 80]. In deriving perfomance bounds for this specific class of problems, we

examine their relation to the deterministic and stochastic continuous-state results, high-

lighting the role of value function monotonicity with horizon. All theorems discussed

in this chapter exhibit the same conceptual structure displayed in Figure 6.1.

While the capability of handling constraints is a raison-d’être for MPC, con-

straints complicate this analysis and add little to the discussion about closed-loop cost.

Thus, as in most of [26], we omit the explicit consideration in this chapter and point out

that constraints may be reinserted subject to recursive feasibility assumptions.
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Assumption:
Terminal cost contraction

⇓

Observation:
Value function monotonicity with horizon

⇓

Result:
Infinite-horizon optimal cost

≤

Achieved infinite-horizon MPC cost
≤

Computed N-horizon optimal cost

Figure 6.1: Conceptual structure of the results in Chapter 6.

The chapter is organized as follows. We revisit a particular infinite-horizon per-

formance result from [26] in Section 6.2. We then proceed by reviewing a stochastic

counterpart to this result, derived in [71], which we extend to receding horizon control

of POMDPs in Section 6.4. A specific POMDP example from healthcare is studied in

Section 6.5 to demonstrate numerically the satisfaction of assumptions, interpret control

duality, and evaluate performance bounds on the infinite control horizon. The example,

introduced in [80], displays in particular the dual nature of SMPC based on Stochastic

Optimal Control.

6.2 Deterministic Model Predictive Control

This section revisits a performance result for deterministic MPC from [26],

which we extend to SMPC for nonlinear systems (see also [71]) and POMDPs below.
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Consider the nonlinear dynamic system

xt+1 = f (xt, ut),

where xt ∈ X and ut ∈ U for t ∈ N0 , {0, 1, 2, . . .} and metric spaces X,U. Further define

the space of control sequences u : N0 → U as U. In principle, we aim to find control

policy µ : X → U that minimizes the infinite-horizon cost functional

J∞(x0, u) ,
∞∑

k=0

c(xk, uk), (6.1)

where c : X×U → R+ is the stage cost. We define the optimal value function associated

with cost (6.1) as

J?∞(x0) , inf
u

J∞(x0, u)

Given that solution of this infinite-horizon optimal control problem, even in the deter-

ministic case, is usually intractable, a popular approach is to replace (6.1) by a finite-

horizon optimal control problem over horizon N ∈ N0, with cost functional

JN(x0, u) ,
N−1∑
k=0

c(xk, uk) + cN(xN), (6.2)

where cN : X → R+ denotes an optional terminal cost term. The optimal value function

corresponding to (6.2) is defined by

J?N(x0) , inf
u

JN(x0, u). (6.3)

We further denote the sequence of optimal control policies in this finite-horizon problem

by µN , with first control policy µN
0 : X → U, which is implemented repeatedly in an
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MPC law, denoted by

µN
MPC , {µ

N
0 , µ

N
0 , . . .}.

We now aim to provide computational estimates of the infinite-horizon achieved MPC

cost J∞(x0, µ
N
MPC) in relation to the computed finite-horizon optimal cost JN(x, µN). This

goal can be achieved, for instance, by using the following assumption.

Assumption 6.1. For all x ∈ X, there exists u ∈ U such that

cN( f (x, u)) ≤ cN(x) − c(x, u).

This assumption on the terminal cost cN in (6.2) then leads to the following

performance guarantee.

Theorem 6.1 (Performance of deterministic MPC [26]). Given Assumption 6.1, the in-

equality

J?∞(x) ≤ J∞(x, µN
MPC) ≤ J?N(x)

holds for all x ∈ X.

This result, which is a special case of Theorem 6.2 in [26], allows us to provide

bounds on the achieved infinite-horizon performance of the closed-loop system when

choosing the terminal cost, cN , as a Lyapunov function. This result is particularly useful

because we compute the upper bound implicitly when generating our MPC control law,

µN
MPC. Theorem 6.1 follows given that Assumption 6.1 implies that the underlying finite-

horizon optimal value function J?N(x) is monotonically non-increasing with increasing
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control horizon N. Notice, further, how this result not only provides infinite- but also

finite-horizon closed-loop performance guarantees. This follows simply by

JM
∞ (x, µN

MPC) ≤ J∞(x, µN
MPC),

for all M ∈ N0 and x ∈ X, where

JM
∞ (x0, u) ,

M∑
k=0

c(xk, uk).

