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Development of a Microscopic Activity-Based Framework for Analyzing the Potential

Impacts of Transportation Control Measures on Vehicle Emissions

W. W. Recker and A. Parimi

Department of Civil and Environmental Engineering and Institute of Transportation Studies

University of California, Irvine, CA  92697, U.S.A.

Abstract

The 1990 Clean Air Act Amendments (CAAA) and the Intermodal Surface Transportation

Efficiency Act  of 1991 (ISTEA) have defined a set of transportation control measures to counter

the increase in the vehicle emissions and energy consumption due to increased travel.  The value

of these TCM strategies is unknown as there is limited data available to measure the travel

effects of individual TCM strategies and the models are inadequate in forecasting changes in

travel behavior resulting from these strategies.  The work described in this paper begins to

provide an operational methodology to overcome these difficulties so that the impacts of the

policy mandates of both CAAA and ISTEA can be assessed.  Although the framework, as

currently developed, falls well short of actually forecasting changes in traveler behavior relative

to policy options designed to encourage emissions reduction, the approach can be useful in

estimating upper bounds of certain policy alternatives in reducing vehicle emissions.  Subject to

this important limitation, the potential of transportation policy options to alleviate vehicle

emissions is examined in a comprehensive activity-based approach.   Conclusions are drawn

relative to the potential emissions savings that can be expected from efficient trip chaining

behavior, ride-sharing among household members, as well as from technological advances in

vehicle emissions control devices represented by replacing all of the vehicles in the fleet by

vehicles conforming to present-day emissions technology.
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1.  Introduction

It is estimated by U.S. EPA (1991) that in a typical U.S. city, the motor vehicle emissions

account for between 30 to 50 percent of hydrocarbon, 80 to 90 percent of carbon monoxide, and

40 to 60 percent of nitrogen oxides emissions.  Advances in technology have played and will

continue to play a role in better managing both energy consumption and harmful emissions

associated with vehicular transport.  Catalytic converters and other emissions control devices

have achieved highly positive results in the reduction of vehicle emissions.  Since the passage of

the first Clean Air Act in 1970, tailpipe HC emissions have been reduced by 91 percent

(compared to a 1971 model car).  The corresponding reductions for CO and NOx have been 96

and 85 percent respectively.  However, during the period 1981-1992, the total vehicle miles

traveled (VMT) for the Nation rose by more than 33 percent and the number of trips increased by

about 25 percent (U.S. EPA, 1991; Hu and Young, 1992).  The increase in the VMT and number

of trips substantially offset the emission reductions; the net reduction in CO and NOx, for

example, was only 45 and 25 percent, respectively.

The 1990 Clean Air Act Amendments (CAAA) establish rules for gasoline volatility, evaporative

and running losses, tailpipe emissions standards, alternative fuel programs, reformulated and

oxygenated fuels, and inspection and maintenance programs.  It is estimated that technological

advances that conform to these rules could produce almost half of the CAAA - required

reductions in emissions by 2010 (Pechan, 1992).  However, expected VMT growth (forecast to

be about 2 percent annually) will offset much of this reduction (Kessler and Schroeer, 1995).

The CAAA and the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) have, in

combination, defined a broad range of transportation control measures (TCMs) and established

procedures and requirements for integrating such TCMs as telecommuting, flexible work hours,

congestion and parking charges, ridesharing, no-drive days, signal prioritization and expansion of

public transport into transportation and environmental planning.   However, both because of the

limited data available to measure the travel effects of combined (or even individual) TCM

strategies and the inadequacy of models to forecast changes in travel behavior resulting from
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these strategies, the value of these TCMs is currently unknown and the subject of controversy

(Lyons, 1995).

The nature of the interactions among the collection of individual and household travel decisions

in response to TCMs lay at the heart of the failings of conventional models and data to provide

adequate measures of their potential impact.  Vehicle energy use and emissions depend not only

on distance and the speed it is driven at, but also on the number of trips, the time between them,

and whether the vehicle was warmed up or not when started; i.e., on the spatio-temporal linkages

between the collection of activities that individuals and households perform as part of their daily

schedule.

The work reported here begins to provide an operational methodology to overcome these

difficulties so that the impacts of the policy mandates of both CAAA and ISTEA can be assessed.

