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 Assessment of liquid intake is necessary to obtain a complete picture of an individual’s 

hydration status. Measurements using state-of-the-art wearable devices have been demonstrated, 

but none of these devices have combined high sensitivity, unobtrusiveness, and automated 

estimation of volume, i.e., using machine learning. Such a capability would have immense value 

in a variety of medical contexts, such as monitoring patients with dysphagia or the performance of 

athletes. This dissertation first surveys the literature for existing materials-enabled sensors used to 

detect and/or monitor swallowing activity. Next, a new epidermal sensor platform is introduced to 

address the issues that still exist in this field. This epidermal sensor platform is combined with 

machine learning to measure swallowed liquid volume based on signals obtained from the surface 

of the skin. The key sensors of the device are a composite piezoresistive sensor consisting of 

single-layer graphene decorated with gold nanoislands and coated with a highly plasticized form 

of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesuflonate) 

(PEDOT:PSS) and a surface electromyography (sEMG) sensor comprised of PEDOT that is 

electrostatically bound to poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether 

acrylate) (PSS-b-PPEGMEA). The use of strain and sEMG measurements together both (1) 

improve the accuracy of estimated swallowed volumes and (2) permit the differentiation of 

swallowing from motion artifacts. Finally, the performance of this sensor platform is tested with 

two cohort studies where participants are in a resting position or exercising during a swallow. The 

combined measurements of strain and sEMG from these studies—processed by the machine 

learning algorithm—can estimate unknown swallowed volumes cumulatively between 5 to 30 mL 

of water. Ultimately, this system holds promise for numerous applications in sports medicine, 

rehabilitation, and the detection of nascent dysfunction in swallowing. 
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Chapter 1 Materials-Enabled Flexible and Wearable Sensors for Monitoring the 

Swallowing Activity 

Abstract 

Swallowing is an integral process of water and nutrient intake. Swallowing difficulties or 

abnormalities can severely impact a person’s immediate health causing dehydration, malnutrition, 

aspiration pneumonia, weight loss, anxiety, or even death by asphyxia. To detect the onset of 

swallow disorders, it is imperative to regularly monitor those who are at risk of developing it. The 

emerging field of wearable sensors has lent itself to understanding the nature of deglutition 

behavior in non-invasive and unobtrusive ways. The published work in this field so far strives to 

come closer to having a remote monitoring system where the travel time and cost of clinics can be 

reduced to a minimum. In this review, we specifically survey the newest literature on materials-

enabled wearable devices that are aimed to detect and/or monitor swallowing behavior. We 

examine both proof-of-concept and cohort study experiments while focusing on the novel 

materials and mechanisms used for sensing. We also discuss some advantages and disadvantages 

of these non-invasive monitoring sensors and future work that needs to be done. 
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1.1 Introduction 

Oropharyngeal swallowing, scientifically known as deglutition, is a physiological process 

where the neck and throat muscles move a portion of the food or liquid from mouth to stomach. 

The process starts with a voluntary initiation and continues with a series of involuntary reflexes of 

the muscles.1 There are different models described for solid and liquid food swallows. For liquid 

swallow, the Four Stage Model is used whereas for the solid swallow, the Process Model of 

Feeding is used.2,3 With the help of these established models, monitoring swallow function has 

been a popular field of interest for the diagnosis and therapy of swallowing disorders such as 

dysphagia. Although the condition of dysphagia can be treated with speech and language therapy, 

it isn’t always completely curable.4,5,6,7 Patients develop this condition as a result of obstructive or 

damaged tissue from injury or surgery, or it could be neurological or muscular in origin as an effect 

of aging.5,8,9,10 There are different exercise maneuvers that are designed to prevent the further 

development of this condition11,12,13,14,15,16,17,18,19,20,21,22,23,24,24, however, once dysphagia advances, 

it becomes very difficult to regain the swallowing ability for the patients.25,26 If left untreated, it 

can cause aspiration pneumonia, weight loss, and anxiety over the nutritional intake.27,28,29 The 

current gold standard methods of dysphagia diagnosis include videofluoroscopy30,31,32,33 and 

endoscopy34,35,36  which are expensive and both require clinicians to operate the equipment. 

Additionally, videofluoroscopy exposes patients to radiation through X-ray and barium-modified 

boluses. The details on these clinical methods of monitoring swallowing are out of this review’s 

scope.   

In this review, we will start with a brief overview of the anatomy involved in swallowing 

and measurable signals during a swallow. After that, we will introduce different sensing modalities 

used for detecting and monitoring swallowing activity which include strain, pressure, 
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electromyography (EMG), and acoustic sensors. Within each sensing modality, we will survey 

different novel materials used to achieve these sensor types and how they are used to detect 

swallowing behavior. In the end, we will discuss the challenges and opportunities in these 

materials-enabled sensors for monitoring swallowing activity. We will keep the focus of this 

review on the novelty of the sensors that are materials-enabled for monitoring oropharyngeal 

swallowing. The esophageal phase of swallowing is beyond the focus of this review. 

 

1.2 Swallowing Physiology  

 Swallowing is a physiological process starting with a voluntary act and continuing with the 

precise coordination of more than 30 pairs of muscles.37 It recruits different layers of the central 

nervous system from the cerebral cortex to the medulla oblongata.38 The anatomy of swallowing 

involves many structures starting with the oral cavity, pharynx, larynx, and esophagus (Figure 

1.1a).2,39,40 Along with these structures, other muscles, bones, cartridges, and saliva glands work 

in coordination to move the bolus from the oral cavity to the esophagus. The physiology of 

swallowing is described differently for liquid and solid boluses. For swallowing liquids, the Four 

Stage Model is used, whereas for swallowing solids, the Process Model is used.3,41,42 

The Four Stage Model consists of four phases during a swallow (Figure 1.1b). The first 

phase is called the Oral Preparatory stage and it starts after a liquid bolus is taken into the mouth 

by a cup or straw. The bolus is held on the tongue surface while the anterior and posterior of the 

oral cavity are sealed to prevent leakage into the oropharynx. The second phase is called the Oral 

Propulsive stage where the tongue propels the bolus from the anterior of the oral cavity to the 

posterior into the pharynx. The next phase, the Pharyngeal stage, happens to overlap with the Oral 

Propulsive stage for the liquids. For the solids, the Process Model provides more information 
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before the Pharyngeal stage. After ingestion of the solid, the Stage Transport stage begins where 

the tongue carries the bolus to the post-canine region onto the lower teeth for chewing. 

Immediately after the first transport stage, the Food Processing stage starts. This is when the food 

particles are reduced in size until the food size is optimal for swallowing. During the processing 

stage, the cyclic jaw movement is established with the coordination of the tongue, cheek, soft-

palate, and hyoid bone.3,43 Unlike liquid swallow, the posterior oral cavity isn’t completely sealed 

during this phase allowing air with the food aroma to be pushed through the pharynx to the 

chemoreceptors in the nose.44,45,46 In Stage II Transport, very similar to the Oral Propulsive Stage, 

the soft food gets pushed into the oropharynx by the tongue. For both the liquids and solids, the 

next phase is the Pharyngeal Stage which is a rapid movement within a second. This stage is crucial 

in propelling food through the pharynx into the esophagus while keeping the airway protected by 

insulating the larynx and trachea from the pharynx. With the elevation of the soft palate and tongue 

base retraction, the bolus is pushed against the pharyngeal walls and squeezed downwards. In order 

to protect the airways, the vocal folds are closed to seal the glottis.47,48 The arytenoids are tilted 

forward to contact the epiglottic base while the hyoid bone and larynx are pulled upward by the 

contraction of the suprahyoid muscles and thyrohyoid muscle. At this step, the epiglottis tilts 

backward to seal the laryngeal vestibule and the upper esophageal sphincter (UES) opens up to 

allow the bolus to pass into the esophagus.49,50,51 Once the bolus is in the UES, the Esophageal 

Stage starts. During this stage, the bolus is moved from UES to the lower esophageal sphincter 

(LES) and eventually into the stomach via peristaltic wave motion of the tubular esophagus 

structure. 
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Figure 1.1. Swallowing anatomy and physiology. (a) A schematic diagram of the human head anatomy is 

shown. The diagram shows all the main structures involved in swallowing. (b) A schematic shows the 

different stages of a liquid swallow. Reproduced with permission.2 

 

 The coordination of the muscles contracting, and relaxing is an important aspect of 

swallowing. It aids with bolus transportation throughout the process. Hence, it has been studied 

extensively using electromyography methods. The muscle groups that are studied in detail include 

the jaw and perioral muscles, submandibular/suprahyoid muscles, tongue muscles, laryngeal, and 

pharyngeal muscles, and cricopharyngeal (CP) muscle of the UES.38,52 For the jaw, perioral, and 

submandibular muscles, it is easier to pick up muscle EMG signals superficially with an epidermal 

electrode, whereas for the tongue, laryngeal, pharyngeal, and CP muscles,  needle EMG electrodes  

or intralaminar catheter EMG electrodes are required.  

In addition to neuromuscular activities extracted using EMG, which are electrical in nature, 

the literature examines mechanical motion resulting from this neural signal. The common targets 

of mechanical detection are the submental muscle contraction and the vertical motion of the larynx 

(laryngeal excursion). In the literature on dysphagia, according to Clave and Shaker, slow or 

delayed laryngeal vestibule closure, which is assisted by the larynx’s motion, is indicative of 
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swallow abnormalities.4 Studies done using sEMG show that submental muscle contractions were 

longer in duration for dysphagic subjects compared to non-dysphagic controls.53 As shown in some 

studies in the review, such difference in muscle contraction is detectable by superficial probing of 

skin deformation. 

The scope of this review will be the activation of submandibular muscles during the 

swallow. The studies using surface EMG electrodes for the submandibular muscles are vast. They 

include different volumes of boluses to see the activation potential differences in the muscles. It is 

important to understand the anatomy and physiology of swallowing before designing novel 

sensors. There are many structures on the mouth, neck, and throat that play a role in swallowing, 

and it is essential to know which part of this highly coordinated process the sensors will be 

collecting information from. The newer sensing modalities can shed light onto unknown parts of 

this process and there exist a few different ways to do so.     

 

1.3 sEMG-Based Wearable Sensors  

 Surface electromyography (sEMG) is widely applied in wearable biosensors. It has been 

used in applications such as tremor diagnosis, wireless monitoring of exercise activity, aiding 

muscle rehabilitation, gait assessment, and detection of bruxism among other 

applications.54,55,56,57,58 sEMG wearable sensors also show promise in detecting and characterizing 

seizures.59 In this section we discuss sEMG electrodes for their role in swallow assessment and 

detection of dysphagia. 

In general terms, the sEMG electrodes need to be used as a pair since they measure the 

voltage difference between each electrode. This voltage difference occurs due to the action 

potential that travels from the nerve cell to the muscle to induce a contraction. This creates a 
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depolarization zone that shifts along with the muscle fiber as a “motor unit action potential 

(MUAP)”. If electrodes are on the muscle, the measured signal shows the depolarization and the 

subsequent repolarization phase which form a bipolar voltage change. The raw signal can later be 

pre-processed to extract frequency features for determining the timing, force, and fatigue of the 

muscle. 

 

 

Figure 1.2. The sEMG-based electrodes designed for the detection of swallowing behavior. (a) One of the 

first applications of epidermal metal films used to detect swallowing by Constantinescu et al. Reproduced 

with permission.60 (b) Another gold thin film epidermal sEMG sensor was used by Nicholls et al. to create 

a feedback game using the swallowing signals collected from the sensor patch. The epidermal sensor 

figure61 and the feedback game62 schematic are both reproduced with permission. 

 

 The most commonly used sEMG electrode for monitoring swallow has been the 

conventional Ag/AgCl electrodes with wet conductive gels. These electrodes exhibit very stable 

electrical properties and are thus preferred in clinical conditions and research. Despite their desired 

electrode-skin impedance values, over time these gel electrodes dry out and coagulate eventually 
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becoming unusable for long-term purposes. Therefore, the field has moved to search for dry 

electrodes with similar electrical and mechanical properties.63 As one of the first groups, 

Constantinescu et al. demonstrated a pilot study for detecting different swallowing maneuvers 

using thin, light, and conformal gold electrodes in a mesh design support on a silicon substrate 

(Figure 1.2a).60 They used three gold electrodes (200 nm thick) in a mesh filamentary serpentine 

design (two for sensing, one for reference). The mesh electrodes had a 20 µm width and a radius 

of curvature of 45 µm. The mesh design and the polyimide support layer under the gold electrodes 

allowed this sensor to achieve over 30% elasticity. They conducted the swallow experiments while 

the participants were seated near a desk since the cable connection was needed to collect signals. 

The comparison of a conventional sEMG adhesive patch and their epidermal sEMG patch showed 

very similar signal amplitudes for a saliva swallow proving the efficacy of the new electrodes. A 

year later, Nicholls et al. demonstrated “skin-like electronics” being used to measure 

electrophysiological signals (sEMG) using a similar fabrication process to Constantinescu et al 

(Figure 1.2b).62 Their skin-like electrode was also made from a gold nano-membrane electrode 

(300 nm thick) with a fractal design integrated onto two types of soft elastomeric membranes 

(silicone) with 5 µm thickness. The electrode fabrication included a series of photolithography 

steps and was previously used to make electrodes for electroencephalography (EEG) to study 

human brain activity.61 Although the electrodes were not novel, their experimental procedures 

were. They utilized the collected sEMG data from the epidermal electrodes to create a swallow 

feedback-based game. After transferring the data to a computer via Bluetooth, they applied upper 

and lower thresholds to the signal amplitude and assigned a ball to jump when there was a swallow 

detected in a video game. Even as a proof-of-concept, this novel approach encouraged participants 

to engage with the swallowing experiments. The same group published a more in-depth analysis 
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of this “human-computer interaction” within the same year to demonstrate the clinical feasibility 

of treating swallowing disorders.64 At this point, research groups understood the need for a sensor 

platform with an additional sensing modality to confirm the sEMG swallow signals from the 

motion artifacts. Towards this goal, Kim et al. designed the first combined epidermal sEMG and 

strain patch to detect the swallowing event (Figure 1.3a).65 The patch had an interconnect base in 

a honeycomb design with two sets of sEMG electrodes and a commercially available piezoresistive 

strain gauge strip. The interconnects consisted of a 13 µm thick polyimide sheet with a 9 µm thick 

copper film and were encapsulated with two soft elastomers (10 µm thick Silbione and 5 µm thick 

EcoFlex) with a core/shell layout. Later, they electroplated the skin exposed sEMG electrode area 

with gold (500 nm) to ensure biocompatibility. The honeycomb shape and the elastomers allowed 

this patch to have robust electrical and mechanical properties as well as adhesiveness to the skin. 

The group tested the sensor patch on a healthy subject as well as a dysphagia patient to compare 

the swallowing behaviors. They were able to confirm the detection of swallow in each case and 

suggested that this platform can be reusable between subjects. This work also utilized a Bluetooth 

data transmission unit which made the platform more desirable for clinical settings. Later, the same 

group conducted a validation study with forty healthy adults to confirm their results.66 
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Figure 1.3. The sEMG-based electrodes designed for the detection of swallowing behavior. (a) An 

epidermal sensor patch integrated both with metal thin film sEMG electrodes and a commercial strain gauge 

strip (reproduced with permission).65 (b) PEDOT:PSS-based sEMG electrode used for detection of 

swallow. 

 

 Metal thin films have been the material choice for the electrodes until conductive polymers 

started gaining more attention in the field. The advantages of the conductive polymers included 

their machinability, tunability of electrical and mechanical properties, and biocompatibility. 

