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ARTICLE

CCR2-positive monocytes contribute to the pathogenesis of early
diabetic retinopathy in mice
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Abstract
Aims/hypothesis Accumulating evidence suggests that leucocytes play a critical role in diabetes-induced vascular lesions and
other abnormalities that characterise the early stages of diabetic retinopathy. However, the role of monocytes has yet to be fully
investigated; therefore, we used Ccr2−/− mice to study the role of CCR2+ inflammatory monocytes in the pathogenesis of
diabetes-induced degeneration of retinal capillaries.
Methods Experimental diabetes was induced in wild-type and Ccr2−/− mice using streptozotocin. After 2 months, super-
oxide levels, expression of inflammatory genes, leucostasis, leucocyte- and monocyte-mediated cytotoxicity against retinal
endothelial cell death, retinal thickness and visual function were evaluated. Retinal capillary degeneration was determined
after 8 months of diabetes. Flow cytometry of peripheral blood for differential expression of CCR2 in monocytes was
assessed.
Results In nondiabetic mice, CCR2 was highly expressed on monocytes, and Ccr2−/− mice lack CCR2+ monocytes in the
peripheral blood. Diabetes-induced retinal superoxide, expression of proinflammatory genes Inos and Icam1, leucostasis and
leucocyte-mediated cytotoxicity against retinal endothelial cells were inhibited in diabetic Ccr2-deficient mice and in chimeric
mice lacking Ccr2 only from myeloid cells. In order to focus on monocytes, these cells were immuno-isolated after 2 months of
diabetes, and they significantly increased monocyte-mediated endothelial cell cytotoxicity ex vivo. Monocytes from Ccr2-
deficient mice caused significantly less endothelial cell death. The diabetes-induced retinal capillary degeneration was inhibited
in Ccr2−/− mice and in chimeric mice lacking Ccr2 only from myeloid cells.
Conclusions/interpretation CCR2+ inflammatory monocytes contribute to the pathogenesis of early lesions of diabetic
retinopathy.

Keywords CCR2 . Diabetic retinopathy . Leucocytes . Leucostasis . Monocytes . Retinal capillary degeneration . Superoxide

Abbreviations
CCR2 CC chemokine receptor 2
ERG Electroretinogram
GCL Ganglion cell layer
ICAM1 Intercellular adhesion molecule 1
mREC Mouse retinal endothelial cell
NFL Nerve fibre layer
SD-OCT Spectral domain optical coherence tomography
WT Wild-type

* Aicha Saadane
aichasaadane8@gmail.com

1 Department of Ophthalmology, University of California-Irvine,
Irvine, CA, USA

2 Case Western Reserve University, Cleveland, OH, USA
3 Institute for Immunology, University of California-Irvine,

Irvine, CA, USA
4 Department of Pharmacology, Case Western Reserve University,

Cleveland, OH, USA
5 Veterans Administration Medical Center Research Service, Long

Beach, CA, USA

https://doi.org/10.1007/s00125-022-05860-w

/ Published online: 26 January 2023

Diabetologia (2023) 66:590–602

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-022-05860-w&domain=pdf
https://orcid.org/0000-0001-9985-2147
mailto:aichasaadane8@gmail.com


Introduction

Adhesion of circulating leucocytes to the wall of retinal
capillaries (leucostasis) is increased in diabetes. Inhibition
of that interaction by deletion of intercellular adhesion
molecule 1 (ICAM1) or its ligand, or by expression of
neutrophil inhibitory factor (NIF) inhibits diabetes-
induced retinal leucostasis, capillary leakage and degener-
ation of retinal capillaries [1–5]. Selective deletion of
proteins involved in oxidative stress and inflammation sole-
ly from myeloid-derived cells likewise inhibits the retinal
oxidative stress and capillary degeneration [5].

Neutrophils are one leucocyte subtype, and they have been
previously implicated in the development of diabetes-induced
retinal vascular lesions [6]. Mice with induced diabetes and
lacking granulocyte colony-stimulating factor receptor were
neutrophil-deficient, and showed significant reduction in
diabetes-induced retinal oxidative stress, inflammation, and
degeneration of retinal capillaries [5]. Whether or not neutro-
phils are the only blood cell contributing to the development
of retinopathy has not been determined. Monocytes represent
another major subset of leucocytes, and they have also been
found to play major roles in oxidative stress and inflammation

in a variety of diseases [7–10], in part via release of proteases
and oxygen-derived free radicals [11].