This results demonstrate an application of the approach to estimate the potential benefits in

vehicle emissions reduction that could be achieved with optimal scheduling and linking of the

activities performed by the individuals in a household.  Specifically, a comprehensive activity-

based approach is advanced to address the following question: “Given a set of activities,

locations, and various constraints, if ALL individuals were to act to minimize CO emissions by

trip chaining and ridesharing in the most efficient way possible, what activity patterns would

result, and how would they differ in CO emissions from their observed (i.e., revealed, or chosen)

patterns?”1  The question as posed falls well short of actually forecasting changes in traveler

behavior relative to policy options designed to encourage emissions reduction, which is a much

more demanding exercise.  Rather, the approach, as currently developed, can be useful in

estimating upper bounds of certain policy alternatives in reducing vehicle emissions.  Subject to

this important caveat, conclusions are drawn relative to the potential emissions savings that can

be expected from efficient trip chaining behavior, ride-sharing among household members, as

well as from technological advances in vehicle emissions control devices represented  by

replacing all of the vehicles in the fleet by vehicles conforming to present-day emissions

technology.

                                                
1 The authors gratefully acknowledge this suggestion of one of the reviewers (unknown) in phrasing the substantive
contribution of this paper with clarity that escaped the authors.
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2. Base Methodology

The methodology used is based on an extension of the mathematical programming approach

offered by Recker (1995) in which the household activity pattern problem (HAPP) is posed as a

network-based routing model incorporating vehicle assignment, ride-sharing behavior, activity

assignment and scheduling, and time window constraints.  The general approach involves

treating the HAPP as an analogy to the so-called Pickup and Delivery Problem with Time

Windows (PDPTW).

In the analogy to the PDPTW, activities are viewed as being "picked up" by a particular

household member at the location where performed and, once completed (requiring a specified

service time) are "logged in" or "delivered" on the return trip home.  Multiple "pickups" are

synonymous with multiple sojourns on any given tour.  The scheduling and routing protocol

relative to some household objective produces the "time-space diagram" commonly referred to in

travel/activity analysis.

The problem is defined by a network graph G=(V, A), where V is the set of all vertices, and A is

the set of all arcs in the network.  Physically, V can be a set of demand nodes, and A can be

explained as the connections between these demand nodes.  The standard Vehicle Routing

Problem (VRP), that is applied in numerous studies (Golden, 1984; Desrochers, et al., 1988;

Solomon and Desrosiers, 1988) is defined on this graph as the visit to each node once and only

once by a stable of vehicles with specific capacity constraints.  The Household Activity Pattern

Problem (HAPP) is described as: Minimize a hypothetical objective function (which generally

expresses some “generalized cost” to the household in order to complete all of the activities

needed to be performed by the household members) subject to the constraints related to

transportation supply, time windows, vehicle capacity, and logical connection between activity

nodes.  The HAPP, which is more complex than a generic VRP, can be defined on an expanded

graph with the addition of temporary returning home nodes, and the replacement of the activity

nodes with drop-off and pick-up function nodes, which physically represent the same locations as

those of the activity nodes, and logically are used to explain different purposes of that trip.  The

requirements for the household members to complete all scheduled activities (visiting all activity

nodes), which could be performed either by some specific person or by anyone available, are
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sustained within this model.  Each activity in the HAPP must be performed2 (equivalent to the

definition that each vertex of the network in the VRP should be visited once and only once), and

there is a limitation on the time period of performing the activity.

The resulting HAPP formulation is in the form of a Mixed Integer Linear Programming (MILP)

model. The equations describing the problem are contained in Recker (1995) and are not repeated

here.  However, the general form of the HAPP mathematical program formulation of the

travel/activity decisions for a particular household, say i, during some time period is represented

by:
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The outputs Xi  of the optimization for each household i are specified by the following decision

variables3:

X u w N V u wuw
υ υ  , , , ,∈ ∈ ≠ binary decision variable equal to unity if vehicle  υ  travels

from activity  u  to activity  w, and zero otherwise.

                                                
2 Within the HAPP formulation, an activity is defined by a time-line that is invariant with respect to both activity
type and space.  For example, a morning work activity followed by lunch and then by a return to the work activity for
the afternoon period would be classified as three activities – two work activities and a meals activity.
3 The notation used here is the same as that contained in Recker, 1995.
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H u w N u wuw
α α η, , , ,   ∈ ∈ ≠ binary decision variable equal to unity if household

member  α  travels from activity  u  to activity  w, and zero

otherwise.

T u Pu , ∈ the time at which participation in activity  u  begins.

T T Vno    υ υ υ, ,2 1+ ∈ the times at which vehicle  υ  first departs from home and

last returns to home, respectively.

T ,T ,   n+o
α α α η2 1 ∈ the times at which household member  α  first departs from

home and last returns to home, respectively.

The various sets referenced in the above are defined by the following notation:

A = {1, 2,…, j,…, n} the set of out-of-home activities scheduled to be completed
by travelers in the household.

V = {1, 2,…, υ,..., | V |} the set of vehicles used by travelers in the household to
complete their scheduled activities.

