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Abstract

This paper studies an optimization problem on the sum of traces of matrix quadratic forms in m 
semiorthogonal matrices, which can be considered as a generalization of the synchronization of 

rotations. While the problem is nonconvex, this paper shows that its semidefinite programming 

relaxation solves the original nonconvex problems exactly with high probability under an additive 

noise model with small noise in the order of O(m1/4). In addition, it shows that, with high 

probability, the sufficient condition for global optimality considered in Won, Zhou, and Lange 

[SIAM J. Matrix Anal. Appl., 2 (2021), pp. 859–882] is also necessary under a similar small 

noise condition. These results can be considered as a generalization of existing results on phase 

synchronization.

Keywords
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1. Introduction.

This paper considers the orthogonal trace-sum maximization (OTSM) problem [35] of 

estimating m matrices O1, …, Om with Oi ∈ ℝdi × r from the optimization problem:

(OTSM) maximize ∑
1 ≤ i, j ≤ m

tr Oi
TSijOj subject toOi ∈ Odi, r, i = 1, …, m,
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where Sij = Sji
T ∈ ℝdi × dj, for i, j = 1, …, m, r ≤ mini=1, …, m di, and 

Od, r = O ∈ ℝd × r:OTO = Ir  is the Stiefel manifold of semiorthogonal matrices; Ir denotes 

the identity matrix of order r.

The OTSM problem has applications in generalized canonical correlation analysis (CCA) 

[18] and Procrustes analysis [17, 30]. Furthermore, if d1 = ⋯ = dm = r, then (OTSM) 

reduces to the problem of synchronization of rotations [5], which has wide applications in 

multireference alignment [4], cryogenic electron microscopy (cryo-EM) [29, 36], 2D/3D 

point set registration [19, 12, 9], and multiview structure from motion [2, 3, 32].

1.1. Related works.

While the OTSM problem is proposed recently in [35], it is closely related to many well-

studied problems. In particular, its special cases have been studied in the name of angular 

synchronization, which can be considered as a special case of (OTSM) in the complex-

valued setting, ℤ2 synchronization, and synchronization of rotations. The OTSM problem 

itself can also be considered as a special case of the group synchronization problem.

Angular synchronization.

The complex-valued OTSM problem with d1 = ⋯ = dm = 1 is equivalent to a problem called 

angular synchronization or phase synchronization, which estimates angles θ1, …, θm ∈ [0, 

2π) from the observation of relative offsets θi − θj) mod 2π. The problem has applications 

in cryo-EM [28], comparative biology [16], and many others. To address this problem, 

Singer [28] formulates the problem as a nonconvex optimization problem

max
x ∈ ℂm

x*Cx subject  to  x1 = ⋯ = xm = 1,
(1.1)

where xk = eiθk for all 1 ≤ k ≤ m. In fact, (1.1) can be considered as the special case of 

(OTSM) when d1 = ⋯ = dm = r = 2.

The angular synchronization problem (1.1) has been studied extensively. For example, 

Singer [28] proposes two methods, by eigenvectors and semidefinite programming, 

respectively. The performance of the method is analyzed using random matrix theory and 

information theory. In [4], Bandeira, Boumal, and Singer assume the model C = zz* + σW, 

where z ∈ ℂm satisfies | z1| = ⋯ = | zm| = 1 and W ∈ ℂm × m is a Hermitian Gaussian Wigner 

matrix, and show that if σ ≤ 1
18m

1
4 , then the solution of the semidefinite programming 

approach is also the solution to (1.1) with high probability. Using a more involved argument 

and a modified power method, Zhong and Boumal [37] improve the bound in [4] to 

σ = O m
logm .

There is another line of works that solves (1.1) using power methods. In particular, Boumal 

[6] investigates a modified power method and shows that the method converges to the 

solution of (1.1) when σ = O m
1
6 ; Liu, Yue, and Man-Cho So [24] investigate another 
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generalized power method and prove the convergence for σ = O m
1
4 ; and Zhong and Boumal 

[37] improve the rate to σ = O m
logm .

There are some other interesting works for the angular synchronization problem that are 

not based on semidefinite programming or power method. [23] assumes that the pairwise 

differences are only observed over a graph, studies the landscape of a proposed objective 

function, and shows that the global minimizer is unique when the associated graph is 

incomplete and follows the Erdös–Rényi model. [27] proposes an approximate message 

passing (AMP) algorithm and analyzes its behavior by identifying phases where the problem 

is easy, computationally hard, and statistically impossible.

ℤ2 synchronization.

The real-valued OTSM problem with d1 = ⋯ = dm = 1 is called the ℤ2-synchronization 

problem [11] for ℤ2 = 1, − 1 . For this problem, [14] shows that the solution of the 

semidefinite programming method matches the minimax lower bound on the optimal Bayes 

error rate for the original problem (1.1).

Synchronization of rotations.

The OTSM problem with d1 = ⋯ = dm = r > 2 is called “synchronization of rotations” in 

some literature. This special case has wide applications in graph realization and point cloud 

registration, multiview structure from motion [2, 3, 32], common lines in cryo-EM [29], 

orthogonal least squares [36], and 2D/3D point set registration [19]. [8] studies the problem 

from the perspective of manifold optimization and derives the Cramér–Rao bounds, which 

are the lower bounds of the variance of any unbiased estimator. [31] proposes a distributed 

algorithm with theoretical guarantees on convergence. [33] discusses a method to make the 

estimator in (OTSM) more robust to outlying observations. Another robust algorithm based 

on the maximum likelihood estimator is proposed in [7]. As for the theoretical properties, 

[5] analyzes a semidefinite program approach that solves the problem approximately and 

studies its approximation ratio. [25] investigates a generalized power method for this 

problem. A recent manuscript [22] follows the line of [4, 6, 24, 37] and proves that the 

original problem and the relaxed problem have the same solution when σ ≤ O m
d + dlogm .

Group synchronization.

The OTSM problem can also be considered as a special case of the group synchronization 

problem, which recovers a vector of elements in a group, given noisy pairwise 

measurements of the relative elements gugv
−1. The OTSM problem is the special case when 

the group is d,r, the set of orthogonal matrices. [1] studies the properties of weak recovery 

when the elements are from a generic compact group and the underlying graph of pairwise 

observations is the d-dimensional grid. [27] proposes an AMP algorithm for solving 

synchronization problems over a class of compact groups. [26] generates the estimation 

from compact groups to the class of Cartan motion groups, which includes the important 

special case of rigid motions by applying the compactification process. [10] assumes that the 
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measurement graph is sparse and there are corrupted observations and shows that minimax 

recovery rate depends almost exclusively on the edge sparsity of the measurement graph 

irrespective of other graphical metrics.

1.2. Our contribution.

The main contribution of this work is the study of the OTSM problem under an additive 

noise model. The main results are threefold: First, we propose a semidefinite programming 

approach for solving (OTSM) and show that it solves (OTSM) exactly when the size of noise 

is bounded. Second, we show that, under a similar bounded noise condition, the sufficient 

condition for global optimality of a critical point, studied in [35], is in fact necessary and 

sufficient. Finally, these noise boundedness conditions are satisfied with high probability 

under Gaussianity. These results can be considered as a generalization of [4] from angular 

synchronization to the OTSM problem.

2. The OTSM problem.

2.1. Model assumption.

In this work, we assume the MAXBET model of generating Sij, which postulates the 

existence of {Θi}1≤ i≤ m and {Wij}1≤ i≠j≤ m such that Θi ∈ Odi, r for all 1 ≤ i ≤ m, and

MAXBET Sij = ΘiΘj
T + W ij, whereW ij = W ji

Tfor all1 ≤ i, j ≤ m .

In this model, ΘiΘj
T is considered as the “clean measurement of relative elements,” and 

Wij is considered as an additive noise. This is a natural model for the generalized CCA in 

[35]. Consider a latent variable model in which a latent variable z ∈ ℝr has zero mean and 

covariance matrix Ir, and an observation in the ith group is given by ai = Θiz + ϵi ∈ ℝdi, i 

= 1, …, m, with the noise ϵi uncorrelated with z and ϵj, j ≠ i. If the noise covariance is 

τIdi, then the auto-covariance of group i is Σii + τIdi. The (population) cross-covariance matrix 

between groups i and j is Σij = ΘiΘj
T. The generalized CCA [30, 35] seeks (semi)orthogonal 

matrices Oi ∈ Odi, r  such that the expected inner product between matrices Oi
Tai and 

Oj
Taj is summed and maximized for each pair (i, j), which is ∑i, j tr Oi

T ∑ij Oj . Also note 

that E Oi
Tai, Oi

Tai = tr Oi
T ∑ii Oi + const. If we assume that {Θi} is (semi)orthogonal, then 

this problem is precisely (OTSM), and the forthcoming Proposition 2.1 shows that the 

population version of this generalized CCA recovers precisely the transformations {Θi} of 

the latent variable z. Now let us turn to the practical setting. Appealing to the law of large 

numbers, the sample estimate of Σij can then be written as Sij = ∑ij + W ij = ΘiΘj
T + W ij. A 

statistical interest is whether {Θi} can be precisely estimated by solving the sample version 

of (OTSM). Model (MAXBET) is also standard for synchronization problems, such as 

synchronization of rotations [33, 8] and group synchronization [1, 27].

In some applications [30, 18], it is also natural to assume the MAXDIFF model that ignores 

the auto-covariance terms:
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MAXDIFF Sii = 0andSij = ΘiΘj
T + W ij, i ≠ j .

In this work, we will present our main results based on the MAXBET model and discuss the 

MAXDIFF model in the remarks.

When there is no noise in either the MAXBET or MAXDIFF model, setting Oi = Θi, i = 1, 

…, m, solves problem (OTSM). The proof is deferred to section 5.1.