In mice, like in humans, monocytes represent a heteroge-
neous group of cells and are commonly divided into classical
monocytes (previously called inflammatory monocytes) and
nonclassical monocytes (previously called patrolling mono-
cytes) [12–14]. CC chemokine receptor 2 (CCR2) is
expressed predominantly by monocytes, and especially by
classical inflammatory monocytes. Whole-body deletion of
Ccr2 decreases the abundance of classical monocytes
(CCR2+) in the blood (a reduction of >84%) [12, 15, 16].
On the other hand, nonclassical monocytes express low levels
of CCR2 (CCR2-) and high levels of CX3C motif chemokine
receptor 1 (CX3CR1) [17]. CCR2 mediates mobilisation of
the classical monocyte subset from bone marrow, subsequent
migration into sites of injury [15, 18–20], firm adhesion of the
cells to the endothelium and extravasation in vivo [21]. The
beneficial effect of a CCR2/5 inhibitor on vascular permeabil-
ity in rodent models of diabetes has been reported previously
[22].

The aim of this study was to determine the role of CCR2+

inflammatory monocytes in the pathogenesis of diabetes-
induced degeneration of retinal capillaries.
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Methods

All procedures involving animals were performed in strict
accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals, the Association for
Research in Vision and Ophthalmology (ARVO) Statement
for the Use of Animals in Ophthalmic and Vision Research,
and with authorisation of the Institutional Animal and Care
Use Committees (IACUC) at Case Western Reserve
University, and University of California, Irvine.

MiceWild-type (WT) C57Bl/6J and Ccr2 knockout (C57Bl/6
background) (Ccr2−/−) mice were obtained from the Jackson
Laboratory (Bar Harbor, ME, USA). In all studies, male mice
(2–3 months old) were randomly assigned to become diabetic
or remain as nondiabetic controls. Diabetes was induced by
i.p. injection of a freshly prepared solution of streptozotocin in
citrate buffer (pH 4.5) at 60 mg/kg of body weight for 5
consecutive days. Hyperglycaemia was verified at least three
times during the second week after streptozotocin administra-
tion, and mice having three consecutive measurements of
fasting blood glucose >15.3 mmol/l were classified as being
diabetic. Insulin was given as needed to prevent weight loss
without preventing hyperglycaemia and glucosuria (0–0.2
units of neutral protamine Hagedorn (NPH) insulin s.c 0–3
times per week). All animals were maintained on a standard
12 h light (∼10 lux)−dark cycle and were provided standard
rodent chow (Purina TestDiet 5001; TestDiet Richmond, IN,
USA) and water ad libitum. Blood glucose and HbA1c were
measured as reported previously. Body weight was measured
weekly. Animals were euthanised and eyes collected at 2
months of diabetes (4–5 months of age) to assess retinal func-
tion and biochemistry, and at 8 months of diabetes (10 months
of age) to assess retinal capillary degeneration.

Chimeric mice were generated as previously described
[5]. Briefly, recipient mice (nondiabetic or diabetic for 2
weeks) were irradiated with two doses of 600 rads, 3 h
apart, and subsequently injected intravenously with 3–5
million bone marrow cells from donor mice. Chimeras
lacking Ccr2 from only their marrow-derived cells were
generated by transplanting marrow from Ccr2−/− donors
into irradiated WT (C57Bl/6J) hosts (identified as
Ccr2−/−→WT). Diabetes was induced prior to irradiation
to make sure that irradiation and resulting immune cell
damage did not interfere with the induction of diabetes.
To control for potential effects of irradiation, nondiabetic
and diabetic WT mice were irradiated and transplanted
with marrow cells from analogous WT donors (WT→WT).

Retinal imaging and visual function We studied retinal struc-
ture and function of Ccr2−/− and WT mice using spectral
domain optical coherence tomography (SD-OCT; the

840HHP SD-OCT system, Bioptigen, USA), and electroreti-
nogram (ERG; Diagnosys Celeris rodent ERG device,
Diagnosys, USA) recordings [23–25]. Spatial frequency
threshold and contrast sensitivity were measured at 2 months
of diabetes (5 months of age) with the Virtual Optokinetic
system as previously described [26–28]. Briefly, theminimum
spatial frequency capable of driving head tracking was deter-
mined as the spatial frequency threshold. The experimenter
was masked as to the identity of the experimental animals.
The contrast sensitivity was measured at spatial frequency of
0.064 cycles/degree.

