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ABSTRACT OF THE DISSERTATION 

 

 

Memory and spatial representations in the human medial temporal lobe: insights from 

intracranial electrophysiology during virtual reality and real-world ambulation 

 

by 

 

Sabrina Leah Levy Maoz 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2023 

Professor Nanthia A. Suthana, Co-Chair 

Professor Wentai Liu, Co-Chair 

 

Our ability to recall memories of personal experiences is an essential part of daily 

life. These episodic memories often involve movement through space and thus require 

continuous encoding of one’s position relative to the surrounding environment. Formation 

of successful episodic memories (of personal events) requires the integration of contextual 

information within a spatial environment. Memory decline accompanies numerous 

neurological and psychiatric diseases. To inform the development of effective therapies, 

understanding how complex memories are encoded in the medial temporal lobe (MTL) is 

critical.  

To examine how MTL neural representations flexibly encode spatial memories, rare 

recordings in humans were collected from two complementary cohorts: (1) freely moving 

participants with chronic intracranial electroencephalographic (iEEG) electrodes and (2) 

stationary participants with single neuron recording electrodes. All participants completed 

an ecologically meaningful 3D immersive virtual reality (VR) spatial memory task. 
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Our results highlight the utility of an immersive VR behavioral paradigm to 

interrogate multi-scale neurophysiology of episodic memory and spatial navigation in 

humans. We found that MTL theta oscillations dynamically represent memory and spatial 

variables to support momentary cognitive task demands. Theta oscillations were 

modulated by (i) memory performance during memory retrieval immediately before 

conscious recall, (ii) proximity to spatial boundaries or (ii) latently accessed memory 

representations of previously learned positions. We found that the immersive VR spatial 

memory paradigm elicited hexadirectional modulation of theta bandpower and also grid 

cell-like population activity. Interestingly, these hexadirectional modulation spatial 

representations exhibited putative grid axes reorientation during changing environmental 

contexts, and preliminary findings suggest that grid cells also may exhibit similar 

reorientation, suggesting that spatial codes may be context-specific. 

Altogether, these results demonstrate how human MTL oscillations and single 

neurons can represent both memory and space in a temporally flexible manner during 

interactive spatial navigation and memory retrieval. These findings advance our 

understanding of medial temporal lobe representations of spatial navigation, memory, and 

the effect of contextual changes that will together serve as a scientific foundation for 

development of neurological therapies for disorders of memory. 
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GLOSSARY 

Bipolar channel A recording channel that records neural activity by 
subtracting the difference in voltage across two 
(often adjacent) electrode contacts, where one is 
treated as the positive contact and the other is the 
negative contact. 
 

Closed-loop system A system in which calculations are computed in 
real-time during ongoing continuous neural 
recordings. Typically, a real-time calculation is 
used to detect a neural biomarker or feature. 
Detection of this event of interest will then initiate 
some program that may involve a particular 
stimulation pattern or some other change of 
variables. 
 

CT, MRI, fMRI  Computed tomography (CT), magnetic resonance 
imaging (MRI), and functional magnetic resonance 
imaging (fMRI). CT and MRI brain scans provide 
anatomical information while fMRI illustrates 
changes in brain region activity, measured 
according to rapid changes in a particular brain 
region’s hemodynamic response. 
 

Deep brain stimulator A medical device that has stimulation capabilities 
at one or more electrodes that are intracranially 
implanted in deep brain structures (i.e., below the 
cortex). 
 

Ecological validity A measure of the extent to which the findings of a 
research study predict or can be generalized to 
natural behavior in real-world settings. 
 

Encoding The process of transferring information into the 
neural systems (e.g., forming a neural 
representation of spatial information, or storing a 
memory). 
 

Episodic memory A memory of a personal experience (combining 
information about time, location, associated 
emotions, and other contextual information). 
 

Electrode lead A probe inserted intracranially that can contain 
one or more contacts for recording and/or 
stimulation. Depending on the diameter, an 
electrode may be described as a micro-electrode or 
a macro-electrode. Micro-electrodes can record 
single neuron and local field potential (LFP) 
activity and are currently only available in acute 
post-surgical hospital settings, while macro-
electrodes record intracranial EEG and are 
currently used with chronic sensing and stimulation 
devices. 
 

Electrode contact A metal contact on an electrode that is typically 
constructed from silicon, platinum, tungsten, or 
other metallic substances. There may be one or 
more contacts on an electrode. 
 

Hexadirectional modulation A specific pattern of brain activation, where neural 
population-level signals recorded using fMRI or 
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iEEG are modulated by the direction of one’s 
movement within an environment, thought to 
reflect the coordinated activity of grid cell 
populations (also called grid-cell-like 
representations). 
 

Interictal epileptiform discharge (IED) A typical neural activity pattern that commonly 
occurs in the SOZ of epilepsy patients. These are 
not clinical-level seizures. 
 

Intracranial electroencephalography (iEEG) The measurement and recording of electrical brain 
activity via macro-electrodes (~1.5 mm in diameter) 
that are surgically implanted into the brain. 
 

Latency Temporal delays introduced when multiple devices 
send electronic messages serially. A good practice is 
to characterize the temporal latencies of a system 
to ensure that they remain lower than the temporal 
resolution of the neural signals of interest. 
 

Local field potential (LFP) Electric potential recorded extracellularly from a 
population of synchronous neurons, typically using 
small diameter (40 µm) micro-wire electrodes. 
 

Medial temporal lobe (MTL) A region of the brain involved in encoding episodic 
memories and spatial navigation and comprised of 
subregions including the hippocampus, entorhinal 
cortex and surrounding cortical areas. 

Neural representation A pattern of neural activity that is related to a 
specific stimulus (e.g., an environmental feature), 
behavior, or mental content. 
 

Retrieval The process of accessing information that has been 
previously encoded in neural systems. 
 

Seizure onset zone (SOZ) A region of the brain where clinical seizures 
originate from. Electrode placements are selected to 
target hypothesized seizure onset zones, in the case 
of epilepsy. 
 

Single-unit recordings Putative neuron firing activity recorded 
extracellularly, typically using small diameter (40 
μm) micro-wire electrodes. 
 

Synchronization A strategy used to align the timestamps across 
multiple continuous and simultaneous data 
streams. One example strategy may involve a 
signal sent from one device simultaneously to all 
data streams to define an absolute timepoint that 
can be used to align timestamps across different 
data streams. 
 

Theta oscillations Rhythmic brain activity in the form of a neural 
oscillation with a frequency between 3-12 Hz, 
typically recorded with electrophysiological 
recording methods. 
 

Responsive neurostimulator A closed-loop device that continuously records 
neural activity and delivers a pulse of current 
stimulation when an imminent seizure or IED event 
is predicted, in order to prevent the manifestation 
of a clinical seizure. 
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CHAPTER 1: 

Introduction 

 

“As long as we can love each other, and remember the feeling of love we had, we can die 

without ever really going away. All the love you created is still there. All the memories 

are still there." 

– Mitch Albom, Tuesdays with Morrie 

 

A fundamental aspect of our human identities is embedded in our sequential 

experiences, encoded in the fabric of our being through episodic memories that shape and 

are updated through each subsequent instance that we retrieve them. Although classic 

studies of learning and memory began with the study of simple reflexive circuits in 

invertebrate models such as Aplysia californica, how humans experience, learn, and 

retrieve life events and importantly transfer learned knowledge from one experience to the 

next can be simplified into a question of what information is transmitted from one context 

to another. Applying principles learned to unfamiliar contexts is foundational to the 

human experience. From creating and interpreting new sentences from grammar and 

language principles learned previously, to inferring and adapting to customs and social 

environments when travelling to foreign countries, to problem-solving creatively by 

drawing on principles from past solutions to solve new problems, the transmission of 

contextual information is vital to the human experience. 

Understanding the neural machinery that supports episodic memories is a 

complicated and long-standing endeavor. Studies in rodents, nonhuman primates, and 

humans have identified that the machinery supporting episodic memories is intrinsically 
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intertwined and oftentimes the same as that which supports spatial cognition. These 

fundamental neural substrates that conjunctively encode spatial and memory variables, 

are often tied to geographically to the medial temporal lobe (MTL) of the brain, and 

include single neurons that are tuned to spatial, environmental, goal/object-oriented, and 

memory features and local field potential oscillations that rhythmically support memory 

encoding/retrieval, spatial navigation, and movement variables. 

Determining how single cells and network assemblies encode episodic memories is 

crucial towards understanding memory decline and treating related neurological diseases. 

How the human brain encodes and retrieves memories remains to be answered, and 

importantly, how these processes are affected in neurological diseases including 

Alzheimer’s disease, dementia, epilepsy, Parkinson’s disease, traumatic brain injury, 

among many others, remains to be understood in terms of functional mechanisms. 

Notably, spatial representations in the MTL have been observed to be reduced in strength 

in young adults are APOE-ε4 carriers, a gene inked with an increased risk for developing 

Alzheimer’s disease later in life (Kunz et al., 2015; Bierbrauer et al., 2020). Thus, these 

spatial MTL representations are an important area of investigation to advance our 

understanding of spatial cognition, memory encoding, and neural processing deficits in 

memory dysfunction in the setting of neurological disease. 

Critical gaps that remain unanswered include (1) how the MTL neural substrates 

dynamically represent spatial and memory processes during real-world experiences, 

navigation and exploration, (2) how human MTL single neurons support space and 

memory during 3D navigation in ecologically valid behavioral paradigms, and (3) how the 

single-unit and oscillatory representations interact to support ecologically-valid spatial 

memory processes. Bridging these gaps using human neurophysiology is challenging, given 

the rarity of access to single neuron and deep intracranial electroencephalographic (iEEG) 

recordings in humans, especially in the setting of ecologically-valid behaviors.  
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Importantly, due to the unwieldy and complex recording equipment required, 

traditional neuroimaging approaches are typically constrained to studying humans in 

immobile set-ups, and often utilize 2-dimensional (2D) view-based virtual environments 

(e.g. on a laptop or screen). Evidence from rodents suggests that 2D environments may 

impair the development of spatial selectivity of neurons, based on findings in rodents 

comparing 2D and 3D VR (Aghajan et al., 2015). Given advancement in VR technology, 

graphics, and interfaces, we address these critical open questions using immersive 3D VR, 

both in ambulatory and stationary approaches, to construct more ecologically-valid 

behaviors that elicit robust spatial and memory processing.  

Investigating spatial representations during real-world ambulation in humans is a 

critical step forward. Notably, studies in freely moving humans have identified that 

oscillations (specifically theta band) occur in non-continuous bursts of activity (“theta 

bouts”) that are modulated by movement speed and differ from theta oscillations present 

in rodents and non-human primates (Aghajan et al., 2017, 2019; Bohbot et al., 2017). 

These findings suggest that movement cues contribute to spatial navigation in the real 

world and emphasize the importance of interrogating spatial and memory processing in 

humans during real-world interactive navigation. 

 In Chapter 2, we present an overview of key literature and findings from both the 

rodent and human brain in spatial and memory processing. 

 In Chapter 3, we describe recent technological advances that have enabled access 

to precious mobile iEEG and single neuron recordings in humans during ecologically-valid 

behavior paradigms by incorporating head-mounted immersive virtual reality.  

 In Chapter 4, we present findings from mobile iEEG recordings during immersive 

VR that demonstrate MTL theta oscillations dynamically represent spatial and memory 

variables in relation to momentary cognitive task demands.  
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 In Chapter 5, we demonstrate the utility of an immersive VR as a platform to 

probe single neuron and mobile iEEG mechanisms in humans. We further highlight 

complimentary spatial coding mechanisms (e.g. grid cells and hexadirectional modulation 

of theta oscillatory power) and that these grid cell representations exhibit orientation 

changes across changing environmental contexts.  

A decline in memory, unfortunately, is all too common in neurological and 

psychiatric diseases and is routinely regarded as an expected progression of disease and 

aging, despite the devastating impact it can have on individuals and their loved ones. We 

must determine the neurophysiology of human episodic memories in real-world settings 

and with ecologically meaningful behavioral paradigms in order to lay the foundation for 

the development of novel interventions that target focused memory symptoms. 

 

“In a way, geographical distance did not exist for us, because we could always talk about 

our hometowns and childhood memories, and thereby create a common space." 

– Viktor Frankl, Man’s Search for Meaning 
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CHAPTER 2: 

Background 

2.1 The medial temporal lobe as the seed of episodic memory 

The hippocampus, a slender and curved region nestled in the medial temporal lobe, 

is thought to support the formation and subsequent recall of episodic memories (Tulving, 

1983). Early evidence tracing episodic memories to the hippocampus came from neurologic 

patients that suffered from focal amnesia and deficits in spatial orientation associated with 

highly localized damage to medial temporal lobe (MTL) regions. The most widely known 

case was that of the patient H.M. who underwent bilateral hippocampal resection for the 

treatment of severe epilepsy and suffered from subsequent retrograde amnesia (Scoville 

and Milner, 1957). This case study, along with others, provided novel insights into the 

neuroanatomical underpinnings of memory, leading to a new era of memory and spatial 

cognition research that spanned organisms from humans to rodents. 

Figure 2-1. Medial Temporal Lobe Anatomy. Illustration of the human medial temporal lobe anatomy 

including the perirhinal cortex, entorhinal cortex, hippocampus, and parahippocampal cortex. 
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2.1.2 Medial temporal lobe anatomy 

The MTL is comprised of a diversity of functional and anatomical subregions 

including the hippocampus and nearby perirhinal, entorhinal cortex, parahippocampal 

cortices (Ulmer and Jansen, 2013), see Fig 1-1. The hippocampus receives inputs from the 

entorhinal cortex and is comprised of subregions: the dentate gyrus which projects to the 

cornua ammonis (CA) 1-3, that projects to the subiculum (Squire et al., 2004).  

 

2.2 Neuronal populations that encode space and memory 

Extracellular electrophysiological recordings in animals have enabled 

neuroscientists to draw conclusions about the firing properties of single neurons (or single 

neurons as they are commonly referred to) in relation to an animal’s behavior or reaction 

to some presented stimuli. This electrophysiological approach has yielded immense insight 

into the MTL circuitry and how neurons process incoming information. Classically, the 

electrophysiological approach has been utilized in animal models, where recording from 

large numbers of single neurons is feasible, either simultaneously or through numerous 

consecutive experiments. In recent decades, rare human MTL electrophysiology 

experiments have become feasible by leveraging neurosurgical procedures for the clinical 

treatment of epilepsy that transiently place electrodes, with the capability of recording 

single-unit activity, throughout many brain regions while patients are under observation 

in a hospital setting (Fried et al., 2014). These experiments have allowed neuroscientists 

to begin to investigate the MTL single-unit neural representations in humans.  

These approaches have introduced the important question of how the 

neurophysiology of the MTL in humans is similar or different in relation to studies from 

rodents and non-human primates. While concrete behavioral variables, such as 

navigational movement patterns or speed are readily available to study in animals, 

understanding how these variables interact with internal cognitive processes, such as 



7 
 

retrieving episodic memories, can be more readily assessed in humans without the need for 

overtraining the subject in order to master a memory task. More importantly, critical 

open questions include whether the neurophysiology of spatial and memory variables differ 

between animals and humans and how neural representations of spatial and memory 

variables in humans are encoded during ecologically-valid experiences.  

 

2.2.1 Spatial codes 

Seminal work in rodents identified MTL neuronal populations that support neural 

representations of space, supporting an early and prominent theory of a “cognitive map” 

initially proposed by Tolman (Tolman, 1948). Place cells, or hippocampal single neurons 

that fire selectively in a particular location in an environment, were first identified in 

rodents freely moving through an open field environment (O’Keefe and Dostrovsky, 1971; 

McHugh et al., 1996) see Fig. 2-2, but also have been reported in non-human primates 

(Courellis et al., 2019; Mao et al., 2021), and humans performing 2D, laptop-based 

navigation (Ekstrom et al., 2003). Place cells are thought to receive organizing 

information from another population of spatially-selective cells, grid cells, located in the 

medial entorhinal cortex. Grid cells fire in multiple positions in an environment with firing 

fields that occupy the vertices of a hexagon that tile an entire environment as illustrated 

in Fig. 2-2 (Hafting et al., 2005; Sargolini et al., 2006). Unlike place cells, which change 

their preferred firing location in a new environment, grid cells maintain a characteristic 

spatial relationship and location of their firing fields independent of an environment (Fyhn 

et al., 2007) and as such grid cells are thought to provide a grid map of an environment 

which guides place cell firing field selection as has been theorized by computational 

models (Whittington et al., 2020). A related population of spatially-selective cells are 

referred to as spatially periodic band (or stripe) cells fire with firing fields that create 

stripes which tile a spatial environment. These cells have been reported in rodents 
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predominantly in the medial entorhinal cortex but also in smaller proportions in the 

hippocampus (Krupic et al., 2012) and also were predicted based on computational models 

(Grossberg and Pilly, 2012; Whittington et al., 2020).  

 

Figure 2-2. Spatially Periodic MTL Cells. Top row shows a bird’s eye view of an open field with black lines 

showing a rodent’s trajectory in an environment and red dots indicating the rodent’s position in the 

environment when a particular single-unit was firing. Bottom row illustrating the firing rate map for the 

same unit shown in the top row over all positions within the open field. Three spatially periodic cell types 

are depicted in each column, from left to right: place cell, grid cell (both reproduced from Moser et al., 

2015), and stripe cell (reproduced from Krupic et al., 2012).  

 

2.2.2 Memory codes 

Memory processing has been linked to the MTL through numerous approaches, 

including previously mentioned lesion case studies in humans, neuroimaging and 

neurophysiology approaches in humans and animal models (for reviews, see Squire et al., 

2004b; Opitz, 2014). However, the precise neurophysiology underlying memory processing 

remains an open question, especially since determining the internal memory processes 

(such as declarative memory retrieval) can be difficult to ascertain in animal studies. Even 

still, single-unit MTL populations that tune to memory have been identified in rodents, 
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including a population of so-called object trace cells in the lateral entorhinal cortex which 

fire in spatial positions associated with previously encountered objects (Tsao et al., 2013). 

Entorhinal cortex single neurons with similar properties have been identified in humans as 

well. Memory-trace cells fire in association with arrival at location of previously-learned 

object positions (Qasim et al., 2019) and egocentric bearing cells encode egocentric 

position in relation to environmental anchor positions and are modulated by memory 

recall (Kunz et al., 2021). 

 

2.2.3 Remapping 

A core component of episodic memory is the integration of context and spatial 

information. Context describes the cues and expectations that organize information to 

guide retrieval and the hippocampus is thought to bind the context of an episodic memory 

(Stark et al., 2018). Although much has been learned about context in rodents (Fyhn et 

al., 2007; Colgin et al., 2008; Alexander et al., 2016; Latuske et al., 2018; Kubie et al., 

2019), ecologically-meaningful context changes in ambulating humans have not been 

studied. The MTL has been linked to contextual encoding, based on fear conditioning 

studies in which optogenetic reactivation in the hippocampus recreates a contextual 

memory (Ramirez et al., 2013). Context changes in rodents result in place cell remapping, 

i.e. rapid changes in receptive fields and thus the ensemble firing rate map (Colgin et al., 

2008; Alexander et al., 2016). Hippocampal place cell remapping in rodents is thought to 

reflect the intrinsic statistics of experiencing a particular context (Plitt and Giocomo, 

2019). Frequent alternation of contexts leads to a gradient change between the two place 

cell representations, versus a binary flipping between representations when contexts 

alternate infrequently (Plitt and Giocomo, 2019). Meanwhile, grid cells maintain the same 

firing maps across different contexts while reflecting a degree of flexibility (e.g. grid 

realignment in novel environments) (Hafting et al., 2005). Preliminary studies suggest 
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that the human encoding of context may be more complex. In humans performing view-

based 2D VR in four different environments, some properties of single-unit grid-like cells 

were found to adapt: scaling of grid period, grid orientation, and rotational symmetry 

(Nadasdy et al., 2017). A recently proposed model of the MTL suggests the ERC encodes 

the environmental statistics as a basis function flexibly applied by the hippocampus to 

reflect specific environmental features (Whittington et al., 2020). This model predicted 

many experimental findings of the MTL, including place, grid, and object-vector cells. It 

also predicts that grid cells maintain a correlational structure across different 

environments. Altogether, how the human MTL encodes complex spatial memories in 

different contexts is a complicated, open question.  

 

2.3 Oscillations 

Intracranial neurophysiology experiments also record local field potential (LFP) 

that reflects the summative activity of a population of neurons in a small volume of 

tissue. In human intracranial recordings, LFP is recorded from small diameter (40 µm) 

micro-wire electrodes. Filtering of LFP activity into frequency bands has highlighted 

rhythmic oscillations that have been linked to the processing of distinct cognitive 

functions.  

2.3.1 Theta oscillations support spatial and memory processes 

Theta oscillations (~3-12 Hz, broadly) are thought to support both spatial 

navigation and memory based on studies in rodents as well as in humans (Buzsáki et al., 

1983; Wang et al., 2014; Aghajan et al., 2017; Zutshi et al., 2018). In contrast to 

continuous theta oscillations present in rodents, theta oscillations in humans are present 

in non-continuous bouts, both during real-world ambulation and in virtual navigation 

(Ekstrom et al., 2005; Watrous et al., 2013; Aghajan et al., 2017). It has also been 

proposed that there exist two types of theta: type I is a low-frequency (~2-5 Hz) 
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oscillation related to spatial navigation while type II is a higher-frequency (~6-9 Hz) 

oscillation related to episodic memory (Jacobs, 2014; Watrous and Ekstrom, 2014; Bush et 

al., 2017; Foo and Bohbot, 2020). A study in humans suggests that frequency of theta 

oscillations is lower during virtual reality relative to real-world stimuli/navigation 

(Bohbot et al., 2017), which is consistent with studies in rodents(Ravassard et al., 2013; 

Watrous et al., 2013). 

