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Abstract

A Conservative First-Collision Source Treatment for
Ray Effect Mitigation in Discrete-Ordinate

Radiation Transport Solutions

by

Alex Bitz Christensen

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Massimiliano Fratoni, Chair

Deterministic transport codes play a fundamental role in the modeling and simula-
tion of neutron transport. One of the most common deterministic methods is the
method of discrete ordinates, also known as the Sn method. While offering signifi-
cant advantages over other deterministic methods or stochastic methods like Monte
Carlo, the method of discrete ordinates suffers from non-physical artifacts in its local
solution due to its discretization of angle. These artifacts, referred to as ray effects
because of their ray-like appearance, tend to be worse in problems with small sources
in areas with little scattering. Significant effort has gone into developing methods
to mitigate ray effects, such as the first-collision source treatment, which separates
the angular flux into the uncollided and collided fluxes and solving them using non-
traditional techniques such as ray tracing. Current ray tracing methods typically
trace to a set of points inside a zone to compute an overall flux. However, this ap-
proach has significant drawbacks, such as a low potential for optimization, as well
as not being conservative. A new method has been developed that traces instead to
a set of points on each of a zone’s surfaces and computes the currents, before using
these to obtain the flux. A comparison between these two ray tracing methods shows
significant advantages to the new surface method, including inherent particle con-
servation, similar convergence rate and increased potential for optimization through
ray sharing.
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Chapter One

INTRODUCTION

1.1 INTRODUCTION
In 1960, Edward Teller had UNIVAC construct the Livermore Atomic Research Com-
puter (LARC) at what was then the Lawrence Radiation Laboratory to run advanced
hydrodynamic simulations [1]. Considered one of the first supercomputers ever cre-
ated, LARC helped establish a strong connection between the supercomputing and
nuclear industries, with many of the first supercomputers having been built for the
express purpose of modeling nuclear experiments [2]. The ability to accurately model
the behavior and movement of neutrons is of vital importance in a broad set of appli-
cations, ranging from the design of nuclear reactor cores to dose calculations found
in radiation medicine. In many of these applications, the tolerance for error is small,
with even small errors making the difference from a reactor core having a sub-critical
geometry and one that is supercritical. Unfortunately, the neutron transport equa-
tion - the equation governing the movement and behavior of neutrons in a given
system - is difficult to solve due to the high dimensionality of its solutions phase
space [3]. It is only under the most simplistic of circumstances, like an infinite slab
of uniform material, that a true, analytical solution exist. Because of this, countless
hours and resources have been spent developing alternative approaches to solving the
transport equation, most involving the use of advanced computational resources. As
the use of numerical simulations became more mainstream, the demand for better
and better computers increased. This increasing demand played a crucial role in
driving the advancement of supercomputing technologies.

One of the most popular techniques used to solve the transport equation is the
method of discrete ordinates [4, 5]. Developed in the 1950s as an alternative approach
to solving radiation transport problems to the then already popular Spherical Har-
monic and Monte Carlo Methods, the method of discrete ordinates, or SN method,
as it is commonly referred to, is a deterministic numerical method that relies on
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the discretization of the transport equation’s dimensions to obtain a solution [6].
While enjoying relatively similar performance to other popular numerical methods,
it suffers from one glaring weakness - ray effects.

At the heart of the discrete ordinate method is the separation of angular depen-
dency by solving the transport equation on a fixed angular grid, with the resulting
set of equations being coupled through a collision term [3, 4, 6]. A consequence of
this, however, is the creation of artificial oscillations in the angular flux, often taking
the appearance of rays, referred to as ray effects. These rays can seriously impact the
accuracy of the local solution and potentially render the obtained solution unusable.

Significant effort has been made over the years in developing a variety of different
techniques to try and mitigate or even eliminate ray effects, with varying degrees of
success. One such technique, the First Collision Source Treatment Method, involves
the separation of uncollided and collided fluxes [7]. The uncollided flux - the greatest
contributor to ray effects - is solved for using an alternative method that does not
suffer from ray effects, and is then used as a source term to obtain the collided flux.
The two can then be combined to find the total flux.

1.1.1 Motivation

Currently, when performing a first collision treatment, there are a limited number of
techniques available to solve for the uncollided flux without observable ray effects.
One of the most popular methods employs ray tracing to find the uncollided flux. The
standard approach, referred to in this paper as the interior point method, involves
defining a spatial quadrature set along the interior of each zone in a mesh and finding
the uncollided flux at each quadrature point by casting rays from the source to the
point in space and finding the optical depth along the rays path. The scattering
of this uncollided flux then provides a source term to find the collided flux. The
problem with this method, however, is that it is not conservative in the way in which
it treats its particles.

In this paper, we propose an alternate approach to finding the uncollided flux,
which we refer to as the Surface Method. It defines a set of quadratures along the
faces of each zone and solves for their currents. By summing these currents, the
method uses the Divergence Theorem to obtain the absorption rate inside the zone
and through that the scalar flux, and in doing so is inherently conservative.

The surface method possesses certain advantages over the interior point method
for first scatter treatments; it is inherently conservative and has more potential for
work optimization leading to higher work efficiency. Included in this paper is the
derivation of both the interior point and surface methods, as well as the results from
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several different 2D and 3D test cases demonstrating their behavior in a variety of
different scenarios.

No numerical method works well under all conditions, with each having a set of
strengths and weaknesses. While not all methods are created equal, having more
tools at one’s disposal is always better.

1.1.2 Objectives

The objective of this project is to develop a new ray-tracing based technique to solve
for the uncollided flux for use inside a first-collision source treatment method to
reduce ray effects inside discrete ordinate methods. Following the successful devel-
opment of such a method, it will be compared against the more standard ray-tracing
based technique for solving for the uncollided flux, which throughout this paper will
be referred to as the interior point method.

To perform this analysis, both a independently developed, 2D solver will be writ-
ten using the computing platform MATLAB, as well as the production code ARDRA
- a highly capable deterministic (Sn) neutron and gamma transport code developed
by Lawrence Livermore National Laboratory [15].

As a final proof of concept, the new surface method will be used to model a real
world problem, with its simulated data compared against true experimental results.

1.1.3 Overview of the Following Chapters

• Background: An overview of general background information, including a
broad overview of neutron transport as well as common methods used to solve
the transport equation, with a special focus placed on the discrete ordinates
method and source iteration. The section also goes into ray effects, their causes,
and some common techniques used to mitigate them, including the first collision
source treatment technique.

• Ray Tracing Methods: Beginning with integral form of the neutron trans-
port equation, the section derives the base equations used by the interior point
and surface methods. It then provides a derivation for both the interior point
and surface methods, as well as provides a general explanation of how the ray
trace works.

• Implementation: This section outlines the way in which the two methods
were implemented in both the 2D MATLAB solver as well as ARDRA.
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• Results: This section outlines the general process used to judge the two meth-
ods performance, including the error norm being used. It then goes into the
results from each of the individual MATLAB cases, before transitioning to the
results from the ARDRA cases.

• Conclusion: This section summarizes the characteristic and overall perfor-
mance of each method, as well as outlines any trends observed in the test
cases. It highlights several improvements that could be made to later imple-
mentations, as well as outlines potential work to be done in the future.
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Chapter Two

BACKGROUND

2.1 Neutron Transport
A key component of the nuclear sciences is the understanding of how subatomic
particles such as neutrons behave when traveling through a particular environment,
a concept typically referred to as radiation transport. Going forward, this paper
will specifically focus on the transport of neutrons, as each type of particle has
slightly different physics governing their interactions with the world around them. It
should be noted, however, that many of the concepts discussed in this paper could
be expanded upon to apply to other forms of radiation transport.

2.1.1 Neutron Transport Equation

The ’life’ of a neutron is modeled by the neutron transport equation (NTE), a lin-
ear integro-differential equation based on the Boltzmann Transport Equation, an
equation originally used to describe the evolution of particle density distributions for
non-equilibrium gases [8]. At its core, the neutron transport equation is essentially
a balance equation that describes the population of neutrons at a particular place in
space, with loss terms on the left and gains on the right.

The full time, energy, angle, and space dependent form of the neutron transport
equation for an external source in non-multiplying media can be written as follows:

1

v(E)

∂ψ(r⃗, E, Ω̂, t)

∂t
+ Ω̂ ·

−→
∇ψ(r⃗, E, Ω̂, t) + Σt(r⃗, E)ψ(r⃗, E, Ω̂, t) =∫

4π

dΩ′
∫ ∞

0

dE ′Σs(r⃗, E
′ → E, Ω̂′ → Ω̂)ψ(r⃗, E ′, Ω̂′, t) + q(r⃗, E, Ω̂, t) (2.1)
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where v(E) is the velocity of the neutron as a function of energy, r⃗ is one’s spatial
coordinates, Ω̂ is the direction being traveled, ψ is the angular flux, t is time, Σt is
the total absorption cross, Σs is the double differential scattering cross section, and
q is the external point source [4].

In its most complicated form, the transport equation contains seven independent
variables: three spatial dimensions r = x, y, z, two angular dimensions Ω̂ = θ, ϕ as
well as both time t and energy E, and can involve material properties that are coupled
with the neutron flux through temperature creating a complicated, multiphysics
environment. Because of its inherent nature, in all but the most simple of cases, true
analytical solutions to the transport equation do not exist, necessitating the use of
numerical approximations instead to find a solution.

As is the case with all numerical methods, accuracy must be weighed against
the computational cost of obtaining said solution. Key factors to consider when
performing numerical analysis are the rate at which the method converges and the
way in which error propagates throughout the solution, as well as the possibility of
parallelization and potential optimization. With this in mind, a compromise must be
made between run time and the accuracy of the solution. All methods have strengths
and weaknesses, and it is up to the user to choose the best approach for the problem
at hand [4].

Most numerical methods used in neutron transport fall under one of two different
categories: stochastic methods such Monte Carlo in which pseudo-random numbers
and interaction probabilities are used in tangent with one another to obtain a statis-
tically sound solution without having to directly solve the transport equation, and
deterministic methods such as discrete ordinates or the method of characteristics
which solve the transport equation directly

In stochastic methods such as Monte Carlo, the transport equation is never actu-
ally used, and one could argue they are not actually approximations of the neutron
transport equation but rather an entirely alternative approach to the characteri-
zation of a nuclear system. While the transport equation describes the statistical
average of the particles in the system, Monte Carlo methods try to build an average
of desired quantities by simulating the life of many individual neutrons. However,
because in a system like a nuclear reactor there exist a near countless number of par-
ticles at any given moment, it is impossible to truly model every individual one of
them. Therefore, the accuracy of a Monte Carlo simulation is typically limited by the
available computer resources [9]. The advantage to a method like Monte Carlo is its
general robustness and ability to produce very accurate solutions under a wide range
of applications, as well as its exact modeling of complex geometries and continuous
energy representation. The biggest drawback to them, however, is that in order to
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achieve a statistically accurate solution, they often require millions or even billions
of individual particles to be modeled, which is both computationally expensive and
memory intensive. If an insufficient number of particles is used, then it is possible
for certain regions to not be sampled enough for meaningful results. The accuracy of
the solution is dependent on the number of particles that are able to reach the given
area. While certain variance reduction techniques can be employed to increase this
number, in general, Monte Carlo scales by 1√

N
, meaning that to decrease the error

by an order of magnitude, one must use 2 orders of magnitude more particles. While
this poor scaling is offset slightly by Monte Carlo’s high degree of parallelization,
it is still considered to be computationally expensive and slow. Some examples of
commonly used Monte Carlo codes include MCNP, Serpent, and Geant4.

Deterministic methods, on the other hand, typically work in a more conventional
fashion, choosing instead to discretize the transport equation in space, angle, energy,
and/or time and solve the resulting system of equations directly. A variety of different
numerical techniques and discretization schemes have been used over the years, with
the discrete ordinates (Sn) method emerging as the dominant means of obtaining a
numerical solution to the integro-differential form of the neutron transport equation
(as opposed to the integral form) [4]. Discrete ordinates methods are characterized
by the evaluation of the transport equation in discrete, angular directions. Some
of the advantages of the discrete ordinates method are its computational efficiency
and minimal memory requirements. However, when applied to problems consisting
of multiple spatial dimensions, numerical artifacts known as ray effects can appear
in the solution. These are discussed in further detail in the following sections.

2.1.2 The Method of Discrete Ordinates

Beginning with Equation 2.1, for the sake of simplicity, both time and and energy
dependence can be dropped, allowing the neutron transport equation to be written
in the form

Ω̂ ·
−→
∇ψ(r⃗, Ω̂) + Σt(r⃗)ψ(r⃗, Ω̂) =

∫
4π

dΩ̂′Σs(r⃗, Ω̂′ → Ω̂)ψ(r⃗, Ω̂′) + q(r⃗, Ω̂) (2.2)

This is done primarily for the sake of visual clarity, as the derivation for the spatial
and angular treatment of the steady state monoenergetic form does not fundamen-
tally differ from the time-dependent, multigroup form.

