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Significance

The biochemical network stress 
response of Escherichia coli 
reports the presence of heavy 
metal contaminants in water 
when integrated with optical 
sensors. Machine learning 
analysis of the vibrational spectra 
of metabolites released in 
response to chromium and 
arsenic exposure detects 
concentrations 108 times lower 
than those leading to cell death. 
Heavy metal type and 
concentration are determined 
with accuracy exceeding 92%, 
which is promising for 
longitudinally monitoring 
changes in water quality. 
Transfer learning of trained 
algorithms is further 
demonstrated to be 
generalizable to unseen tap 
water and wastewater samples 
where data acquisition requires 
less than 10 min for evaluation of 
water quality.
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ENGINEERING

Decoding the metabolic response of Escherichia coli for sensing 
trace heavy metals in water
Hong Weia , Yixin Huangb, Peter J. Santiagoa, Khachik E. Labachyanc, Sasha Ronaghid,1, Martin Paul Banda Maganae, Yen-Hsiang Huangf ,  
Sunny C. Jiangf,g , Allon I. Hochbauma,b,e,h,2 , and Regina Ragana,b,2

Edited by Catherine Murphy, University of Illinois at Urbana-Champaign, Urbana, IL; received June 11, 2022; accepted December 28, 2022

Heavy metal contamination due to industrial and agricultural waste represents a grow-
ing threat to water supplies. Frequent and widespread monitoring for toxic metals in 
drinking and agricultural water sources is necessary to prevent their accumulation in 
humans, plants, and animals, which results in disease and environmental damage. Here, 
the metabolic stress response of bacteria is used to report the presence of heavy metal 
ions in water by transducing ions into chemical signals that can be fingerprinted using 
machine learning analysis of vibrational spectra. Surface-enhanced Raman scattering 
surfaces amplify chemical signals from bacterial lysate and rapidly generate large, repro-
ducible datasets needed for machine learning algorithms to decode the complex spectral 
data. Classification and regression algorithms achieve limits of detection of 0.5 pM for 
As3+ and 6.8 pM for Cr6+, 100,000 times lower than the World Health Organization 
recommended limits, and accurately quantify concentrations of analytes across six orders 
of magnitude, enabling early warning of rising contaminant levels. Trained algorithms 
are generalizable across water samples with different impurities; water quality of tap 
water and wastewater was evaluated with 92% accuracy.

bacterial metabolism | machine learning | vibrational spectroscopy | environmental sensors

Like all living organisms, bacteria are equipped with biochemical machinery to survive 
and adapt in diverse and changing environments all over the world. These responses to 
dynamic conditions elicit changes in bacteria metabolic networks, and their metabolite 
profiles can shift on timescales as short as minutes (1). Many of these environmental 
changes constitute stresses, which trigger physiological responses within the cell. Stresses, 
ranging from nutrient restriction (2) to exposure to antibiotics (3), elicit profound met-
abolic consequences in bacteria. The resulting changes in metabolite profiles can be 
detected by conventional (3) and next-generation (4) metabolomic techniques. 
Consequently, we hypothesize and demonstrate that bacterial cultures can be used as 
whole-cell sensors of environmental stressors by the detection and decoding of their 
metabolic responses to these stressors. Specifically, the bacterial metabolic response trans-
duces heavy metal ions in water into chemical (metabolite) signals that are amplified with 
surface-enhanced Raman scattering (SERS) surfaces. When decoding the spectral signals 
using machine learning (ML) algorithms, a sensitive and accurate sensing platform for 
ensuring water safety results.

Heavy metal contamination from natural and anthropogenic sources is a serious threat 
to human and ecosystem health, and heavy metal use in a wide variety of industrial and 
agricultural processes is growing exponentially (5, 6). Contaminated water is a major 
source of exposure leading to toxic heavy metal accumulation in humans, plants, and 
livestock. The development of portable and low-cost sensors which can be broadly deployed 
to locally and frequently monitor the quality of drinking and irrigation water, agricultural, 
and industrial runoff is needed to safeguard sensitive ecosystems and human health. 
Arsenic, cadmium, chromium, copper, lead, and mercury rank among the priority metals 
of public health significance (5). Currently, monitoring water quality typically requires 
samples to be sent to specifically certified laboratories for inductively coupled plasma-mass 
spectrometry analysis for quantification (7) to determine if contaminants are below safety 
guidelines set by the World Health Organization (WHO) (8) or regulatory agencies. Other 
laboratory methods with the necessary limit of detection (LOD) and dynamic range rely 
on similarly sophisticated and centralized analytical instruments, such as atomic absorp-
tion, X-ray fluorescence, or atomic emission spectrometries (7).

Alternatively, biosensors, using physicochemical signal transduction, such as optical, 
electrochemical, piezoelectric, and thermal signal outputs, represent low-cost solutions 
that are compatible for integration in portable systems to detect heavy metal ions. 
Molecular recognition labels include enzymes (9), antibodies (10), whole cells (11), aptam-
ers (12), molecularly imprinted polymers (13, 14), and DNA (15). Encapsulation of 
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enzymes in hydrogels yields sensors with a LOD needed for mon-
itoring water quality, but they have limited shelf life (9). Aptamers, 
on the other hand, exhibit high specificity and stability but are 
not easily engineered to detect a variety of analytes. Antibodies, 
relying on the formation of metal-chelated complexes, are versatile 
sensing elements, yet cross-reactivity with other ions leads to lack 
of specificity (16). Whole cell-based biosensors rely on mature cell 
culturing technology and can be incorporated in a range of phys-
icochemical sensor platforms for multiple assays. Whole-cell bio-
sensors have received increasing attention as an ultrasensitive 
means of detecting hazardous contaminants as they can be engi-
neered to be responsive to different toxins (17).