Theta oscillations are modulated by spatial navigation variables. For example, 

oscillatory power in the MTL was elevated during successful virtual spatial navigation 

compared to inactivity or virtual stillness (Caplan et al., 2003; Ekstrom et al., 2005; 

Kaplan et al., 2012). Furthermore, there is a higher prevalence of theta bouts during fast 

ambulation compared to slow ambulation in humans (Aghajan et al., 2017). The power of 

theta oscillations is also modulated by proximity to boundaries, such as room walls 

(Stangl et al., 2021). Theta oscillations also organize assemblies of MTL neurons by 

binding cell assemblies into separable groups that can be reinstated to support spatial 

navigation and memory (Buzsáki and Moser, 2013). Single neurons in these assemblies fire 

at critical points in alignment with ongoing theta oscillations. For example, a place cell 

may have a preferred theta phase at which it fires, or conversely, a place cell may fire 

during earlier phases of theta oscillations over consecutive theta cycles (theta precession) 

as a rodent navigates through the cell’s preferred place field (O’Keefe and Recce, 1993). 

Theta oscillations also thought to reflect the coordinated activity of grid cell populations. 

Multiple studies have identified a relationship between theta oscillations and walking 

direction, such that there is hexadirectional modulation of the power of theta oscillations 

based on forward-heading direction, where power is elevated when a participant is 

virtually navigating in accordance with one of six directional peaks that are thought to 

reflect the intrinsic axes of grid cell populations (Chen et al., 2018; Maidenbaum et al., 
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2018; Chen et al., 2021). As such, theta oscillations are critically related to the activity of 

spatially selective MTL neurons. 

 

Figure 2-3 MTL theta oscillations. Theta oscillations (3-12 Hz) recorded from a freely-ambulating human. 

Post-operative high-resolution MRI scan (left) with four electrode contacts shown in the yellow. A CT scan 

depicting the position of the Neuropace Responsive Neurostimulator System embedded in the skull to record 

intracranial electroencephalogric (iEEG) activity is shown in the left inset. An example 1-second raw iEEG 

trace is shown in gray in two electrode contacts with filtered theta oscillation overlaid in red (RHIP, right 

hippocampus) and blue (REC, right entorhinal cortex). Reproduced based on (Aghajan et al., 2017). 

 

Episodic memory encoding and retrieval depend on fluctuations in theta 

oscillations (Kahana et al., 1999; Long et al., 2017; Solomon et al., 2019b; Kota et al., 

2020; ter Wal et al., 2021) and they exhibit reinstatement of retrieved items associated 

with their environmental context (Pacheco Estefan et al. 2019). Furthermore, theta 

oscillations support the subsequent memory effect, which is the observation that stronger 

oscillatory power (or brain activation) during encoding predicts improved memory 

retrieval at a later timepoint (Lin et al., 2017). Taken together, MTL theta oscillations 

play a crucial role in supporting memory and associated spatial representations in 

humans. 
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2.4 Overview 

Despite progress in identifying the neural substrates of spatial navigation in 

rodents, non-human primates, and humans, an open and pressing question remains of how 

MTL neurophysiology dynamically represents episodic memories and spatial maps in 

humans during naturalistic experiences. How spatial and contextual information is 

embedded in episodic memories and dynamically accessed during complex experiential 

learning and memory retrieval in real-world settings remains largely understudied due to 

the inherent challenges in recording intracranial signals from deep brain structures during 

real-world spatial navigation and memory paradigms. 

In Chapter 3, we present a discussion of a cutting-edge methods to investigate 

MTL neurophysiology at two scales: (1) intracranial EEG (iEEG) during real-world 

ambulation and (2) single-unit and LFP recordings during immersive, head-mounted 

display 3D virtual reality. These methods provide an opportunity to bridge human and 

animal studies and highlight fundamental differences.  

In Chapter 4, we present our findings highlighting how theta oscillations in freely 

moving humans dynamically encode momentary cognitive task demands, specifically 

relating to episodic memory retrieval and spatial navigation which also provides a first 

study utilizing 3D virtual reality in freely moving humans during iEEG recordings.  

In Chapter 5, we present our results highlighting the contextual changes in mobile 

iEEG spatial representations and supporting observations from single-unit neuron 

populations that relate to spatial navigation and memory retrieval. Critically, we utilize 

the same 3D virtual reality spatial memory paradigm, allowing us to leverage insight 

gained in freely moving humans (Ch. 4) with rare single-unit recordings.   
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CHAPTER 3: 

Intracranial neural recordings in humans 

3.1 Introduction 

Traditional approaches to recording deep brain activity in humans require 

participants to remain immobile, limiting the ecological validity and breadth of cognitive 

neuroscience questions that can be asked. Rare clinical opportunities to record intracranial 

brain activity from individuals, by capitalizing on electrophysiology recordings collected 

for clinical purposes, have advanced our understanding of the neurophysiology of human 

cognition. In this chapter, we will introduce two electrophysiological methodologies in 

humans that provide complimentary insight into (1) population-level and (2) single 

neuron brain activity by leveraging cutting-edge neural interfaces (such as electrodes and 

implanted brain sensing technologies) that are implanted in neurosurgical patients for 

clinical treatment.  

The first approach, or intracranial electroencephalography (iEEG) recordings from 

chronic neurostimulator devices, are now possible in mobile human participants 

interacting with their environment in a natural way, thus providing unique insight into 

spatial navigation and memory during real-world ambulation. Research-related benefits of 

such chronic neurostimulator devices include resistance to motion artifacts, access to deep 

brain structures, measurement of neural activity with high temporal resolution, as well as 

the possibility to perform closed-loop neuromodulation through stimulation that can be 

associated with specific behavioral or neurophysiological features. 

The second approach, or single-unit recordings, provides high-temporal resolution 

signals that allow for the study of individual neurons and their specific firing properties. 

Although these participants tend to be stationary, access to single-unit neural activity in 

humans is an unparalleled window into the basic unit of human cognition.  
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Recent technical developments have streamlined the integration of numerous 

wearables with both wireless iEEG and single-unit recordings, including virtual and 

augmented reality (VR/AR) headsets, which substantially broaden the scope of possible 

cognitive neuroscience experiments that can be implemented. Furthermore, use of these 

AR/VR headsets to develop stimuli allows a platform to present identical stimuli across 

these two recording approaches and thus draw conclusions about iEEG activity during 

real-world ambulation along with single-unit firing properties in response to the same set 

of stimuli. Here, we provide an overview of the methodological and technical aspects of 

these intracranial brain recordings in human research participants and discuss associated 

promises and challenges.  

 

3.2 Mobile iEEG recordings 

The human brain undergoes complex cognitive processes throughout our daily lives 

by integrating proprioceptive and kinesthetic cues with rich sensory stimuli and 

information. Understanding how complex behaviors are encoded in the brain thus requires 

the ability to study human cognition and record brain activity during naturalistic 

paradigms and behaviors. Traditional methods of recording neural activity in humans are 

limited by large recording equipment and motion artifacts. Specifically, functional 

magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and intracranial 

stereo-electroencephalographic (sEEG) recordings all require patients to be still, within or 

tethered to large recording equipment, or at the very least that their heads remain 

motionless.  

Notable progress, however, has been made in mobile brain and body imaging 

technology using scalp electroencephalography (EEG) recordings, which has advanced our 

understanding of cognitive variables in conditions of naturalistic movement. Recent 

studies have used mobile scalp EEG to explore questions such as how walking modulates 

task switching (Richardson et al., 2021), how movement speed modulates neural 
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representations of focusing on a visual target (Lee et al., 2021), how attention varies 

across stationary vs walking conditions (Ladouce et al., 2019), how cognitive motor 

interference is modulated by movement complexity (Reiser et al., 2019), and how the 

dynamics of cortical brain regions support specific features of active spatial navigation 

(Do et al., 2021), among many others. Although these studies provide first-insight into 

how movement modulates human cognition, scalp EEG signals are also complicated by 

motion-induced artifacts and limited to recording broad neural population signals 

primarily from cortical structures and with limited spatial resolution. Thus, these 

constraints reduce the breadth and ecological validity of behavioral, neural, and cognitive 

processes and relationships that can be studied.  

Recently approved implantable medical devices for treating neurological diseases 

(Table 3-1) have created a unique clinical opportunity to record more localized deep brain 

activity via iEEG recordings in humans who can be mobile and behave in naturalistic 

settings. These chronically implanted neural devices that enable wireless iEEG recording 

and neurostimulation are surgically implanted intracranially and can remain there 

permanently throughout a person’s lifetime. Patients with such implants can enjoy day-to-

day life as these devices are not externally visible nor do they interfere with any standard 

activities of daily living, including freely-moving activities of interest. Thus, the 

opportunity to record from such chronically implanted neurostimulation devices provides 

a unique window into cognition allowing for a broad – rather endless – range of 

ambulatory activities and cognitive tasks to be explored. 
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 Responsive Neurostimulator 

(RNS) 

Percept RC + S 

Company Neuropace Medtronic Medtronic 

Sampling 

frequency (Hz) 

250 250 1000 

Battery life ~8 years (320 model); ~4 years 

(300 model) 

~ 5 years rechargeable 

Location of 

battery 

Intracranial Intrathoracic Intrathoracic 

Synchronization 

method 

Use of the “Mark” or “Magnet” 

signal to inject an artifactual 

signal across devices 

Stimulation to inject an 

artifactual signal across 

devices (e.g., Scalp EEG and 

iEEG) 

Conversion to Unix 

time on each data 

stream 

Example studies Scangos 2021(a,b) 

Stangl et al, 2021 

Topalovic et al, 2020 

Henin et al, 2019 

Rao et al, 2019 

Meisenhelter et al, 2018 

Molina et al, 2018 

Aghajan et al, 2017 

Shirvalkar et al, 2020 Gilron et al, 2021 

Sellers et al, 2021 

 

Clinical trials MDD, PTSD, LOC, OCD, 

epilepsy 

MDD, OCD, SCI MDD, epilepsy  

Typical 

electrode regions 

Hippocampus, amygdala, 

entorhinal cortex, 

parahippocampal cortex 

Subthalamic nucleus, ventral 

intermediate nucleus of 

thalamus 

Determined by 

investigational use 

criteria 

# of implanted 

patients 

Few thousand Several hundreds Less than 30 

Table 3-1. Overview of Implantable Neurostimulator Devices. Shown are the general characteristics of three 

of the most commonly available human-use chronic implantable neurostimulator devices. MDD: Major 

Depressive Disorder, PTSD: Post-traumatic stress disorder, LOC: Loss of control (obesity), OCD: obsessive-

compulsive disorder, SCI: Spinal cord injury. 
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3.2.1 Chronically implanted neural sensing devices  

While deep brain stimulation (DBS) devices have been used in over a hundred 

thousand patients for over thirty years to treat neurological disorders such as Parkinson’s 

disease, essential tremor, and dystonia, it is only within the last decade that there has 

been an increase in the availability of DBS devices that allow for sensing of neural 

activity. The first of these devices, the Responsive Neurostimulator System (RNS, 

Neuropace, Inc.), was approved by the FDA in 2013 for the treatment of intractable 

epilepsy and has since been implanted in over 2500 patients and increasing by several 

hundred individuals each year. The FDA-approved clinical use of the RNS System is to 

detect seizure-related activity and subsequently deliver neurostimulation to reduce 

seizures frequency and pathological symptoms. The RNS System can support up to two 

intracranial depth or cortical strip electrode leads each of which have four contacts and 

are implanted in hypothesized seizure-onset zones. Exact locations of the RNS System 

electrodes vary by patient with both cortical (e.g., orbitofrontal, lateral temporal) and 

subcortical locations (e.g., amygdala, hippocampus, entorhinal cortex) as common targets. 

Contact-spacing on electrodes can also vary based on clinical needs, ranging from 3.5 mm 

to 10 mm (center-to-center). The RNS System also includes a hermetically-encased 

neurostimulator which is implanted in the skull and is thus shielded and resistant to 

movement artifacts and externalized electrical noise sources. This neurostimulator package 

contains the battery and stores iEEG data in small units (~240 seconds) with a sampling 

rate of 250 Hz on four bipolar channels until it is downloaded wirelessly (via an external 

wand device, Fig. 3-1A-B) to a server that can be accessed by researchers or clinicians. 

The RNS System can also be programmed to initiate stimulation on selected channels 

based on real-time analysis of incoming neural activity (e.g., seizure activity or other 

clinical/behavioral neurophysiological biomarkers).  
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The second FDA-approved DBS device that allows for recording of iEEG activity 

is the Percept PC Neurostimulator (Medtronic, Inc.) used to treat Parkinson’s disease. 

Since its approval in 2020, it has been implanted in a few hundred patients and expected 

to increase rapidly as patients with older DBS non-sensing devices are upgraded during 

battery replacement procedures. The Percept can record iEEG activity with a sampling 

rate of 250 Hz and on up to 6 bipolar channels with the neurostimulator package and 

battery implanted in the chest near the clavicle in the thoracic cavity. FDA-approved 

electrode placement sites for the Percept include the subthalamic nucleus (STN) and 

ventral intermediate nucleus of the thalamus (VIM) (Goyal et al., 2021), however, other 

sites can be targeted with FDA investigational device exemption (IDE) approval. Brain 

activity can be recorded in two formats: 1) 10-minute windows, which are then averaged 

over time and reported, or 2) continuously while connected to the implantable pulse 

generator (IPG) which provides power. 

The Activa PC+S and RC+S Neurostimulators (Medtronic, Inc.) are also available 

and allow for much more research flexibility (e.g., higher sampling rates, increased 

programmability of closed-loop capability and wider variety of stimulation parameters), 

however, are only available with FDA IDE approval and thus have been used in only a 

small number of patients (< 30 total) across various clinical trials for epilepsy, depression, 

essential tremor, obsessive-compulsive disorder (OCD), dystonia, and Parkinson’s disease. 
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Figure 3-1. Ambulatory Intracranial Recording Set Up. An example CT (A) and MRI (B) showing the RNS 

System implanted intracranially with two leads implanted in the medial temporal lobe. (C) Mobile iEEG 

recording set-up. As part of the mobile deep brain recording and stimulation (Mo-DBRS) platform, a 

backpack can be worn, which includes a malleable metal arm holding the wand in place above the 

participant’s RNS implant and is connected to a metal-framed backpack (Topalovic et al., 2020). The 

participant shown is wearing a VR headset, carrying the associated hand-held controllers, and has a rigid 

body motion sensor antenna fixed to the top of their head for precise motion tracking. Full-body motion 

capture suits can also be worn. (D) Stationary iEEG recording set-up. Participant shown is wearing 

biometric sensors for recording heart rate and skin conductance (on hands), as well as an eye tracking 

headset that allows for pupillometry and eye-gaze tracking, all of which can also be worn during mobile 

studies. The wand is placed above the RNS implant using a portable wand holder.  

 

3.2.2 Limited sampling of brain regions 

Another constraint in mobile iEEG recordings is the limited number of electrode 

channels available per participant (up to 6 channels) and thus brain regions which can be 

sampled given that the placement of electrodes is driven solely by clinical criteria. 

Nonetheless, there exists a large pool of potential participants (thousands) from which to 

select from in order to acquire sufficient amounts of data from a given brain region while 
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minimizing variability. Currently, studies with hypotheses related to medial temporal and 

striatal function are understandably the most common given electrodes are implanted 

most often in these brain regions. Furthermore, as the types of neurologic and psychiatric 

conditions treated by implanting chronic neurostimulators expands, a greater diversity of 

brain regions will likely be accessible, which in turn will open the door to a greater variety 

of cognitive and clinical neuroscience research questions that can be answered. 

The spatial resolution of mobile iEEG data is another important variable to 

consider when designing a study using chronic neurostimulators, which is limited by the 

diameter of the implanted electrodes (1.5 mm), spacing of electrode contacts (up to 10 

mm) if using bipolar recordings, and the spatial resolution of neuroimaging-based 

localization procedures (e.g., co-registration of MRI and CT images). However, in contrast 

to most intracranial neurophysiology studies performed in acute epilepsy monitoring units, 

mobile iEEG study participants are able to complete experiments of longer durations (up 

to 6-8 hours per day, and over multiple days with flexible timelines) since they have not 

recently undergone neurosurgery or have any other competing medical/surgical procedures 

that co-occur. Finally, participants are often eager to contribute to research and are 

highly motivated, especially if they report positive clinical outcomes due to their chronic 

neurostimulator treatment and thus large sample studies are indeed possible to counteract 

the limited number of brain sites that can be sampled within a single participant. 

 

3.3 Stationary single-unit recordings 

Neurons are the fundamental units of the brain that can develop highly specialized 

response patterns to stimuli and work in concert with other neurons to develop circuits 

supporting cognition by communicating through the firing or action potentials. An action 

potential is a result of the bulk ion movement across the neuronal membrane of ions 

including Na+, K+, Ca+, and Cl-. Each of these ions perturb the membrane potential, to 

a degree weighted by the number of ions moving and the difference between the Nernst 
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potential of that ion and the current membrane potential. Action potential firing is all-or-

none, meaning that an action potential will only propagate from one neuron to the next 

when the presynaptic dendrites depolarize sufficiently to cross a threshold of -45 mV, on 

average. The action potential concludes with repolarization which has a characteristic 

hyperpolarization before returning to baseline (J. Gordon Betts, Kelly A. Young, James 

A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, 

Mark Womble, 2013). During the repolarization phase, there is a relative and absolute 

refractory period during which the neuron cannot, or infrequently will fire. These 

refractory periods correspond to a minimal so-called interspike interval. Neuronal firing of 

a single putative neuron typically displays an minimal interspike interval of 2.5 ms, in 

order to obey the biological principle of an absolute refractory period (Quiroga, 2012).  

A critical approach in modern developed around studying action potentials and 

firing properties of putative single neurons (referred to as single neurons) using 

extracellular recordings (Dayan, 2005). Extracellular single-unit recordings are obtained 

from electrodes placed in neural tissue that can record the summative electric field 

potentials of a small volume of tissue that can include a small number of neurons 

surrounding an electrode. Although extracellular recordings are a common and useful 

neuroscience methodology in animal models, ethical considerations preclude their 

analogous use in humans. However, the rare opportunity to record single-unit activity 

from extracellular electrodes in humans is possible through collaboration with epilepsy 

patients who are transiently implanted with multiple depth electrodes for clinical 

purposes. Specifically, this cohort of epilepsy patients undergo neurosurgical placement of 

6-12 electrodes in numerous MTL and broader brain regions for multiple-week (typically 

1-4 weeks) monitoring of brain activity so that the neurological team can determine the 

focus of these patients’ seizures. While undergoing in-patient monitoring of their 

intracranial brain activity for clinical purposes, patients can also consent to participate in 

research in which they complete cognitive tasks while researchers record single-unit and 



23 
 

LFP brain activity, in accordance with an institute’s Institutional Review Board 

procedures. 

Single neuron and LFP activity can be recorded from micro-wire electrodes. A 

widely used and well known electrode is the Behnke-Fried electrode which contains 8 

clinical macro contacts and 8 micro-wire electrodes that bore through the macro contacts 

and splay off of the tip (Fried et al., 2014). The micro-wires are ~40 µm in diameter and 

can record extracellular activity. Importantly, studies investigating the safety of 

recordings utilizing these Behnke-Fried electrodes have reported no increases in 

complications associated with these recordings (Chari et al., 2020). 

3.3.1 Spike sorting 

 Since extracellular electrodes record summative electrical activity from multiple 

neurons surrounding the recording site, a critical analytical step is spike sorting, or the 

process of decomposing spiking activity into distinct putative neurons (Dayan, 2005; 

Lefebvre et al., 2016). Principles of spike sorting capitalize on the principle that each 

neuron has a distinct spike waveform template. This is a result of the unique dendrite 

arborization that every neuron develops. As such, a particular neurons’ unique firing 

properties, combined with the exact distance and orientation of the neuron relative to the 

electrode recording location results in a unique and distinct waveform that can be used as 

a template to distinguish spiking events from different putative neurons, from a neural 

recording trace. Templates are typically defined by extracting features of waveforms and 

clustering them into distinct waveform templates. A range of spike sorting methods are 

frequently used which typically employ feature extraction methods ranging from principle 

component analysis, wavelets, independent component analysis, among others. Once 

templates have been established, all detected spikes are compared to templates and a 

distance metric is optimized to match spikes to the nearest template. Cluster cutting, or 

spike sorting, can be performed via an algorithm and in combination with user input. 
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Common clustering methods range from Euclidean distance, superparamagnetic clustering, 

template matching, K-means, gradient ascent, and others. 

 One challenge and limitation of spike sorting approaches is that during single-unit 

recordings from individual micro-wires, in some cases of single neuron recordings from 

single microwires, activity may be recorded from multiple nearby neurons that cannot be 

further isolated into single neurons. Evaluation of various parameters are not sufficient to 

distinguish between the multiple units in these cases. These so-called “multi-units” may be 

characterized by displaying a greater number of violations of the interspike interval, a 

noisy baseline, and a broader spike waveform peak. One approach that can minimize the 

detection of multi-units which cannot be further isolated into single neurons is the use of 

tetrode electrodes. These four-pronged electrodes record activity from multiple reference 

points and improve the ability to isolate single neurons based on comparisons of electrical 

recordings across these four recording sites which are separated by a known, and pre-

determined physical distance. However, these tetrodes are not yet available for use in 

humans. When performing studies of cognitive neuroscience in human single neuron 

recordings, it is important to identify and remove multi-unit clusters from analysis of 

tuning properties of single neurons.  
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Figure 3-2. Electrodes used to record human single neurons. (A) Example Behnke-Fried depth electrode 

with close-up view of macro contacts used for clinical iEEG recordings and micro-wires protruding off the 

tip (adapted from Staba, 2014; Mankin et al., 2021). (B) Coronal MRI demonstrating iEEG depth electrodes 

with microwires protruding from the distal end of the tip, adapted from (adapted from Fried et al., 1999). 

(C) Two example single neurons. Top, spike waveform. Bottom, histogram of interspike intervals (ISI) for 

all spikes for each single-unit. 

 

3.3.2 Advantages and limitations 

 Single-unit recordings in humans provide a critical opportunity to observe the 

natural firing dynamics of single neurons in the brain, which is a rare opportunity to test 

theories developed in other animal models to identify the differences and similarities in 

neuron encoding of cognitive processes. Further, single-unit recordings also allow for 

researchers to investigate the relationship between spikes and ongoing LFP. However, 
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these recordings are subject to a few notable constraints. Participants must remain 

immobile during single-unit recordings, since the recording equipment and electrodes 

involve bulky equipment and long cables that are also subject to significant motion 

artifacts. Additionally, human single-unit recordings occur in hospital rooms, oftentimes in 

intensive care units, where extensive medical equipment can introduce electrical noise that 

can be difficult to isolate from precious single neuron firing. Although post-hoc noise 

cleaning techniques can minimize the contamination of neural signal, spike sorting can 

still be influenced by noise in the form of algorithms categorizing noise as putative units. 