Blood phenotypeMice were euthanised with CO2, and blood
was collected by cardiac puncture into EDTA-containing
tubes (100 mmol/l EDTA). After lysing erythrocytes with
RBC lysis buffer (eBiosciences, San Diego, USA) and wash-
ing with PBS, antibodies and viability dye were incubated
with white blood cells in FACS buffer (PBS with 0.5% BSA
and 2 mmol/l EDTA) for 20 min at 4°C. The following anti-
bodies were used (Biolegend, San Diego, USA): CD45-FITC
(30-F11 clone), Ly6G-Brilliant Violet 510 (1A8 clone),
Ly6C-PE-Cy7 (HK1.4 clone), CD11b-APC (M1/70 clone),
F4/80-PE (BM8 clone), CCR2-Brilliant Violet 421
(SA203G11 clone) and CD14-PE-Dazzle 594 (Sa14-2 clone).
Viability dye (Fixable Viability Dye eFluor 780,
eBiosciences) was added to distinguish live cells. Cells were
washed in FACS buffer and fixed for 20 min at 4°C (Perm/Fix
buffer, BD Biosciences, USA) before analysis on a Novocyte
cytometer (Acea, USA).

Lucigenin assay of superoxide Retinal superoxide was
measured chemically with lucigenin (bis-N-methylacridinium
nitrate) [29]. Freshly isolated retinas were pre-incubated in
200 μl of Krebs-Hepes buffer (pH 7.2) with 5 or 30 mmol/l
glucose for 10 min at 37°C in 5% CO2. Luminescence indi-
cating the presence of superoxide was measured 5 min after
addition of lucigenin (5 mmol/l). Luminescence intensity is
reported in arbitrary units/mg of protein.

Quantitative reverse transcription-PCR Both retinas from
each mouse were combined (total of four to six mice per
group) and total RNA was isolated with RNeasy Mini kit
(Qiagen, USA). Total RNA (0.5 μg) was converted to
cDNA by SuperScr ipt I I I Reverse Transcr iptase
(Invitrogen from ThermoFisher Scientific, USA) and used
for quantitative reverse transcription–PCR (qRT-PCR)
conducted on C1000 Touch Thermal Cycler (Bio-Rad,
USA). β-actin (also known as Actb) was used as a house-
keeping gene. PCR reactions were performed in triplicate
and normalised to β-actin.
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Leucostasis Leucostasis was determined as previously
described [30]. Briefly, at 2 months of diabetes, blood was
removed from the vasculature of anaesthetised animals by
extensive perfusion with PBS via a heart catheter.
Subsequently animals were perfused with fluorescein coupled
Concanavalin A lectin (20 μg/ml in PBS; Vector
Laboratories, USA). Flat-mounted retinas were imaged via
fluorescence microscopy and the number of leucocytes adher-
ent to the vascular wall was counted.

Leucocyte- and monocyte-mediated endothelial cell cytotox-
icity ex vivo Leucocyte-mediated endothelial cell death was
determined as previously described [5]. Briefly, mouse retinal
endothelial cells (mRECs; Cells Biologics, USA) [31] were
grown in DMEM containing 10% FBS and 5.5 or 25 mmol/l
glucose. When mRECs were 80% confluent (500,000 cells),
leucocytes (100,000; purified from blood with RBC lysis
buffer) were added to the mRECs and incubated for 24 h.
After 24 h, mRECs were gently rinsed with PBS to remove
non-adherent leucocytes, incubated with trypsin for 2 min and
washed twice in PBS. The viability of mRECs was measured
by trypan blue exclusion with a haemocytometer. Sample
identity was masked during counting.

Monocytes were isolated from bone marrow because of the
significantly higher yield when using bone marrow compared
with peripheral blood (up to 10×106 vs 0.2×106 monocytes
per mouse, respectively) [32]. Monocytes were immuno-
isolated using EasySep Mouse monocyte isolation kit
(StemCell Technologies, USA) following manufacture’s
instruction (the purity is up to 94%). Monocyte-mediated
endothelial cell cytotoxicity was performed as shown above
for leucocytes.

Diabetes-induced retinal vascular histopathology After 8
months of diabetes (10 months of age), mice were euthanised
and the eyes were then enucleated and fixed in formalin.
Retinal vasculature was isolated as previously described
[30]. The fixed retina was isolated, rinsed in running water

overnight, and then digested with 40 U/ml elastase
(Calbiochem, San Diego, USA), 5 mmol/l EDTA, 100 mmol/l
sodium phosphate and 150 mmol/l NaCl pH 6.5 at 37°C for
2–3 h.When totally cleaned of neural cells, the isolated vascu-
lature was laid out on a glass microscope slide, dried over-
night, stained with haematoxylin and periodic acid−Schiff,
dehydrated and mounted with a glass coverslip. Degenerated
(acellular) capillaries were quantified in 6–7 field areas corre-
sponding to the mid-retina (×200 magnification) in a masked
manner. Acellular capillaries reported per square mm of reti-
nal area were identified as capillary-sized vessel tubes having
no nuclei along their length.

Statistical analysis Data are expressed as mean ± S.D., except
for retinal thickness and ERGmeasurement that are expressed
as mean ± SEM. Statistical analyses were performed with
ANOVA followed by Fisher’s test (StatView for Windows
software version 5.0.1; SAS Institute, Cary, NC, USA), except
for ERG data which was analysed by two-way repeated
measures of variance. *p≤0.05; **p≤0.01; and ***p≤0.001.