Many cellular metabolites have high Raman cross-sections (18), 
which can be detected in SERS measurements (4, 19). SERS is a 
highly sensitive and label-free detection scheme (20), which offers 
single molecule LOD when using carefully designed nanoarchi-
tectures (21–23). Indeed, SERS signals from Au-decorated nano-
fiber probes inserted into breast cancer cells have been shown to 
detect toxic metal exposure at a LOD of 5 nM for mercury and 
100 nM for silver (24). Obtaining reproducible responses in bio-
sensors is a longstanding challenge (25). In particular, the repro-
ducibility of SERS surfaces depends on nanoparticle (NP) 
morphology, nanogap distance, and surface chemistry (26). Our 
previously demonstrated chemically assembled SERS surfaces com-
posed of spherical NPs with a controlled nanogap spacing of 0.9 
nm and chemistry exhibit reproducible billion-fold signal enhance-
ments over areas of 1 cm2 (27). Chemical assembly of NPs with 
molecular control of nanogap spacing over large areas (27) allows 
for characterization with portable systems with large beam diam-
eters. Comparison of spectral data from a self-assembled monolayer 
of benzenethiol on a chemically assembled sensor surface using a 
BWTek i-Raman Plus portable spectrometer and Renishaw 
InVia™ confocal Raman microscope demonstrates the C–H ring 
bending mode, with a small Raman cross-section (28, 29), is 
observable with both systems, and both systems have comparable 
signal to noise (SI Appendix, Fig. S1). Sensor surfaces are able to 
detect metabolites from bacterial communities on a time scale of 
minutes (4, 30) and accurately quantify analyte concentrations 
down to 10 fM when using ML analysis of spectral data (21). In 
this work, the sensitivity of the Escherichia coli (E. coli) stress 
response is used to transduce the signal of Cr6+ and As3+ ions into 
chemical signals that are detected with chemically assembled SERS 
surfaces. Arsenite is one of the most common toxic valence states 
(III) of As, and high arsenite concentrations are indicators of phy-
toplankton bloom, high microbial populations, and pollution from 
mining activity (31). Cr pollution is largely related to industrial 
applications in the field of energy production, manufacturing of 
metals and chemicals, and subsequent waste and wastewater man-
agement (32). Cr6+ is much more toxic than Cr3+ (8). A support 
vector machine (SVM) model achieves higher than 97% classifi-
cation accuracy for decoding E. coli stress response to different 
concentrations of metal ions for concentrations as low as 68 pM 
for Cr6+ and 5 pM for As3+. Due to their distinct mechanisms of 
toxicity in bacteria, this sensing platform also distinguishes the 
metabolic response of As3+ and Cr6+ with high accuracy when 
analyzed with SVM models. In addition, convolutional neural 
networks (CNN) show sensitive and quantitative determination 
of concentrations across a dynamic range of 0.68 pM–68 µM for 
Cr6+ and 5 fM–5 mM for As3+, well below WHO recommended 
limits of 10 µg/L for As3+ and 50 µg/L for Cr6+, respectively (8). 
At the lowest concentrations investigated, the metabolic response 
is detectable when the ratio of metal ions to bacterium in solution 
is 0.6 for As3+ and 8.2 for Cr6+. Finally, by using a pretrained model 
for analysis of previously unseen tap water and wastewater samples 

spiked with As3+, SERS detection and ML analysis requires only 
80 spectra per class (40 s total acquisition time) to achieve greater 
than 92% accuracy for classifying concentrations above or below 
the WHO recommended limit.

Results

Biochemical Signal Transduction of Metal Ions into Vibrational 
Spectra. The inherent metabolic stress response of E. coli cultures 
is used to transduce the presence of heavy metal ions in water into 
metabolites. We then fingerprint the metabolic response with a 
combination of SERS detection and ML analysis (SERS +ML). 
E. coli cultures were exposed to Cr6+ or As3+ ions (K2Cr2O7 or 
NaAsO2) in minimal media for 2 h (Fig. 1A). Metabolites from the 
cells were extracted by thermal lysis, and the lysate was deposited 
on SERS surfaces composed of Au NP clusters for spectral data 
acquisition (Fig. 1 B and C). SERS surfaces were fabricated in 
microfluidic channels with electrodes in a capacitor architecture 
to achieve reproducible billion-fold signal enhancements (Fig. 1 
E and F) (27). SERS spectra of control samples prepared under 
the same conditions without Cr6+ or As3+ in the exposure medium 
were used to determine the limit of blank (LOB) (33). The full 
concentration range of samples was collected over the course of 
several experiments. Each subset of concentrations was collected 
with a control group included which was not exposed to any metal. 
To avoid training the algorithm to classify based on background 
fluctuations, inherent biological variation, or manufacturing 
variations of SERS surfaces, control samples were measured in 
biological duplicates and on multiple SERS surfaces (see Methods 
for more details).

The exposure of bacterial cultures to toxic metal ions is expected 
to result in significant changes in metabolite concentrations. Such 
metabolic shifts resulting from stress responses often involve dif-
ferential regulation of nucleotides central to biosynthetic pro-
cesses within the cell. Metabolic changes in response to antibiotic 
stress have been reported to be detectable within 30 min of expo-
sure by mass spectrometry (3). Some metabolic stress responses 
are general, for example, those triggered by the sigma factor reg-
ulon, RpoS, which can be regulated by proteins dependent on 
concentrations of the nucleotide adenosine triphosphate 
(ATP) (34). ATP accumulates in E. coli as part of its stress response 
to antibiotics (35) and ATP-coupled pumps are associated with 
As3+ transport out of cells in response to toxic exposure (36). 
Uracil, another nucleotide, is a building block of RNA and thus 
related to protein translation, and its concentration is closely cor-
related with oxidative stress responses in bacteria (3, 37). Another 
nucleotide, adenine, regulates the cell cycle in bacteria, including 
cell division and DNA repair, and processes modulated in stress 
conditions (38). To verify that SERS surfaces are sensitive to these 
and similarly Raman active metabolites associated with bacterial 
stress response, SERS spectra of 1 mM aqueous solutions of key 
nucleotides ATP, uracil, and adenine were acquired, and repre-
sentative spectra are shown in Fig. 1D.

Training Data Acquisition for Fingerprinting Bacterial Stress 
Response. SERS spectra were acquired from lysate from E. coli 
cells exposed to heavy metal ion solutions at various concentrations 
untreated (control). The concentration range investigated 
with SERS + ML for NaAsO2 was 0.65 pg/L to 650 mg/L (13 
concentrations) and for K2Cr2O7 was 0.1 ng/L to 10 mg/L (9 
concentrations). The corresponding molarities are 5 fM to 5 mM 
for As3+ and 0.68 pM to 68 µM for Cr6+. The concentration range 
was chosen to span the WHO recommended limit for these metals 
in drinking water, which are 10 µg/L (0.13 µM) and 50 µg/L 

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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(0.96 µM) for As3+ and Cr6+, respectively. SERS spectra acquired 
from pure solutions of Cr6+ (6.8 pM) and As3+ (0.5 pM) without 
E. coli cells show that the vibrational peaks observed from lysate 
samples are due to the cellular metabolites instead of heavy metal 
ions themselves (SI Appendix, Fig. S2).

Average SERS spectra of E. coli lysate after metal ion exposure 
show spectral feature differences to the eye (Fig. 2 A and B). 
Principal component (PC) analysis (PCA), used for dimensional 
reduction of SERS spectra, more clearly highlights spectral feature 
changes associated with different metal exposure conditions. 
Analysis of the entire spectral range, versus individual peaks, has 
been reported to improve analysis of SERS data of complex sam-
ples (39–41). Before PCA, SERS spectra undergo baseline correc-
tion, data smoothing, and normalization (Methods). We found that 
22 PCA components, shown in SI Appendix, Fig. S3, capture 
93.3% and 94.8% of variances for Cr6+ and As3+ concentration 
data, respectively. The scores are plotted in SI Appendix, Fig. S4. 
In Fig. 2 C and D, the first three PC loadings, which account for 
greater than 75% of spectral variance used for sample classification, 
are shown in a heat map. For example, the heat map of Fig. 2D 
shows the largest loading value of PC1, which accounts for 58% 
of the variance, between 700 and 750 cm−1, which is a band con-
sistent with SERS features associated with DNA methylation (42) 
associated with the stress response of E. coli (43). The stress response 
to metal toxins involves differential regulation of nucleotides related 
to biosynthetic processes within the cell. Metabolite vibrational 
mode assignments are shown in SI Appendix, Table S1. The largest 
loading features in PC1, PC2, and PC3 correlate with energy 
nucleotides, which are associated with energy metabolism pathways 
involved in toxic metal stress response in bacteria (44–46), sug-
gesting that changes in nucleotide concentrations in response to 

metal exposure are consistent with the features upon which the 
algorithm is classifying the different exposure conditions. Thus, 
this platform is promising to identify biochemical networks 
involved in toxin stress response when combined with network 
models as performed by Yang et al. to identify metabolic mecha-
nisms of antibiotic lethality (47).

