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In structural equation modeling (SEM), researchers need to evaluate whether item response
data, which are often multidimensional, can be modeled with a unidimensional measurement
model without seriously biasing the parameter estimates. This issue is commonly addressed
through testing the fit of a unidimensional model specification, a strategy previously deter-
mined to be problematic. As an alternative to the use of fit indexes, we considered the
utility of a statistical tool that was expressly designed to assess the degree of departure from
unidimensionality in a data set. Specifically, we evaluated the ability of the DETECT “essen-
tial unidimensionality” index to predict the bias in parameter estimates that results from
misspecifying a unidimensional model when the data are multidimensional. We generated
multidimensional data from bifactor structures that varied in general factor strength, number
of group factors, and items per group factor; a unidimensional measurement model was then
fit and parameter bias recorded. Although DETECT index values were generally predictive of
parameter bias, in many cases, the degree of bias was small even though DETECT indicated
significant multidimensionality. Thus we do not recommend the stand-alone use of DETECT
benchmark values to either accept or reject a unidimensional measurement model. However,
when DETECT was used in combination with additional indexes of general factor strength and
group factor structure, parameter bias was highly predictable. Recommendations for judging
the severity of potential model misspecifications in practice are provided.

Keywords: dimensionality assessment, structural equation modeling, bifactor model

In psychological and educational assessments that employ
structural equation modeling (SEM), unidimensional mea-
surement models are the desire and de facto the norm.
Estimating unidimensional measurement models can be
problematic because complex, multifaceted traits are
unlikely to yield strictly unidimensional item response data.
In reference to the prospect of finding unidimensional data
in the real world, McDonald (1981) declared, “Such a case
will not occur in application of theory” (p. 102). More

Correspondence should be addressed to Steven P. Reise, Department of
Psychology, University of California, Los Angeles, Franz Hall, Los Angeles
CA 90095. E-mail: reise@psych.ucla.edu

recently, Zhang (2007) summarized, “Although it is the most
common assumption in the analysis of item response data,
the unidimensionality of a set of items usually cannot be
met and most tests are actually multidimensional to some
extent” (p. 69). Thus, applying a unidimensional measure-
ment model to multidimensional data necessarily causes a
mismatch between the model and the data.

Despite this predicament, it is not uncommon to find
SEM research that employs a unidimensional measurement
model, regardless of the inherent multidimensionality of the
data. However, when multidimensional data are forced into
a unidimensional measurement model, the resulting model
misspecification can lead to seriously biased and potentially
misleading parameter estimates (Reise, Scheines, Widaman,
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2 BONIFAY ET AL.

& Haviland, 2013).1 For this reason, the consequences of
the incongruity between psychological data (which tend to
be multidimensional) and commonly applied measurement
models (which tend to be unidimensional) have been the sub-
ject of much psychometric research, especially in the item
response theory (IRT) literature.

In IRT, where the application of unidimensional measure-
ment models dominates, a number of studies have explored
the robustness of item parameter estimates to violations of
unidimensionality (e.g., Drasgow & Parsons, 1983; Folk &
Green, 1989; Kirisci, Hsu, & Yu, 2001). This research has
generally shown that if a strong general factor exists in the
data, then the estimated IRT item parameters are relatively
unbiased when fit to a unidimensional measurement model.
Accordingly, in applications of unidimensional IRT mod-
els, it is common to see reports of “unidimensional enough”
indexes, such as the relative first-factor strength as assessed
by the ratio of the first to second eigenvalues (Ackerman,
1989; Embretson & Reise, 2000).

More recently, an appreciable body of literature has
focused on the development of more refined nonparametric
indexes of the degree to which item response data are “essen-
tially” unidimensional. One measure that has drawn a great
deal of attention in IRT is the Dimensionality Evaluation to
Enumerate Contributing Traits index (DETECT; Kim, 1994;
Zhang, 2007; Zhang & Stout, 1999). The DETECT index
attempts to measure the degree of multidimensionality that
exists in an item response matrix—the core assumption is
that the viability of applying a unidimensional IRT measure-
ment model decreases as the amount of multidimensionality
in the data increases. This index and its role in this investiga-
tion are discussed in further detail shortly.

In SEM, much less emphasis has been placed on the
development and application of statistics that directly index
the degree of departure from unidimensionality, even though
SEM parallels IRT regarding the potential biasing effects
that arise from forcing multidimensional item response data
into a unidimensional measurement model. Instead, SEM
researchers have traditionally evaluated dimensionality by
fitting a unidimensional measurement model and comparing
the resulting set of fit index values against established bench-
marks (e.g., Hu & Bentler, 1999). Thus, when used to test
whether a unidimensional measurement model provides an
“acceptable” fit to the data, SEM fit indexes are essentially
being used just as DETECT or first-factor strength indexes
are used in IRT; that is, SEM fit indexes are used in prac-
tice as indicators of whether the data are “unidimensional
enough” to avoid serious bias in model parameters.