PROPOSITION 2.1. In the noiseless case (Wij = 0 for all i, j), (O1, …, Om) = Θ1, …, Θm) 

globally solves (OTSM) under the model (MAXBET) or (MAXDIFF).

However, in the presence of noise, Proposition 2.1 does not hold, and problem (OTSM) is 

difficult to solve. To establish theoretical guarantees for the noisy setting, we investigate 

two approaches; one is based on semidefinite programming, and the other one is based on 

finding locally optimal solutions of (OTSM).

2.2. Approach 1: Semidefinite programming relaxation.

While the problem (OTSM) is nonconvex and difficult to solve, we can relax it to a convex 

optimization problem based on semidefinite programming that can be solved efficiently. In 

fact, semidefinite programming–based approaches have been proposed and analyzed for the 

problem of angular synchronization [28, 4, 37] and synchronization of rotations [5], and our 

proposed method can be considered as a generalization of these existing methods.

The argument of the relaxation is as follows. Let D = ∑i = 1
m di,

S =

S11 S12 ⋯ S1m

S21 S22 S2m

⋮ ⋱ ⋮
Sm1 Sm2 ⋯ Smm

∈ ℝD × D, andO =
O1

⋮
Om

∈ ℝD × r; (2.1)

then by setting U = OOT, the problem (OTSM) is equivalent to finding

U = argmax tr SU :U ≽ 0, rank U = r, Uii ≼ I, tr Uii = r, i = 1, …, m (2.2)

for U ∈ ℝD × D such that U = UT, which can be relaxed to solving

SDP max
U ∈ ℝD × D, U = UT

S, U subject toU ≽ 0, Uii ≼ I, tr Uii = r,

where M ≽ 0 (resp., M ≼ 0) means that a matrix M is positive (resp., negative) semidefinite. 

If a solution U to problem (SDP) has rank-r, then we can set U = U, which can be 

decomposed to U = V V T , where V ∈ ℝD × r. Write V = V 1
T, …, V m

T T
; then V i ∈ Odi, r for all 1 

≤ i ≤ m and V 1, …, V m  globally solves problem (OTSM).
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This work shows that if the noises Wij are “small,” then the solutions of problems (OTSM) 

and (SDP) are equivalent in the sense that U = V V T  with V  rank-r; hence the convex 

relaxation is tight. Furthermore, each V i converges to Θi as m → ∞, as desired for CCA 

applications.

2.3. Approach 2: Characterization of critical points.

While the semidefinite programming (SDP) approach is convex and can be solved with 

high accuracy, it has a large computational cost when D is large, and solving the original 

nonconvex problem (OTSM) without lifting the variable (from O to U) is more efficient. A 

natural question is, Is there any guarantee on whether a critical point of problem (OTSM), 

which local nonconvex optimization algorithms usually deliver, is globally optimal?

Using the optimality conditions for the convex relaxation (SDP), Won, Zhou, and Lange [35] 

study sufficient conditions for a critical point of problem (OTSM) to be globally optimal. 

Specifically, the first-order necessary condition for local optimality of (OTSM) is

OiΛi = ∑
j = 1

m
SijOj, i = 1, …, m, (2.3)

for some symmetric matrix Λi. The latter matrix is the Lagrange multiplier associated with 

the constraint Oi ∈ Odi, r and has a representation Λi = ∑j = 1
m Oi

TSijOj. In what follows, a critical 

point is defined as (O1, …, Om) with Oi ∈ Odi, r satisfying (2.3). If τi is the smallest eigenvalue 

of Λi, then a critical point is a global optimum of (OTSM) if

L(O, Λ) ≽ 0, whereO = O1
T, …, Om

T T , Λ = Λ1, …, Λm , and

L(O, Λ) =
O1Λ1O1

T + τ1 Id1 − O1O1
T

⋱
OmΛmOm

T + τm Idm − OmOm
T

− S . (2.4)

A block relaxation-type algorithm that converges to a critical point is also proposed in [35]. 

However, characterization of such a point that does not satisfy condition (2.4) has remained 

an open question.

This paper shows that, if the noises Wij are “small” in a similar sense to that of Approach 1, 

the sufficient condition (2.4) is also necessary for global optimality. Thus, under this regime 

we can fully determine whether or not a critical point, which can be found by a simple local 

algorithm, is globally optimal. Furthermore, each Oi converges to Θi as m → ∞, up to a 

common phase shift, as desired for CCA applications.

2.4. Notation.

This work sometimes divides a matrix X of size D × D into m2 submatrices such that the 

(i, j) block is a di × dj submatrix. We use Xij or [X]ij to denote this submatrix. Similarly, 

sometimes we divide a matrix of Y ∈ ℝD × r or a vector y ∈ ℝD into m submatrices or an m 

vector, where the ith component, denoted by Yi, [Y]i or yi, [y]i, is a matrix of size di × r or a 

vector of length di.
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For any matrix X, we use ∥X∥ to represent its operator norm and ∥X∥F to represent its 

Frobenius norm. In addition, PX represents an orthonormal matrix whose column space 

is the same as X, PX⊥ is an orthonormal matrix whose column space is the orthogonal 

complement of the column space of X, ΠX = PXPX
T  is the projector to the column space of 

X, and ΠX⊥ is the projection matrix to the orthogonal complement of the column space of X. 

If Y ∈ ℝn × n is symmetric, we use λ1(Y) ≥ λ2(Y) ≥ ⋯ ≥ λn(Y) to denote its eigenvalues in 

descending order.

3. Main results.

In this section, we present our main results. The first main result, Theorem 3.1, shows that if 

the noises Wij are “small,” then the convex relaxation in (SDP) solves the original problem 

(OTSM) exactly. The second main result, Theorem 3.9, shows that if the noises Wij are 

“small,” then a critical point is globally optimal if and only if condition (2.4) holds.

3.1. Theoretical guarantees on the SDP approach.

This section provides conditions that if the noises Wij are “small,” then the solution of 

problem (SDP) has rank-r and is equivalent to the solution of the problem (OTSM) in the 

sense that U = V V T  with V  rank-r; hence the convex relaxation is tight.

We begin with two deterministic conditions on W in Theorem 3.1 and Corollary 3.3, with 

showing that the condition holds with high probability under a Gaussian model in Corollary 

3.4, and with a statement on the consistency of the solution in Corollary 3.7. The statement 

of the first deterministic theorem is as follows.

THEOREM 3.1. If m ≥ W (4 r + 1) + 1 and W ∈ ℝD × D is small in the sense that

m > 4m
2 max1 ≤ i ≤ m W Θ i F + 4 W 2 r

m
m − W 4 r + 1 − 1

+ 2 max
1 ≤ i ≤ m

W Θ i F + 4 W 2 r
m + 8 W r

m + 2 W ,
(3.1)

then the solutions of (OTSM) and relaxation (SDP) are equivalent in the sense that a solution 
U to (SDP) also solves (2.2).

The proof of Theorem 3.1 will be presented in section 4.1. While the condition (3.1) is 

rather complicated, we expect that it holds for large m when ∥W∥ and maxi=1,…,m ∥ (WΘ)i∥F 

grow slowly as m increases. To prove this idea rigorously, we introduce the notion of 

Θ-discordant noise, which is inspired by the notion of “z-discordant matrix” in [4, Definition 

3.1].

DEFINITION 3.2 Θ-discordance). Let Θ = Θ1, …, Θm ∈ ×i = 1
m Odi, r. Recall D = ∑i = 1 di. A 

matrix W is said to be Θ-discordant if it is symmetric and satisfies W ≤ 3 D and 
maxi = 1, …, m W Θ i F ≤ 3 Drlogm.
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Based on the definition of Θ-discordant noise, The next corollary is a deterministic, 

nonasymptotic statement that simplifies the condition (3.1) in Theorem 3.1. Its proof is 

deferred to section 4.2.

COROLLARY 3.3. Let d = D/m. If m ≥ 8 and σ−1W is Θ-discordant for

σ ≤ m1/4

60 dr , (3.2)

then condition (3.1) holds, and the solutions of (OTSM) and (SDP) are equivalent.

Next, we apply a natural probabilistic model and investigate the Θ-discordant property. In 

particular, we follow [6, 4, 37] and use an additive Gaussian noise model to generate the 

symmetric noise matrix W:

Upper triangular part of W ∈ ℝD × D is elementwisely

independentandidenticallydistributed i . i . d . sampledfromN 0, σ2 . (3.3)

For this model, we have the following corollary that shows if σ ≤ O m1/4
dr , then (3.1) holds 

with high probability. Its proof is deferred to section 4.3.

COROLLARY 3.4. Assume the additive Gaussian noise model in (3.3), m ≥ 3 or m ≥ 2 

and mini = 1
m di ≥ 6; then with probability at least 1 − 1/m − 2exp − 3 − 2 2 2

4 D , W satisfies the 

Θ-discordant property.

As a result, if σ ≤ m1/4
60 dr  and m ≥ 8, then with the same probability, the condition (3.1) holds, 

and the solutions of (OTSM) and (SDP) are equivalent.

Remark 3.5. The assumption m ≥ 8 in Corollary 3.3 can be relaxed but with a different 

constant factor in the upper bound of σ in (3.2). For example, if m ≥ 3 is assumed, then we 

need σ ≤ m1/4
124 dr .

Remark 3.6. The result in this section can be naturally adapted to the MAXDIFF model. 

The main intermediate results for the proof of Theorem 3.1 given in section 4.1, including 

Lemma 4.1 and Lemma 4.2, still hold with Wii = 0. While the estimations in Lemma 

4.3 do not hold, following the steps given at the end of section 5.2.1, we are still able 

to obtain similar bounds on the difference between V  and Θ. In summary, we are able 

to obtain parallel results to Theorem 3.1 and Corollary 3.3 for the MAXDIFF setting. 