The next step is to discretize the angular quantities Σs(r⃗, Ω̂′ → Ω̂) and ψ(r⃗, Ω̂′)
in the scattering term. This is done by expanding the angular flux as infinite series

7



Figure 2.1 Coordinate system used in defining spherical harmonics.

of spherical harmonics:

ψ(r⃗, Ω̂) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Yℓ,m(Ω̂)ϕℓ,m(r⃗) (2.3)

and

ϕℓ,m(r⃗) =

∫
4π

dΩ̂Y ∗
ℓ,m(Ω̂)ψ(r⃗, Ω̂) (2.4)

where Yℓ,m(Ω̂) are the spherical harmonics corresponding with order ℓ,m defined by
the equation

Yℓ,m(Ω̂) =

√
(2ℓ+ 1)(ℓ−m)!

4π(ℓ+m)!
Pℓ,m(θ)e

iωm (2.5)

with θ and ω defined in Figure 2.1. The Y ∗
ℓ,m(Ω̂) in Equation 2.4 denotes the complex

conjugate of Yℓ,m(Ω̂).
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The scattering cross section can be expanded using Legendre polynomials:

Σs(r⃗, µ) =
∞∑
k=0

2k + 1

4π
Pk(µ)Σs,k(r⃗) (2.6)

where

µ = Ω̂′ · Ω̂ (2.7)

and Pk(µ) its associated Legendre polynomial.
Plugging Equations 2.3 and 2.6 back into the scattering term from Equation 2.2

yields

∫
4π

dΩ̂′Σs(r⃗, Ω̂′ → Ω̂)ψ(r⃗, Ω̂′) =∫
4π

dΩ̂′
∞∑
k=0

Pk(µ)Σs,k(r⃗)
∞∑
ℓ=0

ℓ∑
m=−ℓ

Yℓ,m(Ω̂)ϕℓ,m(r⃗) (2.8)

By assuming that all nuclear interactions are azimuthally symmetric, one may
apply the spherical harmonic addition theorem to write Equation 2.5 as:

Yℓ,m(Ω̂) =

√
(2ℓ+ 1)

4π
Pℓ,m(cos(θ)) (2.9)

allowing one to simplify scattering term to:

∫
4π

dΩ̂′Σs(r⃗, Ω̂′ → Ω̂)ψ(r⃗, Ω̂′) =
∞∑
k=0

Σs,k(r⃗)
k∑

n=−k

Yk,n(Ω̂)ϕk,n(r⃗) (2.10)

Equation 2.2 can now be formulated using the newly derived scattering term:

Ω̂ ·
−→
∇ψ(r⃗, Ω̂) + Σt(r⃗)ψ(r⃗, Ω̂) =

∞∑
k=0

Σs,k(r⃗)
k∑

n=−k

Yk,n(Ω̂)ϕk,n(r⃗) + q(r⃗, Ω̂) (2.11)
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This can be rewritten to include the iteration index p and angular index m:

Ω̂m ·
−→
∇ψ(p+1)(r⃗, Ω̂m) + Σt(r⃗)ψ

(p)(r⃗, Ω̂m) =

∞∑
k=0

Σs,k(r⃗)
k∑

n=−k

Yk,n(Ω̂m)ϕ
(p)
k,n(r⃗) + q(r⃗, Ω̂m) (2.12)

The general idea behind the method of discrete ordinates is to devise a set of
equations for all directions in one’s angular quadrature at every zone in the spatial
mesh and to solve them all simultaneously. This is done by devising a discrete set of
directions Ω̂m with corresponding weights wm such that they constitute a quadrature
set across all angles.

An initial distribution is guessed for the angular flux distribution. This is plugged
into the right side of Equation 2.12, using the newly defined numerical quadrature
to solve for ϕ(p)

k,n(r⃗), and solving for ψ(p+1)(r⃗,Ωi) on the left. This process is then
repeated using the previous iterations angular flux to update the scattering source
in a process known as source iteration.

The quantity ψ(p) can be thought of as the angular flux from particles that have
had at most p number of collisions. The first solution, ψ(1), is known as the uncol-
lided flux, as it represents the angular flux due exclusively to the external source
q(r⃗, Ω̂). This can then be plugged back into the scattering source to obtain the
second solution, ψ(2) - the number of particles that have had at most one collision.

In general, one can define the total angular flux as

ψ =
∞∑
i=0

ψi (2.13)

where ψi is the angular flux from particles that have had i collisions and can be found
using

ψi = ψi − ψi−1 (2.14)

This process of iterating upon and updating the scattering source is repeated
until there is little to no change between ψi and ψi+1, at which point the solution
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has converged. The number of iterations required to reach convergence varies from
problem to problem. Because each additional iteration can be thought of as the
modeling of an additional scattering event, problems with significant quantities of
light elements like hydrogen in which neutrons are likely to scatter many times before
being lost can require many iterations before converging, leading to slow calculations.
In addition to this, the process of solving for the angular flux using standard discrete-
ordinate schemes often leads to something known as ray effects occurring throughout
the solution.

2.1.3 Ray Effects

Ray effects are non-physical artifacts caused by the discretization of angle in the
discrete ordinates method [4, 7, 10, 11, 13]. While the neutron transport equation
expresses the angle a particle travels continuously, Sn approximations are forced to
represent this using only a discrete set of directions. In doing so, it forces the solution
to propagate along these directions, leading to unrealistic concentrations/absences
in the solution, often giving the appearance of rays, an example of which can be seen
in Figure 2.2a.

This is one of the most significant drawbacks to the method of discrete ordinates,
as they can cause substantial errors in the local solution, particularly in areas between
the individual directions being used where the artificial troughs are at their worst
[11]. While ray effects tend to distort local error distributions, it should be noted
that global quantities such as leakage or total absorptions remain accurate.

Ray effects tend to be worst when using a small source relative to the problem
domain – for example, any type of problem where the source can be approximated
using a point source, such as when trying to model the skyshine effect or any sort of
atmospheric transport.

2.1.4 Ray Effect Mitigation

Despite its drawbacks, the Sn method remains one of the most popular numerical
techniques to solve the transport equation. Because of this, significant effect has
been made in developing techniques to reduce the impact ray effects have on the
final solution [7, 10, 11, 13].

The easiest approach to reducing ray effects is to increase the number of direc-
tions used in the approximation [4, 7, 11]. The effect this can have can be seen in
Figures 2.2a and 2.2b, where the image on the right was computed using a higher
number of ordinates. The problem with this approach, however, is that it tends to
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be both inefficient and ineffective, as it greatly increases the computational cost of
the simulation while achieving diminishing returns.

The unfortunate reality of the discrete ordinates method is that ray effects are
an inherent part of its nature arising from the lack of rotational invariance in the
transport leakage operator after being discretized. The only way to truly eliminate
ray effects is to make the method in some way equivalent to the Pn equations, some-
thing that to date has researchers have been unable to do in a practical manner [10].
These methods, referred to as Pn-equivalent fictitious-source methods, work by in-
troducing an additional source term to the right side of the Sn equations [11]. These
methods eventually developed into what is known as the modulated Pn-equivalent
fictitious-source method, which solves the unacceptably slow convergence of the fic-
titious source by multiplying the fictitious source by a constant between 0 and 1.
When set to zero, one has the uncorrected Sn method. When set to 1, one entirely
eliminates ray effects, but cannot converge. The idea is to set the value somewhere in
between where one can balance increased convergence time with ray effect mitigation.

There are additional downsides to using the Pn method. Although the Pn method
does not suffer from ray effects, it is still liable of producing inaccurate solutions
due to the presence of Gibbs oscillations in the spectral expansion of the angular
behaviour [12]. Furthermore, in 1D, both the Pn and Sn are equivalent, so the Pn

method does not converge faster than the Sn method. While the Sn method contains
artifacts which are harder to ignore than the incorrect wave speeds produced by low

(a) Unrealistic Sn solution (b) Improved Sn solution

Figure 2.2 A comparison of two solutions to the same problem. The plot
on the right shows the effect of increasing the number of angles used. Images
from [7].
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order Pn methods, the latter methods are not without their own problems.
Although the use of a fictitious source was among the first attempts at reducing

ray effects, other techniques would be developed, like increasing the interactions
between different ordinate directions, as well as the use of different quadrature sets
[10, 11, 13, 14]. This paper focuses on an alternative approach using what is referred
to as the first-collision source treatment method.

2.1.5 First Collision Source Treatment

In most problems, the uncollided flux is the greatest contributor to the formation
of ray effects. This is because it tends to be the least isotropic component of the
angular flux, as well as the most orientation dependent. The local contribution of
the uncollided flux is nonzero only in discrete directions – i.e. in the direction of the
source. Further scattering tends to smooth the solution in angle because the angular
redistribution operator is described by an integral in angle [7]. This means that
minimizing ray effects in the uncollided flux will yield the greatest results, followed
by the first-collided, then the second, and so on.

The first-collision source treatment method focuses on minimizing the effect the
uncollided flux has on the propagation of ray effects in later source iterations. It
does this by decomposing the angular flux into two components: the uncollided ψ0

and collided ψc flux, and solving for them separately:

ψ =
∞∑
i=0

ψi = ψ0 +
∞∑
i=1

ψi = ψ0 + ψc (2.15)

The uncollided flux is obtained by setting the scattering source in Equation ??
equal to zero, simplifying Equation ?? to

Ω̂n ·
−→
∇ψ0(r⃗, Ω̂n) + Σt(r⃗)ψ0(r⃗, Ω̂n) = q(r⃗, Ω̂n) (2.16)

(note that ψ0 = ψ1).
This can be solved for in variety of ways, one of which is through solving the

integral form of the neutron transport equation using ray tracing. The advantage of
using ray tracing in this sort of situation is that while computationally expensive, it
yields more accurate results that exhibit no ray effects [7].

Once a ray effect free solution to the uncollided flux has been found, it can be
plugged into Equation ?? and used in a standard source iteration approach. In the
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event where one has a purely absorbing medium, ψc = 0 and ψ = ψ0, removing any
need for source iteration.

14



Chapter Three

RAY TRACING METHODS

3.1 Derivation from Integral Form
Ray tracing methods used to solve the uncollided flux are based on the integral form
of the neutron transport equation. Writing out the neutron transport equation with
both time and energy variables suppressed yields the following equation [4, 23]:

Ω̂ ·
−→
∇ψ(r⃗, Ω̂) + Σt(r⃗)ψ(r⃗, Ω̂) =

∫
Σs(r⃗, Ω̂ · Ω̂′)ψ(r⃗, Ω̂′)dΩ̂′ + q(r⃗, Ω̂) (3.1)

Because the quantity being solved for is the uncollided flux - that is, the flux of
particles coming directly from the source without having interacted with anything,
the contribution from particles that have scattered is zero by definition, meaning:

∫
Σs(r⃗, Ω̂ · Ω̂′)ψ(r⃗, Ω̂′)dΩ̂′ = 0, (3.2)

allowing one to simplify Equation 3.1 to

Ω̂ ·
−→
∇ψ(r⃗, Ω̂) + Σt(r⃗)ψ(r⃗, Ω̂) = q(r⃗, Ω̂) (3.3)

Because the streaming operator Ω̂ ·
−→
∇ is just a directional derivative along the

direction of neutron travel, Equation (3.3) can be rewritten as a first order differential
equation:
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d

dR
ψ(r⃗s +RΩ̂, Ω̂) + Σt(r⃗s +RΩ̂, Ω̂)ψ(r⃗s +RΩ̂, Ω̂) = q(r⃗s +RΩ̂, Ω̂) (3.4)

where R is the distance the neutron traveled from its source location r⃗s to its current
location r⃗:

R = ||r⃗ − r⃗s||. (3.5)

By applying the integrating factor

e
∫R
0 Σt(r⃗s+R′Ω̂)dR′

(3.6)

to Equation 3.4, one obtains

d

dR

[
ψ(r⃗s +RΩ̂, Ω̂)e

∫R
0 Σt(r⃗s+R′Ω̂)dR′

]
= q(r⃗s +RΩ̂, Ω̂)

[
e
∫R
0 Σt(r⃗s+R′Ω̂)dR′

]
. (3.7)

Integrating both sides and rearranging terms yields:

ψ(r⃗s +RΩ̂, Ω̂) =

∫ R

−∞
q(r⃗s +RΩ̂, Ω̂)

[
e−

∫R
R′ Σt(r⃗s+R′′Ω̂)dR′′

]
dR′ (3.8)

which can then be simplified by defining

r⃗ = r⃗s +RΩ̂ (3.9)

and changing the sign of the variables such that the integrals become 0 to ∞ and 0
to R:

ψ(r⃗, Ω̂) =

∫ ∞

0

q(r⃗ −R′Ω̂, Ω̂)
[
e−

∫R
0 Σt(r⃗−R′′Ω̂)dR′′

]
dR′ (3.10)

The exponent of the attenuation factor:
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∫ R

0

Σt(r⃗ −R′′Ω̂)dR′′ (3.11)

represents the number of mean free paths along the straight line between r⃗ and
r⃗ − R′Ω̂ and is typically referred to as the optical depth, or optical path length. It
is often denoted as τ(r⃗ −R′Ω̂ → r⃗):

τ(r⃗ −R′Ω̂ → r⃗) =

∫ R

0

Σt(r⃗ −R′Ω̂)dR′

= R′Σ̄t(r⃗ −R′Ω̂ → r⃗), (3.12)

where Σ̄t(r⃗ − R′Ω̂ → r⃗) is the average cross section along the path from r⃗ − R′Ω̂ to
r⃗. Equation 3.13 can be solved in a variety of ways, depending on how one’s cross
section is defined. If a continuous function is known, it is a relatively simple task
to numerically integrate that function from 0 to R. However, if the cross section is
defined by the mesh itself, as is often the case, it can be solved for using ray tracing
by summing the path length through each zone and multiplying it by the zonal cross
section:

τ(r⃗ −RΩ̂ → r⃗) =

∫ R

0

Σt(r⃗ −R′Ω̂)dR′

=
I∑

i=0

RiΣt,i (3.13)

Rewriting Equation 3.10 in terms of τ(r⃗ −R′Ω̂ → r⃗) gives:

ψ(r⃗, Ω̂) =

∫ ∞

0

q(r⃗ −R′Ω̂, Ω̂)
[
e−τ(r⃗−R′Ω̂→r⃗)

]
dR′ (3.14)

If we assume we have an isotropic point source, the source term can be rewritten
as
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Figure 3.1 An illustration of the ray trace used to obtain the optical depth
along a ray’s path from a point source to a point located inside a zone.

q(r⃗, Ω̂) =
q

4πR2
δ(R)δ(Ω̂) (3.15)

as at any given point in space, aside from the source itself, all particles are streaming
from a single direction. Here, q is the total source strength.