However, Reise et al. (2013) argued that fit index val-
ues can be misleading when they are used to judge the size

1Moreover, the common practice of “hiding” multidimensionality
through the formation of parcels has been subject to much criticism of late
(Bandalos, 2002; Meade & Kroustalis, 2006; Sterba & MacCallum, 2010).

of the departure from unidimensionality and ultimately the
bias in parameter estimates. Although SEM fit indexes might
perform well in differentiating between unidimensional and
multidimensional data, fit index values are not necessarily
prognostic of the degree to which parameter estimates (e.g.,
structural coefficients) are biased when the model is misspec-
ified. Moreover, some fit indexes are confounded by factors
that are irrelevant to dimensionality, such as test length
(West, Taylor, & Wu, 2012). In short, although goodness of
fit is of course preferable, it is not a direct reflection of uni-
dimensionality, and satisfactory fit indexes do not guarantee
that the estimated parameters are unbiased.

Given these facts, we argue that it is important to iden-
tify statistical tools that evaluate dimensionality directly, and
are therefore potentially more predictive of the degree of
parameter bias caused by model misspecification. The non-
parametric DETECT index was expressly designed to assess
the degree of (multi)dimensionality of an item response
matrix, and it has enjoyed widespread use among IRT prac-
titioners. Thus, this study borrows from IRT to determine
whether DETECT can be used in SEM as an index of
the degree of model misspecification that occurs when fit-
ting multifaceted item response data to a unidimensional
measurement model.

DETECT

As an alternative to a general factor strength statistic in
IRT, the DETECT index has become increasingly popular.
This statistic, developed under the theory of essential unidi-
mensionality (Stout, 1990) assumes that item responses are
influenced by a single “dominant” latent dimension (Hattie,
Krakowski, Rogers, & Swaminathan, 1996; Nandakumar,
1991; Stout et al., 1996; Zhang & Stout, 1999), and that
the residual multidimensionality follows approximate simple
structure (i.e., cross-loadings are small). The DETECT index
is maximal when the items are appropriately partitioned into
homogenous clusters that each measure a subdimension, and
the DETECT procedure uses a genetic algorithm to find the
clustering that maximizes the index.

Assuming that the sum of raw scores on all the items
can serve as a proxy for the common dimension mea-
sured by an item set, the DETECT index is based on
estimating the covariances between pairs of items, con-
ditioned on the common dimension. It has been shown
that, under the assumption of approximate simple structure,
items measuring the same secondary dimension beyond the
composite have positive conditional covariances, whereas
items measuring different dimensions beyond the compos-
ite have negative conditional covariances (Mroch & Bolt,
2006; Zhang & Stout, 1999). When item response data are
strictly unidimensional, there are no secondary dimensions
beyond that reflected in the composite, and thus each item
pair has an expected conditional covariance of 0. When a
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DETECT 3

test is multidimensional, then the conditional covariance is
expected to deviate from zero. The DETECT index can be
written as

D(P) = 1

n(n − 1)/2

∑

i<j

(−1)cij (CĈovij − CCov), (1)

where P represents a specific partitioning of items into clus-
ters, n is the number of items, and CĈovij is the conditional
covariance between items i and j,

CCov = 1

n(n − 1)/2

∑

i<j

CĈovij, (2)

and cij = 0 (if items i and j are in the same cluster) or 1
(if items i and j are in different clusters; Mroch & Bolt,
2006; Zhang & Stout, 1999). If approximate simple struc-
ture exists, then D(P) will be maximized at the dimensionally
homogeneous cluster partition P of a scale, where each clus-
ter represents a different underlying dimension. As Zhang
and Stout (1999) summarized, the maximum DETECT value
“indicates the amount of multidimensionality the test dis-
plays, that is, the size of the departure from being per-
fectly fitting to a unidimensional model” (p. 219). Low
values of DETECT are taken as indicators that the data
are essentially unidimensional, and higher values indicate
that a multidimensional latent variable measurement model
(among other possible remedies) might be required (Roussos
& Ozbek, 2006; Stout et al., 1996).

Based on simulation studies, Kim (1994) proposed
DETECT benchmarks for unidimensionality (DETECT <

0.1), weak dimensionality (0.1 < DETECT < 0.5), moderate
dimensionality (0.51 < DETECT < 1.0), and strong dimen-
sionality (DETECT > 1.0). Stout et al. (1996) simplified this
yardstick by stating, “Maximum DETECT values near .1 or
less are indicative of (possibly essential) unidimensionality
(see Stout, 1990), and values greater than 1.0 indicate that
sizable dimensionality is present” (p. 348). Most recently,
Roussos and Ozbek (2006) refined the original benchmarks
by establishing several guidelines based on both simulated
and real data analyses:

• DETECT < 0.2 = weak multidimensionality/

approximate unidimensionality.
• 0.2 < DETECT < 0.4 = weak to moderate

multidimensionality.
• 0.4 < DETECT < 1.0 = moderate to large

multidimensionality.
• DETECT > 1.0 = strong multidimensionality.

However, all of these guidelines were based on internal cri-
teria such as the expected values of DETECT under the null
condition of unidimensionality (e.g., Finch & Habing, 2005;
Gierl, Leighton, & Tan, 2006). In this study, the DETECT

index is evaluated in terms of its ability to predict the bias in
factor loading estimates, as described next.

THIS STUDY

This study differs from prior work on DETECT in several
important ways. First, prior work on DETECT has occurred
exclusively in the context of IRT modeling. Nevertheless,
due to the mathematical equivalence of IRT and SEM mea-
surement models (Takane & de Leeuw, 1987), we argue that
the DETECT index should be equally useful in the evalua-
tion of unidimensional SEM measurement models. In other
words, if a researcher wants to apply a unidimensional SEM
measurement model to a set of items, but is concerned about
the degree to which the data are consistent with this model,
then the DETECT index should, in principle, be useful.

