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ABSTRACT OF THE DISSERTATION

On the Performance and Linear Convergence of Decentralized Primal-Dual Methods

by

Sulaiman A. Alghunaim

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Ali H. Sayed, Chair

This dissertation studies the performance and linear convergence properties of primal-dual

methods for the solution of decentralized multi-agent optimization problems. Decentralized

multi-agent optimization is a powerful paradigm that finds applications in diverse fields in

learning and engineering design. In these setups, a network of agents is connected through

some topology and agents are allowed to share information only locally. Their overall goal

is to seek the minimizer of a global optimization problem through localized interactions.

In decentralized consensus problems, the agents are coupled through a common consensus

variable that they need to agree upon. While in decentralized resource allocation problems,

the agents are coupled through global affine constraints.

Various decentralized consensus optimization algorithms already exist in the literature.

Some methods are derived from a primal-dual perspective, while other methods are derived

as gradient tracking mechanisms meant to track the average of local gradients. Among

the gradient tracking methods are the adapt-then-combine implementations motivated by

diffusion strategies, which have been observed to perform better than other implementations.

In this dissertation, we develop a novel adapt-then-combine primal-dual algorithmic framework

that captures most state-of-the-art gradient based methods as special cases including all the

variations of the gradient-tracking methods. We also develop a concise and novel analysis

technique that establishes the linear convergence of this general framework under strongly-
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convex objectives. Due to our unified framework, the analysis reveals important characteristics

for these methods such as their convergence rates and step-size stability ranges. Moreover,

the analysis reveals how the augmented Lagrangian penalty term, which is utilized in most

of these methods, affects the performance of decentralized algorithms.

Another important question that we answer is whether decentralized proximal gradient

methods can achieve global linear convergence for non-smooth composite optimization. For

centralized algorithms, linear convergence has been established in the presence of a non-

smooth composite term. In this dissertation, we close the gap between centralized and

decentralized proximal gradient algorithms and show that decentralized proximal algorithms

can also achieve linear convergence in the presence of a non-smooth term. Furthermore, we

show that when each agent possesses a different local non-smooth term then global linear

convergence cannot be established in the worst case.

Most works that study decentralized optimization problems assume that all agents are

involved in computing all variables. However, in many applications the coupling across agents

is sparse in the sense that only a few agents are involved in computing certain variables.

We show how to design decentralized algorithms in sparsely coupled consensus and resource

allocation problems. More importantly, we establish analytically the importance of exploiting

the sparsity structure in coupled large-scale networks.
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CHAPTER 1

Introduction

In this chapter, we motivate decentralized multi-agent optimization problems and outline the

main contributions of the dissertation. We also introduce our notation and review some key

concepts.

1.1 Multi-Agent Optimization

Multi-agent optimization refers to optimization problems where more than one agent (e.g.,

entity, processor, robot, machine) are interested in solving a common optimization problem

in a collaborative manner. For example, it is usually intractable or inefficient to solve large

scale data problems by processing all the data in one single machine. To relieve the difficulty,

one solution is to divide the data across multiple machines and solve the problem in a

collaborative manner where each machine is connected to a central coordinator [1–4]. This

distributed solution method is useful since it allows parallel processing and distributing of the

computational load over different machines. However, this approach still requires a centralized

network topology with a central node connected to all computing agents [5] – see Figure 1.1a.

The potential bottleneck of the centralized network is the communication traffic jam on the

central coordinator [6–8]. The performance of these methods can be significantly degraded

when the bandwidth around the central node is low. Therefore, for this case it is critical to

pursue solutions where there is no central coordinator and each machine only communicates

locally with its immediate neighbors. These types of fully distributed solutions are often

called decentralized methods and are the focus of this dissertation.