Results

Animals There was no difference with respect to body weight
or blood glucose levels between nondiabetic members of the
strains studied. Blood glucose was elevated in all animals
assigned to diabetic groups, and the severity of diabetes was
not different among the diabetic groups (Table 1).

The circulating CCR2+ monocyte population is absent in
nondiabetic and diabetic Ccr2−/− mice It has been reported
that Ccr2 deficiency results in monocyte retention in bone
marrow and subsequent depletion from peripheral blood
[15]. To determine the effect of Ccr2 deficiency and diabetes
on the subpopulation of monocytes, flow cytometry was
performed on whole peripheral blood. Erythrocytes were
lysed, and white blood cell suspensions were stained with

Table 1 Metabolic control in
diabetic (2 months of induced
diabetes) and nondiabeticWT and
Ccr2−/− mice

Group n Final body
weight (g)

Nonfasting blood
glucose (mmol/l)

HbA1c (mmol/mol) HbA1c (%)

Nondiabetic

WT 12 34 ± 4 8.5 ± 1.4 10.4 ± 1 3.1 ± 0.1

Ccr2−/− 11 32 ± 2 8.5 ± 1.5 10.4 ± 1 3.1 ± 0.1

Diabetic

WT 9 27 ± 2 28.0 ± 3.8 70.5 ± 8.7 8.6 ± 0.8

Ccr2−/− 13 29 ± 2 27.8 ± 4.0 68.3 ± 7.6 8.4 ± 0.7

Data are presented as mean ± SD

593Diabetologia  (2023) 66:590–602

1 3



subset-specific antibodies (CD11b+Ly6GlowLy6Chigh for
classical monocytes, and CD11b+Ly6GhighLy6Chigh for
neutrophils). We subsequently used CCR2 expression to
differentiate between CCR2high and CCR2low cells. The
gating strategy of the flow cytometry data is shown in elec-
tronic supplementary material (ESM) Fig. 1. In nondiabetic
WT mice, most monocytes were CCR2high (corresponding

to classical monocytes). In contrast, this population of cells
was completely absent in nondiabetic Ccr2−/− mice (Fig.
1a,b). In WT mice, the induction of diabetes resulted in the
reduction of classical monocytes (Fig. 1a,b), and the major-
ity of neutrophils were CCR2low (ESM Fig. 2). Diabetes did
not significantly affect the distribution of neutrophils in
both strains of mice (ESM Fig. 2). These results indicate

Fig. 1 Effect of Ccr2 deficiency
and diabetes on monocytes.
Representative flow cytometry
dot plots of cell suspensions from
the blood of nondiabetic and
diabetic WT and Ccr2−/− mice
(a). FSC and SSC identified total
leucocytes, CD11b+ identified
myeloid cells and CD11b, Ly6G
and Ly6C staining identified
monocytes as
CD11b+Ly6GlowLy6Chigh. CCR2
further identified monocytes as
CCR2high or CCR2low

monocytes. Numbers in the
boxed areas indicate per cent of
CD11b+,
CCR2highLy6GlowLy6Chigh

(CCR2+ M) or
CCR2lowLy6GlowLy6Chigh

(CCR2−M). Absolute numbers of
monocytes are presented as per
cent of total number of myeloid
cells (b). Mean ± SD. *p≤0.05,
***p≤0.001. N, nondiabetic; D,
diabetic

Fig. 2 Effect of Ccr2 deletion and diabetes on outer nuclear layer (ONL)
thickness. SD-OCT images (a) and quantification of data (spider web and
histogram; b and c, respectively) show that the deletion of Ccr2 (solid
grey lines and grey bars) alone or in conjunction with 2 months of diabe-
tes (grey dashed lines and dotted bars) resulted in no loss of retinal

photoreceptors (ONL thickness) compared with nondiabetic (solid black
lines and black bars) or diabetic (black dashed lines and striped bars) WT
mice. Scale bar, 50 μm. Data are presented as mean ± SD, n=8 mice (16
retinas) per group

594 Diabetologia  (2023) 66:590–602

1 3



that the circulating leucocytes of Ccr2−/−mice are deficient
in classical monocytes and can therefore be used as a model
to study the role of classical monocytes in the development
of diabetic retinopathy.