Second, most studies of DETECT have used a simple
structure correlated factors model as their working repre-
sentation of multidimensionality (e.g., Gierl et al., 2006;
Roussos & Ozbek, 2006; Zhang, 2007). In this research, our
working model of multidimensionality is a bifactor struc-
ture (Holzinger & Swineford, 1937)—a multidimensional
structure wherein measured variables reflect a single com-
mon trait (typically the primary dimension of interest to
the researcher) and additional orthogonal group factors that
typically arise because of homogeneous content groupings
(Reise, 2012; Reise, Moore, & Haviland, 2010).2

The advantages of fitting a unidimensional SEM mea-
surement model to data generated from a multidimensional
bifactor measurement model are twofold. First, we assume
that the general factor in the bifactor model—which rep-
resents the one common source of variance among all the
test items—best represents the latent variable the researcher
intends to measure. This allows us to define parameter bias
precisely. Specifically, we define parameter bias as the dif-
ference between estimated loadings in a unidimensional
solution and true loadings on the general factor in the bifactor
model. A further advantage is that using a bifactor model
as our working representation of multidimensionality allows
us to compare the predictive power of DETECT against two
bifactor model-based indexes previously shown to be asso-
ciated with parameter bias in SEM, namely, ECV and PUC
(Reise et al., 2013).

In sum, our primary goal is to evaluate the utility of
DETECT, originally developed under an IRT framework, to
determine the adequacy of fitting a unidimensional measure-
ment model in an SEM context. To our knowledge, research
to date has not attempted to directly link DETECT values

2Note that this structure is completely consistent with DETECT’s
assumption of approximate simple structure and previous research because
any bifactor structure with one general and 1 – P group factors can be
transformed into a simple structure correlated factors model with 1 – P
factors.
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4 BONIFAY ET AL.

with parameter bias in either IRT or SEM. Our secondary
goals are to (a) further explore the factors that influence
DETECT values, and (b) evaluate DETECT in relation
to previously researched parametric bifactor model-based
indexes of factor strength and structure.

METHOD

Data Simulation Procedure

The Monte Carlo simulations described here were
programmed in the R statistical software package
(R Development Core Team, 2011). To create a
multidimensional population measurement model, we
specified the true factor loadings (λ) for a bifactor model
with a given number of binary items and P latent factors
(one general and P – 1 group factors). To create optimal
conditions for estimating tetrachoric correlations, we speci-
fied that the factor threshold equaled 0.0 for each item. The
resulting bias in parameter estimates should be due solely
to multidimensionality and not to estimation bias caused by
item differences in the threshold. The simulated population
model was perfectly bifactor, meaning that each item loaded
on both the general factor and one (and only one) group
factor, and all factors were orthogonal. To control the
direction3 and degree of bias in the parameter estimates, all
group factors were balanced (i.e., the same number of items
and the same loadings).

Once the true population bifactor loading pattern was
specified, we then computed the implied correlation matrix
among the items. Cholesky decomposition was then used
to generate continuous normally distributed data based on
the true correlation matrix for N = 10,000 cases. These
data were then dichotomized by coding any matrix element
greater than 0.0 as a 1, and 0 otherwise. Thus, all items had
a proportion endorsed around .50.4

Data

A total of 300 distinct data sets of N = 10,000 were
simulated by specifying 15 factor structures and 20 condi-
tions within each structure. The 15 distinct factor structures
shown in Table 1 were created to differ in the number
of items, the number of group factors, and the number of

3Because of the balanced design, when multidimensional data are forced
into a unidimensional model, estimated loadings in the unidimensional
model will always be higher than the true loadings on the general factor
in the bifactor model. The degree of bias is influenced by other factors, as
described later.

4Note that we did not vary the sample size because this is not a study of
estimation error, but rather a study of DETECT’s ability to predict bias in
parameter estimates, and the factors that influence its predictive power.

TABLE 1
15 Data Structures

Structure
Number of

Items

Number of
Group
Factors

Items per
Group
Factor PUC

1 9 3 3 .75
2 18 2 9 .53
3 18 3 6 .71
4 18 6 3 .88
5 24 2 12 .52
6 24 3 8 .70
7 24 4 6 .78
8 24 6 4 .87
9 24 8 3 .91
10 36 2 18 .51
11 36 3 12 .69
12 36 4 9 .77
13 36 6 6 .86
14 36 9 4 .91
15 36 12 3 .94

Note. N = 10,000. PUC = percentage of unconfounded correlations.

items per group factor, and thus they differed in the per-
centage of uncontaminated correlations (PUC)—a bifactor
model-based index of factor structure.

When data follow a bifactor structure with positive fac-
tor loadings, the correlations among the items within group
factors are inflated due to both general factor and group
factor variance. On the other hand, the correlations among
the items in different group factors only reflect variance
from the general dimension and are thus uncontaminated by
multidimensionality. For each bifactor structure specified in
this research, PUC was computed via a simple equation:

PUC =
nitems(nitems−1)

2 − ngroups × nipg(nipg−1)
2

nitems(nitems−1)
2

, (3)

where nitems is the total number of items, ngroups is the number
of group factors, and nipg is the number of items per group
factor. For any fixed number of items, PUC increases as the
number of small group factors increases and decreases when
there are a few large group factors. For example, an 18-item
test will have a larger PUC if there are six 3-item group
factors (PUC = .88) rather than three 6-item group factors
(PUC = .71).