Classifying Lysate Spectral Concentrations by SVM. We 
hypothesized that while differences in lysate spectra associated 
with heavy metal exposure might be difficult to identify by eye, 
ML algorithms could accurately classify these differences as a 
function of metal concentration. An unsupervised ML algorithm, 
t-distributed stochastic neighbor embedding (tSNE), is used 
for comparing similar data points in lower dimensional space. 
The tSNE plots show clear differences in the spectral data that 
correlate with exposure concentration (SI Appendix, Fig. S5). 
These plots represent preliminary validation of our hypothesis 
that the differences in metabolic responses observed in the cell 
lysate are evident in spectral data and not a result of algorithm 
training. These components are used as inputs for training two 
independent SVM discriminative ML models, one for Cr6+ and 
one for As3+, in order to demonstrate the ability to accurately 
distinguish different heavy metal exposure concentrations as a 
means to evaluate water safety. The classes in each discriminative 
model are the concentrations of metal ions: the model for Cr6+ 
has 10 classes (for nine metal concentrations + control) and for 
As3+ there are 14 classes (for 13 metal concentrations + control).

The training datasets are imbalanced since the size of the control 
class (measured in biological duplicate) dataset (9,600 spectra) is 
eight times larger than the classes corresponding to a single con-
centration (1,200 spectra). The synthetic minority over-sampling 

Fig. 1. Heavy metal detection scheme and SERS spectra of key metabolites. (A) E. coli is cultured in growth media supplemented with Cr6+ or As3+ salts. (B) Cells 
are thermally lysed, and (C) lysate supernatant is deposited on SERS surfaces. (D) Representative SERS spectra of key nucleotides involved in bacterial stress 
responses, ATP, uracil, and adenine. (E) Schematic of fabrication of SERS surfaces: a microfluidic cell with an AC electric field across electrodes induces EHD 
flow to drive lateral assembly and subsequent cross-linking reactions between Au NP. (F) Scanning electron microscopy image shows Au NP form close-packed 
clusters of various sizes. Field of view is 2 μm × 2 μm.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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technique (SMOTE) is a standard method to manage imbalanced 
data sets by performing data augmentation (Methods) (48). 
SMOTE is performed after dataset division to prevent data leak-
age. The model is trained with 80% of the spectral data, and the 
resulting classification accuracy is determined by algorithm pre-
dictions on a holdout set (not seen by the SVM model during 
training) composed of the remaining 20% of the data. The clas-
sification accuracy of the holdout set is plotted in the confusion 
matrices for Cr6+ (Fig. 3A) and As3+ (Fig. 3B). The concentration 
label of Cr6+ and As3+ datasets is transformed to logarithmic scale. 
The LOD was determined to be at the value when the prediction 
accuracy was higher than 98% in distinguishing from the control 
sample. At concentrations of 6.8 pM for Cr6+ and 0.5 pM for 
As3+, there are less than 0.3% false predictions of control rather 
than the true concentration (Fig. 3 A and B). Thus, SERS + ML 
yields a LOD of 6.8 pM for Cr6+and 0.5 pM for As3+. The SVM 
classification model was also evaluated by traditional sensor per-
formance metrics of sensitivity, specificity, and accuracy (SI 
Appendix, Table S2). Overall, above the LOD, the sensitivity, 
specificity, and accuracy are all higher than 97% for both As3+ and 
Cr6+. In order to put these metrics in perspective, we compare the 
analysis from SVM models to analysis of the culture optical den-
sity (OD) data (Fig. 3 C–F) used for assessing cell growth and 
inhibition by stressors. There is no significant difference in culture 
OD 2 h after exposure to Cr6+ even at concentrations of 340 µM, 
and there is a significant difference in OD for As3+ compared to 
control only at concentrations greater than 100 µM. At an OD 
of 0.5, the LOD determined from the SVM model corresponds 
to approximately 0.6 As3+ ions per bacterium in solution and 8.2 
Cr6+ ions per bacterium in solution. This correlates well with the 
recommended safe concentration of Cr6+ being 10 times higher 
than As3+. Thus, SERS + ML achieves six orders of magnitude 

lower concentration detection versus methods based on growth 
inhibition.

Classification of Type of Heavy Metal Ion Contaminants. We 
hypothesized that the metabolic consequences of As3+ and Cr6+ 
exposure should be differentiable by SERS + ML of cell lysate due 
to differences in the mechanism of toxicity of these two metals. 
An SVM binary classification model was trained on lysate from 
cells exposed to Cr6+ at concentrations in the range of 0.68 pM–
0.68 µM and As3+ at concentrations 0.5 pM–0.5 µM, at 10-fold 
concentration increments. These ranges span the LOD achieved 
with SERS + ML for each of the two metals. The algorithm 
training process follows an analogous flow (baseline correction, 
smoothing, normalization, data reduction) as described for the 
classification of concentration in the prior section (Methods). Using 
this approach, Cr6+ and As3+ contamination can be distinguished 
with a high classification accuracy of 98.8% (Fig. 4A). The ability 
to distinguish between different types of heavy metal ions in water 
is of great importance for determining the pollution source and 
water treatment process. Analysis of the two metal data sets with 
tSNE shows that there are clear differences in spectral data even 
when the data are not labeled during training (Fig. 4B).

CNN Regression for Sensitive Quantification of Heavy Metal 
Concentrations. In addition to evaluating how SERS + ML is 
able to assign a concentration to a particular class (Fig. 3), we also 
demonstrate that algorithms can predict the actual concentration 
of heavy metal ions in water. Monitoring concentration changes 
below Environmental Protection Agency (EPA) regulatory and 
WHO recommended limits is important for early detection of 
contaminants entering water supplies before adverse effects occur. 
CNN was used for regression analysis as it outperforms SVM in 

Fig. 2. Concentration-dependent averaged SERS spectra (vertically offset with standard deviation shaded above and below each spectrum) acquired from E. 
coli cultured in media with indicated (A) K2Cr2O7 and (B) NaAsO2 concentrations. PC1, 2, and 3 heat map of (C) the Cr6+ dataset and (D) the As3+ dataset containing 
spectra of lysate from control and the full range of metal concentration exposure.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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terms of throughput and regression error (49). Two independent 
1-dimensional (1D) CNN regression models are trained on Cr6+ and 
As3+ concentration-dependent cell lysate spectral data. The same 10 
and 14 metal concentration classes for Cr6+ and As3+, respectively, 
were used as before (Fig.  3). The CNN model architecture 

(Fig. 5A) contains four 1D convolutional layers with inputs of 22 
PCA components representing the Cr6+ and As3+ concentration 
data. The first convolutional layer has the same padding and a 
stride of 1 to preserve the spatial dimensions of the input data. 
Each convolutional layer uses a rectified linear (ReLU) activation 
function and is followed with batch normalization and dropout 
with 20% random dropout rate to avoid overfitting (Methods). 
As before, the spectral data are baseline corrected, smoothed, 
normalized, and dimensionally reduced using PCA before input 
into the model. The holdout set for validation is composed of 20% 
of the data, and the remainder is used for training.