Although outside the scope of this paper, if one’s problem cannot be approxi-
mated using a single point source, an alternative approach is to break the source
up into a discrete set of point sources with some equivalent total emission strength.
The contribution from each individual point source would then be modeled sepa-
rately before being recombined to get the total uncollided flux. Although problem
dependent, this process can be very computationally expensive, rendering the first
collision source treatment method largely impractical for those types of problems [7].
It is also worth noting that while approximating non-point sources as a single point
typically results in some additional error, particularly near the source, breaking one’s
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source down into multiple point sources amplifies this error significantly.
Substituting Equation 3.15 into Equation 3.14 and simplifying yields:

ψ(r⃗, Ω̂) =
q

4π

∫
e−τ(r⃗s→r⃗)

(R′)2
δ(R′)δ(Ω̂)dR′ (3.16)

ψ(r⃗, Ω̂) =
q

4π

e−τ(r⃗s→r⃗)

R2
δ(Ω̂) (3.17)

The scalar flux can be found by integrating Equation 3.17 in angle over 4π:

ϕ(r⃗) =

∫
4π

ψ(r⃗, Ω̂)dΩ̂

=
qe−τ(r⃗s→r⃗)

4πR2
(3.18)

3.2 Interior Point Method
The most conventional approach to solving Equation 3.18 within a mesh is to apply
a numerical quadrature over the zone, as seen in Figure 3.2. By solving for the scalar
flux at each quadrature point, one can numerically integrate across the zone and
obtain an average scalar flux:

ϕ̄(r⃗) =
1

V

∫
V

ϕ(r⃗)dV (3.19)

where V is the volume of zone z. A variety of different methods exist that can
be used to numerically integrate across this volume to find the zonal average flux.
This paper specifically uses a Gauss-Legendre quadrature for the majority of its
tests due to its high level of accuracy and common implementation (although the
uniform cross section case does contain a comparison between Gauss-Legendre and
Gauss-Lobatto).

One may rewrite Equations 3.18 and 3.19 in the discrete forms:

19



Figure 3.2 The interior point method works by calculating the scalar flux
on quadrature of points inside a zone and then integrating across them to
obtain the zone-average flux.

ϕz,i =
qe−τz,i

4πR2
z,i

(3.20)

ϕ̄z =
1

Vz

I∑
i=1

wiϕz,i (3.21)

using an I point quadrature where i is the quadrature index in zone z.
Some of the advantages to using the interior point method include its ease of

implementation, as well as its general ability to model everything to some accuracy
without breaking. This robustness is arguably the interior point method’s greatest
strength.

Some the downsides associated with the interior point method include it not being
locally or globally conservative, meaning that the number of particles sourced into
the problem does not equal the total number absorbed plus the leakage. Another
downside to this method is that it cannot directly obtain the leakage as a consequence
of already calculated values. One must either use alternative methods, such as the
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surface method, or assume particle conservation and calculate it by summing the
absorption and source terms.

The location of the interior point method’s quadrature points is both a strength
and a weakness. Because they are located across the interior of the zone, the method
is able to capture the internal behavior of the cross section. This is important if one
is unable to align their spatial mesh with their material interfaces, as well as when
one has a cross section defined by a function (see the Radially-Symmetric Smoothly-
Varying Cross Section test case for an example of this). This internal positioning is
also one of the biggest drawbacks to the method, however, as it severely limits the
potential for optimization through sharing rays between neighboring zones. Only
quadrature points that lie on the surface of the zone can be shared, meaning that
quadrature rules like Gauss-Lobatto will only share its endpoints, while rules like
Gauss-Legendre are unable to share any.

3.3 Surface Method
The surface method is a new ray tracing method used to solve for the uncollided
flux. Although very similar to the interior point method, it differs from it in several
key ways, the primary being its core assumption of particle conservation. That is,
given any differential volume dV, through application of the divergence theorem, one
must satisfy the conservation equation

0 = Nsrc −Nabs −Nleak (3.22)

where Nsrc is the number of particles being sourced into the volume from external
sources, Nabs is the number of particles being lost in the volume due to absorptions,
and Nleak is the net number of particles entering/leaving the volume. This equation
holds true both locally for every zone in a mesh, as well as globally for the entire
problem domain, whether finite or infinite.

For a differential volume dV , Nleak can be calculated by computing the net current
across the volume’s surface. Beginning with the definition of a current vector:

J⃗(r⃗) =

∫
Ω̂ψ(r⃗, Ω̂)dΩ̂ (3.23)

one can obtain the net number of particles crossing a surface per unit of space in
direction n by taking the dot product of the surface normal n̂ and the current vector
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Figure 3.3 The surface method works by calculating the angular flux at
a set of points on a face and then integrating them to obtain the current
through that face.

J⃗ :

Jn(r⃗) = n̂ · J⃗(r⃗) =
∫
(n̂ · Ω̂)ψ(r⃗, Ω̂)dΩ̂ (3.24)

By plugging Equation 3.17 in for ψ(r⃗, Ω̂), one gets

Jn(r⃗) =

∫
4π

(n̂ · Ω̂)q(r⃗, Ω̂)e
−τ(r⃗s→r⃗)

R2
dΩ̂ (3.25)

Just as was done for interior point method, because the source is assumed to be an
isotropic point source, q can be described as a delta function in angle (as particles
will only travel from the direction of the source Ωs), allowing one to drop the integral
and rewrite the equation as
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Jn(r⃗) = (n̂ · Ω̂s)
qe−τ(r⃗s→r⃗)

4πR2
(3.26)

It should be noted that the source being isotropic allowed the angular dependency to
be dropped from the source term. This simplification does not fundamentally change
the following equations, as long the source remains a point source.

To obtain the net number of particles crossing the surface of dV, simply take the
surface integral of Equation 3.26 across the surface S:

Nz(r⃗) =

∫
S

Jz(r⃗)dS =

∫
S

(n̂ · Ω̂s)q(r⃗)
e−τ(r⃗s→r⃗)

R2
dS (3.27)

This integral can be solved numerically in a variety of different ways, depending on
how one defines their spatial mesh. In the case of a simple Cartesian mesh as shown
in Figure 3.3, one can divide the surface integral amongst the different faces and
solve for each face independently before summing them together to get Nleak:

N (f)
z = J̄ (f)

z ∆xf =
I∑

i=1

WiJ
(f)
z,i (3.28)

J
(f)
z,i = (n̂f · Ω̂(f)

s,z,i)
qe−τ

(f)
z,i

4π(R
(f)
z,i )

2
(3.29)

Nleak,z =
F∑

f=1

N (f)
z (3.30)

where z is the zone index, f is the face index, and i is the quadrature index. Just
as was done in the interior point method, a Gaussian quadrature is being used to
numerically integrate across the surface of each face.

After finding Nleak for zone m, one can find Nabs by plugging Nleak back into
Equation 3.22. For all non-source zones, the local contribution from external sources
Nsrc is zero, meaning Nabs = Nleak. If the zone does contain the source, or one of
its faces is in contact with the source, the number of particles being sourced into
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the zone must be accounted for. This will depend on whether or not the source is
actually inside the zone or on its surface. If on the surface, the source will actually
be emitting particles into multiple zones and so will need to be split.

The flux can then be indirectly solved for by defining one’s absorption rate as

Nabs(r⃗) =

∫
V

ϕ(r⃗)Σa(r⃗)dV (3.31)

and solving for ϕ. Assuming the cross section throughout the interior of the zone is
constant, one may simplify the equation to

ϕ̄z =
Nabs,z

Σa,zVz
(3.32)

where Vz is the volume of zone z.
One of the main advantages of the surface method is its inherently conservative

nature. Modern Sn methodologies are typically conservative if one doesn’t use a first
collision source treatment. However, up until now, there has been no way to treat
the uncollided flux that maintains particle conservation. While being conservative
does not mean there is no error, many errors will cancel out when looking at global
quantities. This is of particular value in things like criticality problems where total
neutron populations is of upmost import. If the method is not conservative, nothing
is known about how global quantities measure up to their true values - whether the
total absorption rate is accurate and its just the distribution that’s wrong, or vice
versa.

Another advantage the surface method has is in regards to where its quadrature
points are located. By being on the surface of a zone rather than the interior,
quadrature points may be shared between zones, cutting down on the total number
of calculations that need to be performed. While the exact number of times a ray
can be shared depends on the quadrature being used, as well as what dimension the
problem is in (2D vs. 3D), at a minimum, every point can be shared at least once
(except for points that lie on the edges of the mesh).

3.4 Adaptive Variants
Both the interior point and surface methods are capable of using adaptive refinement
to improve the accuracy of their solution, typically at the cost of significantly greater
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computation time. This is done by first solving for the solution on a particular
face/zone (depending on whether one is using the interior point or surface method).
The face/zone is then subdivided, as can be seen in Figure 3.4 and the solution found
within each division. These are then combined and compared against the previous
solution. If the new solution exceeds a certain tolerance, the subdivisions are divided
once again and the process repeated with the new subdivision being compared against
the previous ones.

One advantage to this technique is that as the face/zone is subdivided multiple
times, good regions are no longer need to be subdivided, allowing the algorithm
to focus its efforts on problematic areas. This of particular importance when deal-
ing with things like discontinuities in the solution created by angularly dependent
sources, as well as unsmooth optical depth distributions as seen in the pin problem
modeled later in this paper. By adaptively refining the solution, these problematic
regions are localized to smaller and smaller portions of the zone, slowly reducing their
impact on the overall solution. The downside to this, however, is that even under
ideal circumstances where few zones require significant refinement, like in the case of
a uniform cross section, it still increases the required number of rays by a minimum

(a) Interior point method (b) Surface method

Figure 3.4 A demonstration of how adaptive refinement works for the in-
terior point and surface methods in 2D.
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of 3x for the surface method and 5x for the interior point method, as at least one
refinement must always be made to determine if further refinement is necessary.

3.5 Implementation
Initial comparisons of the two different ray tracing techniques were done in MATLAB
using a self-written ray tracing program (see appendix for a link to the code). This
code could only solve for the uncollided flux (it was not an Sn code) and was limited
to 2D, steady state, monoenergetic problems using relatively simple geometries. The
initial goal of these tests was to gain a general sense of the performance of the
two methods, including a rough idea of their convergence, error distribution, and
behavior. As the majority of problems cannot be solved for analytically, a reference
solution was obtained using an adaptive variant of the surface method using a Gauss-
Kronrod quadrature.

After gaining a basic sense of the behavior and performance of the two methods
in 2D, the surface method was implemented in ARDRA. This allowed full-scale, 3D
problems to be modeled.

ARDRA is a deterministic (Sn) neutron and gamma transport code developed by
Lawrence Livermore National Laboratory [15]. Like all Sn codes, ARDRA’s solutions
suffer from ray effects. One of the ways in which it mitigates these is by using the
first collision source treatment method. ARDRA currently supports two variations
of the interior point method, one using a single, zone-centered ray as its quadrature,
the other an adaptively-refining Lobatto quadrature.

In addition to the two pre-existing methods, three additional approaches have
been introduced. The first one is an extended version of the interior point method
employing a generalized I-point quadrature. In addition to this, two variations of
the surface method have been incorporated: the first also utilizing general I-point
quadrature, while the second is an adaptive variant with the same configuration
discussed in the preceding section. Presently, all three newly implemented methods
are confined to employing Gauss-Legendre quadratures.
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Chapter Four

RESULTS - 2D CASES

Included in this paper are the results from three 2D test cases that were solved using
MATLAB: a uniform cross section, a pin problem, and a problem using a smooth
sinusoidal function to define its cross section. All three problems use a point source
located at the origin with a strength of 1e6 particles per second. In combination,
these three problems, while simple, cover a broad range of potential scenarios, with
each of them being used to highlight a specific feature or characteristic of the two
methods.

As the integrals in Equations 3.19 and 3.27 lack an analytical solution in most sce-
narios, a reference solution for each test case was computed using an adaptive variant
of the surface method paired with a Gauss-Kronrod quadrature and a convergence
criteria of 1e-14.