P+ = {1, 2,…, u,…, n) the set designating location at which each activity is
performed.

P- = {n+1, n+2,…, n+j,…, 2n} the set designating the ultimate destination of the "return to
home" trip for each activity.  (It is noted that the physical
location of each element of P- is "home".)

P = P+�P- the set of nodes comprising completion of the household's
scheduled activities.

N = {0, P, 2n+1} the set of all nodes, including those associated with the
initial departure and final return to home.

Bi  is a vector of coefficients that defines the relative contributions of each of the decision

variables to the overall disutility of the travel regime to the household.  Descriptively, the

constraint sets AX 0i ≤ for this MILP are classified into six groups: (a) routing constraints that
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define the allowable spatial movement of vehicles and household members in completing the

household’s activity agenda; (b) scheduling constraints specify the relationship of arrival time,

activity  begin time, and waiting time, and continuity condition along the temporal dimension; (c)

assignment constraints that are applied to match the relations between activity participation and

vehicle usage as well as activity performers (household members); (d) time window constraints

that are used to specify available schedules for activity participation; (e) coupling constraints that

define the relations between vehicle-related variables and member-related variables; and (f) side

constraints including budget, capacity, and rules for ride-sharing behavior.  With the exception of

the side constraints (i.e., classification “f “ above), these constraints capture the physical

conditions that ensure that each member of the household, as well as each vehicle used by the

household, have a consistent, continuous, path through time-space that results in all of the

activities on the household’s agenda being successfully completed.  The reader interested in a

detailed derivation and explanation of these constraints is referred to the original work by Recker

(op cit).

The solution vector, Xn
∗ , to Equations (1) represents the household’s utility maximizing

behavior, relative to the prescribed objective )( iZ X 4, with regard to completing its activity

agenda.  The solution patterns reveal personal travel behavior and activity participation within a

household context, while preserving the concept that the need for travel originates from

participation in activities, that travel constitutes the linkage between activities, and in which all of

the required components are contained in the activity scheduling problem.

3. Extension to Incorporate Emissions Analysis

The HAPP network-based activity assignment protocol is extended in this study to incorporate

emissions based on the Mobile 5 vehicle emissions model (US EPA, 1994).  Vehicle emissions

                                                
4 In the example considered here, the specification of the objective function is prescribed by the
analyst; i.e., the minimization of emissions produced by travel.  The typical problem in demand
modeling (of which the HAPP is a subset) is focused on inferring the relative weights associated
with potential components of the utility function that are determinants to a population's revealed
selection of the decision variables (in the model estimation phase) with subsequent forecasts
made using these weights in conventional application of the model.  This particular aspect of the
research approach remains a challenge.
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depend on a number of factors, including: the distance and speed driven on the spatio-temporal

linkages between the collection of activities that individuals and households perform as part of

their daily routine, the number of trips, the time between them, the vehicle used, and whether or

not the vehicle was warmed up when started.  All but the last of these factors are explicit outputs

of the HAPP optimization process; the last (i.e., cold vs. hot start status) is an implicit aspect of

the activity durations, scheduling options, and travel times to/from activities.  For example,

calculation of the CO emissions produced by any household travel/activity pattern can be

captured by the simple linear function:

υ

υ υ

  
X CO

∈ ∈∈
� �� ⋅

V
uw uw

w Nu N
(2)

where COuw
υ  are the elements of the CO emissions matrix representing the CO emissions for a

travel linking activities u w N and ∈  using vehicle υ ∈V .  For any origin-destination-vehicle

combination, COuw
υ  is a function of the travel distance between u and w, network speed

characteristics, vehicle v emissions parameters, and the vehicle idle time between successive

starts (to determine cold-start or hot-start status).  All but the last of these (i.e., vehicle idle time)

are system link properties that are directly input as a series of N N V× ×  parameter matrices.

Vehicle idle time is dependent on the sequencing of the activities, their respective durations, and

the travel time between them.  Because of this, COuw
υ  must be specified in terms of two

contingency matrices (one to be applied for cold-start conditions, the other for hot-start) that are

solution dependent, i. e.,

CO CCO  1- HCOuw uw uw uw uw
υ υ υ υ υδ δ= ⋅ + ⋅( )       (3)

 where CCOuw
υ and HCOuw

υ  represent cold- and hot-start CO emissions, respectively, for a

travel linking activities u w N and ∈  using vehicle v V∈ , and δ υ
uw  is a binary parameter that

takes on a value unity if travel between activity u and activity w by vehicle v  involves a cold

start, and is zero otherwise.  In effect, CCOuw
υ and HCOuw

υ  are the elements of cold-start and
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hot-start CO emissions matrices.  Corresponding elements of these two matrices have only one

non-zero value depending on whether the travel from u to w involves either a cold start or a hot

start, determined by the length of time between the start of activity u and that of the travel to

activity w.)