The stochastic extension of this observation is of interest in particular for applications

such as the healthcare example provided in Section 6.5 below, where infinite-horizon

performance may not be of particular interest given the inherent finite-horizon nature

of the control problem. We next provide results of similar quality to Theorem 6.1 for

SMPC and in particular SMPC applied to POMDPs in the following sections.

6.3 Stochastic Model Predictive Control

We next discuss closed-loop performance of SMPC as in [71]. Committing a

slight abuse of notation, we shall recycle most of the symbols used previously in Sec-

tion 6.2 above. Consider nonlinear stochastic systems of the form

xt+1 = f (xt, ut,wt), (6.4)

yt = h(xt, vt), (6.5)

where xt ∈ X, ut ∈ U, yt ∈ Y for t ∈ N0 and metric spaces X,U,Y , respectively. Starting

from known initial state density π0|−1 = pdf(x0), we denote the data available at time t
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by

ζ t , {y0, u0, y1, u1, . . . , ut−1, yt}, ζ0 , {y0}.

We further impose the following standing assumption on the random variables and con-

trol inputs.

Assumption 6.2. The signals in (6.4-6.5) satisfy:

1. wt and vt are i.i.d. sequences with known densities.

2. x0,wt, vl are mutually independent for all t, l ∈ N0.

3. The control input ut at time instant t ∈ N0 is a function of the data ζ t and given

initial state density π0|−1.

The information state, denoted πt, is the conditional probability density function

of state xt given data ζ t,

πt , pdf
(
xt | ζ

t) .
As a result of the Markovian dynamics (6.4-6.5), optimal control inputs must inherently

be separated feedback policies (e.g. [47, 43]). That is, optimal control input ut depends

on the data ζ t and initial density π0|−1 solely through the current information state, πt.

Optimality thus requires propagating πt and policies gt, where

ut = gt(πt).

Definition 6.1. Et[ · ] and Pt[ · ] are expected value and probability with respect to state

xt – with conditional density πt – and i.i.d. random variables {(wk, vk+1) : k ≥ t}.
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Notice that stochastic optimal control on the infinite horizon (see [47, 48]) typi-

cally requires a discount factor α < 1, casting the stochastic version of (6.1) as

J∞(π0, g) , E0

 ∞∑
k=0

αkc(xk, gk(πk))

 , (6.6)

with corresponding finite-horizon cost

JN(π0, g) , E0

N−1∑
k=0

αkc(xk, gk(πk)) + αNcN(xN)

 . (6.7)

Defining the optimal value function J?N(π0) as in (6.3),

J?N(π0) , inf
gk(·)

JN(π0, g),

finite-horizon stochastic optimal feedback policies may be computed, in principle, by

solving the stochastic dynamic programming equation,

J?N−k(πk) , inf
gk(·)
Ek
[
c(xk, gk(πk)) + αJ?N−k−1(πk+1)

]
, (6.8)

for k = 0, . . . ,N − 1. The equation is solved backwards in time, from its terminal value,

J?0 (πN) , EN [cN(xN)] . (6.9)

Similarly to Section 6.2, we denote by: J?∞(π) the infinite-horizon optimal value func-

tion; µN the sequence of optimal policies in (6.8-6.9); µN
0 the first element of this se-

quence; µN
MPC , {µ

N
0 , µ

N
0 , . . .} the receding horizon implementation of this sequence. We

next impose the following stochastic counterpart to Assumption 6.1 to discuss the infi-

nite horizon cost of the SMPC law µN
MPC.