Neither the absence of CCR2+ monocytes nor 2 months of
diabetes affects outer nuclear layer thickness In vivo exami-
nation of mice by high-resolution SD-OCT was used to deter-
mine the effect of diabetes and the absence of Ccr2 on retinal
structure and thickness. OCT analysis after 2 months of diabe-
tes (4–5 months of age) indicated that neither diabetes nor the
deletion of Ccr2 caused a significant increase or decrease of
outer nuclear layer (ONL) thickness (Fig. 2a,b). We also
measured the thickness of total retina along with nerve fibre
layer and ganglion cell layer (NFL+GCL) thickness at 300μm
from the optic nerve. The results showed that total retinal
thickness (0.24±0.02, 0.23±0.03, 0.23±0.02 and 0.23±0.02
in nondiabetic WT, diabetic WT, nondiabetic Ccr2−/− and
diabeticCcr2−/−mice, respectively) and NFL+GCL thickness
(0.04±0.01, 0.03±0.01, 0.03±0.01 and 0.03±0.01 in nondia-
betic WT, diabetic WT, nondiabetic Ccr2−/− and diabetic
Ccr2−/− mice, respectively) were not significantly different
between all four groups. However, it is worth mentioning that
the thickness of inner retina of diabetic animals is controver-
sial; we and others did not detect significant reduction in the
inner retina [24, 33–35], whereas others have presented
evidence showing significant reduction in the thickness of
the inner retina in diabetes [36].

Inflammatory monocytes mediate diabetes-induced oxida-
tive stress and upregulation of inflammatory genes in the
retina Oxidative stress has been implicated in the develop-
ment of diabetic retinopathy [37–42]. To determine if
CCR2+ monocytes contribute to oxidative stress in diabetic
retinopathy, retinal superoxide was measured chemically with
the lucigenin method. Compared with nondiabetic WT
controls, superoxide levels in the retina were significantly
increased in WT mice after 2 months of diabetes. In contrast,
retinal levels of superoxide were significantly reduced in
diabetic Ccr2−/− mice compared with diabetic WT mice
(Fig. 3). Two months of diabetes also significantly increased
the expression of inflammatory genes Inos (also known as
Nos2) and Icam1 in the retina ofWTmice, whereas the diabet-
ic Ccr2−/− animals showed significantly inhibited expression
of both of these proinflammatory genes in the retina compared
with diabetic WT mice (Fig. 4).

CCR2+ monocytes mediate a diabetes-induced increase in
leucostasis in retinal capillaries WT mice showed the expect-
ed diabetes-induced increase in leucostasis in the retina. In

contrast, leucocyte adhesion to retinal capillaries was signifi-
cantly inhibited in diabetic Ccr2-deficient mice (Fig. 5).

Deficiency of Ccr2 inhibits leucocyte- and monocyte-
mediated cytotoxicity against retinal endothelial cells Ex
vivo incubation of leucocytes isolated from WT mice after 2
months of diabetes resulted in more retinal endothelial cell
cytotoxicity than leucocytes isolated from nondiabetic WT
controls. In contrast, leucocytes harvested from diabetic
Ccr2−/−mice killed significantly fewer endothelial cells when
compared with diabetic WT mice (Fig. 6a).

Although data from others [12, 15, 16] and us (Fig. 1)
indicates that CCR2 is expressed predominantly on mono-
cytes, we immuno-isolated monocytes to directly evaluate
the effect of CCR2+ monocytes on endothelial cell

Fig. 3 Effect of diabetes and the loss of Ccr2 on retinal superoxide levels
after 2 months of diabetes (4–5 months of age). Superoxide levels in
retinas from nondiabetic and diabetic Ccr2−/− mice and WT mice are
shown. Mean ± SD (n=4–8 per group). ***p≤0.001. N, nondiabetic; D,
diabetic

Fig. 4 Effect of diabetes and the deletion of Ccr2 on proinflammatory
gene expression in the retina. Genetic deletion ofCcr2mitigates diabetes-
induced upregulation of Inos and Icam1. Duration of diabetes was 2
months at the time of this assay. Data are expressed relative to the expres-
sion of actin. Data are presented as a per cent of the value of nondiabetic
WT controls (n=4–10). **p≤0.01; ***p≤0.001. N, nondiabetic;
D, diabetic
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cytotoxicity in diabetes. Ex vivo incubation of purified mono-
cytes isolated fromWTmice after 2 months of diabetes result-
ed in significantly more endothelial cell death compared with
monocytes harvested from nondiabetic WT controls. In
contrast, monocytes isolated from diabetic Ccr2−/− mice
resulted in significantly less endothelial cell death than mono-
cytes harvested from diabetic WT mice (Fig. 6b). This data
suggests that CCR2+ monocytes (classical monocytes)
contribute to endothelial cell death in diabetic retinas.