In particular, if W is generated using the model in Corollary 3.3, then the solutions of 

(OTSM) and (SDP) with the MAXDIFF model are equivalent with probability at least 

1 − 1/m − 2exp − 3 − 2 2 2

4 D  if σ ≤ m1/4
120 dr  and m ≥ 10. This more restrictive bound under 
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the MAXDIFF model is expected since (MAXDIFF) utilizes less information on the clean 

signal Θ for the same number of measurements.

Following the proof of Theorem 3.1, we have a consistency result, i.e., that the solution of 

(SDP) recovers the true signal Θ if m is sufficiently large.

COROLLARY 3.7. Assuming the conditions in Corollary 3.3, then the solution of (SDP), U, 

admits a decomposition U = V V T  with V ∈ ℝD × r such that

max
i = 1, …, m

V i − Θi F ≤ 2 3σ dmrlogm + 36σ2d rm
m − 3σ dm(4 r + 1) − 1 . (3.4)

Thus, if σ = o m1/4
dr , then maxi = 1, …, m V i − Θi F 0. as m → ∞.

Remark 3.8. For the MAXDIFF model, (3.4) is replaced with

max
i = 1, …, m

V i − Θi F ≤
6σ dmr logm + 72σ2dm rm

m − 2

m − 12σ dm3r
m − 2

.

The bound follows from the discussion of Lemma 4.3 in the MAXDIFF setting. If 

σ = O m1/4
dr , then maxi = 1, …, m V i − Θi F 0 as m → ∞.

3.2. Theoretical guarantees on critical points.

This section presents the condition on the size of the noise W that ensures condition (2.4) 

holds for any globally optimal point (O1, …, Om) and its associated Lagrange multipliers 

(Λ1, …, Λm). We begin with two deterministic conditions on W in Theorem 3.9 and 

Corollary 3.10, show that the condition in Corollary 3.10 holds with high probability 

under the additive Gaussian model (3.3) in Corollary 3.11, and establish the consistency 

in Corollary 3.14.

Recall that the first-order necessary condition for local optimality of (OTSM) is given in 

(2.3). The associated Lagrange multiplier is symmetric:

Λi = Oi
T ∑

j = 1

m
SijOj = ∑

j = 1

m
SijOj

T
Oi = 1

2 ∑
j = 1

m
Oi

TSijOj + 1
2 ∑

j = 1

m
Oj

TSjiOi . (3.5)

It is also known that a necessary condition for global optimality of a critical point is that the 

⋀i in (3.5) is symmetric and positive semidefinite for all i [35, Proposition 3.1]. Note this 

result does not imply condition (2.4). The first deterministic result implying condition (2.4) 

is given in the following.

THEOREM 3.9. Suppose noise W is small in the sense that
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m ≥ W (4 r + 1) + max
1 ≤ i ≤ m

[W Θ]i F + 4 W 2 r
m

+
2m max1 ≤ i ≤ m W Θ i F + 4 W 2 r

m
m − 4 W r + 16 W 2 r

m .
(3.6)

If (O1, …, Om) is a global optimum of (OTSM), then (O1, …, Om) and its associated 
Lagrange multipliers (Λ1, …, Λm) satisfy condition (2.4).

The proof of this theorem is deferred to section 4.5. Theorem 3.9 implies that, under the 

small noise regime quantified by inequality (3.6), condition (2.4) is necessary and sufficient 
for global optimality.

The following corollary is a deterministic, nonasymptotic statement that simplifies condition 

(3.6) using the notion of Θ-discordance (Definition 3.2). The idea is similar to (3.1). The 

left-hand side of condition (3.6) dominates the right-hand side (RHS) as m → ∞ if ∥W∥ and 

maxi=1,…,m ∥(WΘ)i∥F are bounded or increase slowly as m increases. Thus, we can expect 

that inequality (3.6) is satisfied if noise variance σ is small and the number of observations 

m is large.

COROLLARY 3.10. Let d = D/m. Suppose that m ≥ 2,

σ ≤ m1/4

31 dr , (3.7)

and σ−1W is Θ-discordant; then (3.6) holds. Thus if (O1, …, Om) is a global optimum of 
(OTSM), then (O1, …, Om) and its associated Lagrange multipliers (Λ1, …, Λm) satisfy 
condition (2.4).

The proof is deferred to section 4.6.

Finally, since Corollary 3.4 shows that W in the additive Gaussian noise model (3.3) is Θ-

discordant after scaling by σ, Corollary 3.10 implies the following result on the probabilistic 

model.

COROLLARY 3.11. Suppose the additive Gaussian noise model in (3.3) holds. If σ ≤ m1/4
31 rd

and m ≥ 3 or m ≥ 2 and mini=1,…,m di ≥ 6, then with probability at least 

1 − 1/m − 2exp − 3 − 2 2 2

4 D , any global optimum (O1, …, Om) of (OTSM) and its 

associated Lagrange multipliers (Λ1, …, Λm) satisfy condition (2.4).

Remark 3.12. The upper bound of σ in the RHS of (3.7) can be made smaller if m increases. 

For example, if we have m ≥ 4, then (3.7) can be relaxed to σ ≤ m1/4
29 dr ; if m ≥ 9, σ ≤ m1/4

26 dr
suffices.
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Remark 3.13. If instead the MAXDIFF model is assumed, the present analysis holds for 

m ≥ 4 and (3.7) replaced with σ ≤ m1/4
64 dr . This is a worse bound as opposed to m1/4

29 dr  for 

(MAXBET) (See Remark 3.12). To obtain the same bound as (3.7), we need m ≥ 9; see 

section 4.7. Similar to the SDP relaxation, the more restrictive bound in the MAXDIFF 

model is expected since (MAXDIFF) utilizes less information on the clean signal Θ for the 

same number of measurements.

The following consistency result is a by-product of the proof of Theorem 3.9. Recall 

that problem (OTSM) is invariant to “simultaneous rotation,” i.e., postmultiplying a fully 

orthogonal matrix Q ∈ r,r to Oi’s (see, e.g., [34, equation (8.2)]).

COROLLARY 3.14. Let O1, …, Om ∈ ×i = 1
m Odi, r be a global optimum of (OTSM). If the noise 

σ−1W is Θ-discordant and m > 144σ2dr, we have an estimation error

min
Q ∈ Or, r

max
1 ≤ i ≤ m

OiQ − Θi F ≤
2 3σ dr logm

m + 36σ2d r
m

1 − 12σ dr
m

.

Thus if σ = O m1/4
dr , then we have minQ ∈ Or, r max1 ≤ i ≤ m OiQ − Θi F 0 as m → ∞, as desired.

Remark 3.15. If the MAXDIFF model is assumed, m > 2, and 

m3/2 − 2m1/2 − 12σ drm − 3 > 0, then under Θ-discordance

min
Q ∈ Or, r

max
1 ≤ i ≤ m

OiQ − Θi F ≤
2 3σ dr logm

m + 36σ2 d r
m − 2/ m

1 − 12σ dr
m − 2/ m − 3

m

.

3.3. Comparison with existing works.

Our results generalize the work [4] on angular synchronization, which analyzes the setting 

d = r = 1 with complex values. In particular, Theorem 3.1, Corollary 3.3, Corollary 3.4, 

and Corollary 3.11 are generalizations of Lemma 3.2, Theorem 2.1, and Proposition 4.5 in 

[4], respectively. Corollary 3.3 is similar to Lemma 3.2 in [4] in the sense that both results 

establish deterministic conditions such that the original problem and the relaxed problem 

have the same solutions under a “discordant” condition. In addition, Corollary 3.4 is a 

generalization of [4, Theorem 2.1] in the sense that both results establish upper bounds 

on the size of noise σ under an additive Gaussian model. At last, both Corollary 3.11 and 

Proposition 4.5 in [4] show that local solutions satisfying an assumption are global optima.

Theorem 2.1 and Proposition 4.5 in [4] require σ ≤ 1
18m

1
4 . In comparison, Corollary 3.4 and 

Corollary 3.11 require σ ≤ 1
60m

1
4  and σ ≤ 1

31m
1
4  under the setting d = r = 1, so our result is 

only worse by a constant factor.
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The upper bound σ ≤ 1
18m

1
4  in [4, Theorem 2.1] is later improved to σ ≤ O m

logm , based on 

a much more complicated argument and an algorithmic implementation. After finishing this 

work, we became aware of a recent manuscript [22], which investigates the synchronization-

of-rotations problem using the method in [37], and proves that the original problem and the 

relaxed problem have the same solution when σ ≤ O m
d + dlogm . While it is better than our 

rate σ ≤ O m1/4
d  when r = d, our analysis investigates a more generic problem where r could 

be smaller than d and establishes deterministic conditions that can be verified for a variety 

of probabilistic models. In comparison, the method in [22] is specifically designed for the 

additive Gaussian noise model.

While the results in this section are generalizations of the results in [4] to the group of 

semiorthogonal matrices, we remark that the generalization is nontrivial in two aspects. 

First, as commented in the conclusion of [4], the noncommutative nature of semiorthogonal 

matrices renders the analysis more difficult. For example, the derivation in (5.29) is more 

difficult than the corresponding equation in [4, equation (4.3)]. Second, to analyze the more 

generic problem, we introduce a novel optimality certificate in Lemma 4.1, which is very 

different from the corresponding certificate in [4, Lemma 4.4]. In particular, our certificate 

concerns three variables, c, T(1), and T(2), while [4, Lemma 4.4] only depends on a single 

variable. More importantly, the certificate in [4, Lemma 4.4] has an explicit formula, but 

there is no explicit formula for the certificates (c, T(1), T(2)) in our work. To address this 

issue, we let c = m/2 and define T(1) and T(2) in a constructive way in (5.10).