131

Assumption 6.3. For α ∈ [0, 1), there exist η ∈ R+ and a policy g̃(·) such that

Eπ
[
α cN( f (x, g̃(π),w))

]
≤ Eπ

[
cN(x) − c(x, g̃(π))

]
+
η

αN−1 ,

for all densities π of x ∈ X. The expectation Eπ[·] is with respect to state x – with

conditional density π – and w.

This assumption then leads to the following extension of Theorem 6.1 to SMPC

of system (6.4-6.5).

Theorem 6.2 (Performance of stochastic MPC [71]). Given Assumption 6.3, SMPC with

α ∈ [0, 1) yields

J?∞(π) ≤ J∞(π, µN
MPC) ≤ J?N(π) +

α

1 − α
η,

for all densities π of x ∈ X.

This result relates the following quantities in SMPC: design cost, J?N(π), which

is evaluated as part of the SMPC computation; optimal cost, J?∞(π), which is unknown

(otherwise we would use the infinite-horizon optimal policy); and, unknown infinite-

horizon SMPC achieved cost J∞(π, µN
MPC). The result, which must exhibit duality and

satisfaction of the stochastic programming equation (6.8-6.9), is special in that SMPC

approaches relying on approximation of the finite horizon Stochastic Optimal Control

problem, as commonly found in the literature, do not generally yield statements regard-

ing performance of the implemented control laws on the infinite horizon. This fact is

linked inherently to the loss of the dual optimal nature of the control inputs when avoid-

ing solution of (6.8-6.9).
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As in Section 6.2 and Theorem 6.1, the proof of Theorem 6.2 via Assumption 6.3

relies on verifying monotonicity of the underlying optimal value function J?N(π). We

next proceed by extending this result and its proof to dual optimal receding horizon

control of POMDPs.

6.4 Stochastic MPC for POMDPs

POMDPs are characterized by probabilistic dynamics on a finite state space X =

{1, . . . , n}, finite action space U = {1, . . . ,m}, and finite observation space Y = {1, . . . , o}.

POMDP dynamics are defined by the conditional state transition and observation prob-

abilities

P (xt+1 = j | xt = i, ut = a) = pa
i j, (6.10)

P (yt+1 = θ | xt+1 = j, ut = a) = ra
jθ, (6.11)

where t ∈ N0, i, j ∈ X, a ∈ U, θ ∈ Y . The state transition dynamics (6.10) correspond

to a conventional Markov Decision Process (MDP, e.g. [81]). However, the control

actions ut are to chosen based on the known initial state distribution π0 = pdf(x0) and

the sequences of observations, {y1, . . . , yt}, and controls {u0, . . . , ut−1}, respectively. That

is, we are choosing our control actions in a Hidden Markov Model (HMM, e.g. [82])

setup. Notice that, while POMDPs conventionally do not have an initial observation y0

in (6.11), as is commonly assumed in nonlinear system models of the form (6.4-6.5),

one can easily modify this basic setup without altering the discussion below.
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Given control action ut = a and measured output yt+1 = θ, the information state

πt in a POMDP is updated via

πt+1, j =

∑
i∈X πt, j pa

i jr
a
jθ∑

i, j∈X πt, j pa
i jr

a
jθ
,

where πt, j denotes the jth entry of the row vector πt. To specify the cost functionals (6.6)

and (6.7) in the POMDP setup, we write the stage cost as c(xt, ut) = ca
i if xt = i ∈ X

and ut = a ∈ U, summarized in the column vectors c(a) of the same dimension as row

vectors πk. Similarly, the terminal cost terms are cN(xt) = ci,N if xN = i ∈ X, summarized

in the column vector cN . The infinite horizon cost functional defined in Section 6.3 then

follows as

J∞(π0, g) = E0

 ∞∑
k=0

αkπkc(gk(πk))

 ,
with corresponding finite-horizon variant

JN(π0, g) = E0

N−1∑
k=0

αkπkc(gk(πk)) + αNπNcN

 .
Extending (6.8-6.9), optimal control decisions may then be computed via

J?N−k(πk) = min
gk(·)

πkc(gk(πk)) + α
∑
θ∈Y

P (yk+1 = θ | πk, gk(πk)) J?N−k−1(πk+1)