Spike sorting is also limited by the strength of the feature extraction algorithms and 

template development since there a ground truth is not available, isolated clusters can be 

treated as putative neurons (thus referred to as single neurons). Further, micro-wire 

electrodes provide huge insight into single-unit firing, however they do not offer the 

opportunity to investigate large populations of neurons, rather a single electrode may 

yield ~5-20 neurons and precluding the ability to study the concerted firing dynamics of a 

neural population. However, technological advances to develop high-density neural probes 

are underway and may improve the single-unit recording yield of electrodes in the future. 

 

3.4 Virtual Reality 

Studies of human cognition traditionally use laptop or screen-based 2-dimensional 

experimental task designs to present videos or images as stimuli used to interrogate 

internal processes. How human cognition is represented in the brain during more 

naturalistic experiences remains an open question. In this chapter, we have described 

technological advances that are now enabling the study of iEEG in freely walking human 

participants, ushering in a new era of research studying human cognition in the “real 

world” and outside of laboratory settings. However, human single-unit recordings still 

require immobility in the hospital setting. Although efforts are underway to record single-
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unit activity in a mobile framework (Topalovic et al., 2023), it can be difficult to generate 

complex and rich environmental settings in the hospital environment in order to 

investigate human cognition. As such, VR is a valuable tool for human cognitive 

neuroscience. 

Head-mounted VR displays offer a 3-dimensional and immersive experience with 

continuously improving and realistic graphics. Head movements and body motion on the 

display are matched to body movement in the real world to create a seamless interactive 

experience. Numerous VR headsets are available on the market including the Pico Neo, 

Meta Quest, HTC Vive, among others. Experimental tasks in VR can be built using 

readily available and open-source game engines, such as Unity, in which every aspect of 

an immersive experiment can be controlled by the researcher – from the placement of 

room landmarks and stimuli, to the consistency and uniformity of environmental textures. 

Furthermore, VR allows experimenters to deliberately distort reality or to rapidly subject 

participants to very different environments, tasks, or experiments in a controlled manner. 

Given the virtual and computer-driven nature of the experience, VR also provides access 

to quantitative behavioral metrics with a high-temporal resolution. For example, in the 

real-world it could be challenging to precisely determine the positional accuracy of 

participant completing an object-location task, while in VR, positional accuracy can be 

readily accessed, and performance can even trigger alternative game sequelae. 

Different VR headsets offer different additional features, such as integrated pupil 

and gaze tracking or the option of performing VR in both stationary or ambulatory 

formats. This common dual-movement functionality provides a valuable opportunity to 

develop experimental tasks that can be used across different neurophysiology recording 

modalities, such as during both single-unit and also mobile iEEG recordings. As such, VR 

is a valuable tool for the modern cognitive neuroscientist to deliberately construct 

environmental tasks in a controlled-reality, providing detailed and quantitative metrics of 

behavior, and the versatility of being used with multiple neuroimaging approaches.  
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3.5 Current findings 

3.5.1 Findings from mobile iEEG recordings 

Multiple studies have validated long-term recordings obtained from chronically 

implanted devices by comparing findings of cognition to those identified using acute iEEG 

recordings (Rao et al., 2017; Henin et al., 2019). A rapid increase in the number of 

individuals chronically implanted with sensing DBS devices over the past decade has 

enabled scientists the ability to use mobile iEEG recordings in humans to carry-out, for 

the first time, cognitive and clinical neuroscience studies in freely moving humans. One 

such area of study has been to determine whether findings from freely moving rodent 

studies of spatial navigation translate to humans. The first research study of this kind 

investigated whether oscillatory activity in the medial temporal lobe (MTL) was 

modulated by walking speed (Aghajan et al., 2017) (Fig. 3-2A) given that decades of 

findings emphasized a critical role for rodent MTL theta oscillations (4-8 Hz) in spatial 

navigation and memory (Bland, 1986). While this study was the first to discover the 

presence of speed-modulated theta oscillations in the human MTL during freely-moving 

walking behavior, it also highlighted fundamental species-specific differences between 

rodents and primates (including humans) worthy of additional investigation in future 

mobile iEEG studies: Theta oscillations were found to increase in prevalence during faster 

compared to slower walking speeds in ambulating humans, but their overall presence was 

less prominent (~10% of the time) compared to that found in freely-moving rodents, a 

result consistent with recent findings in freely-moving non-human primates (Mao et al., 

2021) and replicated in an additional study (Stangl et al., 2021). Another more recent 

mobile iEEG study found similar levels of theta activity during walking (~10%), but 

further identified separate behavioral and environmental variables that also modulate 

MTL theta activity, such as one’s own (or another person’s) proximity to environmental 

boundaries (e.g. walls). Furthermore, this spatial modulation of theta power was 

dependent on cognitive state (Stangl et al., 2021). Future studies are needed to determine 
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the complex relationship between MTL oscillatory activity and cognitive (e.g., task goal), 

behavioral (e.g., movement speed, direction, position) and environmental variables (e.g., 

boundaries, presence of others), which are now enabled with mobile iEEG recordings in 

humans.  

Other research groups have recorded remotely from these chronically implanted 

devices while participants are going about their daily lives in their home environments. 

One study explored patient-specific neurophysiological biomarkers relating to inadequate 

or excess movements in Parkinson’s disease in five participants implanted with the 

Summit RC+S device with electrodes in the motor cortex and subthalamic nucleus. 

Streaming of neural activity in the home setting was collected and decoded in relation to 

movement state information obtained from wearable monitors. During data recordings, 

participants performed normal activities of daily living while wearing a watch that 

measured movement activity to distinguish bradykinesia and dyskinesia. The authors 

found that individual patients had unique neural biomarkers (e.g. frequency band 

associated with movement state) for changes between active and inactive movement 

states. Across participants, many exhibited coherence between the motor cortex and 

subthalamic nucleus that discriminated between mobile and immobile states (Fig. 3-2B) 

(Gilron et al., 2021). 

Moreover, there is an ever-increasing scope of research areas that can be 

investigated using mobile iEEG recordings to advance our understanding of other 

neurologic and psychiatric diseases. Research studies have begun exploring new clinical 

applications for chronically implanted sensing and stimulation devices that pave the way 

for future opportunities to record mobile iEEG from a broader range of brain regions. One 

group implanted the RNS System in the centromedian-parafascicular region of the 

thalamus in a case of medically-refractory Tourette syndrome (Molina et al., 2018). A 

review proposed a possible approach to treat chronic pain by implanting a chronic sensing 

and stimulating device in a number of potential target thalamic, cingulate, and other 
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regions (Shirvalkar et al., 2020). Recent efforts have used responsive neurostimulation for 

the treatment of loss of control of eating in participants with treatment-refractory obesity 

by implanting the RNS System in the nucleus accumbens (Wu et al., 2020). Another 

group implanted the RNS System in the amygdala and striatum to significantly improve 

depressive symptoms in a case of treatment resistant-depression (Scangos et al., 2021a, 

2021b). The RNS System has even been implanted in the occipital lobe of blind patients 

and used to investigate whether stimulation could be used to induce visual percepts 

(Caspi et al., 2021). 

       

Figure 3-3. Example findings from mobile iEEG studies. (A) Theta oscillations increase in prevalence during 

fast versus slow walking speeds in the medial temporal lobe (MTL, adapted from (Aghajan et al., 2017)). 

(B) Beta-gamma coherence between the subthalamic nucleus (STN) and motor cortex distinguishes mobile 

(low dyskinesia, upward arrows) from immobile states (high dyskinesia, downward arrows) in an example 

participant. Adapted from (Gilron et al., 2021).  

Altogether, these results are an exciting foundation highlighting the utility and 

versatility of a new generation of neurostimulator devices for advancing cognitive 

neuroscience research. These studies have capitalized on mobile iEEG during a variety of 

naturalistic behaviors. Additionally, an increasing number of studies are exploring the use 

of chronic sensing and stimulating devices for the treatment of a broad range of other 

neurologic and psychiatric disorders. Looking ahead to the future, these studies 

foreshadow an increasing diversity of brain regions that can be wirelessly recorded from in 
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naturalistic and chronic environments, expanding the possible scope of cognitive 

neuroscience research using chronic sensing and stimulating devices. 

 

3.5.2 Findings from single-unit electrophysiology 

Using view-based VR in a hospital-bed setting, invasive electrophysiological 

recordings from implanted micro-wires (Fig. 3-2) in patients with epilepsy have identified 

single neurons that respond in a variety of spatially-selective ways during virtual spatial 

navigation. In one of the first of these studies, single-unit activity within MTL regions was 

recorded while participants completed a VR taxi cab driver task where they picked up 

and delivered virtual passengers to various stores in the environment. Results showed a 

significant proportion of hippocampal neurons that increased in firing rate at specific 

locations within the environment(Ekstrom et al., 2003), resembling the activity of place 

cells in rodents (O’Keefe and Dostrovsky, 1971). A follow-up human single-unit study 

discovered cells in the entorhinal cortex, which increased in firing rate when a participant 

was in multiple locations across the environment with activity peaks separated by 60-

degree angles making up a hexagonal grid and thus resembling grid cells found in non-

human animals (Hafting et al., 2005). Numerous other human single-unit studies using 

view-based VR have identified cells within the MTL that encode spatial information such 

as specific locations in the environment (e.g., one’s own location or the location of goals), 

spatial view, path direction, direction and distance to reference points in the environment 

(e.g., via so-called egocentric bearing cells), or heading direction (Jacobs et al., 2010; 

Miller et al., 2013; Nadasdy et al., 2017; Tsitsiklis et al., 2020; Kunz et al., 2021). The 

spatial distribution of these neurons across different brain regions suggests distinct roles 

for MTL subregions in navigation. For example, while place and grid cells seem to be 

more prevalent in the hippocampus and entorhinal cortex respectively, other cells such as 
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those that are view-responsive, egocentric bearing, or responsive to reference points in the 

environment are more prevalent in the parahippocampal cortex.  

A portion of spatially-selective cell types (e.g., place, direction, and egocentric 

bearing cells) show positive relationships with memory performance, suggesting a general 

link between spatially-selective cells in the human MTL and episodic memory (Miller et 

al., 2013; Qasim et al., 2019; Kunz et al., 2021). One study found that place-responsive 

cells reactivated during episodic memory retrieval of items associated with a specific 

location in the VR environment that they responded to, supporting the idea that 

spatially-selective cells in the human MTL contribute more generally to episodic memory 

(Miller et al., 2013). Another study found a population of cells (i.e., memory-trace cells) in 

the ERC that increased in firing rate immediately prior to the retrieval of a previously 

learned VR object-location association even in the absence of the visible object itself 

(Qasim et al., 2019). Further, these memory-trace cells were significantly active during the 

retrieval cue period prior to movement towards the remembered location, suggesting a 

broader role for these neurons in memory representations independent of movement.  

Altogether, these findings suggest that many of the single-unit mechanisms 

discovered in freely-moving rodents are also present in the human brain during stationary 

view-based virtual navigation, thus bridging decades of findings across species. However, 

given humans can declare their recollections, these studies have also been able to provide 

unique insights into human behavior and episodic memory, specifically. Some of these 

specific findings are noteworthy of discussion such as the increased types of visually-

responsive cell types, wider distribution of spatially selective cells across brain areas (i.e., 

outside of the MTL), and modulation by additional environmental and/or behavioral 

variables (e.g., task goal or memory recall) in humans. 

 



33 
 

3.6 Technical challenges 

Designing and carrying out studies during intracranial human recordings come with 

several technical challenges. In single-unit recordings, notable challenges include noise, 

limitations of spike sorting as discussed above, and developing experiments that can be 

completed within a short (~1 hr time frame). Specifically, completing single-unit 

recordings in neurosurgical patients in the hospital setting poses a unique set of challenges 

as the study participants are in a post-operative, post-anesthetic, and sometimes post-ictal 

state during studies. Given the arduous and tiring nature of these patients’ experience in 

the hospital setting, it is important to design a task that is simple, direct, and short 

enough (~ 1 hr) that it can maintain the participant’s attention without causing 

unnecessary fatigue. Given the dynamic and complicated nature of completing an 

experiment in the hospital setting, it is critical to test an experimental task multiple times 

in pilot participants and to develop a repertoire of quick solutions to common problems 

that can arise(Mamalek, 2014).  

In mobile iEEG studies, challenges include wireless recording of data from the 

implanted device, integration with other biometric data streams.In mobile iEEG studies, 

current FDA-approved devices are designed primarily with clinical- and not research-

needs in mind. For example, the RNS System and Percept devices themselves do not 

allow for real-time wireless access and/or control of the implanted neurostimulator, which 

is critical for designing and carrying out well-controlled mobile iEEG studies. There have, 

however, been externalized platforms recently developed that allow for external wireless 

control of and communication with chronic neurostimulation devices (Meisenhelter et al., 

2019; Topalovic et al., 2020; Gilron et al., 2021). For example, one such platform is the 

mobile deep brain recording and stimulation (Mo-DBRS) platform (Topalovic et al., 

2020), which provides researchers with open-source tools to enable real-time wireless 

control of the timing of stimulation, start/stop of iEEG recording, and accurate 

synchronization of iEEG data with wearable sensors and equipment (e.g., VR/AR 
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headsets, eye trackers, motion sensors). While the Mo-DBRS platform has been primarily 

tested with the RNS System (Fig. 3-1A-B), most features including integration with 

wearable sensors can be extended for use with other implantable neurostimulation devices. 

Another such system has been developed and shared with the scientific community to 

enable similar features using the RC+S System, including an open source toolbox that 

supports pre-processing of raw data, time-alignment across data streams, and basic power 

calculations (Gilron et al., 2021; Sellers et al., 2021).  

Here, we briefly discuss the technical features of one of these platforms, specifically, 

the Mo-DBRS platform, which includes a Wand (Fig. 3-1C-D) that continuously 

communicates with the intracranially implanted device via near-field telemetry. With this 

platform, the Wand is physically connected to a laptop or tablet programmer (carried by 

the participant in a backpack) to allow for wireless user-based control (e.g., to start and 

stop iEEG recordings). A custom-built programmer tool interfaces with the laptop or 

tablet programmer so that the user can programmatically control the Wand to stop/start 

iEEG data storage and deliver stimulation or synchronization pulses. The programmer 

tool and consequently the Wand can then be controlled using a wireless control device 

(e.g., Raspberry Pi) that can be wirelessly controlled by the researcher (manually) or 

researcher’s program. During mobile iEEG experiments, the Wand can be affixed to the 

participant’s head via mechanical solutions that relieve its weight and allow for several 

hours of comfortable ambulatory movement (Fig. 3-1C) or stationary experiments (Fig. 3-

1D). All of the other Mo-DBRS accessories and tools (e.g., laptop or tablet programmer, 

programmer tool, Raspberry Pi) can fit comfortably within a backpack (Fig. 3-1C) along 

with any other wearable equipment (e.g., mobile scalp EEG amplifier) during ambulatory 

behavioral tasks. With these capabilities, the Mo-DBRS platform can thus be fluidly 

combined and synchronized with wearable sensors for physiological recordings (e.g., heart 

rate, respiration, skin conductance), eye tracking (for gaze and/or pupillometry), scalp 
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EEG, precise kinematic tracking, and virtual reality (VR) or augmented reality (AR) 

headsets (see Table 3-2). Precise kinematic tracking, including head position and rotation, 

as well as information about arm, leg, and torso movements can be captured by wearing a 

full-body motion capture suit or placing motion capture markers at body joints or 

appendages of interest.  

A critical challenge of experimental design in mobile iEEG studies using any 

platform is accurate and precise synchronization of neural recordings with behavioral task 

features and other data streams. For example, a single experiment may incorporate a task 

delivered on a VR headset with simultaneous full-body motion and eye tracking on 

independent devices. Such an experiment would result in several separate data streams 

(iEEG activity, VR task, positional and kinematic variables, and gaze positions), each of 

which would be recorded with unique time clocks and data acquisition start/stop times. 

Aligning these separate data streams into the same time scale is critical for relating the 

behavioral and neural variables that occur at any given point in time. To facilitate data 

alignment, it is therefore useful to deliver synchronization pulses simultaneously across all 

data streams. One approach is to use brief electrical deflections (“Mark” artifacts) or 

stimulation artifacts that are reflected in the iEEG that can be used as synchronization 

pulses to note the same timepoint as it occurs on all data streams. In the case of Mo-

DBRS, the Mark command can be wirelessly initiated by an externalized wireless control 

device (e.g., Raspberry Pi) and delivered to the implanted device via the head-mounted 

Wand. In the above example, the same control device can send simultaneous signals to 

other data streams (e.g., VR task, motion tracking software) to synchronize the 

corresponding timepoints across all data streams. Previous studies have characterized 

sufficiently accurate and precise synchronization latencies using this method (Topalovic et 

al., 2020). 

Lastly, the recording of numerous data streams through the use of wearables, 

audiovisual recordings, and mobile iEEG or single-unit electrophysiology can result in 
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enormous and complex data sets that are difficult to parse. The use of deep learning and 

artificial intelligence strategies to analyze these resulting large datasets during complex 

naturalistic behavioral studies will likely be beneficial for future mobile iEEG studies in 

humans (Mobbs et al., 2021). Furthermore, synchronization of multiple data streams can 

be challenging and result in unknown temporal latencies that make relating neural 

activity to precise behavioral events difficult. Future studies that add/adopt novel data 

types should characterize synchronization latencies prior to collecting data in participants 

with chronic sensing neurostimulators. 
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 Example product 

Eye tracking Pupil Core (Pupil Labs GmbH) 

Eyetracking (Tobii AB) 

 

 

 

 

Heart rate Smart center bionomadix 
(Biopac Systems Inc.) 

 

 

 

 

 

Respiratory rate Smart center bionomadix 
(Biopac Systems Inc.) 

 

 

 

 

 

 

Skin conductance Smart center bionomadix 
(Biopac Systems Inc.) 

Motion tracking OptiTrack Cameras and Motive 
software (NaturalPoint, Inc.) 

(Xsens Inc.) 

 

 

 

 

 

 

Scalp EEG eego sports (ANT Neuro)       

 

 

 

 

 

 

Audiovisual GoPro 360 (GoPro Inc.)   

 

 

 

Virtual reality Meta Quest 2 (Facebook 
Technologies, LLC) 

Pico neo 2 (Pico Interactive, 
Inc.) 

Vive Pro (HTC Corporation) 
 

Augmented reality MagicLeap (MagicLeap, Inc.) 

Hololens (Microsoft) 
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Table 2. Wearable Sensors and Accessories. Example wearable sensors and accessories that can be 

integrated with mobile iEEG recordings. From top to bottom: Eye-tracking headsets can record 

pupillometry, saccades and gaze positions. Other on-body sensors can record heart rate, respiration, skin 

conductance. Wall-mounted motion capture cameras can track position, speed and other movement 

variables. Mobile scalp EEG set up is shown with a lightweight backpack carrying the amplifier and 

connected to the scalp EEG cap. A wearable camera can be used to capture audiovisual data such as for 

comprehensive documentation of participants’ field of view and visible or auditory events. Example virtual 

and augmented reality headsets are also shown. 

 

3.7 Clinical confounds 

While recording human brain activity on a single-unit level or during natural 

ambulation presents a significant scientific opportunity, it is important to be cognizant of 

the limitations associated with doing such studies. Currently, individuals are implanted 

with chronic or transient electrodes solely for clinical purposes and thus electrodes are 

often placed within disease-modified brain tissue. For example, in patients with epilepsy, 

electrodes are implanted in hypothesized seizure-onset zones. However, because electrode 

contacts can span up to 10 mm of tissue and often in bilateral brain regions, some 

contacts may be implanted in tissue that is less affected by disease. One way researchers 

attempt to characterize the presence of aberrant disease-related neural activity is by 

isolating any abnormal samples, for example interictal epileptiform discharges (IEDs) in 

the case of epilepsy. There are several methods currently used to detect IEDs and exclude 

the affected iEEG, LFP, or single-unit data (Gelinas et al., 2016; Aghajan et al., 2017; 

Stangl et al., 2021). Additionally, multiple studies have found that neural activity 

patterns outside the seizure onset zone are unaffected and that normal neural activity 

patterns occur between epileptic events (Gelinas et al., 2016; Parvizi and Kastner, 2018; 

Liu and Parvizi, 2019; Akkol et al., 2021). Another way to mitigate the potential 

contamination of neural recordings with disease-related episodes is by selecting 

participants that have a low frequency of these events, which can be characterized in 
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advance given these patients have long-term at-home recordings available to the 

researcher and/or clinician. In the case of epilepsy, IED event frequency in the recent 

months preceding the study can thus be available to the researcher and used as a selection 

criterion for recruiting participants with less disease-related events for mobile iEEG 

studies.  

It is also important to recognize that human studies of intracranial 

neurophysiology involve working with patient groups who may suffer from cognitive (e.g., 

memory impairments in epilepsy) and behavioral (e.g. difficulty walking in PD) deficits, 

and other comorbidities (e.g., depression in epilepsy or PD). This can introduce variability 

in a study and limit the generalizability of findings. However, as the number of approved 

indications for which the use of chronic sensing neurostimulation devices increases, the 

sample of individuals from which to select from will also increase. Thus, those individuals 

who are better suited for a given study can be preferentially selected in order to minimize 

variability across the study sample. Further, findings replicated across different clinical 

groups can lessen the probability that results are due to specific disease-related 

abnormalities and consequently increase confidence in the generalizability of findings to 

healthy individuals.    