Ling [21] also proposes a generalization of [4] to the group of orthogonal matrices, which 

can be considered as our setting with r = d. Similar to [4, Lemma 4.4], the certificate in [21, 

Proposition 5.1] is based on a single variable with an explicit formula. While −T(1) in our 

work serves a similar purpose as the certificates in [4, Lemma 4.4] and [21, Proposition 5.1], 

T(2) and c are required for our setting and do not have an explicit formula. In comparison, 

under the setting of orthogonal matrices (i.e., r = d), our rate is in the order of σ = O m1/4
d , 

which is slightly worse than the rate of O m1/4

d3/4  in [21] by a factor of d1/4. We suspect that 

this is due to the more generic problem that we analyze, and our rate could be improved 

with a different way of constructing the certificates than (5.10), but we will leave it as a 

possible future direction. Related, in the simulation study presented in Appendix A, it is 

numerically demonstrated that the certificate (2.4) of global optimality is satisfied by the 

critical points generated by the proximal block ascent algorithm in [35] for a wide range 

of noise variances, even if condition (3.6) or (3.7) is not satisfied. This observation also 

suggests that condition (3.7) may be further improved.
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4. Proof of main results.

4.1. Proof of Theorem 3.1.

Recall that (OTSM) and (2.2) are equivalent in the sense that U ij = OiOj
T
 for all 1 ≤ i, j ≤ m, 

where U = U ij  is a solution to (2.2) and O = Oi  is a solution to (OTSM). It is sufficient to 

show that (2.2) and its relaxation (SDP) have the same solution. Then, the proof of Theorem 

3.1 can be divided into three components as follows.

1. Lemma 4.1 shows that if S admits a decomposition T(1) + T(2) + cI, where T(1), 

T(2), and a solution of (2.2) satisfy the conditions (4.1)–(4.2), then this solution is 

also the unique solution to the relaxed problem (SDP).

2. By constructing the certificates T(1) and T(2), Lemma 4.2 establishes (4.3), a 

sufficient condition such that (4.1)–(4.2) hold.

3. Lemma 4.3 establishes a perturbation result for the solution of (2.2). When W is 

small, the perturbation result can be used to verify (4.3).

We first present our lemmas and a short proof of Theorem 3.1 based on these lemmas and 

leave the technical proofs of the lemmas to section 5.

LEMMA 4.1 (a condition for the equivalence between (2.2) and (SDP)). Let U be a solution to 

(2.2), and assume that it admits a decomposition U = V V T  with V ∈ ℝD × r. If there exists a 

decomposition S = T(1) + T(2) + cI such that

T (1) = ΠV ⊥T (1)ΠV ⊥, T ii
(2) = ΠV iT ii

(2)ΠV i for all 1 ≤ i ≤ m, (4.1)

PV i
T T ii

(2)PV i i = 1

m and − PV ⊥
T T (1)PV ⊥ are positivedefinitematrices, (4.2)

then U is also the unique solution to the relaxed problem (SDP). Therefore, (2.2) and (SDP) 

have the same unique solution.

LEMMA 4.2 (a simplified condition in terms of the solution of (2.2)). Let U be a solution to 

(2.2), and assume that it admits a decomposition U = V V T  with V ∈ ℝD × r. If

m
2 ≥ max

1 ≤ i ≤ m
∑j = 1

m W ijV i + 2m max
1 ≤ i ≤ m

V i − Θ i + ΘTV − mI + W , (4.3)

then there exist T(1) and T(2) such that S = T (1) + T (2) + m
2 I, and (4.1)–(4.2) hold with c = 

m/2.

LEMMA 4.3 (perturbation bounds of the solutions of (2.2)). If m > W 4 r + 1 + 1, then for 

U, any solution to (2.2), there is a decomposition U = V V T  with V ∈ ℝD × r such that
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V − Θ F ≤ 4 W r
m,

max
1 ≤ i ≤ m

W V
i F

≤ max
1 ≤ i ≤ m

W Θ i F + 4 W 2 r
m,

(4.4)

and

max
1 ≤ i ≤ m

V i − Θi F ≤
2 max1 ≤ i ≤ m W Θ i F + 4 W 2 r

m
m − W 4 r + 1 − 1 . (4.5)

Proof of Theorem 3.1. Lemma 4.1 and Lemma 4.2 imply that, to prove Theorem 3.1, it is 

sufficient to prove (4.3), which can be verified by application of Lemma 4.3. □

4.2. Proof of Corollary 3.3.

Proof of Corollary 3.3. Under the Θ-discordant property, inequality (3.1) is sat isfied if m is 

greater than

8m 3σ drmlogm + 36σ2d rm
m − 2 − 6σ dm 2 r + 1 + 2 3σ drmlogm + 36σ2d rm + 24σ dr + 6σ dm

or, by dividing the above expression by m,

1 > 2 + 8

1 − 2
m − 6σ d(2 r + 1)

m

3σ dr logm
m + 36σ2d r

m + 24σ dr
m + 6σ d

m .

If σ ≤ m1/4
60 dr , then the RHS of the above inequality is upper bounded by

2 + 8

1 − 2
m − 6

60
2 r + 1

r
1

m1/4

3
60

log m
m1/4 + 36

3600
1
r + 24

60
1

m3/4 + 6
60

1
r

1
m1/4

≤ 2 + 8
1 − 2

m − 18
60

1
m1/4

3
60

logm
m1/4 + 36

3600 + 24
3600

1
m3/4 + 6

3600
1

m1/4

since r ≥ 1 and 2 r + 1
r ≤ 3. The last line is decreasing in m if m ≥ 8. At m = 8, the 

denominator in the last line is 1 − 2
8 − 18

60
1

81/4 > 0, and the value of the whole line is less than 

1. □
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4.3. Proof of Corollary 3.4.

Proof of Corollary 3.4. Considering Corollary 3.3, it is sufficient to show that Gaussian 

noise W satisfies the Θ-discordance with high probability under the MAXBET model. 

Assume σ−1Wij has i.i.d. standard normal entries. Then from W Θ i = ∑j = 1
m W ijΘj ∈ ℝdi × r, it 

is obvious that this matrix has zero-mean normal entries. To see the variance, note

vec W ijΘj = vec IdiW ijΘj = Θj
T ⊗ Idi vec W ij .

Then Cov vec W ij = σ2Ididj and

Cov vec W ijΘj = σ2 Θj
T ⊗ Idi Θj

T ⊗ Idi
T = σ2 Θj

T ⊗ Idi Θj ⊗ Idi

= σ2 Θj
TΘj ⊗ IdiIdi = σ2 Ir ⊗ Idi = σ2Irdi;

i.e., WijΘj has i.i.d. normal entries with variance σ2. Then [WΘ]i is the sum of m i.i.d. copies 

of WijΘj; hence entries have variance mσ2. Now from Theorem 9.26 of [15],

Pr 1
σ m W Θ i‖ ≥ di + r + t ≤ e−t2/2

for t ≥ 0. Applying the union bound and noting that 1
r W Θ i F ≤ W Θ i 2, we obtain

Pr max
i = 1, …, m

W Θ i F ≤ σ drm + r m + t r > 1 − me−t2/2,

where d = mini = 1, …, mdi. Now choose t such that e−t2/2 = 1/m2, i.e., t = 2 logm. Then,

Pr max
i = 1, …, m

W Θ i F ≤ σ drm + r m + 2 rlogm > 1 − 1
m . (4.6)

Since d ≥ max r, 2  and m ≥ 2, we have r ≤ dr and dm ≥ 2. Furthermore, if m ≥ 3, then m 
≤ m log m. Thus

drm + r m + 2 rlogm ≤ 3 drmlogm ≤ 3 Drlogm . (4.7)

If m = 2 and d ≥ 6,

2dr + 2r2 + 2 r log2 ≤ 3 2dr log2 ≤ 3 Dr log2 .

Thus if m ≥ 3 or m ≥ 2 and d ≥ 6, then maxi=1,…,m 1
σ W Θ

i F
≤ 3 Drlogm with probability 

at least 1 − 1/m.
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To bound ∥W∥, observe that W =d W (1) + W (2), where W (1) ∈ ℝD × D has entries i.i.d. from 

N(0, σ2/2), and W(2) is generated as follows: W (2)
ij

= W (1)
ji

T
 for i ≠ j, and [W(2)]ii has 

entries i.i.d. from N(0, σ2/2) under (MAXBET), or [W(2)]ii = −[W(2)]ii under (MAXDIFF). 

Marginally both W(1) and W(2) have entries i.i.d. from N(0, σ2/2). Then, [13, Theorem II.13] 

implies that

Pr 2
σ W (1) ≥ 2 D + t = Pr 2

σ W (2) ≥ 2 D + t < e−t2/2 .

Applying the union bound and ∥W∥ ≤ ∥W(1)∥ + ∥W(2)∥ yields

Pr( W ≤ σ 2(2 D + t)) > 1 − 2e−t2/2

for t≥0. Choose t = 3
2 − 2 D to have Pr(‖W ‖ ≤ 3σ D) > 1 − 2e− (3 − 2 2)2

4 D. □

4.4. Proof of Corollary 3.7.

The proof follows from (4.5) in Lemma 4.3 and Corollary 3.3.

4.5. Proof of Theorem 3.9.

As a preparation, we provide intermediate results first. Proofs of these results are provided in 

section 5.3.

LEMMA 4.4. Let Λi be the Lagrange multiplier of a critical point (O1, …, Om) of problem 
(OTSM). That is, it is a symmetric r × r matrix satisfying OiΛi = ∑j = 1

m SijOj. Then, for block 

matrices O = O1
T, …, Om

T T  and Θ = Θ1
T, …, Θm

T T , the following holds under (MAXBET):

Λi − mI ≤ ∑j = 1
m W ijOj + m Oi

TΘi − Ir + ΘTO − mIr .

Under (MAXDIFF), we have

Λi − (m − 1)I ≤ ∑j ≠ i W ijOj + m Oi
TΘi − Ir + ΘTO − mIr .

Results parallel to Lemma 4.3 are also obtained.

