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Abstract

In this article, we study a central problem in multimodal neuroimaging analysis, i.e., identification 

of significantly correlated brain regions between multiple imaging modalities. We propose a 

spatially varying correlation model and the associated inference procedure, which improves 

substantially over the common alternative solutions of voxel-wise and region-wise analysis. 

Compared to voxel-wise analysis, our method aggregates voxels with similar correlations into 

regions, takes into account spatial continuity of correlations at nearby voxels, and enjoys a much 

higher detection power. Compared to region-wise analysis, our method does not rely on any pre-

specified brain region map, but instead finds homogenous correlation regions adaptively given the 

data. We applied our method to a multimodal positron emission tomography study, and found 

brain regions with significant correlation between tau and glucose metabolism that voxel-wise or 

region-wise analysis failed to identify. Our findings conform and lend additional support to prior 

hypotheses about how the two pathological proteins of Alzheimer’s disease, tau and amyloid, 

interact with glucose metabolism in the aging human brain.
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I. Introduction

Multimodal neuroimaging acquires different types of images for a common set of 

experimental subjects. It utilizes different physical and physiological sensitivities of imaging 

scanners and technologies, and measures distinct brain characteristics, ranging from brain 

structure and function to numerous chemical constituents. Multimodal analysis aggregates 

such diverse but often complementary information. Accumulated evidence has shown that 

multimodal analysis both improves our understanding of the brain and increases accuracy of 

neurological disorder diagnosis; see, e.g., [1]–[4], among others.

In multimodal neuroimaging analysis, one of the central problems is to understand the 

association between two or more imaging modalities, and to identify brain regions where 

such an association is statistically significant. For instance, joint analysis of functional 

magnetic resonance imaging (fMRI) and diffusion tensor imaging reveals the underlying 

interplay between brain function and structure [5], [6]. Analysis of fMRI and 

electroencephalography shows joint response of certain brain functions in certain brain 

regions [7]. Our motivation is a multimodal positron emission tomography (PET) study. The 

goal is to better understand the mechanism by which accumulation of different aggregated 

proteins, in this case, tau and beta-amyloid (Aβ), influences a third modality, glucose 

metabolism, in the aging human brain. Both tau and beta-amyloid are hallmark pathological 

proteins believed to be part of the driving mechanism of Alzheimer’s disease. In our study, 

we seek to examine associations between tau accumulation, measured with the 

[18F]AV-1451 tracer (AV-1451 PET), and reduced glucose metabolism, measured with the 

[18F]Fluorodeoxyglucose tracer (FDG PET). Furthermore, this relationship may vary with a 

third chemical process of Aβ accumulation, measured using the [11C]Pittsburgh Compound 

B tracer (PiB PET). To investigate how early tau accumulation interacts with Aβ to produce 

cortical hypometabolism, it is necessary to develop a method that can detect subtle but 

significant relations between multimodal PET data, i.e., AV-1451 PET and FDG PET, 

conditional on PiB PET and some other confounding covariates.

There are two common strategies to find significantly correlated brain regions between 

multiple imaging modalities. The first is voxel-wise analysis. That is, one calculates the 

correlation and conducts a significance test at every brain voxel location. Since there are 

typically 105 to 106 voxels in a brain image, multiple testing correction is employed after the 

voxel-wise tests. This type of analysis often suffers from particularly low detection power, 

due to the huge number of tests to correct and usually a very limited sample size. Besides, 

spatial correlation among brain voxels is often ignored. The second common solution is 

region-wise analysis. That is, one adopts a pre-specified brain atlas, averages the voxel 

values within each region-of-interest (ROI), then computes the region-wise correlation 

between multiple modalities. Multiple testing correction is also employed, but since the 

number of ROIs is typically 102, this approach enjoys a higher power than the voxel-wise 

solution. On the other hand, the voxels within the same ROI may not always share the same 

correlation pattern. Averaging voxels within ROIs may weaken or even cancel out significant 

correlations. In Section V–B, we review a number of related methods. Although they 

addressed the problems that are related to our between-modality correlation analysis, those 

methods either are not directly applicable to our problem, or suffer similar limitations as 
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those voxel-wise or region-wise solutions. There is a clear demand for an effective and 

powerful statistical procedure to identify significantly associated brain regions between 

multiple imaging modalities.

In this article, we propose a spatially varying correlation model and the associated inference 

procedure for multimodal analysis. Spatially varying coefficient models have been widely 

used in neuroimaging analysis [8]–[13], though often for a different purpose. We employ 

this model so to formally define the population parameter of interest in our investigation, 

i.e., the spatially varying correlation coefficient between multiple modalities. Based on this 

model, we then introduce a homogeneous spatial structure on the correlation coefficient. 

This structure is scientifically plausible, as spatially contiguous voxels often exhibit similar 

correlation patterns. We then develop a multi-step inferential procedure to estimate and infer 

about this correlation structure. Specifically, we first fit a spatially varying correlation model 

to each imaging modality, and obtain a sample correlation estimate at each voxel location. 

We then perform a kernel smoothing on the estimated voxel-wise correlations, which 

accounts for spatial continuity among adjacent voxels. After smoothing, we apply a graph 

clustering algorithm to partition the brain into regions with homogeneous correlations. 