Inflammatory monocytes mediate diabetes-induced increase
in retinal capillary degenerationRetinal capillary degeneration

is one of the most clinically meaningful endpoints of
diabetic retinopathy that develop in rodents [24, 43, 44].
As previously reported, diabetes of 8 months in duration
significantly increased the number of degenerated capil-
laries in retinas of WT mice compared with that in nondi-
abetic WT controls (Fig. 7). In contrast, diabetic mice
deficient in Ccr2 were protected from the retinal capillary
degeneration compared with diabetic WT controls (Fig. 7).
Since retinal capillary degeneration in diabetic Ccr2−/−

mice was significantly higher than that in nondiabetic
Ccr2−/− mice, however, the data suggest that CCR2+

monocytes are not the only determinants of retinal capil-
lary degeneration in diabetes.

Fig. 5 Effect of diabetes and the loss of Ccr2 on retinal leucostasis. (a)
Diabetes increases leucostasis in the retina of WT mice, but leucocyte
adhesion to retinal capillaries was significantly inhibited in diabetic
Ccr2−/− mice. Leucostasis in retinal microvessels was determined by

injection of fluorescein coupled concanavalin A lectin. (b) A representative
image of leucostasis in the retina of a diabetic mouse (white arrows). Scale
bar, 100μm. Total duration of diabetes was 2months. Data are presented as
mean ± SD, n=6 per group. *p≤0.05. N, nondiabetic; D, diabetic

Fig. 6 Effect of diabetes and the deletion of Ccr2 on leucocyte- and
monocyte-mediated endothelial cell cytotoxicity. The data are expressed
as per cent of corresponding nondiabetic mice. Leucocyte-mediated cyto-
toxicity towards retinal endothelial cells increased in diabetic WT mice
but is significantly inhibited in diabetic Ccr2−/− mice (a). Similarly,

monocyte-mediated cytotoxicity towards retinal endothelial cells was
increased in diabetic WT mice and significantly inhibited in diabetic
Ccr2−/− mice (b). Total duration of diabetes was 2 months. Data are
presented as mean ± SD, n=5–13 per group. *p≤0.05, **p≤0.01,
***p≤0.001. N, nondiabetic; D, diabetic
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Diabetes-induced increase in retinal superoxide, leucocyte-
mediated endothelial cell cytotoxicity and retinal capillary
degeneration is mediated by CCR2+ monocytes Although
CCR2 is expressed in myeloid cells in nondiabetic
animals, it is conceivable that diabetes might result in
induction of the receptor elsewhere. To further test the
contribution of Ccr2-containing myeloid cells in the devel-
opment of the early stages of diabetic retinopathy, we
generated chimeric mice lacking Ccr2 solely from bone
marrow-derived cells. Thirty weeks after the induction of
diabetes, diabetic control mice (nonirradiated WT mice
and WT→WT mice) showed the expected significant
increase in retinal superoxide, leucocyte-mediated killing
of endothelial cells, and capillary degeneration (Fig. 8a-c),
showing that the irradiation itself did not alter the diabetes-

induced pathogenic process that contributes to diabetic
retinopathy. In contrast, retinal levels of superoxide,
ex vivo killing of retinal endothelial cells by leucocytes,
and capillary degeneration were significantly inhibited in
diabetic Ccr2−/− chimeras (Ccr2−/−→ WT) (Fig. 8a-c).

CCR2+ monocytes mediate diabetes-induced reductions of
ERG b-wave and spatial frequency threshold, but do not
affect contrast sensitivity Diabetes impairs visual function as
assessed by ERG or psychophysical tests, including visual
acuity and contrast sensitivity. In this study, we used ERG,
spatial frequency threshold and contrast sensitivity to investi-
gate the role of CCR2+ monocytes in diabetes-induced visual
dysfunction. Consistent with previous studies, 2 months of

Fig. 7 Effects of streptozotocin-induced diabetes on capillary degenera-
tion in retinas fromWT andCcr2−/−mice.WTmice diabetic for 32weeks
developed significantly more retinal capillary loss than nondiabetic
controls (a). Ccr2 deletion resulted in significantly less retinal capillary
loss in diabetes compared with that in diabetic WTmice, but was slightly

increased when compared with nondiabetic Ccr2−/− mice. Data are
graphed as degenerated capillaries per unit area of retina (b). White
arrows indicate acellular capillaries. Scale bar, 50 μm. Data are presented
asmean ± SD, n=6 per group. *p≤0.05, **p≤0.01, ***p≤0.001. N, nondi-
abetic; D, diabetic

Fig. 8 Diabetes-induced retinal superoxide (a), leucocyte-mediated endo-
thelial cell (EC) cytotoxicity (b) and degeneration of retinal capillaries (c)
are significantly inhibited in chimeric mice lacking Ccr2 (Ccr2→WT),
but not in WT→WT chimeric mice. Total duration of diabetes was 30
weeks. Data are presented as mean ± SD, n=4–10 per group. Green

symbols indicate WT mice and red symbols indicate Ccr2−/− mice.
Solid symbols indicate nondiabetic mice and empty symbols indicate
diabetic mice. *p≤0.01, **p≤0.01, ***p≤0.001. RLU, relative lumines-
cence units
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diabetes significantly decreased ERG b-wave amplitudes (Fig.
9b), spatial frequency threshold (Fig. 9c) and contrast sensi-
tivity (Fig. 9d) in WT mice. Ccr2 deficiency inhibited the
diabetes-induced defects in b-wave amplitude and partially
inhibited spatial frequency threshold but had no significant
effect on contrast sensitivity (Fig. 9).