 

3.8 Ethical considerations 

Research with patients who have implanted neural electrodes require a protocol 

approved by an IRB (internal review board) and should minimize risks associated with 

informed consent. Additional risks associated with mobile iEEG studies should be 

minimized including to prevent substantial battery drainage, frequency of seizures during 

the study, and discomfort during behavioral tasks. Across mobile iEEG and single-unit 

recordings, it is imperative to maintain confidentiality and data security during recording 

and data transfers. Participants should be made aware of the risks through a fully 

informed consent process. In the case of mobile iEEG recordings, it is good practice to 
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allow participants to choose whether stimulation therapy remains on during the 

recordings. While mobile iEEG studies are ideally carried out without the confound of 

artifacts due to responsive neurostimulation, the potential risk of increased symptoms (e.g. 

seizures) can be reduced by inviting participants who have an overall lower frequency of 

seizure-related activity in the months prior to the research study and thus lower the 

likelihood of stimulation events occurring during a given research study. Additionally, it is 

good practice to have a neurologist on the research team that can be available during the 

study to monitor iEEG activity for the presence of pathological events (e.g., IEDs) or 

behavioral symptoms. For neurostimulation studies, the level of stimulation administered 

should be controlled, ideally with a charge density lower than that used for treatment 

(e.g., less than 10 uC/cm2) (Suthana et al., 2012, 2018). Finally, there is a risk of battery 

depletion associated with mobile iEEG studies that would lead to the need for more 

frequent battery-replacement surgeries, especially for research studies that use stimulation 

and/or real-time data viewing of iEEG data. To minimize this risk, research studies 

should limit the number of study visits per participant (especially if using stimulation 

and/or real-time recordings) and/or sample more widely from the population of patients 

who have chronic sensing neurostimulation devices implanted to prevent the same group 

of patients from participating repeatedly. In the case of RC+S and other existing and/or 

future rechargeable battery-powered devices, battery drainage associated with 

participation in research studies is not a concern.  

 

3.9 Promises and future opportunities 

Human iEEG single-unit studies provide an exciting and unique opportunity for 

first-in-human exploration of behavior and cognition in mobile and naturalistic settings 

and on the level of single neurons. Such studies will help to bridge the gap between 

findings in freely-moving single-unit and LFP studies in animal models to understand the 

human neural mechanisms that underlie everyday behaviors such as spatial navigation, 
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physical movement, and social interaction. Importantly, mobile iEEG studies in humans 

provide an avenue for cognitive neuroscience studies to no longer be constrained by 

immobility and limited to artificial laboratory environments. Single-unit studies, though 

still typically constrained to immobility, provide insight into the single neuron dynamics 

of human cognition. Future research studies can thus use more realistic environments with 

higher ecological validity, either by constructing them using advanced 3D-modeling and 

VR/AR technologies to allow for experimental control or by simply having participants 

step into novel and complex real-world environments (e.g., outdoor or complex indoor 

spaces, social experiences) that may be difficult to reconstruct in lab settings. Intracranial 

recordings, especially combined with VR/AR and the opportunity to enter real-world 

situations opens the door to countless new questions across countless fields and topics in 

neuroscience: spatial navigation, episodic memory, emotion, social interaction, exercise, 

activities of daily living, psychiatric conditions, and sleep, to name a few. 

Additionally, ongoing clinical trials using chronically implanted sensing 

neurostimulators for neuropsychiatric conditions foreshadow increased implantation of 

these devices in areas relating to altered emotional processing and pathological brain 

states (e.g., depression, PTSD, OCD, loss of control, panic disorder). This future 

opportunity opens the field up to many new questions that can be answered to better 

understand the pathophysiology underlying neuropsychiatric disease without relying only 

on animal models, as well as advance theories related to how emotional states shape 

cognition in everyday life experiences.  

Finally, chronic neurostimulator devices and single-unit recordings also provide an 

opportunity for the development of novel closed-loop stimulation paradigms in relation to 

neural or behaviorally relevant cues. A closed-loop approach allows the experiment to 

program a change in stimulation pattern in response to a condition that is met. This 

condition could be detection of a particular neural feature of interest, by online and real-

time analysis of neural signals, or it could be more complex and relate a neural feature 
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with a behavior that is detected. With the increasing data from available from human 

intracranial recordings paired with multiple biometric data streams, there is a broad range 

of questions that can be investigated using closed-loop approaches that compare neural 

activity and behavioral states with and without the presence of stimulation of a particular 

brain region. This notable methodological advance provides researchers with the ability to 

test causal questions relating neural activity and behavior under naturalistic settings. 
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CHAPTER 4: 

Dynamic neural representations of memory and space in freely moving 
humans 

4.1 Introduction 

The ability to learn and recall personal experiences, or episodic memories, is critical 

for everyday life and guiding of future behaviors. Encoding of the environmental (spatial) 

context in which an episode takes place is important for its successful subsequent recall. 

The medial temporal lobe (MTL) has long been identified as a brain region essential for 

successful episodic memory formation within a spatiotemporal context across rodents, 

non-human primates, and humans alike (Squire, 1992; Squire et al., 2004; Buzsáki and 

Moser, 2013; Jutras et al., 2013). Current evidence from rodent studies suggests that 

oscillatory activity in the theta frequency band (~6-8 Hz) (Quirk et al., 2021) in the MTL 

supports spatial navigation (Winson, 1978; Hasselmo, 2005) and successful memory 

retrieval (Buzsáki and Moser, 2013; Colgin, 2020) through its ability to temporally 

organize neural activity locally and across brain regions (Buzsáki and Moser, 2013; Colgin, 

2020). However, studies in humans show mixed results (Hanslmayr et al., 2016; Herweg et 

al., 2020b) regarding the presence of theta activity and its temporal dynamics during 

retrieval and encoding of subsequently recalled items (Guderian and Düzel, 2005; Kaplan 

et al., 2012; Herweg et al., 2016). Specifically, a majority of human memory studies 

identify that lower frequency theta (~3 Hz) activity increases/decreases during 

encoding/retrieval, thereby also calling into question the role of higher frequency theta 

oscillations, analogous to those found in rodents, in human memory (Hanslmayr et al., 

2016; Herweg et al., 2020b). 

Given the difficulty of recording human deep brain activity during physical 

movement, it is currently unknown if and how MTL theta oscillations flexibly support 

memory during ambulatory spatial navigation and/or during complex experiences that 
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involve dynamically changing cognitive demands. Human neuroimaging studies of spatial 

memory during navigation have traditionally used view-based virtual reality (VR) to 

simulate movement through an environment while participants remained immobile and 

restricted due to large recording equipment that is susceptible to motion artifacts. Recent 

technological advancements in human mobile neuroimaging (Topalovic et al., 2020), 

however, have enabled the discovery of MTL higher frequency (~7 Hz) theta oscillations 

that are modulated by physical movement (e.g., walking) (Aghajan et al., 2017; Stangl et 

al., 2021) and proximity to environmental boundaries (Stangl et al., 2021). Nonetheless, it 

remains unclear if and how these theta oscillations support successful memory retrieval 

during ambulatory spatial navigation, and further, how to reconcile their role in flexibly 

representing both memory and space during a complex behavioral experience.  

The current study capitalized on a recently developed mobile neuroimaging 

platform (Topalovic et al., 2020) that enables wireless recording of intracranial 

electroencephalographic (iEEG) activity from the MTL during unrestricted ambulatory 

movement in humans. Freely moving participants performed a spatial memory task in 

immersive VR environments while movement was simultaneously tracked to examine how 

memory-related processes and spatial features within the environment dynamically 

modulated MTL activity. Our results suggest that MTL theta activity reflects both 

successful memory retrieval and spatial environmental features in a temporally dynamic 

and flexible manner that can remap based on environmental context and momentary task 

goals. 

 

4.2 Methods 

4.2.1 Participants 

There were 6 participants in the study (33-54 years of age, 4 female, mean = 43.3 

± s.e.m. = 3.1). All the participants had pharmacoresistant epilepsy treated with a 

chronically implanted FDA-approved RNS System (Neuropace, Inc; 320 Model) that 



45 
 

continuously records iEEG activity across 8 contacts (4 bipolar channels). Participants 

with at least 2 bipolar channels in MTL regions (i.e. hippocampus or entorhinal cortex) 

were recruited for the study (example electrode placement shown in Fig. 4-1b). The sites 

of electrode implants were determined by clinical criteria. Further, participants with low 

seizure activity and thus fewer average daily stimulation therapies were recruited for the 

study. Informed consent approved by the UCLA Medical Institutional Review Board 

(IRB) was obtained from all participants. 

 

4.2.2 Spatial memory task in immersive virtual reality 

Participants completed an ambulatory spatial memory task in two different 

immersive VR environments (room dimensions were 5.84 x 5.84 m) where they learned 

and retrieved various positions of translucent colored cylinders (halos) as discussed in the 

main text. All VR environments were matched in size to the real-world environment and 

constructed using the Unity game engine. VR headsets used included the Quest 2 VR 

headset (Meta, Inc., as seen in Fig. 4-1a) or the Pico Neo 1 and Pico Neo 2 VR headsets 

(Pico Immersive Pte. Ltd.). Prior to performing the task, participants completed a 5-

minute practice version of the task was in a distinct virtual environment to provide them 

familiarity with the immersive VR headset and to engage them in normal walking 

behavior. The first retrieval block included several repeated sets of retrieval and visible 

halos, until the participant met a learning criterion (completing 15 consecutive trials with 

error < 1.5 m). Retrieval block #1 was completed in an identical manner in the second 

context, immediately following completion in the first context. The starting context (stone 

or wooden) was counterbalanced across participants. The total number of trials in 

retrieval block #1 varied across participants (15-30 trials in participants 1-5, Fig. 4-2a, 

see details in Table 4-1). P6 was unable to learn all halos to meet the learning criterion in 

retrieval block #1 in both contexts, and as such, was manually advanced to retrieval 
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block #2 after 40 minutes in each context (69 trials in the stone context, 60 trials in the 

wooden context). For retrieval block #2 and above there were a fixed number of trials (15 

in each block), with the context per block alternating until a total of 2-11 retrieval blocks 

were completed depending on the time available for each participant (see number of block 

details by participant in Table 4-1). Total task time took approximately 30 - 200 minutes 

across participants.  

Location and orientation tracking of participants was collected throughout the 

experiment using submillimeter resolution with the Opitrack motion tracking system using 

twenty-two high-resolution infrared wall-mounted cameras and MOTIVE application 

(Natural Point, Inc., see Fig. 4-1a). The cameras sampled the position of a collection of 

uniquely oriented rigid body position markers located atop the participants head at 120 

Hz (Fig. 4-1a). Positional data was compared across VR headsets and Opitrack data 

collection, and analysis proceeded using VR headset data since positional accuracy was 

comparable. Movement speed was computed as the change in position between 

consecutive samples divided by the time lapse between samples. Angular velocity was 

computed as the change in head rotational dimension (radians) of consecutive samples 

divided by the time lapse between samples.  

 

4.2.3 iEEG data acquisition 

The RNS System continuously records iEEG activity and delivers stimulation in a 

closed-loop fashion upon detection of abnormal (i.e., epileptic) activity patterns to prevent 

imminent seizure activity, and is implanted in the skull to support two penetrating 

electrode leads, 1.27 mm in diameter, with up 4 platinum-iridium electrode contacts 

spaced either 3.5 mm or 10 mm apart. In each participant, 4 bipolar channels were 

recorded at a sampling rate of 250 Hz. In accordance with the IRB protocol and with 
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participant consent, closed-loop stimulation was turned off during the experimental 

recordings in order to remove potential stimulation artifacts from the data. 

For the duration of the experiment, amplifier settings on the RNS System (320 

model) were programmed to apply a 1 Hz high pass filter and a 90 Hz low pass filter. 

Wireless iEEG data was recorded from the RNS System as previously described(Topalovic 

et al., 2020). Briefly, a ‘Wand’ accessory wirelessly recorded iEEG from the implanted 

RNS System using near field telemetry. The Wand was positioned on the head, 

immediately above the implanted RNS System on the patients’ head and secured in a 

custom-made Wand holder and attached to a backpack to allow for free movement (Fig. 

4-1a). Data was stored as a continuous timeseries across channels and storage was 

remotely triggered wirelessly at the end of each session of continuous blocks. Of note, 

since there was no wired connection between the implanted RNS System (the recording 

apparatus), the VR headset, and an external power source, the iEEG data was free from 

power line noise. 

To synchronize iEEG with behavioral data, the Unity application executed on the 

VR headset was programmed to trigger a signal (mark) wirelessly at specific time points 

inserted into the iEEG data. These synchronization marks were sent at specified times in 

the tasks, specifically at the start of each block (see Topalovic et al.(Topalovic et al., 

2020) for synchronization details of the setup).  

 

4.2.4 Electrode localization 

Precise localization of electrode contacts was performed by co-registering post-

operative head CT scans with pre-operative MRI scans (T1 and/or T2-weighted 

sequences). One example localization of the four contacts on one electrode lead can be 

seen in Figure 4-1B. Across the six participants, there were nineteen total channels 

localized to the MTL in regions including the hippocampus, parahippocampal cortex, 
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perirhinal cortex, and entorhinal cortex. No recording contacts were located in the 

amygdala. For list of electrode contact localizations of all participants, see Table 4-1. 

 

4.2.5 Detection of epileptic events 

Inter-epileptic discharges (IEDs) are abnormal electrical distortions related to 

epilepsy that can occur intermittently and on an individual basis. IEDs were removed 

from all iEEG channels prior to normalization of power and all additional 

neurophysiological analyses. We applied IED detection methods previously 

described(Gelinas et al., 2016; Aghajan et al., 2017, 2019; Stangl et al., 2021). Briefly, IED 

detection used a double thresholding approach where for the first threshold, each sample 

was tested against two criteria to identify IEDs to be removed from analysis: (1) whether 

the envelope of the unfiltered signal was 6.5 standard deviations away from baseline, and 

(2) whether the envelope of filtered signals (15-80 Hz bandpass filtered after signal 

rectification) was 6.5 standard deviations away from baseline activity. Once these IED 

samples were detected, a second threshold was applied to remove samples surrounding 

detected IED samples. Specifically, a smoothing gaussian filter with a moving kernel range 

of 0.1 s was applied to a binary vector with 1’s denoting detected IEDs and a threshold of 

0.01 was applied to the smoothed vector to identify all samples around and including 

detected IEDs, all of which were excluded from analysis in order to remove potential 

residual epileptic activity. In order to remove a wider window around high-amplitude IED 

events, this method was applied a second time with a higher 7.25 standard deviation 

cutoff for the first threshold and a wider 0.25 second smoothing window for the second 

threshold. Using this method, an average 3-7% of samples were removed per channel, 

similar to previous results(Aghajan et al., 2017; Stangl et al., 2021). We specifically 

recruited participants with low baseline IED activity based on their historical data from 
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the RNS System (i.e., average daily number of stimulation events delivered in recent 

months).  

 

4.2.6 Behavioral analyses 

Memory performance was computed as the distance error, or the distance between 

the position at which the participant pressed the button during retrieval trials to indicate 

the recalled halo position and the center position of the halo. Immediately after the 

button press, the participants received visual on-screen feedback of either “Correct!” (if 

they were within 0.75 m of the halo’s center) or “Incorrect”. To determine whether 

participants successfully learned halo positions over each experimental session, learning 

was evaluated by comparing each participants’ mean error (e.g., memory performance) in 

retrieval block #1 across both contexts (excluding the last 15 trials which met the 

learning criterion threshold necessary to advance past retrieval block #1 for P1-5) to 

mean error during their last retrieval block in each context. The mean error performance 

across the last retrieval block compared to that during retrieval block #1 (before meeting 

the learning criterion) was evaluated for significance using a pairwise permutation test 

across participants. 

For memory retrieval analyses, correct and incorrect trials were defined from when 

the participant received instructions to retrieve a particular halo (no visible halo cue was 

present) until the instance at which they recalled the halo position (button press). Visible 

halo (feedback) periods were defined from the instance of recall (button press), at which 

point the halo appeared in its correct location, until the instance at which the participant 

navigated to the visible halo. Visible halos occurred immediately following both correct 

and incorrect trials; feedback appeared after correct trials even when participants were 

within 0.75 m of the halo and thus participants were still required to navigate to the 

center of the visible halo. 
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For boundary versus inner room area analyses, we used a method similar to a 

previous study(Stangl et al., 2021). Since the same room dimensions used in this study 

were identical to those used in a previous study, the same 1.2 m proximity to boundary 

(i.e., wall) cutoff was used to separate “boundary” versus “inner” room areas. Furthermore, 

it is worth noting that the previous study found that the cutoff threshold for separation of 

boundary (range 0.8 – 1.6 m) did not change the overall boundary modulation 

observed(Stangl et al., 2021). 

 

4.2.7 iEEG data analysis 

Time frequency analysis was performed by computing the oscillatory power at 

individual frequency steps (1 Hz) between 3-120 Hz using the BOSC toolbox (Seager et 

al., 2002; Whitten et al., 2011) with a third order Morlet wavelet. Specifically, a 3-cycle 

Morlet wavelet convolution was applied to every frequency step by using it as a kernel for 

convolution with the iEEG signal. Amplitude and power were extracted from the resulting 

signal consisting of complex values. We repeated all analysis with a sixth order Morlet 

wavelet and the results were qualitatively and quantitatively the same, suggesting the 

robustness of the results with regards to analysis parameters. Next, each channel’s power 

timeseries was normalized for each frequency step using the MATLAB “zscore” function 

(after excluding IED samples).  

For bar graphs comparing mean power across a bandpower range (i.e. 6-8 Hz), 

normalized power was summed over frequency steps (1 Hz) for all samples that fell within 

a particular task condition of interest (e.g., any sample that occurred during any correct 

or incorrect trial). Mean normalized power was then computed over the summed 

bandpower timeseries. 

To evaluate the prevalence of significant theta oscillations, we used the BOSC 

toolbox to detect bouts of at least 2 cycles above 95% chance for 1 Hz frequency steps 
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between 3-25 Hz as has been done previously (Aghajan et al., 2017; Stangl et al., 2021). 

Theta prevalence was computed as the percentage of detected bouts out of all relevant 

task condition samples.  

Theta-gamma phase-amplitude coupling was computed using the “modulation 

index” (MI) between the phase of low frequency (theta) and amplitude of high frequency 

(gamma) according to the methods described previously (Tort et al., 2009). Specifically, 

the timeseries was split into two task conditions (samples during correct and incorrect 

retrieval trials). Phase-amplitude coupling was computed independently on each task 

condition in 1 Hz frequency steps between 3-12 Hz (low frequency oscillations) and 3 Hz 

frequency steps between 40-90 Hz (high frequency oscillations) on a channel-by-channel 

basis. MI was computed for each possible theta-gamma frequency pair (e.g., 3 Hz theta 

and 40 Hz gamma represents one possible frequency pairing). Each theta-gamma 

frequency pair modulation index was then normalized to a surrogate distribution for that 

specific pairing generated by computing 100 iterations in which gamma amplitudes were 

coupled with randomly shuffled 1-second theta phase segments, as was done 

previously(Tort et al., 2010; Stangl et al., 2021). For each comparison (e.g. strength of 

phase-amplitude coupling during retrieval relative to arrow trials), we applied a data 

subsampling approach (see below) to compare the same number of samples across 

conditions. The visualized heat map reflects the mean difference between two conditions 

of the normalized MI across channels and was smoothed for visualization (Fig. 4-8A). To 

visualize the specific low-frequency phase that high-frequency amplitudes were coupled to, 

we computed the high-frequency amplitudes across a broad range of high frequencies (40-

90 Hz), normalized to a surrogate distribution as described above, and computed the 

mean amplitude over 18 phase bins (20° each) ranging from 0-360° of the low frequency 

oscillations (Fig. 4-8B-C). To evaluate differences in phase-amplitude coupling between 

task conditions across gamma frequencies, the difference in surrogate-normalized MIs 
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between retrieval and arrow trials was computed on a channel-by-channel basis. To 

determine if theta-gamma coupling was significantly stronger between conditions over a 

broad range of low frequency and high frequency oscillations, we computed permutation 

tests for the difference in MI between correct and incorrect trials for each possible theta-

gamma coupling pair, across channels. Significant differences were shown in yellow and an 

FDR correction was applied across all comparisons with significant FDR-corrected 

differences shown in red (Fig. 4-8D). Then, the mean phase-amplitude coupling for theta 

bandpower and gamma bandpower was computed across MIs for each channel was plotted 

(Fig. 4-8E, F). The heatmaps depicting differences in MI between conditions and also 

those illustrating the preferred phase of high frequency oscillatory coupling were smoothed 

for visualization purposes (using the interp2 MATLAB function with a smoothing factor 

of k = 7, Fig. 4-8A-C).  

 

4.2.8 Statistical comparisons & data subsampling 

Statistical comparisons were completed using two-sided permutation tests with 

1000 iterations. For comparisons of bandpower arrays between two conditions, the 

permutation test calculated whether the mean difference between value pairs was 

significantly different from zero. For comparisons of bandpower ranges across three 

conditions, one-way ANOVA was used to evaluated differences between conditions, 

followed by Tukey’s test for multiple comparisons. When multiple comparisons were used 

(i.e., multiple frequency steps in a bandpower analysis), p values were adjusted using the 

false discovery rate (FDR)(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 

2001). 

For top-down maps of theta bandpower (e.g., Fig. 4-5), the room was divided into 

19 x 19 bins. Mean bandpower over condition was computed for each bin, specifically the 

bandpower for all samples in which the participant was positioned in a bin was summed, 
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then divided by the number of samples the participant occupied in that bin. A gaussian 

smoothing kernel of 0.2 standard deviations was applied to this heatmap, normalized to 

the peak power and finally, interpolated (using MATLAB function ‘interp2’ with k = 7) 

for visualization.  