Finally, we employ the maximum likelihood approach to estimate the region-level 

correlation given the estimated partitions. We carry out a likelihood ratio test for each 

partition, with a proper false discovery control, to test if the region-wise correlation is 

significantly different from zero or not. Figure 1 shows a schematic summary of our 

proposed inference procedure.

The key contribution of our proposal lies in the integration of voxel-wise and region-wise 

analysis. Compared to the traditional voxel-wise analysis, our approach accounts for spatial 

continuity of correlations at nearby voxels through spatial smoothing, and aggregates voxels 

with similar correlations into spatially homogeneous regions through our imposed 

correlation structure. The test is then carried out at the region level, instead of the voxel 

level, which substantially improves the detection power than a voxel-wise test. Compared to 

the traditional region-wise analysis, on the other hand, our method does not rely on any pre-

specified brain region atlas, but instead finds homogenous correlation regions adaptively 

given the data. This adaptive approach avoids the potential issue that voxels in the same pre-

defined region have opposite correlation patterns, and is to further improve the detection 

power.

We applied our method to a multimodal PET study, and found brain regions with significant 

correlation between tau and glucose metabolism that neither voxel-wise nor region-wise 

methods could find. The pattern of our findings conforms to prior hypotheses on how tau 

and glucose metabolism might be related, providing increased confidence in the method.

II. Material and Image Processing

A. Participants

Forty-seven cognitively normal older adults from the ongoing longitudinal Berkeley Aging 

Cohort Study [14] received structural MRI, [11C]PiB, [18F]FDG, and [18F]AV-1451 PET 

Li et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imaging. Eligibility requirements have been described previously [15]. Table I summarizes 

the participant demographics.

B. Image acquisition

All imaging was performed at Lawrence Berkeley National Laboratory (LBNL). [11C]PiB 

was synthesized using a previously described protocol [16]. PiB PET imaging was 

performed in 3D acquisition mode using either an ECAT EXACT HR scanner (n = 6) or a 

BIOGRAPH PET/CT Truepoint 6 scanner (n = 41), both Siemens Medical Systems, 

Germany. PiB distribution volume ratio (DVR) values are not significantly different between 

scanners used. PiB imaging was attenuation corrected, and reconstructed using an ordered 

subset expectation maximization algorithm with weighted attenuation, scatter correction, 

and smoothed with a 4 mm Gaussian kernel. [18F]FDG PET imaging was performed within 

an average of six days of PiB PET imaging using the same PET scanner, with images 

smoothed using a 4mm Gaussian kernel with scatter correction. [18F]AV-1451 PET imaging 

was performed exclusively on the BIOGRAPH PET/CT scanner. AV-1451 was synthesized 

as described previously [17], and was reconstructed in a similar fashion as PiB imaging. All 

participants underwent a high-resolution T1-weighted magnetization prepared rapid gradient 

echo (MPRAGE) scan (TR/TE = 2110/3.58 ms, FA = 15°, 1 × 1 × 1 mm resolution) on a 

1.5T Siemens Magnetom Avanto MRI scanner.

C. Image preprocessing

PiB images were realigned, and frames corresponding to the first 20 min of acquisition were 

averaged and coregistered to the participant’s MRI. Voxel-wise DVR images were generated 

using Logan graphical analysis (35–90 min postinjection, cerebellar gray matter [GM] 

reference region)[18], and subject global PiB averages were calculated using native-space 

FreeSurfer cortical GM masks to characterize Aβ-positivity [15]; 21 subjects were classified 

as Aβ-positive. AV-1451 images were realigned, and the mean of all frames was used for 

coregistration to each participant’s MRI. We created AV-1451 standardized uptake value 

(SUV) images based on mean tracer uptake over 80–100 min postinjection. We then 

normalized SUV images to a FreeSurfer defined cerebellar GM reference region [17] to 

create native-space voxel-wise SUV ratio (SUVR) images for each participant. FDG images 

were realigned, and the mean of all frames was used to coregister to MRI. We created FDG 

SUV images based on mean tracer uptake over 30–60 min postinjection. We then 

normalized SUV images to a pons reference region (manually edited from the FreeSurfer 

brainstem segmentation) to create native-space voxel-wise FDG SUVR images. We chose 

the reference region, such as cerebellum or pons, for normalization, since those regions are 

unlikely to be affected by the disease process and their use as reference for PET analysis has 

longstanding support [19]–[21]. T1 MPRAGE scans were processed using FreeSurfer v5.3 

to delineate anatomical ROI masks for multiple brain regions on the native space MRI, 

coregistered to the PET scans [14]; we manually checked segmentations for accuracy. The 

reference region masks used for PiB, AV-1451, and FDG PET were derived this way. 

Importantly, the same subject MRI scan was used for all PET modalities in the current study.
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D. Template space normalization and voxel based morphometry processing

We warped MRI scans for all subjects to the FSL MNI152 2mm space template using 

Advanced Normalization Tools as described previously [17]. Transformations were 

concatenated and applied to the coregistered AV-1451 and FDG PET images to generate 

MNI-space PET images. A testing mask was created using cortical brain regions on the 

AAL atlas [22] intersected with high-probability GM voxels (SPM12 tissue probability map 

with p > 0.3). MNI-space FDG and AV-1451 PET images were masked by this testing mask 

and smoothed by an additional 4mm FWHM gaussian kernel before analysis.