First, we use 10-fold cross-validation for hyperparameter tuning 
and model performance evaluation. The number of epochs (train-
ing cycles) in the 1D CNN was determined by monitoring the 
convergence of the training and validation loss. The loss function 
is calculated to determine the mean square error (MSE) error 
between the predicted values and the true values. As one can see 
in the SI Appendix, Fig. S8, the algorithm converges to a loss value 
of approximately 0.1 at an epoch of 35. In order to utilize SERS + 
ML for a variety of contaminants in practice, it is important to 
evaluate required data set size achieving accurate results. A ran-
domly chosen subset of the data composed of 100 spectra per class 
is first analyzed. The coefficient of determination (R2) of linear 
regression was also calculated as a complementary metric to MSE 
to evaluate model performance (50). MSE and R2 score were cal-
culated as a function of training data size and plotted in Fig. 5 
B and C. As one can see the MSE (R2 score) values are high (low) 
for this smaller dataset and exhibit high fluctuations. The training 
dataset includes 960 spectra per class per exposure condition, this 
requires 10 min for acquisition. The control dataset contains 7,680 
spectra. As before SMOTE is used for data augmentation for the 
concentration classes to balance with control data. When the train-
ing dataset has 1,000 spectra per class, which contains only 40 
generated spectra, the model achieved an MSE value of 0.17 (0.23) 
for As3+ (Cr6+) and R2 score of 0.98 (0.97) for As3+ (Cr6+). If 
further augmentation is performed using SMOTE to produce 
7,680 spectra per class to balance with control, the MSE reduces 
to 0.09 (0.11) for As3+ (Cr6+) and R2 score increases to 0.99 for 
both As3+ and Cr6+. Thus, we can achieve robust model perfor-
mance using SERS spectra, which can be acquired rapidly.

The 1D CNN regression model performance on the balanced 
data set is plotted in Fig. 5 D and E. The results are presented as 
box plots where the data in the boxes contain 50% of the predicted 
values of the holdout data, vertical lines extend to include up to 
99% of predicted values, and the remaining outliers are represented 

Fig. 3. Classifying lysate spectral concentrations. (A) SVM confusion matrices 
showing accuracy of classifying of different concentrations of Cr6+ (label scale 
bar is on a log scale in units of 6.8 pM) and (B) As3+ (label scale bar is on a log 
scale in units of 0.5 pM) in the correct concentration class. Growth curve for 
(C) Cr6+ and (D) As3+ at different exposure concentrations. Corresponding OD 
from the growth curves at 2 h for different concentrations of (E) Cr6+ and F 
As3+, where ns = no significant difference between the experimental groups 
and control, *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. Experiments were done 
in biological duplicate.

Fig. 4. Investigation of different types of heavy metal ion contamination. (A) SVM confusion matrix for classification between Cr6+ and As3+ for concentration 
range 0.68 pM to 0.68 µM and 0.5 pM to 0.5 µM, respectively. (B) tSNE clustering analysis for different concentrations of Cr6+ and As3+ in red and blue, respectively.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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individually by blue dots. The narrow height of the box plots show 
that SERS + ML provides concentration quantification with high 
precision. The gray shaded region at the bottom of figures high-
lights the LOB. The resulting LOD is highlighted with a vertical 
dashed line and is defined as having less than 0.5% overlap with 
control data. The values are in agreement with that determined by 
the SVM model (Fig. 3 A and B) demonstrating robust perfor-
mance of SERS + ML regardless of algorithm type. The 1D CNN 
regression model also allows for determining a limit of quantifi-
cation (LOQ), highlighted with a vertical dashed line, where the 
overlap between neighboring concentrations is less than 0.5%. 
The values of LOQ are 68 pM for Cr6+ and 5 pM for As3+. The 
dynamic range spans from the LOQ to 68 µM for Cr6+ and LOQ 
to 5 mM for As3+. Chronic exposure at doses of 50 µg/L of arsenic 
in drinking water is correlated with disease, such as cancer (51). 
In addition to regulatory limits, the US EPA defines a maximum 
contaminant level goal in drinking water that is known to have 
no adverse effects on the health of people. For arsenic, this value 
is zero. The EPA regulatory limit (10 μg/L for As3+ and 100 μg/L 
for Cr6+) is the value that is enforceable and provides a buffer for 

health safety. There is value, therefore, in detection at concentra-
tions lower than the regulatory limit.

Determination of Contaminant Levels in Tap Water and 
Wastewater Samples. Water samples from different sources 
unseen by the trained algorithm are analyzed to demonstrate 
that SERS + ML is generalizable. Drinking water, water used 
in agriculture, and wastewater will contain different types of 
impurities, which may perturb the stress response of E. coli. It is 
not feasible to fully train a new model for every different water 
sample. Transfer learning is an effective method to analyze similar 
systems with small datasets while still achieving high prediction 
accuracy. During transfer learning, the weights and bias of the 
first and second convolutional layers are adjusted and other layers 
are fixed. In practice, this method could be applied by spiking 
contaminants in water samples for fine-tuning the model for the 
water sample of interest. In order to demonstrate this principle, a 
1D CNN model was pretrained with spectra from deionized (DI) 
water samples spiked with As3+ at 0.05, 0.5, and 5 nM (below 
WHO recommended level) and 5, 50, and 500 µM (above WHO 

Fig. 5. 1D CNN regression model for quantitative concentration determination. (A) Schematic of process flow in training 1D CNN architectures using 22 PC 
from Cr6+ and As3+ concentration data. The 1D CNN model is 4 layers deep. The flatten layer is used to convert the data into a 1D array for inputting it to the fully 
connected dense layer. The output layer has one node with linear activation function to produce a predicted value. The MSE and R2 variance as a function of 
training class size for (B) Cr6+, and (C) As3+. The training data size from each class is 100, 1,000, 3,000, and 7,680. Each training algorithm runs 10 times to generate 
a mean value and SD for MSE and R2. CNN regression boxplots for (D) Cr6+ and (E) As3+. Boxes contain 50% of predicted concentration values, and vertical lines 
indicate the range containing 99% of predicted concentration values. Blue dots show the remaining 1% outliers.
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recommended level). Then, unseen tap water samples are spiked 
with As3+ at concentrations of 1.3 nM, 13 nM, and 1.3 µM. A 
binary model is assembled to predict if tap samples contain As3+ 
above or below WHO recommended levels. The number of spectra 
per class needed to fine-tune the model is 80, which takes only 2 
min of acquisition time for the entire training dataset. The results 
are shown in Fig.  6B where the model was able to categorize 
tap water samples as above or below regulatory limits with 99% 
accuracy. It is worth noting that the different As3+ concentrations 
in the tap water samples is not the same as in the DI water samples. 
This is important to determining accuracy of evaluating unknown 
samples.