Within each factor structure, we also varied the relative
strength of the general to group factors. Within each of the
15 structures, we specified a completely crossed design with
five levels of true loadings on the general factor (.3, .4, .5,
.6, and .7) and four levels of true loadings on the group
factors (.3, .4, .5, and .6). This minimum average loading
was selected because loadings below .3 can be considered
inconsequential (McDonald, 1999), and the maximum group
loading of .6 was specified to avoid computation problems
that can occur when item communalities become too high.
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DETECT 5

As a consequence of this design, within each data struc-
ture we were able to manipulate relative general factor
strength, as defined by the explained common variance
(ECV; Reise et al., 2010; Ten Berge & Sočan, 2004)—the
common variance explained by the general factor, divided
by the total common variance. Ten Berge and Sočan (2004)
described this ratio as “a natural coefficient of ‘closeness to
unidimensionality’” (p. 621), but here we prefer to interpret
ECV solely as a relative general factor strength index:

ECV =
∑

λ2
Gen∑

λ2
Gen + ∑

λ2
GR1 + ∑

λ2
GR2 + · · · + ∑

λ2
GRn

.

(4)

In Equation 4 the numerator is the eigenvalue associated with
the general factor and the denominator is the sum of the
eigenvalues of the general factor and each group factor.

Procedure

For each of the 300 (15 factor structures × 20 parameteriza-
tions) data sets of N = 10,000 dichotomous item responses,
we used maximum likelihood based on a tetrachoric correla-
tion matrix to estimate a unidimensional SEM using EQS
software (Bentler, 2006). For each data set, we recorded
the ECV and PUC based on the true population structure.
The DETECT program was used to estimate the degree of
multidimensionality based on the maximum DETECT value.
For each run, we set the maximum number of factors in
DETECT to equal the number of group factors plus three
(so as to allow the algorithm to overestimate the number of
clusters)5. In 291 of the 300 data sets (97%), DETECT was
accurate in identifying the correct latent dimensionality, and
in assigning items to group factors.6

Finally, for each of the 300 conditions, we recorded the
average bias in the factor loading estimates by taking the dif-
ference between the true loadings on the general factor and
the estimated loadings in the unidimensional model, and then
averaging. We then computed the relative bias, which we
focus on here, by dividing absolute bias by the true general
factor loading. Following Reise et al. (2013), we describe
the relative bias as trivial if it is less than 5% (strict) or 10%
(liberal).

5Again, if a bifactor structure has one general and three group factors,
DETECT should recognize this as three groups of homogeneous items,
and base the computation of the maximum DETECT value on this correct
partitioning.

6One problem occurred in data structure 9 (24 items, 8 group factors of
3 items) in the .6 general and .3 group loading condition where DETECT
identified six dimensions rather than eight. The remaining eight inaccuracies
were from data structure 15 (36 items, 12 group factors of 3 items) in the
conditions where the group factor loadings were small (.3 and .4). In those
conditions, DETECT slightly underestimated the number of latent dimen-
sions as being between 8 and 11, rather than the correct 12. We comment
further on these findings in the discussion.

TABLE 2
Structure 5: 24 Items, 2 Group Factors, and 12 Items Per Group

Factor (PUC = .52)

λGEN λGRP ECV DETECT Absolute Bias Relative Bias

.7 .3 .84 .87 .03 .04

.6 .3 .80 .84 .03 .06

.5 .3 .74 .77 .04 .08

.7 .4 .75 1.59 .05 .08

.6 .4 .69 1.47 .06 .10

.7 .5 .66 2.69 .08 .12

.4 .3 .64 .78 .05 .13

.5 .4 .61 1.39 .07 .14

.6 .5 .59 2.35 .09 .15

.7 .6 .58 4.15 .11 .16

.3 .3 .50 .76 .06 .22

.4 .4 .50 1.40 .09 .22

.5 .5 .50 2.30 .11 .22

.6 .6 .50 3.58 .13 .22

.5 .6 .41 3.33 .15 .30

.4 .5 .39 2.13 .13 .32

.3 .4 .36 1.36 .11 .36

.4 .6 .31 3.20 .18 .44

.3 .5 .26 2.10 .16 .53

.3 .6 .20 3.24 .21 .71

Note. N = 10,000. λGEN = average general factor loading; λGRP = aver-
age group factor loading; ECV = explained common variance; PUC = per-
centage of unconfounded correlations.

RESULTS

Within Data Structures

There are too many data structures to display the complete
within data structure results, but several key points can be
made by examining the results for three structures that vary
in PUC. Tables 2 through 4 include the results for each com-
bination of general and group factor loadings for data struc-
tures 5 (24 items, 2 group factors of 12 items, PUC = .52),
1 (9 items, 3 group factors of 3 items, PUC = .75), and
15 (36 items, 12 group factors of 3 items, PUC = .94),
respectively. In each table, ECV, DETECT, absolute bias,
and relative bias are shown and the values are arranged in
order of relative bias.