Voxel based morphometry (VBM) was performed using SPM12. T1 images were 

segmented, warped to an average template, normalized to MNI space using a 10mm FWHM 

smoothing kernel, and masked by the above testing mask. Smoothed modulated gray matter 

images were used as a measure of regional tissue volume at the voxel-wise level.

III. Method

To identify statistically significantly correlated brain locations between multiple imaging 

modalities, we introduce a varying correlation coefficient model. This model allows us to 

formally define the population parameter of interest, i.e., the spatially varying correlation 

coefficient between modalities. We next impose a homogeneous spatial structure on this 

correlation coefficient. Through this structure, we effectively integrate voxel-wise and 

region-wise analysis. We then develop a multi-step procedure to estimate and infer about this 

structure, and carry out the significance tests.

A. Spatially varying correlation model

Suppose the multimodal imaging data are collected from n subjects. Let Xi(v), Yi(v), Zi(v) 

denote the measure of three imaging modalities at location v for subject i, v = 1, …, V, and i 
= 1, …, n. Let Ci = (Ci,1, …, Ci,p)T denote the vector of subject-level confounding 

covariates. Our goal is to infer the correlation between Xi(v) and Yi(v), conditional on Zi(v) 

and Ci, at locations v = 1, …, V, and we seek those locations where this correlation is 

significantly different from zero. As an example, in our multimodal PET study, Xi(v) and 

Yi(v) represent the tau PET and FDG PET imaging, Zi(v) represents the VBM imaging, and 

Ci collects subject’s covariates such as age and sex. We consider the following varying 

correlation coefficient model,

Xi(v) = Zi(v)θ(v) + Ci
Tα(v) + ϵi(v), (1)

Yi(v) = Zi(v)η(v) + Ci
Tβ(v) + εi(v),

where θ(v), η(v) are the spatially varying coefficients that account for the effect of the 

voxel-level confounder Zi(v), and α(v), β(v) are the spatially varying coefficient vectors that 
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account for the effect of the subject-level confounding vector Ci. The error terms ϵi(v) and 

εi(v) satisfy that E{ϵi(v)} = E{εi(v)} = 0, Var ϵi(v) = σϵ
2(v), Var εi(v) = σε

2(v). Furthermore,

Cov ϵi(v), εi(v) = σϵ(v)σε(v)ρ(v), (2)

where σϵ(v) > 0, σε(v) > 0, and −1 ≤ ρ(v) ≤ 1. Similar varying coefficient models have been 

commonly examined and applied in neuroimaging analysis [8]–[13], though often for a 

completely different purpose; see Section V–B for more discussion. Model (1) leads to a 

formal definition of the primary object of interest for our multimodal analysis, i.e., the same-
location correlation coefficient, ρ(v), as defined in (2). We briefly comment that, the cross-
location correlation coefficient, ρ(v, v′) from Cov{ϵi(v), εi(v′)} = σϵ(v)σε(v′)ρ(v, v′), 1 ≤ 

v, v′ ≤ V, v ≠ v′, is of scientific interest too, but is not the focus of this article.

Intuitively, the correlations between imaging modalities are similar in brain regions of 

spatially contiguous voxels. As such, it is reasonable to introduce a homogenous correlation 

structure within those regions. Particularly, we assume that there exist G non-overlap 

subgroups of all the brain voxels, denoted by ℛg g = 1
G

 with ℛg ∩ ℛg′ = ∅ for g ≠ g′, such 

that

ρ(v) = ∑
g = 1

G
rgI v ∈ ℛg , (3)

where −1 ≤ rg ≤ 1, with min1≤g≤g′≤G|rg−rg′| > 0, and I(·) is an event indicator function with 

I(𝒜) = 1 if 𝒜 occurs and I(𝒜) = 0 otherwise. This homogeneous correlation structure plays a 

central role in our proposed solution that integrates voxel-wise analysis with region-wise 

analysis. It tackles correlation at the individual voxel level, meanwhile shares the same spirit 

as region-wise analysis, in that it pools voxels with similar correlation patterns together. But 

unlike region-wise analysis, we do not assume the partition ℛg g = 1
G

 is known apriori. 

Instead, we seek to adaptively estimate this partition, including the number of subgroups G, 

given the data. The resulting estimated homogenous regions do not have to coincide with 

those predefined brain atlas regions.

B. Model inference

We next develop an inferential procedure to estimate and infer the varying correlation 

coefficient ρ(v) in (2) under model (1) and the homogeneous structure (3). We describe our 

procedure by steps. For each step, there are multiple choices, and we choose only one in our 

implementation. We discuss some alternative choices in Section V–C.

1) Sample correlation estimation: Given the data, we first fit model (1) using the 

least squares approach to obtain an estimate of the residuals, ϵ i(v) and ε i(v). We then obtain 

the sample correlation estimate for ρ(v), denoted as ρ(v),
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ρ(v) = Corr ϵi(v)
i = 1
n , εi(v)

i = 1
n .