For analyses comparing oscillatory power or theta prevalence between conditions 

that had a differing number of samples, we performed all calculations on 500 iteratively 

generated, equally sized subsets of data. Specifically, we first compared the number of 

samples for all conditions to be compared (e.g., correct, incorrect, and visible halo 

conditions). For the condition with the fewest number of samples, we applied no 

correction. For the other conditions, we randomly selected the same number of samples 

for the fewest-sample condition from the longer timeseries and repeated this step 

iteratively 500 times, with replacement (using the MATLAB “datasample” function). For 

each iteration, we computed the parameter of interest (e.g., bandpower), then averaged 

this parameter of interest across all 500 iterations. We did this on a channel-by-channel 

basis and used the averaged result for all statistical comparisons and plotting of data. 
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4.3 Results 

Figure 4-1. Experimental setup and ambulatory spatial memory task. (a) Equipment worn by participants 

including the Mobile-Deep Brain Recording and Stimulation (Mo-DBRS) system that enables recording of 

intracranial MTL activity (Topalovic et al., 2020), a virtual reality (VR) headset and associated handheld 

VR controllers. Also shown are wall-mounted motion capture cameras. (b) An example participant’s 

intracranial electrode contacts (blue circles) localized to the left hippocampus from a post-implant CT 

registered to a pre-surgical MRI. (c-f) Ambulatory spatial memory VR task showing different types of trials: 

(c) Encoding trials, which consisted of navigation to multiple distinct visible halos, each presented one at a 

time (instructions: “Go to the [color] halo”), (d) Arrow trials, which consisted of navigation to a visible 

arrow randomly positioned along the perimeter of the room (instructions: “Go to the arrow”), (e) Retrieval 
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trials, which consisted of navigation to previously learned halo positions (halos not visible; instructions: “Go 

to the [color] halo location & press the button when you arrive”) followed by (f) visible feedback and 

instructions to navigate to the correct halo position (halo is visible; feedback/instruction: “Too far 

away!/Correct! Walk to the [color] halo”). (g,h) Each participant completed the task in two different 

environmental contexts: (g) stone and (h) wooden. Perspective and top-down views of each context with 

halos visible. Contexts differed in terms of visual appearance (e.g., color/shape of wall artwork, doors, 

chandeliers, flooring, walls, etc.) but were matched in their geometric layout and placement of visual (wall) 

artwork. The three halo colors and positions were different between contexts. 

 

4.3.1 Measuring spatial memory using ambulatory VR and motion tracking 

We developed a novel ambulatory VR spatial memory task which six participants 

completed while MTL iEEG activity was recorded (Fig. 4-1a) from a chronically-

implanted responsive neurostimulator (RNS) system (Fig. 4-1b, see detailed information 

in Table 4-1). The spatial memory task was carried out in an immersive room-scale VR 

environment (5.84 x 5.84 m, Fig. 4-1c-h) during which participants interactively navigated 

to, learned, and later recalled the position of uniquely colored visible translucent cylinders 

(halos). The physical movement of participants in the real room was mapped to body 

position in VR space such that the scene was updated according to each participants’ 

motion in a one-to-one-manner. The spatial memory task consisted of learning (encoding) 

trials, arrow trials, and memory recall (retrieval) trials (Fig. 4-1c-f). During encoding 

trials, participants were instructed to navigate to a halo (Fig. 4-1c, Supplemental video 1) 

and learn its spatial location. During arrow trials, participants were instructed to navigate 

to an arrow (Fig. 4-1d) located in the perimeter of the room, which appeared at a new 

randomized position in each trial. The task began with encoding trials (each repeated with 

unique halo colors and positions, Fig. 4-1g-h) interleaved with arrow trials. After one 

encoding and arrow trial was completed for each halo, participants began retrieval trials, 

during which they were instructed to navigate to a previously learned halo position from 
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memory and indicate their arrival (recall position) using a button press on a wireless 

handheld VR controller (Fig. 4-1e). After each retrieval trial, visual feedback (“correct” or 

“incorrect”) appeared specifying whether the participant responded correctly or incorrectly. 

At the end of this feedback and regardless of performance, the halo became visible (visible 

halos, Fig. 4-1f) in its correct position until the participant navigated to its center, 

providing an opportunity to re-learn the halo position. Arrow trials were also interleaved 

in between retrieval trials similar to encoding trials. See supplemental video 2 for example 

retrieval, feedback, and arrow trials. Participants completed the task with 15 retrieval and 

arrow trials (constituting one retrieval block) and alternated between two environmental 

contexts (stone room: Fig. 4-1g, wooden room: Fig. 4-1h) each of which contained three 

halos with unique colors and positions. For further details see Methods. 

 

Figure 4-2. Memory performance during the ambulatory spatial navigation task. (a) Mean memory 

performance (error) was measured for each of the six participants (P1-6, colored lines, nhalos = 3 halos) by 

calculating the average distance between recalled and correct halo locations across trials. The 1st retrieval 

block included a variable number of trials for P1-5 (15-30 trials) depending on when a learning criterion 

(error for 15 consecutive trials < 1.5 m) was reached. P6 did not show learning during retrieval block #1 

and thus was manually advanced to subsequent retrieval blocks. Mean performance across participants is 

also shown (black line, Nparticipants = 5 participants, P1-5; P6 excluded due to inability to meet learning 

criterion). The total number of retrieval blocks varied across participants (5-10 blocks). (b) Difference in 
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mean error between the first (trials before learning criteria was met) and last retrieval block. Lines show 

data from individual participants. * = p < 0.05. (c-d) Top-down view of an example participant’s walking 

trajectory collapsed over all encoding, retrieval, and arrow trials in the (c) stone and (d) wooden context. 

Halo colors and positions are indicated in each of the two environments. 

Participant Number P1 P2 P3 P4 P5 P6 

Age 50 38 43 54 33 42 

Sex female male male female female female 

Total retrieval blocks (stone + 
wooden contexts): 

6 12 18 17 20 8 

# of trials in retrieval block #1 
Stone 30 15 18 18 15 69 

# of trials in retrieval block #1 
Wooden 21 30 27 18 21 60 

Recording duration (minutes): 32 143 114 103 155 135 

E
le

ct
ro

d
e 

1 

Hemisphere left left left left left left 

Contact Spacing (mm) 3.5 10 3.5 3.5 10 10 

# of MTL channels 2 1 2 2 1 2 

Channel 1 localization HPP/HPP HPP/HPP HPP/HPP HPP/HPP ERC/PRC HPP/HPP 

Channel 2 localization HPP/HPP 
Extra-
MTL HPP/HPP HPP/PRC 

Extra-
MTL HPP/HPP 

E
le

ct
ro

d
e 

2 

Hemisphere right right right left right right 

Contact Spacing (mm) 10 10 3.5 10 10 3.5 

# of MTL channels 1 1 2 2 1 2 

Channel 1 localization HPP/PRC HPP/HPP HPP/HPP HPP/HPP ERC/PRC ERC/ERC 

Channel 2 localization 
Extra-
MTL 

Extra-
MTL HPP/HPP HPP/HPP 

Extra-
MTL PRC/PRC 

 

Table 4-1. Participant demographics, experimental task info, and localizations of electrodes. The number of 

retrieval blocks and trials for the six participants (P1-6) who completed the ambulatory spatial navigation 

task in the stone and wooden contexts. Localizations of electrode contact pairs for each bipolar recording 

channel: hippocampus (HPP), perirhinal cortex (PRC), entorhinal cortex (ERC). Extra-MTL indicates 

contacts that were localized to regions outside of the MTL. 

Memory performance during retrieval trials was measured by computing the 

distance (error) between the recalled position (button press) and the actual halo position 

(Supplemental video 2). Across participants, mean error was significantly reduced during 

the last compared to the first retrieval block (see Methods for further details, p = 0.021, 

pairwise permutation test, Fig. 4-2a-b). The complete trajectory of an example participant 

over the course of the entire task in each VR environment is shown in Figure 4-2c-d, 

illustrating adequate and evenly distributed sampling of positions across the room as was 
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seen in all participants. After retrieval block #1, mean error across participants was 0.56 

m (± 0.01, standard error of the mean, s.e.m.). Accuracy was also computed during the 

same retrieval blocks based on a 0.75 meter (m) radial distance threshold (from the center 

of the halo), which was used to provide visual feedback to the participant (“correct” or 

“incorrect”). Accuracy was calculated to be 65% (± 8.5% s.e.m.) on average across 

participants. Altogether, these behavioral findings showcase the ability of ambulatory 

immersive VR combined with motion tracking to be used to precisely assess spatial 

memory performance in freely moving human participants with simultaneous iEEG 

recordings.  
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Figure 4-3. MTL theta bandpower increased during correct compared to incorrect retrieval, visible halo, or 

arrow trials. (a-d) Mean (± standard error of the mean [s.e.m.]) normalized (norm’d) power across MTL 

channels (nchannels = 19) for frequencies 3-120 Hz during the 0.5 s period prior to either the button press 

during (a) correct or (b) incorrect recall during retrieval trials, (c) arrival at visible halos during feedback, 

or (d) in the 0.5 seconds prior to arrival at arrows during arrow trials. MTL theta bandpower significantly 

increased during correct but not incorrect retrieval, visible halos, or arrow trials. Horizontal pink bar 

indicates significant power increase/decrease (p < 0.05, 2-sided permutation test, corrected using false 

discovery rate [FDR] (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). (e-h) Top-down view 

of theta bandpower (6-8 Hz) in an example MTL channel of participant 5 averaged across all samples during 

retrieval trials (e, correct; f, incorrect) when halos were not visible and during (g) visible feedback when 

halos were visible and (h) during arrow trials, excluding the 0.5 meters prior to arrival at halos. (e-f) 

Colored circles reflect recalled locations during retrieval for all correct and incorrect trials. (g) Colored 

circles reflect locations of halos during visible feedback. (i) Mean (± s.e.m.) norm’d theta bandpower across 
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MTL channels (nchannels = 19). Note, halos were not visible during correct (green) or incorrect (red) retrieval 

trials. Arrow trials and arrival at arrow (orange). Vertical gray dotted line (time = 0) indicates the moment 

(button press) when participants arrived at the remembered halo position (correct/incorrect) during 

retrieval trials or arrived at the visible halo (visible, blue) during feedback, or arrow (orange) during arrow 

trials. (j) MTL theta bandpower significantly increased during the 0.5 s prior to recall for correct compared 

to incorrect retrieval trials, visible trials and arrow trials. Circles represent the mean norm’d bandpower 

across all trials for an individual channel. * = p < 0.05, ** = p < 0.01, *** = p < 0.0001, FDR corrected.  

 

4.3.2 Successful memory retrieval is associated with increased MTL theta bandpower  

We next investigated whether MTL oscillatory activity was modulated by 

successful memory retrieval. To do this, we first examined power across a range of 

oscillatory frequencies (3-120 Hz) during the time period around the instant of recall 

(button press). During this time period, MTL oscillatory power significantly increased 

only at theta (6-8 Hz) frequencies (6-8 Hz: all individual frequencies p < 0.05, after 

correcting for multiple comparisons using the false discovery rate [FDR](Benjamini and 

Hochberg, 1995; Benjamini and Yekutieli, 2001), nchannels = 19, Fig. 4-3a-d). Specifically, 

this theta (6-8 Hz) bandpower was significantly elevated during correct but not incorrect 

retrieval trials, arrival at visible halos during feedback, or arrival at arrows during arrow 

trials (Fig. 4-3e) and this increase was specific to the 0.5 s prior to recall (p < 0.001; 

correct vs. incorrect, p = 0.015; correct vs. visible halo, p < 0.001; incorrect vs. visible 

halo, p = 0.009; correct vs. arrow, p = 0.050; arrow vs. incorrect, p = 0.339; arrow vs. 

visible, p = 0.012; FDR corrected, nchannels = 19, Fig. 4-3j, FDR corrected; Supplemental 

video 3).  

Successful memory-retrieval-related increases in MTL theta bandpower were not 

present over the entire retrieval period (6-8 Hz: all individual frequencies p > 0.05, FDR 

corrected, nchannels = 19), and further, only occurred in MTL not non-MTL channels (Table 
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4-1). Specifically, in non-MTL channels (nchannels = 5), there were no significant theta 

bandpower changes during successful (6-8 Hz: all individual frequencies p > 0. 0.05, FDR 

corrected) or unsuccessful memory retrieval trials (6-8 Hz: all individual frequencies p > 

0.05, FDR corrected), or during arrival at visible halos during feedback (6-8 Hz: all 

individual frequencies p > 0.05, FDR corrected). MTL memory-related theta bandpower 

increases could not be explained by the presence of a virtual object since halos were not 

visible during retrieval trials (Fig. 4-3a-b,f-g). An example channel illustrating the effect is 

shown in Figure 4-3, where MTL theta bandpower peaked near correctly (Fig. 4-3f) but 

not incorrectly (Fig. 4-3g) recalled halo positions nor visible halo positions (Fig. 4-3h) nor  

in association with halo positions during arrow trials (Fig. 4-3i).  

Given prior studies showing that movement speed modulates the prevalence of 

theta oscillations (Whishaw and Vanderwolf, 1973; Winter et al., 2015; Aghajan et al., 

2017), we evaluated whether there were differences in speed profiles during correct versus 

incorrect retrieval trials. We found no significant differences in movement speed during 

correct compared to incorrect retrieval trials nor between retrieval trials and visible 

feedback during the same 0.5 s prior to recall/arrival at a virtual halo, (p = 0.370, p = 

0.862, nparticipants = 6, Fig. 4-4), suggesting that the observed memory-related effects were 

not driven by differences in movement speed between conditions. Additionally, there were 

no significant differences in movement speed between navigation in the stone and wooden 

context nor between the first-encountered and second-encountered context (since starting 

context was counterbalanced across participants, p = 0.589, p = 0.502, nparticipants = 6). 

Furthermore, given prior results illustrating that MTL theta oscillations occur in non-

continuous bouts in freely ambulating humans(Aghajan et al., 2017; Stangl et al., 2021), 

and that these bouts are modulated by behavioral variables (e.g., movement speed), we 

examined whether differences in the prevalence of theta bouts could explain memory-

related effects on MTL theta bandpower (Fig. 4-5). We found that MTL theta bandpower 
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increases did occur in transient bouts and occurred at similar rates compared to previous 

studies(Aghajan et al., 2017; Stangl et al., 2021), however, the prevalence of these bouts 

did not significantly differ between task conditions (retrieval vs. arrow vs. visible halo 

trials, p > 0.05; correct vs. incorrect, p > 0.05; across all individual frequencies between 3-

25 Hz, nchannels = 19, Fig. 4-5a-c), suggesting successful memory retrieval results in 

increased MTL theta bandpower in the absence of changes in its prevalence.   

 

Figure 4-4. Movement speed during different task conditions. Mean speed (± standard error of the mean 

[s.e.m.]) across participants (open circles, nparticipants = 6), with each gray line indicating participant’s mean 

speed across conditions, compared during (a) correct versus incorrect retrieval trials during the 0.5 s prior to 

recall, (b) first versus second context, (c) before versus during the 0.5 s prior to recall, (d) retrieval 

(excluding 0.5 s prior to recall) versus arrow (excluding 0.5 m preceding arrival at arrow) trials, (e) retrieval 

(excluding 0.5 s prior to recall) versus visible feedback (excluding 0.5 s preceding arrival at visible halo 
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position), and (f) positions in the boundary (< 1.2 m from walls) versus inner area (> 1.2 m from walls) of 

the room. ns = p > 0.05. 

 

Figure 4-5. Oscillatory prevalence across task conditions. Mean (± standard error of the mean [s.e.m.]) 

oscillatory prevalence across frequencies (3 – 25 Hz) and MTL channels (nchannels = 19) during (a) the entire 

task, (b) retrieval, arrow, and visible halo trials, (c) correct and incorrect retrieval trials, (d) correct and 

incorrect retrieval trials specifically during the last 500 ms prior to recall, and (e) boundary ( < 1.2 m from 

room walls) and inner ( > 1.2 m from room walls) room positions. No significant differences were found in 

oscillatory prevalence across frequencies (3 – 25 Hz) for any conditions shown (b-e). 

 

4.3.3 MTL theta bandpower is modulated by spatial position  

Next, we investigated whether MTL theta oscillations were modulated by one’s 

location in the environment. To do this, we used data from both contexts (stone and 

wooden) and computed MTL theta bandpower across positions, separately in each room, 

during retrieval (when halos were not visible) and arrow trials (when arrival positions at 

arrows were excluded). We first excluded iEEG data from retrieval periods that showed 

memory-related modulation (last 0.5 s before recall). In this way, we could determine 

whether MTL theta bandpower was modulated by spatial position, independent of the 

moment of recall or arrival at a target goal halo position. Excluding the last 0.5 s prior to 

recall in this way, resulted in exclusion of the time window (as well as proportional spatial 

distance) preceding the physical arrival at the target (goal) halo on any given retrieval 

trial. Thus, this analytic approach retained instances when participants incidentally 
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traversed non-visible previously-learned (non-target) halo positions along the participants’ 

trajectory to the goal halo location.  

 

Figure 4-6. MTL theta bandpower increased at non-target halo positions. (a) Mean normalized (norm’d) 

theta (6-8 Hz) bandpower during retrieval trials (excluding last 0.5 s prior to recall of target halos) in 

positions close versus far from non-target halo positions shown across varying radius (distance to halo) 

thresholds used to determine the cutoff between ‘close’ and ‘far’ positions. Gray box highlights radius 

thresholds where theta bandpower significantly differed between ‘close’ and ‘far’ positions (p < 0.05). 

Diamond indicates significant radius threshold (2 m) after correcting with false discovery rate [FDR]. (b) 

Mean norm’d theta bandpower significantly increased in positions close to (< 2 m, red) versus far away (> 2 

m, blue) from non-target halo centers. Crosses represent mean norm’d bandpower for each channel during 

retrieval trials, excluding the last 0.5 s prior to recall of a target halo with colors corresponding to individual 

participants. (c-d) Top-down view of theta bandpower in an example channel across room positions, during 

retrieval trials, when no visible halos were present, and excluding the 0.5 s preceding recall of target halos. 

Circles represent positions where target halos were recalled (button press), split by stone (c) and wooden (d) 

contexts. * = p < 0.05. 

We examined MTL theta bandpower when participants were in positions that were 

classified as ‘close’ to or ‘far’ from the non-visible non-target halos during participants’ 

trajectories to the target halo (of which the 0.5 s prior to target halo arrival was 

excluded). MTL theta (6-8 Hz) bandpower was significantly increased at ‘close’ compared 

to ‘far’ distances relative to the non-visible non-target halo positions. The difference in 

MTL theta bandpower between ‘close’ and ‘far’ positions peaked at a distance threshold of 
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2 m from non-target halo positions (distance thresholds of 1.5 and 2 m: both p < 0.05, 

nchannels x conditions = 38, Fig. 4-6a-b). Furthermore, the spatial distribution of theta (6-9 Hz) 

bandpower increases was specific to relevant positions within each context separately 

(stone: p = 0.033; wooden: p = 0.044, nchannels = 19) suggesting that MTL spatial 

representations can remap based on the perceived environment (see example channel 

showing theta activity in the stone (Fig. 4-6c) and wooden (Fig. 4-6d) context). Since 

halos were not visible for the duration of the examined period, and since the 0.5 s leading 

up to recall and arrival at the to-be-retrieved target halo were removed, these results 

suggest that MTL theta bandpower increased incidentally at meaningful spatial positions 

within a familiar environmental context. 

 

Figure 4-7. MTL theta bandpower is modulated by position relative to environmental boundaries. (a-b) 

Analysis performed over arrow trials, excluding the 0.5 m leading up to arrival at arrows. (a) Mean (± 

s.e.m.) normalized (norm’d) difference in power across frequencies (3-120 Hz) and MTL channels (nchannels = 

19) between positions near (within 1.2 m of walls, based on prior work(Stangl et al., 2021)) versus away 

from boundaries. Significant differences in norm’d power in boundary compared to inner positions occurs for 

theta frequencies (4-6 Hz, horizontal pink bar = p < 0.05, corrected using false discovery rate [FDR]). (b) 

Mean ± s.e.m.) norm’d theta bandpower (4-6 Hz) across MTL channels (nchannels = 19) for boundary and 

inner positions. Crosses represent individual channels with colors corresponding to individual participants. 
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*** = p < 0.001. (c) Top-down view of norm’d theta (4-6 Hz) bandpower in an example channel for data 

across the entire task, excluding the 0.5 leading up to arrival at arrows. 

We next examined how MTL oscillatory power was modulated by spatial positions 

near room boundaries (e.g., walls), based on evidence of boundary-related representations 

identified in a prior ambulatory spatial navigation study in humans(Stangl et al., 2021). 

Since the VR room dimensions in our study were identical to those in this previous 

navigation study(Stangl et al., 2021), we used the same boundary-inner room area cutoff 

of 1.2 m from the wall. Across widespread (3-120 Hz) oscillatory frequencies examined, 

mean power significantly increased at boundary compared to inner-room positions only for 

theta frequencies (4-6 Hz) during arrow trials (excluding 0.5 m prior to arrow arrival: 4-6 

Hz: all individual frequencies p < 0.05, FDR corrected, nchannels = 19, Fig. 4-7a; boundary 

versus inner: p < 0.001, Fig. 4-7b; nchannels = 19). Conversely, there were no significant 

differences in mean theta bandpower between boundary and inner room positions during 

memory retrieval trials (4-6 Hz: all individual frequencies p > 0.05, FDR corrected, nchannels 

= 19). Boundary-related power increases were also observed at higher frequencies during 

arrow trials (12-14, 31-35 Hz, all individual frequencies p < 0.05, FDR corrected, nchannels = 

19) similar to a previous study(Stangl et al., 2021). The boundary-related theta 

bandpower increase was also present when looking at data over the entire task (again, 

excluding data from positions within 0.5 m of arrow arrival, 4-6 Hz bandpower, p < 0.001) 

and can be seen in an example channel in Figure 4-5C. Importantly, boundary-modulation 

of theta bandpower was not due to changes in movement speed, given that there were no 

significant differences in mean movement speed when participants were in the “boundary” 

compared to “inner” room positions, across participants (p = 0.852, nparticipants = 6, Fig. 4-

4f). Also, theta prevalence was not significantly different between “boundary” and “inner” 

positions (p > 0.05, across all individual frequencies 3-25 Hz, nchannels = 19, Fig. 4-5d) 
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similar to a previous study(Stangl et al., 2021). Notably, boundary-related modulation of 

MTL theta bandpower was not present during retrieval trials, with or without the 0.5 s of 

data preceding recall included (all retrieval trials: p = 0.152; excluding 0.5 s preceding 

recall: p = 0.188; boundary versus inner, 4-6 Hz bandpower, nchannels = 19), potentially due 

to competing modulation of theta activity by non-visible non-target halo positions during 

retrieval search periods as discussed previously. Taken together, these results illustrate 

that MTL theta bandpower can be dynamically modulated by critical positions (e.g., that 

previously contained relevant objects or were closer to walls) depending on environmental 

context or task goal.  