LEMMA 4.5. Let O1, …, Om ∈ ×i = 1
m Od, r be a a global optimum of (OTSM). If we build a 

block matrix O = O1
T, …, Om

T T
, then there exists an orthogonal matrix R ∈ r,r such that 

(O1R, …, OmR) is also a global optimum and for O = OR the following error estimates hold:
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‖O − Θ‖F ≤
4 W r

m under(MAXBET),

4 W r
m − 2/ m under(MAXDIFF),

(4.8)

ΘTO − mIr ≤
4 W r under MAXBET ,

4 W r
1 − 2/m under MAXDIFF ,

(4.9)

max
1 ≤ i ≤ m

[W O]i ‖F ≤ max
1 ≤ i ≤ m

[W Θ]i ‖F

+
4 W

2 r
m under MAXBET ,

4 W
2 r

m − 2/ m under MAXDIFF ,

(4.10)

max
1 ≤ i ≤ m

Oi − Θi F ≤

2 max1 ≤ i ≤ m [W Θ]i F + 4 W
2 r

m
m − 4 W r

under MAXBET ,

2 max1 ≤ i ≤ m [W Θ]i F + 4 W
2 r

m − 2/ m

m − 4 W r
1 − 2/m − 3

under MAXDIFF ,

(4.11)

where

m >
4 W r under MAXBET ,

5 + 4 W r + 16 W 2r + 40 W r + 1
2 under MAXDIFF .

Assume the data model (MAXBET). We want a condition on the noise matrices Wij that 

guarantees the certificate (2.4) to hold. Let (O1, …, Om) be a global optimum of (OTSM) and 

O = O1
T, …, Om

T
. Since LO = 0 for O = O1

T, …, Om
T

 whenever (O1, …, Om) is a critical point, it 

suffices to find a condition that

xTL(O, Λ)x ≥ 0 for allx = x1, …, xm , xi ∈ ℝdi such that OTx = 0,
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where Λ = Λ1, …, Λm , Λi = ∑j = 1
m Oi

TSijOj, is the collection of the associated Lagrange 

multipliers.

Let (O1, …, Om) be a critical point and O = O1
T, …, Om

T T . Then, for any x satisfying OTx = 0,

xTL(O, Λ)x = ∑
i = 1

m
xi

TOiΛiOi
Txi + τixi

TOi
⊥Oi

⊥ Tx − xTSx

≥ ∑
i = 1

m
τixi

TOiOi
Txi + τixi

TOi
⊥Oi

⊥ Txi − xTSx

= ∑
i = 1

m
τi xi

2 − xTSx .

The block matrix (2.1) can be written as

S = ΘΘT + W , (4.12)

where W is a block matrix constructed from Wij in a similar fashion to (2.1). Then

xTSx = xTΘΘTx + xTW x = xT Θ − O Θ − O Tx + xTW x
= Θ − O Tx 2 + xTW x ≤ Θ − O

2
x

2
+ W x

2
.

(4.13)

The second equality is due to OTx = 0. Hence we have

xTL(O, Λ)x ≥ ∑
i = 1

m
τi xi

2 − ‖Θ − O‖2‖x‖2 − ‖W ‖‖x‖2 . (4.14)

Combining Weyl’s inequality and Lemma 4.4, we obtain a lower bound on τi:

τi ≥ m − [W O]i − m Oi
TΘi − I − ΘTO − mI .

Substituting this with inequality (4.15), we see

xTL(O, Λ)x ≥ m − ΘTO − mI x
2

− Θ − O
2

x
2

− ∑
i = 1

m
[W O]i xi

2 + m Oi
TΘi − I xi

2 − W x
2

≥ m − ΘTO − mI − Θ − O 2

− max
i = 1, …, m

[W O]i − m max
i = 1, …, m

Oi
TΘi − I − W x

2
.

(4.15)

Thus if

WON et al. Page 18

SIAM J Optim. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



m ≥ ΘTO − mI + Θ − O 2

+ max
i = 1, …, m

[W O]i + m max
i = 1, …, m

Oi
TΘi − I + W ,

(4.16)

then we have L (O, Λ) ≽ 0.

Now suppose (O1, …, Om) is a global optimum and Λ = Λ1, …, Λm  is the collection of the 

associated Lagrange multipliers. Let O = O1
T, …, Om

T T
. Then, by Lemma 4.5 there exists R 

∈ r,r such that O = OR satisfies inequalities (4.8)–(4.11). Then, for this O the RHS of 

inequality (4.16) can be bounded:

ΘTO − mI + max
i = 1, …, m

(W O)i + m max
i = 1, …, m

Oi
TΘi − I + Θ − O

2

+ W

≤ 4 W r + max
1 ≤ i ≤ m

[W Θ]i F + 4 W

2

r
m

+
2m max1 ≤ i ≤ m [W Θ]i F + 4 W

2 r
m

m − 4 W r + 16 W

2

r
m + W .

If this bound is less than or equal to m, the resulting inequality is precisely (3.6), and then 

condition (4.16) is satisfied. In other words, L(O, Λ) ≽ 0, where Λ = (Λ1, …, Λm) and 

Λi = ∑j = 1
m Oi

TSijOj = RΛiRT , i = 1, …, m, are the associated Lagrange multipliers.

Finally, observing that

L A, B1, …, Bm = L AQ, QTB1Q, …, QTBmQ

for any Q ∈ r,r, A = A1
T, …, Am

T T  with Ai ∈ ℝdi × r, and Bi ∈ ℝr × r shows that L(O, Λ) ≽ 0.

For the similar result under the model (MAXDIFF), see section 4.7.

4.6. Proof of Corollary 3.10.

Under the Θ-concordance of 1
σ W , the RHS of inequality (3.6) in Theorem 3.9 is upper 

bounded by

12σ Dr + 3σ Drlogm + 36σ2D r
m +

2m 3σ Drlogm + 36σ2D r
m

m − 12σ Dr
+ 144σ2Dr

m + 3σ D
(4.17)

if σ < m
12 Dr . If (4.17) is less than or equal to m or equivalently
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1 ≥ 12σ dr
m + 3σ drlogm

m + 36σ2d r
m + 2 3σ drmlogm + 36σ2d rm

m − 12σ drm
+ 144σ2dr

m + 3σ d
m

(4.18)

for σ < m1/2
12 dr  then from the proof of Theorem 3.9, we see that condition (4.16) is satisfied, 

and thus the claim is proved.

The fourth term on the RHS of inequality (4.18) is

2 3σ dr logm
m + 36σ2d r

m

1 − 12σ dr
m

≤ 2
1 − 12

31
1

m1/4
3σ dr logm

m + 36σ2d r
m

if σ ≤ m1/4
31 dr . Thus, by replacing σ with m1/4

31 dr , the RHS of (4.18) is upper bounded by

12
31

1
m1/4 + 1 + 2

1 − 12
31

1
m1/4

3
31

logm
m1/4 + 36

961
1
r + 144

961
1

m1/4 + 3
31

1
rm1/4 .

Since r ≥ 1, logm
m1/4 ≤ 2

e , and the rest of the terms are decreasing in m, the above quantity is 

less than 1 for m ≥ 2.

4.7. Theorem 3.9, Corollary 3.10, and Corollary 3.11 under (MAXDIFF).

Under the MAXDIFF model, inequality (4.13) is replaced by

xTSx ≤ Θ − O
2

x
2

− ∑
i = 1

m
ΘiΘi

Txi
2 + W x

2

≤ Θ − O 2 − min
1 ≤ i ≤ m

Θi
2 + W x

2

and (4.15) by

xTL(O, Λ)x ≥ m − 1 − ΘTO − mI − max
i = 1, …, m

[W O]i − m max
i = 1, …, m

Oi
TΘi − I − Θ − O 2 − W

+ min
1 ≤ i ≤ m

Θi
2 x

2

= m − ΘTO − mI − max
i = 1, …, m

[W O]i − m max
i = 1, …, m

Oi
TΘi − I − Θ − O 2 − W x

2

since ∥Θi∥ = 1 for all i. Thus condition (4.16) for L(O, ⋀) ≽ 0 to hold remains unchanged. 

Applying Lemma 4.5, we obtain
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m ≥ 4‖W ‖ r
1 − 2/m + max1 ≤ i ≤ m [W Θ]i F + 4‖W ‖2 r

m − 2/ m + ‖W ‖

+
2m max1 ≤ i ≤ m [W Θ]i F + 4‖W ‖2 r

m − 2/ m

m − 4‖W ‖ r
1 − 2/m − 3

+ 16‖W ‖2 r
( m − 2/ m)2

.

Proceeding as above for (MAXBET), we obtain the bound on σ as stated in Remark 3.13.

Furthermore, inequality (4.6) is replaced by

Pr max
i = 1, …, m

[W Θ]i F ≤ σ( dr(m − 1) + r m − 1 + 2 r logm) > 1 − 1
m

(recall that d = minm = 1, …, m di), and inequality (4.7) holds for m ≥ 2 for all d since m − 1 ≤ 

m log m for all m ≥ 2. Thus the conclusion of Corollary 3.11 holds without modification, 

provided that m ≥ 4 and σ ≤ m1/4
64 dr  as stated in Remark 3.13.

4.8. Proof of Corollary 3.14.

The desired results follow immediately from inequality (4.11) of Lemma 4.5 and Definition 

3.2.

5. Proofs of technical lemmas and propositions.

5.1. Proof of Proposition 2.1.

Proof of Proposition 2.1. First consider model (MAXBET). We have Sij = ΘiΘj
T for all i, j. 

Then the objective of (OTSM) is

∑
i, j

tr Oi
TΘiΘj

TOj = ∑
i, j

tr Θi
TOi

T Θj
TOj .