Note that, for our analysis, the primary interest is the spatially varying correlation coefficient 

ρ(v), instead of the varying coefficients θ(v), η(v), α(v), and β(v) that account for the effect 

of other confounding variables. As such, the step of sample correlation estimation amounts 

to voxel-wise least squares regressions. On the other hand, the varying coefficient model (1) 

is crucial for a proper definition of our population parameter of interest ρ(v) and the 

subsequent inferences. Moreover, measurement error in Zi is to potentially affect the 

coefficient estimates, θ(v), η(v), α(v), β(v), and can in effect increase the overall noise level. 

Our analysis focuses on the correlation of the residual terms, and thus should remain valid.

2) Spatial smoothing: We next spatially smooth the sample correlation coefficient. This 

smoothing step is to incorporate spatial continuity of the correlations of the adjacent voxels, 

which in turn is to facilitate clustering of the voxels with similar correlation patterns into the 

same groups. We also remark that there is no need to z-transform the correlation coefficient, 

as we are not imposing any Gaussian distributional assumption on ρ(v). As such there is no 

need to transform its range from (−1, 1) to the real line.

Specifically, we perform a kernel smoothing on the sample correlation estimate, ρ(v) v = 1
V , 

using the exponential squared kernel. We denote the smoothed version of the estimate for 

ρ(v) as ρ(v), where

ρ(v) =
∑v′ = 1

V exp −τd v, v′ ρ(v)

∑v′ = 1
V exp −τd v, v′

.

Here d(v, v′) is the Euclidian distance between the two locations v and v′. We set the 

smoothing parameter, the full width at half-maximum (FWHM), at 9mm, following [23]. We 

have experimented with other FWHM values such as 6mm and 10mm, and obtained similar 

results.

We make a few remarks. First, in addition to the above spatial smoothing of the sample 

correlation estimate, we often smooth the raw image using a Gaussian kernel in imaging 

preprocessing. Our method is not sensitive to the raw image smoothing, in that the final 

results are similar with or without this preprocessing step. On the other hand, the step of raw 

image smoothing is to greatly facilitate the voxel-wise analysis. To be consistent, we always 

pre-smooth the raw images in all our numerical analyses. Second, in addition to the 

exponential squared kernel, our method can work with other kernels, e.g., a kernel that 

incorporates a correlation component.

3) Graph-based partitioning: We next seek a data adaptive estimation, based on ρ(v), 

of the spatially homogeneous regions ℛg g = 1
G

 as defined in (3). While there are multiple 

clustering methods available, we choose a clustering-on-graph approach. This approach is 
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computationally efficient and maintains the spatial contiguity of the identified voxels that 

form the regions of correlation homogeneity.

Toward that end, we first create a correlation type indicator, δ (v) ∈ − 1, 0, 1 , which denotes 

the negative, null, and positive correlation type, respectively, by thresholding the smoothed 

estimate ρ(v) at each voxel v,

δ (v) = I ρ(v) > λ+ − I −ρ(v) > λ− ,

where λ+ and λ− are taken as the 95% percentile of ρ(v) v = 1
V  and − ρ(v) v = 1

V . We 

comment that the performance of the method depends on the choice of the percentile value. 

We have chosen 95% percentile for two reasons. First, loosely speaking, the 95% percentile 

of the correlation estimate can be thought of as a critical value under the significant level 

0.05. This is due to that, under the null hypothesis that the correlation is zero, the marginal 

distribution of the estimated correlation can be viewed as a rough approximation to the null 

distribution of the test statistic. Second, our simulations have suggested that the empirical 

performance under the 95% percentile achieves a good balance between sensitivity, 

specificity and FDR; see Table II in Section IV–A.

Next we construct two graphs, 𝒢+ = ℰ+, 𝒱+  and 𝒢− = ℰ−, 𝒱− , where

ℰ+ = v, v′ : d v, v′ < d, δ(v) = δ v′ = 1 ,

𝒱+ = v : δ(v) = 1 ,

ℰ− = v, v′ : d v, v′ < d, δ(v) = δ v′ = − 1

𝒱− = v : δ(v) = − 1 .

Here the graph edges indicate whether the two voxels v and v′ are close enough within the 

same graph, where d is a distance measure threshold, and we set d = 3. We have also 

experimented with some other values of d, and the results are relatively stable, as long as d is 

smaller than the value of FWHM; see Table III in Section IV–A. We then employ a graph 

clustering approach, the depth-first-search algorithm, to obtain the partition. This algorithm 

is particularly useful in saving the memory and speeding up the computation for graphs with 

a large number of nodes [24].

4) Likelihood ratio test with false discovery control: After obtaining the estimated 

group partition ℛg g = 1
G = 1, we propose to estimate the correlation coefficient rg in (3) 
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using the maximum likelihood estimation approach. Subsequently, we test the significance 

of departure of rg from zero using a likelihood ratio test, with a proper false discovery 

control. This likelihood based test is both computationally feasible and enjoys sound 

theoretical properties.