Decentralized optimization methods can be designed for any connected network topology

1



Central Coordinator

(a) Centralized (b) Decentralized

Figure 1.1: Centralized vs decentralized networks.

such as line, ring, grid, random geometric graph, or others – see Figure 1.1b. In these structures,

there is no central node and each computing agent exchanges information with its immediate

neighbors rather than with a remote central server. Decentralized methods have several

advantages over non-fully distributed methods with a central coordinator [6, 7]. For example,

when there is no central coordinator, the communication can be evenly distributed across the

nodes so that decentralized algorithms converge faster than centralized solutions when the

network has limited bandwidth or high latency [6,7]. Apart from relieving communication

bottlenecks, decentralized optimization problems naturally occur due to some physical settings

such as in coordination and control of robotics systems [9,10], estimation in wireless sensor

networks [11–14], and smart-grids [15]. They are also more robust to failures since a failure

of any node in the network is not detrimental compared to the failure of the central node in

a centralized network.

1.2 Decentralized Consensus Optimization

In most multi-agent formulations of decentralized optimization problems, each agent generally

has an individual cost function, Jk(w) : RM → R, and the goal is to minimize an aggregate

2



sum of the costs, namely,

min
w∈RM

1

K

K∑
k=1

Jk(w) (1.1)

where K is the number of agents. The aggregate cost in (1.1) has one independent variable,

w ∈ RM , which all agents need to agree upon. Each agent k wants to find the minimizer

of (1.1) through local interactions with its direct neighbors. We provide here an overview

of the solution methods that are available for solving such problems leading to primal-dual

solutions, which are the focus of this work.

Early works on distributed computation and processing include [16–19]. In these early

formulations, the agents share a common cost function Jk(w) = J(w), and each agent computes

a different block of the variable w to share the computational load among different processors.

The consensus formulation (1.1) where different agents may share and compute common

blocks of the optimization variable w was studied in the works [20,21]. In these formulations,

the agents also share the same cost function Jk(w) = J(w), but different from [16–19], the

formulation in [20, 21] allows the agents to compute common blocks of w, which require a

consensus (agreement) step on the shared blocks. While these early contributions are useful

for distributing the computations across different processors, the setups require the local

cost to be identical. In general, the agents may have private local functions that they do not

want to share. In this case, incremental gradient methods [22–25] have been used in [26–28].

However, these methods are not fully distributed (i.e., decentralized), since they either require

a central coordinator [26] or require determining a cyclic trajectory that covers all agents in

the network in succession, one after the other [27,28].

Early notable works studying decentralized optimization methods include [29–37]. The

works [33, 34, 37] focused on deterministic optimization problems where each agent knows

exactly its local cost. In comparison, the works [29–32, 35, 36] proposed decentralized

algorithms for adaptive learning over networks showing for the first time how adaptation

in a stochastic setting can be performed over graphs; thus allowing agents to continually

3



learn and track drifts in the data in the absence of information about the local costs (e.g.,

statistical distribution of the data) – see [38]. While these early works studied problem

(1.1) under different settings, the algorithms studied there belong to the class of primal

methods. In particular, these early algorithms can be derived from the primal domain

by solving a penalized approximate problem and not the original problem – see, e.g., [39].

Among these algorithms are consensus (decentralized gradient descent) method and diffusion

methods – see [8,40]. Since these methods solve an approximate problem and not the original

problem, they converge to a biased solution for constant step-sizes even under deterministic

settings – see [41, 42]. For exact convergence, these early primal based methods require

using decaying step-sizes to converge to the optimal solution. For highly accurate solutions,

decaying step-sizes are undesirable since they slow down the convergence rate significantly.

To overcome the bias caused by these early methods, algorithms with multiple inner

consensus steps per iteration were proposed in [43,44], which require an increasing number

of inner consensus steps as the iteration number grows, leading to an expensive solution.