There are three key observations from these tables. First,
within each condition, ECV and DETECT appear to be
related to absolute bias and relative bias. Second, for any
given combination of factor loadings, ECV values do not
change across model structure (number of group factors and
items per group factor) whereas DETECT values do. When
the general factor has an average loading of .7 and the group
factors have average loadings of .3, for example, ECV is
always .84, but DETECT values are .87, .66, and .20 for
the three structures. The implication is that, controlling for
ECV, DETECT determines that data structures with higher
PUC are less multidimensional. Third, and most important,
it is clear that both absolute and relative bias decrease as a
function of PUC.
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6 BONIFAY ET AL.

TABLE 3
Structure 1: 9 Items, 3 Group Factors, and 3 Items Per Group Factor

(PUC = .75)

λGEN λGRP ECV DETECT Absolute Bias Relative Bias

.7 .3 .84 0.66 0.02 0.02

.6 .3 .80 0.61 0.02 0.03

.5 .3 .74 0.75 0.02 0.04

.7 .4 .75 1.30 0.03 0.04

.6 .4 .69 1.29 0.03 0.05

.7 .5 .66 2.17 0.04 0.06

.4 .3 .64 0.85 0.03 0.07

.5 .4 .61 1.18 0.04 0.08

.6 .5 .59 2.01 0.05 0.08

.7 .6 .58 3.38 0.06 0.09

.3 .3 .50 0.90 0.04 0.12

.4 .4 .50 1.30 0.05 0.12

.5 .5 .50 1.83 0.06 0.12

.6 .6 .50 2.88 0.07 0.12

.5 .6 .41 2.73 0.08 0.17

.4 .5 .39 1.80 0.07 0.18

.3 .4 .36 1.39 0.06 0.20

.4 .6 .31 2.68 0.10 0.25

.3 .5 .26 1.97 0.09 0.30

.3 .6 .20 2.62 0.12 0.41

Note. N = 10,000. λGEN = average general factor loading; λGRP = aver-
age group factor loading; ECV = explained common variance; PUC = per-
centage of unconfounded correlations.

TABLE 4
Structure 15: 36 Items, 12 Group Factors, and 3 Items Per Group

Factor (PUC = .94)

λGEN λGRP ECV DETECT Absolute Bias Relative Bias

.5 .3 .74 0.20 0.01 0.01

.6 .3 .80 0.18 0.00 0.01

.6 .4 .69 0.33 0.01 0.01

.7 .3 .84 0.20 0.00 0.01

.7 .4 .75 0.34 0.01 0.01

.7 .5 .66 0.56 0.01 0.01

.4 .3 .64 0.22 0.01 0.02

.5 .4 .61 0.33 0.01 0.02

.6 .5 .59 0.52 0.01 0.02

.7 .6 .58 0.89 0.01 0.02

.3 .3 .50 0.24 0.01 0.03

.4 .4 .50 0.34 0.01 0.03

.5 .5 .50 0.49 0.01 0.03

.6 .6 .50 0.77 0.02 0.03

.4 .5 .39 0.51 0.02 0.04

.5 .6 .41 0.73 0.02 0.04

.3 .4 .36 0.37 0.01 0.05

.4 .6 .31 0.71 0.02 0.06

.3 .5 .26 0.53 0.02 0.08

.3 .6 .20 0.73 0.03 0.11

Note. N = 10,000. λGEN = average general factor loading; λGRP = aver-
age group factor loading; ECV = explained common variance; PUC = per-
centage of unconfounded correlations.

Across Data Structures

We next examine the findings when all 300 data sets are
considered. Table 5 presents the bivariate correlations for all

TABLE 5
Bivariate Correlations

1 2 3 4 5 6 7 8

1. λGEN 1
2. λGRP 0 1
3. ECV .75 −.64 1
4. DETECT .10ns .73 −.39 1
5. Absolute bias −.32 .55 −.60 .82 1
6. Relative bias −.54 .43 −.70 .60 .93 1
7. PUC 0 0 0 −.55 −.68 −.54 1
8. Number of items 0 0 0 −.18 −.11ns −.09ns .15 1

Note. N = 10,000. λGEN = average general factor loading; λGRP= aver-
age group factor loading; ECV = explained common variance; PUC = per-
centage of unconfounded correlations. ns indicates correlations that were
not significant at p < .01.

research factors and indexes. All correlations were signifi-
cant at p < .01, except for the correlation between DETECT
and the general factor loading, and the correlations between
test length and both absolute and relative bias. We begin by
considering the role of relative factor strength (as measured
by ECV) and model structure (as measured by PUC) in pre-
dicting bias, as suggested in previous research (Reise et al.,
2013).

ECV and PUC. Table 5 shows that ECV and PUC are
related to absolute bias (r = –.60 and r = –.68, respectively)
and to relative bias (r = –.70 and r = –.54, respectively).
Figure 1 displays a scatterplot of relative bias as a function
of ECV and includes horizontal lines marking 5% and 10%
relative bias. It appears that when ECV is above .70, relative
bias is below the 10% benchmark and when ECV is above
.80, relative bias is less than 5%. However, the evident
fan pattern indicates that as ECV decreases, the range in
relative bias increases. The degree of relative bias spread
for any particular value of ECV is a function of PUC, as
demonstrated next.