Among them, poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has become a 

very popular one to use as a dry sEMG electrode. Without any modifications, PEDOT:PSS is not 

very stretchable or adhesive to the skin. However, Blau et al. were able to formulate and synthesize 

PEDOT:PSS(1)-b-PPEGMEA(6) block copolymer67 with great success, and Polat et al. tested sEMG 

films made from this polymer for detection of swallowing on the throat (Figure 1.3b). Even though 

this was the only conductive polymer used in detecting sEMG signals from the swallowing 

behavior, there exist many other conductive polymers that were used for different muscle groups 

in the body. However, these are out of the topic range of this review.          
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1.4 Strain-Based Wearable Sensors 

 Strain gauges are defined as materials that experience a change in electrical resistance when 

they are mechanically deformed. In recent years, strain gauges have been applied to many wearable 

devices for healthcare monitoring, prosthetics, sports, and entertainment. Recent developments in 

organic and inorganic materials and nanocomposites have led to a plethora of application studies 

on wearable strain gauges. From applications in electronic skin to heartrate monitoring, strain 

gauges offer a range of sensitivity, stretchability, and scale.68,69,70,71 Their performance as a sensor 

is defined by the term “gauge factor” (GF) which gives a relative change in electrical resistance of 

material over an applied strain.72  Strain sensors placed on the throat typically incur bending or 

tensile strain under the mechanical forces exerted by swallow action, generating a signal. One of 

the first materials-enabled strain sensors used to detect swallowing as well as small motions on the 

face was from Roh et al.73 They reported a novel three-layer stacked strain sensor made up of 

single-wall carbon nanotubes (SWCNTs), PEDOT:PSS, and polyurethane (PU) (Figure 1.4a). All 

the individual materials were water-soluble which made the fabrication of the strain sensor 

relatively easy. This nanohybrid structure had tunable stretchability (over 100%), optical 

transparency (~63%), strain sensitivity, and stability. Different concentrations of SWCNTs in the 

mix enabled them to have different gauge factor values due to the increased conductivity and 

sensitivity to strains. In general, 1 mg/ml SWCNTs concentration exhibited gauge factors between 

39.4 to 837.1 for strains 1.6 to 3.5% and had a stable resistivity response to cyclic strain 

measurements over 200 cycles. From the same group, Hwang et al. low-density silver nanowires 

(AgNWs) with PEDOT:PSS/PU to fabricate a strain sensor (Figure 1.4b).74 Similarly, this sensor 

showed high optical transparency (~75.3%), stretchability (up to 100%), and sensitivity to strain 
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(GF = 12 for 2% strain). In addition to its physical properties, this sensor was driven by a 

supercapacitor (SC) that was charged by a triboelectric nanogenerator (TENG). Both electrodes in 

the SC and TENG layer used the same materials that were used in the strain sensor layer, namely 

AgNWs/PEDOT:PSS/PU. The conductivity and the stretchability of this stacked material 

composite worked well for all the different layers and allowed them to experiment detection of 

small motions on a participant’s neck including saliva swallowing and eating. They demonstrated 

some of these experiments when the strain sensor was powered by the supercapacitor. Both papers 

proved that a fine-tuned mix of conductive nanoparticles with conductive polymers was sensitive 

and stable enough to make a strain sensor that can detect a small motion such as swallowing.  

 

 

Figure 1.4. Carbon nanotube (CNT) and silver nanowire (AgNW)-based elastomeric strain sensor designs 

for detection of swallowing behavior. (a) Roh et al. used SWCNTs with the elastomeric PEDOT:PSS/PU 

mix as a strain sensor to detect saliva swallowing as a demonstration. Reproduced with permission.73 (b) 

Hwang et al. adopted the same elastomeric base but mixed with AgNWs and stacked it up with a layer of 

SC and TENG for power consumption. They also demonstrated detection of saliva swallow when the strain 

sensor was powered by a conventional source meter and by the SC. Reproduced with permission.74 

 

Another use of conductive nanoparticles as a strain sensor was by Zhu et al. to monitor 

human motions including swallowing (Figure 1.5a).75 They opted to use copper nanowires 
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(CuNWs) because of the abundance of copper, its low cost, and excellent electrical conductivity. 

However, CuNWs get oxidized in the air over time, so they embedded CuNWs into water-

dispersible modified graphene (WGP) sheets to form an even more conductive film. After 

sandwiching this hybrid film with an elastomer, polydimethylsiloxane (PDMS), they characterized 

the electrical and mechanical properties as well as demonstrations on swallowing detection. As 

they increased the WGP concentration to 33.3 wt% in the hybrid film, they observed an increase 

in the electrical conductivity up to 3.02 x 104 S/m but the concentrations above 34 wt% WGP 

showed a decrease in the electrical conductivity. They hypothesized that the CuNWs were acting 

like a conducting bridge between the WGP sheet junctions at low WGP density and thus enhancing 

the overall conductivity. When the density of WGP increased, the CuNWs were getting more 

disconnected from each other and thus exhibiting lower conductivities. However, the sensitivity at 

2% strain was exceptionally good with a GF value of ~175,000. The overall PDMS-encapsulated 

strain sensor had a tensile fracture strain of 120% and thus even after the cyclic strain-relaxation 

testing, the sensor maintained its original electrical properties. Graphene was also used by another 

group to construct a conductive material composite for a strain sensor. Ramirez et al. investigated 

a piezoresistive strain sensor comprising palladium nanoislands (PdNIs) on single-layer graphene 

(Gr) to detect swallowing differences between healthy and dysphagic patients using machine 

learning (Figure 1.5b).76 It is reported that graphene alone does not exhibit exceptional 

piezoresistivity. However, when ultra-thin films of metals (<10 nm) are evaporated on top of the 

graphene, it has been observed that instead of a continuous film, they form island-like structures.72 

This was believed to be due to the changes in the electronic band structure of graphene during the 

initial stages of metallization. This composite material strain sensor had very high resolution and 

sensitivity at a low strain regime (GF = ~17 for 0.0001% or 1 ppm and GF = 125 for 0.001%, 10 
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ppm) and was easily transferrable to any substrate of choice. The group chose to transfer Gr/PdNIs 

onto Kapton tape to make a flexible strain sensor and detected swallowing differences between 

healthy and dysphagic subjects as well as different types of boluses. Later, a custom-crafted 

machine learning algorithm was used to classify the swallowing signals as healthy or dysphagic 

for future determination of dysphagia onset. Similarly, Polat et al. used the same graphene/ metallic 

nanoisland composite to predict different swallowed liquid volumes using machine learning 

(Figure 1.5c).77 They used 8 nm thick gold nanoislands (AuNIs) on top of a single graphene layer 

due to the ultra-sensitivity at a low strain regime and the near-zero temperature coefficient of the 

gold nanoislands at that thickness. Instead of Kapton tape, they transferred the Gr/AuNIs onto the 

PDMS substrate and coated the AuNIs with a highly plasticized conductive polymer, PEDOT:PSS, 

mixed with dimethylsiloxane with Triton-X, so-called “PEDOT:PSS dough”. This PEDOT:PSS 

dough acted as another layer for electron transport if the Gr/AuNI film experienced any tears. 

Without the conductive polymer, Gr/AuNI film stretched only up to 2% strain but after spray-

coating the polymer, they reached up to 86% stretchability. Due to the ultra-sensitivity of the 

Gr/AuNI/PEDOT:PSS dough strain sensor, they were able to detect minute signal differences in 

different water volumes (5 to 30 ml, in 10 ml increments) and later were able to predict the testing 

volumes using a machine learning algorithm.   
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Figure 1.5. Graphene and metallic nanoparticles-based strain sensors for detection and monitoring of 

swallowing. (a) Zhu et al. demonstrated a mix of CuNWs and WGP on a PDMS substrate to show detection 

of swallowing on the neck. Reproduced with permission.75 (b) Ramirez et al. utilized thin PdNIs on 

graphene transferred onto a Kapton tape to demonstrate the detection of swallowing differences between 

healthy and dysphagic subjects using machine learning. Reproduced with permission.76 (c) Polat et al. used 

a composite of AuNIs on graphene-coated with PEDOT:PSS dough transferred onto PDMS substrate to 

demonstrate the detection sensitivity of the Gr/AuNI/PEDOT:PSS dough strain sensor between different 

swallowed water volumes. Reproduced with permission.77 

 

 The fiber-based strain sensors were also used for swallow detection. For example, Huang 

et al. used an ultra-thin, flexible, and elastic PU yarn that was dip-coated with graphene 

nanoplatelets and carbon black (CB)/SWCNTs (Figure 1.6a).78 This sensor was stretchable up to 

350% with little hysteresis, had a low detection limit of 0.5%, and had long-term stability (over 

2400 cycles). It showed a GF value of 2 for 2.5% strain. In addition to the characterization, they 
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detected repeated swallowing signals on a subject’s neck. Similarly, Zang et al. used a commercial 

and highly elastic fiber that had a PU core with two layers of helically-wound polyester (PE) fibers 

(Figure 1.6b).79 They dip-coated their fiber with graphene oxide (GO) and then reduced GO 

chemically with hydrobromic acid (HBr) to get reduced GO (RGO). The strain sensor had a GF 

value of ~240 for 5% strain, the conductivity of 1.31 S/m, and was able to detect differences 

between effortful swallowing versus slow swallowing. 

 

 

Figure 1.6. Fiber-based strain sensors are dip-coated with conductive materials. (a) Huang et al. used a PU 

fiber to dip-coat graphene nanoplatelets and CB/SWCNTs and made a strain sensor that was able to detect 

repeated swallowing behavior. Reproduced with permission.78 (b) Zang et al. also used RGO to coat their 

PU/PE fiber. They were able to detect swallowing differences when it was effortful versus when it was 

slow and controlled. Reproduced with permission.79 

 

 As a different approach, Zhang et al. opted to use ionic liquids as a base for their strain 

sensor (Figure 1.7).80 Specifically, they used 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonylmide) ([EMIM][TFSI]) as the ionic liquid (IL) encapsulated with 

PDMS and Eco-Flex elastomeric substrates. They achieved a GF value of 7.9 within 5% strain 

with a low detection limit of 0.1% strain.   
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Figure 1.7. Other mixed conductive materials are used as strain sensors for swallowing detection. Zhang 

et al. demonstrated the use of ILs embedded in the elastomeric substrate as excellent strain sensors for 

minute human motions such as swallowing. Reproduced with permission.80 

 

 Lastly, there has been quite an amount of attention on modified hydrogels to be used as 

strain sensors for the detection of swallowing. Even though it is a challenging task to use hydrogels 

that are intrinsically brittle, there were a few research groups who found ways to change that. For 

example, Sun et al. synthesized a conductive nanocomposite hydrogel comprised of oxidized 

multi-walled carbon nanotubes (oxCNTs) and polyacrylamide (PAAm) (Figure 1.8a).81 They 

hypothesized that the oxCNTs formed conductive pathways in the hydrogel network and 

contributed to the strain sensitivity. They used a very high bond (VHB) tape to sandwich the 

hydrogel before detection of swallowing on a subject’s neck. This PAAm-oxCNTs hydrogel had 

a stretchability up to 600%, a high tensile strength (0.71 MPa), excellent durability (over 300 

cycles), and self-recovery efficiency (90%) that was time-dependent. The conductivity was 

measured to be 0.067 S/m. The GF values varied from 1.5 - 3.39 for 0-250% strain. Another group, 
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Wang et al., combined two conducting hydrogels, polyaniline (PANI) and aramid nanofiber-

polyvinyl alcohol (ANF-PVA), to make their strain sensor (Figure 1.8b).82 PANI/ANF-PVA 

hydrogel network had an elongation at break of 140% and tensile strength of 2.4 MPa. The strain 

sensitivity was excellent for the detection of swallowing activity and had a GF value of 16 for the 

tensile strain range of 0-100%. Additionally, the strain detection stability was confirmed over 500 

cycles of bending. Recently, Xu et al. synthesized another conductive organohydrogel by 

introducing MXene nanosheets into gluten networks that were derived from edible wheat flour 

dough (Figure 1.8c).83 Due to the amino acid residues in the gluten network, the created composite 

(GMOHx) showed high flexibility (elongation at break ~600%) and self-adhesiveness. The 

conductivity was measured to be 0.0005 S/m and the GF value was 3.2 for the strain range 0-

300%. Durability was also confirmed over 4000 cycles under 50% strain. In addition, this 

biocompatible and biodegradable organohydrogel was able to detect swallowing activity 

repeatedly. 

 



 19 

 

Figure 1.8. Conductive hydrogels exhibit strain sensing abilities to be used to detect swallowing. (a) Sun 

et al. used synthesized PAAm-oxCNTs hydrogels to detect swallowing motion. Reproduced with 

permission.81 (b) Wang et al. demonstrated PANI/ANF-PVA hydrogel network as a strain sensor that can 

also detect swallowing motion. Reproduced with permission.82 (c) Xu et al. incorporated MXene nanosheets 

into gluten networks to make the strain sensor that was used to also detect swallowing. Reproduced with 

permission.83 

 

1.5 Pressure-Based Wearable Sensors  

 Another modality of swallow assessment is the monitoring of pressure signals exerted onto 

a sensor. Unlike strain sensing, the source of the generated signal is typically the compression of 

the active materials or architectures due to a net force normal to the skin surface. The applications 

of wearable pressure sensor are similar to those seen for strain sensors as demonstrated in several 

review article.84,85,86,87,88 Reported pressure sensors for swallow detection can be parsed into 
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groups by their mechanism of transduction such as capacitive, optical, piezoelectric, or 

piezoresistive. On capacitive sensors, the literature reports several permutations of materials for 

the electrodes and the dielectric medium with various mechanical and electrical properties. For 

example, Kou et al. described a wireless system developed around an NH4HCO3/Gr/PDMS 

dielectric sponge capacitor (Figure 1.9a).89 The sensor showed a low detection limit of 5 Pa with 

a rapid response time for accurate biomechanical sensing. The capacitive sensor was built into a 

patch and an antenna allowing for wireless and onboard-battery-free transmission. The authors 

demonstrated that the resonant frequency of the patch decreased like the square root of the 

capacitance of the patch. In another work by Xia et al., the dielectric material of the capacitive 

sensor was a colloidal gel that functioned as an optical sensor by color indication, giving the sensor 

a dual response to pressure change (Figure 1.9b).90 The dielectric material of the device consisted 

of free-radically polymerized N-isopropyl acrylamide (NIPAm), N, N’ – methylenebisacrylamide 

(Bis), and acrylic acid (AAc) creating gel particles (approximate size range 0.45 µm – 1.1 µm) 

which had also been treated with sodium hydroxide for improved capacitance.  

 

 

Figure 1.9. Examples of pressure-based sensors for detection of swallow. (a) Kou et al. demonstrated a 

pressure sensor made up of NH4HCO3/Gr/PDMS to detect human motions like swallowing. Reproduced 

with permission.89 (b) Xia et al. sandwich a layer of microgels between silver layers to create a capacitive 

sensor for detecting swallowing. Reproduced with permission.90 
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A more direct optical approach had been attempted by Maeda et al. where they used a 

hetero-core fiber optic pressure sensor embedded in a silicone rubber housing (Figure 1.10a).91 

The device was placed above the laryngeal prominence (LP) and examined optical loss due to 

pressure on the fiber optic when a swallow was initiated. Piezoelectric materials were also a 

promising candidate for swallow pressure sensing. The use of the common piezoelectric polymers 

such as polyvinylidene fluoride (PVDF) was demonstrated in a paper by Iizuka et al. where a 

urethane sheet was lined with piezoelectric sensors and placed near the LP (Figure 1.10b).92 The 

work characterized the mean rising and lowering the velocity of the larynx motion. Another group 

had the unique idea of a conductive material to be used as a strain sensor to assess swallowing 

disorders. Natta et al. patterned ultra-thin, and flexible aluminum nitride (AlN) film onto a soft 

Kapton tape coupled with sticky PDMS-polyethyleneimine (PEIE) to get a sensor that was 26 m 

thick (Figure 1.11a).93 Using this sensor, they were able to extract certain important factors from 

the data such as the duration of the swallowing act, frequency of spontaneous saliva deglutition, 

and latency. They also utilized wireless Bluetooth technology to transfer the collected sensor data 

into a phone app. The authors also highlighted the superiority of AlN’s non-toxicity, 

biocompatibility, and superiority over PVDF piezoelectrics which degrade under heat exposure. 

Lee et al. proposed a pressure sensor comprised of ionic polymer-metal composite (IPMC) 

material for recognizing throat movements during a swallow (Figure 1.11b).94 Essentially, a 

pressure applied to the IPMC induces cations and water molecules to move from high to low-stress 

regions and create a charge distribution while forming a dielectric potential layer. The metal of 

choice was gold because of its non-corrosive nature in the air. They also utilized a machine 

learning algorithm, a support vector model (SVM), to calculate the performance of throat 
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movement detection of their sensor.  Although more commonly used in the strain modality, 

piezoresistivity can be used to sense pressure exerted by laryngeal motion. Guan et al. used a 

molybdenum diselide/ multi-walled carbon nanotubes (MoSe2/MWNTs) composite capped with 

PDMS and copper foil electrodes on either side. Among the biosensing demonstrations in this 

work, the authors placed the sensor above the laryngeal prominence of a male subject and observed 

swallowing signals as reduction in the resistance of the sensor.95   

Although these works share a similar mechanical operation principle, the signals they 

generate are dependent on the placement of the sensor and the mechanism of signal generation. 

More physiological understanding of skin deformation during a swallow is required to move 

beyond an empirical framework for sensor architecture and design a more targeted one. 

 

 

Figure 1.10. Other capacitive sensor demonstrations for detection of swallow. (a) Maeda et al. used a 

hetero-core fiber optic pressure sensor to monitor the movement of LP during swallowing. Reproduced 

with permission.91 (b) Iizuka et al. used small piezo pressure sensors on the neck to obtain certain 

swallowing parameters. Reproduced with permission.92 
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Figure 1.11. A few examples of unique pressure-based sensors for swallow detection. (a) Natta et al. 

demonstrated a pressure sensor comprised of AlN on Kapton tape backed sandwiched with parylene sheets 

for swallow detection. Reproduced with permission.93 (b) Lee et al. used IPMC with gold as their sensor 

for tracking throat movement during a swallow and using a machine learning model on the collected data. 