Specifically, the estimate rg of rg can be obtained by maximizing the log likelihood function 

for the data ϵ i(v) and ηi(v) within region Rg. Denote 

Wi, g = ϵ i(v), v ∈ ℛg
T, ηi(v), v ∈ ℛg

T T
. This is equivalent to minimizing the following 

objective function,

n logdet Σg rg + ∑
i = 1

n
Wi, g

T Σg
−1 rg Wi, g,

with respect to rg and other parameters in Σg(rg), which is given by

Σg rg =
Σx, g Σxy, g rg

Σxy, g rg
T Σy, g

,

where the diagonal elements of Σxy,g(rg) equals rg, and the off-diagonal elements 

unspecified. We recognize that the computation involved in this maximum likelihood 

estimation procedure can be expensive. To speed up the computation, we may impose 

Σxy, g rg = rgI|ℛg|, where |ℛ| denotes the number of voxels in region ℛ, and Id is a d-

dimensional identity matrix. This is equivalent to imposing that the cross-location 

correlation ρ(v, v′) = 0. However, we remark that this assumption is only for computational 

simplicity. It is not crucial for our proposed procedure to work, and can be easily removed. 

We have compared the numerical results with and without this additional assumption, and 

found that the two results are similar.

Finally, we perform a likelihood ratio test on the series of hypotheses, rg = 0, g = 1, …, G. 

Even though the test is carried out at the region level, it is still important to correct for 

multiple testing. In our implementation, we employ the method of [25] for false discovery 

rate (FDR) control. We report those regions whose corresponding correlations rg are found 

significantly different from zero.

IV. Numerical Results

A. Simulation study

We first investigate the performance of our proposed method and its comparison to the 

alternative solutions through a simulation study. For ease of graphical illustration, we 

simulate the imaging data on 64 × 64 equally spaced grids in [0, 1]2 according to the 

following model. For i = 1, …, n,
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Xi(v) = ξi, 1(v) + ξi, 2(v) + ϵi, 0(v),

Yi(v) = ξi, 1(v) − ξi, 2(v) + εi, 0(v),

where ξi,k follows a Gaussian process with mean zero and and covariance kernel κk, k = 1, 

2. We set κk(v,v′) = τk(v)τk(v′)κ0(v,v′) with κ0 v, v′ = exp −10 v − v′ 2
2 . We set 

τ1
2(v) = 0.6∑l = 1

3 I v − u1, l 1 < 0.1 , where u1,1 = (0.3, 0.7), u1,2 = (0.7, 0.7), and u1,3 = (0.3, 

0.3). We set τ2
2(v) = 0.7 I v − u2, 1 1 < 0.1 + I v − u2, 2 2 < 0.1 , where u2,1 = (0.5, 0.5) and 

u2,2 = (0.7, 0.3) The random errors ϵi,0(v) and εi,0(v) are mutually independent over i and v. 

Marginally, ϵi, 0(v) N 0, s1
2(v) , and εi, 0(v) N 0, s2

2(v)  where logsk
2(v) follows a Gaussian 

process with mean zero and covariance kernel mkκ0, k = 1,2. We consider three levels of 

signal strength, by setting (m1, m2) = (0.15, 0.25) for a weak signal, (m1, m2) = (0.45, 0.55) 

for a medium signal, and (m1, m2) = (0.75, 0.85) for a strong signal. Under this setup,

ρ(v) =
τ1
2(v) − τ2

2(v)

τ1(v) + τ2(v) + s1
2(v) τ1(v) + τ2(v) + s2

2(v)
.

Figure 2, the top panel, shows the simulated imaging data for two random subjects, {X1(v), 

Y1(v)}, {X2(v), Y2(v)} under a weak signal. We set the sample size n = 50, and the 

significance level α= 0.05. We have also considered Cauchy errors, and the results (not 

reported here) are similar with a reasonable amount of outliers and signal strength.

We compare our proposed spatially adaptive method with two alternatives: the voxel-wise 

analysis and the region-wise analysis. Specifically, for the voxel-wise analysis, we perform 

the Pearson correlation test for each voxel and adjust the p-value with FDR control [25]. For 

the region-wise analysis, we consider 4 × 4 equally spaced region partitions. See Figure 2, 

bottom panel, top left quadrant, for the partitioned regions. We take the average of the 

imaging data within each region to obtain region specific imaging statistics. We then 

perform the region-wise correlation test, with the same multiple testing correction as the 

voxel-wise analysis. We remark that, a refined partition of regions such as 8 × 8 or 16 × 16 

partitions would improve the sensitivity and specificity in this simulation example, though 

still underperforms than our proposed method. The larger the number of the partitioned 

regions, the closer it is to the voxel-wise analysis. So the size of the partition essentially 

reflects a tradeoff between region-wise and voxel-wise analysis. Moreover, we only use the 

grid-type partition for illustration purpose in our simulation. In practice, one rarely uses the 

grid partition, but often employs some prespecified brain atlas to partition the brain and to 

define the regions, within which the between-modality correlation may not always be 

homogeneous. Figure 2, the bottom panel, reports the selection results by the three methods 

based on one data replication.
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Table II summarizes the mean and standard deviation (in parentheses) over 100 replications 

for sensitivity, specificity and FDR under three different signal strengths. We also examine 

the effect of pre-smoothing and the percentile thresholding value for λ+ and λ−. We make 

the following observations. First, our spatially adaptive method is seen to achieve the best 

performance. The voxel-wise method suffers from extremely low sensitivity, while the 

region-wise method suffers from high false discovery rate. Our proposed spatially adaptive 

method enjoys both competitive sensitivity and specificity, along with sound false discovery 

control. Second, the pre-smoothing step does not affect our method much, but is to facilitate 

the voxel-wise analysis. Third, the performance of our method does depend on the percentile 

thresholding value. We have experimented with two thresholding values, 90% and 95%. 