Figure 2 depicts the average relative bias across the
20 conditions within each model structure as a function of
PUC. There is a near-perfect monotonic relation, such that
high values of PUC are associated with a very low average
relative bias. The four panels in Figure 3 demonstrate the
role of PUC in moderating the relation between ECV and
relative bias. Each panel displays a plot of the relationship
between relative bias and ECV for four levels of PUC: (a) <

.53, (b) .68 > and < .78, (c) .85 > and < .89, and (d) > .90.
Inspection of these panels shows that the influence of ECV
on relative bias depends critically on PUC. At high levels
of PUC (i.e., when there are many small group factors),
item parameters display little relative bias regardless of the
general factor strength. However, when PUC is low (i.e.,
when there are a few large group factors), relative strength
of the first factor is a critical determinant of bias. To examine
the importance of these factors in determining bias in
our particular simulation study, we estimated a multiple
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FIGURE 1 Relative bias as a function of explained common variance (ECV).
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FIGURE 2 Mean relative bias as a function of percentage of uncontaminated correlations (PUC).

regression that included ECV, PUC, and their interaction as
predictors of relative bias. The result was an R2 of .91; this
same model predicting absolute bias produced an R2 of .92.
Adding the DETECT index did not significantly increase
R2, and the DETECT coefficient was insignificant after
including ECV, PUC, and their interaction. Although these
results might not generalize to contexts outside of ours, they
suggest that relative factor strength, factor structure, and

their interaction play a large role in determining bias. With
these results serving as a benchmark, we now consider the
performance of DETECT.

DETECT. Considered across all data sets, DETECT
values were correlated with absolute bias (r = .82, r2 = .67),
and with relative bias (r = .60, r2 = .36). When DETECT is
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FIGURE 3 The interaction between explained common variance (ECV) and percentage of uncontaminated correlations (PUC) in the prediction of
relative bias.

considered on its own, the absolute bias results are superior
to the values for either ECV or PUC, but inferior in terms of
predicting relative bias. Moreover, DETECT by itself does
not perform as well in the prediction of bias as the combi-
nation of ECV, PUC, and their interaction, as described pre-
viously. To better understand the performance of DETECT
under the present conditions, we offer two observations.

First, although DETECT is moderately sensitive to varia-
tions in relative factor strength as measured by ECV (r = –
.39), it is much more sensitive to the size of the average
group factor loading (r = .72); the size of the general fac-
tor loading does not play a significant role (r = .10). This
is obvious once one recognizes that DETECT is based on
the size of the conditional covariances that are found after
controlling for the composite score. Because the role of the
general factor in the composite score is constant for all con-
ditional covariances, but the role of the group factors varies,
the size of the factor loadings on the general factor should
not be nearly as important as those of the group factors.
In effect, the size of the loadings on the general factor are
partialed out in the computation of DETECT. This, in turn,
degrades the performance of DETECT in terms of predicting
bias. However, a regression combining DETECT, the general
factor loading, and the interaction between DETECT and
the general factor loading yields R2 = .92 for absolute bias,
and R2 = .89 for relative bias—a substantial improvement in
predictive power.

Second, as noted previously, ECV is independent of PUC,
which itself is an important determinant and moderator of
ECV in predicting bias (see Figures 2 and 3). Table 5

shows that DETECT and PUC are correlated (r = –.55);
as PUC increases, DETECT decreases. The reason these
indexes are associated is obvious considering the equations
for PUC and DETECT. When PUC increases, there are rela-
tively more covariances between items from different group
factors. In turn, the conditional covariances for these item
pairs are expected to be negative, thereby contributing to
decreased DETECT values. In addition, as PUC increases,
there are relatively fewer covariances between items from
the same group factor. The conditional covariances for these
items are expected to be positive, thereby contributing to
higher DETECT values.

The lack of independence between PUC and DETECT
has both positive and negative consequences. On the posi-
tive side, a virtue of DETECT is that it naturally accounts for
the true model structure to some degree and thus, when con-
sidered alone, can be more informative than an index such
as ECV. On the other hand, the correlation between PUC
and DETECT is not perfect, and there are situations where
DETECT does not properly account for the true model struc-
ture in terms of predicting bias in parameters, as we explore
in detail next.

We now consider the specific strengths and weak-
nesses of using DETECT to judge whether data are too
multidimensional for unidimensional modeling. An exami-
nation of all 300 data sets revealed that DETECT is always
less than 1.0 when the average group factor loading is
small (.3), regardless of the strength of the general factor.
As the average group factor loading increases in strength,
the DETECT values tend to become higher, thus suggesting
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DETECT 9

multidimensionality. Interestingly, even DETECT values as
high as 3.3 can provide parameter estimates with less than
10% relative bias. Alternately, DETECT values as low as
0.6 can show more than 10% relative bias in parameter esti-
mates. These “false negative” and “false positive” scenarios
are detailed next.

DETECT false negatives. Figure 4 reveals the data
structures that are associated with the “false negatives”—
DETECT values greater than 1.0, but relative bias below
5%. For example, the upper right corner of Figure 4 shows
that when both general and group factor loadings were
strong, data structure 8 (24 items, 6 group factors of 4 items,
PUC = .87) had a DETECT value of approximately 1.9, but
relative bias around 4.6%. Thus, these values are considered
“false negatives”; they would be rejected by the conventional
DETECT benchmarks, but the bias in parameter estimates
is not substantial. It is important to note that there are no
conditions in this sector that have general factor loadings
below .6 or group factor loadings below .4. Further, Figure 4
demonstrates that whenever PUC is greater than .70, then the
relative bias might be negligible.