Reproduced with permission.94 

 

1.6 Acoustic-Based Wearable Sensors 

 In our bodies, mechanical waves constantly propagate through the tissue and fluids of the 

body rooting from the natural physiological events of the body. Depending on the frequency of the 

waves, they reveal characteristic signatures of an individual event such as vocal fold vibrations 

(~100 Hz), cardiac contractions (~10 Hz), and respiration (~0.1 Hz). Many of these mechano-

acoustic (MA) signals greatly attenuate at the skin-air interface hence there has been a search for 

mechano-acoustic sensors that can capture these sound signatures of certain events over the skin. 

Tao et al. utilized a laser-induced graphene film that could generate and detect sounds from the 

skin (Figure 1.12).96 Unconventionally, their MA sensor didn’t utilize the piezoelectric effect but 

rather used direct laser writing (450 nm) of polyimide (PI) into porous graphene films.97 This 
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porous film structure allowed the detection of weak vibrations which was suitable for sound 

detection. When placed on the throat, this sensor was able to detect the mechanical vibrations of 

throat cords during a swallowing activity.   

 

 

Figure 1.12. A novel and materials-enabled MA sensor for detection of throat movement during a swallow. 

Tao et al. demonstrated the use of LIG films as MA sensors to generate and detect sound signals from the 

skin. Reproduced with permission.96 

 

 Designing new materials for MA sensors hasn’t been a large field of study when detecting 

swallow activities. However, a lot of studies were done using commercial accelerometers and 

microphones (and new designs to put all the sensors in one patch) to detect sound signals during a 

swallow.98,99,100,101,102,103 These studies also worked towards applying deep learning to the 

collected data to be able to understand the physiology of swallowing a little better. Some of these 

studies are shown in Figure 1.13 for reference. It is worthwhile to mention the work that has been 

done to design unobtrusive wearable devices to detect sound signals during a swallow and use this 
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data to model a machine learning algorithm to extract important features and learn from this 

physiological event.  

 

 

Figure 1.13. Other studies used commercial accelerometers and microphones for detecting swallowing 

sounds. (a) Lee et al. designed a flexible, wireless, and soft caging for an accelerometer to detect swallowing 

when placed on the suprasternal notch. Reproduced with permission.98 (b) Dudik et al. used both a 

microphone and an accelerometer to detect swallowing signals and conducted feature analysis from the 

signals. Reproduced with permission.99 (c) Kuramoto et al. showed a smartphone-based wearable 

microphone device to monitor the swallowing behavior changes over time. Reproduced with permission.100 

 

1.7 Challenges and Future Opportunities  

 Overall, the field of wearable swallow sensors is looking for an unobtrusive, wearable, skin 

conformable, sensitive, and wireless sensor platform for swallow detection and monitoring. All 

the discussed literature examples addressed at least one of these requirements. Still, there is much 
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to be improved and much to be experimented with to achieve an at-home wearable technology. 

For example, all the studies discussed in this review performed swallowing experiments while the 

participants were in a resting position with no other bodily movement present. This certainly kept 

the motion artifacts to a minimum and provided ease in the data processing. However, most 

potential patients and customers of an epidermal sensor device for swallowing will be moving 

around or not going to be completely stationary. There needs to be more investigation towards 

identifying these motion artifacts coming from the user’s body motion and using appropriate filters 

to remove them from the raw data. Additionally, user engagement during swallowing therapies is 

crucial for preventing swallowing disorders. Therefore, haptic feedback systems (visual or 

physical) should be investigated for incorporating the user’s engagement with the device and 

therapy. This can be possible via novel haptic materials that are up and coming. With these 

shortcomings addressed, we can reach a more effective sensor platform that can perform detection 

and engagement of a user.    

 

1.8 Conclusion 

The importance of monitoring the swallowing behavior has gained more attention over the 

years, especially after the literature on dysphagia has increased in numbers. This awareness of a 

problem that is so prevalent in life encouraged a field of study that focused on designing sensor 

platforms that use different sensing modalities to detect swallowing activity. Many studies used 

conventional sensors to detect and monitor swallowing, but some used novel materials to tap into 

better sensitivities and conformabilities to skin. We surveyed different materials-enabled studies 

in this review separated by the sensing modalities they used. The major fields were sEMG, strain, 

pressure, and acoustic-based wearable sensors with each having a different set of materials used 
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as the sensor core. Sensor characteristics and performances were discussed while comparing the 

signals they detected from a swallow. Finally, we discussed the untapped areas in this field and 

places of improvement. We foresee this review to give a big picture of where we are at as a field 

in terms of swallow detection using novel materials.     
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Chapter 2 Epidermal Graphene Sensors and Machine Learning for Estimating Swallowed 

Volume 

Abstract 

Assessment of liquid intake is necessary to obtain a complete picture of an individual’s 

hydration status. Measurements using state-of-the-art wearable devices have been demonstrated, 

but none of these devices have combined high sensitivity, unobtrusiveness, and automated 

estimation of volume, i.e., using machine learning. Such a capability would have immense value 

in a variety of medical contexts, such as monitoring patients with dysphagia or the performance of 

athletes. Here, an epidermal sensor platform is combined with machine learning to measure 

swallowed liquid volume based on signals obtained from the surface of the skin. The key 

component of the device is a composite piezoresistive sensor consisting of single-layer graphene 

decorated with metallic nanoislands and coated with a highly plasticized form of the conductive 

polymer poly(3,4-ethylenedioxythiophene):poly(styrenesuflonate) (PEDOT:PSS). Surface 

electromyography (sEMG) signals obtained with conventional electrodes are used in concert with 

the strain measurements. The use of strain and sEMG measurements together both (1) improve the 

accuracy of estimated volumes and (2) permit the differentiation of swallowing from motion 

artifacts. In a cohort consisting of 11 participants, the combined measurements of strain and 

sEMG—processed by the machine learning algorithm—were able to estimate unknown swallowed 

volumes cumulatively between 5 to 30 mL of water with greater than 92% accuracy. Ultimately, 

this system holds promise for numerous applications in sports medicine, rehabilitation, and the 

detection of nascent dysfunction in swallowing. 
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2.1. Introduction 

Despite the importance of water consumption and hydration for homeostasis, there are no 

well-established methods of reliably measuring the intake of liquids.1–4 Individuals from many 

groups and with different conditions are at risk of dehydration and its adverse effects, including 

children, the elderly, adults living and working in hot climates, survivors of head and neck cancer, 

and athletes. Graduated drinking bottles provide a visual measure to track consumed volume. 

However, this method is highly unreliable because it does not account for spillage and sharing. 

Moreover, it requires constant attention from the subject or the examiner. There is thus a need for 

a more practical, unobtrusive method of tracking swallowed volume, for example, by using a 

simple wearable sensor. This paper describes an epidermal strain sensor, combined with 

conventional sEMG measurements, which can accurately measure swallowed volumes based on 

the movement of the skin and electrical activity of the swallowing muscles. When the data obtained 

from this system is analyzed using a machine learning algorithm, the system is capable of 

estimating cumulative swallowed volume with an accuracy of more than 92%.  

The literature encompasses a variety of methods to measure swallowed volume, each of 

which is subject to various constraints. For example, videofluoroscopy5–8, endoscopy9–11, and 

acoustic sensors (i.e., microphones)12,13 have the ability to provide accurate measurements, but 

require bulky, specialized equipment and can rarely be performed during exercise or even regular 

activity. Mobile devices offer the ability to obtain these measurements without laboratory 

equipment. Over approximately the last 15 years, the advent of epidermal sensors has led to many 

impressive measurements of various physiological quantities from different groups.14–23,24,25  

Swallowing activity in particular has been the subject of a subset of these studies.26–30 For example, 

a device described by Roh et al. was composed of strain sensors based on a nanocomposite 
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comprising single-wall carbon nanotubes, a conductive polymer (PEDOT:PSS), and polyurethane. 

This device was able to distinguish events in the neck associated with swallowing from movements 

of the skin.31 By replacing the carbon nanotubes with silver nanowires, the same group later 

demonstrated a self-powered version of the device. This device, which was nearly transparent 

owing to the use of silver nanowires, was able to detect minute deflections of the skin, including 

those associated with the motion of drinking water.32 Using a different piezoresistive system, 

namely an ionic liquid embedded in an elastomer, Zhang et al. were able to capture body motions 

ranging from 0.1% to 400% strain including the swallowing behavior.33 However, these systems 

still required classification of signals by the (human) experimenters. Moreover, the studies did not 

demonstrate automated, quantitative estimation of swallowed volume, an essential metric for 

assessing hydration status. 

Toward the goal of sensing and automated analysis of swallowing activity, there have been 

a small number of notable studies. Kim et al. described a wearable sensor that included both sEMG 

electrodes and a commercial strain gauge on the same patch and allowed remote data transmission 

and power by connecting the patch to a wireless unit using a ribbon cable and anisotropic 

conductive film.34 Previous studies in our group by Ramirez et al. have reported a nanocomposite 

strain sensor consisting of single-layer graphene decorated with metallic nanoislands.35 When the 

strain data from the neck was combined with signals obtained from commercial sEMG electrodes, 

a machine learning algorithm was able to correctly identify materials swallowed in a bolus on the 

basis of consistency: water, yogurt, or a chewed cracker.35 Furthermore, this platform was also 

able to distinguish swallowing patterns obtained from dysphagic and non-dysphagic individuals. 

Despite these successes, the device possessed a high mechanical stiffness and was unable to stretch 

with natural movements of the skin. To overcome barriers associated with mechanical stiffness, 
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including discomfort and strong awareness of the participant, it was necessary to re-engineer the 

nanocomposite strain gauge to make it compatible with a stretchable, epidermal form factor. 

Moreover, in this study, the automated classification using machine learning was based on large 

differences in swallowing signals (i.e., water vs. yogurt, normal swallowing vs. dysphagic 

swallowing). Ultimately, monitoring hydration status would require classifying signals with much 

finer variance.  

Toward the goal of automated classification of swallowing signals, Schultheiss et al. 

described an algorithm to reliably detect the swallowing patterns from the other bodily movements 

(head movements, talking, and chewing) using two different measurements (sEMG and 

bioimpedance).36 After collecting both measurement signals during a swallow, the authors used a 

combination of physiological criteria and classifiers to accurately differentiate swallows from non-

swallows. Similarly, Farooq and Sazonov preferred to use multiclass classification to lessen the 

influence of unwanted motion artifacts which confound the signals arising from eating solid 

foods.37 The authors used data from a piezoelectric strain sensor and an accelerometer and 

processed it using a two-stage multiclass classification approach. The participants were directed 

to eat solid food items in both sedentary and active states (i.e., walking), and using their 

classification method, the authors achieved a weighted average of precision of 99.85% in detecting 

the solid food intake. In another example, Shieh et al. used three separate sensors—a nasal cannula, 

sEMG electrodes, and a force sensor (FSR) on the neck—to collect temporally resolved parameters 

during swallowing and analyze the coordination between respiration and swallowing.38 The 

authors designed an algorithm to detect the onset and the offset of a swallow from the sEMG, nasal 

airflow, and FSR sensors. Analysis of this combination of measurements was able to differentiate 

the swallowing events from respiration and find a correlation between them to understand the 
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effects of long-term smoking on swallowing function. Despite these successes, it is nevertheless 

the case that a nanomaterial-enabled, minimally obtrusive device has never been coupled to a 

machine learning algorithm capable of detecting minute differences in swallowed volume. 

Here, we describe a non-invasive, minimally obtrusive patch-like sensor for monitoring 

swallowed volume (Figure 2.1). The sensor is worn on the neck and operates by recording strain 

and sEMG signals, which originate from deformation of the skin and activation of the swallowing 

muscles. The strain sensor is composed of single-layer graphene decorated with a film of metallic 

nanoislands and coated with a highly plasticized conductive polymer. The graphene-nanoisland 

film confers exceptional resolution, on the order of 0.0001% strain, and sensitivity with a gauge 

factor of 100 for 0.0001% strain (as shown in reference 39) while the highly plasticized conductive 

polymer confers stretchability commensurate with the skin, with a high dynamic range up to 10% 

strain (as described in reference 40).39,40 In parallel, we developed a machine-learning algorithm 

using features from the strain signal to estimate the volume of boluses of unknown size. The 

application of an epidermal strain gauge and machine learning to the problem of swallowing 

volume provides the opportunity to differentiate signals from continuously varying biomechanical 

cues in an automated manner. Ultimately, we expect technologies such as this one to find broad 

use in many health-related fields, including sports medicine, mobile healthcare, and physical 

therapy. 
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Figure 2.1. Materials and structure of the sensor. (a) A layer-by-layer representation of the strain sensor. 

(b) A scanning electron micrograph of the AuNIs. (c) Chemical structures of the PEDOT:PSS, Triton-X 

and DMSO which make up the PEDOT:PSS dough.   

 

2.2 Experimental design  

 2.2.1 Composition of the strain sensor  

The strain sensor comprises a sheet of monolayer graphene decorated with thermally 

evaporated metallic nanoislands (Figure 2.1a). We formed a morphology of metallic nanoislands 

by thermal evaporation of gold onto a film of graphene on copper. The gold was evaporated at a 

rate of 0.03 Å/s and the resulting nanoisland film had a low nominal thickness (8 nm). The 

nanoisland structure forms as a consequence of a balance between two characteristic energies: the 

binding energy of the gold atom to the graphene (~0.09 eV) and its diffusion barrier on graphene 

(~0.4 eV). Due to this interplay of energies, the evaporation of gold on graphene is biased towards 

island-like growth at low nominal thicknesses. The details of this process are discussed 

elsewhere.39,41 The graphene-metal composite film is overlayed with a thin film of a highly 

plasticized conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS). The thinness and stretchability of the sensor permits it to be transferred onto many 

types of substrate.41 One potential issue associated with most types of nanoparticle-based strain 

gauge is unwanted sensitivity to temperature. In previous work, Marin et al. found that it was 
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possible to achieve a near-zero temperature coefficient of resistance in the type of graphene-metal 

composites explored here with precise tuning of the nominal thickness of the metal. In the case of 

gold, the optimal thickness was 8 nm (Figure 2.1b).42 When used alone, the graphene/gold 

nanoisland (Gr/AuNI) film is mechanically brittle, and fails at approximately 2% strain. To 

increase the dynamic range of the sensor, we spray coated them with PEDOT:PSS “dough” 

(Figure 2.1c), a treatment which has been shown, in previous work, to extend the stretchability of 

the sensor up to approximately 80% (Figure 2.2).40 While PEDOT:PSS “dough” has found wide 

use in bioelectronic applications when used alone,43–48 its purpose here is to serve as a conductive 

bridge between the nanoislands in the event of fracture of the graphene film.40 

 

 

Figure 2.2. Schematic summary of the process used to fabricate the Gr/AuNI thin film coated with highly 

plasticized PEDOT:PSS 
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Each one of the three materials of which our composite strain sensor is composed exhibits 

sensitivity to strain individually. For example, single-layer graphene has piezoresistive properties 

arising from both a change in electronic band structure due to the elongation of C-C bonds and 

electron scattering caused by the defects in graphene. Ultrathin metallic films show piezoresistive 

properties due to nanoscale cracks that occur upon mechanical strain. Lastly, a highly plasticized 

conductive polymer film possesses piezoresistivity at high strains due to the granular structure of 

the film, where contractions and elongations can cause denser packing of the grains and thus 

change the electrical conduction. The mechanisms involved in sensing small strains for the 

Gr/AuNI structure are hypothesized to be the scattering of electrons in the densely packed regions, 

cracks formed in the film due to strain, and quantization of electrons due to physical confinement 

in the thickness of the film. The tunneling of electrons between unpercolated metal regions was 

ruled out as the dominant mechanism for the Gr/AuNI sensors via use of hexagonal boron nitride 

as the 2D substrate instead of graphene.39 The addition of PEDOT:PSS “dough” added mechanical 

stability to Gr/AuNI film and strain sensitivity at high strain region.40  

Measurement of strain alone can be confounded by motion artifacts: movement of the skin 

arising from coughing, sneezing, head turning, yawning, and talking. By combining measurements 

of strain with measurements of electrical muscle activity (sEMG), it is possible to differentiate the 

true swallowing from the motion artifacts. While it would be ideal to incorporate sEMG sensors 

on the same patch which contains the strain sensors, for the sake of experimental simplicity, we 

decided to use commercial sEMG electrodes in this prototype. For a further treatment of how 

sEMG and strain measurements can be combined to eliminate motion artifacts by machine 

learning, see Ramirez et al.35 
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2.2.2 Machine learning algorithm 

We used machine learning for two purposes in our study. The first was to differentiate 

swallowing from artifacts of other types of motion. The second purpose was to estimate the volume 

of the swallowed water. In our study, we performed the swallowed-water-volume estimation 

through three steps: signal processing, feature extraction, and algorithm development. In the first 

step, we removed the noise in the sEMG and strain raw data (Figure 2.3a). In the second step, we 

identified the features in the swallow patterns in the strain data to build the volume estimation 

algorithm. We did this by first selecting two peak points and two valley points around the two 

swallowing peaks as fiducial points. Using these selected fiducial points, the algorithm was able 

to calculate additional features such as the durations, magnitudes, slopes, curvatures, and kernels 

of the swallowing peaks which represent the physiology of the moving muscles during a voluntary 

swallow. In addition to the strain data, we added the area underneath the curve from the processed 

sEMG data as a feature. In the last step, we trained the algorithm for each participant individually, 

using three-fold cross-validation tests on a total of 60 swallows per participant, to evaluate the 

performance of the trained algorithm (Figure 2.3b).  
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Figure 2.3. Schematic representation of the machine learning approach. (a) The workflow of the data 

processing and construction of the algorithm. First, the raw data from the strain and sEMG sensors is 

processed by removal of the baseline noise and filtering. Next, the algorithm is trained to identify the peak 

arising from swallowing and to look for the unique features around the peak. (b) The algorithm is trained 

and tested with a three-fold cross-validation method and used in estimation studies simulating 30 

independent swallows of water by the participant. 