With the 90% threshold, our method enjoys a better sensitivity and specificity, but also 

suffers from a larger false discovery. With the 95% threshold, our method achieves a 

reasonable balance between sensitivity, specificity and FDR. In summary, our proposed 

method consistently outperforms the voxel-wise and region-wise solutions.

Finally, we examine the effect of d in the graph construction step. Table III reports the 

results for the weak signal case with d taking the value in {1, 2, 3, 4, 5, 7, 9, 10, 11}. We 

observe that, as long as d is smaller than the FWHM value, the results are relatively stable, 

while the results can be affected if d exceeds the FWHM value.

B. Multimodal PET analysis

We applied the proposed approach to the multimodal PET study introduced in Section II. 

Our goal was to examine associations between hypothesized increased tau accumulation and 

reduced glucose metabolism as a function of PiB status group, after controlling for local GM 

and other covariates. We fitted the model (1) to all the data, with the tau PET and FDG PET 

imaging serving as Xi(v) and Yi(v), the VBM imaging as Zi(v), and subject’s age and sex 

forming Ci. We then carried out the correlation analysis based on the residuals for the Aβ-

positive and Aβ-negative groups separately. We set the significance level at α = 0.05, and 

declared a cluster significant if its corrected p-value after the FDR control is smaller than α. 

Besides, we removed those small clusters if the number of voxels is no more than 20.

We summarize the results in Figure 3 and Table IV. Among Aβ-negative participants (the 

left panel of Figure 3), increased AV-1451 uptake was significantly associated with reduced 

FDG metabolism in clusters located in bilateral medial temporal lobes (MTL). These 

clusters were localized to amygdala, hippocampus, and entorhinal cortex (anterior 

parahippocampal gyrus); Table IV reports AAL labels of cluster peaks and the cluster center 

coordinates. Additional smaller clusters were observed in inferior frontal cortex and 

temporo-occipital fusiform gyrus. Among Aβ-positive participants (the right panel of Figure 

3), significant inverse AV-1451 and FDG associations were located in right inferolateral 

temporal, and bilateral medial parietal and inferior medial frontal cortex. Importantly, 

correlations of increased AV-1451 with reduced FDG follow a pattern of tau accumulation 

reported by the pathology literature [19], with correlations observed in Aβ-negative subjects 

in regions known to first accumulate tau pathology such as MTL, and correlations observed 

in Aβ-positive subjects in later stage (temporal and parietal) regions. We also clarify that, the 

AAL atlas was not used in our detection method, but instead was only employed in Table IV 
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to facilitate the interpretation of our identified clusters of voxels. We further expand on our 

scientific findings in the discussion section.

We also note that, while our multimodal analysis focused on investigating associations 

between increased tau accumulation and reduced glucose metabolism, we did examine 

positive associations between FDG and AV-1451 as well. We observed some positively 

correlated clusters both before and after covarying for voxel-wise VBM data. Positive 

clusters occurred predominantly in the same areas in both subject groups; see Figure 4. They 

were primarily localized to the longitudinal fissure and lateral sulcus, in brain regions 

comprising tissue/CSF borders, and were decreased in volume after correction by VBM data 

(decreased by 24mm3 in Aβ-negative, and 128mm3 in Aβ-positive subjects), suggesting 

these clusters of correlations were related to partial volume (atrophy) effects in the data.

As a comparison, we also applied the alternative methods, the voxel-wise correlation 

analysis, and the region-wise correlation analysis using the AAL atlas. When analyzing the 

Aβ-negative group and the Aβ-positive groups separately, neither method found any 

significantly correlated regions after FDR correction, reflecting their low detection power. 

When analyzing the Aβ-negative and Aβ-positive groups jointly, neither method found any 

significantly negatively correlated regions. The two methods identified a number of 

significantly positively correlated regions, which we found are most likely attributed to the 

aforementioned atrophy effects.

V. Discussion and Conclusion

A. Scientific findings

In the current study, we sought to examine associations between tau and glucose 

metabolism, after controlling for local grey matter volume, and whether relationships varied 

with global Aβ burden. We found that in cognitively normal Aβ-negative older adults, tau 

deposition was associated primarily with reduced metabolism in MTL and in inferior frontal 

regions. In Aβ-positive elderly, increased tau deposition was associated with metabolic 

decline in medial frontal and parietal cortex, as well as in inferolateral temporal cortex. 

These results suggest that patterns of inverse associations between tau accumulation and 

glucose metabolism differ based upon amyloid status and are congruent with previous 

knowledge of the distribution of tau, Aβ, and hypometabolism in AD.