 

4.3.4 Theta bandpower fluctuations are robustly driven by memory accuracy or proximity 

to boundaries and not by movement variables 

Although the greatest modulation of theta bandpower during correct, relative to 

incorrect, trials was observed at 0.5 seconds prior to retrieval, we evaluated the robustness 

of this memory modulation across a broad 3-120 Hz frequency range and over time 

windows leading up to retrieval (Fig 4-8a,b). Across time windows of 0.25, 0.5, 0.75, 1, 

and 2 seconds prior to recall, we found that correct trials exhibited significant increases in 

theta bandpower (~6-8Hz, all individual frequencies p < 0.05, FDR corrected, Fig 4-8a) 

while there were no significant increases in theta bandpower in the 0.25 – 2 s time window 

during incorrect trials (all individual frequencies p > 0.05, FDR corrected, Fig 4-8b).  

Although theta oscillations were not modulated by correct or incorrect memory 

performance over the entirety of retrieval trials (6-8 Hz: all individual frequencies p > 

0.05, FDR corrected, nchannels = 19), we next investigated whether theta power was 

modulated by subsequent memory performance across time windows immediately after 

cue presentation. Across 0.25 – 2 s time windows immediately following cue presentation, 

there were no significant deflections of theta bandpower in correct or incorrect trials (6-8 
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Hz: all individual frequencies p > 0.05, FDR corrected, nchannels = 19, Fig 4-8c-d). In the 2 

second time window following cue presentation, low frequency oscillations were 

significantly elevated in both correct and incorrect trials (3-4 Hz: all individual frequencies 

p > 0.05, FDR corrected, nchannels = 19). In addition to the observation that theta 

oscillations were not modulated in the 0.5 s prior to arrival to visible halos or arrows (Fig 

4-3c-d), we did not find significant modulation of theta bandpower in the 0.25 – 1 second 

prior to arrival at visible halos/arrows (6-8 Hz: all individual frequencies p > 0.05, FDR 

corrected, nchannels = 19, Fig 4-8e-f).  

Next, we examined the robustness of the boundary modulation of theta bandpower 

effect (Fig. 4-7a) over a wide range of boundary definition thresholds. Across boundary 

thresholds of 0.8 – 1.8 m away from walls, theta oscillations were significantly elevated in 

boundary relative to inner positions over the entire task (4-6 Hz: all individual frequencies 

p < 0.05, FDR corrected, nchannels = 19, Fig. 4-8g). During arrow trials in which the 0.5 m 

prior to arrival at an arrow was excluded, theta bandpower was also significantly higher in 

boundary relative to inner positions for boundary thresholds of 0.8 – 1.4 m (excluding 0.5 

m prior to arrow arrival: 4-6 Hz: all individual frequencies p < 0.05, FDR corrected, nchannels 

= 19, Fig. 4-8h). 
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Figure 4-8. Robustness of memory and spatial modulation of theta power. Mean (± standard error of the 

mean [s.e.m.]) normalized (norm’d) power across MTL channels (nchannels = 19) for frequencies 3-120 Hz for 

varying time windows relative to task periods of interest. ) 0.25 – 2 seconds (a-b) prior to recall in (a) 

correct and (b) incorrect trials, (c,d) after cue presentation in (c) correct and (d) incorrect trials, (e) before 

arrival at the visible halo during visible feedback periods and (f) before arrival at an arrow during arrow 

trials. Varying over boundary threshold cutoffs ranging between 0.8 – 1.8 m away from walls for (g) entire 

task and (h) arrow trials, after excluding the 0.5 meters before arrival at an arrow. Horizontal bar indicates 

significance, p < 0.05 for all frequency steps, corrected using false discovery rate [FDR].  

 Many movement variables have been linked to variations in theta power. One key 

advantage of VR is that it provides access to quantitative and instantaneous movement 

metrics including speed, angular velocity, and head rotation. To evaluate whether speed, 

angular velocity, or head rotation significantly explained the variation in theta bandpower 

fluctuations, we developed a linear mixed-effects model approach. We also incorporated 

variables reflecting the memory and spatial encoding effects previously seen. Specifically, 

we included a measure of the momentary distance to position of recall, distance to nearest 

boundary, quantitative final distance error for the current trial (‘Trial Error’) and a 

binary ‘Correct’ versus ‘Incorrect’ label for each trial in line with previous analyses 

presented in this chapter (Fig. 4-9a). During memory retrieval, memory-related cognitive 

variables were statistically significant predictors of the variation in theta bandpower 

(distance to recall: β coefficient -0.0915, p < 0.001; trial accuracy (error): β coefficient -

0.0717, p = 0.0340; nparticipants = 6, Fig. 4-9a). 
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Figure 4-9. Memory accuracy and proximity to boundaries drive theta bandpower fluctuations. Linear 

mixed-effects models were calculated to predict each participant’s normalized theta bandpower timeseries by 

a range of predictor variables that were fixed effects with samples blocked according to channel identity. (a) 

The models developed for the retrieval period (when no halos were visible) are summarized. Speed, angular 

velocity, distance to recall (position of button press), distance to boundary (nearest wall), and trial 

performance (distance error at position of recall) were continuous variables. Correct and incorrect was a 
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binary variable and head rotation was a categorical variable comprised of 12 possible binned movement 

directions (with the mean beta coefficient over all 12 levels depicted). (b) The models developed for the last 

0.5 seconds of the retrieval period (when no halos were visible) are summarized. (c) The models developed 

for the arrow search period are depicted. All variables are defined as in (a), with the addition of the 

continuous distance to arrow variable reflecting momentary proximity to the visible and target arrow 

position. Asterisks denote a significant impact of a variable on theta power (p < 0.05, uncorrected). 

Significance was determined for each variable by testing whether the variable’s beta weight was significantly 

different from zero in a one-sided permutation test across participants. Error bars show the standard error of 

the mean across nparticipants = 6. 

We also developed a separate model to evaluate the impact of speed, angular 

velocity, and head rotation movement variables on the memory effect observed in the last 

0.5 seconds prior to recall during retrieval trials by incorporating these variables with trial 

performance (binary correct vs incorrect; Fig. 4-9b). This model confirmed that correct 

relative to incorrect memory performance drives theta bandpower fluctuations in the 0.5 

second window prior to recall, and notably other movement variables were not significant 

predictors.  

We developed a separate model, following the same principles, to determine the 

driving variables during the arrow search trials that represented the non-memory phase of 

the task. For this model, we incorporated a metric of the instantaneous distance to 

position/arrival to the visible arrow (Fig. 4-9c). During arrow search periods, proximity to 

the nearest boundary was a significant predictor of theta bandpower (distance to 

boundary: β coefficient -0.0706, p = 0.0320, nparticipants = 6). Interestingly, proximity to the 

visible arrow targets was not a significant predictor of fluctuations in theta bandpower in 

this model (distance to arrow: β coefficient -0.0728, p = 0.116, nparticipants = 6), suggesting 

that in the memory retrieval model, the memory demands is a critical component to 

significant drivers of theta bandpower fluctuations. 
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 Taken together, linear mixed-effects modelling revealed that during memory 

retrieval, memory accuracy, binary memory performance, proximity to recall position and 

during arrow search, proximity to boundaries were important drivers of fluctuations in 

theta bandpower. In both models, the movement variables were not significant predictors 

of theta bandpower, emphasizing that memory and spatial variables dominated during 

memory- or arrow search- phases of the task, respectively.   

 

Figure 4-10. Theta-gamma phase-amplitude-coupling is increased during correct retrieval trials. (a) Phase-

amplitude coupling was calculated using a modulation index (MI) between phases of low-frequency (theta) 

oscillations and the amplitude of high-frequency (gamma) oscillations normalized (norm’d) to a surrogate 

distribution per frequency pair. The heatmap reflects the difference in normalized MI values during the 

retrieval trials (last 0.5 secondss) and arrow trials (excluding the last 0.5 m prior to arrival at arrows), in an 

example channel. (b,c) Mean gamma amplitude (normalized to a surrogate distribution) over phases of theta 

(0-360°; segmented into 18 phase bins of 20° each) for theta bandpower (3-5) Hz during retrieval trials (last 

0.5 seconds; B) and arrow trials (excluding the last 0.5 m prior to arrival; c). (d) Permutation tests were 

performed to test whether pairwise comparison of retrieval (last 0.5 s) minus arrow (excluding 0.5 m) phase 

amplitude coupling was significantly different from 0 for each theta-gamma pairing across all channels with 
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statistically significant (alpha = 0.05) pairings shown in yellow (uncorrected) and red (corrected using false 

discovery rate [FDR]). Significant theta-gamma coupling was observed at (82 Hz) gamma amplitudes 

coupled to (5 Hz) theta phases after FDR correction. (e) Significant (pairwise) difference in normalized MI 

between retrieval compared to arrow trials is shown for theta (3-5 Hz) phase and gamma (50-90 Hz) gamma 

amplitude, with circles indicating average values from individual channels (nchannels = 19). (f) Significant 

(pairwise) difference in normalized MI between retrieval compared to arrow trials is shown for theta (6-11 

Hz) phase and gamma (40-60 Hz) gamma amplitude, with circles indicating average values from individual 

channels (nchannels = 19). * p < 0.05, ** p < 0.01. 

  

4.3.5 Coupling between theta and gamma oscillations during retrieval and directed search 

Prior work has highlighted that synchronous theta and gamma oscillations (around 

40-90 Hz) are associated with memory retrieval (Hanslmayr et al., 2016) and that theta-

gamma phase-amplitude coupling occurred during a freely-moving spatial navigation task 

(Stangl et al., 2021). We sought to determine if similar theta-gamma phase-amplitude 

coupling was associated with memory retrieval during freely moving navigation and if 

phase-amplitude coupling during retrieval trials was stronger than during task periods 

without a memory demand (arrow trials). We computed a Modulation Index (MI) to 

measure whether theta (phase) and gamma (amplitude) cross-frequency coupling increased 

during retrieval trials (specifically in the last 0.5 s where there was a memory effect) and 

in arrow trials (excluding the 0.5 m prior to arrival at arrow positions). MI values were 

computed for each theta-gamma frequency pair and normalized to a surrogate distribution 

(Tort et al., 2010), and the difference between the MI during retrieval and arrow trials on 

each channel was computed (difference in MI in an example channel shown in Fig. 4-10a). 

Gamma amplitude specifically coupled to a theta phase of 90° and 270° during retrieval 

and arrow trials (Fig. 4-10b-c). We found that theta-gamma coupling was stronger during 

retrieval relative to arrow trials after correcting multiple comparisons (5 Hz and 82 Hz, p 

< 0.001, individual permutation tests per frequency pair, FDR corrected, nchannels = 19, Fig. 

4-10d). Specifically, coupling of theta and gamma oscillatory bands was significantly 
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stronger during retrieval compared to arrow trials for low theta (3-5 Hz) and gamma (50-

90 Hz) frequencies (p = 0.009, nchannels = 19, pairwise permutation test, Fig. 4-10d) and for 

high theta (6-11 Hz) and gamma (40-60 Hz) frequencies (p = 0.045, nchannels = 19, pairwise 

permutation test, Fig. 4-10f).  

 

4.4 Discussion 

We have shown that human MTL theta bandpower is modulated dynamically by 

successful memory retrieval and spatial position depending on environmental context and 

momentary behavioral demands. This study is the first to our knowledge to combine 

simultaneous ambulatory iEEG recordings and immersive VR, thereby providing proof-of-

concept data for a novel behavioral paradigm for use in freely moving humans. Using this 

platform, we were able to investigate how MTL oscillations represent memory and space 

flexibly during an ambulatory spatial navigation task that involves changes in context and 

behavioral demands. Our findings highlight two phenomena, one related to memory recall 

and the other to spatial position.  

First, we find that MTL theta bandpower is elevated 0.5 s prior to the moment of 

recall when the item being remembered (halo) is not visible and only when it is recalled 

correctly. This specific temporal pattern of theta bandpower increase, albeit of a higher 

frequency, echoes a previous finding in stationary humans showing hippocampal 

reinstatement of low frequency theta oscillations during early retrieval time windows, 

specifically within the first 0.5 s after a retrieval cue was presented (Griffiths et al., 2021). 

Additionally, our findings that theta bandpower is elevated only during successfully 

recalled trials is in line with prior reports from human iEEG studies that identify low-

frequency theta activity being modulated by memory performance during stationary view-

based spatial memory tasks (Miller et al., 2018; Solomon et al., 2019a; Herweg et al., 

2020a; Vivekananda et al., 2021). It is possible that the higher frequency theta effects seen 
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here are due to the fact that participants were physically navigating to recalled locations. 

Importantly, we found no significant differences in speed profiles during correct versus 

incorrect memory retrieval trials or task conditions (memory retrieval, or arrival at arrows 

or visible cues) and speed was not a significant predictor of theta bandpower fluctuations 

in any of the models for retrieval or arrow search periods, suggesting MTL high-frequency 

memory-related theta bandpower changes were not driven by changes in movement speed. 

Further, while prior work in ambulatory humans has shown that theta prevalence (not 

power) is modulated by movement speed during a non-mnemonic walking task (Aghajan 

et al., 2017) our findings here suggest successful memory retrieval modulates high-

frequency theta bandpower in the absence of changes in its prevalence. Interestingly, we 

found that differences in theta bandpower was specific to the 0.5 seconds prior to recall 

and not present over the entirety of retrieval. The effect was replicated using a modeling 

approach, confirming that correct performance drives theta bandpower increases in the 0.5 

seconds pre-recall and that movement variables (e.g., speed, head rotation, angular 

velocity) were non-contributory. However, modeling over the entire retrieval period 

highlighted that while correct performance did not significantly predict increases in theta 

power (confirming our initial results), improved performance (reduced error) was a 

significant predictor of increases in theta power throughout memory retrieval. These 

results are in line with prior discussions suggesting that mixed literature on the direction 

of theta oscillation power changes in humans could be clarified by relating a continuous 

memory performance metric to theta power oscillations (Herweg et al., 2020b). Thus, our 

results emphasize the importance of investigating memory and spatial representations 

during ambulation, while highlighting the need for future studies to determine how higher 

frequency memory-related theta changes differ between ambulatory compared to 

stationary (virtual) navigation. 

 Second, we found that MTL theta bandpower increased near previously learned 

object (halo) positions or environmental boundaries depending on context and momentary 
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task goals. Specifically, MTL theta bandpower increased near non-target halos when 

participants were actively searching for and recalling a separate non-visible target halo. 

This ‘spatial map’ of relevant halo positions was specific to each context (stone or 

wooden) and alternated as participants switched between environments, consistent with 

the idea of context reinstatement during memory retrieval (Herweg et al., 2020a). Further, 

MTL theta bandpower increased at positions close to environmental boundaries (walls) 

but only when searching for boundary-positioned cues (arrows). This spatial remapping of 

oscillatory activity based on the behavioral goal (memory recall versus cue-driven 

navigation) suggests that MTL theta bandpower can dynamically reflect multiple spatial 

and mnemonic variables in an “on/off” and flexible manner. One possibility is that 

transient theta power increases may reflect relevant neural representations that are 

momentarily engaged during dynamic mind-wandering states in humans. Specifically, a 

momentary increase in power of theta bouts may reflect the relevant neural 

representations (e.g. for memory or space) that are recruited for a particular 

cognitive/behavioral goal, in contrast with rodents, where more continuous theta activity 

occurs during freely moving navigation. Thus, these findings provide a possible 

explanation for non-continuous theta bouts in humans (Aghajan et al., 2017) where 

behavioral/cognitive variables may play a more critical role in their modulation as 

compared to continuous movement-related theta oscillations in rodents (Vanderwolf, 1969; 

Winson, 1978). 

 Mechanistically, remapping of MTL theta bandpower across different cognitive 

tasks could reflect coordinated remapping of local single neuron activity, although the 

relationship between oscillatory and single neuron remapping in humans requires further 

exploration. Rodent studies have shown that place cells, which encode particular positions 

in an environment, globally remap in different contexts and environments (Hafting et al., 

2005; Colgin et al., 2008). It is thus plausible that nearby local theta bandpower 
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remapping may reflect or organize place cell remapping, or that changes in theta 

bandpower may reflect the summation of populations of nearby remapped place cells. 

Prior studies recording MTL single neuron activity in stationary humans showed firing 

rate changes that dynamically changed during free recall tasks (Gelbard-Sagiv et al., 

2008) when virtually approaching the position of a previously learned object (Qasim et al., 

2019), and in relation to egocentric directions while navigating towards local reference 

points (Kunz et al., 2021). Given that these MTL neuronal populations each exhibit 

characteristic tuning to memory and spatial features, it is possible that their summative 

activity may be coordinated in relation to broader regional theta oscillations to support 

successful memory retrieval and anchoring positions of spatial targets. Indeed, 

environmental (contextual) remapping of population-level neuronal signals identified with 

fMRI has also been shown in a stationary view-based virtual navigation study in humans 

where hippocampal-entorhinal cortex activity ‘flickered’ between two contexts during 

incorrect memory retrieval trials as the participant struggled to identify the environment 

they were in (Julian and Doeller, 2021).  

Traditional human neuroimaging studies of memory retrieval and spatial 

navigation have been done in stationary participants viewing stimuli on a computer 

screen. Many of these studies were also designed to evaluate neural activity changes 

during brief stimulus presentations (e.g., 1-2 s when a cue is presented), which limits the 

ability to disentangle more complex neural dynamics related to multidimensional 

spatiotemporal experiences in an immersive environmental setting. In contrast, by 

utilizing 3D ambulatory VR, our study presents a critical advancement for future human 

behavioral studies measuring brain activity during freely moving behavior by creating a 

more ecologically-valid setting that enables participants to physically explore, learn, and 

recall experimentally-controlled stimuli in their environment. Furthermore, the use of VR 

in this way still allows for deliberate experimental control of the environmental context, as 

well as the timing and placement of stimuli. 
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 In summary, our results provide novel insights into how human MTL oscillatory 

dynamics support cognitive maps that could dynamically represent both memory and 

space in an ecologically-valid setting that involves physical movement through distinct 

spatial environments. These findings suggest that MTL theta oscillations contain memory- 

and spatial contextual-related information that may enable transient changes in cognitive 

states during complex real-world experiences. Our combined deep brain recording and 

immersive VR approach also presents a unique opportunity for future cognitive and 

clinical neurosciences studies of naturalistic behavior in humans to unravel underlying 

mechanisms during complex freely moving behaviors that may be further impaired in 

patients with neurologic and psychiatric disorders. 
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CHAPTER 5: 

Contextually-changing spatial representations 

 

5.1 Introduction  

Spatial navigation studies recording neural spiking activity in freely moving 

rodents have identified spatially selective cells in the medial temporal lobe (MTL), such as 

place (O’Keefe and Dostrovsky, 1971; McHugh et al., 1996), grid (Hafting et al., 2005; 

Sargolini et al., 2006), and stripe cells (Krupic et al., 2012; Mhatre et al., 2012). Rare 

single-unit recordings in humans performing spatial navigation in stationary, view-based 

2D virtual navigation enable comparisons to animal studies and provide early evidence of 

spatially selective units (Ekstrom et al., 2003; Jacobs et al., 2013; Nadasdy et al., 2017). 

However, recent technological developments in 3D and immersive virtual reality (VR) 

enable a more direct comparison between human studies with those in freely moving 

rodents; 3D compared to 2D offers a more ecologically valid experience. While 2D VR 

studies in humans have found a smaller proportion of single neurons compared to that in 

rodents that display place-like (Ekstrom et al., 2003; Jacobs et al., 2013), and grid-like 

(Jacobs et al., 2013; Nadasdy et al., 2017) activity, the results may be more comparable to 

rodents when using 3D compared to 2D navigation, supported by evidence comparing 

these two in rodents (Aghajan et al., 2015). Moreover, the coordinated activity of one of 

these spatially-modulated cell populations, grid cells, is thought to drive hexadirectional 

modulation of BOLD signal and theta bandpower in intracranial electroencephalography 

(iEEG) and functional magnetic resonance imaging approaches (Doeller et al., 2010a; 

Chen et al., 2018; Maidenbaum et al., 2018; Staudigl et al., 2018; Stangl et al., 2019). Our 

study builds on prior work by investigating the neural substrates using rare human 

recordings by capitalizing on two participant cohorts that provide access to both single-

unit and mobile iEEG episodic and spatial memory representations and bridges insights 
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from these multi-scale neural mechanisms by using the same immersive VR spatial 

memory task. 

 A core component of episodic memory is the integration of context and spatial 

information. Context is defined as the cues and expectations that organize information to 

guide retrieval (Stark et al., 2018). Although much has been learned about context in 

rodents (Fyhn et al., 2007; Colgin et al., 2008; Alexander et al., 2016; Latuske et al., 2018; 

Kubie et al., 2019), ecologically-meaningful context changes in ambulating humans have 

not been studied. Context changes in rodents result in place cell remapping, i.e. rapid 

changes in receptive fields and thus the ensemble firing rate map (Colgin et al., 2008; 

Alexander et al., 2016). Place cell remapping in rodents is thought to reflect intrinsic 

statistics of experiencing a particular context (Plitt and Giocomo, 2019). Meanwhile, 

entorhinal cortex grid cells maintain the same firing maps across different contexts while 

reflecting a degree of flexibility (e.g. grid realignment in novel environments; Hafting et 

al., 2005). Preliminary studies suggest that the human encoding of context may be more 

complex. In humans performing view-based 2D VR in four different environments, some 

properties of single-unit grid-like cells were found to adapt: scaling of grid period, grid 

orientation, and rotational symmetry (Nadasdy et al., 2017). A recently proposed model of 

the MTL suggests the entorhinal cortex encodes the environmental statistics as a basis 

function flexibly applied by the hippocampus to reflect specific environmental features 

(Whittington et al., 2020). Importantly, flexible accessing of differential spatial 

representations between contexts have also been demonstrated in humans in a recent 

fMRI study identifying that contextual representations flicker during dynamic retrieval 

(Julian and Doeller, 2021). This model predicted many experimental findings of the MTL, 

including place, grid, and stripe cells, as well as that grid cells maintain a correlational 

structure across different environments. How the human MTL encodes complex spatial 

memories in different contexts during real world navigation is a complicated, open 
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question. Here, we interrogate how ecologically meaningful contextual changes modulate 

spatial memory representations using a dual single-unit and mobile iEEG approach in two 

complimentary participant cohorts using a single immersive VR spatial memory task. 