 

2.3 Experimental Methods 

2.3.1 Fabrication of the graphene-based strain gauge 

The nanocomposite strain gauges were fabricated by modifying a previously published 

procedure.40 Briefly, we thermally evaporated 8 nm gold at a rate of 0.03 Å/s on a 7.5 cm x 7.5 cm 

piece of copper foil with single-layer graphene (GrollTex, Inc.) grown on both sides using an Orion 
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System (AJA International). We recorded the temperature of the main chamber to be 26-27ºC 

during the evaporation process. The conductivity of the graphene film before the metal evaporation 

was ~2 kΩ. After evaporation of the metal, the resistance decreased to ~300-400 Ω.40 We observed 

another increase in conductivity after spray-coating the PEDOT:PSS “dough” (~100-200 Ω). In 

the design of a strain gauge, the resolution, sensitivity, and signal-to-noise ratio are more important 

than the absolute conductivity. After deposition, we etched the back side of the piece in the air 

plasma cleaner for 5 min at 30 W at 250 mTorr to remove the excess graphene layer. We then spin-

coated the side bearing the gold nanoislands with a 200 nm film of 4 wt% 

poly(methylmethacrylate) (PMMA, Alfa Aesar) dissolved in anisole (Acros Organics) at 4000 rpm 

with 1000 rpm/s for 60 s, and annealed it on a hotplate at 150 °C for 10 min. In this form, the 

Gr/AuNI films were ready to be transferred (Figure 2.2).  

To make the epidermal film onto which we would transfer the strain gauges, we cut a 5 cm 

x 5 cm piece from a temporary tattoo paper (Duradecal, Laser Temporary Tattoo - carrier sheets) 

and placed it onto a glass slide (76 mm x 52 mm). We taped the edges of the tattoo paper to the 

glass slide using 1 mil (25 µm thick) polyimide (Kapton) tape; the tape covered the whole top 

surface and the edges of the back surface. Then we spin-coated polydimethylsiloxane (Sylgard 184 

PDMS, 10:1 base-to-curing agent ratio, 1 MPa) onto the tattoo paper at 1000 rpm with 500 rpm/s 

for 60 s and cured the PDMS on a hotplate at 150 °C for 10 min. We etched the copper support of 

a 3 cm x 0.75 cm strain sensor patch piece in 0.05 g/mL ammonium persulfate solution (APS, 

Acros Organics), transferred it onto the tattoo paper, and allowed it to dry in air for 12 h. Later, 

we etched off the PMMA support in an acetone bath for 1 min at 50 °C, rinsed the piece with 

isopropyl alcohol, and gently dried it with a stream of compressed air. 
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For the elastomeric conductive polymer layer, we used a highly plasticized poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) “dough” recipe that was 92 wt% 

PEDOT:PSS (Clevios PH 1000, 1.2 wt% in water), 3 wt% Triton X-100 (Sigma Aldrich), and 5 

wt% dimethyl sulfoxide (DMSO, Sigma Aldrich).46 We further diluted this stock solution in 

deionized water in a ratio of 1:3 (stock:water). We spray-coated the PEDOT:PSS solution using a 

custom stencil mask to cover everywhere on the sensor patch except the Gr/AuNI sensor area. We 

placed the sensor piece on a hotplate at 150 °C and sprayed 8 x 1 s intervals as a primer, 4 x 10 s 

spray intervals, then 4 x 20 s spray intervals waiting about 1 min between each spray interval and 

rotating the piece 90° for an even coverage. After spray deposition of the polymer, we added 

copper wiring (36 gauge) to each sensor and connected it with carbon paint (Ted Pella, Inc.). We 

let the carbon paint dry for 12 h (to obtain a stable readout of resistance), and later, we spin-coated 

PDMS (30:1 base-to-curing agent ratio, 0.15 MPa) onto the whole assembly at 1000 rpm with 500 

rpm/s for 60 s. We cured the PDMS on a hotplate at 150 °C for 10 min.  

 

2.3.2 On-body experiments  

We performed on-body experiments with 11 healthy participants (ages between 21-30 

years old, 3 female, 8 male) with no history of swallowing disorders. We used an approved 

protocol reviewed by the Internal Review Board at the University of California San Diego Human 

Research Protections Program (Project # 191950S) and collected signed consent forms from each 

participant prior to the study.  

The placement of the sensor and adhesion to the skin were critical factors in the collection 

of high-quality data. Thus, the male participants were directed to shave their necks for better 
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adhesion of the sensors. The participants sat comfortably in a chair, while we placed two sEMG 

electrodes underneath their chin on the upper throat area, and a reference electrode on the left 

collarbone (Figure 2.4a). We then applied the strain sensor to the skin by transferring it from the 

tattoo paper. The long axis of the sensor was positioned perpendicular to the neck, on the center 

of the throat, just below the sEMG electrodes (Figure 2.4a). The horizontal orientation of the 

strain sensor was more favorable than the vertical orientation due to available space on the 

participant’s throat and nearly similar estimation results (Figure A.1). After this, we removed the 

backing of the tattoo paper with a wet paper towel. The sEMG electrodes and wires from the strain 

sensor were connected to the MAX30001 Evaluation kit for data acquisition. Finally, we 

immobilized the wiring with Scotch tape. With regard to biocompatibility, all of the components 

are encapsulated in PDMS, which is well known to be biocompatible.49,50,51,52 That is, instances of 

contact dermatitis are rare. Also, the commercial electrodes used for sEMG are ubiquitous in 

professional healthcare settings. 

Once we verified the correct placement of the sensor by visually confirming that the strain 

sensor lied directly underneath the sEMG electrodes and on the middle of the throat, we asked the 

participants to sit in a chair in an upright but relaxed position (Figure 2.4b). Before each swallow 

recording, the participants were given a small cup of water of a known volume (5 mL, 10 mL, etc.) 

and were asked to hold the liquid volume in their oral cavity until they were directed to swallow 

(Figure 2.4c). Once the recording started, the participants remained still for 10 s, then swallowed 

the water, and then waited for another 10 s after which the recording was stopped. We tested 

volumes starting from 5 mL to 30 mL, increasing in 5 mL increments for each participant (5 mL, 

10 mL, 15 mL, 20 mL, 25 mL, 30 mL). The volumes were given in random order. We repeated 
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each volume swallow 10 times, yielding 60 swallows per participant in total. During this time, the 

participants were allowed to take as many breaks as needed. 

 

 

Figure 2.4. On-body experimental set-up. (a) A close-up image of the strain and sEMG sensors on the 

throat of the participant and the MAX30001 Evaluation kit used in the experiments. Scale bar is 3 cm. (b) 

The photograph shows the testing set-up where the sensors are connected to the Evaluation kit which is 

connected to a laptop, and the participant is seated in a relaxed position before instructed to swallow water 

from the cup. (c) The image captures the participant being instructed to swallow the known volume of 

water.   

 

2.3.3 Data acquisition  

To measure and collect sEMG and strain signals from the sensors, we used the 

commercially available “MAX30001 Evaluation System” (MAX30001EVSYS) This evaluation 

system includes the MAX30001 Evaluation kit and a corresponding GUI system software for 

configuring and saving the data from the kit. This Evaluation kit can measure up to one channel 

of ECG data (output data in mV) and one channel of Bioimpedance data (output data in mΩ). For 

this project, we connected the sEMG electrodes to the ECG channel (the sEMG signals’ magnitude 

and spectral content are similar to ECG signals) and the strain sensor wires to the Bioimpedance 

(BioZ) channel of the Evaluation kit. The external lead biasing was used for both the channels for 

which the reference electrode, placed on the collarbone, was connected to the Body Bias pin of the 

kit. The ECG channel used for the sEMG signals was configured to have a gain of 20 V/V and a 
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sampling rate of 512 samples/s. On the other hand, the BioZ channel used for the strain signals 

was configured to have a gain of 10 V/V, with a current of 32 µA at 80 kHz, and a sampling rate 

of 64 samples/s. To preserve the full spectral content and have the flexibility to post-process the 

data at a later stage, all the digital filters post-ADC were bypassed (Figure A.2).  

 

2.3.4 Construction of the volume estimation model 

We began constructing the volume estimation model by processing the raw data from the 

sensors (Figure 2.3a). First, we cleaned the raw data from the sEMG and strain sensors, which 

were composed of 660 trials/sensor in total from 11 participants. For each trial, the swallowing 

data was a one-dimensional temporal signal. The data output rates were 64 samples/s for the strain 

sensor and 512 samples/s for the sEMG sensor. The strain data was cleaned with a three-order 

Savitzky-Golay filter with the span of 1 s in each filter kernel. For the sEMG data, we removed 

the low-frequency baseline drift noise lower than 10 Hz. 

Next, we extracted the swallowing signal features from the sEMG and strain data. For the 

features in the sEMG signal arising from swallowing, we calculated the area under the peak versus 

time by integrating a time interval of 0.4 s that centered at the peak of the swallow. For the strain 

signal features, we first identified the swallowing peak with our algorithm and then applied the 

fiducial point method to quantify the features of interest. We identified the swallow peak by 

searching for the maximum positive differentiation value in the swallowing data. The pseudocode 

of the swallowing peak detection algorithm is shown in Figure A.3. Using this approach, we 

empirically selected two valleys and two peaks in the strain data as illustrated in Figure 2.3a. The 

first of the two peaks belonged to the swallowing peak, whereas the next one was attributed to 
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motion due to recovery from the swallow. The two valleys were present right before and after the 

swallow peak. Using the fiducial points, we extracted additional features by fitting three-order 

polynomial curves. These additional features included the durations, magnitudes, slopes, 

curvatures, and kernels constructed by the curves enclosed within the fiducial points in the strain 

data, and area under the curve in the sEMG data (Table A.1).  

Lastly for the machine learning, we applied canonical correlation analysis to build the 

swallowing volume estimation algorithm. Canonical correlation analysis is a technique that seeks 

the optimal linear combination of the input features to fit the output swallow volume. We used the 

canonical correlation analysis to find the features for the most optimal linear combination. In our 

case, the input of the algorithm was the extracted features, and the output was the swallowed water 

volumes by the participants. We evaluated the built algorithm using three-fold cross-validation 

tests on the training data for each participant by randomly splitting the 60 trials into three groups, 

with each group having 20 trials. Next, we trained the swallow volume estimation algorithm with 

the data from two groups, while using the third group for testing the model. We iterated through 

all three-fold computations and evaluated the accuracy of the estimations while accumulating the 

swallowed volume each run. For example, from 60 tested trials from one participant, we randomly 

selected 30 trials and summed the predicted volumes (Figure 2.3b). Finally, we computed the 

accuracy of the algorithm by comparing the estimated swallow volume to the exact swallow 

volume. It is important to note that the algorithm estimations were calculated one participant at a 

time, therefore making the results specific to each participant. 
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2.4 Results and Discussion  

Swallowed volume had a strong influence on the strain present at the surface of the skin. 

In particular, the volume appeared to be closely related to the ratios between the heights of the two 

peaks in the signal (Figure 2.5). As the liquid volume increased, the first peak became smaller in 

magnitude whereas the second peak became larger, possibly due to the large displacement of the 

hyoid bone to allow for the epiglottis to open enough for a larger volume to pass.  

It is worthwhile to consider the physiological origins of the features in the data. Such an 

understanding can lead to improved design of devices and can inform interpretation of the volume 

estimation algorithm. The sEMG data reflected muscle activity in the submental region, whereas 

the strain waveforms arose from movement of the skin over the laryngeal/thyroid notch during 

swallowing. The strain waveforms for each participant showed two peaks due to the tensile strain 

experienced by the skin during a swallow. The first tensile strain peak represented the start of the 

oral propulsive stage during a liquid bolus swallow, described by the Four Stage Model.53,54 During 

this stage, the tongue rises upward to meet the top of the mouth and open the back of the oral cavity 

to squeeze the liquid bolus back into the pharynx. The second tensile strain peak represented the 

pharyngeal stage. During this stage, the hyoid bone and the larynx are displaced upward and 

forward, causing the suprahyoid and thyrohyoid muscles to contract as the epiglottis tilts backward 

to allow the bolus to travel in a downward motion.55–57 Once the bolus was pushed down, all 

structures reverted to their original positions, resulting in the relaxation behavior that appeared 

after the second tensile strain peak.  

Due to the low viscosity of a liquid bolus, it has been observed that the pharyngeal stage 

begins during the oral propulsion stage. The first peak in the strain signal arises from the first phase 

of the swallowing event where the muscles on the throat open the way to esophagus; the second 
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peak is from the relaxation of the structures back into their original positions. In our previous work, 

the peaks in the strain signal and the phases of the swallow were identified by X-ray 

videofluoroscopy using a radio-opaque bolus.35 In this experiment, one of the patients was given 

a barium-containing paste, and the swallow and was recorded by video X-ray imaging. The patient 

performed an identical swallow while wearing the strain sensor. 

According to our observations, the height and duration ratios of these two tensile strain 

peaks varied between individuals but were always present. These features enabled our estimation 

results using the machine learning algorithm in the later stages, regardless of how different the 

swallowing behaviors were for each participant.  

 

 

Figure 2.5. Evolution in strain signals as a function of swallowed volume for one participant. Vertical axes 

show the change in resistance normalized by the baseline resistance and the horizontal axes show the time 

in seconds. (a) All the volumes are plotted for comparison for one participant. Data are plotted after data 

processing. Each line is the average of 10 swallows. (b) The plot shows a representative swallow from the 

strain sensor for 5 mL and some of the features that are extracted by the machine learning algorithm. Four 

fiducial points are labeled from 1-4. The features include the distance between these points, the amplitudes, 

the slopes between the points as shown on the plot.  
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Lastly, we developed a machine learning algorithm to automate the detection of a swallow 

in a strain signal and identify the features that aid the estimation of an unknown swallowed volume 

by an individual. We used the strain and sEMG signals from the cohort study to train the algorithm 

and validate it using a three-fold cross-validation method. Each fold in the validation method split 

the 60 total swallows by a participant into 3 groups of 20 swallows and assigned two of them to 

be the training data and one of them to be the testing data. The accuracy of the estimation of the 

true volumes of the testing data is shown in Figure 2.6. The average accuracy of the estimations 

of all the cohorts was higher than 92%, reaching as high as 98%, as seen in Figure 2.6a. The 

absolute error for estimation of each tested volume was on average 5 mL and decreased as swallow 

volume increased (Figure 2.6b). Using the estimation results, we plotted a calibration curve to 

compare the true observed volumes and the estimation volumes. Except for one participant, all of 

our cohort data estimations followed closely to the true volumes (Figure 2.6c).  

Statistically, more training data results in better performance of the algorithm and thus 

better volume estimation. In our studies, the machine learning algorithm estimated cumulative 

swallowed volumes with higher accuracy than the volume of a single swallow because of the law 

of averages. Each cumulative swallowed volume was the sum of 30 swallows randomly selected 

out of 60 total swallows collected from the participants. Thus, having more data per estimation 

increased the accuracy of the algorithm. In addition, the algorithm was able to estimate the volumes 

of larger swallows with more accuracy than the volumes of smaller swallows. This can be 

explained from our observations throughout the experiments with different participants. Most of 

our participants described 5 mL as too small to swallow, implying that the 10-30 mL range is more 

comparable to quantities swallowed for everyday hydration. Hence, there were more variations 

between each trial for 5 mL than any other volume. Related to this limitation is the amount of 
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water we asked participants to swallow throughout the experiment. Each seated participant drank 

roughly 1.05 L of water, which was the maximum amount the participants could drink comfortably 

during the experiment. Due to this limitation, we did not collect more than 10 trials per volume. 