The local relative error was calculated using the equation:

Erel =
|Napprox −Ntrue|

|Ntrue|
(4.1)

where Napprox is the approximated absorption rate and Ntrue is the reference solution
found using adaptive method.

Global error was determined by taking the L1 norm of the local absorption rate:

Erel,L1 =

∑
|Napprox −Ntrue|∑

|Ntrue|
(4.2)

In initial tests of the ray tracing methods, when computing the global error by consid-
ering values across the entire mesh, it was observed that variations in mesh resolution
or quadrature order had minimal impact on global error trends. This observation
appeared to contradict the overall error distribution and logical expectations. Upon
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closer examination, it was discovered that the error norm was highly influenced by a
small number of zones exhibiting significantly higher errors than the rest. While the
specific set of these "problematic" zones varied from case to case, they consistently
included those nearest to the radiation source (a good example of a "bad" zone away
from the source can be seen in the pin problem). Despite improvements in resolution
benefiting the majority of zones, as is reflected in the overall error distribution, this
select subset of zones experienced only marginal, if any, enhancements, and given
their substantial difference in magnitude, effectively overshadowed all other data.

To help counteract this, a 4x4 set of watchpoints was used instead to find the L1
error. These special zones are always located with their zone centers at the same point
in space, regardless of mesh resolution. Although this limits the mesh resolutions
one can run with, it helps offset the global error from being dominated by a single
point (assuming none of the watchpoints happen to fall on one of the "bad" zone).
While the use of the watchpoints allowed some information about global trends to be
gleaned, it still tended to be dominated by specific watchpoints, particularly the one
closest to the source. The 4x4 set was chosen as a compromise between having more
points to base the global error on and an increasingly restricted set of resolutions
that could be used while still maintaining the watchpoints on zone centers.

While information on global error trends was still limited, the watchpoints also
served a second purpose, as they allow one to examine local error trends at specific
point in space while changing mesh resolutions. Because the error tends to behave
differently depending on where one is in the problem (if the point is near the source or
has crossed a material boundary), local error behavior is arguably of greater interest
than global.

4.1 Uniform Case
The initial test problem used to compare the two ray tracing methods was a simple,
uniform cross section of 2 cm-1 with a point source located at the origin. This setup,
along with the obtained flux, can be seen in Figure 4.1. This problem was chosen for
two primary reasons: first, its simplicity allows one to characterize the two methods
behavior and performance under the most general of circumstances, and second,
many real world problems can be described by large discrete regions consisting of
uniform materials. An example of this can be seen when modeling basic radiation
shielding problems, or even atmospheric transport problems. By characterizing the
methods in a problem with no material interfaces, one can obtain the best idea of
how the methods perform without problem specific features influencing global trends.
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The plots in Figures 4.2 and 4.3 show a comparison of the relative error distri-
butions for the interior point and surface methods for a variety of different mesh
resolutions and quadrature orders. For both methods, error is concentrated near
the source and tends to decrease as a function of distance from the source. This is
because the 1/R2 behavior of Equations 3.19 and 3.27 creates a singularity in the
flux/current at the the source. Interestingly, because of the way this particular prob-
lem was defined - that being a point source located on the corner of zone (1,1) and
inline with the bottom and left edges of the mesh, the current through the bottom
and left edges is zero. This is of particular importance in zone (1,1) for two reasons:
first, it is the only zone with two zero-current faces. Because the surface method
experiences additive errors from each of a zone’s faces when it sums the currents to
get the net absorption rate, there are only two sources of error when it does this
sum for zone (1,1), instead of the three or four that all other zones experience. Sec-
ond, because the current at every quadrature point along the two nearest faces to
the source (the bottom and left face) is zero, the nearest non-zero quadrature point
is significantly further from the source compared to the quadrature points of the
interior point method. These two reasons are why the error for the interior point
method in zone (1,1) is greater in all the plots than that for the surface method, and
why, if one than examines either of adjacent zones (1,2) or (2,1), the error for the
interior point method noticeably decreases while the surface method see’s minimal
improvement. Because the quadrature points on the faces shared between them and

(a) Cross section (b) Flux distribution

Figure 4.1 The cross section and flux distributions for the uniform cross
section test case. Watch points are marked with black X’s on the cross
section diagram.
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(a) IPM - 10x10 zones, 2x2 rays/zone (b) SM - 10x10 zones, 2 rays/face

(c) IPM - 15x15 zones, 2x2 rays/zone (d) SM - 15x15 zones, 2 rays/face

(e) IPM - 20x20 zones, 2x2 rays/zone (f) SM - 20x20 zones, 2 rays/face

Figure 4.2 The relative absorption error distributions for various mesh resolu-
tions. Plots on the left use the interior point method with a 2x2 quadrature set (4
rays per face). Plots on the right use the surface method with a 2 point quadrature
per face, for a total of 4 effective rays per zone after factoring in ray sharing.
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(a) IPM - 10x10 zones, 3x3 rays/zone (b) SM - 10x10 zones, 4 rays/face

(c) IPM - 15x15 zones, 3x3 rays/zone (d) SM - 15x15 zones, 4 rays/face

(e) IPM - 20x20 zones, 3x3 rays/zone (f) SM - 20x20 zones, 4 rays/face

Figure 4.3 The relative absorption error distributions for various mesh resolu-
tions. Plots on the left use the interior point method with a 3x3 quadrature set (9
rays per face). Plots on the right use the surface method with a 4 point quadrature
per face, for a total of 8 effective rays per zone after factoring in ray sharing.
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zone (1,1) are in such close proximity to the source relative to that of the far faces,
the error along these shared faces is significantly higher compared to that of the far
ones. This is then compounded by the fact the surface method experiences additive
errors. Because these adjacent zones only have a single face where the current is
zero instead of two, whatever improvements in the error gained from moving further
from the source are essentially canceled out by the addition of a third non-zero face.
In fact, if the absorption error throughout row 1 was plotted as a function of x, it
would be seen that zone (1,1) is a special case As one moves further away from the
source, the relative difference in distance from the source between opposite faces of
a zone gets smaller and smaller, meaning the difference in current error between the
near and far faces is less and less, in turn causing the total absorption error of the
zone to be less dominated by a single face.

The plots in Figure 4.4 show the local relative absorption error (left) and asso-
ciated efficiency diagram (right) at three different watchpoints throughout the mesh
for various ray counts and mesh resolutions. The idea of the efficiency diagram is
to try and capture the amount of "work" the method had to do in order to obtain
a given error. The work, in this case, is determined by the number of rays cast in
a given area. Points in the bottom left of the efficiency diagram achieve the lowest
error for the least amount of work and are thus the most efficient, while those further
to right require a greater amount of work and are thus less efficient. Between these
six plots, one can get a general sense for how the two methods perform throughout
the problem.

As seen previously in Figures 4.2 and 4.3, increasing mesh resolution or quadra-
ture order tends to improve the local solution, as one might expect. The local (and
global) spatial convergence rate (that is, error vs zone size) is roughly 2N for both
methods, where N is the number of quadrature points in a single dimension. The
sole exception to this is the 4 rays/zone surface method run in Figure 4.4a, with
a slope of m = 4.7489 (as measured from ∆x = 0.0275 to 0.036), although this is
due to it simply not having enough quadrature points to adequately represent the
current distribution across the face of a zone so near the source. In fact, the slope
progressively decreases as ∆x gets smaller, converging upon the expected slope of 4.

While in general, the rate of convergence follows this 2N rule throughout the
mesh, the initial error (the error at low mesh resolutions) varies strongly as a function
of distance from the source, with it being significantly worse near the source. Because
the cross section is uniform and aligns with the mesh perfectly, there is no error in
the ray trace itself (τ has no error associated with it), meaning the absorption error
is entirely based on integration error from the numerical quadrature. It is important
to remember that Equations 3.20 and 3.29 are not polynomials and therefore not
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(a) Error vs dx at (x,y) = (0.125,0.125) (b) Efficiency diagram at (x,y) = (0.125,0.125)

(c) Error vs dx at (x,y) = (0.125,0.625) (d) Efficiency diagram at (x,y) = (0.125,0.625)

(e) Error vs dx at (x,y) = (0.625,0.875) (f) Efficiency diagram at (x,y) = (0.625,0.875)

Figure 4.4 Plots of the relative absorption error and corresponding efficiency
diagram for the uniform cross section problem at various watchpoints.
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exactly approximated by a Gaussian quadrature. Near the source, the current/flux
distributions across a face/zone vary more significantly than they do further away,
making it more difficult for the quadratures to approximate accurately.

Comparing the performance of the interior point and surface methods against
each other, it is evident that, given a uniform cross section, the surface method
tends to outperform the interior point method when using equivalent ray counts.
This is because the surface method has a greater potential for sharing rays between
different faces/zones, allowing it to use higher order quadratures while maintaining
equivalent numbers of rays to the interior point method. When using lower order
quadratures where this increased sharing is less impactful, the two methods demon-
strate similar performance (the interior point method actually often outperforms the
surface method when using the same quadrature order), the surface method scales
significantly better due to its potential for optimization.

It is important to note that while the watchpoints allow one to get some idea of
global error trends, a comparison between Figures 4.4 and 4.5 clearly shows how even
when only including watchpoint values in the error norm calculation, the error in the
watchpoint closest to the source at (x,y) = (0.125,0.125) still dominates the global
error. Still, both the local and global error plots and their associated efficiency
diagrams point to one important conclusion: for both methods, when given the
choice of either increasing mesh resolution or quadrature order, for the same amount
of work, it is typically better to increase the size of one’s quadrature rather than add
additional zones to the mesh, at least in areas that resemble a uniform cross section.

Figures 4.7a and 4.7b show the way in which the error scales as a function of
both rays per zone (quadrature order) and number of zones. Although at low ray
counts, the two methods scale very similarly with increasing mesh resolutions, as the
number of rays per zone increases, the surface method quickly outpaces the interior
point method. By 8 rays per face, the surface method is reaching the tolerance used
in the adaptive reference solution at low mesh resolutions, something that interior
point method is unable to replicate unless using significantly higher ray counts.

4.1.1 Different Quadrature Rules

While the primary quadrature rule used in both methods for this paper is Gauss-
Legendre, there is a strong argument for trying alternative quadrature rules such as
Gauss-Lobatto, particularly for the interior point method.

The two rules work using the same basic formula - with quadrature points and
weights spaced unevenly across an interval. Where they differ, however, is that unlike
Legendre, Lobatto contains quadrature points at the beginning and end points of the
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integral.
For the same number of quadrature points, Gauss-Legendre typically outperforms

Gauss-Lobatto. Indeed, while Gauss-Legendre is able to exactly integrate polynomi-
als of up to degree 2n−1 (where n is the number of quadrature points), Gauss-Lobatto
only has a degree of exactness of up to 2n − 3 [22]. However, in practice, Gauss-
Lobatto has certain advantages regarding its potential for optimization that tends
to offset this. Specifically, because Lobatto includes in its integration nodes the end
points of the integral, additional rays may be shared between adjacent zones/faces
for both the interior point and surface methods. The impact this has on the average
number of unique rays needed to be cast to a single zone can be seen in Figure 4.8.

In 2D, for the surface method, this means that every corner point can be shared
among 2 faces in each zone and among 4 neighboring zones (so 1 ray can shared 8
times, unlike rays on the interior of an edge that can only be shared with a single
neighbor). The impact this has is much more significant when using lower ray counts,
as the corners make up a larger proportion of the quadrature points. For the interior
point method, however, having quadrature points on the end points makes a very big
difference. When using Legendre, the interior point method only contains quadrature
points along the interior of the zone (hence its name). When using Lobatto, however,
a significant number of quadrature points now lie on the exterior of the zone. This

(a) Global L1 error norm (b) Global efficiency diagram

Figure 4.5 The L1 error norm when using a Gauss-Legendre quadrature
across all the watchpoints and its associated efficiency diagram.
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(a) Global L1 error norm (b) Global efficiency diagram

Figure 4.6 The L1 error norm across the watchpoints and its associated
efficiency diagram when using Gauss-Lobatto.

allows them to be shared in a similar manner to the surface method, the difference
being that for any quadrature set greater than 2, there still will exist at least some
interior points that cannot be shared. For rays on the interior of an edge, this
means being shared once with an adjacent neighboring zone. For points in the
corners, this means being used four times, once with each of its neighbors. Similar
to the surface method, the impact this optimization has is larger when using smaller
quadrature sets, as a greater proportion of the rays being cast can be shared at least
once. The difference this makes to the equivalent number of rays cast when using
Gauss-Legendre is greater for the interior point method than the surface method as
the surface method is still able to share rays along the edges when using Legendre.

For both the interior point and surface methods, the fraction of exterior vs interior
(meaning shared vs unshared) rays will decrease as quadrature order increased. In
fact, if one takes the quadrature size out to infinity, the ratio will asymptotically
approach that used in Legendre, that being when all rays are on the interior of a
face/zone.