 Calculation of HC and NOx emissions can be found in similar fashion as:

υ

υ υ

  
X HC

∈ ∈∈
� �� ⋅

V
uw uw

w Nu N
(4a)

( )
υ

υ υ

  
xX NO

∈ ∈∈
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V
uw uw

w Nu N
(4b)

with expressions similar to Equation (2) defining HCuw
υ  and ( )NOx uw

υ
.

For input to the revised HAPP model, the emissions matrices for CO, HC and NOx emissions for

each vehicle in the household must be determined between the locations of all activities

performed by the household (including home).  The calculation of these emissions matrices was

based on the MOBILE5 emissions model, using appropriate modifications to the basic emissions

rates (BERs) based on such factors as travel speed, ambient temperature, and mode of operation

(e.g., cold vs. hot start transients and the stabilized portion of the trip).  This latter factor

(operating mode) is of particular relevance in the current study as the factor most sensitive to the

extent of trip chaining present in the optimized versus observed trip patterns. The EPA has

historically defines a cold start as any start that occurs 4 hours or later following the end of the

preceding trip for non-catalyst equipped vehicles and 1 hour or later following the end of the

preceding trip for catalyst-equipped vehicles.  The duration of the activity between trips is called

the soak period.  The shorter time interval associated with the cold/hot start definition for

catalyst-equipped vehicles reflects the fact that catalytic converters do not operate at the intended

efficiency until they are fully warmed up (to operating temperatures in the 6000 F range.  A

vehicle will be operating in either a cold transient mode (corresponding to a cold start) or a hot

transient mode (corresponding to a hot start) prior to the attainment of hot stabilized operating

mode.  The cold transient is represented by the first 3.5 miles traveled by a vehicle after a cold
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start and the hot transient is represented by the first 3.5 miles after a hot start.  The stabilized

mode follows the cold transient or the hot transient.

In the analysis, the start mode of each trip is determined by the duration of the preceding activity

and the vehicle type.  (Vehicles whose model year is 1975 and later are assumed to have catalytic

converters.)  For each trip, the emissions are calculated based on the start mode and the

temperature, speed and operating mode correction factors.  For example, a trip would involve

only a cold transient or a hot transient when the total distance traveled is less than 3.5 miles.  The

HC, CO and NOx emissions for trips between all activity locations in the household are

represented in the form of a matrix in units of 10 grams.  This matrix representation is given for

all the vehicles in the household.

4. Case Study

The data used in the application of the model described in the previous sections are drawn from

the Portland, Oregon 1994 Activity and Travel Survey.  The survey strategies used in Portland

include multi-day activity diaries, in-home and out-of-home activities, full week coverage, transit

usage, all household members, and trip ends geocoded to x-y coordinates for application in a GIS

environment.  In addition, there is close coordination and integration with other relevant

databases (such as land use, parking and building permits).

The survey contains revealed and stated preference components.  The revealed preference

component used in this paper included a two-day (consecutive days) activity diary recording all

activities involving travel and all in-home activities with duration of at least 30 minutes, for all

individuals in the household.  The household and person socio-economic data are also included

in the survey.

The revealed preference (RP) survey was designed to collect household characteristics and

vehicle information for each surveyed household, as well as personal characteristics, activity and

travel data for each surveyed household member.  Activity / Travel data were collected for every

household member, regardless of age (parents were instructed to assist children under 12 years

old) over two consecutive days.  The travel days assigned to households were varied to capture

data representing all the days of the week.  Portland Metro geocoded (attached x-y coordinates



11

to) activities, home addresses, and employment locations recorded in the final survey data set to

an accuracy of 200 feet; they also provided EMM/2 coded transportation networks and models.

The Portland activity data was collected open ended, and then classified according to a set of

twenty eight categories shown in Table 1.  These categories, as well as the subjective assignment

of the respondents’ stated activities to the respective categories, were determined by Portland

Metro staff as part of their data processing procedures.

The total sample includes 10,048 individuals, who reported a total number of 129,188 activities

in the Portland area in the two-day diary; 64,713 activities listed in the raw data file for the first

travel day, 64,475 on the second.  Of these, 91,758 activities had complete geocode coordinates

associated with them.