Lastly, we observed that the placement of the strain sensor was crucial for the validity and 

reproducibility of the data. If the strain sensor was placed in an off-center position or could not 

conform well with the participant’s skin, the estimation results were less reliable, which was the 

case for Participant 8. Nevertheless, we included the Participant 8’s data in our volume estimation 

studies to test the adaptability and robustness of our sensor system. After all, even with the sensor 

placement issue, the estimation results were very promising and proved the robustness of our 

overall sensor system.   

 

 

Figure 2.6. Swallowed water volume estimation results. (a) The plot shows the accuracy of the predicted 

cumulative volumes. (b) The plot shows the absolute error in milliliters for each tested volume. (c) The plot 

shows a calibration curve between the predicted cumulative volumes and the training cumulative volumes 

for each tested participant.  

 

2.5 Conclusions 

In this work, we have demonstrated the use and application of coupling a highly sensitive 

strain sensor with a machine learning algorithm to perform an accurate estimation of swallowed 
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volume. The nanomaterial-enabled device permits minimally obtrusive measurements, which may 

facilitate the assessment of hydration state, or be used to monitor swallowing function over time 

for the prevention of disease. Nevertheless, in its current state, our system has some limitations. 

For example, the sensor platform was tested while the participants were seated. In real-world 

conditions—i.e., sports medicine—measurement will necessarily take place while participants are 

in motion. To solve this problem, the form factor of the supporting electronics will have to be 

miniaturized, and the sEMG electrodes will have to be integrated into the epidermal patch. Our 

current work is moving toward a flexible custom PCB that wirelessly transfers data to a phone app 

during exercise. Another limitation to our current system is the fact that the machine learning 

algorithm is run on a single participant basis. In order to accommodate for this problem, we are 

working towards collecting more swallowing data from different participants to add into the 

training pool of the algorithm. Eventually with all the accumulated swallowing data, the algorithm 

will be able to estimate any swallowed volume with high accuracy for any new participant.  

We are also expanding the type of liquid boluses whose volumes can be measured. For 

example, the range of properties represented by water, energy drinks, carbonated beverages, 

protein shakes, and chewed food pose challenges for measurement using our system, but not 

insurmountable ones. In previous work, we have shown that it is possible for a system similar to 

the one described here to differentiate water, yogurt, and a cracker with high accuracy. The ability 

to identify the food bolus and also estimate its volume could have implications in monitoring food 

intake to treat obesity. Given the centrality of swallowing to essentially all aspects of human health, 

we believe there is significant potential for the device and methodology described here in the fields 

of sports medicine, rehabilitation, nutrition science, and speech-language pathology.  
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Chapter 3 External Measurement of Swallowed Volume During Exercise Enabled by 

Stretchable Derivatives of PEDOT:PSS, Graphene, Metallic Nanoparticles, and Machine 

Learning 

Abstract 

Epidermal sensors have the potential to aid in the recovery of a range of conditions and to 

monitor the performance of healthy individuals (e.g., in sports medicine). However, such devices 

are typically evaluated under idealized conditions, i.e., without the problematic effects of motion 

and sweat. Here, we evaluate the use of electrodes based on poly(3,4- ethylenedioxythiophene) 

(PEDOT) complexed to a stretchable polyelectrolyte block copolymer in concert with strain 

gauges based on graphene decorated with metallic nanoislands to obtain measurements under the 

conditions of exercise. In particular, the electrodes are used to obtain surface electromyography 

(sEMG) and are composed of the common conductive polymer PEDOT electrostatically bound to 

poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether acrylate) (PSS-b-PPEGMEA), 

which is synthesized by controlled radical polymerization. Simultaneously, stretching motions of 

the surface of the skin are measured using strain gauges comprising single-layer graphene 

supporting subcontinuous coverage of gold and a highly plasticized composite containing 

PEDOT:PSS. Together, these materials permit low impedance, high stretchability, high resolution, 

and resistance to sweat. The sensors were connected to a custom printed circuit board (PCB) that 

allowed the multicomponent system to acquire data wirelessly. This sensor platform was tested on 

the swallowing activity of a cohort of 10 subjects while walking and spinning on a stationary bike. 

Using a machine learning model, it was possible to predict swallowed volume with absolute errors 

of 36% for walking and 43% for cycling. 
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3.1. Introduction 

Swallowing is a critical function in homeostasis, but its importance is easy to overlook. 

Healthy individuals swallow 500-700 times per day, often with little attention to the intricacy of 

the process. Dysfunction in swallowing is known as dysphagia, and has a range of etiologies: 

traumatic, neurologic, oncologic, or iatrogenic (e.g., due to radiation therapy).1,2,3,4,5 Dysphagia 

afflicts 3% of the US population and is a leading proximal cause of death (via aspiration 

pneumonia) in some populations of afflicted individuals (e.g., the elderly).6,7,8 The ability to assess 

swallowing function is possessed by a relatively small group of healthcare providers, specifically, 

otolaryngologists and speech-language pathologists. These specialists use a range of tools from 

palpation to videofluoroscopy9,10,11,12 for diagnosis and measurement. The use of mobile 

technologies to supplement these approaches—which are often available only in well-equipped 

healthcare settings—would be highly beneficial. Apart from dysphagia, there are many reasons 

why individuals may benefit from mobile assessment of swallowing behavior. For example, in the 

treatment of eating disorders, in patients at risk of dehydration, and in sports medicine. In the case 

of sports medicine and optimization of the performance of elite athletes, there are no current mobile 

technologies that permit evaluation of swallowing-associated behavior—especially ingested liquid 

volume—that have been shown to work under the conditions of exercise. Here, we developed a 

mobile platform for the estimation of swallowed volume using a wearable patch. The patch is 

enabled by purpose-synthesized conductive polymers for sEMG, graphene sensors for measuring 

the movement of the skin while swallowing, and machine learning for estimating swallowed 

volume from the data obtained externally. Critically, the robust polymeric materials, along with 

the machine learning, permit this platform to circumvent the confounding effects of motion even 

in the presence of sweat.  
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Normal swallowing involves the coordinated movements of a range of structures in the 

head and neck. These movements work in concert to pass a solid or liquid bolus from the oral 

cavity to the esophagus. The physiological stages of swallowing are described in detail using well-

established models such as the Four Stage Model. Simply, after ingestion of a bolus, the submental 

muscles contract bringing the larynx upwards to meet the epiglottis allowing the bolus to enter the 

esophagus towards the stomach.13,14,15,16,17,18 Many assessment methods for swallowing 

dysfunctions focus on the two stages of this process, the oral propulsion, and the pharyngeal stages. 

These two stages occur almost simultaneously for a liquid bolus swallow. The movement of the 

muscles and structures during a swallow is detectable via sensors placed on the skin. Immediately, 

each step of the process produces distinctive electrical signals arising from the neuromuscular 

activity and concomitant bending and stretching of the overlying skin. Attempts to capture this 

information have thus focused on the use of sensor systems designed to measure EMG, strain, or 

both. One of the first sensing modalities used for swallow assessment and discerning dysfunctions 

was intramuscular EMG and/or sEMG.19,20,21 Due to their convenience and non-invasiveness, the 

conventional sEMG sensors are the preferred choice between the two. Unlike the needle EMG, 

sEMG sensors are applied onto the skin over the muscle area of interest. They use silver/silver 

chloride (Ag/AgCl) as the sensing material and are contacted to the skin with a wet conductive gel 

that also helps decrease the electrode-skin impedance at the interface. Although the use of the 

conventional Ag/AgCl is predominant in clinics, with the development of new materials, there has 

been a shift from gel electrodes to dry electrodes for longevity and conformability to skin.22 

Specifically, dry contact electrodes based on thin metal films23,24 (such as gold), ionic liquids25, 

and intrinsically conductive polymers (ICPs)26,27,28,29,30 are becoming increasingly popular for 

applications in acquiring epidermal biopotential signals. Their skin conformability, stretchability, 
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and longevity with minimum reduction in signal quality ensure better electrical contact with the 

skin and longer use of the sensors without skin irritation. One example material of ICPs used for 

sEMG is PEDOT:PSS. Electrodes made only with PEDOT:PSS, although sufficiently conductive, 

tend to be brittle. To enhance its mechanical properties, it is often combined with plasticizers and 

other polymers. For example, Zhang et al. demonstrated an ICP-based electrode composed of a 

PEDOT:PSS, waterborne polyurethane (WPU), and D-sorbitol for this reason.29 The electrode was 

capable of a maximum 0.41 N/cm skin adhesion force and an electrode-skin impedance value of 

82 k.cm2 at 10 Hz which was superior compared to Ag/AgCl gel electrode value of 148 k.cm2 

at 10 Hz. The authors also demonstrated that the adhesion force of the electrode was significantly 

enhanced when contacted with wet skin without compromising the electronic properties. However, 

D-sorbitol tends to leach from the polymer matrix over time, leaving residues and reducing 

electrode longevity. ICPs are generally easily processable and can be easily incorporated into 

noise-reducing electrode geometries. In another example, Wang et al. used PEDOT:PSS as a 

conformal coating in the fabrication of a stretchable concentric biopotential electrode.28 They 

achieved an improved interfacial conductivity which was due to the addition of PEDOT:PSS and 

the spatial filtering geometry (concentric ring), showing superior noise reduction when compared 

to various electrodes from the literature. Similarly, Zhao et al. coated a graphene layer with 

modified PEDOT:PSS (with sodium dodecyl sulfate and bis(trifluoromethane) sulfonimide 

lithium salt) and transferred it onto an elastomer substrate to use as an sEMG sensor. They also 

demonstrated good conformability with the skin and electrical properties over long-term 

monitoring.30 Even though sEMG has been used in a myriad of wearable and mobile devices for 

the detection of muscle activation, the biopotential signals can still be distorted due to the inherent 

noise in the electrode, movement artifacts, electromagnetic noise, crosstalk, and internal noise.31,32 
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Inherent noise can be avoided by using the same conductive material for both electrodes and 

decreasing the impedance between the electrode and the skin with a skin preparation. The 

movement artifacts can be the electrode movement at the skin interface or the cable movement and 

it can be reduced with the use of shielded cables and good conformability of the electrode to the 

skin. The electromagnetic noise usually refers to the power-line interference which arises from the 

60 Hz radiation from the power sources around us. This noise can be eliminated with a notch filter. 

The crosstalk between electrodes can be reduced with careful placement of the electrodes on the 

muscle group of interest. Lastly, the internal noise is caused by the subcutaneous tissue between 

the electrode and active muscles and can be partially reduced with high pass filters. Still, the 

existing literature on novel sEMG sensors only addressed the noise in the signal when the sensors 

were used on subjects while they were stationary. Deduction of noise is relatively simpler when 

the subject’s body is still and not moving, however, it becomes a harder task when the subject is 

in motion during the sEMG measurements. Hence why our choice of intrinsically conductive and 

stretchable PEDOT:PSS(1)-b-PPEGMEA(6) (“Block-6”) used as the sEMG sensor under non-

stationary conditions is novel and justified.   

Along with sEMG, orthogonal modalities of sensing such as sound, pressure, 

bioimpedance, and strain recordings are also used to increase the fidelity of the swallow analysis 

by correlating mechanical motion with muscle activation.33,34,35,36,37,38,39,40,41 Specifically, 

epidermal strain sensors placed on the submental region can detect the motion of the throat during 

a swallow. For example, Kim et al. developed a wearable patch by incorporating a gold film-based 

sEMG electrode set for observing muscle activity as well as a piezoresistive strain gauge printed 

on a conductive adhesive epoxy for detection of laryngeal motion.33 The authors indicated that the 

strain signal from the larynx motion allowed them to differentiate sEMG signals from cross-talk 
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and outperformed a nasal cannula in signal clarity. Roh and Hwang et al. used silver nanowires 

(AgNWs) or carbon nanotubes (CNTs) mixed with PEDOT:PSS and polyurethane (PU) as strain 

sensors that can measure the swallowing motion on the throat.36,37 Another group, Zhang et al., 

utilized ionic liquids to make strain sensors for swallow detection.38 They achieved a wide range 

of strain detection (0.1% - 400%) with their method. Zhu et al. presented a strain sensor made up 

of PDMS/copper nanowires-water dispersed modified graphene/ PDMS which was able to detect 

swallowing as well.40 Similarly, Huang et al. made a fiber-based strain sensor to detect small 

human motions including swallowing. Their strain sensor was a PU yarn dip-coated with graphene 

nanoplatelets and carbon black/ single-walled CNTs.41 This sensor was able to stretch 350% and 

also detect swallowing. More recently from our group, Ramirez et al. utilized a strain sensor based 

on graphene/metallic nanoislands to detect swallowing differences between healthy and dysphagic 

patients.34 This strain sensor exhibited high sensitivity at a low strain regime however failed above 

2% strain. They later incorporated highly plasticized PEDOT:PSS into the sensor complex to bring 

the dynamic range up to 86%.42 Our previous work utilized the graphene/gold 

nanoislands/PEDOT:PSS (Gr/AuNI/PEDOT:PSS) complex alongside a machine learning 

algorithm to predict different swallowed liquid volumes accurately.43 During these experiments, 

the cohorts were seated in a relaxed position and the sensors were connected to a data acquisition 

board via long cables. Even though all the above-mentioned strain sensors were able to detect the 

swallowing motion, most of them lacked the sensitivity to minute details in the event except our 

previous work. Additionally, none of these studies challenged their sensors to detect the 

swallowing event under non-stationary conditions necessary for real-life wearable devices. 

Finally, most of the mentioned sensors had data acquisition systems that limited the participant 

movement due to the tethered connection to a stationary source meter or computer.   
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With the advancement of this field, the need for wireless data acquisition and removal of 

motion artifacts from the data became more apparent. Areas of improvement in the field include 

the form factor of the wearable sensors, correctly identifying and removing the motion artifacts 

from the data while the participant is not in a stationary condition, and the use of machine learning 

to have a baseline monitoring of the normal swallowing over time. We can overcome the 

discrepancies by designing a remote PCB board with wireless capabilities and the use of an 

algorithm where we can train to look for specific features in the swallowing event. In this paper, 

we demonstrate how to design and fabricate such a system with materials-enabled strain and sEMG 

sensors as well as a custom PCB board and a machine learning model to analyze the data from 

participants swallowing different volumes of water under non-stationary conditions. Our strain 

sensor was made up of Gr/AuNIs/PEDOT:PSS complex and was able to detect minute differences 

between different swallowed water volumes and last a long time on the skin even when the 

participants were moving around and sweating. Similarly, our Block-6 based sEMG sensor showed 

good conformability and longevity on the skin over an hour period. We also designed and utilized 

a wireless data acquisition to conduct swallowing experiments under non-stationary conditions to 

prove the performance of this sensor platform and the machine learning predictions for each 

swallowed water volume.  

 

3.2 Experimental design  

3.2.1 The strain sensor  

The strain sensor was based on our previous work that is a monolayer of graphene (Gr) 

with thermally evaporated gold nanoislands (AuNIs) on top (thickness 8 nm).43,34,42 The choice to 

use this strain sensor was made due to its well-studied high sensitivity at small strains (up to 2%) 
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and its near-zero temperature coefficient of resistance.44,45 The Gr/AuNIs composition exhibits a 

high gauge factor of ~17 in the ultralow strain regime (0.001% or 10 ppm) with a limit of detection 

at 0.0001% strain or 1 ppm (gauge factor ~125) when the metallic film is a percolated 

subcontiguous film (<10 nm).44 This is due to the combination of piezoresistive properties of both 

graphene and the ultrathin gold film. Monolayer graphene is known to have piezoresistive 

properties due to the changes in its electronic band structure and the electron scattering caused by 

the defect points in the film.46,47,48,49,50 The AuNIs exhibit piezoresistive properties mainly due to 

the nanoscale cracks that occur during mechanical strains.44 Another advantage of the Gr/AuNIs 

film comes from its near-zero temperature coefficient of resistance. After an extensive study done 

by Marin et al, 8 nm thick gold evaporated on graphene was the least affected sample by the 

temperature change, making it an excellent choice to be used on human skin.45 Although this 

combination works very well at detecting strains, it tends to lose its stability in performance above 

2% strain due to the thinness of the 2D material and irreversible damage to the film.42 In order to 

increase the dynamic strain range of the sensor (up to 86%) and prevent the Gr/AuNIs film from 

failing due to irreversible fracture, we spray-coated the Gr/AuNIs with a highly plasticized 

PEDOT:PSS conductive polymer (PEDOT:PSS “dough”). The addition of the plasticized 

conductive polymer provided another layer of electron transport in the case of a fracture on the 

Gr/AuNIs, ultimately making it easier for device handling and sensor stability at higher strains.42 

PEDOT:PSS and its variables alone have been used greatly in the field of wearable sensors but 

here the PEDOT:PSS “dough” assisted with the development of our strain sensor capable of 

detecting small and large strains. Electrical insulation from the skin was established by 

sandwiching the sensor film and the wiring with two spin-coated films of polydimethylsiloxane 

(PDMS) as illustrated in Figure 3.1a and Figure 3.1c. 
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3.2.2 The sEMG sensor  

The sEMG sensors were made via a unique formulation of PEDOT:PSS(1)-b-PPEGMEA(6) 

block copolymer (also referred to as “Block-6”) developed to have fine-tuned electrical and 

mechanical properties for measuring electromyography signals on-body (Figure 3.1a-b). 