Each term is bounded by the von Neumann–Fan inequality [20, Example 2.8.7]

tr Θi
TOi

T Θj
TOj ≤ ∑

k = 1

r
σk Θi

TOi σk Θj
TOj , (5.1)

where σk(M) is the kth largest singular value of matrix M. Since Oi
TΘiΘi

TOi ≼ Oi
TOi = Ir, we 

see maxk = 1, …, rσk Θi
TOi ≤ 1 for all Oi ∈ Odi, r, i = 1, …, m. Thus the largest possible value of the 

RHS of inequality (5.1) is r, and (OTSM) has maximum m2r. This is achieved by Oi = Θi for 

i = 1, …, m since Θi
TΘi = Ir.

It is straightforward to modify the above proof for model (MAXDIFF). The maximum is 

m(m − 1)r. □
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5.2. Proofs of Lemmas for Theorem 3.1.

Proof of Lemma 4.1. For any U in the constraint set of (SDP) such that 

U ≠ U and X = U − U, we have PV ⊥
T XPV ⊥ = PV ⊥

T UPV ⊥ − PV ⊥
T UPV ⊥ = PV ⊥

T UPV ⊥ ≽ 0 and 

PV i
T XiiPV i = PV i

T UiiPV i − PV i
T U iiPV i = PV i

T UiiPV i − I ≼ 0. In summary, X has the properties of

PV ⊥
T XPV ⊥ ≽ 0, tr Xii = 0andPV i

T XiiPV i ≼ 0 forall1 ≤ i ≤ m . (5.2)

In addition, either PV ⊥
T XPV ⊥ is nonzero or PV i

T XiiPV i is nonzero for some i. If they are all zero 

matrices, then we have

PV ⊤
T UPV ⊥ = PV ⊥

T UPV ⊥ = 0, (5.3)

PV i
T UiiPV i = PV i

T U iiPV i = Ir . (5.4)

Since Uii ≽ 0, we have V i
TUiiV i ≽ 0. Combining it with tr PV i

T UiiPV i  (due to (5.4)) and 

r = tr Uii = tr PV i
T UiiPV i + tr V i

TUiiV i , we have V i
TUiiV i = 0. Combining it with Uii ≽ 0, we 

have V i
TUii = 0 and Uii

TV i = 0. It implies that Uii = V iZiV i
T
 for some positive semidefinite Zi. 

That Uii ≼ I and tr(Uii) = r in turn implies that Zi = Ir. Thus,

Uii = V iV i
T . (5.5)

In addition, (5.3) and U ≽ 0 mean that U = ΠV
TUΠV ; that is, there exists a matrix Z ∈ ℝr × r

such that U = V ZV T , and as a result, Uii = V iZV i
T
. Combining it with (5.5), we have Z = I 

and U = V V T = U, which is a contradiction to assumption U ≠ U.

Combining the property of X in (5.2) with the assumption of T in (4.2) that PV i
T T ii

(2)PV i i = 1
m

and −PV ⊥
T T (1)PV ⊥ are positive definite matrices, we have

tr(XS) = tr XT (1) + tr XT (2) + ctr(X)
= tr PV ⊥

T XPV ⊥ PV ⊥
T T (1)PV ⊥ + ∑i = 1

m tr XiiT ii
(2)

= tr PV ⊥
T XPV ⊥ PV ⊥

T T (1)PV ⊥ + ∑i = 1

m tr PV i
T XiiPV i PV i

T T ii
(2)PV i < 0 .

(5.6)

The first equality uses assumption (4.1). The last inequality is strict because either PV ⊥
T XPV ⊥

is nonzero or PV i
T XiiPV i is nonzero for some 1 ≤ i ≤ m. Then (5.6) implies that tr SU < tr SU

for all U ≠ U and as a result, U. is the unique solution to (SDP). □

Proof of Lemma 4.2 In this proof, we aim to construct the certificate in Lemma 4.1. The 

process can be divided into three steps:

• Find a decomposition of S = S(1) + S(2) based on the first-order optimality.
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• Construct the certificate T(1) and T(2) from the decomposition S(1) and S(2). The 

explicit expression is given in (5.10).

• Verify that the certificate satisfies the conditions in Lemma 4.1.

Step 1: Decomposition of S based on the first-order optimality. We investigate the 

first-order condition for any solution of (2.2) and summarize the result in Lemma 5.1 as 

below.

LEMMA 5.1. Let U = V V T  be a solution to (2.2) with V ∈ ℝD × r. Then the input matrix S can 

be decomposed into S = S(1) +S(2), where S(1) and S(2) are such that

S(1)
ij

=
Sij, i ≠ j,
Sii − ∑j = 1

m SijV jV i
T, i = j, (5.7)

S(2)
ij

=
0, i ≠ j,

∑j = 1

m SijV jV i
T, i = j, (5.8)

and satisfy that

S(1) = ΠV ⊥S(1)ΠV ⊥ and Sii
(2) = ΠV iSii

(2)ΠV i forall1 ≤ i ≤ m . (5.9)

The properties of S(1) and S(2) in (5.9) are exactly the same as the condition (4.1) for 

certificates T(1) and T(2) in Lemma 4.1. As a result, it is convenient to construct our 

certificates T(1) and T(2) based on S(1) and S(2). In fact, the explicit expression of (5.10) in 

step 2 shows that T(1) is derived from S(1) and T(2) is derived from S(2).

Proof of Lemma 5.1. Since V  must satisfy the first-order local optimality condition 

(2.3), that is, V iΛi = ∑j SijV j, we can construct the block diagonal matrix S(2) by letting 

Sii
(2) = V iΛiV i

T = ∑jSijV jV i
T
. Then it follows that

ΠV iSii
(2)ΠV i = V iΛiV i

T = Sii
(2) .

Furthermore,

S(2)V
i
= Sii

(2)V i = V iΛi = ∑
j

SijV j = SV i .

Thus S(2)V = SV , and for S(1) = S − S(2), we see S(1)V = 0 and V TS(1) = 0 (by symmetry). 

This implies ΠV ⊥S(1)ΠV ⊥ = S(1). Hence condition (5.9) is satisfied. □

Step 2: Construction and verification of a certificate. We construct the certificates T(1) 

and T(2) based on S(1) and S(2)
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T ij
(1) =

Sij
(1), i ≠ j,

Sii
(1) − cΠV i

⊥, i = j
, T ij

(2) =
Sij

(2), i ≠ j,
Sii

(2) − cΠV i, i = j,
(5.10)

It remains to verify that the certificate satisfies the assumptions in Lemma 4.1.

Step 2a: Proof of (4.1). From the properties of S(1) and S(2) from step 1, it is clear that 

S = T (1) + T (2) + cI, ΠV ⊥T (1)ΠV ⊥ = T (1), and T ii
(2) = ΠV iT ii

(2)ΠV i.

Step 2b: Prove that PV i
T T ii

(2)PV i i = 1
m  is positive definite. Applying, for all 1 ≤ i ≤ m,

V i
T S(2)

ii
V i − mI ≤ ∑j = 1

m W ijV i + m V i
TΘi − I + ΘTV − mI (5.11)

(which will be proved in step 3) and Weyl’s inequality for perturbation of eigenvalues and 

noting that V i
TΘi − I ≤ V i − Θi , we see PV i

T T ii
(2)PV i is positive definite for all 1 ≤ i ≤ m if

m > c + max
1 ≤ i ≤ m

∑j = 1

m W ijV i + m max
1 ≤ i ≤ m

V i − Θi + ΘTV − mI , (5.12)

which follows from (4.3) with c = m/2.

Step 2c: Prove that −PV ⊥
T T (1)PV ⊥ is positive definite. Let Sp(X) be the 

column space of the matrix X, and define the subspaces L1 = Sp(Θ), 

L2 = x ∈ ℝD:xi ∈ Sp Θi , and L3 = L2
⊥ = x ∈ ℝD:xi ∈ Sp Θi

⊥ , and let S(1) * = − mΠL2 ∩ L1
⊥

and T (1) * = S(1) * − cΠL3 = − mΠL2 ∩ L1
⊥ − cΠL3. More specifically, we have

S(1) *
ij

= ΘiΘj
T fori ≠ j, S(1) *

ii
= − (m − 1)ΘiΘi

T
(5.13)

and T(1)* as follows: T ij
(1) * = Sij

(1) * , T ii
(1) * = Sii

(1) * − cΠΘi⊥.

Considering that dim L2 ∩ L1
⊥ = dim L2 − dim L1 = rm − r and dim(L3) = D − dim(L2) 

= D − rm, we have λr+1(T(1)*) = −c. Applying Weyl’s inequality and noting 

ΘiΘi
T − V iV i

T = Θi Θi − V i
T + V i − Θi V i

T ≤ 2 Θi − V i , we have

λr + 1 T (1) * − λr + 1 T (1) ≤ T (1) * − T (1)

≤ S(1) * − S(1) + cmax1 ≤ i ≤ m ΠΘi⊥ − ΠV i
⊥

= S(1) * − S(1) + cmax1 ≤ i ≤ m ΘiΘi
T − V iV i

T

≤ S(1) * − S(1) + 2cmax1 ≤ i ≤ m Θi − V i .

Combining it with

S(1) * − S(1) ≤ m max
1 ≤ i ≤ m

V i − Θi + max
1 ≤ i ≤ m

∑j = 1

m W ijV j

+ ΘTV − mI + ‖W ‖
(5.14)
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(which will be proved in step 3) and

c > (m + 2c) max
1 ≤ i ≤ m

V i − Θi + max
1 ≤ i ≤ m

∑
j = 1

m
W ijV j + ΘTV − mI + ‖W ‖ (5.15)

(which follows from (4.3) with c = m/2), λr+1(T(1))is negative, which means that T(1) has at 

least D − r negative eigenvalues. By definition, T(1) has r zero eigenvalues with eigenvectors 

spanning the column space of V , so PV ⊥
T T (1)PV ⊥ is negative definite.