In most circumstances, both Gauss-Legendre and Gauss-Lobatto share similar
performance for equivalent amounts of work. This can be seen when comparing the
L1 error norms and efficiency diagrams for Gauss-Lobatto in Figures 4.6a and 4.6b
to their Legendre counterparts in Figures 4.5a and 4.5b. Although the plots differ
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(a) IPM - Gauss-Lobatto (b) SM - Gauss-Lobatto

(c) IPM - Gauss-Legendre (d) SM - Gauss-Legendre

Figure 4.7 A visual representation of the different input variable combina-
tions and their associated L1 error for the interior point and surface methods
when using a constant cross section.
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when comparing lines using the same quadrature size, if instead the comparison is
made using roughly the same equivalent number of rays, it can be seen that the two
quadrature rules have very similar performance to one another (its difficult to make
an exact evaluation for the surface method since it will always have an odd number
of equivalent rays when using Lobatto and an even number when using Legendre).

Comparing Figures 4.7a and 4.7b obtained when using Gauss-Lobatto to Figures
4.7c and 4.7d obtained using Gauss-Legendre further demonstrates how the two
rules scale in similar manners to one another after accounting for the increased ray
sharing in Lobatto. Something that is not immediately apparent is the way in which
Lobatto’s optimization enables a greater degree of flexibility in the effective number
of rays used, particularly for the interior point method. This is one of the drawbacks
to the interior point method - the number of rays being used scales quadratically in
2D and cubically in 3D, increasing rapidly as one’s quadrature order goes up. While
still not offering the same degree of flexibility in work that the surface method has,
using Gauss-Lobatto does improve this.

There are, however, times where it is better to use one rule over the other. One
such case is in adaptive methods where it is often beneficial to use smaller quadrature
sizes to cut down on the amount of wasted work. When using Legendre, each new
subdivision requires an entire new set of rays to be cast, whereas when using Lobatto,
rays cast to the edges of new subzones can be reused. Because adaptive methods
typically use smaller quadrature sizes than non-adaptive methods due to their ability
to subdivide, using Lobatto allows for a significant proportion of the rays to be reused
multiple times. For example, in an adaptive variant of the the surface method in 2D
using a 2 point quadrature, when using Lobatto, the number of rays cast before any
subdivision takes place is two rays located at the ends (corners) of the face. A single
division requires one additional ray to be cast to the center of the face, for a total
of three unique rays. Each additional subdivision only requires one additional ray
to be cast. A visual representation of this can seen in Figure 4.9. Comparatively, if
using Legendre, an initial 2 rays would need to be cast for the original face, followed
by 4 rays for each subdivision taking place. As none of these rays can be shared, a
total of 6 rays were needed for a single subdivision, and 10 for the second.

In general, for 2D problems, when using the surface method, the number of unique
rays per face when using an even-point Lobatto quadrature is nquad+Nsub(nquad−1),
where nquad is the number of quadrature points in a single dimension and Nsub is the
number of subdivisions. When using an odd-point quadrature, the number of unique
rays is nquad +Nsub(nquad − 2). For Legendre, because no rays are being shared, the
number of unique rays for a single zone is nquad(1 + Nsub) It is important to note
that these equations are only accounting for ray sharing between sub-faces and not
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(a) Effective rays per zone - 2D (b) Effective rays per zone - 3D

(c) Ratio of effective vs total rays per
zone - 2D

(d) Ratio of effective vs total rays per
zone - 3D

Figure 4.8 The average number of rays cast per zone when using Gauss-
Legendre vs Gauss-Lobatto for the interior point and surface methods (as-
suming an infinite mesh with no edges) (top) and the corresponding ratio
of effective vs. total rays (bottom). Gauss-Lobatto uses significantly fewer
rays at low quadrature orders because of sharing. As the quadrature size
increases, the number of rays used by Lobatto will slowly approach that of
Legendre.
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(a) Lobatto (b) Legendre

Figure 4.9 An example of how refinement and ray sharing works for an
adaptive variant of the surface method in 2D using a 2 point quadrature.

between neighboring zones or the shared corner point between intersecting faces.
Taking sharing into account, for both quadratures, the current along each face can
be shared with a single neighboring zone, reducing the total number of rays needed
by half. This is further reduced when using Lobatto as each corner can be used with
multiple neighboring faces.

For the interior point method, when using Lobatto, the number of unique rays for
an even point quadrature is n2

quad+Nsub[4(nrays−2)2+8(nrays−2)+4(nrays−2)] and for
an odd point quadrature is n2

quad+Nsub[4(nrays−2)2+8(nrays−2)+4(nrays−1)+1].
For Legendre, because none of the interior points rays are shared, the number of
unique rays per zone is n2

quad(1 +Nsub).
Figure 4.11 contains a comparison of the error distributions between the two

quadrature rules for the interior point method using equivalently amounts of work.
It is readily apparent that, at least for this problem, the two quadrature rules pro-
duce roughly the same error distributions. This is supported by the local error and
efficiency diagrams for the interior point method seen in Figure 4.10, which show
how the two quadratures scale against one another.

The same can more or less be said for the behavior of the surface method when
using the two quadrature rules. Unfortunately, unlike when using the interior point
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(a) IPM - Relative absorption er-
ror at wp(2,3)

(b) IPM - Efficiency diagram at
wp(2,3)

(c) SM - Relative absorption er-
ror at wp(2,3)

(d) SM - Efficiency diagram at
wp(2,3)

Figure 4.10 The relative absorption error and associated efficiency diagram
for the interior point method (top) and surface method (bottom) comparing
a Gauss-Legendre quadrature to that of Gauss-Lobatto.
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(a) IPM - Gauss-Legendre, 2x2 rays
per zone, 4 effective rays per zone

(b) IPM - Gauss-Lobatto, 3x3 rays
per zone, 4 effective rays per zone

(c) IPM - Gauss-Legendre, 3x3 rays
per zone, 9 effective rays per zone

(d) IPM - Gauss-Lobatto, 4x4 rays
per zone, 9 effective rays per zone

(e) IPM - Gauss-Legendre, 4x4 rays
per zone, 16 effective rays per zone

(f) IPM - Gauss-Lobatto, 5x5 rays per
zone, 16 effective rays per zone

Figure 4.11 The relative error distributions for the interior point method
using a 20x20 mesh. Left is Legendre, right is Lobatto.
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(a) Surf - Gauss-Legendre, 3 rays per
face, 6 effective rays per zone

(b) Surf - Gauss-Lobatto, 4 rays per
face, 5 effective rays per zone

(c) Surf - Gauss-Legendre, 4 rays per
face, 8 effective rays per zone

(d) Surf - Gauss-Lobatto, 5 rays per
face, 7 effective rays per zone

(e) Surf - Gauss-Legendre, 5 rays per
face, 10 effective rays per zone

(f) Surf - Gauss-Lobatto, 6 rays per
face, 9 effective rays per zone

Figure 4.12 The relative error distributions for the surface method using a
20x20 mesh. Left is Legendre, right is Lobatto.
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method where one can compare the two quadrature rules using the same amount of
work (the same number of effective rays per zone), the amount of work done by two
quadrature rules when using the surface method will always be misaligned by one
effective ray. That being the case, it is initially apparent from the plots in Figure 4.12
that Gauss-Lobatto is able to achieve essentially the same error distribution as the
Gauss-Legendre with one fewer effective rays per zone. This is somewhat misleading,
as if one looks at the plots in Figure 4.10, the error is slightly higher for Lobatto
when it uses one fewer effective rays per zone.

If one compares the error distributions in Figure 4.11 to 4.12, it is evident that the
surface method can achieve roughly the same sort of performance to the interior point
method for half the amount of work, supporting the overall trend of the two methods
having roughly equivalent performance in terms of error for a given quadrature size.
It is only after one accounts for the increased ray sharing that the surface method
begins outperforming the interior point method.

4.2 Pin Problem
While the uniform cross section problem was able to provide important insight on the
general characteristics and performance of the two methods, it is also quite literally
the most simple problem one can model. The next step, therefore, is the addition of a
second material. Chosen for this was a simple pin problem consisting of a square pin
made of highly absorbing material surrounded by a second, lower absorbing material.
This can be seen in Figure 4.13, along with it’s associated flux distribution.

In many ways, this problem is a continuation of the uniform test case, as the
regions near the source and on the sides are both described by a uniform cross section.
However, the addition of the pin fundamentally alters the problem, as Equations 3.18
and 3.29 are no longer smooth everywhere throughout the problem domain. In fact,
not only are there discontinuous derivatives for these equations in certain zones, but
the functional form of the optical depth also changes for any quadrature point whose
associated ray travels through the pin.

One way in which to think about optical depth is to separate the cross section
and path length terms. We can calculate a weighted average cross section for the ray
associated with quadrature point i and zone m using the function:

Σ̄t(R) =

∫ R

Rsrc
ΣtdR

′

R−Rsrc

(4.3)
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Σ̄
(m)
t,i =

∑m
n=1 Σt,nRn∑m

n=1Rn

(4.4)

which can then be used to rewrite Equation 3.13 as

τ(R) = Σ̄t(R)(R−Rsrc) (4.5)

τ
(m)
i = Σ̄

(m)
t,i (R

(m)
i −Rsrc) (4.6)

Now, if the cross section for each zone along a rays path is the same, the average
cross section for the ray will simply equal that of the individual zones. If this is
the case for for every quadrature point in the zone/face, as it is for all zones in the
uniform case and those on the sides/near the source in this case, then Σ̄t is constant
throughout the quadrature set, meaning that the optical depth is only a function of R.
However, if for any reason a ray ever passes through a material interface, the average
cross section will no longer be constant throughout the zone. This fundamentally
changes the form Equation 4.6 takes. While in both cases, Equations 3.18 and 3.29
are not polynomials and therefore not able to be exactly integrated using a Gaussian
quadrature, it is clear from the error distributions in Figures 4.14 and 4.15 that

(a) Flux distribution (b) Flux distribution

Figure 4.13 The cross section and flux distributions for the pin problem.
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regions described by a uniform cross section are more accurately modeled (with the
exception of zones in close proximity to the source, as discussed in the previous
section) than those in and behind the pin.

Expanding our evaluation from the uniform regions to the problem as whole,
several things are evident. First, just as previously observed in the uniform cross
section case, increasing the order of one’s quadrature generally has a much greater
impact on error than increasing the mesh resolution. The next to note is the very
high concentration of error in zones along the corners and center diagonal of the pin
(particularly for the interior point method). These are caused by the same effect,
just in a slightly different manner. Specifically, if one were to look closely at the
zones along the bottom right corner of the pin, one would see a discontinuity in the
optical depth at the quadrature points these faces/zones. A representation of this
can be seen in Figure 4.16 for the surface method. Along this face, some rays are
traveling through the pin, while others are not. This sudden change in cross section
creates a discontinuity in the optical depth and therefore the current that is unable
to be accurately represented using a relatively low order polynomial, as is the case
here.

For the interior point method, the effect this discontinuity has is manifested
through higher error throughout these zones. For the surface method, however, the
impact this sort of discontinuity can have is significantly worse, ranging from simply
high error to degrading the local solution to the point where negative values are
obtained for the flux and absorption rate. This is due to the application of the
divergence theorem in Equation 3.30 to obtain the absorption rate - specifically, if
one or more of a zone’s faces has to high an error, the summation can be thrown off.

The high error that can observed along the diagonal of the pin in the interior
point method is due to a similar sharp change in the optical depth distribution along
the interior of a zone. If one were to plot the optical depth along a line stretching
from the top left corner to the bottom right corner of the pin, one would see a sharp
change in its slope at the center as rays shift from one side of the bottom left corner
to other side. This sharp change is present in every zone with rays traveling on both
the left and right side of the bottom left corner of the pin. In fact, because the pin
is perfectly centered in the mesh, the change is present along the entire diagonal,
from bottom left to top right. This also means, however, that as long the pin is
centrally located, the surface method will never actually see this discontinuity when
using Gauss-Legendre, as the sharp change occurs at the corner and does not fall
between any two quadrature points. As far as the surface method is concerned, as
long as the change occurs at the corners of a zone, it might as well not exist. This is
why the line of high errors along the diagonal that can be seen in the interior point
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(a) IPM - 10x10 zones, 2x2 rays/zone (b) SM - 10x10 zones, 2 rays/face

(c) IPM - 15x15 zones, 2x2 rays/zone (d) SM - 15x15 zones, 2 rays/face

(e) IPM - 20x20 zones, 2x2 rays/zone (f) SM - 20x20 zones, 2 rays/face

Figure 4.14 The relative error distributions for a variety of different mesh
resolutions for the pin problem. Plots on the left were calculated using the
interior point method with a set of 2x2 rays cast per zone. Plots on the
right were calculated using the surface method using 2 rays per face (both
methods are casting the same number of equivalent rays per zone)
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(a) IPM - 10x10 zones, 3x3 rays/zone (b) SM - 10x10 zones, 4 rays/face

(c) IPM - 15x15 zones, 3x3 rays/zone (d) SM - 15x15 zones, 4 rays/face

(e) IPM - 20x20 zones, 3x3 rays/zone (f) SM - 20x20 zones, 4 rays/face

Figure 4.15 The relative error distributions for the absorption rate for a variety
of different mesh resolutions. Plots on the left were calculated using the interior
point method with a set of 3x3 rays cast per zone, for a total of 9 rays per zone.
Plots on the right were calculated with the surface method using 4 rays per face,
for a total of 8 effective rays per zone (each ray can be shared between neighboring
zones, reducing the work by half).
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method doesn’t really exist in the plots for the surface method. In fact, the faint
line that is visible for the surface method in these plots is actually due to the current
distribution being symmetrical across the diagonal rather than asymmetrical like it
is everywhere else. This is not say, however, that the surface method is unaffected by
sharp changes. If the pin offset even slightly so that the change in slope falls between
quadrature points on a face, as was done to produce Figure 4.17, a very similar line
takes shape. In fact, the slight offset done for this particular set of runs also created
a second line along the top right corner of the pin where this sort of behavior can be
seen.