These false negatives become even more conspicuous if
one accepts a more liberal relative bias level of 10%. The
data sets that meet this qualification include conditions in
which all group factor loadings as well as general factor load-
ings are .4 or greater, and PUC values are as low as .51.
For example, data structure 1 (9 items, 3 group factors of
3 items, PUC = .75) had an extremely high DETECT value
of 3.4, but bias less than 9% when both the general and group
factor loadings were high. Similarly, data structures 7 and

12 had DETECT values approaching 3.0, but relative bias
of approximately 8%. Clearly, if a researcher allows relative
bias as high as 10%, then many data sets with convention-
ally unacceptable DETECT values will nevertheless provide
fairly accurate parameter estimation.

DETECT false positives. Figure 5 shows the “false
positive” situations in which DETECT values are gener-
ally acceptable (< 1.0), but the relative bias is problematic
(> 10%). As indicated by the black shading, the major-
ity of the data points in this plot are characterized by low
group factor loadings (.3). In the upper part of Figure 5,
for example, one can see that when both general and group
factor loadings were very low, data structure 10 (36 items,
2 group factors of 18 items, PUC = .51) had an accept-
able DETECT value of approximately 0.75, but high relative
bias (∼0.22). It is important to note that all 15 data struc-
tures included some combination of general and group factor
loadings that resulted in overly biased parameter estimates
despite adequately low DETECT values.

DETECT and benchmarks. Finally, Figure 6 focuses
on the conditions that satisfy the criteria set forth by Roussos
and Ozbek (2006), as mentioned earlier. The first thing
to note is that only five data structures are represented in
Figure 6 (4, 8, 9, 14, and 15), all of which have high
PUC (.87 or higher) and low average group factor load-
ings (.4 or less). Only three conditions satisfied Roussos and
Ozbek’s (2006) “approximate unidimensionality” bench-
mark of DETECT < 0.2, as indicated by the leftmost dotted
vertical line in Figure 6. All three conditions were from
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FIGURE 4 False negative DETECT values for conditions with less than 5% relative bias.
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FIGURE 5 False positive DETECT values for conditions with greater than 10% relative bias.
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FIGURE 6 Relative bias for conditions that satisfy Roussos and Ozbek’s (2006) benchmarks for DETECT.

data structure 15 (36 items, 12 group factors of 3 items,
PUC = .94) and had low average group factor loadings of
0.3; they differed only in the strength of the general factor
loading (0.7, 0.6, or 0.5). Thus, according to the benchmarks
proposed by Roussos and Ozbek (2006), of the 300 data con-
ditions that were simulated, only three were approximately
unidimensional.

The area between the two vertical lines in Figure 6 rep-
resents Roussos and Ozbek’s (2006) DETECT range for

“weak to moderate multidimensionality.” It is worth not-
ing that structures 14 (36 items, 9 group factors of 4 items,
PUC = .91) and 9 (24 items, 8 group factors of 3 items,
PUC = .91), as represented by the black upright triangles in
the lower center portion of Figure 6, have approximately the
same amount of relative bias as the condition that produced
the lowest DETECT value. Roussos and Ozbek would iden-
tify these data points as weakly multidimensional, despite
the fact that they have approximately the same amount of
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DETECT 11

relative bias (< .01) as the structure 15 conditions that meet
their “approximate unidimensionality” criterion.

DISCUSSION

Because item response data are rarely, if ever, strictly
unidimensional, researchers have essentially two strategies
from which to choose: Ignore the multidimensionality and
model the data as unidimensional, or try to model the
multidimensionality. In the first case, some degree of bias in
parameter estimates is inevitable due to model misspecifica-
tion. In the second case, specification error in the modeling of
multidimensionality will also generally lead to bias. It would
be desirable to have some way to evaluate, from theory and
data, which strategy is better, or at least to have some way
to estimate the amount of bias one is likely to confront with
either strategy.

In this research we focused solely on parameter esti-
mation bias caused by misspecifications of the first kind—
modeling multidimensional data with a unidimensional mea-
surement model. In particular, we evaluated the utility of
the DETECT index for predicting absolute and relative
bias in the estimates of factor loadings in a unidimensional
SEM model of test items that were, in fact, produced by a
multidimensional model. We draw four conclusions.

First, because the DETECT index is based on a specific
partitioning of the items (see Equation 1), for the DETECT
values to be meaningful, the genetic algorithm used as a
first step in this procedure must be precise. In our Monte
Carlo simulation, DETECT was able to correctly identify
the number of dimensions and to assign items to group fac-
tors with 97% accuracy (291 out of 300 data sets). The
problematic conditions were mostly associated with the data
structure that consisted of a large number of group factors
(e.g., 12) and group factor loadings that were small (i.e.,
.3 and .4). In those conditions, DETECT slightly underesti-
mated the number of latent dimensions. This is an important
concern, however, because lengthy achievement tests that
are built to measure heterogeneous constructs such as math
achievement might very well include numerous small group
factors.

Second, previous research (Reise et al., 2013) has argued
that relative general factor strength (as measured by ECV)
and factor structure (as measured by PUC) are important
determinants and moderators of bias in parameter estimates
in unidimensional SEM. This finding was replicated in this
study by demonstrating that a linear regression predicting
relative bias from ECV, PUC, and their interaction pro-
duced an R2 of .91; the same model predicted absolute bias
with an R2 of .92. Moreover, when DETECT was added
into this regression model, no significant increase in R2 was
realized. One could argue that these results indicate that
once one has addressed general factor strength and structure,
DETECT is of little value when estimating the degree of

multidimensionality. However, there are clear advantages to
DETECT, as we discuss shortly.