Importantly, correlations of increased AV-1451 with reduced FDG follow a pattern of tau 

accumulation that complies with the pathology literature [19], such that in normal older 

adults without substantial amyloid burden, correlations are found in regions known to first 

accumulate tau pathology such as MTL (Braak stages 1 and 2). In parallel to the 

neuropathological data, recent tau-PET data have demonstrated that age is associated with 

more tau accumulation in the MTL regardless of Aβ status [17]. Reduced glucose 

metabolism in the hippocampus has been widely reported in normal older individuals [26], 

normal older individuals who subsequently show cognitive decline [27], and patients with 

AD and mild cognitive impairment [28]. While there is evidence linking atrophy of the 

hippocampus to postmortem neurofibrillary tau pathology in aging and AD [29], studies of 

the pathological basis of hippocampal hypometabolism are lacking. The correspondence of 
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age-related tau pathology and age-related hippocampal hypometabolism, however, is 

consistent with our results that implicate tau as at least part of the underlying mechanism. In 

addition, the finding of tau-related hypometabolism in the medial parietal, inferior temporal, 

and medial prefrontal cortex that is related to the presence of Aβ is consistent with both 

extensive prior and recent data. Hypometabolism in the posterior cingulate has long been 

recognized as an early metabolic finding in AD [30] as has temporal lobe hypometabolism 

[31]. While inferomedial pre-frontal cortex has not been specifically identified as a typical 

region of AD hypometabolism, it is a brain region notably affected by both Aβ and tau 

deposition [17], [32]. Finally, a recent report points to the AD-like pattern of 

hypometabolism as associated with synergistic effects of Aβ and tau, while effects of tau 

alone are limited to the MTL [33].

B. Related methods

Our proposal is related to but also clearly distinct from a number of existing methods in the 

literature. The first related line of research is statistical parametric mapping, and in 

particular, the random field theory based method [34], and the multimodal analysis toolbox 

[35]. However, the focus of [34] is to correct the p-values of individual voxels from multiple 

testing through random field theory. The test is still carried out at the voxel-level, and is 

expected to suffer from low detection power of a typical voxel-wise analysis. On the other 

hand, the correction method of [34] can be employed in our multi-step inferential procedure, 

by replacing the FDR correction method of [25] in step 4. More recently, [35] developed a 

biological parametric mapping toolbox for multimodal analysis. While it offers 

improvements such as non-parametric and robust regression, it still suffers from the same 

limitations as voxel-wise or region-wise methods. Unlike our proposal, none of those 

methods provides a solution that combines voxel-wise and region-wise analysis. The second 

line of research includes numerous varying coefficient models, and relatedly, functional 

mixed effects models, for neuroimaging analysis [8]–[13]. The main distinction between our 

proposal and those existing varying coefficient based solutions is the primary parameter of 

interest. Our focus is the varying correlation coefficient ρ(v) in (2) between multiple 

modalities under model (1), and we estimate and infer about ρ(v) under the homogeneous 

spatial structure (3). By contrast, the primary target of the existing solutions are the varying 

coefficient effects, i.e., θ(v), η(v), α(v), and β(v) under model (1), and mostly for a single 

imaging modality. The third line concerns data-driven brain parcellation and homogeneous 

brain region identification, mostly in the context of brain connectivity analysis using fMRI 

data. See [36] for a review and the references therein. Again, this category of methods 

targets a different problem than ours. However, some of those data-driven parcellation 

methods can be employed in conjunction with our proposed inferential procedure, by 

replacing the graph-based partition method in step 3.

C. Future extensions

A key assumption of our solution is the correlation homogeneity assumption (3). This 

structure can greatly reduce the complexity of the subsequent statistical testing procedure, 

while losing relatively little information for detecting the true signals. This assumption can 

also be relaxed for extra modeling flexibility. For example, we may allow the correlations 

within a region to differ to some extent, and require that the correlation at each voxel to 
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depend on the correlations of its neighbors. This additional flexibility may further increase 

the detection power, and can reduce the false positive rate if the model is correctly specified. 

However, it also comes with a price, as it would inevitably introduce additional unknown 

parameters, and may lose efficiency when the sample size is limited. A balance between 

model flexibility and model complexity in this context is warranted for future investigation.

Our proposed inference is a multi-step procedure. For each step, one may consider some 

alternative solutions than the ones we currently employ. In step 1, we use the Pearson 

correlation. A potential alternative is to use a rank based correlation coefficient that may 

capture the nonlinear dependence between the two imaging modalities. In step 2, in addition 

to the exponential squared kernel and the Euclidian distance, other kernel functions or 

distance measures could be used [37]. Moreover, one may also consider other smoothing 

techniques, e.g., smoothing splines, than kernel smoothing. In step 3, we currently threshold 

the estimated correlation surface over the brain and find the connected voxels using a breath-

first algorithm based on the graph theory. Alternative approaches, such as model-based 

clustering and spatially weighted k-means clustering, can serve as potential substitutes, 

though some of those methods may be computationally more intensive. In step 4, we employ 

the likelihood ratio test for assessing the statistical significance. Other testing procedures 

such as the Wald test and the score test can be used for the same purpose. Moreover, in 

addition to the asymptotical tests, the permutation test is another viable alternative. It 

generally requires fewer assumptions and thus is more flexible, though it could be highly 

intensive computationally. The final significant regions are identified after controlling the 

false discovery rate using the standard multiple comparison approach of [25]. Other FDR 

correction methods can be used as well; for instance, the FDR control based on the random 

field theory[34].