PEDOT:PSS is a conductive polymer used in many different fields of electronics due to its high 

conductivity with additives and molecular stability.51,52,53,54,55 However, the additives used to 

increase the stretchability and the conductivity tend to be toxic and can leach over time while 

decreasing the performance of the polymer. We used a formulation of PEDOT:PSS(1)-b-

PPEGMEA(6) (specifically the 1:6 ratio of PSS to PPEGMEA) based on the electrical and 

mechanical characterization previously published by Blau et al. (Figure 3.1b).56 When the 

PPEGMEA chains were extended on PSS, the block copolymer exhibited a higher strain at fracture 

(75%), however, with slightly poor conductivity (0.01 S/cm).56 The addition of PEDOT rendered 

the polymer more conductive hence making the overall structure the best of both worlds. In 

addition, this formulation enabled us to have very stable films of Block-6 which didn’t dissolve 

away when stored in a water bath for 5 days at room temperature.56 The mechanical properties of 

Block-6 (elastic modulus around 9 MPa) were also superb and comparable to human skin (elastic 

modulus varying between 5 kPa-140 MPa57).  

In order to make suitable sEMG sensors for this study, we made square shape drop-casted 

films with the dimensions of 1.7 cm x 1.7 cm. The dimensions were determined by the muscle area 

in the submandibular region. We characterized the sensor films mechanically via stress-strain 

curve and electrically via resistance change over 400 stretching cycles and the change in 

impedance on the skin over 1 hour.  
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3.2.3 Cohort studies 

 In our previous work, we demonstrated that the Gr/AuNIs strain sensor and conventional 

Ag/AgCl (3M) sEMG sensors can be used to measure different swallowed volumes while the 

participants were stationary (i.e., sitting). The collection of signals in stationary conditions had 

been demonstrated before by many groups. This is relatively a non-trivial task given that the 

motion artifacts and background noise is minimal in this scenario. We wanted to test our sensor 

platform with non-stationary conditions to prove that (1) we can detect the swallowing event even 

with the background motion artifacts coming from the subject’s non-stationary position, and (2) 

we can test this set-up on enough people to have high accuracy predictions of the minute changes 

in liquid volumes swallowed. Realistically, dysphagia patients and/or athletes would not be 

interacting with this platform in a completely stationary situation. Therefore, we designed two 

cohort set-ups: walking and biking on a stationary bike while completing the swallowing event. 

We reasoned that participant could be walking around their house while completing their exercises 

for therapy or could be on their exercise machine to get an insight into their swallowing behavior. 

We tested volumes between 10-30 mL in 5 mL increments. Anything below 10 mL had worse 

predictions outcomes in the machine learning algorithm due to the low amplitude of the signal as 

shown in our previous work.43             
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Figure 3.1. Schematic explaining the components of the wireless sensor system. (a) The placement of the 

sEMG and the strain sensors on the participant’s neck. (b) A schematic and the chemical formula of the 

PEDOT:PSS(1)-b-PPEGMEA(6) (Block-6) sEMG electrode film. (c) A layer-by-layer schematic of the 

piezoresistive Gr/AuNI/PEDOT:PSS “dough” strain sensor. (d) The front and back side photographs of the 

wireless PCB board.  

 

3.3 Experimental Methods 

3.3.1 The strain sensor fabrication  

The strain sensors were fabricated by thermal evaporation (Orion System, AJA 

International) of gold nanoislands (at 0.03 Å/s with a thickness of 8 nm) onto a single layer of 

graphene grown on both sides of a 3-inch x 3-inch copper foil (GrollTex, Inc). The excess graphene 

layer on the backside was etched away in the air plasma cleaner for 5 minutes at 30 W and 250 

mTorr. A 200-nm thick film of 4 wt% poly(methyl methacrylate) (PMMA, Alfa Aesar) dissolved 

in anisole (Sigma Aldrich) was spin-coated on top of the Gr/AuNIs complex at 4000 rpm for 60 

seconds and annealed on a hotplate at 150°C for 10 minutes. The PMMA film acted as a supporting 

layer for the following water transfer process. The underlying copper foil was etched on top of a 
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0.05 g/mL ammonium persulfate solution (APS, Acros Organics). The floating Gr/AuNIs/PMMA 

film was later transferred onto a tattoo paper spin-coated with polydimethylsiloxane (Sylgard 184 

PDMS, 10:1 base-to-curing agent ratio) at 1000 rpm for 60 seconds and dried completely for 12 

hours. Once fully dried, the PMMA film was etched away in an acetone bath for 1 min at 50°C. A 

PEDOT:PSS “dough” solution was spray-coated on top of the Gr/AuNIs in 8 x 1 second, 4 x 10 

seconds, and 4 x 20 seconds intervals, with 1 minute drying period and rotation of sample 90° after 

each interval. After the last interval, the sample was dried on a hotplate at 150°C for 5 minutes. 

The copper wiring was attached with silver paint for electrical connection. As the final layer, 

another PDMS layer (30:1 base-to-curing ratio) was spin-coated on top at 1000 rpm for 60 seconds 

and cured for 1 hour on a hotplate at 110°C. At this stage, the strain sensors were ready to be cut 

out of the substrate and placed on the participant’s throat with the tattoo paper side facing away 

from the skin. 

 

3.3.2 The sEMG sensor fabrication  

The sEMG sensor films of Block-6 were made by drop-casting in square molds (20 mm x 

20 mm x 2 mm depth) that were 3D-printed with Clear V4 resin using FormLabs - Form 3 at 0.025 

mm layer height setting. The Block-6 block copolymer was synthesized via controlled radical 

polymerization using a reversible addition-fragmentation process described in detail in our 

previous work.56 Briefly, the PSS-macro-RAFT precursor and the PSS(1)-b-PPEGMEA(6) were 

synthesized using a two-step RAFT polymerization. After purification of the PSS(1)-b-

PPEGMEA(6), PEDOT was added onto the block copolymer via oxidative polymerization to make 

PEDOT:PSS(1)-b-PPEGMEA(6) (Figure 3.2a). The 3-D printed molds were cleaned in a sonication 

bath for 10 minutes each using deionized water and isopropyl alcohol, successively. Once fully 
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dried, the molds were cleaned in the air plasma cleaner for 5 minutes at 30 W and 250 mTorr to 

remove the excess contaminants from the mold surface. A mold release spray (Ease Release 200, 

Mann Release Technologies) was used to coat the surface of the molds before drop-casting 1 mL 

of filtered and degassed Block-6. The films were dried on a hotplate at 60°C for 2.5 hours. The 

molds were cooled down to room temperature before removing the films from the molds (Figure 

3.2b). Finally, the electrical connections were fixed using copper wiring (36-gauge) and fast-

drying silver paint (Ted Pella, Inc). This method produced sEMG electrodes with an area of 2.89 

± 0.23 cm2 and a thickness of 41 ± 3 µm. 

 

3.3.3 Mechanical and electrical characterization of Block-6 sEMG sensors  

We quantified the durability and stability of the Block-6 sEMG sensor films, by measuring 

the cyclic piezoresistive response as well as the mechanical (tensile) properties using a linear 

actuator. Block-6 films used for mechanical and electronic testing were prepared using the 

methods described above. Briefly, a dogbone mold (l = 1.6 cm, w = 0.4 cm, h = 41 µm) was 3D 

printed and treated with oxygen plasma. The Mann Ease Release 200 mold release spray was 

applied and let dry. Block-6 solution (1 mL) was drop-casted into each mold before being annealed 

at 60°C for 2.5 hours until dry, at which point the films were removed using tweezers. Any uneven 

edges of the dogbones were carefully trimmed before use. For tensile tests, black electrical tape 

was wrapped around the ends of the dogbones to prevent fracture under the grips of the linear 

actuator. The dogbones were then placed in 3D printed grips connected to a Mark-10 Series 5 force 

gauge with 10 N maximum capacity all mounded on a Mark-10 motorized test stand. The samples 

were pulled until fracture at 1 mm/min and force-elongation data was collected. After the fracture, 

the thickness of each dogbone was measured using a Dektak XT profilometer. The force-
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elongation data was then converted to stress-strain data using the geometry of each dogbone. The 

linear regime of each set of data was determined by finding the point at which the coefficient of 

determination (R2) of each linear regression dropped below 0.98. The modulus was determined 

from the slope of the linear regime, and the linear elasticity (e.g., a proxy for intrinsic elasticity) 

was calculated as the strain at which the linear regime ended. For piezoresistive measurements, 

copper wires (36 gauge) were attached to the ends of each dogbone (underneath the black electrical 

tape) using carbon paint (Ted Pella, Inc) to ensure a good electrical connection between the wire 

and the film. These wires were connected to alligator clips attached to a Keithley 2601B 

Sourcemeter such that the resistance could be measured simultaneously using a custom written 

LabView program. For piezoresistive measurements, the linear actuator elongated the samples at 

a rate of 60 mm/min until a certain strain (5%, 10%, 15%, 20% and 30%) was reached before 

allowing the film to return to its original position (i.e., 0% strain). These cyclic measurements were 

repeated for 400 cycles. 

 For electrical characterization, an electrochemical impedance spectroscopy was used to 

measure the electrode-skin and electrode-electrode impedance of the Block-6 electrodes in the 

range of 1 Hz to 100 kHz and was compared to the Ag/AgCl (RedDot, 3M) electrodes, and 

commercial PEDOT:PSS (Clevios, prepared the same way as the Block-6 electrodes) with a 

potentiostat (Bio-Logic SP-200). The experiment was set up in a two-electrode configuration. A 

sinusoidal signal of 10 mV without any DC bias was supplied to the electrodes. All the electrodes 

were placed on the skin of the submandibular area and the impedance spectra were measured over 

60 minutes. The Block-6 and Clevios electrode films had an area of 2.89 ± 0.23 cm2 each and were 

separated by 2 cm. The Ag/AgCl electrodes had an area of 3.48 cm2 (3M Datasheet, 2560) and 
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were separated by 6 cm. Lastly, the conductivities of the Block-6 films were measured with a four-

point probe assembly connected to a Keithley 2400 source meter.        

 

 

Figure 3.2. A detailed step-by-step fabrication of the Block-6 sEMG sensors. (a) The general reaction steps 

are shown. The procedure was described in an earlier publication.56 (b) The schematic shows the fabrication 

steps of sEMG electrode films using the synthesized Block-6.      

 

3.3.4 Wireless data acquisition using a PCB board  

For a portable experiment setup, a custom printed circuit board (PCB) was designed with 

the capability of wireless data transfer of the strain and sEMG data to the desired client, a 

smartphone in our case (Figure 3.1e). This design also allowed us to manipulate programmable 

settings such as filtering, gain setting, and sampling rate. There were two main components on the 

PCB. The first one was MAX30001 (Maxim Integrated) which was the Analog Frontend (AFE) 

responsible for the data acquisition and processing of the data. The second one was CYW20736S 
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(Cypress Semiconductor) which was a Bluetooth Low Energy (BLE) SoC chip responsible for 

controlling the AFE and other Integrated Circuits on the PCB as well the full wireless 

communication with the smartphone. The PCB was powered by a 3.7 V (150 mAH) Li-ion battery 

that was attached to the backside of the board. A charging coil, LTC4124 (Analog Device), was 

also attached to the battery for wireless charging capability.  

A firmware code was written and loaded into the SoC that managed all the BLE 

communications, the internal data storage, and the transfer from the AFE. For ease of access, a 

few predefined profiles were set up in the firmware that could be used to quickly set up a working 

link with the smartphone. We set the sEMG channel to have a sampling rate of 512 samples/second 

with a gain of 20 V/V, and the strain channel to have a sampling rate of 64 samples/second with a 

gain of 10 V/V. For the strain channel, we added an analog high-pass filter cutoff of 7.2 kHz, and 

a current of 48 µA. The digital low pass and high pass filters were bypassed in both channels. To 

be able to support such a high bandwidth of data (in comparison to other common BLE use-case 

scenarios) and keep the data accurate (i.e., without dropping any samples), we first maximized the 

data throughput by changing the connection interval, notification size and only sending the 

necessary information in packets. Secondly, we utilized the internal FIFO memory of the AFE for 

temporary data storage and a burst mode was used to send the data to the SoC. The code and the 

interrupt cycle for the AFE were also set up in such a way that the sEMG and strain data were as 

time synchronous as possible barring the hardware latency coming from the AFE. 

We used a smartphone with the “nRF Connect for Mobile” App (Nordic Semiconductor) 

to communicate and receive the data from this PCB. This application was a generic one for 

working with any BLE device. Once we set up the communication link and received the data on 

the smartphone, we utilized a MATLAB script to clean up and decode the data. This script 



 84 

converted the information that was stored in notification packets into meaningful voltage samples 

and assigned a timestamp to each sample. These voltage samples were then finally fed into the 

machine learning model.  

  The stable connectivity range of the board once it was connected to the host was around 52 

meters and if it wasn’t already connected then it was around 16 meters. The battery on the PCB 

was able to last up to 15 hours when it was fully charged. In order to keep the sensor-PCB interface 

compact and sturdy, we used a custom-designed USB-C connector on the board. This connector 

had two electrode cables for the sEMG sensor and two electrode cables for the strain sensor. The 

size of the whole assembled PCB including the battery was around 2.5 cm x 4.5 cm x 0.5 cm. This 

allowed us to carry out our experiments in various environments with ease and without the need 

for any expensive data acquisition equipment.  

 

3.3.5 Cohort studies  

We carried out a cohort study of 10 healthy participants (ages between 21 and 34 years old, 

6 females, 4 males) with no history of swallowing disorders. Five of the ten cohorts were picked 

to walk and other five were picked to bike. We used an approved protocol reviewed by the Internal 

Review Board at the University of California San Diego Human Research Protections Program 

(Project # 191950S) and collected signed consent forms from each participant prior to the study. 

The subjects were instructed to shave well (if applicable) before coming to the study. We 

placed two Block-6 sEMG sensors symmetrically on the hyoid muscles (mylohyoid and 

stylohyoid) in the submandibular region and the strain sensor about an inch below the sEMG 

sensors in the middle of the throat. We attached the PCB to the participant’s shoulder directly. We 
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secured the sensors with additional Tegaderm tape for better adhesion to the curved structure of 

the throat.  

The participants were either instructed to bike on a stationary bicycle or walk while they 

were given different volumes of water to swallow. The participants were also instructed to swallow 

the water in their mouth in one go (meaning no piecewise swallowing). We tested the water 

volumes from 10 mL to 30 mL in 5 mL increments repeating each volume 10 times. We observed 

in our previous work that 30 mL was the maximum amount on average that participants can 

swallow comfortably, and the 10 mL was the minimum amount on average where participants felt 

a difference from a saliva swallow.   

 

3.3.6 Processing sEMG and strain signals 

One of the most crucial parts of this sensor platform was signal processing and analyzing 

the collected data. This step was important for doing experiments under non-stationary conditions 

where the motion artifacts can overcome the signal to be detected. For this reason, we applied the 

appropriate filters to the sEMG and strain data after collecting the raw signal from the sensors. For 

the sEMG signals, we first applied 60 Hz notch filter to reduce the interference noise since we 

didn’t use a third ground electrode on body in our setup for sEMG (the ground was added on the 

PCB). Then, we employed a high pass filter with a 30 Hz cut-off frequency to filter out most of 

the artifacts since the main frequency of sEMG signals usually ranges from 30 to 250 Hz.58,59,60 

As for the strain signals, a typical peak of a strain activity lasts around a couple of hundreds of 

millisecond to 1 second. Therefore, we first applied a band pass filter with a 0.5 Hz low cut-off 

frequency and a 10 Hz high cut-off frequency. Then, we applied a third order Savitzky-Golay 
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smoothing filter to remove small variations in resistance that are not related to the swallowing 

activity. Finally, we used another 16-sample (0.25 seconds) moving window to further smooth the 

signals so that it was easier to identify local maxima for strain peak detection in our feature 

extraction stage.  