4.1  Sample Characteristics

For use in this analysis, a random sub-sample of 100 households was drawn from a total of 2,450

households headed by opposite sex adult couples; 86 two-member households and 14 three-

member households.  These households were selected based on the requirement of: complete

demographic data for all persons within the household; complete vehicle characteristics for all

vehicles available to the household; and complete information on all activities engaged in by

members of the household, including geocoded location, start time, duration, and travel mode. To

remove complexities in the modeling process associated with public transportation modes, the

sub-sample also is restricted to households in which all travel was accomplished using a personal

vehicle, and only households having fewer than 10 activities for licensed individuals are

considered.5  The activities considered in the analysis are all out-of-home activities and in-home

meals for the first day of the two-day activity diary; in-home activities other than meals are

assumed to be discretionary and flexible.  The activities used in the analysis constituted

approximately 56 percent (17.3% work, 14.6% general shopping, and 23.9% from the remaining

categories) of all activities reported by two-member households and 58 percent (27% work, 11%

                                                
5 This latter restriction is employed to reduce computation time, which increases significantly with increase in the
number of activities.  The current HAPP algorithm limits the total number of activities to 20 and the number of
vehicles to 4.
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general shopping, and 20% from the remaining categories) of all activities reported by three-

member households.  The frequency distribution of the number of such activities completed both

by all members of the households (as well as by only licensed drivers within the households) in

the sub-sample is given in Figure 1.  The mean number of activities per household is 6.56 with a

standard deviation of 2.23; the mean number of activities performed by all licensed drivers

within a household is 5.84 with a standard deviation of 1.87.6  About 62 percent of the activities

were out-of-home activities that required travel, with an average travel time per activity requiring

travel of approximately 18 minutes.  The mean total travel time of those individuals in the

household who traveled is 0.95 hours.  The mean duration of a meals activity is 1 hour and the

corresponding mean duration of work and shopping activities is 6 hours and 0.8 hours,

respectively.

Approximately 75 percent of the households have two vehicles and about 93 percent of the

households have more than one vehicle; 90 percent of the households had two licensed drivers,

while 8 percent had only one licensed driver.  The 100 households in the sub-sample comprise

214 individuals, about half of whom are fully employed; twelve households include a child in the

household.

4.2 Generation of Travel Time Matrices

Because the HAPP mathematical program optimizes over all feasible sequences of the activities,

a full travel time matrix for each household must be specified between the locations of all

activities that were performed (rather than simply between the locations reported in the travel

diaries that represent the observed activity/travel pattern).  A Geographic Information Systems

GIS land-use / network database for the Portland area was provided by Portland Metro; the street

address map of the Portland network is based on an enhanced version of the Census Bureau’s

TIGER files.  The addresses (or, in some cases, landmarks or nearest intersections) of all

activities performed by respondents, as reported, were geocoded on the state plane of Portland

                                                
6 These statistics are for the sample considered in the analysis, which is restricted to households having a total of ten
or fewer activities.
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Figure 1.  Frequency Distribution of the Number of Out-of-Home Activities and In-Home
Meal Activities Completed by Households

.

Shortest path travel times between all activity locations of each household in the sub-sample

were then generated using TRANSCAD.  The activity locations were approximated to the nearest

node in the street network.  The travel times between all activity locations of a household were

determined by matching the unique ID of each activity to the node ID and estimating the travel

time between the nodes based on the link attributes (e.g., length, modes allowed, link type,

number of lanes, average speed and link capacity) of the links comprising the shortest time path

between nodes.
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4.3 Activity Time Window Constraints

As noted above, the HAPP optimization algorithm is dependent on the specification of time

window constraints that are used to identify available schedules for activity participation.  This

information is not directly available from survey data.  Rather, a procedure was developed to

infer estimates of such windows from the observed behavior of the sample.  First, the activities

were categorized based on their activity types7, and histograms were plotted for the activity

starting time and activity ending time.  An example of such histograms is provided for the

shopping activity in Figures 2 and 3; comparable histograms for other activity types are omitted

for brevity.

Work and school activities, and pick-up and drop-off activities associated with either a non-

licensed member of the household or a person who was not a member of the household, were

considered to be temporally-fixed activities; i.e., it was assumed that these activities could not be

rescheduled and must be done at the same time as that reported by individuals in the sample; as

such, they represent temporal “pegs” in the activity rescheduling.  Activity types other than these

were assumed to have temporal flexibility within time-window constraints determined from the

aggregate temporal distributions of activity performance over the entire sample.  Based on these

distributions, any number of different criteria ostensibly could be employed to infer realistic

bounds on the time windows during which any rescheduling would be practical; employing the

means, one- or two-standard deviations from the means, or the 85th percentile values are

examples.  For the empirical application reported herein, the sample means were used as a

simple, but arbitrary, example of the approach.  The mean starting time and the mean ending time

of the activities for all of the activities in the temporally-flexible categories were determined

from the histograms of the respective activity types (Table 1).