In order to analyze more complex samples, As3+ was also spiked 
in secondary treated wastewater from a local wastewater treatment 
plant. These samples are more complex as they contain heavy metal 
contaminants in the background. SI Appendix, Table S3 shows the 
primary pollutant analysis summary from the sanitation district 
where the As concentration in the background is approximately 
19.4 nM. The process of determining if the concentration in the 
unspiked sample is above or below WHO level for As is shown in 
Fig. 7. Wastewater samples are spiked with concentrations of 1.3 
nM, 13 nM, 1.3 µM, and 13 µM. Again spanning above and 
below WHO recommended levels, 130 nM, for model fine-tuning 
of the above pretrained DI model used for tap water. Fig. 7 shows 
classification accuracy of differentiating the different classes used 
for training. When applying the model to the unspiked sample, 
the model predicts that the As3+ concentration is below WHO 
level with 92% accuracy. The total data acquisition time is 8 min; 
thus, acquiring samples in the field to fine-tune a model in a short 
amount of time produces high accuracy.

Discussion

The E. coli whole-cell sensors are shown to transduce metal ions 
into chemical signals using the inherent metabolic stress response. 
Robust and sensitive SERS surfaces with high enhancement factors 
(21, 27, 30) are able to gather large, reproducible datasets needed 
for ML analysis. The dataset size per class for training and valida-
tion is composed of 1,200 spectra, which requires 10 min when 
using the SERS surfaces developed by the authors. Thus, we can 
achieve robust model performance using SERS spectra which can 
be acquired rapidly. Changes in the metabolite profile in E. coli 
cell lysate associated with a stress response to heavy metal toxins 
in water are observable in SERS spectra even when using unsu-
pervised feature extraction methods such as tSNE, which com-
putes similarity of data in lower dimensional space. There are clear 
differences in the spectral response across the entire range of 

concentrations to which cells were exposed (SI Appendix, Fig. S5). 
These plots represent validation of our hypothesis that the differ-
ences in metabolic responses observed in the cell lysate are evident 
in spectral data and not a result of algorithm training.

When using SVM, a supervised algorithm, for data analysis, 
the resulting changes in metabolite concentrations in E. coli cell 
lysate are observable in SERS spectra and differentiable across 
exposure concentrations with a dynamic range of 105 (Fig. 3). The 
spectral changes are distinct from control samples (unexposed) 
down to concentrations at which the number of As3+ in solution 
per cell is approximately 1. For Cr6+ exposure, this number is 
approximately 10 ions per cell. These values correlate well with 
the fact that the EPA regulatory limit of Cr6+ is ten times higher 
than As3+. Overall, the LOD of SERS + ML is 100,000 lower than 
the WHO recommended and US EPA regulatory levels (Fig. 3). 
Detection well below regulatory limits is beneficial because the 
EPA maximum contaminant level goal for As3+ is zero. 
Consequently, this platform is promising for monitoring changes 
in water quality below regulatory limits to provide early warning 
of water contamination and accurate longitudinal tracking of 
contaminant concentrations. The metabolite changes detected by 
this system can also distinguish between Cr6+- and As3+-induced 
responses in water with a classification accuracy of 99% (Fig. 4). 
Identifying the type of metal contamination is critical to locating 
the source and determining necessary treatment (52). When using 
1D CNN regression algorithms, the LOQ is 68 pM for Cr6+ and 
5 pM for As3+ with a dynamic range of 6 orders of magnitude 
(Fig. 5). The 1D CNN regression model yields the same LOD as 
SVM (Fig. 3 A and B) demonstrating robust performance of SERS + 
ML regardless of algorithm type.

Monitoring the quality of tap water and water discharged from 
water treatment facilities will require analysis of samples with a 
distribution of impurities, which may perturb the stress response 
of E. coli. It is not feasible to fully train a new model for every 
type of water sample in the field. Transfer learning is shown to be 
an effective method to analyze similar systems with smaller train-
ing datasets while still achieving high prediction accuracy. By 
obtaining water samples and spiking with known concentrations 
of contaminants, a new model can be quickly fine-tuned with a 
smaller data set. Transfer learning using data obtained in several 
seconds is sufficient to determine if drinking water or wastewater 
is unsafe (Fig. 6), i.e., above or below WHO recommended limits 
with greater than 96% accuracy. For more complex samples, sec-
ondary treated wastewater, the fine-tuned models can determine 
if the unspiked waste water sample is above or below recom-
mended safety limits with 92% accuracy. While here we demon-
strated that transfer learning is an effective way to evaluate one 

Fig. 6. Performance of SERS + ML on unseen tap water samples. (A) E. coli is cultured in growth media and added to tap water supplemented with As3+ salts at 
concentrations of 1.3 nM, 13 nM, and 1.3 µM for 2 h. (B) CNN confusion matrix of binary classification of spectral lysate data exposed to tap water at concentrations 
above and below WHO standard for drinking water for As3+.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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type of metal contaminant in an ‘unknown’ samples with multiple 
background contaminants, we envision an assay approach could 
be used to examine water samples for the presence of other toxins. 
Overall, we demonstrate that trained algorithms are rapidly gen-
eralizable across different water samples. The whole-cell SERS + 
ML platform is promising for application to other water sources, 
such as recycled water, and to other metals of concern such as lead, 
mercury, and cadmium.

Materials and Methods

Sensor Fabrication. SERS surfaces are fabricated in microfluidic channels with 
a capacitor architecture to apply an AC potential across electrodes (Fig.  1) to 
induce electrohydrodynamic (EHD) flow. Fabrication is performed silicon sub-
strates (NOVA Electronic Materials, P-type, boron doped <100> with resistivity 
of 0.001 to 0.005 Ω cm) with dimensions of 15 mm × 15 mm that are spin 
coated with poly(styrene-b-methyl methacrylate) (PS-b-PMMA, Mn S-b-MMA 
170000-b-145000 g mol−1) thin films of approximate thickness of 25 nm; Si 
substrates serve as the working electrode. Indium tin oxide (ITO)-coated glass 
slides (Delta Technologies) serve as the counter electrode. EHD, which results as 
Au NPs attach to the working electrode and locally perturb the surface potential, 
is used as an external driving force for cross-linking reactions between 40 nm 
lipoic acid-functionalized Au NPs (Nanocomposix, 0.13 nM) to form the anhy-
dride linking group, which define nanogap spacings. Chemical cross-linking 
reactions between NP leads to Au NP clusters with reproducible SERS signal 
over a large area (28).