 

5.2 Methods 

5.2.1 Participants 

 Two cohorts of participants were included in the study, all of whom had 

pharmacoresistant epilepsy. The first cohort included 13 participants who were 

undergoing diagnostic neurosurgical evaluation in the hospital epilepsy monitoring unit 

setting. Participants were surgically implanted with depth electrodes for epilepsy 

diagnostic evaluation in a range of global brain regions using Behnke-Fried electrodes 

containing microwires (for detailed discussion, see Chapter 3.3. The second cohort 

included 6 participants that all were chronically implanted with an FDA-approved RNS 

(responsive neurostimulator) System (Neuropace, Inc; 320 Model). The RNS System 

continuously records ongoing iEEG from 8 contacts across 2 electrode leads implanted in 

MTL regions (resulting in 4 bipolar channels per participant). For further details, please 

see the Methods section in Chapter 4.2.1. In both cohorts of participants, sites of electrode 

contacts were determined by the clinical team based on each participant’s individual 

clinical needs and participant recruitment was based on maximizing the number of 

participants with electrode contacts located in MTL regions. All participants completed 

written informed consent as approved by the UCLA Medical Institutional Review Board 

(IRB). 
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5.2.2 Spatial memory task in immersive VR in stationary and ambulatory movement 

formats 

 Participants completed a virtual reality spatial memory task in two different 

virtual environments (room dimensions were 5.84 x 5.84 m) where they learned and 

retrieved 6 uniquely colored and positioned translucent cylinders (halos) across the two 

environments. The task began in the first context with encoding trials in which a single 

halo appeared in its correct location and the participant navigated to the visible halo. 

After all encoding trials for each of the 3 halos in that context was completed, the 

participant completed repeating retrieval trials in which written instructions cued the 

participant to navigate from memory to a particular halo’s position and indicate the 

recalled position by button press. Regardless of performance, the halo then appeared in its 

correct location and if the participant navigated to the visible halo (‘visible feedback 

period’) in order to advance to the next trial. During the first retrieval block, trials 

repeated until the participants met a learning threshold or completing a set number of 

trials correctly as defined by recalling the halo within a set radius surrounding the halo’s 

actual position. During subsequent retrieval blocks, participants completed a pre-defined 

number of trials per block regardless of performance and all retrieval trials were followed 

by visible feedback periods. All retrieval and encoding trials were interleaved with so-

called “arrow trials” in which participants navigated to a visible arrow that appeared at a 

random position along the perimeter of the virtual environment. Since the position of the 

arrow was randomized in each trial, there was no memory component to arrow trials. 

Further, arrow trials encouraged participants to thoroughly sample the environment, 

including navigation to positions not associated with the fixed positions of halos. The 

starting environmental context was counterbalanced across participants. Each block 

alternated between the two contexts. The total number of blocks and total task time 

completed varied across participants. All participants completed a 5-minute practice 
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version of the task in a distinct virtual environment to provide a basic familiarity of the 

VR environment and task structure. 

The cohort of participants that were undergoing neurosurgical evaluation of 

epilepsy in the hospital epilepsy monitoring unit were constrained to their hospital bed 

due to the wired clinical recording equipment and thus completed the task in a stationary 

format (as such, this participant cohort will be referred to as “stationary participants”). 

These participants completed the task using an immersive head-mounted display VR 

(HTC Vive, HTC Corporation) with embedded eyetracking (Tobii). Participants 

navigated through the environment and pressed buttons either using the participant 

controllers or a wireless keyboard with arrow keys corresponding to navigational 

directions. Five of the thirteen stationary participants were unable to complete the 

training module in head-mounted VR due to difficulty navigating in the immersive VR 

environment, discomfort wearing the headset with glasses and head bandage interference, 

or nausea, and as such these participants completed the task in a 2D-virtual navigation 

format on a laptop. Across the 13 stationary participants, the number of blocks completed 

varied between 2 – 12 blocks and the total task time ranged from 20 min – 1 hour.  

The cohort of participants that had the RNS System implanted were able to freely 

ambulate since there was no additional clinical recording equipment (see Chapters 3.2, 

4.2.1-3, and 4.3.1-2 for more details). These participants will be referred to as “ambulatory 

participants” since they completed the VR task in an ambulatory format. These 

ambulatory participants completed the task using immersive head-mounted VR (Quest 2, 

Meta; or Pico Neo 2, Pico). Across the 6 ambulatory participants, the number of blocks 

ranged from 8 – 22 blocks and the total task time ranged from 32 – 135 minutes.  

Given the limited attention span and available time of stationary participants in 

the epilepsy monitoring unit, each block consisted of 3 trials (compared to 5 in the 



85 
 

ambulatory setting). Additionally, given the increased challenges associated with 

navigating in a virtual environment using V, and the decreased memory of participants in 

the post-anesthesia state, the learning criteria applied in retrieval block #1 was less 

stringent in the stationary format (correct retrieval, based on an error radius of < 2 m, in 

9 consecutive trials) relative to the ambulatory format (correct retrieval, based on an 

error radius of < 1.5 m, in 15 consecutive trials). 

 

5.2.3 Single-unit or iEEG data acquisition 

 Stationary participants were implanted with Behnke-Fried electrodes that 

continuously recorded single-unit activity from 8 microwires, 40-μm in diameter, on each 

depth electrode (see Chapter 3.3 for details). Data was recorded using the Blackrock 

Neuroport System or the Neuralynx recording systems at 30 kHz or 32 kHz, respectively. 

Spike templates were automatically determined by using a super paramagnetic clustering 

algorithm, sorted automatically using the wave clus algorithm (Wave clus 3, Quiroga et 

al., 2004) and manually confirmed. Low firing units (less than 500 total spikes) and units 

which had greater than 2% of spike events violating the interspike interval expectation 

were excluded. For further details, see Chapter 3.3. 

 iEEG activity was recorded from the continuously recording RNS System in 

ambulatory participants. Electrode leads are 1.27 mm in diameter and electrode contacts 

were spaced either 3.5 mm or 10 mm apart. A backpack containing equipment supporting 

wireless telemetry to continuously obtain iEEG activity was worn by participants during 

the task (see Fig. 5-1b,d,f,h). Further details can be found in Chapter 3.2 and 4.2.3-5. 
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5.2.4 Behavioral analysis 

 Behavioral metrics including continuous position and head rotation were collected 

from the VR headset. Memory performance was computed as the distance error, defined 

as the distance between the recalled position and the actual center position of the halo. 

After pressing a button, participants received written feedback on-screen stating “Correct!” 

if their error was within 1 m in stationary participants or 0.75 m in ambulatory 

participants or “Incorrect!” if not. 

 Data was synchronized by Unity triggering a signal (mark). In single-unit 

recordings, a BNC cable connected the Unity application to the neural recording system 

and provided an analog recording of the times that a mark was sent. In ambulatory 

recordings, Unity wirelessly transmitted a signal to inject a characteristic mark deflection 

in the iEEG signal which occurred at the transitions between blocks. For greater detail, 

refer to Chapter 3, Chapter 4.2.3, and Topalovic et al., 2020. 

 

5.2.5 Single-unit data analysis 

 To quantify the spatial modulation of single-unit activity, firing rates and 

occupancy time (time spent across virtual 2D positions) were computed across 2D 

positions in the virtual environment based on binning the environment into 15 cm x 15 

cm bins, resulting in a 38 x 39 binned virtual environment. A smoothing kernel (0.2) was 

applied to the map of binned spike counts and occupancy times and the firing rate map 

was computed by dividing the resulting spike count array by the occupancy time array. 

Firing rate maps were only computed for instances when the participant was actively 

moving by applying a minimum instantaneous speed threshold of 0.1 m/s.  

 Grid cells were classified by computing the autocorrelation of the firing rate map. 

The autocorrelation map was rotated in 30º increments and the cross-correlation of the 
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rotated and original autocorrelation maps were used to compute a widely-used gridness 

score using the formula (Jacobs et al., 2013):  

 g = min(cor(r,r60º),cor(r,r120º)) – max(cor(r,r30º),cor(r,r90º),cor(r,r150º)) 

 The orientation of a grid cell was determined by using the MATLAB function 

‘extrema2’ to find the six peaks of the autocorrelation map and the inverse tangent was 

computed for each peak. The grid cell orientation was defined as the smallest angle of the 

six peaks. 

 Stripe cells were classified according to previously described methods (Krupic et al., 

2012) by computing the 2D Fourier transform of the firing rate map (using the MATLAB 

function ‘fftshift’, padded to 256 x 256), applying a normalization factor, and using the 

maximum Fourier power as the metric quantifying the spatial periodicity of the unit.  

 Place cells were categorized by computing the sparsity of the firing rate map and 

by computing the information content of the firing rate map. If either the sparsity or the 

information content was significant, then the unit was classified as a place cell. 

 Spatial metrics (gridness score, maximum Fourier power, sparsity, and information 

content) were evaluated in relation to a shuffled distribution to determine whether a 

single-unit was classified as a grid cell, stripe cell, or place cell. Specifically, spike times 

were randomly shifted in time in a circular manner to generate 100 shuffled spike trains. 

Each shuffled spike train then underwent calculation of the gridness score, the maximum 

Fourier power, the sparsity and the informational content. If a unit’s spatial metrics 

exceeded the 95th percentile of the shuffled distribution, then it was classified as a 

spatially-modulated unit.  
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5.2.6 iEEG data analysis 

 Inter-epileptic dischargers (IEDs) were detected and removed as described in 

Chapter 4.2.5. Oscillatory power was computed over time points at individual frequency 

(1 Hz) steps using the BOSC toolbox (Seager et al., 2002; Whitten et al., 2011) with a six 

cycle Morlet wavelet. Each channel’s power timeseries was normalized (MATLAB function 

‘zscore’) over task periods. For more details, refer to Chapter 4.2.7. 

To determine whether channels exhibited hexadirectional modulation of theta 

bandpower, we followed widely used methods (Doeller et al., 2010b; Stangl et al., 2019). 

Briefly, theta bandpower (6-8 Hz) was normalized over the entire task period per channel. 

A timeseries of normalized theta bandpower over task timepoints and an aligned 

timeseries of heading direction for corresponding time points were divided into training 

and test subsamples. First, a GLM (GLM 1) was fit on the training dataset to determine 

the grid orientation with the best fit of a sinusoidal model of hexadirectional modulation 

of theta bandpower. Next, the grid orientation determined was applied to the test dataset 

and a second GLM (GLM 2) was fit to determine the strength (e.g., β weight) of the 

hexadirectional modulation. To determine the reliability of the β weight, we constructed a 

surrogate distribution by shuffling the heading directions with respect to the theta band 

power over time points and computed the β weight for each shuffle over 500 iterations. 

The significance quantified by a p value was determined by comparing the actual β weight 

to the 95th percentile of the shuffled distribution. These steps were repeated over five-fold 

cross-validation steps. For each fold, one-fifth of the data was used as the test set and the 

remaining four-fifths of the data were used to train GLM 1 and the remaining four-fifths 

were used to test the dataset using GLM 2. From each fold, a grid orientation and a β 

estimate describing the fit of the testing data to the grid orientation were computed. The 

overall grid orientation and strength of hexadirectional modulation were determined by 
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averaging over folds the grid orientation determined from GLM 1 and the β estimate from 

GLM 2, respectively. In order to account for the possibility that each environmental 

context elicited a distinct grid orientation based on realignment across contexts, both 

GLMs were fit with two separate regressor variables to allow for two separate regressions 

to occur, with each regressor corresponding to a unique context.  

To compare the change in orientation within a context compared to across 

contexts, hexadirectional modulation was computed after dividing all the data into four 

parts: for each context, data was divided into samples falling into the first half of a block 

or the second half of a block. Then, hexadirectional modulation strength and orientation 

were computed for each context, in both the first half and second half of blocks. In 

channels and conditions that exhibited significant hexadirectional modulation (greater 

than the 95th percentile of the shuffled distribution), change in grid orientation was 

compared in a pairwise fashion on a channel-by-channel basis between the first half and 

second half of a block (“within” condition) and between the first half of one context and 

the second half of the other context (“across” condition). Critically, since the contexts 

were alternated between each block, and since different blocks were collapsed into a single 

context grouping, the time delays between samples were comparable in the “within” 

context and “across” context conditions. 

 

5.3 Results 

5.3.1 Measuring spatial memory using VR during human single-unit and mobile iEEG 

recordings 

 We developed a novel VR spatial memory task which was completed by nineteen 

participants while MTL iEEG activity was recorded. There were two cohorts of 

participants. The first cohort (Fig. 5-1a,c,e,g) was comprised of thirteen participants that 
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were enrolled in the study while undergoing a diagnostic neurosurgical procedure in the 

hospital setting that involved implantation of numerous Behnke-Fried depth electrodes 

(Fig. 5-1c) with the capability of recording single-unit activity (Fig. 5-1g). These 

participants were required to remain in their hospital bed due to bulky wiring of clinical 

recording equipment, and thus completed the VR spatial memory task in a “stationary” 

format (as this cohort of patients will be referred to; Fig. 5-1a). The second cohort (Fig. 5-

1b,d,f,h) was comprised of six participants that already had the FDA-approved 

Responsive Neurostimulator System (RNS; Fig. 5-1f) implanted intracranially for the 

clinical treatment of their epilepsy with typically four bipolar channels that continuously 

record intracranial EEG (iEEG) activity (Fig. 5-1h). These participants were recruited to 

participate in the study based on the location of their RNS electrodes in the MTL region 

(Fig. 5-1d). 

 

Figure 5-1. Experimental and neurophysiology recording set up in ambulatory and stationary task formats. 

(a) Stationary participant wearing Vive virtual reality (VR) headset, and (b) ambulatory participant 

wearing a Quest VR headset while freely walking with recording telemetry equipment in backpack (for more 

details, see Chapter 4 and Topalovic et al., 2020). (c,d) Example participants’ post-implant CT registered to 

a pre-surgical MRI illustrating intracranial recording electrodes. (c) An example ‘stationary’ participant is 
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implanted with multiple Behnke-Fried depth electrodes for an epilepsy diagnostic procedure in the hospital 

setting and (d) an example ‘ambulatory’ participant with electrode leads implanted in the left hippocampus. 

(e) Tip of Benke-Fried depth electrode with 8 microwires. (f) Responsive Neurostimulator System is 

depicted with a hermetically encased recording device that is implanted inside the skull and two depth 

electrodes. (g) Example hippocampal and entorhinal cortex unit waveforms that are recorded from the 

microwires shown in (e). (h) Four example bipolar channels recorded from an example participant implanted 

with the RNS device shown in (f). 

The same VR spatial memory task was completed in both cohorts of patients 

across two virtual environments (5.84 x 5.84 m). Eight of the thirteen stationary 

participants completed the task using a head-mounted VR headset with navigation 

controlled by either hand controller or keyboard buttons and five participants completed 

the task on a 2D laptop set up due to physical constraints including glasses or larger head 

wrappings that precluded the use of the VR headset. All ambulatory participants 

(Nparticipants = 6) completed the task in room-scale VR in which physical movements were 

matched the virtual stimuli in the VR environment. 

In each environment, participants interactively learned and later retrieved the 

locations of six uniquely-colored and positioned translucent cylinders (halos) located 

across the two environments (Fig. 5-2). The task consisted of encoding trials, in which 

participants were instructed to navigate to a visible halo (see Chapter 4, Fig. 5-1c) and 

learn its position. After completing three encoding trials (one for each halo in the 

environment), participants proceeded to retrieval and arrow trials (Fig. 5-2a-c). 

Participants were cued to navigate to a particular halo’s position from memory and 

indicated their recalled position with a button press, which was immediately followed by 

visible feedback both written as (“Too far” or “Correct!”) and regardless of performance, 

the halo became visible in its correct position and the participant navigated to the center 

of the halo to advance to the arrow trial. During arrow trials, the participant navigated to 

a visible arrow located in a random position along the room perimeter. Retrieval and 
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arrow trials in a single environment alternated to constitute a block and each block 

alternated between contexts. The first retrieval block in each context contained a variable 

number of retrieval trials (Fig 5-3a), depending on how many trials a participant required 

to meet a learning criterion, in order to advance through the task. The learning criterion 

varied in the stationary (9 consecutive correct trials with error < 2m) and ambulatory (15 

consecutive correct trials with error < 1.5m) format, to accommodate constraints of the 

hospital setting (study durations limited to a 1-hour timeframe) and participants’ stamina 

level in a post-surgical state. All other retrieval blocks were comprised of a set number of 

trials regardless of performance (9 retrieval and arrow trials/block in the stationary 

format and 15 retrieval and arrow trials/block in the ambulatory format). Further details 

can be found in the Methods section and Chapter 4.  

 

Figure 5-2. VR spatial memory task. (a) Retrieval trials consisted of written instructions to navigate to the 

position of a particular [colored] halo and indicate recalled position by button press. (b) Immediately after 

the participant pressed a button to indicate recall, visible feedback appeared with written text indicating 

that the participant was either “Too far” (left) or “Correct!” right. In either case, participants were still 
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required to navigate to the center of the visible halo. (c) Arrow trials were interleaved with all retrieval and 

encoding (not shown; refer to Fig. 4-1 for depiction) trials and consisted of participants navigating to a blue 

arrow that appeared at a random location along the perimeter of the environment. The task was completed 

in two environments with identical dimensions and landmark positions, each with three uniquely colored 

and positioned halos. Side-angle and top-down views of the (d) Stone and (e) Wooden environments are 

shown. 

 Memory performance was assessed using an error metric defined as the distance 

between recalled position (button press) and actual halo center point. Performance across 

stationary participants (Nparticipants = 13) is shown for the Stone (top) and Wooden 

(bottom) contexts in Fig. 5-3a with mean performance over participants shown in black 

and individual performance of participants shown as colored lines. Across participants, 

mean improvement in performance between participants’ first block and last block was 

0.188 m (reduction in trial error; p = 0.036, Nparticipants = 13, Fig. 5-3b). An example 

participant’s trajectory over the course of the task is shown as a black line and divided 

into each context in Fig. 5-3c,d. Performance of ambulatory participants is shown in 

Chapter 4 (Fig. 4-2 and section 4.3.1). Altogether, these results indicate that a single VR 

spatial memory task can be used across stationary and ambulatory participants and 

learning and maintained memory is observed across both participant cohorts. Further, this 

dual-cohort approach provides the opportunity to probe neurophysiology on two 

mechanistic levels: single-unit activity in the stationary cohort and mobile iEEG activity 

in the ambulatory cohort. Importantly, utilizing the same VR task across both cohorts 

can bridge findings from different mechanistic scales of neurophysiology recordings. 
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Figure 5-3. Memory performance during the stationary spatial navigation task. (a) Mean memory 

performance (error) was measured for each of the thirteen participants (P1-13, colored lines, nhalos = 3 halos) 

by computing the average distance between the recalled and correct halo position across trials. The first 

retrieval block included a variable number of trials (1-45) across participants based on when a learning 

criterion was reached (9 consecutive correct trials for 3 halos in the given context with error performance < 

2 m). Mean memory performance over participants is shown as a black line. (b) Differences in the mean 

error between the first (trials before the learning criterion was met) and last retrieval block. Lines indicate 

data from individual participants. * p < 0.05. (c-d) Top-down view of an example participants’ trajectory 

(black line) over room positions in the Stone (c) and Wooden (d) contexts. Halo positions are superimposed 

in both environments.  

 

5.3.2 Spatial codes in the human MTL 

 Previous studies have identified that population-level (e.g. theta bandpower, fMRI 

BOLD response) MTL neural activity is modulated in a hexadirectional manner, 

dependent on a participant’s virtual movement direction (Doeller et al., 2010b; Chen et 

al., 2018; Maidenbaum et al., 2018; Stangl, 2018). This population-level hexadirectional 

modulation is thought to reflect the coordinated firing patterns of populations of grid 

cells. Specifically, the coordinated firing fields of grid cells (Fig. 5-4a, left) are thought to 
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result in increases in population-level neural activity when a subject is moving in a 

direction that is aligned with one of the six-fold directional axes (green slices in Fig. 5-4a, 

right) compared instances when the subject is moving in directions that are misaligned 

(gray slices in Fig. 5-4a, right). This can be seen in a schematic illustrated in Fig. 5-4a 

(bottom), where theoretical oscillatory power is plotted in red and is modulated by 

movement direction in a hexadirectional manner.  

 Here, we examined whether the VR spatial navigation task that elicited the 

formation of a spatial map involving hexadirectional modulation of theta bandpower in 

the ambulatory format. We examined theta bandpower (6-8 Hz) in the ambulatory 

participants as they navigated through the real-world while completing the same VR 

spatial navigation task on a head-mounted display. To quantify the hexadirectional 

modulation of theta bandpower, we split all samples into a testing and training datasets 

and fit a GLM to determine the putative grid axis in the training data sample and then 

fit a second GLM to the testing data sample to determine the strength of the 

hexadirectional modulation with respect to the mean grid orientation previously 

determined (for details, see Methods and Maidenbaum et al., 2018; Stangl et al., 2019). 

An example channel illustrating hexadirectional modulation can be seen in Fig. 5-4b. 

Overall, we found that 13/19 (68.4%) MTL channels exhibited hexadirectional modulation 

that was significant relative to a surrogate distribution. The proportion of channels that 

exhibited hexadirectional modulation is shown across MTL regions in Fig. 5-4c.  
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Figure 5-4. MTL channels exhibit hexadirectional modulation. (a) Top, firing rate map schematic of a 

theoretical grid cell in a square environment shown in a square environment. The firing patterns show 

particular orientations φ relative to a separate grid axis (overlaid in black). Middle, movement directions in 

one of twelve directions fall into angles that are aligned with the grid axis corresponding to grid cell firing 

fields. Movement directions categorized as aligned are shown in green and misaligned in gray, adapted from 

(Stangl et al., 2019). Bottom, the red line reflects the expected hexadirectional modulation of oscillatory 

power in alignment with the six-fold peaks from the grid axis shown in (a), adapted from (Stangl et al., 

2019). (b) Example MTL channel illustrating hexadirectional modulation of theta bandpower. (c) 

Proportion of MTL channels exhibiting hexadirectional modulation (defined as p < 0.05 relative to surrogate 

distribution when computed across the entire task or when computing hexadirectional modulation in a 

context-specific manner). HPC, hippocampus; ERC, entorhinal cortex; Sub, subiculum; PRC, perirhinal 

cortex; Other (MTL) refers to bipolar channels with contexts across two different regions (e.g., channel with 

contacts in HPC and ERC).  