                                                

7 The meals activity was further classified as breakfast, lunch and dinner.  This classification was made based on the
histogram for the meals activity.

Breakfast - Meals activity before 10 A.M.
Lunch - Meals activity between 10 A.M. and 3 P.M.
Dinner - Meals activity after 3 P.M.
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Figure 2. Histogram of the starting time of shopping activity
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Figure 3. Histogram of the ending time of shopping activity
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Table 1.  Activity Mean Start and End Times

Activity Type Mean Start Time Mean End Time

Meals - Breakfast 7.47 8.4

Meals - Lunch 12.21 13.03

Meals - Dinner 18.13 19.1

Work-related 13.5 15.4

Shopping (General) 14.8 15.5

Shopping (Major) 14.4 15.4

Personal Services 12.9 14.1

Medical Care 12.3 13.7

Professional Services 14.3 15.0

Household or personal business 13.8 14.7

Household Maintenance 13.6 15.7

Household Obligations 14.9 16.6

Pick-up or drop-off passengers 13.4 13.6

Visiting 16.0 17.8

Casual Entertaining 17.7 20.1

Formal Entertaining 17.4 20.3

Culture 17.5 19.7

Religion / Civil Services 14.4 16.1

Civic 14.3 16.5

Volunteer Work 13.6 15.7

Amusements (at-home) 17.0 19.2

Amusements (out-of-home) 15.8 18.0

Hobbies 14.9 17.0

Exercise/Athletics 14.0 15.6

Rest and relaxation 15.2 17.4

Spectator athletic events 17.6 19.9

Incidental trip 18.6 19.1

Tag along trip 13.8 14.4
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The open windows (the time at which an activity becomes available for participation) for

activities were then determined based on the following conditions:

Activities other than work, school, meals between two work activities, and pick-up / drop -off

passenger

 Open Window Responent's reported activity start time
Mean activity start time for the sample= �

�
�

min

Work, school, meals between two work activities, and pick-up / drop -off passenger8

 Open Window Responent's reported activity start time=

Individual’s first departure from home

 Open Window Responent's reported travel start time for his / her initial activity
Mean reported travel start time for initial activity for the sample= �

�
�

min

The close window of any activity is the latest time at which any individual can perform the

activity.  The close windows for activities were determined based on the following conditions:

Activities other than work, school, meals between two work activities, and pick-up / drop -off

passenger

 Close Window Responent's reported activity end time
Mean activity end time for the sample= �

�
�

max

Work, school, meals between two work activities, and pick-up / drop -off passenger

Close Window Responent's reported activity end time=

                                                
8 Pick-up / drop-off activities involving licensed members of the same household are determined through the
optimization procedure, and not specified as part of the household’s activity program. Pick-up / drop-off activities
involving children and/or individuals outside the household are assumed to be temporally fixed.
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Individual’s latest return to home

Close Window Responent's reported return - to - home time for his / her final activity
Mean reported travel return - to - home time for final activity for the sample= �

�
�

max

4.4  Exclusive Activities

The HAPP mathematical program “optimally” assigns both vehicles and individuals to fulfilling

the household’s activity program.  Although it may be assumed that passenger vehicles generally

are interchangeable for purposes of accessing the broad range of activities9, certain activity types

are not generally interchangeable between household members.  The HAPP mathematical

program imposes certain restrictions in the form of “person activity exclusions” that identify the

activities that are personal to an individual and cannot be performed by the other members in the

household.  In this application, these activity types are meals, work, work-related, medical care,

exercise / athletics and rest and relaxation; activities of these types are restricted to be performed

only by the household member reported in the survey.

5.   Scenario Analysis

The HAPP model is used to evaluate the benefits in vehicle emissions reduction based on

optimal scheduling of the activities performed by individuals in a household.  The TCMs that are

considered are the reduction of travel through either substitution or more efficient chaining of

trips and the substitution of ridesharing among family members as an alternative to single-

occupant vehicle travel.  As a further basis of comparison, the potential gains in emissions

reduction through these travel behavioral adaptations are compared to those that might be

expected to result from absorption of current emissions technology by the vehicle fleet.

In the analysis, the observed vehicle emissions for each household are calculated based on the

actual schedule of activities and vehicle use as reported by the individuals in the household.

“Emissions Optimal” activity patterns are then generated by the HAPP model with an objective

                                                
9 This is not to say that certain vehicle types may be more or less suited for particular activities.  A car with a large
trunk, for example, may be more suited for a grocery shopping activity than one with limited storage.
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to minimize CO emissions; CO emissions are generally regarded as a marker for such other

pollutants as HC and NOx.  The analysis considers three different scenarios:

• Optimal Scheduling and Travel Linkages without Ridesharing

• Optimal Scheduling and Travel Linkages with Ridesharing

• Optimal Scheduling and Travel Linkages with Ridesharing using Vehicles that Incorporate
Present-day Emissions Technology

Under these scenarios, the optimal CO emissions obtained using the HAPP model are compared

to the observed CO emissions to determine the absolute and percentage improvement achieved.