 , (6.12)

for k = 0, . . . ,N − 1, from terminal value function

J?0 (πN) = πNcN . (6.13)

Using the notation for optimal finite- and infinite-horizon value functions as well as

MPC policies introduced in Section 6.3, we next prove the following auxiliary result

before extending the performance guarantees in Theorem 6.2 to SMPC on POMDPs.
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Lemma 6.1. If there exist γ ∈ [0, 1] and η ∈ R+ such that

E0
[
J?N(π1) − J?N−1(π1)

]
≤ γE0

[
π0c(µN

0 (π0))
]
+ η, (6.14)

for all densities π0 of x0 ∈ X, then SMPC with discount factor α ∈ [0, 1) yields

(1 − αγ) J?∞(π0) ≤ (1 − αγ) J∞(π0, µ
N
MPC) ≤ J?N(π0) +

α

1 − α
η. (6.15)

Proof. Optimality of the initial policy µN
0 (·) implies

J?N(π0) = E0

[
π0c(µN

0 ) + αJ?N−1(π1)
]
+ αE0

[
J?N(π1) − J?N(π1)

]
,

which by (6.14) yields

(1 − αγ)E0

[
π0c(µN

0 (π0))
]
≤ J?N(π0) − αE0

[
J?N(π1)

]
+ αη. (6.16)

Now denote by JM
∞ (π0, µ

N
MPC) the first M ∈ N1 terms of the achieved infinite-horizon cost

J∞(π0, µ
N
MPC) subject to the SMPC implementation of policy µN

0 (·). By (6.16), we have

(1 − αγ)JM
∞ (π0, µ

N
MPC) = (1 − αγ)E0

M−1∑
k=0

αkπkc(µN
0 (πk))

 ≤
E0

[
J?N(π0) − αJ?N(π1) + αη + αJ?N(π1) − α2J?N(π2)+

α2η + . . . + αM−1J?N(πM−1) − αM J?N(πM) + αMη
]
,

such that

(1 − αγ)JM
∞ (π0, µ

N
MPC) ≤ J?N(π0) − αME0

[
J?N(πM)

]
+
(
α + . . . + αM

)
η,

which confirms the right-hand inequality in (6.15) in the limit as M → ∞. The left-hand

inequality follows directly from optimality on the infinite horizon. �
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This lemma then leads to the following assumption and subsequent performance

result in the spirit of Theorems 6.1-6.2.

Assumption 6.4. For α ∈ [0, 1), there exist η ∈ R+ and a policy g̃(·) such that

E0 [απ1cN] ≤ E0
[
π0cN − π0c(g̃(π0))

]
+
η

αN−1 , (6.17)

for all densities π0 of x0 ∈ X.

Theorem 6.3. [Performance of SMPC for POMDPs] Given Assumption 6.4, SMPC for

POMDPs with α ∈ [0, 1) yields

J?∞(π) ≤ J∞(π, µN
MPC) ≤ J?N(π) +

α

1 − α
η,

for all densities π of x ∈ X.

Proof. Use optimality and Assumption 6.4 to conclude

J?N(π1) − J?N−1(π1) = E0

[ N−1∑
k=0

αkπk+1c(µN
k (πk+1)) + αNπN+1cN


−

N−2∑
k=0

αkπk+1c(µN
k+1(πk+1)) + αN−1πNcN

 ]

≤ E0

[
αN−1πNc(g̃(πN)) + αNπN+1cN − α

N−1πNcN

]
≤ η,

which implies (6.14) with γ = 0 and thus completes the proof by Lemma 6.1. �
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6.5 Numerical Example in Healthcare

6.5.1 Problem Setup

The remainder of this chapter discusses a particular numerical example of deci-

sions on treatment and diagnosis in healthcare, displaying specifically the use of dual

control in SMPC applied to a POMDP. Consider a patient treated for a specific disease

which can be managed but not cured. For simplicity, we assume that the patient does

not die under treatment. While this transition would have to be added in practice, it re-

sults in a time-varying model, which we avoid in order to keep the following discussion

compact.