Silicon substrates were cleaned by 20% v/v hydrofluoric acid (HF, Fisher 
Scientific, 48%) / DI water (Milli-Q Millipore System, 18.2 MΩ cm−1) for 5 min 
to remove the native oxide layer and then immersed in DI water to regrow a 
thin oxide layer. The potential of HF to cause severe injury mandates extreme 
caution during usage. Random copolymer poly(styrene-co-methyl-methacrylate)-
ɑ-hydroxyl-ω-Tempo moiety (PS-r-PMMA, Polymer Source, Mn = 7,400, Mw = 
11,800, Mw /Mn = 1.60, 59.6 mol% polystyrene content) random copolymer 
dissolved in toluene (Fisher Scientific), 1 wt%, was spin-coated at 3,000 rpm for 45 
s on silicon substrates. PS-r-PMMA films were annealed under vacuum at 170 °C 
for 48 h followed by a rinse with toluene to leave a brush layer. PS-b-PMMA is spin 
coated at 5,000 rpm for 45 s and then annealed for 72 h at 170 °C. In order to 
selectively functionalize PMMA domains on PS-b-PMMA diblock copolymer films 
with amine functional groups for cross-linking with Au NPs, PS-b-PMMA/Si were 
immersed in dimethyl sulfoxide (DMSO, Sigma-Aldrich) for 5 min and then 5 % 
vol ethylenediamine (ED, Sigma-Aldrich) in DMSO for another 5 min. ITO counter 
electrodes were cleaned using ethanol (Sigma-Aldrich), isopropyl alcohol (IPA), 
and DI water and then dried using N2 before attaching a platinum wire and silver 
paste (Epoxy Technology) to make electrical contact.

A microfluidic cell was formed between electrodes using a 90-µm spacer layer 
composed of 3M 9816L. A solution of 2 µL N-hydroxysulfosuccinimide (s-NHS, 
Sigma-Aldrich), 20 mM, and 2 µL 1-ethyl-3-(3-dimethyl aminopropyl) carbodiim-
ide (EDC, Sigma-Aldrich), 8 mM, in a 2-(Nmorpholino) ethane sulfonic acid buffer 
(MES, Sigma-Aldrich, 0.1 M, pH = 4.7) was added to a 0.25 mL solution of 2.6 nM 
lipoic acid-functionalized Au NP solution. Then, 20 µL of the solution containing 
Au NP, s-NHS, and EDC is added to the microfluidic cell. An AC electrical stimuli 

with a potential of 5 Vp and frequency of 100 Hz is applied for 2 min to deposit 
a seed layer to induce EHD flow. The second deposition step was conducted at 
a potential of 5 Vp and frequency of 1,000 Hz for 2 min to grow Au NP clusters. 
After deposition, the electrode cell was dismantled and the sensor surface was 
thoroughly rinsed with DI water and IPA (Sigma-Aldrich) and then dried with 
N2. SI Appendix, Fig. S9 shows reproducible intensity across the SERS surface 
and SI Appendix, Fig. S10 compares to intensity from a benzenethiol monolayer 
obtained from samples fabricated using EHD and drop casting, where the latter 
has lower signal and highly variable intensity.

Media, Heavy Metal, and Carbon Source Supplement. M63 media (VWR 
Life Science) solution was made by first diluting 1 liter of presterilized M63 5× 
(BioWORLD, GeneLinx International Inc.) stock solution using autoclaved Millipore 
water. Filter-sterilized magnesium sulfate anhydrous (MgSO4, Fisher Scientific) 
water solution, of volume 1 mL and molarity of 1 M, was added to the diluted 
media solution following standard protocol. Sodium arsenate stock solution 
(RICCA Chemical Company, 100 mM) was first filter-sterilized and then diluted 
with sterilized DI water to reach concentrations of 0.1 mM and 0.1 µM and stored 
under 4 °C. Potassium dichromate (Fisher Scientific) solution was made by first dis-
solving sodium dichromate crystal into sterilized DI water to reach concentrations 
of 17 mM, and then, the solution was filter-sterilized and diluted with sterilized 
DI water again to reach concentrations of 0.34 mM and 0.34 µM and stored at 
4 °C. Prior to exposure to bacterial cultures, working solutions were placed at room 
temperature for 30 min to equilibrate to ambient temperature and then titrated to 
the culture to target exposure concentration. Anhydrous dextrose (glucose, Fisher 
Scientific), 1 g, was dissolved in 10 mL DI water and filter-sterilized to form 10% 
(w/v) glucose stock solution, which was added into the media solution later to 
provide energy source for bacteria.

Growth and Subculture Condition. A sterilized wooden applicator was used 
to streak E. coli K12 strain MG1655 (Yale Stock Center via the Goulian Lab) frozen 
stock onto an lysogeny broth (LB, IBI scientific) agar plate. The plate was then 
placed into an incubator and incubated stationarily for 18 h. A single colony 
was picked from the plate after incubation and used to inoculate 5 mL sterile LB 
solution in a test tube. The inoculated culture tube was then placed in the shaking 
incubator (I series 24R, New Brunswick) set at 37 °C and speed of 250 rpm for 
18 h. After incubation, the final OD was approximately 1.5 as measured with a 
colorimeter (WPA CO7500 colorimeter, Biochrom Ltd.). From the shaking culture, 
3 mL was transferred to a 50 mL conical centrifuge tube and centrifuged at the 
speed of 5,000 rpm for 5 min (Sorvall Legend X1R centrifuge, Fisher Scientific). 
Then, the supernatant was disposed and the pellets were resuspended in 1 mL 
of 1× phosphate-buffered saline (PBS, Fisher Scientific, 10× solution) solution. 
The pellet-PBS mixture was transferred to 1 mL centrifuge tubes, centrifuged at 
5,000 × g for 5 min (accuSpin Micro 17, Fisher Scientific), and the supernatant 
was disposed. The washing step was repeated. After, the pellet was resuspended in 
1 mL M63 defined media, resulting in a milky M63-pellet mixture with very high 
OD. M63 media supplemented with 1% (w/v) glucose was pipetted into sterilized 
test tubes and the pellet-M63 mixture was titrated into the test tubes to reach 
the final OD of 0.5. The total volume of liquid in each test tube was 5 mL. Three 
tubes, having a 15 mL culture, were prepared for a single colony. These tubes were 
then moved to the shaking incubator for subculturing with the shaking speed 
set at 250 rpm and temperature at 37 °C for 6 h. Then, the 15 mL subculture was 

Fig. 7. Performance of SERS + ML on unseen wastewater samples. (A) The model is pretrained on DI water (B) is fine-tuned with waste water samples spiked 
with (I) 1.3 nM, (II) 13 nM, (III) 1.3 µM, and (IV) 13 µM As3+. (C) The accuracy of differentiating the different As3+ concentrations in spiked wastewater samples after 
pretraining. (D) The fine-tuned model is able to determine that the concentration of As3+ in the original wastewater sample is below the WHO recommended 
level with 92% accuracy.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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transferred to 50 mL centrifuge tubes, centrifuged twice at a speed of 5,000 rpm 
for 5 min, and washed with 1 mL of PBS twice. The subculture was resuspended 
in 1 mL M63 defined media before being exposed to heavy metals.