Step 3: Proof of auxiliary inequalities (5.11) and (5.14).

Step 3a: Proof of (5.11). Combining (5.8) with

∑j = 1

m Θj
TV j = ΘTV , (5.16)

we see

V i
T S(2)

ii
V i − mI = V i

T ∑j = 1
m SijV j − mI

≤ ∑j = 1
m W ijV j + V i

TΘi ∑j = 1
m Θj

TV j − mI
≤ ∑j = 1

m W ijV i + V i
TΘi − I ∑j = 1

m Θj
TV j + ∑j = 1

m Θj
TV j − mI

≤ ∑j = 1
m W ijV i + m V i

TΘi − I + ΘTV − mI ,

where Sij = W ij + ΘiΘj
T when i ≠ j is used for the first inequality.

Step 3b: Proof of (5.14). Applying (5.7), (5.8), and (5.13), we have that, for both MAXBET 

and MAXDIFF models,

S(1) − S(1) *
ij

=
Sij − ΘiΘj

T = W ij, i ≠ j,
W ii − ∑j = 1

m SijV j V i
T + mΘiΘi

T, i = j,
(5.17)

As a result,

S(1) − S(1) * ≤ ‖W ‖ + max
1 ≤ i ≤ m

∑j = 1

m SijV j V i
T − mΘiΘi

T . (5.18)

Using (5.16), we have

∑j = 1

m ΘiΘj
TV j V i

T − mΘiΘi
T = ∑j = 1

m Θj
TV j V i

T − mΘi
T

≤ ∑j = 1

m Θj
TV j − mI + m V i − Θi = ΘTV − mI + m V i − Θi .

(5.19)

Applying (5.18), (5.19), and Sij = W ij + ΘiΘj
T when i ≠ j, (5.14) is proved. □

Proof of Lemma 4.3. First, we remark that the choice of V ∈ ℝD × r is only unique up to 

an r × r orthogonal matrix. That is, for any orthogonal matrix O ∈ ℝr × r, V O is also a 
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potential choice. In this proof, we choose V  such that ΘTV ∈ ℝr × r is a symmetric, positive 

semidefinite matrix, and as a result, tr ΘTV = ΘTV *.

Then we have that

V − Θ
F

2

= ∑i = 1

m V i − Θi F
2 = ∑i = 1

m V i F
2 + Θi F

2 − 2tr V iΘi
T

= ∑
i = 1

m
V i F

2 + Θi F
2 − 2tr Θi

TV i = 2rm − 2tr ∑
i = 1

m
Θi

TV i

= 2rm − 2tr ΘTV = 2rm − 2 ΘTV *,

(5.20)

where ∥·∥* represents the nuclear norm that is the summation of all singular values (and 

since V TV  is positive semidefinite, it is also the summation of its eigenvalues).

Using the definition in (2.2), we have

tr V TSV ≥ tr ΘTSΘ . (5.21)

Applying S = Θ ΘT + W, (5.21) implies

tr V TW V + V TΘ F

2
= tr V TW V + tr V TΘΘTV

≥ tr ΘTW Θ + tr ΘTΘΘTΘ = tr ΘTW Θ + ΘTΘ F
2

and

tr V TW V − tr ΘTW Θ ≥ ΘTΘ F
2

− V TΘ F

2
= rm2 − V TΘ F

2
. (5.22)

Since X F
2

= ∑i λi(X)2, we have

rm2 − V TΘ F

2
= ∑i = 1

r m2 − λi V TΘ
2

≥ m∑i = 1

r m − λi V TΘ = m rm − V TΘ * .
(5.23)

The combination of (5.22), (5.23), V F = Θ F = rm, tr(AB) ≤ ∥A∥F∥B∥F, and ∥AB∥F ≤ 

∥A∥ ∥B∥F implies that

m rm − V TΘ * ≤ tr V TW V − tr ΘTW Θ

= tr (V − Θ)TW V + tr ΘTW (V − Θ)

≤ W V − Θ
F

V
F

+ W V − Θ
F

Θ
F

= 2 W V − Θ
F

rm .

Combining it with (5.20), we have
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m
2 V − Θ

F

2
≤ 2 W V − Θ

F
rm, (5.24)

which implies

V − Θ
F

≤ 4 W r
m , (5.25)

proving the first inequality in (4.4). It implies that

V TΘ − mI F = (V − Θ)TΘ F ≤ V − Θ F m ≤ 4 W r . (5.26)

Applying (5.25), the second inequality in (4.4) is proved:

max
1 ≤ i ≤ m

[W V ]i F ≤ max
1 ≤ i ≤ m

[W Θ]i F + max
1 ≤ i ≤ m

[W (V − Θ)]i F

≤ max
1 ≤ i ≤ m

[W Θ]i F + W V − Θ
F

≤ max
1 ≤ i ≤ m

[W Θ]i F + 4 W
2 r

m .

(5.27)

Now let us consider V ∈ ℝD × r defined by V i = Θi and V j = V j for all, 1 ≤ j 

≤ m, j ≠ i. By definition we have tr V TSV ≥ tr V TSV  and it is equivalent to 

tr (V − V )TSV + tr V TS(V − V ) − tr (V − V )TS(V − V ) ≥ 0. By the definition of V , V , and 

S, we have

2tr V i − Θi
TΘiΘTV + 2tr V i − Θi

T[W V ]i − tr V i − Θi
TSii V i − Θi

≥ 0.
(5.28)

Recall that V  is chosen such that ΘTV  is symmetric and positive semidefinite, and apply the 

fact that, when A is positive semidefinite, then tr(BA) = tr(BTA); and when both A, B are 

positive semidefinite, tr(AB) ≥ tr(A λmin(B)I) ≥ λmin(B)tr(A) (λmin represents the smallest 

eigenvalue), we have

tr Θi − V i
TΘiΘTV = tr I − V i

TΘi ΘTV

= 1
2 tr 2I − V i

TΘi − Θi
TV i ΘTV = 1

2 tr V i − Θi
T V i − Θi ΘTV

≥ 1
2tr V i − Θi

T V i − Θi λr ΘTV = 1
2 V i − Θi F

2 λr ΘTV .

(5.29)

In addition, we have

tr V i − Θi
TSii V i − Θi ≥ − Sii V i − Θi F

2 ≥ − 1 + W ii V i − Θi F
2 , (5.30)

and tr(AB) ≤ ∥A∥F∥B∥F implies
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tr V i − Θi
T[W V ]i ≤ V i − Θi F W TV F . (5.31)

Combining (5.28), (5.29), (5.30), and (5.31),

V i − Θi F [W V ]i F ≥ V i − Θi F
2 λr ΘTV − 1 − W ii .

Combining it with (5.27) and (5.26), which implies that λr ΘTV ≥ m − 4 W r, and noting 

that ∥W∥ ≥ ∥Wii∥, (4.5) is proved. □

5.2.1. Lemma 4.3 under (MAXDIFF).—Proof of Lemma 4.3 under (MAXDIFF). 

Following the proof of Lemma 4.3 under (MAXBET), we have

2 W V − Θ
F

rm ≥ tr V TW V − tr ΘTW Θ

≥ rm2 − V TΘ F

2
− rm − ∑i = 1

m V i
TΘi F

2

≥ m
2 V − Θ

F

2
− ∑i = 1

m V i − Θi F
2 = m

2 − 1 V − Θ
F

2
,

where the first inequality is (5.23), the second inequality is from the definition of S under the 

MAXDIFF setting, and the third inequality is from r − V i
TΘi F

2
≤ V i − Θi F

2 = 2r − tr V i
TΘi

since V i
TΘ F

2
− 2tr V i

TΘ + r = V i
TΘi − Ir F

2
.

As a result, if m > 2,

V − Θ
F

≤ 4 W rm
m − 2, V TΘ − mI F ≤ 4 W m r

m − 2,

max
1 ≤ i ≤ m

[W V ]i F ≤ max
1 ≤ i ≤ m

[W Θ]i F + 4 W
2 rm

m − 2 .

In addition, (5.28) is replaced with 2tr V i − Θi
TΘiΘTV + 2tr V i − Θi

T [W V ]i ≥ 0. Then we 

have 1
2λr ΘTV Θi − V i F

2 ≤ Θi − V i F [W V ]i F  and

max
1 ≤ i ≤ m

Θi − V i F ≤
2max1 ≤ i ≤ m [W Θ]i F + 8 W

2 rm
m − 2

m − 4 W m r
m − 2

for m > 4 W r + 2. □

5.3. Proof of lemmas for Theorem 3.9.

Proof of Lemma 4.4. From OiΛi = ∑j = 1
m SijOj, we have Λi = ∑j = 1

m Oi
TSijOj. Hence, under 

(MAXBET),
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Λi − mIr = ∑j = 1
m Oi

TSijOj − mIr

≤ Oi
T ∑j = 1

m W ijOj + Oi
TΘi∑j = 1

m Θj
TOj − mIr

≤ ∑j = 1
m W ijOj + Oi

TΘi − Ir ∑j = 1
m Θj

TOj + ∑j = 1
m Θj

TOj − mIr

≤ ∑
j = 1

m
W ijOj + Oi

TΘi − Ir ∑
j = 1

m
Θj

TOj + ∑
j = 1

m
Θj

TOj − mIr

≤ ∑j = 1
m W ijOj + Oi

TΘi − Ir ∑j = 1
m Θj

TOj + ΘTO − mIr

≤ ∑j = 1
m W ijOj + m Oi

TΘi − Ir + ΘTO − mIr

since Θj
TOj ≤ 1. Under the MAXDIFF model,

Λi − (m − 1)Ir = ∑j ≠ i Oi
TSijOj − (m − 1)Ir

≤ Oi
T ∑j ≠ i W ijOj + Oi

TΘi∑j ≠ i Θj
TOj − (m − 1)Ir

≤ ∑j ≠ i W ijOj + Oi
TΘi − Ir ∑j = 1

m Θj
TOj + ∑j ≠ i Θj

TOj − (m − 1)Ir

≤ ∑j ≠ i W ijOj + Oi
TΘi − Ir ∑j ≠ i Θj

TOj + ∑j ≠ i Θj
TOj − (m − 1)Ir

≤ ∑
j ≠ i

W ijOj + Oi
TΘi − Ir ∑

j ≠ i
Θj

TOj + ΘTO − mIr − Θi
TOi + Ir

≤ ∑j ≠ i W ijOj + (m − 1) Oi
TΘi − Ir + ΘTO − mIr + Oi

TΘi − Ir

= ∑j ≠ i W ijOj + m Oi
TΘi − Ir + ΘTO − mIr .