The example, introduced in [80], is set up as follows. The disease encompasses

three stages with severity increasing from Stage 1 through Stage 2 to Stage 3, transitions

between which are governed by a Markov chain with transition probability matrix

P =


0.8 0.2 0.0

0.0 0.9 0.1

0.0 0.0 1.0


,

where P is the matrix with values pi j at row i and column j. All transition and obser-

vation probability matrices below are defined similarly. Once our patient enters Stage

3, Stages 1 and 2 are inaccessible for all future times. However, Stage 3 can only be

entered through Stage 2, a transition from which to Stage 1 is possible only under costly

treatment. The same treatment inhibits transitions from Stage 2 to Stage 3. We have

access to the patient state only through tests, which will result in one of three possible
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values, each of which is representative of one of the three disease stages. However, these

tests are imperfect, with non-zero probability of returning an incorrect disease stage. All

possible state transitions and observations are illustrated in Figure 6.2.

Disease	Stage	1

Disease	Stage	2

Disease	Stage	3

Test	Result	1

Test	Result	2

Test	Result	3

State	Transitions Observations

Figure 6.2: Feasible state transitions and possible test results in healthcare example.
Solid arrows for feasible state transitions and observations. Dashed arrows for transi-
tions conditional on treatment and diagnosis decisions.

At each point in time, the current information state πt is available to make one

of four possible decisions:

1. Skip next appointment slot

2. Schedule new appointment

3. Order rapid diagnostic test
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4. Apply available treatment

Skipping an appointment slot results in the patient progressing through the Markov chain

describing the transition probabilities of the disease without medical intervention, with-

out new information being available after the current decision epoch. Scheduling an

appointment does not alter the patient transition probabilities but provides a low-quality

assessment of the current disease stage, which is used to refine the next information

state. The third option, ordering a rapid diagnostic test, allows for a high-quality assess-

ment of the patient’s state, leading to a more reliable refinement of the next information

state than possible when choosing the previous decision option. The results from this

diagnostic test are considered available sufficiently fast so that the patient state remains

unchanged under this decision. The remaining option entails medical intervention, al-

lowing transition from Stage 2 to Stage 1 while preventing transition from Stage 2 to

Stage 3. Transition probabilities P(a), observation probabilities R(a), and stage cost

vectors c(a) for each decision are summarized in Table 6.1. Additionally, we impose the

terminal cost

cN =

[
0 4 30

]T
.

6.5.2 Rationale for Duality

Intuitively, we expect an efficient policy for this problem to attempt avoiding

transitions to Stage 3 while managing the resources required to schedule appointments,

order tests, or apply medical intervention. This may, in principle, be achieved by a
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policy akin to the following structure:

1. Skip appointments when Stages 2 and 3 are unlikely.

2. Schedule appointments when Stages 2 and 3 are likely but the probability for Stage

2 is below some threshold.

3. Order diagnostic test if the probability of Stage 2 lies in a specific range.

4. Proceed with medical intervention if the probability of Stage 2 is high.

While the optimal policy may be somewhat more intricate, this simple decision structure

could be acceptable in practice. However, even this simple structure includes duality in

the decisions, demonstrated by including the diagnostic test even though it does not alter

the patient state. That is, this decision improves the quality of available information at

a cost, also called exploration. This improvement in the available information allows us

to apply medical intervention at appropriate times, which is called exploitation.

6.5.3 Computational Results

The trade-off between these two principal decision categories is precisely what is

encompassed by duality, which we can include in an optimal sense by solving (6.12-6.13)

and applying the resulting initial policy in receding horizon fashion. This is demon-

strated in Figure 6.3, which shows simulation results for SMPC with control horizon

N = 5 and discount factor α = 0.98. As anticipated, the stochastic optimal receding

horizon policy shows a structure not drastically different from the decision structure
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motivated above. In particular, diagnostic tests are used effectively to decide on medical

intervention.