Bacterial Exposure to Heavy Metal and Growth Curve Measurement. E. coli 
(K12 MG1655 strain) is cultured in defined media M63 to achieve an OD of 0.5 
and supplemented with 1% (w/v) glucose to mitigate conflating stress from heavy 
metal stress ions with nutrition limitation. The subcultures prepared as described 
in the prior section were washed with 1 mL PBS twice and resuspended in M63 
defined media. M63 media supplemented with 1% glucose (w/v) was pipetted 
into wells of white-opaque 96-well microplates. Different concentrations of heavy 
metal (NaAsO2 or K2Cr2O7) were added to the wells. Specifically, 0, 1, 10, 100, and 
1,000 µM of NaAsO2 and 0, 0.34, 3.4, 34, and 170 µM of K2Cr2O7 were exposed 
to cultures for 2 h. The resuspended culture was pipetted into the wells to make 
the OD of the culture 0.5. Each condition was done in biological duplicates. After 
pipetting, the microplate was placed in the SkanIt Microplate Reader (Thermo 
Scientific) at 37 °C and shaken at a speed of 300 rpm and high force. The OD of the 
culture in each well was measured every 5 min for 6 h to generate growth curves.

Preparation of cultures exposed to tap water and wastewater from Orange 
County Sanitation District (OCSD) involves similar steps as those exposed to 
DI water spiked with As3+, except after washing with PBS, the subculture was 
resuspended in tap water or wastewater supplemented with 1% (w/v) glucose 
at an OD of 0.5, and the heavy metal salts were dissolved in tap water or 
wastewater instead of the defined media. The secondary treated wastewater 
was treated by primary sedimentation followed by an activated sludge pro-
cess with nitrification and denitrification at OCSD. Before spiking with As3+, 
the secondary treated wastewater was filtered with 0.45 µm MCE Membrane 
(MF-Millipore).

Lysate Sample Preparation. Thermal lysis was chosen for our sample prepa-
ration process due to its convenience, minimal equipment requirements, speed, 
and extensive prevalence in microfluidic devices as a method for bacterial mem-
brane disruption (53–59). While thermal treatments can influence the metabolite 
profile of a sample  (60), every method of cell disruption has some effect on 
cellular contents associated with it (53, 54), and in this study, we only aim to show 
that machine learning analysis of whole-cell sensors accurately distinguishes 
between identically prepared samples.

After exposure to metal solutions, the bacterial cultures were washed, as 
described in the growth and subculturing methods section, to remove residual 
metals from the pellet and avoid their mixing with metabolites released during 
lysing. The pellet was then resuspended in 100 µL Millipore water and heated 
to a temperature of 97 °C for 30 min to lyse the cells. The lysed culture solution 
was centrifuged at 12,000 × g for 10 min. Then, 100 µL supernatant in each tube 
was evenly divided into four parts by pipetting into four different 1 mL sterile 
centrifuge tubes, 25 μL each transfer. These supernatant samples were placed in 
the −20 °C freezer to store for further analysis.

Data Acquisition. Spectral data of lysate samples are acquired by placing a 
droplet with a volume of 25 µL of lysate from E. coli cells untreated (control) or 
exposed to heavy metal ion solutions at various concentrations on SERS surfaces. 
The measured concentration range for NaAsO2 was 0.65 pg/L to 650 mg/L (13 
concentrations) and for K2Cr2O7 was 0.1 ng/L to 10 mg/L (nine concentrations) 
spaced by one order of magnitude as shown in Table 1. The corresponding con-
centrations in molarity of As3+ and Cr6+ are shown in Table 1.

For each exposure concentration, a dataset of 1,200 SERS spectra is acquired 
using a Renishaw InVia™ micro Raman system with an integration time of 0.5 s, 146 
µW laser power at 785 nm excitation wavelength, and a 60× water immersion lens 
with 1.2 NA (beam diameter of 292 nm). Raman maps were acquired in an array of 
20 × 20 with 3 µm steps between measurement points, resulting in 400 spectra 
per map. Three maps were acquired over different regions of the sample surface 
resulting in a total of 1,200 spectra per concentration for each metal ion defining a 

class for initial training of machine learning algorithms (61). The dataset acquisition 
takes 10 min, and the droplet does not evaporate during this period of time. In order 
to ensure that the algorithm is not being trained to detect batch-to-batch variations 
of SERS surfaces, concentration classes between two and six, including control sam-
ples, were acquired on different regions of the same SERS surface (droplets exposed 
to isolated regions), indicated by superscripts in Table 1. Furthermore, the control 
group, prepared under the same conditions in the absence of Cr6+ or As3+ exposure, 
was measured from lysate samples prepared in biological duplicates on different 
days, from the eight different SERS surfaces, also fabricated on different days, used 
for the other metal concentrations exposure conditions to train algorithms to not 
identify differences based on normal variability of experimental conditions such as 
culture growth, device fabrication, and processing steps.

Preprocessing of SERS Spectra Data. For data preprocessing, asymmetric 
least square correction is utilized for baseline correction, and a Savitzky–Golay 
filter is used for data smoothing. In order to normalize the data, the vibrational 
band of silicon at 520 cm−1 is used as an internal standard and set to 1. The 
diblock copolymer layer, between Si and NP clusters, is 25 nm thick, and thus, 
Si surfaces are not affected by the signal enhancement of Au NP clusters. The 
metal ion concentration unit was labeled with a log scale since concentrations 
investigated span several orders of magnitude. PCA was performed for dimen-
sional reduction. We determined that 22 PCA components captured 93.3% and 
94.9% of variances for Cr6+ and As3+ concentration data, respectively. tSNE was 
also performed to visualize the concentration data in lower dimensional space 
and show that there are spectral differences in the data observed without labeling 
data for algorithms.

SVM Classification Model. Two independent SVM discriminative models are 
trained on Cr6+ and As3+ exposed lysate spectra data for the classes shown in 
Table 1. The training datasets are imbalanced since the size of the control class 
dataset (9,600 spectra) is eight times larger than the classes corresponding to a 
single concentration (1,200 spectra). The SMOTE is used to oversample skewed 
classes in the dataset and achieve a balanced dataset. SMOTE works by selecting 
a random example from the minority class, and then, k of the nearest neighbors 
for that example is found. A randomly selected neighbor is chosen and a synthetic 
example is created at a randomly selected point between the two examples in 
feature space. SMOTE can alleviate overfitting by increasing stability with respect 
to random fluctuations and thereby increase the generalization capability of the 
classifier (35). SMOTE is performed after data split within each cross-validation 
fold to prevent data leakage.