□

The following technical lemma is needed to prove Lemma 4.5.

LEMMA 5.2. Suppose X, Y ∈ d,r, and Λ ∈ ℝd × d is symmetric and positive semidefinite. 

Then, there holds tr[X Λ (Y − X)] ≤ 0.

Proof. Note

tr[XΛ(Y − X)] ≤ tr ΛTXT(Y − X) = tr Λ XTY − Ir

= tr ΛXTY − tr(Λ) = tr Y TXΛ − tr(Λ)

= tr ΛY TX − tr(Λ) = tr Λ 1
2XTY + 1

2Y TX − Ir .

Since XXT ≼ Id, (XTY)T(XTY) = YTXXTY ≼ YTY=Ir. Thus ∥ XTY∥2 ≤ 1. Likewise ∥YTX∥2 ≤ 

1. Then, because 1
2XTY + 1

2Y TX is symmetric,

λmax
1
2XTY + 1

2Y TX ≤ 1
2XTY + 1

2Y TX ≤ 1
2 XTY 2 + 1

2 Y TX ≤ 1

and 1
2XTY + 1

2Y TX − Ir ≼ 0. Since Λ ≼ 0 it follows that tr [X Λ(Y – X)] ≤ 0. □

Proof of Lemma 4.5. Let the singular value decomposition of ΘTO be UΣVT, where U, V 

∈ r,r and Σ ∈ ℝr × r is diagonal with nonnegative entries. Let R = VUT ∈ r× r Then, for 

O = OR, it holds = ΘTO = UΣUT ≽ 0.
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Clearly, O1, …, Om = O1R, …, OmR  is globally optimal. Therefore,

tr ΘTSΘ ≤ tr OTSO ,

which is similar to inequality (5.21) in the proof of Lemma 4.3. It immediately follows that, 

under (MAXBET),

2 mr W O − Θ
F

≥ tr OTW O − tr ΘTW Θ ≥ m
2 O − Θ

F

2

and, under (MAXDIFF),

2 mr W O − Θ
F

≥ tr OTW O − tr ΘTW Θ ≥ m
2 − 1 O − Θ

F

2
,

from which inequality (4.8) holds. Inequality (4.10) follows from

[W O]i F ≤ [W (O − Θ)]i F + [W Θ]i F = W i ⋅ (O − Θ) F + [W Θ]i F
≤ W i ⋅ O − Θ F + [W Θ]i F ≤ W O − Θ F + [W Θ]i F

and inequality (4.8), where Wi. = [Wi1, …, Wim], is the ith row block of W.

Inequality (4.8) also implies

ΘTO − mIr ≤
4 W r under MAXBET ,

4 W r
1 − 2/m under MAXDIFF ,

(5.32)

We first consider the MAXBET model. The global optimality of (O1, …, Om) asserts that 

the associated Lagrange multiplier Λi of Oi satisfies OiΛi = ∑j = 1
m SijOj (see (2.3)) and is 

symmetric and positive semidefinite [35, Proposition 3.1]. Since Sij = ΘiΘj
T + W ij,

∑
j = 1

m
SijOj = ∑

j = 1

m
ΘiΘj

TOj + ∑
j = 1

m
W ijOj = ΘiΘTO + [W O]i . (5.33)

Thus from Lemma 5.2, we have

0 ≥ tr Θi − Oi
T ∑j ≠ i SijOj

= tr Θi − Oi
TΘiΘTO + tr Θi − Oi

T[W O]i .
(5.34)

Using that ΘT O is symmetric and positive semidefinite, we have, similar to inequality 5.29),

tr Θi − Oi
TΘiΘTO ≥ 1

2λr ΘTO Θi − Oi F
2 . (5.35)

Then the Cauchy–Schwarz inequality and inequality (4.10) entail

WON et al. Page 30

SIAM J Optim. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1
2λr ΘTO max

1 ≤ i ≤ m
Θi − Oi F ≤ max

1 ≤ i ≤ m
[W O]i F ≤ max

1 ≤ i ≤ m
[W Θ]i F + 4 W

2 r
m .

Combining inequality (5.32) and Weyl’s inequality, λr ΘTO ≥ m − 4 W r, and inequality 

(4.11) is obtained.

Under the MAXDIFF model, (5.33) becomes OiΛi = ∑j ≠ i SijOj = ΘiΘTO − ΘiΘi
TOi + [W O]i, 

and inequality (5.34) is replaced by

0 ≥ tr Θi − Oi
TΘiΘTO − tr Θi − Oi

TΘiΘi
TOi + tr Θi − Oi

T[W O]i .

Inequality (5.35) remains intact, and

−tr Θi − Oi
TΘiΘi

TOi = tr Oi − Θi
TΘiΘi

T Oi − Θi − tr Θi − Oi
TΘiΘi

TΘi

≥ − ΘiΘi
T Oi − ∣ Θi F

2 − tr Θi − Oi
TΘi

≥ − Oi − Θi F
2 − tr Ir − Oi

TΘi

≥ − Oi − Θi F
2 − 1

2 Oi F
2 + Θi F

2 − 2tr Oi
TΘi = − 3

2 Oi − Θi F
2 ,

where the third line is due to ΘiΘi
T ≤ 1. Hence the Cauchy–Schwarz inequality and 

inequality (4.10) now give

1
2 λr ΘTO − 3 max

1 ≤ i ≤ m
Θi − Oi F ≤ max

1 ≤ i ≤ m
[W O]i F ≤ max

1 ≤ i ≤ m
[W Θ]i F + 4 W

2 r
m − 2/ m .

Inequality (5.32) and Weyl’s inequality now result in λr ΘTO ≥ m − 4 W r
1 − 2/m , and 

inequality (4.11) is obtained. For a valid bound we need m > 4 W r
1 − 2/m + 3. Solving the 

involved quadratic inequality provides the desired lower bound for m. □

6. Conclusion.

This paper studies the OSTM problem [35]. It shows two results when the noise is small: 

first, that while the problem is nonconvex, its solution can be achieved by solving its convex 

relaxation; second, condition (2.4) is necessary and sufficient for global optimality of a 

critical point, making the former a genuine certificate.

A future direction is to improve the estimation on maximum noise that this method can 

handle. While this paper shows that the method succeeds when σ = O(m1/4), we expect 

that it would also hold for noise as large as σ = O(m1/2), which has been proven in 

[37] for phase synchronization and in [22] for synchronization of rotations. We suspect 

that the suboptimality of this result arises from the estimation of max1 ≤ i ≤ m ∑j = 1
m W ijV j  in 

(4.4), where standard tools from the theory of measure concentration cannot be used as V
depends on W. Likewise, in certifying global optimality of a critical point, estimation of 

WON et al. Page 31

SIAM J Optim. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



max1 ≤ i ≤ m ∑j = 1
m W ijOj  in inequality (4.10) becomes a bottleneck. To solve this problem, 

some decoupling techniques in probability theory might be needed to disentangle the 

dependence structure. Another future direction is to use a more generic model than the 

additive Gaussian noise model, which would have a larger range of real-life applications.
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Appendix A.: Simulation study.

We conducted a simulation study to see how tight the conditions (3.6) and (3.7) are. Under 

the data generation model (MAXBET), we fixed d = 5, r = 3 and varied the number of 

groups m ∈ {2, 5, 10} and the noise level σ ∈ { 0.01, 0.1, 1, 10}. The semiorthogonal 

matrices Θ1, …, Θm were generated by taking the QR decomposition of random d × 

r matrices with i.i.d. standard normal entries. The upper triangular part including the 

diagonal of W was generated from i.i.d. normal with mean zero and variance σ2. For 

each combination of m and σ, we generated 100 replicates and reported the number of 

replicates for which the proximal block ascent algorithm in [35] produced a critical point 

satisfying certificate (2.4) using the ten Berge initialization strategy (“tb” in [35]) in Table 

1. In addition, we also counted the frequency of satisfying conditions (3.6) and (3.7) for 

Corollaries 3.10 and 3.11, respectively, and the certificate of global optimality of a critical 

point (2.4).

Table 1

Frequency of satisfaction of conditions (3.6), (3.7) and certificate (2.4).

m σ (3.6)
†

(3.7) (2.4)
†

10

0.01 100 TRUE 100

0.10 10 FALSE 100

1.00 0 FALSE 0

1.50 0 FALSE 0

20

0.01 100 TRUE 100

0.10 0 FALSE 100

1.00 0 FALSE 21

1.50 0 FALSE 0

30

0.01 100 TRUE 100

0.10 0 FALSE 100

1.00 0 FALSE 99

1.50 0 FALSE 0

†
Reported numbers are out of 100 replicates in each scenario.

Table 1 shows that condition (3.6) is satisfied at small noise levels. Condition (3.7), which 

is fully determined by the combination of m and σ, is less frequently satisfied than (3.6). 
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In case either condition (3.6) or (3.7) is satisfied, the certificate (2.4) is always satisfied as 

predicted by the theory. It is remarkable that certificate (2.4) is satisfied more frequently 

than condition (3.6) or (3.7), leaving room for improvement of these conditions.
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