Discussion

Leucocytes play a crucial role in diabetes-induced retinal
capillary loss [4, 45, 46]. However, leucocytes comprise a
diverse group of cells that originate from bone marrow but
differ greatly with regard to life span and action.
Determining the leucocyte subtypes involved in the pathogen-
esis of diabetic retinopathy may help design a novel therapeu-
tic approach to inhibit the retinopathy.

Monocytes, which are a major subpopulation of leucocytes,
are part of the innate immune system, where they play a critical
role in surveying peripheral tissues and maintaining endothelial
cells integrity. However, in some instances, they can contribute
to disease development and progression [47–49]. In both
humans and mice, monocytes are heterogeneous and have been
further divided into several subsets differentially expressing
chemokine receptors. CCR2 has been shown to be expressed
mainly by classical monocytes (CCR2high) [12, 15, 16, 50, 51]

(the nonclassical subset does not express CCR2; CCR2low),
although other leucocyte cells have also been reported to
express CCR2 to a lesser extent. The infiltration of inflamma-
tory monocytes was shown to be CCR2-dependent in inflam-
matory diseases, including several retinal disorders such as
retinal injury [8], atrophic age-related macular degeneration
[10] and photoreceptor degeneration in models of retinitis
pigmentosa [7]. CCR2 is the chemokine receptor for monocyte
chemoattractant protein-1 (MCP-1; also known as C-C chemo-
kine ligand 2, CCL2) [50].

It has been shown that the entrance of monocytes into the
retina relies on activation of the MCP-1/CCR2 axis [10,
52–54]. In this regard, Sennlaub et al showed that Ccl2
deficiency (either in Ccl2−/−mice or as a result of treatment
with a pharmacologic inhibitor [RS 102895]) inhibits
inflammatory monocyte recruitment to the retina [10].
With regard to diabetic retinopathy, Rangasamy et al
showed that the expression of MCP-1 was increased in the
retina of diabetic rodents [9], that this expression was
accompanied by greater- than-normal numbers of
perivascular monocytes in the retina, and that the deletion
of Mcp-1 (also known as Ccl2) resulted in significant
reduction of monocyte infiltration [9]. Whether or not
monocytes contribute to the development of the retinopa-
thy, however, has not been clear. In this study, we focused
on the effect of CCR2+ monocytes on molecular changes

Fig. 9 Visual function in
nondiabetic and diabetic WT and
Ccr2−/− mice. (a, b) ERG a-wave
and b-wave amplitudes recorded
at 8–10 weeks of diabetes (5
months of age) at increasing light
intensities. ERG b-wave
amplitudes were significantly
reduced in diabetic WT mice, and
Ccr2 deletion further inhibited
diabetes-induced b-wave
amplitudes in diabetic Ccr2−/−

mice. (c) Spatial frequency
threshold was significantly
reduced in diabetic WT mice, and
the lack of Ccr2 partially
inhibited diabetes-induced spatial
frequency threshold. (d) Contrast
sensitivity was impaired in
diabetic WT and Ccr2−/− mice.
Data shown as mean ± SEM
(n=16–20 eyes). *p≤0.05;
** p≤0.01; ***p≤0.001. N,
nondiabetic; D, diabetic
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that are characteristic of early stages of diabetic retinopathy
(such as oxidative stress and inflammation) and retinal
capillary degeneration.

Consistent with previous reports, under steady state condi-
tion the majority of peripheral blood monocytes express
CCR2 (more than 90%, Fig. 1) [12, 15]. Most neutrophils
do not express CCR2 under normal conditions (ESM Fig. 2)
[55]. Mice genetically deficient in Ccr2 had substantially
fewer CCR2+ monocytes in the peripheral blood [15, 55],
however, neutrophil number was not affected. These results
suggest that Ccr2−/− mice could be used as a mouse model to
study the role of CCR2+ monocytes in the development of
diabetic retinopathy.