In order to apply Theorem 6.3 to this particular example, we choose the pol-

icy g̃(·) in Assumption 6.4 always to apply medical intervention. Using the worst-case

scenario for the expectations in (6.17), which entails transition from Stage 1 to Stage 2

under treatment, we can satisfy Assumption 6.4 with η = 7.92. The computed cost in

our simulation is J?N(π0) ≈ 11.36. Combined with the discount factor α = 0.98, we thus

have the upper bound

J∞(π0, µ
N
MPC) ≤ J?N(π0) +

α

1 − α
η ≈ 400

via application of Theorem 6.3. Denoting by e j the row-vector with entry 1 in element j

and zeros elsewhere, the observed (finite-horizon) cost corresponding with Figure 6.3 is

Jobs
∞ =

29∑
k=0

exkc(µN
0 (πk)) ≈ 38.53 < 400.

While this bound is not particularly tight, one may modify the discount factor α or the

terminal cost cN to achieve a tighter estimate of the achieved MPC cost.

6.6 Conclusions

We extended closed-loop achieved performance guarantees well-known in deter-

ministic MPC to SMPC and in particular receding horizon control of POMDPs, which

allow tractable solution of the underlying Stochastic Optimal Control problems and thus

duality of the control inputs in an optimal sense. The basic formulations in this chapter
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Figure 6.3: Simulation results for SMPC with horizon N = 5 and discount factor
α = 0.98. Top plot displays patient state and transitions, with optimal SMPC decisions
based on current information state: appointment (pluses); diagnosis (crosses); treatment
(circles). Bottom plot shows information state evolution. Dashed vertical lines mark
time instances of state transitions.

can be modified, for instance, by introducing state and input constraint sets or time-

varying (monotonic) stage costs. While this requires additional assumptions to maintain

recursive feasibility of the MPC and SMPC inputs, the cost discussion is rather sim-

ilar. We demonstrated use of the novel results using a particular POMDP instance in

healthcare decision making, demanding the use of probing control inputs in order to

adequately decide upon the proper and cost-effective use of medical intervention.
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Conclusions

This dissertation has broached the subject of duality in Stochastic Optimal Con-

trol and, thereby, its presence in formulations of stochastic MPC based on Stochastic

Optimal Control. Our aim has been to highlight two central aspects: the reliance of

optimality on probing to manage future information states along the horizon, and the

attendant computational intractability. The benefit accrued is infinite-horizon stochastic

MPC performance quantitatively comparable to truly stochastically optimal.

A central contribution of this dissertation is the presentation of an SMPC algo-

rithm based on Stochastic Optimal Control in Chapter 4. This yields a number of theo-

retical properties of the controlled system. Performance guarantees of SMPC are made

in comparison to performance of the infinite-horizon stochastically optimally controlled

system and are presented in Theorem 4.4 and Corollary 4.2. These results extend those

of [28], which pertain to full-state feedback Stochastic Optimal Control and which there-

fore do not accommodate duality. Other examples of stochastic performance bounds are

mostly restricted to linear systems and, while computable, do not relate to the optimal

constrained control. While the formal stochastic results are traceable to deterministic

144
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predecessors, the divergence from earlier work is also notable. This concentrates on the

use of the information state to accommodate measurements and the exploration of con-

trol policy functionals stemming from the Stochastic Dynamic Programming Equation.

The resulting output feedback control possesses duality and optimality properties which

are either artificially imposed in or absent from earlier approaches.

We further suggested two potential strategies to ameliorate the computational

intractability of the Bayesian filter and the Stochastic Dynamic Programming Equation,

famous for its curse of dimensionality. Firstly, one may use the Particle filter implemen-

tation of the Bayesian filter, which with a loss of duality can be combined with scenario

methods, as outlined in Chapter 5. Secondly, we point out that our dual optimal SMPC

algorithm becomes computationally tractable for the special case of Partially Observ-

able Markov Decision Processes, which may be used either to approximate a nonlinear

model or to model a given system in the first place. This strategy inherits the dual na-

ture of our SMPC algorithm for general nonlinear systems, as discussed specifically in

Chapter 6.
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