This phenomena can be addressed in several ways: first, by increasing zone res-
olution, as this will minimize the areas affected by the error since the discontinuity
is localized to specific zones along a line and not an area. Similarly, another way to
reduce the impact the sharp change in optical depth has is to increase the quadra-
ture order used. While this can improve the solution to the point where the surface
method is not longer so off its computing negative absorption rates, its rather inef-
ficient.

Figure 4.16 Changes in cross section can create sharp changes in the op-
tical depth along a face, leading to significantly higher error compared to
surrounding zones.
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(a) Interior point method (b) Surface method

Figure 4.17 The error distribution for a pin slightly offset from the center.
The image on the left used the interior point method with a 3x3 Gauss-
Legendre quadrature, and the image on the right used the surface method
with a 4 point Gauss-Legendre quadrature. The discontinuity in zones strad-
dling the bottom left corner can clearly be seen in both methods.

Both of these approaches, while able to help reduce the error, are unable to
significantly improve the solution in these regions. The only truly effective method
to eliminate this high error in the solution is to apply some form of adaptive variant
that integrates the face/zone compositely, as was done to compute the reference
solution used here. While the presence of a discontinuity more or less guarantees
a poor solution in the interval it exists, by solving the problem compositely, one is
able to restrict said error to a small enough part relative to the overall integral as to
make it insubstantial.

4.3 Radially-Symmetric Smoothly-Varying Cross Sec-
tion

Although many real world problems can be described by distinct, discrete regions
composed of uniform material, there are plenty of cases that don’t necessarily meet
this criteria - in particular, regions with large temperature or density gradients, or
any sort of non-homogeneous mixture. For example, most nuclear reactors use ura-
nium oxide fuel, which is essentially a powder that has been pressed and baked into
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(a) Cross section distribution (b) Flux distribution

Figure 4.18 The cross section and flux distributions for the symmetrical
function case.

a pellet-like shape. While the process creates a solid material, the density inside
the pellet can vary significantly, even without accounting for things like burn-up.
In addition to this, once inside the core, these pellets are subjected to tempera-
ture gradients of hundreds of degrees Celsius. Cross sections can vary significantly
with temperature, and modeling a pellet using a uniform temperature can create
significant errors. Because of problems like this, its important to examine how well
these methods perform when modeling regions that cannot really be described using
uniform properties.

To test this, we defined a radially-symmetric cross section using the function:

Σ(r⃗) = 5 + 5 cos (
||r⃗||
Rrc

π + π) (4.7)

where Rrc is the length of the diagonal from the bottom left corner to the top right
corner of the mesh. An image of this is depicted in Figure 4.18, along with its asso-
ciated flux. This particular function was chosen because it is infinitely differentiable,
and has been restricted to half a wavelength to remove any oscillatory behavior in
the cross section.

There are two ways to go about finding the optical depth for this problem. The
first is to do what has been done in all the previous cases - that is, to assign each
zone a "regional" cross section based on its central position and to perform the ray
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trace on the mesh. While relatively straight forward, there are several problems
with this approach. The first is that it ties the cross section directly to the mesh
resolution, meaning that changes to the resolution fundamentally alter the cross
section distribution described by the mesh, as the zone centers for say a 20x20 mesh
will not match that of a 21x21 mesh. This essentially creates an initial error in
how well the cross section described by the mesh actually describes the function.
Although this error will eventually disappear as one increases the mesh resolution,
the number of zones required to accomplish this exceeds what is practical. This error
also makes it very difficult to compare solutions for different mesh resolutions, as the
fundamental problem described by the mesh is changing. If one looks at the optical
depth at a watchpoint, the value obtained will depend on the resolution being used,
with it converging to the value given by the function as one increases zone count.

The second problem with tracing on the mesh is that by giving every zone a
different cross section in comparison to its neighbors, one inadvertently creates a
very unsmooth optical depth distribution along the faces and zone interiors. This is
essentially the same effect that can be seen along the corners of the pin in the earlier
test case, except instead of being localized to a handful of zones, its seen almost
everywhere. In many ways, this creates what is essentially a worst case scenario
for both the interior point and surface methods, as without pairing the methods
with some way to adaptively refine the quadratures and section off the bad areas,
neither method is able accurately find a solution. The discontinuity will always exist,
regardless of the quadrature order being used. This can clearly be seen in Figures
4.19a and 4.19b, where, with the exception of the zones in line with the source
and, in the case for the surface method, along the diagonal, the local absorption
error is very high, despite a reasonably sized quadrature being used. Compared to
equivalent quadrature sizes and mesh resolutions for the uniform problem, the error
is on average roughly 4 orders of magnitude worse for the interior point method and
8 for the surface method (except near the source). While Figure 4.20 does show how
increasing mesh resolution and quadrature order helps in reducing the global error,
the overall impact they have is fairly minimal and inconsistent. Gone are the straight
lines seen in the uniform case, replaced with inconsistent behavior as changes in the
mesh resolution shift the placement of the discontinuity and potentially leading to
higher error when increasing mesh resolution or zone count. The error is intrinsically
tied to the proximity of the discontinuity relative to the quadrature points. A higher
mesh resolution or quadrature no longer necessarily means a lower error.

Another thing that should be noted in these plots is that the surface method per-
forms significantly worse than the interior point method. This drop in performance
is even more pronounced when one accounts for how much the surface method was
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outperforming the interior point method in the previous test cases. This is, how-
ever, consistent with what was being seen previously in the pin problem along the
corners of the pin, and really demonstrates just how much the surface method seems
to struggle when dealing with unsmooth optical depth distributions.

The second approach to finding the optical depth is instead of performing the ray
trace directly on the mesh, since the equation defining the cross section distribution
is known, to instead directly solve the line integral in Equation 3.13. This approach is
both much faster than tracing on the mesh and able to yield a much more accurate
solution, both for the optical depth and final solution. It both disconnects the
problems dependency on the mesh resolution while at the same time eliminates any
problems due to discontinuities.

The main drawback to this approach is that it requires one to know what the func-
tion is that characterizes the cross section. In a simple test problem like this, that’s
easy enough to find. However, in practice, problem geometries are often complex.
Unlike Monte Carlo codes, most discrete ordinate codes do not support something
like combinatorial geometry. Without this, unless the mesh aligns perfectly with the
problem geometry, it is next to impossible to do the line integral.

Comparing Figures 4.19a and 4.19b to Figures 4.19c and 4.19d, the difference
finding the optical depth by integrating the actual function has on the local error
distribution cannot be understated. By removing the effect the unsmooth optical
depth had on the error, the error distributions look much more similar to what was
obtained in previous cases.

This improvement in both performance and error is also reflected in the global
error plots of Figure 4.20. When tracing on the mesh, the abundance of sharp slope
changes in the optical depth across a face/zone significantly hampers the quadrature
from obtaining an accurate representation of the optical depth distribution. Just
as seen with the pin, while increasing resolution and quadrature order does yield
some improvement in error, it is far less impactful than before. The error curves
are also more erratic than before, as the proximity of the non-differentiable points
to the quadrature locations varies and has a significant effect on the error. Once
the function is used, however, this erratic behavior disappears and the curves behave
much more similarly to before, with similar convergence rates to the uniform and
pin problems (in fact, the error for this problem when integrating the function is
actually slightly less than seen in the uniform case as whatever form Equations 3.18
and 3.29 take are better represented by a polynomial than before).

Figures 4.21a and 4.21b show the relative absorption and flux errors along the
x-axis at y=0.625 - the third row of watchpoints (the zone centers are not changing
in y between different mesh resolutions). These plots are different than previous ones
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(a) Tracing on the mesh using the
interior point method with a 3x3
quadrature

(b) Tracing on the mesh using
the surface method with a 4 point
quadrature.

(c) Tracing by integrating the
function using the interior point
method with a 3x3 quadrature.

(d) Tracing by integrating the
function using the surface method
with a 4 point quadrature.

Figure 4.19 The relative error distribution for the radially-symmetric func-
tion. Both the interior point method and the surface method struggle when
tracing on the mesh.
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(a) L1 error norm - tracing on the
mesh

(b) Efficiency diagram - tracing
on the mesh

(c) L1 error norm - integrating
cross section

(d) Efficiency diagram - integrat-
ing cross section

Figure 4.20 The L1 error norm across the watchpoints and associated ef-
ficiency diagram when tracing on the mesh (top) and integrating the cross
section (bottom).
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shown as they identify the way in which the adaptive solution when tracing on the
mesh converges to the true solution found when simply integrating the cross section
function. In other words, they are a way in which to try and gauge the accuracy that
particular mesh managed to approximate the true solution. Each of these solutions is
"correct" (within a tolerance of 1e-14) for the problem it was solving. The differences
between them are due to the fact the fundamental problem changes each time the
resolution is changed. The problem being solved for with the 20x20 mesh is not
the same as the one being solved for with the 28x28 mesh, with all them being
approximations of the true solution as given by the cross section function defined in
Equation 4.7.

These plots identify two important things: first, that as the mesh resolution is
increased, the obtained solution gets closer and closer to the true solution - i.e. the
reference solution being used here. This makes sense, and is a good logic check. As
the zones get smaller and smaller, the discrete cross section distribution gets closer
and closer to the true cross section function.

The second thing that can be seen here is that the absorption and flux errors are
different. In all the previous test cases included in this paper, the meshes being used

(a) Absorption error vs x (y=0.625) (b) Flux error vs x (y=0.625)

Figure 4.21 The relative difference between the solution found when tracing
on the mesh and integrating the function, using the integrated function
solution as a reference. All solutions were obtained using the adaptive surface
method and a convergence criteria of 1e-14.
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have aligned the problem geometry in such a way as the cross section throughout the
interior of a zone has been constant - essentially, the cross section distribution can
be be viewed as one large piecewise-constant equation. This results in the flux and
absorption rates being proportional to one another and therefore their error distri-
butions being the same. This is not the case when a zone’s cross section distribution
changes, as it does in this problem, and ties into a limitation of the surface method,
at least in its current formulation. The surface method computes flux by first finding
a zone’s absorption rate before dividing it by the zone’s average cross section and
volume. The absorption rate, in turn, is found by taking a surface integral of the
current along the zone’s surface - i.e. along each of its faces. The flux it computes
is, by its very formulation, a zone-average quantity. This becomes an issue when the
cross section is changing throughout the interior of a zone. While the zone’s total
absorption rate can be found without issue (ignoring the effect unsmooth behavior
has on the quadratures), there is no information known about the distribution of
said absorption rate throughout the zone itself. Even if the cross section distribution
inside the zone is known, one cannot obtain an accurate estimation of the average
flux as Equation 3.32 cannot be used.

This is one advantage the interior point method has over the surface method,
as it computes the scalar flux at each quadrature point throughout the interior of
the zone. In fact, the absorption rate can also be found at each quadrature point
by simply multiplying the scalar flux by the corresponding cross section and zone
volume. This allows one to find both the zone average flux, as well as the zone
average absorption rate.

There are ways in which one can work around this limitation of the surface
method. For instance, one can still find the average zonal cross section by integrating
the cross section distribution throughout the zone and dividing by its volume. If one
is willing to approximate the zone’s cross section as a constant equaling this average,
it can be used in combination with the zone-average absorption rate to approximate
the flux. This will, however, result in some amount of additional error. The reality is
that because of the surface method’s very nature, the interior of a zone is essentially
a black box.
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Chapter Five

RESULTS - 3D CASES

While 2D problems are useful for looking at key features and the general behavior of
the methods, many problems cannot be accurately described in this manner. The real
world is 3D, and many problems either do not exhibit the sort of symmetry needed to
be simplified to fewer dimensions, or in doing so would prevent one from looking at
the feature they are interested in. In addition to this, the way in which quadrature
sizes and the effective number of rays scales is different in different dimensions.
For instance, in 2D, the surface method uses 2N effective rays per zone, while the
interior point method uses N2. In 3D, however, the surface method uses 3N2, while
the interior point method uses N3. This difference in particular is very important,
as will be shown in the following section.

To demonstrate the ability of the surface method to model problems in three di-
mensions and establish its general performance against the interior point method, the
surface method was implemented in the code ARDRA, a deterministic (Sn) neutron
and gamma transport code developed by Lawrence Livermore National Laboratory
[15]. This allowed for full-scale, energy dependent, 3D problems to be modeled.

The results from two 3D problems have been included in this paper. The first,
a basic cube with a point source located in front of it, is used to characterize both
methods general performance. Like the 2D pin problem, the cube captures the be-
haviors of the methods in uniform material, different or varying cross sections, and
the impact unsmooth optical depth distributions have on the solution. The second
problem, a simplified version of a skyshine experiment conducted with the RA reac-
tor at the Baikal Research Complex in Kazakhstan, is used to demonstrate both the
impact ray effects have on a local solution under real world conditions and showcase
the effect the first collision source treatment has on reducing ray effects and improv-
ing the solution. The problem also serves as final proof of concept, demonstrating
a realistic application of both the first collision source treatment method and the
surface method in the sort of problem one might find themselves modeling.
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5.1 Cube Problem
The first problem to be modeled using ARDRA was very similar to the 2D pin
problem and consisted of a cube of highly absorbing material (Σ = 10 b) located in
the center surrounded by a second, lower absorbing material (Σ = 1 b). The cube
itself occupies the central third of the domain in each dimension. A 3x3x3 set of
watchpoints was defined across the domain. As with the previous test cases, a single
energy group is used, as the focus is on the uncollided flux, which is not impacted
by scattering or secondary particles.