 

3.3.7 Feature extraction  

 We extracted three sEMG features out of the processed sEMG signals. The first one was 

simply the summation of the peak intensities along the swallowing peak in the sEMG signal. The 

second one was based on the width of the sEMG peak. The width of the sEMG peak was defined 

as the total length of time when the absolute sEMG signal was above the 99th percentile within 

the peak. Last, we found that the power of the low-frequency components of the sEMG signal had 

a good correlation with the swallowed volume. We converted the sEMG signal in frequency-

domain with Fast Fourier transform, and then obtained the root mean square (RMS) value between 

30-100 Hz as the third feature (Figure B1). As for the strain data, two features were extracted out 

of the processed strain signals. (We used a different feature selection method as in our previous 

paper43 because the previous algorithm for fiducial-point detection did not work properly for non-

stationary strain signals) The period between 7th and 12th seconds was first extracted. Then local 

peaks which had the width of at least 250 milliseconds and the prominence of at least the quarter 

of the (max – min) of the signals were identified. The peak closest to the 10th second and the 

following peak were selected as the peaks of the swallow. The first strain feature was defined as 

the peak-to-peak interval between the first and the second peak in the swallow signal. The valley 

point was further obtained by finding the minimum point between the two peaks. Then the second 

feature was defined as the difference between the valley point and the middle of the two peaks 
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(which can be viewed as the skewness of the peaks). Lastly, an additional feature was defined as 

the offset between the peak of the sEMG power and the first peak point of the strain signal. 

 

3.3.8 Machine learning 

We first plotted the distribution of each feature value versus their corresponding swallowed 

volume to examine the correlation. The features were normalized to zero mean and unit variance 

within each data set and then pooled together. Then, the scatter plots for each feature were plotted 

where the color solid lines indicated the mean of each data set, and the thick black line indicated 

the mean of all samples. We also employed a leave-one-out validation to evaluate the performance 

of predicting the swallowed volume using the sEMG and strain features we defined. Within a 

session, each trial took turns to serve as the testing data, and all the other trials in the session were 

treated as the training data. An outlier detector was applied to filter out outliers in the training 

samples which had the z-score larger than 2 in any feature dimension. Because the number of 

samples was relatively small in our data set, we decided to use the support vector regression (SVR) 

model instead of the linear regression model which was used in our previous publication. The SVR 

model is known to be more robust when the number of feature dimensions is relatively large in 

comparison to the number of samples.61 

 

3.4 Results and Discussion 

3.4.1 Mechanical and electrical properties of Block-6 sEMG sensors  

The results of the mechanical and electrical characteristics of the Block-6 sEMG sensor 

films are shown in Figure 3.3. We first compared the electrode-skin impedance spectra of 
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Ag/AgCl (3M), PEDOT:PSS (Clevios), and Block-6 sEMG sensors over 60 minutes. Over time, 

the impedance between the skin and the sensor should stay the same with a slightly decreasing 

trend due to the secretion of sweat from the skin. Figure 3.3a shows the initial impedance spectra 

reading of Block-6, Ag/AgCl, and PEDOT:PSS from 1-105 Hz range. The impedance values over 

time at 10 Hz and 100 Hz for Block-6, Ag/AgCl, and PEDOT:PSS are also shown in Figure 3.3b. 

The electrode-skin impedance of the Block-6 was 483 k at 10 Hz and 85 k at 100 Hz at the 

beginning of the experiment. Similarly, we measured the Ag/AgCl electrodes to be 97 k at 10 

Hz and 13 k at 100 Hz, and PEDOT:PSS to be 2 M at 10 Hz and 197 k at 100 Hz. After 60 

minutes, we observed the impedance values stayed around the same for all three sensors with a 

slight decrease towards the end. This was devoted to the secretion of sweat (includes salts and 

minerals) from the skin over time. In addition to the impedance spectroscopy, we also measured 

the average sheet resistance to be 9.4 ± 3.5 k/sq and conductivity to be 0.027 ± 0.022 S/cm which 

was in accordance with the previously published values for Block-6.56 

 The mechanical properties of a polymer film are a significant determinant in their 

applicability as a wearable sensor. For example, one consideration is the elastic mismatch between 

the sensor and the skin. In comparison to commercial formulations of PEDOT:PSS, Block-6 had 

a modulus closer to that of skin around the neck (16 ± 6 MPa in comparison to 1.78 ± 1.73 MPa62), 

as shown by its tensile response (Figure 3.3c). Likewise, while commercial PEDOT:PSS (Clevios) 

was relatively brittle (~5% fracture strain56), Block-6 was both more stretchable (i.e., it has both 

greater fracture strain at 85% and greater intrinsic elasticity) and tougher (average toughness value 

at 1.97 ± 0.25 MJ/m3). Therefore, it was better suited for sensor applications on the skin that were 

subject to continuous or cyclic strains. Assuming the elastic behavior of Block-6 was Hookean in 

nature (i.e., in the elastic regime, the change in stress is linear relative to the change in strain), we 
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determined that the linear elasticity of Block-6 was approximately 10%. Therefore, we conducted 

cyclic piezoresistance measurements (400 cycles) from 0% strain up to 5, 10, 15, and 20% strain 

on the Block-6 films (Figure 3.3d). Figure 3.3e shows the full 400 cycles for 5% strain and Figure 

3.3f shows a zoomed in section of the 400 cycles. There was essentially no change in baseline 

resistance over time with the 5% strain cycle and a slight gradual shift in baseline resistance for 

the 10, 15 and 20% strain cycles (Figure B2). The gradual shift was due to the plastic deformation 

of the films above 10% strain, suggesting that the intrinsic elasticity of these Block-6 films was 

slightly lower than 10% (e.g., closer to 9%). However, the signal generated by the change in strain 

from cycle to cycle remained distinct and clearly observable, suggesting that the piezoresistive 

behavior of Block-6 is quite stable despite constant mechanical deformation and relaxation 

(Figure B2). 
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Figure 3.3. Mechanical and electrical characterization of Block-6 sEMG sensor films. (a) The plot shows 

the impedance spectra of Block-6, Ag/AgCl/ (3M) and Clevios on skin over 60 minutes (square: 0 min, 

triangle: 60 min) and (b) the values at 10 and 100 Hz over time.  (c) A representative stress-strain curve of 

Block-6 and Clevios films are shown. (d) Piezoresistive measurements of Block-6 films were measured at 

different cyclic strains over 400 cycles (shown only for cycles 46-56). (e) Plot shows the full 400 cycles of 

the 5% cyclic strain experiment whereas (f) shows the zoomed-in view of the piezoresistive behavior of 

Block-6 under continuous strain and relaxation..  
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3.4.2 Cohort study results  

 After material characterization, we moved on with the swallow experiments under non-

stationary conditions. We collected swallow signals for volumes 10, 15, 20, 25 and 30 mL of water 

under walking and biking conditions to show that our sensor system was robust enough to 

distinguish the swallowing event. We asked the participants to walk or bike with the water in their 

mouth for 10 seconds and then instructed them to swallow the water and keep on the physical 

activity until the recording was over. In Figure 3.4a-b, we plotted representative sEMG and strain 

signals from a 10 mL water swallow while the participant was walking around. Clearly, the raw 

signals included low-frequency motion artifacts from the body movement in addition to the 

swallowing muscle contraction however once we processed the signals, we were able to detect the 

distinct swallow feature from the signal. We calculated the signal-to-noise (SNR) to be 2.781 for 

the sEMG signals and 2.989 for the strain signals for the walking experiments. Similarly in Figure 

3.4c-d, the motion artifacts were even more present in the raw data while the participants were 

biking but not so much when the data was processed. The calculated SNR for the sEMG signals 

was 6.935 and 2.633 for the strain signals for the biking experiments.     
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Figure 3.4. A representative processed data of sEMG and strain signals from each type of exercise. Photos 

show the experimental set-up for the swallowing while walking and biking. Left panel plots show (a) of a 

raw and processed 10 mL swallow sEMG signals and (b) strain signals during walking experiments. Right 

panel plots show raw and processed 10 mL swallow (c) sEMG signals and (d) strain signals during biking 

experiments. 

 

3.4.3 Machine learning results 

 Once the collected swallow data was processed, we extracted the certain features from the 

swallow peaks in the sEMG and strain signals. From the sEMG signals, we extracted summation, 

width, and low-frequency power whereas from the strain signals we extracted the peak-to-peak 

width, peak skewness, and the peak offset between the sEMG and the strain (Figure 3.5a-b). 

Figure 3.5c shows the correlation between features and the swallowed volumes for all the 

experiments (Figure B5) shows the correlations for walking and biking experiments separately). 

On average, there was a trend between the volumes and each feature however it wasn’t as distinct 
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due to the low number of data sets and the non-stationary experimental set-up. In our results, sEMG 

summation, and low frequency power showed positive correlation whereas the sEMG signal width 

showed a negative correlation. The highest positive correlation was observed in the low frequency 

power from the sEMG signals. We observed a positive correlation for the peak-to-peak width for 

the strain signal and negative correlation for the peak skewness and the peak offset between the 

sEMG and strain signals. However, overall, these correlations were not enough to distinguish the 

volumes from each other as clearly as possible due to the low sample size in these experiments. 

Nevertheless, we proved that it was possible to detect the swallowing peak for each sensor type 

during exercise conditions and it was possible to extract features from the signals for further 

machine learning analysis.  
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Figure 3.5. The correlation between the volumes and the extracted features for all the walking and biking 

experiments. The example plots for (a) sEMG and (b) strain signals from a swallow show the extracted 

features. (c) The correlation between the swallowed volumes and the extracted features for each 

participant’s data (in color) and the overall average (in black) are shown. The vertical dots represent each 

trial within a volume for all the participants. 

 

 Lastly, we utilized a machine learning model using these features to train and predict each 

swallowed volume. Figure 3.6 shows the performance of this prediction model. On average, the 

volume predictions were better for the walking experiments where we also observed less motion 

artifacts (except for the 15 mL). The model also predicted the middle volumes (15, 20, and 25 mL) 

better than the smallest (10 mL) and the largest volumes (30 mL). This could be due to the effort 

participants had to put to be able to hold the 30 mL water in their mouth until they were instructed 

to swallow. We found 30 mL to be approximately the maximum volume most participants can 

swallow in one piece. We also observed large prediction error in 10 mL experiments. Although 

this was not expected, the reason could be that smaller volumes were harder to predict due to the 

premature movement of the liquid bolus from mouth to larynx (this was also observed in our 
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previous work43). This could cause a change in volume swallowed every time. Regardless, the 

results of the model were promising, and that this sensor platform can be used to predict the 

swallowed volumes with more training data even when the participants were moving around and 

sweating.    

 

 

Figure 3.6. Machine learning prediction results. The plot shows the percent error for each volume for the 

walking and biking experiments.  

 

3.5 Conclusion 

 In this work, we created a sensor platform capable of collecting sEMG and strain signals 

from the submandibular area of the neck during a swallow and wirelessly transfer the data from a 

PCB board attached to the shoulder of the participant to a phone application to be processed via a 

machine learning algorithm. Both sensors were able to detect minute details about the swallowing 

maneuvers during a water swallow even when the participants were in a non-stationary condition 

such as walking and biking. In addition to the wireless portion of the platform, we introduced a 
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recently published material (Block-6) to be used as the sEMG sensor in our experiments. The 

mechanical and electrical properties of Block-6 were superior to the conventional PEDOT:PSS 

(Clevios) and did not need small molecules or toxic additives for better conductivity and 

stretchability. These properties allowed Block-6 sEMG sensors to last longer on the participants’ 

skin during the exercise experiments compared to the Ag/AgCl (RedDot, 3M) sEMG electrodes 

which delaminate after 60 minutes. The compact form factor of the sensors and the data acquisition 

allowed us to use this set-up at various testing locations and provided more comfort of the 

participants. Although we designed this work to show a proof-of-concept on the detection limits 

of swallowing with non-stationary conditions, we believe that due to its remote capabilities, it can 

be used in larger cohort studies at various cancer centers for detection and monitoring of dysphagia 

as well as exercise physiology labs for hydration monitoring.      
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Chapter 4 Graphene-based Patterned Strain Sensors for Swallow Detection and Enhanced 

Machine Learning Performance  

Abstract 

There has been a vast amount of research done on epidermal sensors to detect swallowing 

activity over the skin. It has been realized that by studying the signature features in the swallowing 

signals, we can conclude certain onset of swallowing disorders or understand this extremely well-

coordinated physiological event. Luckily, machine learning has been adopted to be used to 

investigate the collected signals by many groups for this purpose. In order to get meaningful results 

from the machine learning models, a lot of data needs to be fed into the algorithm. In this chapter, 

we introduce a re-design of well-established epidermal sensors (sEMG and strain) demonstrated 

in our previous work. We adopted a similar fabrication method to the strain sensor comprised of 

graphene/metallic nanoislands/PEDOT:PSS to make an arrayed sensor patch. This arrayed-strain 

sensor patch is accompanied by a custom-synthesized PEDOT:PSS(1)-b-PPEGMEA(6) (Block-6) 

which was also inspired by our previous work. Using these both sensing modalities, it is possible 

to collect more training data for the machine learning algorithm to increase the analysis 

performance of this platform.  Our vision is the translation of this strain and sEMG-based 

technology into practical, clinically relevant tools which improve: (i) diagnostic resolution and 

continuous monitoring of swallowing capability in dysphagic patients and/or (ii) therapy in the 

form of haptics-driven rehabilitation for patients recovering from facial stroke or paraplegia. 
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4.1. Introduction 

Increasing cost of healthcare, the time that patients have to wait in hospitals for follow-ups 

or treatments, and the importance of preventative measures pushed scientists to improve the field 

of wearable sensors. One of these health conditions that needs close monitoring for prevention 

purposes is swallowing disorder, so called dysphagia. For example, majority of the throat cancer 

patients suffer from swallowing disorders after radiation therapy.1,2,3 If not detected and treated 

early on, it becomes extremely difficult to fully restore the normal function of the swallowing.4,5 

A non-invasive, low-cost wearable sensor could help monitor the changes in the swallowing 

behavior after radiation therapy closely and report back to the physicians if the patient needs 

further treatment. This kind of wearable sensor can reduce a trip to the clinic and the cost for an 

inefficient and expensive follow-up test.  

The field of wearable sensors has grown immensely in the past decade with sensors having 

more compatible mechanical properties and sensitivity to human skin. However, as the field of 

wearable devices advances, the need for better processability and multiplexing has become more 

apparent. Addition of a patterned design that can accommodate multiple sensors on one patch can 

improve spatial resolution, error estimation, and machine learning algorithm performance. There 

have been multiple studies that investigated the design and fabrication of patterned strain sensors 

in an array. For example, Feng et al. was able to grow large-scale indium selenide (In2Se3) 

nanosheets in a patterned manner assisted by a template.6 They used a patterned mica substrate to 

selectively grow the In2Se3 nanosheets in a chemical vapor deposition chamber and later 

transferred the sensor film onto a polyethylene terephthalate (PET). After supplying electrical 

connections and insulating the film with polydimethylsiloxane (PDMS), they were able to achieve 

a gauge factor value of 237 for the strain range up to 0.5%. The mechanical stability was also 
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confirmed over 120 cycles under 0.39% uniaxial tensile strain. Lastly, they demonstrated the use 

of the arrayed strain sensor as an electronic-skin (e-skin) sensor by detecting the bend of a finger. 