The third scenario above simulates the use of present-day vehicle emissions technology by

replacing the whole fleet in the sample by new vehicles (i.e., vehicles with 1998 emissions

characteristics) with the mileage being the same as the actual/reported vehicles in the household;

this is to evaluate the benefits that could be achieved by technological means in conjunction with

behavioral approaches.  In the case of the new vehicle scenario, the best solution for CO

emissions, with or without ridesharing, is considered in the analysis.

6.  Results

The HAPP model formulation for emissions reduction, as applied to the activity agendas of a

sample of households drawn from the Portland database, was solved using GAMS/CPLEX.  The

optimal solutions for the different cases of the HAPP formulation were obtained by the GAMS

software on a Pentium II 300 with 64 MB RAM.  The actual GAMS input files were prepared

from the sample’s activity diaries using computer code developed specifically to create the input

files in the GAMS context language automatically for each observation in the data set.

Comparisons between the observed CO emissions for the sub-sample of 100 households and

those that could be achieved with activity/travel patterns that minimize CO emissions; i.e., the

optimal solutions to the HAPP model, are shown in Figures 4.  These figures present scatter plots
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of the optimal CO emissions on the x-axis with the observed CO emissions on the y-axis.10

                                                
10 The points of the scatter plot on or above the 45° line have an improvement in the vehicle emissions of the
household; points to the left and away from the 45° represent relatively significant improvement in the CO
emissions.
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Figure 4a. Observed vs optimal CO emissions without ridesharing
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Figure 4b. Observed vs optimal CO emissions with ridesharing



21

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Optimal CO Emissions (gms)

O
bs

er
ve

d 
C

O
 E

m
is

si
on

s 
(g

m
s)

Figure 4c. Observed vs optimal CO emissions with ridesharing and new vehicle emissions

technology

From these results, it is clear that a substantial number of households in the sample are already

practicing behavior that is close to optimal relative to emissions produced by their travel, i. e.,

those points that hover about the 45° line.  It is further noted that for several cases

(approximately 10 percent of the sample in the case of no ridesharing) the observed emissions are

less than the “optimal.”  The reason for this occurrence is due either to the presence of

ridesharing in the observed activity diary or to the resource limit of the GAMS/CPLEX module

being exceeded prior to the algorithm finding the optimal solution (i.e., the solution reported is

known to be suboptimal or within a specified tolerance of the optimal).  As the optimal solution

displayed in Figure 4a does not include ridesharing, households in the sample who actually

carpooled almost invariably have observed values of CO emissions that are less than the optimal

value produced by the algorithm for the non-ridesharing case.  The algorithm in such cases would

force the household members to use two different vehicles from the same origin to reach a

certain destination at the same time, leading to an increase in the optimal CO emissions.  Figures

4b and 4c also show negative results for a few observations, partly because the ridesharing

heuristic in HAPP is not robust enough to handle some of the more complex variations in

ridesharing observed in the data set (those points significantly below the 45° line), and partly due
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to the solution obtained from the HAPP model either being within a specified tolerance of the

true optimal or the best solution obtained by the GAMS/CPLEX software module upon

expiration of its execution time limit.

Figure 5 gives a graphical comparison of the results obtained for the three scenarios in terms of

the distribution of percent improvement (over existing) in CO emissions that would be expected

under the travel behavior represented by the respective scenarios.  Inclusion of ridesharing

options in the optimization lead only to minor shifts in the distribution of relative emissions

reduction for the sample; only approximately 15 percent of the sample households had feasible

alternative activity/travel patterns involving carpooling among household members, and most of

those showed little or no improvement in emissions.  Substantial differences, both in the

distribution (skewed toward greater improvement) and total emissions (substantially reduced),

were found under the scenario in which all household vehicles were replaced by vehicles based

on 1998 emissions technology.  Figures 6 and 7 present these results in the form of cumulative

distributions for both the percent and absolute improvement in CO emissions that would be

expected with optimal activity scheduling/travel behavior.  For example, a 50 percent reduction

in CO emissions is achievable for more than 25 percent of the sample simply by more efficient

activity scheduling and travel decisions; with substitution of older vehicles by those with modern

emissions technology, more than half of the sample would be expected to achieve this same

result.  It is notable that ridesharing plays a relatively minor role in contributing to these savings.