The source itself was located in the center of the y-z plane (in front of the cube)
at x = 0. This position ensured symmetry across the x-y and x-z planes that run
through the center of the cube. The flux distribution for this problem can be seen in
Figure 5.1b. As was seen in the pin problem, the cube blocks most of the particles
traveling through it and casts a hard shadow on the zones behind it. All plots
included have been normalized to a source strength of 1 n/s.

Figures 5.2 to 5.5 show the relative error distributions for the interior point and
surface methods for a variety of different mesh sizes and quadrature orders. While
the exact distributions do vary between the methods, many of their core features can
be seen in both. In general, it can be seen that the error is greatest in the cube itself,
as well as the wake along the edges of the cube, particularly in zones extending from
the cube’s corner. The zones extending from the corner along the shadow observe
an unsmooth optical depth distribution, just as was seen in the pin problem, leading

(a) Cross section distribution (b) Flux distribution

Figure 5.1 The cross section and flux distributions for the cube case with
the source located inline with the cube.
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(a) IPM - 45x45x45 zones (b) IPM - 45x45x45 zones

(c) IPM - 75x75x75 zones (d) IPM - 75x75x75 zones

(e) IPM - 105x105x105 zones (f) IPM - 105x105x105 zones

Figure 5.2 Relative error distributions for the interior point method using
a 3x3x3 quadrature.
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(a) IPM - 2x2x2 rays/zone (b) IPM - 2x2x2 rays/zone

(c) IPM - 3x3x3 rays/zone (d) IPM - 3x3x3 rays/zone

(e) IPM - 4x4x4 rays/zone (f) IPM - 4x4x4 rays/zone

Figure 5.3 Relative error distributions for the interior point method using
a 75x75x75 zone mesh.
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to significantly higher error than in other regions of the problem.
The exact configuration of this problem is not one to one with the pin problem,

as the sources are located differently. To truly be the 3D equivalent of the pin
problem, the source would need to be located at (x, y, z) = (0.0, 6.0, 0.0). One of
the core differences between these two problems can be seen in the zones directly
behind the cube. In the pin problem, these zones in general observed higher error,
similar to that inside the cube. Here, the zones see the same error trends as those
which never intersect the cube. In general, with exception to zones near the source
or experiencing an unsmooth optical depth, the local flux error is intrinsically tied
to the degree of variation in the optical depth and cross section variation inside the
zone. In this problem, the quadrature points for zones inside the cube have enough
variation in their optical depth to result in noticeably higher error. The reality is
that whatever function that describes the interior optical depth distribution for these
zones is not a polynomial and therefore cannot be perfectly captured by a Gaussian
quadrature. The same can be said for zones in the interior of the wake, but to an
even greater degree, as the difference in how far the particles traveled through the
cube for each quadrature point is even more pronounced. The impact this variation
in optical depth has on the overall error of the zone is more observable for the interior
point method than the surface method, being consistently worse for similar amounts
of work.

As we get to zones directly behind the cube, the error suddenly drops to levels
similar to those zones which never intersected the cube. While the distance traveled
through the cube will vary slightly from quadrature point to quadrature point, the
difference is much less than before when actually inside the cube.

It should be noted that because this problem is in 3D, unsmooth optical depth
distributions do not just occur in zones along the corners of the cube, but any edges.
In fact they are not just limited to zones along the surface of the wake, but even
throughout the interior of the wake. Unfortunately, while it is relatively simple to
observe the error emerging from the edges formed by the front and top faces or
front and bottom faces in Figures 5.2 and 5.3, it is much more difficult to observe
what the error looks like in zones truly along the corner or along the other edges,
like that formed by the intersection of the right and top face. If one looks closely
at 5.2c, along the y-z slice running through the middle of the cube, in the top right
quadrant, one can make out a diagonal line running from (x, y, z) = (6, 8, 8) to around
(x, y, z) = (6, 9, 9). This line, caused by the edge between the top and right face, is
able to shine light on what the error looks like throughout the interior of the wake.
It is worth noting that although the error along this line appears slightly higher than
many of the other zones observing unsmooth optical depth distributions, the error is
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(a) SM - 45x45x45 zones (b) SM - 45x45x45 zones

(c) SM - 75x75x75 zones (d) SM - 75x75x75 zones

(e) SM - 105x105x105 zones (f) SM - 105x105x105 zones

Figure 5.4 Relative error distributions for the surface method using a 4x4
quadrature.
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(a) SM - 2x2 rays/face (b) SM - 2x2 rays/face

(c) SM - 4x4 rays/face (d) SM - 4x4 rays/face

(e) SM - 6x6 rays/face (f) SM - 6x6 rays/face

Figure 5.5 Relative error distributions for the surface method using a
75x75x75 zone mesh.
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so high for all these zones one must be careful not to read too much into any trends
and make any general observations. Similarly, while it may be reasonable to assume
a zone observing unsmooth optical depth distributions along multiple axes, like one
would see in a zone along the diagonal of the corner, would experience greater error
than those with a single line of discontinuity, the error is so high one cannot make
any general observations beyond what has already been said.

Just as was observed previously in the 2D cases, it is evident that while increasing
mesh resolution does improve the solution - both locally and globally - increasing the
quadrature order is a more efficient way of decreasing error. This is supported both by
the error distributions in Figures 5.2-5.5, as well as the relative error and efficiency
diagrams in Figure 5.6. It is important to note, however, that while increasing
quadrature order is more efficient in terms of work being done than increasing spatial
resolution, increasing spatial resolution gives more data points. While this statement
may seem obvious, its important to strike a balance between the two, resolving the
solution with enough resolution to properly capture important features, while at the
same time using a high enough order quadrature to accurately solve the problem.

Going back to Figure 4.8, its worth remembering that in 3D, when using Gauss-
Legendre, the surface method actually uses more effective rays for low-order quadra-
tures than the interior point method. This changes once one uses 3 points per
dimension or more, but is worth pointing out.

The difference in efficiency between the surface and interior point methods is more
pronounced in 2D than in 3D. For Gauss-Legendre in 2D, when taking quadrature
point sharing into account, the surface method uses 2N quadrature points per zone
(where N is the number of points per dimension), whereas the interior point method,
lacking that ability to share points, uses N2. Looking at Figure 4.8a, it can be seen
how the methods use the same number of effective rays per zone at 2 points per
dimension, with the interior point method using more and more rays relative to the
surface method as the quadrature size is increased. In 3D, however, the scaling is
considerably different, as can be seen in Figure 4.8b. Here, it is not until 3 quadrature
points per dimension that the surface method begins outperforming the interior point
method in rays cast per quadrature size, and even then the relative scaling between
the two methods remains significantly worse than it was in 2D. Now, the surface
method is casting 3N2 rays per zone, while the interior point method casts N3 rays.
This particularly impactful at lower order quadratures (of roughly 6 or fewer points
per dimension), as the total effective number of rays for the surface method is much
closer to that of the interior point method than it was before. This is important to
remember when attempting to analyze the performance and efficiency of the methods
for the cube problem, as roughly equivalent quadrature sizes in 2D, like 4 points per
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(a) Relative flux error at wp(1,1,1) (b) Efficiency diagram at wp(1,1,1)

(c) Relative flux error at wp(2,2,2) (d) Efficiency diagram at wp(2,2,2)

(e) Relative flux error at wp(3,3,2) (f) Efficiency diagram at wp(3,3,2)

Figure 5.6 The relative flux error and associated efficiency diagram at
several watchpoints for the cube problem.
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dimension for the surface method and 3 points per dimension for the interior point
method, are no longer that similar to one another. In fact, interestingly, if one looks
at the error curves for 3 points per dimension at wp(1,1,1) (when the two methods
are doing the same amount of work for the same quadrature size) in Figures 5.6a
and 5.6b, the two methods perform near identically - both in terms of magnitude
and shape. Comparatively, however, if one compares the curves for 4 points per
dimension, the interior point method significantly outperforms the surface method
at the cost of using only a quarter more rays. However, if we then compare the interior
point method using a 4x4x4 quadrature with the surface method’s 5x5 quadrature
(64 rays per zone for the interior point method vs 75 for the surface method), the
surface method overtakes it in performance. This gap is then extended further when
one compares the 5x5x5 quadrature (125 rays per zone) of the interior point method
to the 6x6 quadrature (108 rays per zone) of the surface method. While its difficult
to draw any strong conclusions from this watchpoint alone, what it does show is how
the gap in performance slowly begins to widen as the quadrature order increases. At
low quadrature orders, the two methods perform relatively similarly, with the interior
point method actually outperforming the surface method not just magnitude of error
but also efficiency. As the quadrature order increases and difference in effective rays
begins to take effect, the surface method slowly overtakes the interior point method
in performance.

The error plot and efficiency diagram for wp(2,2,2) (in the cube) in Figure 5.6 is
rather different from those seen in wp(1,1,1). Although there are no zones inside the

(a) L1 error comparison (b) Global efficiency diagram

Figure 5.7 The global L1 flux error and its associated efficiency diagram.
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cube itself that have an unsmooth optical depth, the error for both methods is signif-
icantly higher here than it was outside the cube. As was noted earlier, the magnitude
of the error tends to be tied to the degree of variation in the optical depth, as well
as how that variation in turn effects the behavior of the current/flux distribution.
The less polynomial-like the distribution, the worse the Gaussian quadrature is able
to numerically integrate it, and the worse the error is. Unlike before in the lower
cross section region described by wp(1,1,1), the error for the interior point method is
significantly higher than that of the surface method, although both methods perform
significantly worse than they did at wp(1,1,1). Whatever form the flux distribution is
taking in this region is less well behaved than the current distribution along a single
face. While this significantly impacts the magnitude of the error, the slope of the
curves remains consistent with that observed previously, and still directly correlated
to the quadrature order. Both methods, when using the same quadrature order, have
roughly the same slope.

Looking at the plots for wp(3,3,2) (inside the shadow), the superior performance
of the surface method over the interior point method no longer hold true. This is
similar to what was observed in the pin problem when using low order quadratures.
For the same order of quadrature, both methods tend to have roughly the same
convergence rate - although often slightly favoring the surface method (the exact
convergence rate varies depending on the problem and where one is in the mesh);
however, the overall magnitude of the error tends to favor the interior point method.
It is only once the surface method is able to take advantage of its increased capacity
for sharing quadrature points that it begins to outperform the interior point method.
This normally happened relatively quickly for problems in 2D when the scaling of
effective rays vs quadrature size heavily favored the surface method. In 3D, however,
that scaling happens significantly slower. Additionally, having to sum the result of
multiple quadratures together creates possibilities for errors to add together. The
surface method, although often more efficient, is in many ways more fragile than
the interior point method. This trend of similar convergence rates but worse error
for the surface method is somewhat contradicted inside the pin itself. Outside the
cube, for the same quadrature order and mesh resolution, the interior point method
will typically outperform the surface method, although it will typically have to do
significantly more work to accomplish this.

5.2 Skyshine
The final problem to be included in this paper is a simplified version of a skyshine
problem. Skyshine is a phenomena often observed in atmospheric transport in which
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radiation (both neutrons and photons) emitted from a source scatters off the atmo-
sphere before coming back to the surface. Particles traveling through air typically
exhibit anisotropic, forward scattering behavior. These indirect particles can result
in significant fluxes in directions other than the source, as particles are essentially
curving in from the sides and above in a cone-like distribution. At a certain distance,
particles traveling from these directions can actually outweigh those coming directly
from the source. This effect would have been very present during the Chernobyl
accident, as well as the multitude of bare-reactor experiments conducted throughout
the 20th century [16, 17, 18, 19]. Another example in which skyshine can play a sig-
nificant role in is the detection and recovery of radioactive materials, whether they
be lost in a field or are being smuggled through a border crossing or port.

Consider the hypothetical scenario in which a radioactive source used for survey-
ing purposes has been lost due to a recent flood. The loss of the source was reported,
and a team has since been dispatched to help with its retrieval. The source’s rough
location has been narrowed down to a field with an area of say few km2; however,
the field itself consists of long, tall grass, and the source is relatively small. Being
professionals, the team came prepared for this, bringing with them several handheld
radiation detectors. As the team goes out and begins performing a radiological sur-
vey of the area, they will not only receive a signal in the direction of the source,
but potentially everywhere around them, complicating the process of identifying the
exact location of the source. Depending on the distance they are from the source and
the geography of the region, the signal they measure may be very strong in directions
other than the source.