As another example, Gao et al. studied the possibility of forming active materials on elastomer 

substrates directly without using any post-fabrication steps.7 They used a 532 nm continuous laser 

beam over an EcoFlex film to convert EcoFlex into silicon carbide (SiC). This conversion was 

possible due to the localized high temperature created by the laser beam. This patterned SiC-based 

strain sensor showed a detection limit of 0.05% strain, a small temperature drift, and mechanical 

durability over 10,000 cycles at 4% strain. The gauge factor was calculated to be 854.7 for strain 

up to 3.5%. They showed the use of this sensor as a e-skin by recording muscle contractions on 

arm, carotid arterial pressures, and drinking. Suzuki and coworkers investigated area-arrayed 

graphene nanoribbons (GNRs) to be used as strain sensor as well.8 They transferred a patterned 

layer of GNRs onto a silicon wafer via wet transfer method using polymethyl methacrylate 

(PMMA) as the support layer. They achieved a gauge factor of 50 for 0.08% strain however they 

were only able to apply this method on rigid substrates. As another different approach, Pei et al. 

fabricated a flexible, stretchable, and highly sensitive silver-coated carbon nanotubes (Ag@CNT) 

as a wearable strain sensor array using 3D printing technologies and material synthesis.9 First, they 

synthesized the Ag@CNTs via chemical reduction and then poured this material composite into a 

PDMS encapsulant made via 3D printed mold. This way, they achieved a gauge factor value of 

62.8 in the 0-14.4% strain range with mechanical durability over 500 cycles of stretching and 

relaxing. They showed simple wearable sensors tasks such as pulse diagnosis on the wrist and 

gesture recognition on the fingers. Although the idea of patterning active materials of strain sensors 

has been around for a while, there was no push towards using these arrayed strain sensors on a 

specific muscle group on body to collect data or create spatial strain mapping.  
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In this chapter, we demonstrate how to design and fabricate an arrayed, flexible, and 

wearable strain sensor comprising gold nanoislands (AuNIs) on graphene (Gr) with a highly 

plasticized elastomer (PEDOT:PSS “dough”) for detection of swallowing. The unique 

piezoresistance of the Gr/AuNI/PEDOT:PSS was proven previously (strain resolution of 0.0001% 

or 1 ppm) with a high dynamic range (up to 86% strain).10,11,12 In addition, it was shown that they 

can be immune to a thermal drift in the signal due to tunable thickness and metal selection unlike 

the other strain sensors in the literature.13 In its core, the strain sensor is based on our previous 

work but in an array form instead of a single strain sensor on the wearable patch.14 Simply, the 

strain sensor is made up of gold atoms evaporated and patterned onto a single-layer of graphene 

via thermal evaporation in an island-like morphology and gold serpentine electrodes were 

evaporated on top to have a closed circuit data acquisition system. After spray-coating the 

PEDOT:PSS “dough” for an increase in dynamic range, we sandwiched the sensor film between 

two PDMS layers for electrical insulation. We believe that the addition of the orthogonal design 

to our well-established strain sensor will improve the signal accuracy, provide bi-directional strain 

information, and enhance the machine learning algorithm performance overall. In addition, the 

processability of this sensor will allow transfer onto many stretchable substrates via wet transfer 

which makes it convenient for wearable devices.  
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Figure 4.1. The arrayed Gr/AuNI/PEDOT:PSS strain sensor that was used in this work. (a) A photograph 

of the arrayed-strain sensor patch applied onto skin. (b) A schematic drawing of the strain sensor patch 

showing all the stacked material layers. (c) A scanning electron microscopy image of the 8-nm AuNIs on 

graphene.  

 

4.2 Experimental design  

4.2.1 The strain sensor 

The strain sensor in its basic form is made up of a single-layer graphene sheet with 

thermally evaporated gold metallic nanoislands on top (thickness of 8 nm) inspired from our 

previous work (Figure 4.1a-b).14 Graphene has many advantageous properties as a 2D supporting 

material. It is thin, flexible, and stretchable, which helps with the transferability to many different 

substrates. More importantly, graphene changes the wetting transparency of the metal substrates. 

Addition of a single layer of graphene decreases the surface energy and maintains the wettability 

of the metal substrate throughout the evaporation.15 In this case, we started with a single layer 

graphene on a copper foil which we purchased commercially. Evaporating the island-like 

structures onto graphene added mechanical robustness and increased piezoresistive properties 

(Figure 4.1c). The sensors demonstrated better strain sensitivity (higher gauge factor) at smaller 

strains, and versatility at larger strain ranges. Due to having low diffusion barrier on graphene at a 

low deposition rate, our choice of metal for nanoislands was gold. Moreover, previous work from 
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Marin et al. showed that 8 nm gold has near-zero temperature coefficient of resistance (TCR).13 

This is a distinguishing property of our sensor compared to the ones in the field because it is 

desirable to remove the sensitivity of the sensor to the temperature changes in the environment. 

While the metallic nanoislands on graphene exhibit high sensitivity at small strains (0.001%), they 

tend to fail above 2% strain due to the thinness of the 2D material. In order to increase the dynamic 

range of the overall sensor, we have chosen to spray coat our metallic nanoislands on graphene 

with a highly plasticized PEDOT:PSS conductive polymer. PEDOT:PSS acts as a conductive 

bridge between the nanoislands if a tear or crack on the 2D film occurs during stretching or flexing. 

 

4.2.2 The array design 

The importance of an array design comes from a few needs. First, it has been shown in our 

previous work that there needs to be more data from the sensors for better machine learning 

algorithm predictions. If only a single sensor is used, there is limitations to how much a participant 

can swallow in one experiment cycle to collect enough data for algorithm training. Secondly, it is 

possible to gain a better understanding of the spatial strain mapping of the area that the patch is 

applied to. Thirdly, this ultimately increases the tolerance for signal deviation due to sensor 

placement (i.e., “user placement error”). Decreasing these deviations, that are caused by external 

factors, helps improve the automatic analysis of the data and the performance of machine learning 

algorithms. For this reason, we designed an array of the Gr/AuNI/PEDOT:PSS strain sensor with 

a gold serpentine electrode interconnect.  

One of the advantages of our sensor patch is having a simultaneous readout of all the 

sensors on the patch during a strain inducing activity. To do this, we designed a 2 x 2 array patch 
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as a closed-circuit with resistors in series. This design allowed us to apply a constant current 

through each sensor and readout the potential difference between the sensors. Since we know the 

current and potentials, we were able to calculate resistance per sensor. In addition to the ease of 

data acquisition, this design allowed us to do acquisition of all the sensors simultaneously.  

 

4.3 Experimental Methods 

4.3.1 Strain sensor fabrication  

 The strain sensor was fabricated very similarly to our previous work with the exception of 

the patterning it into an array (Figure 4.2).14 First, 8 nm gold was evaporated onto a single layer 

of graphene purchased commercially on a 3x3 inch copper foil piece (GrollTex, Inc.) at a rate of 

0.03Å/s. A custom purchased stainless-steel array mask was aligned on top of the graphene before 

evaporation of the AuNIs (Metal Etch Services, Inc). Within the same evaporation chamber (Orion 

System AJA International), 20 nm aluminum (Al) was sputter onto AuNIs at ~1Å/s after the 

evaporation to mask the nanoislands for the next step. Next, the graphene under the masked area 

was etched away in the air plasma for 5 minutes on high setting at ~250 mTorr. The Al protected 

the unmasked Gr/AuNI regions during this process. The Al layer was also etched away after this 

in a 0.025M potassium hydroxide (KOH) solution for 1 minute and rinsed with water immediately 

after. The sensor film was put back into the thermal evaporation chamber with the second stainless 

steel mask that had the corresponding serpentine interconnect between the sensors. For the 

serpentines, ~250 nm Au was evaporated through the mask at 1.0 Å/s. As a support layer for the 

wet transfer, PMMA was spin-coated onto the film at 4000 rpm for 60 seconds and annealed on a 

hotplate at 150°C for 5 minutes. The copper foil support was etched away on a 0.05 g/mL 

ammonium persulfate solution for ~1 hour. At this point, the floating Gr/AuNI/PMMA film was 
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essentially ready to be transferred onto any substrate. We spin-coated PDMS (Slygard 184, 10:1 

base:curing agent ratio) onto a tattoo paper at 1000 rpm for 60 seconds and cured it on a hotplate 

for 10 minutes at 150°C. After treating the PDMS surface with the air plasma for 2 minutes on 

high at 250 mTorr, we transferred the sensor film onto the PDMS via wet transfer method and let 

it air dry for 12 hours in air. We etched off the PMMA support layer on top in a warm acetone bath 

for 1 minute at 60°C and rinsed the film with isopropyl alcohol. Once completely dry, we spray-

coated a mixture of PEDOT:PSS “dough” solution (92 wt% Clevios, 3 wt% Triton X-100, and 5 

wt% dimetylsiloxane) diluted with water (1:3 volume ratio) using a custom stencil masking 

everywhere except the Gr/AuNI regions. The spray-coating was done on a hotplate at 150°C with 

8 x 1 second, 4 x 10 seconds and 4 x 20 seconds intervals lifting the stencil off and rotating the 

sample 90° every time. Copper wires were glued to the Au serpentine electrodes with carbon or 

silver paint. Lastly, another layer of PDMS (Slygard 184, 30:1 ratio) was spin-coated at 1000 rpm 

for 60 seconds on top of the whole assembly and cured at 150°C for 10 minutes to ensure electrical 

insulation from the skin. This whole fabrication process produced eight Gr/AuNI/PEDOT:PSS 

strain sensors on one wearable patch.  
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Figure 4.2. The fabrication of arrayed-strain sensor patch is shown in detail.   

 

4.3.2 Data acquisition of the array strain sensor  

 We designed a closed-circuit supplying constant current throughout all the sensors to 

collect signals from all sensors simultaneously. The constant current was supplied by a source 

meter (Keithley 2400, Tektronix) from the first sensor and traveling through each sensor in series 

(Figure 4.3a). We used an 8-channel commercial differential amplifier (DI-1100, DATAQ 

Instruments) to measure the potential difference across each strain sensor (Figure 4.3b).  
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Figure 4.3. Design schematic of the serpentine-connected monolithic strain sensor patch. (a) A 

representative electrical diagram showing the signal acquisition. (b) A schematic drawing of the data 

acquisition set-up using a commercial differential amplifier. 

 

4.4 Results and discussion 

 Initially, we tested the feasibility of the array design by individually measuring the 

resistance across each sensor on the wearable patch. We used a design where there were no 

serpentine interconnects to make a closed-circuit. We attached copper wires to each sensor for 

resistance measurements via a source meter, Keithley 2400. We applied the array sensor towards 

to throat of a healthy subject using the tattoo paper and secured the wires with a Scotch tape 

(Figure 4.4a). We asked the participant to swallow a bolus of 10 gr cracker, 10 mL of water, and 

their saliva 8 times each since we had 8 strain sensors. The strain signals were measured as the 

change in resistance in the sensor films, one-by-one, using the source meter. Each strain sensor 

had slightly different detection performance according to this experiment. Figure 4.4b shows the 

signals from the cracker bolus swallow. Similarly, the water and saliva swallows are shown in 

Figure 4.4c and Figure 4.4d, respectively. It is clear from the results that each sensor showed a 
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slightly different response to strain induced by different boluses. This could be due to the 

placement of these sensors on the throat. It was interesting to note that each bolus had a difference 

strain effect on the sensor films. This encouraging experiment motivated us to test our array sensor 

design with serpentine interconnects.  

 

 

Figure 4.4. On-body experiments performed on a healthy subject without the closed-circuit data acquisition 

set-up. (a) A photograph shows the arrayed-strain sensor placed onto the throat of the subject. (b) Detected 

strain signals from swallowing a 6 gr of cracker, (c) 10 mL of water, and (d) dry swallow.   

 

 Next, we tested the closed-circuit data acquisition design using the Au serpentines on 

another subject’s throat (Figure 4.5a). The array sensor patch was applied towards the middle of 

the participant’s throat and secured with a Tegaderm medical tape (Figure 4.5b). We first collected 

the baseline resistance readout from the sensors with a 50 A supplied current while the participant 

was in a resting position (Figure 4.5c). We then had the participant swallow 10 mL of water 10 

seconds after the recording started (Figure 4.5d). The response from each strain sensor was varied. 
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Sensor 1 had a drastic change of resistance during the 10 mL swallow. We suspect that this could 

have been due to the current source being connected to this sensor. If the resistance between the 

copper wires and the sensor was too high, the response to any strain was amplified. We concluded 

that the reason for the large resistance change, which was decided to be unusual for this type of 

strain sensor, for all the sensor was due to the microcracks and the electrode contacts in the Au 

serpentine interconnects. This can be avoided in the future by utilizing polyimide (PI) as the 

support layer for the gold serpentines when using a flexible and soft substrate such as PDMS.       
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Figure 4.5. On-body experiments performed on a healthy subject with the closed-circuit data acquisition 

design. (a) A photograph showing the array strain sensor on the throat of a subject connected to the 8-

channel differential amplifier and the current source. (b) A photograph showing the sensor patch placed 

onto the throat. (c) The resistance readout from all the sensors while the participant was swallowing 10 mL 

of water at around 10 second mark.  
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4.5 Conclusion 

 Even with the vast amount of improvement in the epidermal sensors field for detection of 

swallowing activity, there are still missing areas for a better use of the machine learning algorithms 

with the data collected. In this chapter, we introduced an alternative arrayed strain sensor design 

using a previously established fabrication method. The arrayed design allowed for signal collection 

from all eight strain sensors at the same time on the same wearable patch. We demonstrated this 

wearable arrayed strain patch on a participant’s throat while they were at rest and were swallowing 

10 mL of water. Even though this study showed great promise in pursuing an arrayed design, there 

are still some improvements to be done.  We hope this proof-of-concept can inspire the field to 

create a wearable sensor patch that is able to collect enough samples from a single swallow to be 

analyzed by a machine learning algorithm that can predict the swallowing conditions of the user.  
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Appendix A Supporting Information for Chapter 2 

 

 

Figure A.1. Evaluation of vertical position for the strain sensor on the throat. (a) The picture shows a 

vertically positioned strain sensor on the participant’s throat. (b) The plot compares the collected raw 

swallow data from the same strain sensor placed horizontally and vertically on the same participant. It is 

important to note that the strain sensor was first tested with the horizontal position and then with the vertical 

position. (c) and (d) show the results of the prediction algorithm using the 60 swallows from the vertical 

position. 
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Figure A.2. MAX30001 Evaluation Kit channels (EMG/ECG and BioImpedance/BioZ). (a) A detailed 

functional block diagram of the ECG channel that was used for recording the sEMG signals. (b) A detailed 

functional block diagram of the Bio-Impedance channel that was used for recording the strain signals. 

Reproduced with permission from the Data Sheet for MAX30001/MAX30002 Evaluation Kit by Maxim 

Integrated Products, Inc., 2018 (www.maximintegrated.com). Copyright (C) 2018 Maxim Integrated 

Products, Inc., All Rights Reserved. 

 

 

 

 

http://www.maximintegrated.com/
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Swallow Peak Detection Algorithm 

Input: data y, time t 

Output: peak index mxP 

 

Start 

T = number of time samples 

mxI = 1 

mxS = −∞ 

 

For k = 1 : T  

 S = 
𝜕𝑦(𝑡𝑘)

𝜕𝑡
 

 If S > mxS 

  S = mxS 

  mxI = k  

 end If 

end For loop 

mxP = mxI 

For m = mxI : T 

 If 𝑦(𝑡𝑚) ≥ 𝑦(𝑡𝑚𝑥𝐼)𝑎𝑛𝑑 
𝜕𝑦(𝑡𝑚)

𝜕𝑡
≥ 0 

  mxP = m 

 else 

  break For loop 

 end If 

end For loop 

return mxP 

end 

Figure A.3. Swallow peak detection algorithm. The algorithm identifies the swallow peak by detecting the 

largest timing slope in the strain data. We denote the strain data as a function of time t, and we have data 

𝒚 = 𝒇(𝒕). 
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Table A.1. Strain sensor features. The table shows some of the representative extracted features from the 

strain sensor in each swallowed volume. Columns 2-4 show the duration (distance) of each fiducial point. 

Columns 5-7 show the magnitude (height) of each fiducial point. Columns 8-10 show the slopes between 

each fiducial point. Columns 11-13 show the curve-fitting parameters. 
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Figure A.4. Material specifications of monolayer graphene.  (a) Raman spectra of the monolayer graphene. 

(b) Optical microscopy image of the graphene after it was transferred to a silicon wafer with a 90nm layer 

of SiO2. The arrows show the darker regions of adlayers in the film. Note: The single-layer graphene used 

in the strain sensors was purchased commercially from GrollTex, Inc. which specializes in growing high-

purity monolayer film of graphene on copper. The graphene is grown via Chemical Vapor Deposition 

(CVD) on a copper foil. The product specifications can be found on this website 

(https://grolltex.com/product/monolayer-graphene-on-copper-foil-6-x-6-150-mm-x-150-mm/). We used 

the batch number SC-200520-2-6x6C. According to the manufacturer’s analysis, the monolayer graphene 

coverage was 100% on the copper foil with sporadic adlayers present (see Figure S4b). The transparency 

was >97%. The FET mobility was measured to be >2700 cm2/(V.s) on 90 nm SiO2 on Si wafer and the 

sheet resistance was 430 ± 50 Ohm/sq. The process specific grain size was >80 µm. The Raman D/G ratio 

was 0.03 which confirmed that the sample was single-layer graphene. 

 

  

https://grolltex.com/product/monolayer-graphene-on-copper-foil-6-x-6-150-mm-x-150-mm/
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Appendix B Supporting Information for Chapter 3 

 

Figure B.1. Wavelet transform analysis of the sEMG signals for each swallowed volume for feature 

extraction. The colors indicate the power of the frequencies in the signal. 
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Figure B.2. Cyclic piezoresistive measurements of Block-6 films. The plots show the piezoresistive 

response for all the cycles stretching up to (a) 20% strain, (b) 15% strain, and (c) 10% strain with a zoomed-

in section from the corresponding experiment. 
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Figure B.3. Stress-strain response of Block-6 films for 5, 10, 15, and 20% strains. 
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Figure B4. Cyclic stress-strain response of Block-6 films for 10, 15, and 20% strain for cycles 1, 50, 100, 

150, and 200. 
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Figure B5. The correlation between the swallowed volumes and the signal features separated for walking 

and biking experiments.  
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