The incremental effects of the three optimization scenarios (i.e., optimal travel behavior without

ridesharing, ridesharing, and vehicle replacement) are best seen in Figures 8 through 11, which

portray both the mean and median and median of the individual (i.e., for each household) CO

emissions for the sample under the various scenarios, including the observed.  Here the results

are further broken down according to the number of vehicles in the household.  It should be

noted that, owing to the small sample size of households in the one- and three-vehicle categories

(7 and 17 households, respectively), no statistical inference can be drawn from the breakdown.

However, there appears to be at least some preliminary evidence that three-vehicle households

tend to benefit more from rearrangement of their activity/travel patterns than from modernization

of their fleet of vehicles; the opposite appears true for one- and two-vehicle households.  This is
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also reflected in the differences between the mean and median emissions levels for these

particular sample segments which indicate a disproportionate contribution to mean levels by

relatively small number of households.  Expectedly, ridesharing benefits are concentrated among

households with multiple vehicles; those with a single vehicle apparently are already constrained

to efficient allocation of that vehicle.
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Figure 5. Histograms of emissions improvement under various scenarios
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Figure 12 presents aggregate (across the entire sample) information on the achievable percent

reductions in CO emissions.  For example, optimal activity scheduling/travel behavior (including

ridesharing) would be expected to result in about a 30 percent decrease in the amount of daily

CO emissions generated by the sample of one hundred households; with the replacement of aging

vehicles, the decrease would be greater than 60 percent of current levels.
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Figure 12.  Comparison of total achievable percent emissions improvements for sample

7.  Conclusions

This paper presents an application of the Household Activity Pattern Problem to remove the

problems in traditional modeling approaches in the evaluation of potential improvements in

vehicle emissions that may be possible through adjustments in travel behavior. The main

objective of the study is to estimate the maximum vehicle emissions reduction that could be

achieved through optimal scheduling and linking of the activities performed by individuals in a



28

household.  A vehicle emissions model has been incorporated in the model formulation and the

resulting framework is tested under different scenarios, including an evaluation of the potential

benefits achieved by replacing all of the vehicles in the fleet by vehicle conforming to present-

day emission technology.  The results generally support the contention that policies aimed at

encouraging efficient trip chaining and scheduling of activities have the potential to lead to

significant reductions in vehicle emissions – reductions that are comparable to those that may be

expected with fleet modernization.  It is again emphasized that these results indicate only the

potential, and in no way forecast that the attendant behavior could be influenced sufficiently by

policy to actually achieve the potential.

This has been an exploratory study to demonstrate the potential usefulness of activity-based

analysis in addressing policy-sensitive issues reliant on modeling complex travel behavior.  It is

offered that questions that inherently involve the linkages between a set of travel decisions and

the activities that they support can best, and perhaps only, be examined from such an approach.

There are many limitations of the study and, correspondingly, as many areas of improvement that

would be needed to operationalize the approach presented here.  As indicated, the ridesharing

option has not been tested effectively in this analysis, primarily due to limitations in the heuristic

used in the ridesharing form of the optimization model.  It would be both interesting and

important to derive the improvements in vehicle emissions reduction with a more robust

ridesharing heuristic.  Only households having nothing other than automotive trips were

considered in the analysis.  The inclusion of transit modes in the modeling framework, although

conceptually not difficult, greatly increases the dimensionality of the mathematical program,

principally because of fixed schedules and routes; the walk mode, however, can easily be

accommodated by assuming an average walk speed.  The specifications of the constraint space in

general, and the time window constraints in particular, is a source of probably significant, and

unknown, bias.  The constraints, as presently incorporated in the modeling framework, are

dominated by physical time-space and continuity issues.  Since information regarding the

feasibility of performing activities at alternate times is generally not available in travel diaries,

time window constraints will continue to have to be inferred, and done so absent the full context
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of the socio-psychological machinations of the household.  Incorporation of these “soft” aspects

within the constraint specification remains a formidable challenge.

The emissions model used in this study gives the emissions for an average vehicle in that model

year, with vehicle emissions based on average speed for an O-D pair.  In reality, speed may vary

substantially during any trip due to the stop-go traffic, possibly leading to higher emissions

levels.  Moreover, the reported travel times were used for all the trips with available travel time

data, while the shortest path network travel times were used for all other O-D pairs.

Discrepancies between these two measures, as well as tendencies on the part of respondents to

both over-estimate in cases with low travel times and to round-off,  may lead to erroneous results

in some household cases.  Both of these shortcomings can be ameliorated by wedding the HAPP

activity/travel model to a microscopic traffic simulation model with emissions calculations based

on accelerations and stops, as well as speed;  work to accomplish this is currently underway.
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