When modeling problems like this, one’s source can often be approximated using
a simple point source, as the source is typically much smaller than the overall problem
domain. This approximation is more accurate the smaller one’s source actually is
and the further away one is to it. For something like a small AmBe source, the
approximation would likely remain accurate even at close distances, while for a bare
reactor like the one used in Operation BREN [18], the minimum distance would
be significantly larger - likely tens if not hundreds of meters. Regardless of this,
however, is that while using a point source is much simpler to model, they tend
to suffer from significant ray effects when used in a discrete ordinates method, as
discussed previously. This can lead to problems if one is trying to, say, find the
energy deposition and corresponding signal in a small detector hundreds of meters
away from the source. Getting an accurate solution in this sort of scenario using
the method of discrete ordinates is essentially impossible without the employment
of ray effect mitigation techniques, as the computational cost for the size of angular
quadrature needed to obtain an accurate solution would likely be infeasible.
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Figure 5.8 A model of the RA reactor core at the Baikal test facility. Image
taken from [16].
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Figure 5.9 A model of the RA reactor facility. Image taken from [16].
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To demonstrate the significance ray effects can have on a local solution in a
problem like this, an approximation of a skyshine experiment conducted at the Baikal
test facility was modeled, which can be seen in Figure 5.10. This involved combining a
point source with the same energy and angular profile as that produced by the reactor
described in Figures 5.8 and 5.9, and performing the atmospheric transport using
ARDRA. Because of limitations with ARDRA and the method of discrete ordinates
in general, the ground could not be included in the model, as this would exceed a
single mean free path per zone, destabilizing the solution. To properly include the
ground, the zone size in this region would need to be significantly smaller, something
that cannot be done in such a large problem due to memory constraints.

While there may be possible ways around this limitation, such as the inclusion of
slightly reflective boundary conditions to approximate the ground or the modeling of
the ground in local regions around detectors, these were deemed outside the purview
of the project and not pursued further. Unfortunately, this prevented any possibility
of properly comparing against any experimental results [16, 17]. Instead, a reference
solution was computed using the Monte Carlo code Mercury [24].

The general flux distribution for the angularly dependent source can be seen

Figure 5.10 The problem setup for a basic skyshine problem. A point source
is located 1 m above a vacuum boundary at (x,y,z) = (0,0,1). There are
reflective boundary conditions along the x-z and y-z planes running through
the origin. The point source is restricted to emitting in a 33◦ cone along the
z-axis. Detectors are located at 100 m increments along the x-axis, in line
with the source.
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Figure 5.11 The flux distribution for an isotropic source with a void at z
= 0.0 cm. Units are in cm.
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Figure 5.12 x-z slices (at y = 0.0 cm) of the flux distribution for a conical
source with a void at z = 0.0 cm. Units are in cm.
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Figure 5.13 An x-z slice (at y = 0.0 cm) of the flux distribution for a conical
source with a void at z = 0.0 cm (near the source). Units are in cm.

Figure 5.14 The flux distribution of the conical source along the x-axis
compared to the results of the Monte Carlo code Mercury.
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in Figures 5.11, 5.12, and 5.13. Although the source is emitting only in upwards
direction, the anisotropic scattering behavior of the neutrons in air quickly smooths
the particle distribution out in directions outside the source’s original cone such that
it quickly becomes difficult to see any evidence of the cone. The flux along the
vacuum boundary condition at z = 0.0 is noticeably lower than in regions of similar
distances due to particles being lost to the void. To best capture the sources angular
behavior, the mesh gradually coarsens the further away it is to the source.

A comparison of the flux along the x-axis between Mercury and ARDRA can
be seen in Figure 5.14. Although the general shape and rough order of magnitude
is similar, there is a noticeable difference between the two solutions. Although the
exact cause of the discrepancy between the two codes was never identified, it is
likely due to the angularly dependent nature of the source. While modeling the
problem, it became apparent that the initial distribution found using the ray trace
had significant impact on the overall flux distribution. Things like high initial errors
in the uncollided flux in zones near the point source could significantly impact the
scattered flux in later iterations.

The modeling of angularly dependent sources presents a notable challenge for
both the interior point and surface methods when attempting to calculate the uncol-
lided flux. As discussed in previous chapters, both methods are heavily impacted by
the ability of their quadratures to accurately integrate across a face/zone and get an
average current/flux. In those aforementioned cases, unsmooth optical depth distri-
butions led to very high errors in zones where quadrature points straddle a material
interface.

Here, the angular dependency of the source leads to a similar effect, with the
source term q in Equations 3.19 and 3.27 now a function of Ω̂s and able to vary across
quadrature points along the same zone/face, leading to discontinuities in the flux
distribution. These discontinuities pose a serious issue to the Gaussian quadratures
ability accurately integrate the distributions. Just like before when dealing with the
unsmooth optical depth distributions, the best way to handle these discontinuities is
to localize the error they cause by running the problem adaptively.

A further complication caused by the source’s angular dependency can be seen
when using the surface method. Because the surface method is rooted in Equation
3.22, zones containing or in contact with the source must account for Nsrc when
going from Nleak to Nabs. When the source is fully enclosed by the zone, Nsrc is
simply the total source strength over all angles. However, if instead the source is
located on a face, one must find the fraction of the source entering the zone. When
the source is isotropic, this relatively straight forward, as it is always 1/2 if it is on
the interior of a face, 1/4 if on an edge, and 1/8 if on a corner. When the source is
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not isotropic, however, one must integrate the source’s angular distribution over the
zone, something that is not trivial in nature. While this process can be circumvented
by ensuring the source is located inside a zone, this then prevents one from using
reflective boundaries, as the source would then be reflected across the boundary if
not placed on the boundary itself.

To further demonstrate this behavior, the same problem as before was modeled
again, this time with an isotropic source rather than an angularly dependent one.
The corresponding flux distributions can be seen in Figures 5.15, 5.16, and 5.16.
Comparing these Figures to those of the conical source, one can see how near the
source, the distributions are fairly different. However, as one gets further away from
the origin, the differences in the flux between the two problems become smaller and
smaller. Looking at Figure 5.18, the difference between the solution found using
Mercury and that of ARDRA is much less than that in the previous configuration.

To demonstrate the impact the first collision source treatment method has on
the final flux distribution, the isotropic source was again modeled, this time without
using the first collision source treatment and without the reflective boundaries or the
vacuum boundary condition at z = 0.0. The problem domain was also scaled down
to only a few hundred meters, as the primary focus of this configuration is on zones
relatively near the source. The problem was run four times, with the results being
shown in Figures 5.19, 5.20, 5.21, and 5.22. Figure 5.19 was produced using an S8

angular quadrature (80 bins), Figure 5.20 using an S10 quadrature (120 bins), and
Figure 5.21 using an S12 quadrature (168 bins). The final run was performed using
the first collision source treatment with an S8 angular quadrature.

When using an S8 quadrature without any ray effect mitigation, significant ray
effects can be observed propagating from the source throughout the mesh. Com-
pared to the distribution found when using the first collision source treatment in
Figure 5.22, the solution in Figure 5.19 is almost star-like in comparison, as the ray
effects cause significant distortions along the angular bins of the mesh. When the
angular resolution is increased from S8 to S10, the solution becomes slightly rounder.
Although there are more individual ray effects than before, their overall size is less.
Because of this, it takes less distance before they smoothed out from scattering.

Increasing the angular quadrature again from S10 to S12, the same behavior can
be observed, with the solution slowly appearing more and more like that found with
the first collision source treatment in Figure 5.22. It should be noted, however, that
while there will still be ray effects in the solution, they are much less impactful than
those observable in Figure 5.21, despite using less than half the number of angular
bins (80 vs. 168), to the point where they are no longer visible to the naked eye. The
first collision source treatment only eliminates ray effects caused by the uncollided
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Figure 5.15 The flux distribution for an isotropic source with a void at z
= 0.0 cm. Units are in cm.
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Figure 5.16 x-z slices (at y = 0.0 cm) of the flux distribution for an isotropic
source with a void at z = 0.0 cm. Units are in cm.
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Figure 5.17 An x-z slice (at y = 0.0 cm) of the flux distribution for an isotropic
source with a void at z = 0.0 cm (near the source). Units are in cm.

Figure 5.18 The flux distribution found with ARDRA along the x-axis for
an isotropic source compared to the results of the Monte Carlo code Mercury.
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flux.
In a problem like this, the overall flux distribution looks fairly similar to the

uncollided flux distribution. One way to think of how the first collision source treat-
ment works is that it expands the original source to a much larger volume source.
If one just looked at the flux contribution from a single zone in this new source,
one would still see significant ray effects in the first collided flux. However, because
no single zone is isolated in this sort of manner, any ray effects due to a particular
zone are essentially being cancelled out by those in the neighboring zones. If one
were to look at the total flux distribution in a problem like the cube from earlier,
assuming scattering was allowed, one would likely see some impact from ray effects
in the region behind the cube, although to a much smaller extent than seen in the
small isotropic problem here.
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Figure 5.19 The flux distribution for an isotropic source with no ray effect
mitigation using an S8 angular quadrature. Significant ray effects can be
seen propagating from the source throughout the mesh.
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Figure 5.20 The flux distribution for an isotropic source with no ray effect
mitigation using an S10 angular quadrature. While there are more individual
ray effects than with the S8 quadrature, they are less pronounced, giving a
rounder solution closer to what one would expect for an isotropic source.
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Figure 5.21 The flux distribution for an isotropic source with no ray effect
mitigation using an S12 angular quadrature. Although similar to the S10 solution,
the ray effects are again less pronounced, giving a smoother solution more similar
to that found when using the first collision source treatment.
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Figure 5.22 The flux distribution for an isotropic source using the first
collision source treatment.
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Chapter Six

CONCLUSION

The surface method is a promising new technique to solve for uncollided flux. Despite
its popularity, ray effects have remained a constant source of error in the method
of discrete ordinates since its inception. The first collision source treatment method
remains one of the most effective techniques to help mitigate the effect of ray effects
on the solution. While the interior point method remains a capable method of solving
for the uncollided flux, initial testing has demonstrated significant advantages in favor
of the surface method, including its inherently conservative nature, its high potential
for optimization and ray sharing, and similar convergence rate.

Significant work remains to be done to properly characterize the surface method.
The performance of the two methods is highly problem dependent. As such, ad-
ditional problems should be modeled to gain further insight in how the methods
behave under different problem conditions. Although the surface method has no-
ticeably worse performance than the interior point method in zones that contain
unsmooth optical depth distributions and/or discontinuities in the current distribu-
tion, something that can lead to negative absorption rates and fluxes, there are likely
techniques that can address this, like negative flux fix up for diamond difference, al-
though these will likely come at the cost of conservation.

Initial testing has shown significant performance improvements for the surface
method over the interior point method, particularly in 2D, where the fewer faces and
lower dimension of its quadrature significantly reduces the number of rays needed for
a given quadrature order. These improvements, however, were substantially smaller
in 3D, only really being a factor when using relatively high order quadratures, some-
thing that may be impractical in most problems. Given the difference in relative
performance between the surface method and interior point method in 2D vs 3D, it
is likely worth repeating the comparison made between different quadrature rules,
like Gauss-Lobatto and Gauss-Legendre, in 3D, as the inclusion of corner points
could significantly impact the results. This comparison could also be expanded to
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include additional quadrature rules.

6.1 Future Work
The only potential optimization discussed in this paper was for adjacent zones shar-
ing the quadrature points. However, there may be additional possibilities to improve
the ray tracing algorithm and further reduce computational costs and improve par-
allel performance. One possible technique discussed but never implemented was the
inclusion of interpolation methods with the surface method to try and optimize the
flow of information between processors. When running in parallel, ARDRA splits
the mesh up among the various processors, each processor taking a certain region of
zones. Rays often travel through multiple regions, requiring the ray tracing algorithm
to query information from multiple processors, slowing the algorithm down. This is
of particular importance when running a problem adaptively, as the first collision
source treatment can take significantly longer than the source iteration component.
By using the quadrature points along the surface between processor regions to create
an interpolation function, one could potentially pass this function to the adjacent
region, making it no longer necessary to trace through regions having already been
traced through. Something like this would require extensive testing and careful im-
plementation to be effective, but could significantly reduce the cost of casting many
similar rays.

In addition to optimization, another thing that remains to be done is to expand
the surface method to work in different coordinate systems, like 2D polar or 3D
spherical and cylindrical coordinates. There often advantages to using alternative
coordinate systems like these, including the reduction of ray effects. It should be
relatively simple to modify the surface method to run with these systems.

While the adaption of ray tracing methods to use with volume sources has been
done in the past with the interior point method with limited success [7], it has
never been done before using the surface method. This is done by breaking the
source down into a set of point sources that when combined are roughly equivalent
to the original source. The problem with this, however, is that with each additional
point source, one is essentially solving an entire additional problem. Ray tracing
is expensive. Previously, when done using the interior point method, it was found
that the computational cost associated with solving for so many individual sources
rendered this impractically high in most situations. While this is likely still the case
for the surface method in 3D, the significant ray sharing seen in 2D could make this
more feasible.

Lastly, although both methods were capable of running using adaptive refinement,
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a true study of how they perform when doing so was never performed. At low order
quadratures, a higher percentage of rays can be shared between adjacent zones.
Whether this outweighs the improved accuracy and convergence rate seen with higher
order quadratures remains to be answered.

In conclusion, the surface method is a promising new technique for solving for
the uncollided flux.
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6.2 Appendix
Download the MATLAB Code:

https://github.com/abcbitz/First_Collision_Source_Treatment
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