In the early stages of diabetic retinopathy, an increased
number of leucocytes adhere to retinal blood vessels in both
diabetic patients and animals [4, 11, 56], potentially contrib-
uting to the retinal capillary occlusion that has been observed
in diabetes. Consistent with previous reports, we found that
diabetic WT mice showed a significant increase in leucostasis
in retinal microvessels, and leucocytes from those diabetic
WTmice caused more cytotoxicity to retinal endothelial cells.
In contrast, leucocytes isolated from diabetic Ccr2−/− mice
and from chimeric mice lacking Ccr2 only from bone marrow
did not cause this leucocyte-mediated endothelial cell death.
Since nonclassical monocytes are not significantly affected by
Ccr2 deletion (Fig. 1), we suggest that CCR2+ monocytes
play an important role in retinal leucostasis and leucocyte-
mediated endothelial cell cytotoxicity in diabetic retinopathy.

In order to further investigate if diabetes-induced
leucostasis and leucocyte-mediated endothelial cell death
could be attributed to CCR2+ monocytes, we immuno-
isolated monocytes from bone marrow using magnetic bead
depletion. Co-culture of mRECS with immuno-isolated
monocytes from diabetic WT mice expressing CCR2 resulted
in a significant increase inmonocyte-mediated endothelial cell
cytotoxicity, whereas endothelial cell death was inhibited
when cultured with monocytes from diabetic Ccr2-deficient
mice. These results further demonstrate that CCR2+ mono-
cytes play an important role in diabetes-induced leucocyte-
mediated endothelial cell cytotoxicity.

Oxidative stress and retinal expression of proinflammatory
mediators have been implicated in the development of diabetic
retinopathy, and inhibition of retinal oxidative stress in diabe-
tes by antioxidants or overexpression of antioxidant enzymes
has been reported to preserve the retinal vasculature in diabe-
tes [41, 57, 58]. Likewise, the inhibition of inflammation has
been shown to preserve the retinal vasculature despite
hyperglycaemia [46, 59–61], and deletion or inhibition of
certain inflammatory proteins or cytokines such as ICAM1,
inducible nitric oxide synthase (iNOS) and IL1β inhibited
diabetes-induced degeneration of retinal capillaries in diabetic
animals [62–64]. Our data showed that retinal superoxide and
expression of inflammatory genes were inhibited in Ccr2−/−

mice, suggesting that inflammatory monocytes are implicated
in these diabetes-induced abnormalities.

We previously demonstrated a critical role of neutrophils in
the development of the early stages of diabetic retinopathy [5,
65]. The finding now that both neutrophils and monocytes
contribute to early diabetic retinopathy implicates innate immu-
nity in this disease process. Both neutrophils and monocytes are
part of the innate immune system, the first line of defence against
toxins, and consist of physical, chemical and cellular defences
against various aggressions to tissues. Several reports have
shown that both cells are absolutely required for an adequate
immune response, and the depletion of one cell population
affects the infiltration and/or the function of the other cell [55,
66–70]. For instance, neutrophils attract classical monocytes and
facilitate their transmigration, and depletion of neutrophils result-
ed in decreased classical monocyte infiltration [70]. Likewise,
monocytes promote neutrophil accumulation [55]. This new
vantage point offers new potential therapeutic targets at which
retinopathy might be inhibited.

A CCR2/5 inhibitor has been administered to patients with
diabetic macular oedema (DME) [22], but results of that trial
indicated that the drug was inferior to monthly ranibizumab (a
blood vessel growth inhibitor) with respect to improvement of
best corrected visual acuity. The reason for the differing
conclusions from this patient study and our pre-clinical study
are not clear, but it is possible that the duration of drug admin-
istration to patients was too short to demonstrate an effect
(only 12 weeks). In addition, it seems likely that the degree
of CCR2 inhibition played an important role; Ccr2 expression
in our Ccr2−/− mice was totally inhibited, whereas the drug
administered to patients only blocked the receptor by an
unknown amount. Perhaps CCR2 inhibition has a stronger
effect on capillary degeneration (studied in the present report)
than it has on capillary permeability (studied in the clinical
report). Additional studies will be required to determine if
more potent inhibitors of CCR2 offer meaningful clinical
benefit to patients with diabetes.

Our major findings showed that the whole-body deletion of
Ccr2 (Ccr2−/− mice) and chimeric mice lacking Ccr2 only
from bone marrow-derived cells in mice resulted in the inhi-
bition of diabetes-induced increases of retinal superoxide,
upregulation of proinflammatory genes (Inos and Icam1),
leucostasis, leucocyte- and monocyte-mediated cytotoxicity
against retinal endothelial cells, and most importantly, retinal
capillary degeneration. The absence of inflammatory mono-
cytes also mitigated diabetes-induced visual dysfunction,
notably in ERG b-wave. These results demonstrate that mono-
cytes (and innate immunity) contribute to at least the vascular
lesions of early diabetic retinopathy.
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