The SVM models are trained using 22 PCA components. A holdout set is com-
posed of 20% of the data that is used for final validation and not seen at all 
during training. The model is trained with the remaining 80% of the spectral 
data labeled with their appropriate class to define a hyperplane separating data 
into the correct classes. SVM models are trained with Scikit-learn using default 
parameters, with radial basis function kernel, Margin parameter (C) = 1, and γ 
= scale. In order to evaluate SVM model performance, sampling cross-validation 
is performed using 10-fold stratified sampling on the training dataset for the 
initial evaluation of model performance. Here, each fold is shuffled and used as 
validation data to estimate prediction accuracy. The cross-validation results are 
in the SI Appendix, Figs. S6 and S7. The final model is trained with 80% training 
data and tested with 20% holdout set.

Statistical Analysis. The statistical significance between the OD when exposed 
for 2 h to different heavy metal concentrations (Fig. 3 E and F) was calculated 
using two-tailed Student’s t test. All growth experiments were done with biological 
duplicates (n = 2) in 96-well plates. The OD after 2 h of exposure was calculated 
as the average of three replicate wells, and the error bars represent the standard 
deviation of the OD of the three wells. The degrees of freedom for all statistical 
calculations in the two plots are 2. The t values and P values are shown in Table 2.

Table 1. Cr6+ (10 classes) and As3+ (14 classes) for machine learning models
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cr6+ C 0.68 pM* 6.8 pM* 68 pM* 680 pM† 6.8 nM† 68 nM† 680 nM‡ 6.8 µM‡ 68 µM‡ X X X X
As3+ C 5 fM§ 50 fM§ 500 fM¶ 5 pM¶ 50 pM¶ 500 pM¶ 5 nM¶ 50 nM¶ 500 nM# 5 µM|| 50 µM|| 500 µM|| 5 mM||

C is the control class.  Superscripts indicate SERS data acquired on the same SERS surface.

http://www.pnas.org/lookup/doi/10.1073/pnas.2210061120#supplementary-materials
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CNN Regression Model. The 1D CNN model architecture utilizes Keras frame-
work with Tensorflow backend. Twenty-two PCA components are used as input for 
both Cr6+ (0.68 pM to 68 µM) and As3+ (5 fM to 5 mM) exposed lysate spectra 
datasets, respectively. The first convolutional layer is the data input layer, which 
has 22 kernels with sizes 7 and 1 stride to preserve the spatial size with the same 
padding. The second convolutional layer also has 22 kernels with size 7. The third 
and fourth convolutional layers are identical, with 44 kernels with size 7. Each 
convolutional layer is followed by a batch normalization layer and a dropout 
layer with 20% random dropout rate. Batch normalization mitigates changes in 
the distribution of network activations due to the change in network parameters 
during training. Dropout layers are used to prevent overfitting. Followed by con-
volutional layers, a flatten layer is added to reshape the 2D extracted feature into 
a 1D vector followed by a dropout layer. Fully connected layers with 22 nodes 
with an L2 norm regularization (0.001) and ReLU activation function are applied 
to process the 1D vector. Finally, using the linear function, the weighted sum of 
the flatten layer is condensed into a one-unit neuron containing the prediction 
result between zero and nine (Cr6+) or 13 (As3+), where the continuous score 
supplies predicted concentrations.

Hyperparameters of the 1D CNN regression model including number of hid-
den layers and units, activation function, dropout rate, batch size, kernel size, 
and number of epochs are optimized by monitoring training and validation loss 
during 10-fold cross-validation. To be specific, EarlyStopping was used by mon-
itoring the increase in validation loss to determine the number of epochs. Early 
termination was determined when the validation loss was increasing for 10 con-
secutive epochs, indicating that the 1D CNN had reached maximum convergence. 
During 10-fold cross-validation, they all reach the convergence at approximately 
35 epochs, which was thus chosen for the final model. During 10-fold cross-val-
idation, the loss function is calculated to determine the average of the squared 
differences between the predicted and true values. The overlaid learning curve 
from 10-fold cross-validation shows no obvious gap between training loss and 
validation loss, which shows the absence of overfitting (SI Appendix, Fig. S8).

Due to the large size of control dataset acquired to capture variability of exper-
imental conditions, including biological culture conditions and device fabrication, 
the data classes are imbalanced. Again SMOTE is used to balance the training 
dataset, and here, the training dataset size is varied to contain 100, 1,000, 3,000, 
and 7,680 randomly selected spectra from each class to determine the size of 
needed training data for accurate predictions. As before, 20% of the spectral data 
is set aside as a holdout set, i.e., not used in training. The performance of the 
1D CNN regression model is evaluated by calculating MSE and coefficient of 
determination (R2) scores for four different dataset sizes. The R2 metric is the ratio 
of explained sum of squares and the total sum of squares and is sensitive in the 

order of predicted and actual targets. MSE and R2 score mean values and SD are 
calculated by running the calculations 10 times.

The final CNN model is trained with tuned hyperparameters on 80% of the 
spectral data (training set), and the model performance is evaluated on the 
remaining 20% of the spectral data (hold out set), with batch size 44, number 
of epoch 35, and Adam for gradient descent optimization. The holdout set in 
the classes is unbalanced where the control class has 1,920 spectra and other 
classes have 240 spectra. We thus use random downsampling of the control to 
include 240 spectra to balance the data and represent those in the box plot on 
Fig. 5 D and E.

Transfer Learning. The transferred CNN is built by Tensorflow 1.8 in Python 3.6. 
The 1D CNN binary classification model is pretrained to identify the heavy metal con-
centration in DI water. The classes contain spectra from DI water samples spiked with 
concentrations of As3+ of 0.05 nM, 0.5 nM, and 5 nM (below WHO recommended 
level) and 5 µM, 50 µM, and 500 µM (above WHO recommended level). The pre-
trained model is then transferred to identify if the As3+ concentration in tap water 
samples is above or below WHO recommended level. The concentrations tested are 
1.3 nM, 13 nM (below), and 1.3 µM (above). For wastewater, the four classes tested 
contain 1.3 nM, 13 nM (below), 1.3 µM, and 13 µM (above) concentration of As3+. 
The fully connected layer and output layer of the pretrained model are replaced with 
an output layer which has 1 node with sigmoid activation function. The weights of 
the third and fourth convolutional layers are frozen throughout fine-tuning, and the 
weights of the first and second layers are set to be trainable. Before fine-tuning, the 
model is compiled with binary cross-entropy as loss function, accuracy as metric, and 
Adam optimizer with a 0.001 learning rate is used. Eighty examples from each class 
from the new water type are used to fine-tune the compiled transferred model. The 
performance of the transferred model is tested by 1040 tap water samples. Machine 
learning algorithm code is available online (62).

Data, Materials, and Software Availability. SERS spectra data present in 
this manuscript were in txt format. Machine learning algorithms used in the 
study, PCA, SVM, tSNE, 1D-CNN, and transfer learning, were done using Python 
in Jupyter Notebook. The full data (https://doi.org/10.5281/zenodo.7109184) 
and code (https://github.com/hwei77/HeavyMetalML) are available on Zenodo 
and GitHub, respectively.
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