Hexadirectional modulation of theta bandpower in the MTL is theorized to reflect 

coordinated activity of grid cell populations. To investigate this hypothesis, we examined 
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whether the same VR spatial memory task elicited single-unit spatial codes. Across 13 

participants, we isolated 342 single neurons (putative neurons) over 13 independent 

recording sessions. We computed the firing rate for each unit over a map of 38 x 39 bins 

spanning the virtual environment.  

We classified a unit as a grid cell if the unit exhibited the classic peaks in firing 

rate along triangular lattice structure tiling the environment using the gridness score 

based on 30º rotations of the autocorrelation of the firing rate map, used in rodents and 

humans previously (Hafting et al., 2005; Barry et al., 2007; Langston et al., 2010; Jacobs 

et al., 2013). If a unit’s gridness score exceeded the 95th percentile of the gridness scores of 

a surrogate distribution created by time-shuffling a unit’s spike train, then it was classified 

as a putative grid cell. The proportions of grid cells in different regions can be seen in Fig. 

5-5a. Overall, 69/342 total units were classified as grid cells (20.2%) and 28/159 MTL 

units were classified as grid cells (17.6%). An example firing rate map and autocorrelation 

of a grid cell can be seen in Fig 5-5d. The distribution of grid cell orientations over all 

grid cells can be seen in Fig. 5-5g. The mean grid orientation was 58.9º (± 3.3 standard 

error of the mean [s.e.m.]). Given the presence of halos in the interior of the environment, 

we wanted to evaluate whether the position of halos located in the environment could 

potentially drive the firing of putative grid cells. We simulated a firing rate map in which 

the simulated unit exclusively fired at halo positions. The gridness score of the simulated 

unit did not exceed the 95th percentile of the surrogate distribution generated from the 

simulated unit (gridness score -0.0012, 95th percentile of surrogate distribution = 0.0163), 

suggesting that it is unlikely that grid cells identified in this dataset reflected an artifact 

of halo positions in the environment. 

Next, we observed many single neurons that exhibited stripe like peaks in their 

firing rate maps, consistent with prior reports of spatially periodic band cells (Krupic et 
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al., 2012). Based on previously used methods, we classified units as spatially periodic band 

cells (Krupic et al., 2012) as those units that had a maximum power of the 2D Fourier 

transform of the firing rate map that exceeded the 95th percentile of the maximum power 

of the shuffled distribution. Using this method, a classified stripe cell could have multiple 

Fourier components that exceeded the 95th percentile threshold defined by the surrogate 

distribution. The distribution of the number of components can be seen in Fig. 5-5b. 

Overall, 103/342 units were classified as stripe cells (30.1%) and 44/159 MTL units were 

classified as stripe cells (27.7%). The peak number of components in stripe cells was 1 

component (mean = 1.3 components, Fig. 5-5h). The mean orientation of the stripe 

components was 61.8 º (± 3.6 s.e.m., Fig. 5-5i), similar to the mean orientation observed 

in the grid cell population.  

The population of place cells observed was quite low and was based on those units 

which had a significantly higher sparsity or informational content relative to a surrogate 

shuffled distribution. Overall, 24/342 units were classified as place cells (7%) and 9/159 

MTL units were classified as place cells (5.7%), with the distribution shown in Fig. 5-5c. 

An example firing rate map and waveform of a place cell can be seen in Fig. 5-5f. 

The spatial properties of a unit were computed first by dividing the recording 

session into time spent in either context (thus a unit could exhibit grid cell behavior in 

one context and different grid cell behavior in another context) and also by collapsing all 

data across both contexts, since the landmarks, geometry, and sampling of the 

environment were matched across the two environments, by design. Interestingly, spatial 

cells were present in significant proportions both inside and outside of the MTL (Fig. 5-

5a-c, dark blue represents MTL and light blue represents outside of MTL). Grid cells and 

stripe cells had a similar mean orientation and comparable overall proportions, although a 

larger proportion of units exhibited stripe cell behavior relative to grid cell behavior.  
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In line with prior research, we found grid and stripe cell populations were present 

in MTL regions in expected proportions. Interestingly, we also observed spatially-

modulated cell populations in some but not all regions outside of the MTL. These findings 

are consistent with growing reports of spatial modulation effects in regions outside of the 

MTL and require future follow-up studies to further characterize the potential existence of 

spatially-modulated neuron populations outside of the MTL. 

 

Figure 5-5. Spatially-modulated single neurons. (a-c) Proportion of single neurons, by regions, that classify 

as grid cells (a), stripe cells (b), or place cells (c). Gray bar depicts percentage overall, across regions. Dark 

blue depicts (spatial) MTL regions and light blue depicts regions outside of the (spatial) MTL (e.g., includes 

amygdala). Total number of spatial cells (including units that displayed spatial properties in one/both 

contexts or collapsed across contexts) out of total number of units per region are listed above each bar 

graph. * Indicates a significant (p < 0.05) proportion based on a binomial test comparing to the type I error 

of 5% (dashed line). (d-f) Left, firing rate map for an example spatially modulated unit in Hz and right, 

autocorrelation of the firing rate map for an example (d) grid cell, (e) stripe cell, and (f) place cell, left, 

place cell waveform with ms along x axis and μV along y axis. (g) Distribution of grid orientations (degrees) 
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for grid cells shown in (a) Horizontal line indicates mean. (h) Distribution of the number of Fourier 

components for the stripe cells shown in (b). (i) Distribution of orientations of the Fourier components for 

the components shown in (h) and stripe cells shown in (c). Horizontal line indicates mean. 

5.3.3 Spatial representations are context-specific 

 Early studies of grid cell activity in rodents suggested that grid cell firing fields 

relational structure remain preserved across different contexts but that the orientation of 

the firing fields may shift (Hafting et al., 2005). More recent studies have provided 

evidence that grid cell firing patterns orientations can re-orient based on the geometry or 

dimensions of an environment (Nadasdy et al., 2017) or in relation to landmark or 

goal/reward locations (Butler et al., 2019; Sosa and Giocomo, 2021; Wang and Wang, 

2021). We hypothesized that the repeated context changes in our task would elicit 

changes in both hexadirectional modulation of theta bandpower in the ambulatory 

participants and grid cell orientation changes in the stationary participants.  

 To assess the change in hexadirectional modulation orientation between different 

contexts we designed a comparison to account for the natural drift of hexadirectional 

modulation representations over time. Specifically, we divided each block in the task into 

a first and second half and pooled data for each participant into four categories: First Half 

of Context A, Second Half of Context A, First Half of Context B, and Second Half of 

Context B. Collapsing data across blocks for each category, we computed the 

hexadirectional modulation of theta bandpower for each category. For channels that 

exhibited hexadirectional modulation in both contexts, we computed the channel-wise 

different in estimated grid orientation “within” contexts (by finding the difference in grid 

orientation between First Half and Second Half categories for the same context) and 

“across” contexts (by finding the difference in grid orientation between Context A and B 

for the First Half categories, and then the Second Half categories). Since each channel had 

two comparisons for each of “within” and “across” conditions, we took an average (e.g., the 
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average of: (1) First Half Context A – First Half Context B and (2) Second Half Context 

A – Second Half Context B) for each channel (see Fig. 5-6a for schematic). The mean 

change in grid orientation across channels was a difference of 26.1ºwhile the mean change 

in grid orientation within channels was a difference of 4.9º (nchannels = 7, pairwise 

permutation test p < 0.0001, Fig. 5-6b). It is worth noting that by pooling data for each of 

the four categories across different blocks, data samples in each category had comparable 

time delays in the within and across conditions given that each block was divided in half 

and contexts alternated each block, as can be observed in the schematic in Fig. 5-6a. 

 

Figure 5-6. Context-specific hexadirectional modulation. (a) Schematic illustrating how dataset was divided 

to assess the change in grid orientation between contexts. All blocks were divided in half. Data was grouped 

into four categories: First Half of block in Context A, Second Half of block in Context A, First Half of block 

in Context B, Second Half of block in Context B. Hexadirectional modulation and surrogate distributions 

were computed in each of the four categories on every channel. In channels that demonstrated significant 

hexadirectional modulation, the difference in grid orientation between Context A and Context B categories 
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(“Across”) was computed and compared to the difference in orientation between First Half and Second Half 

categories (“Within”). By collapsing across blocks (which alternate between contexts), the time delays 

between blocks were comparable across the four categories, since alternating blocks were collapsed in each of 

the four categories. (b) Mean change in grid orientation between First Half and Second Half of a Context for 

“Within” and between Context A and Context B for “Across”. Data points reflect channels that exhibited 

significant hexadirectional modulation in both contexts (nchannels = 7). ***p < 0.0001. (c) Proportion of MTL 

channels exhibiting hexadirectional modulation of 6-8 Hz theta when analysis is done with 1-regressor 

relative to 2 context-specific regressors. 

 Further, we hypothesized that if hexadirectional modulation axes varied in a 

context-specific manner, computing the hexadirectional modulation strength and 

significance in a context-specific approach would yield a higher proportion of channels 

exhibiting this behavior relative to estimating the hexadirectional modulation on a 

channel with the assumption of a single axis across the entire task, and thus collapsed 

over both contexts (e.g. a context-agnostic approach). To do this, we first computed 

hexadirectional modulation in all MTL channels by assigning an independent regressor 

term to each context, allowing the grid axis to vary in each context. Next, we computed 

hexadirectional modulation in all MTL channels with a single regressor across both 

contexts, thus constraining the grid axis to remain unchanged across both contexts. There 

was a significantly higher proportion of MTL channels that had hexadirectional 

modulation in either one or both contexts when hexadirectional modulation was computed 

using context-specific regressors compared to a context-agnostic (all channels with 

significant hexadirectional modulation: p < 0.001; 8/19 channels when computed with 1 

regressor; 13/19 channels when computed with 2 regressors; chi-squared test Χ2 = 2.661, p 

= 0.05; nchannels = 19, Fig. 5-6c). Of the MTL channels that exhibited any hexadirectional 

modulation, 36% only had hexadirectional modulation in one channel, 57% had 

hexadirectional modulation in both contexts, and 7% had hexadirectional only when 

collapsing across both contexts using 1 regressor (nchannels with hexadirectional 
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modulational = 14), suggesting that most channels exhibited population grid cell activity 

in both context, but a smaller proportion of channels only exhibited population grid cell 

activity in one context.  

 Interestingly, preliminary investigation of grid orientations across contexts in 

single-unit grid cells suggested that grid cells may also exhibit reorientation across 

contexts. Using the single neurons recorded in the stationary participants, we found that 

the mean pairwise change in grid orientation between the two contexts was 36.6º, for all 

grid cells in patients that completed at least one block in each context (s.e.m. 4.1º, 

pairwise one sample permutation test, p < 0.001, nunits = 55). The distribution of changes 

in grid orientation in grid cells can be seeing in Fig. 5-7a and an example grid cell is 

shown in Fig. 5-7b-g. Further follow-up analysis will investigate whether these observed 

changes in grid cell orientations across contexts relate to greater changes in 

hexadirectional modulation orientation across contexts compared to within contexts.  

 

Figure 5-7. Grid cell axis reorientation. (a) Distribution of change in grid orientations between contexts for 

all grid cells. Black line highlights the mean change in grid orientation at 36.6º. Example grid cell activity 

is shown in (b-g). (b-c) Participant’s behavior trajectory is depicted by black line while the participant’s 

position during this unit’s spiking activity are indicated by red dots in the (b) Stone and (c) Wooden 
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contexts. (d-e) This unit’s firing rate over binned positions in the (d) Stone and (e) Wooden contexts is 

shown. (f-g) Autocorrelation maps of the firing rate are shown in the (f) Stone and (g) Wooden contexts 

with the grid orientation in each context listed in the top right corner. 

Importantly, prior work has indicated that landmarks and environmental 

geometries are two factors that may contribute to warped and rotated grid cell axes 

(Nadasdy et al., 2017). To control for this, the VR spatial memory task used in this study 

was designed to have identical environmental geometries, locations of landmarks, and 

identity of landmarks across the two environments, (Fig. 4-1g-h) thus it is unlikely that 

landmark positions or environmental geometries contribute to the grid reorientation 

observed in hexadirectional modulation and individual grid cells. 

 

5.3.4 The relationship between context-specific spatial representations and memory 

 Previous work has suggested that MTL spatial machinery (e.g. place cells, grid 

cells) are involved in supporting memory retrieval (Moser et al., 2015a; Qasim et al., 

2019) and that the strength of hexadirectional modulation of population-level activity is 

also related to memory performance (Doeller et al., 2010b; Chen et al., 2018). To begin to 

explore this relationship, we investigated whether the strength of context-specific spatial 

representations predicted memory performance on a participant level. The linear 

regressions of mean trial error in a context-specific (Fig. 5-8a-f) and context-agnostic (Fig. 

5-8g-i) manner on mean spatial score (gridness score, Fig. 5-8a,d,g; stripeness score, Fig 5-

8b,e,h; hexadirectional modulation strength, Fig. 5-8c,f,i). Two interesting relationships 

emerged suggesting that this relationship between memory and strength or spatial 

representations warrants follow up. Mean hexadirectional modulation strength in the 

Wooden context was a significant predictor of trial error with a beta coefficient of -7.62 

suggesting that a 1 point increase in HM strength (reflecting the beta coefficient estimate 

describing how well the test data is fit by hexadirectional modulation using the estimated 
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grid axis) as associated with a 7.6 meter distance decrease in error (coefficient estimate = 

-7.62, p = 0.049, nparticipants = 6, Fig. 5-8f). Given that the range of hexadirectional 

modulation strengths was 0.006 – 0.087, this relationship can be better interpreted as a 

0.1 point increase in hexadirectional modulation strength is associated with a 0.76 m 

improvement in trial performance (reduced error).  Although not significant, the linear 

relationship between gridness score and mean trial performance in the Stone context was 

approaching significance (coefficient estimate = -1.5m, p = 0.059, nparticipants = 10, Fig. 5-

8a). One limitation of this approach is that each data point reflects a summative score 

across spatial representations in each participant. As such, greater numbers of units per 

patient, and patients overall will provide the power to make conclusions about the 

relationship between memory and summative strength of spatial representations. However, 

these preliminary results may motivate future investigations of the relationship between 

the strength of spatial representations and continuous memory performance. 
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Figure 5-8. Relationship between memory performance and spatial coding metrics. Mean error over trials 

was computed for each participant (nstationary = 13, nambulatory  = 6) in a context-specific (Stone: a-c; Wooden: 

d-f) or context-agnostic (Both contexts: g-i) manner. Mean single neuron spatial modulation scores (gridness 

score: a,d,g; stripeness score: b,e,h) or mean hexadirectional modulation strength (HM; c,f,i) were computed 

on a per-patient basis and used to predict memory performance using a linear regression model. Blue points 

reflect mean spatial metrics per participant where available (e.g. all participants that have at least one grid 

cell in each context in a,d,g). Red line shows line of best fit with red dotted lines illustrating the 95% 

confidence intervals. Correlation coefficient and significance of spatial coding metric predictor are listed. * p 

< 0.05 
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Given results from mobile iEEG illustrating that theta bandpower is elevated 

during correct relative to incorrect trials in the time window preceding memory recall, we 

examined whether there were any changes in firing rate in relation to memory recall in 

single neuron spatial populations. Preliminary analysis of stripe cell firing rate changes 

preceding halo recall demonstrated that stripe cells had elevated firing rates during correct 

trials relative to incorrect trials in the 250 ms prior to recall (Fig 5-9a) and that mean 

firing rate in this 250 ms time window was significantly greater during successful recall 

(correct vs. incorrect, p = 0.0084, permutation test, ncorrecttrials = 2937, nincorrecttrials = 2211, 

Fig 5-9b).  

 

Figure 5-9. Stripe cells increase their firing rate in relation to successful memory retrieval. (a) Mean firing 

rate over trials, normalized to all retrieval periods in a single neuron, divided into correct trials and 

incorrect trials. Horizontal gray bar indicates 50 ms time bins with a significant difference between correct 

and incorrect trials (p < 0.05, FDR corrected). (b) Mean normalized firing rate between correct and 

incorrect trials in the 250 ms window prior to recall. * p < 0.05. 

 

5.4 Discussion 

We have demonstrated that the same VR spatial memory task elicits spatial 

coding representations at both single-unit and iEEG levels in stationary and ambulatory 

participants through mechanisms neural substrates including grid cells, stripe cells, and 

hexadirectionally-modulated theta bandpower. Importantly, this investigation provides 
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insight into multi-scale (including single-unit) neural mechanisms of grid-cell encoding in 

humans, both freely-moving and stationary. We capitalized on immersive VR to advance 

the ecological validity and link stationary human single-unit recordings with findings from 

mobile iEEG recordings. Previous work have identified hexadirectional modulation in 

humans (Constantinescu et al., 2016; Bellmund et al., 2018; Chen et al., 2018; 

Maidenbaum et al., 2018; Stangl et al., 2018; Staudigl et al., 2018; Chen et al., 2021) and 

others have documented grid cell activity (Jacobs et al., 2013; Nadasdy et al., 2017), 

however although the two phenomenon are theorized to be related, however this is the 

first study to bridge these two mechanisms by investigating both in the same behavioral 

paradigm. 

 First, we characterized populations of grid cells and stripe cells concurrently in 

humans. Notably, we find the proportion of entorhinal cortex grid cells to be 13% which 

similar to previously reported a previously reported proportion of grid cells in humans 

from Jacobs et al as 14% and also corresponds to proportions reported from studies in 

rodents (Hafting et al., 2005; Doeller et al., 2010b; Killian et al., 2012; Jacobs et al., 

2013). Similar to prior work in rodents demonstrating that 44% of units in the entorhinal 

cortex and pre-/para-subiculum were stripe cells (Krupic et al., 2012), we observed a 

higher proportion of stripe cells (30%) relative to grid cells (20%) overall, and although 

not as high in rodents, we found that 28% of entorhinal cortex and hippocampal units 

exhibited stripe behavior. Stripe cells have been theorized to drive the self-organization of 

grid cells through the co-activation of multiple 60ºseparated bands (Grossberg and Pilly, 

2012; Krupic et al., 2012; Pilly and Grossberg, 2014) and may organize the activity of grid 

cells in this VR spatial navigation task. Interestingly, we found that the mean and most 

common orientation of putative grid and stripe cells were 58.9ºand 61.8 º, respectively, 

in this task. The close correspondence of these orientations of these two populations 



109 
 

suggests that there may be a commonality in mechanisms and interwoven relationship 

between the two populations.  

 Another interesting observation meriting further study was the presence of stripe 

and grid cell populations in non-MTL regions of the human brain. These included regions 

such as the auditory cortices, amygdala, orbitofrontal cortex, pre-supplementary motor 

area, insula, and cingulate. Importantly, not all regions with units contained significant 

spatial cells. Although this novel finding is consistent with growing reports that document 

spatial representations in humans in broader regions beyond the MTL, future studies will 

be necessary to follow-up and characterize the presence of meaningful and functional 

spatially-modulated neurons in regions outside of the MTL. It is relevant to note a 

growing body of literature that has documented hexadirectional modulation in regions 

globally including the prefrontal cortex, cingulate cortex, orbitofrontal cortex, among 

other non-MTL regions (Chen et al., 2021; Park et al., 2021; Raithel and Gottfried, 2021). 

Open and important questions that remain to be explored are characterization and 

validation of these spatial populations outside of the MTL and evaluation of the extent to 

which these non-MTL regions support spatial encoding, how these populations interact 

with MTL spatial cell populations, and whether non-MTL spatially modulated cell 

populations perform a unique function in spatial cognition. 

 A key finding of this study was that iEEG hexadirectional modulation of theta 

bandpower exhibited re-orientation of putative grid axes in relation to context changes. 

Importantly, these findings were observed in highly controlled context changes with 

constrained environmental geometries and landmark positions, enabled through the use of 

immersive VR. Prior work has suggested that grid cells may reorient in new contexts, 

originally in rodents through changes between circular and square environments (Fyhn et 

al., 2007) and more recently in humans with grid cells reorienting in relation to change 

environmental size and geometries (e.g. square to rectangular; Nadasdy et al., 2017b). 
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Further, a recent study in fMRI demonstrated that spatial representations flicker between 

deliberation of retrieved context (Julian and Doeller, 2021). Our finding builds on this 

prior work by demonstrating that the change in orientation of hexadirectional modulation 

is greater between contexts (semantically different in association with unique object, halo, 

positions in this study) compared to within contexts, offering an internal control. 

Moreover, we found significant changes in grid orientation across contexts in grid cell 

populations from single-unit recordings, suggesting a potential single-unit mechanism that 

could support the change in grid orientation observed in hexadirectional modulation of 

iEEG. Interestingly, the single-unit grid cells exhibited a similar mean change in grid axis 

reorientation as in hexadirectional modulation of iEEG signal. These preliminary findings 

merit future investigations to characterize the stimuli driving grid reorientation and to 

further delineate the single-unit mechanisms that may be involved in orientation changes 

at the population level. 

Finally, we investigated whether the strength of these spatial representations 

relates to episodic spatial memory performance. A prior study has suggested that 

reactivation of a spatial context in iEEG theta bandpower relates to memory retrieval 

(Herweg et al., 2020a). Here, we build on this finding by examining the relationship 

between memory performance and context-specific spatial representations. Notably, we 

find preliminary results suggesting that context-specific hexadirectional modulation 

strength is significantly related to memory performance and that stripe cell firing rates 

may increase during correct relative to incorrect trials. Although these findings are 

preliminary, future studies will investigate how context-specific spatial representations 

drive memory retrieval. 
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