D. Conclusion

In this article, we focus on the analysis of spatially varying correlation patterns between two 

imaging modalities over the brain. One simple solution to this problem is to perform 

massively voxel-wise testing followed by multiple comparison corrections, which, as we 

have shown, suffers from extremely low statistical power to identify significant voxels when 

the sample size is relatively small. Alternatively, one can reduce the gigantic number of tests 

by turning to region-level inference using an existing brain atlas. This solution takes 

summary statistics for each region and then perform region-wise statistical tests. Its 

performance, however, heavily relies on the choice of the region partitions. For instance, a 

coarse region partition may produce larger regions that include both positively and 

negatively correlated regions, in which case, the region-wise test may fail to detect any type 

of correlation patterns. On the other hand, a finer region partition may use testing regions 

that are smaller than the true correlated regions, which would in turn reduce the power of the 

region-wise method to recover the true signals. The key of our proposal is to first evaluate 

the between-modality correlation at the voxel level, then adaptively aggregates those voxels 

which are spatially contiguous and share similar correlation patterns, then carry out the 

significance test at the region level. In effect, our method integrates voxel-wise and region-

wise analysis, and thus overcomes those limitations and enjoys a much higher statistical 

power to detect the signals.
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Although the mechanisms by which late-life tau and amyloid accumulation influence 

glucose metabolism are not well understood, our results suggest early tau accumulation 

interacts with Aβ to produce cortical hypometabolism, even among normal elderly. 

Furthermore, the method we have developed enhances neuroimaging research of aging and 

dementia by providing improved detection of results without need for massively voxel-wise 

testing or region-based partitioning. Both the biological and methodological components of 

this work represent useful advances to the field.
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Fig. 1. 
The schematic plot of the proposed inference procedure.
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Fig. 2. 
Illustration of the simulation study. Top panel: the simulated bivariate images for two 

random subjects. Bottom panel: the true correlation map (bottom left), and the significantly 

positively (red) and negatively (blue) correlated regions selected by the three methods: 

voxel-wise analysis (bottom right), region-wise analysis (top left), and our proposed 

spatially adaptive analysis (top right). The images were pre-smoothed before the analysis.
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Fig. 3. 
AV-1451 – FDG associations by Aβ status. Clusters indicate significant negative 

associations between AV-1451 and FDG in Aβ− (left) and Aβ positive (right) older adults 

(OA).
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Fig. 4. 
Positive correlations in FDG – AV1451 data. Positive clusters are visualized on the MNI 

template brain for Aβ-negative (red) and Aβ-positive (yellow) subjects (overlap: green). 

Positive clusters occurred predominantly in the same areas in both subject groups, primarily 

localized to the longitudinal fissure and lateral sulcus.
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Table I

Demographic characteristics of the participants. Reported for each group is mean (standard deviation), or the 

number of participants (percentage), and the associated two-sample test statistic with the p-value. the last row 

reports the acquisition time difference between AV-1451 and FDG PET scans. Aβ−, Aβ-negative older adults; 

Aβ+, Aβ-positive older adults; ApoE4, Apolipoprotein E4; MMSE, Mini-Mental State Exam;

Aβ−
(n = 26)

Aβ+
(n = 21)

t or χ2 p-value

Age (years) 78.7 (7.0) 78.1 (3.6) 0.38 0.71

Sex (female) 17 (65%) 14 (67%) 0.01 0.93

Education (years) 17.0 (1.9) 16.0 (2.1) 1.66 0.10

ApoE4 (+) 2 (8%)
15 (75%)

a 21.98 < 0.001

MMSE 29.1 (1.0) 28.3 (1.4) 2.15 0.04

Global PiB DVR 1.01 (0.02) 1.37 (024) −6.86 < 0.001

Time difference (days) 99 (124) 73 (79) 0.87 0.39

a
One Aβ+ subject missing APOE data.
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Table III

Selection performance over 100 data replications with different values of d in graph-based partition.

d Type Sensitivity Specificity FDR

1 Positive 0.690 (0.087) 0.998 (0.001) 0.037 (0.021)

Negative 0.906 (0.049) 0.998 (0.001) 0.044 (0.019)

2 Positive 0.745 (0.047) 0.997 (0.001) 0.055 (0.030)

Negative 0.919 (0.027) 0.996 (0.001) 0.076 (0.021)

3 Positive 0.731 (0.051) 0.996 (0.002) 0.077 (0.039)

Negative 0.907 (0.027) 0.995 (0.001) 0.092 (0.027)

4 Positive 0.738 (0.044) 0.996 (0.002) 0.076 (0.040)

Negative 0.905 (0.032) 0.995 (0.002) 0.094 (0.032)

5 Positive 0.694 (0.069) 0.994 (0.003) 0.121 (0.064)

Negative 0.878 (0.051) 0.994 (0.003) 0.122 (0.051)

7 Positive 0.618 (0.079) 0.989 (0.005) 0.211 (0.089)

Negative 0.824 (0.090) 0.991 (0.004) 0.173 (0.084)

9 Positive 0.546 (0.094) 0.984 (0.005) 0.302 (0.108)

Negative 0.711 (0.064) 0.985 (0.003) 0.289 (0.063)

10 Positive 0.493 (0.082) 0.981 (0.005) 0.363 (0.095)

Negative 0.670 (0.053) 0.983 (0.003) 0.330 (0.053)

11 Positive 0.461 (0.086) 0.979 (0.005) 0.410 (0.100)

Negative 0.634 (0.038) 0.981 (0.002) 0.366 (0.038)
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