Third, in terms of predictive power, DETECT was associ-
ated with both absolute (r2 = .67) and relative bias (r2 = .36).
However, a regression combining DETECT with the general
factor loading and their interaction yielded an R2 = .92 for
absolute bias and R2 = .89 for relative bias. In short, the flaw
of DETECT, in terms of predicting parameter bias, is that
its values are based on the size of the conditional covari-
ances (see Equation 1). These conditional covariances are
determined by the size of the loadings on the group fac-
tor, but they are, by definition, independent of the general
factor. However, the size of the general factor, relative to
the group factors, is an important determinant of bias. As a
consequence, DETECT values must be considered in the
context of general factor strength and the structure of the
multidimensionality.

Fourth, benchmarks for a single index considered in iso-
lation are not sufficient for predicting bias. Many factors
influence parameter bias and different statistics are sensitive
to different influences; for that reason, no one statistic will
suffice. Even established SEM fit indexes have specific con-
founds and limitations (West et al., 2012). Similarly, as we
have shown, DETECT has a tendency to over- or underpre-
dict relative bias in certain situations. Specifically, DETECT
can overpredict relative bias when loadings are strong on
both the general factor and the group factors and PUC is at
least .70 (see Figure 4). DETECT can underpredict relative
bias when both the general and group factor loadings are low,
regardless of PUC (see Figure 5).

For multidimensional data of the sort we have studied,
we recommend using DETECT in combination with, but
prior to, PUC and ECV to predict the relative bias in the
estimated factor loadings from a unidimensional measure-
ment model. The DETECT index has the major advantages
that (a) although not described here, DETECT yields an
index of the degree to which multidimensionality approxi-
mates independent cluster structure, and more important, (b)
it can be computed directly from a set of data, with no a pri-
ori hypothesis about the dimensionality or latent structure
involved. This is not true for ECV, or PUC, which requires
the estimation of a bifactor model with orthogonal group fac-
tor. If DETECT can, with reasonable reliability, provide the
number of dimensions and the partition of items into those
dimensions, then the results of DETECT can be used to com-
pute PUC and ECV, assuming a bifactor model. DETECT
values can then be interpreted in light of these indexes.

Why Not Just Use the Multidimensional Model?

In cases in which the relative bias from fitting a
unidimensional measurement model can be expected to be
large, one should reasonably consider the second strategy we
mentioned earlier—fitting a multidimensional model instead
of a unidimensional model. However, two sorts of problems
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12 BONIFAY ET AL.

accompany this strategy. First, even if one is reasonably
confident of the structure of the multidimensional model,
such a model might include factors that are ill defined or
characterized by small two-item local dependencies, thereby
increasing the number of parameters that must be estimated
and reducing the precision of the estimates.

Much more important, however, is the difficulty in prop-
erly specifying the structure of the secondary group factors.
Most tests are designed to assess individual differences on
a single construct. Yet at the same time, item content het-
erogeneity can cause small secondary dimensions to emerge
(Reise et al., 2010). The impact that these secondary, resid-
ual dimensions have on the data is typically substantially
smaller than that of the general factor that was intended to
be measured; thus, the apparent structure of the secondary
dimensions is less likely to be replicable across studies. Even
if one fits a model that is misspecified only in the secondary
dimensions, then the bias in parameter estimates might
well be larger than the bias from fitting a unidimensional
model. Again, this is an important question that we hope
to research in the future. Many exploratory techniques exist
for specifying multidimensionality, but as far as we know,
the reliability in specifying a multidimensional model using
these techniques is unknown, as is the bias from fitting
multidimensional models specified with such exploratory
techniques. It certainly seems worth studying how well one
can estimate general factor loadings from a multidimensional
model specified both correctly, incorrectly, and as a function
of some well-posed specification search algorithm.

Limitations

The main limitation of this study relates to the simulated
data, which were generated from a pure bifactor model in
which the nuisance factors were orthogonal and no cross-
loadings were permitted. Further, the use of balanced group
factors resulted in bias that was always positive. Of course,
such a model is not likely to be found in a real-world situa-
tion. However, no highly restrictive multidimensional struc-
ture is likely to accurately model item responses drawn from
complex psychological measures. Future research should
examine bias of the sort we studied under a much broader
set of generating models.

CONCLUSION

In SEM, the appropriate use of a unidimensional measure-
ment model requires unidimensional data. Ten Berge and
Sočan (2004), however, referred to unidimensionality as a
mere hypothesis and stated, “the hypothesis is either beyond
verification or it is false” and that “assessing how close
is a given test to unidimensionality is far more interest-
ing than testing whether or not the test is unidimensional”
(p. 614). Consistent with this line of thinking, the DETECT

“essential unidimensionality” index appears to be useful in
an SEM context, and, in our view, is better justified than
the uncritical use of fit indexes to judge data dimensional-
ity issues. Nevertheless, when the concern is with parameter
bias caused by model misspecification, measuring the degree
of multidimensionality does not provide the full picture.
For example, in a long test with a reasonably strong gen-
eral factor and many small group factors, parameter bias
is expected to be relatively small regardless of the degree
of multidimensionality. Thus, we recommend that DETECT
values always be considered interactively with indexes of
factor strength (ECV) and factor structure (PUC).
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