Another line of work recognizes that the consensus formulation (1.1) can be rewritten as

an equality constrained problem by utilizing the properties of the network [45–49]. Here,

unbiased methods are developed by utilizing primal-dual methods to solve the constrained

problems [45–49]. Unlike primal methods, primal-dual methods have no bias and can converge

to the exact minimizer of (1.1) without extra communication steps per iteration. Due to

this attractive feature, many primal-dual algorithms have been proposed [39, 50–56] each

with its own advantages. There also exist unbiased gradient-tracking methods [57–65]. These

methods correct the bias of the primal methods [37,66] directly by utilizing gradient tracking

mechanisms [67, 68] to track the average of local gradients. Among the gradient tracking

methods are the adapt-then-combine (ATC) implementations [57–60,65], which are motivated

on the structure first introduced by diffusion strategies [69] – see also [8, Ch. 7]. For primal

methods, the ATC implementations have been shown to have better step-size stability range

and performance than the other methods [70]. For the gradient-tracking methods, the ATC

variants have only been observed to have better performance than non-ATC variants through
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numerical simulations [60].

Given the above brief history on decentralized consensus algorithms, it is unclear how

all of these methods are related to each others. Moreover, we see that the gradient-tracking

methods are not normally classified as primal-dual methods due to their non primal-dual

derivations. In the first parts of this dissertation, we focus on the design and analysis of

decentralized primal-dual methods. We will design a novel adapt-then-combine primal-dual

algorithmic framework that captures most state-of-the-art decentralized methods as special

cases when the objective is smooth including all the variations of the gradient-tracking

methods. We also develop a concise and novel analysis technique that establishes the linear

convergence of this general framework under smooth and strongly-convex objectives. Due

to our unified framework, the analysis reveals important characteristics of these methods

such as their step-size stability range and the influence of the augmented Lagrangian penalty

term on the convergence rates of decentralized algorithms. For example, we analytically

confirm the observation from [60] that the ATC gradient tracking implementations have

better performance than non-ATC implementations.

A long standing open question regarding decentralized optimization problems is whether

linear convergence can be established in the presence of non-smooth components. In this

dissertation, we answer this question. Specifically, we show that global linear convergence

cannot be achieved if each agent owns a different local non-smooth term in the worst case. We

then show that global linear convergence is possible for a class of novel proximal decentralized

algorithms designed for the case where all agents share a common non-smooth term. The

reader may refer to Section (1.4) for an overview of this dissertation and its main contribution.

1.3 Decentralized Resource Sharing Optimization

While a large portion of this dissertation is focused on the consensus formulation (1.1), we

will also study decentralized resource sharing problems. In these formulations, a collection of
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K interconnected agents are coupled through an optimization problem of the following form:

minimize
w1,w2,··· ,wK

K∑
k=1

Jk(wk), subject to
K∑
k=1

Bkwk − bk = 0, (1.2)

where Jk(wk): RQk → R is a cost function associated with agent k and wk ∈ RQk is the

variable for the same agent. The matrix Bk ∈ RS×Qk and the vector bk ∈ RS are known locally

by agent k only. In this formulation, each agent wants to find its own minimizer, denoted

by w?k, while satisfying the global coupling constraint. Note that {w?k} are not necessarily

consensual and are often different from each other. The resource sharing problem has been

studied by different fields and dates back to studies in economics [71–77]. These early works

require a central coordinator to solve such problems. The first center-free (i.e., decentralized)

algorithm to solve these problems dates back to [78]. Problems of the type (1.2) appear in

many other applications such as network utility maximization [79], smart grids [80], basis

pursuit [81], and resource allocation in wireless networks [82].

This dissertation considers the case where the formulation involves multiple coupled

affine constraints, and where each constraint may involve only a subset of the agents. The

constraints are generally sparse, meaning that only a small subset of the agents are involved in

them. This scenario arises in many applications including decentralized control formulations,

resource allocation problems, and smart grids. Traditional decentralized solutions tend to

ignore the structure of the constraints and lead to degraded performance. We instead develop

a decentralized solution that exploits the sparsity structure. We examine how the performance

of the algorithm is influenced by the sparsity of the constraints. We show analytically, and

by means of simulations, the superior convergence properties of an algorithm that considers

the sparsity structure in the constraints compared to others that ignore this structure.

1.4 Outline and Contributions

The outline and main contributions of this dissertation are summarized below:
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• In the appendix of this chapter, we introduce our notation and review some key concepts

that are useful throughout this work.

• In Chapter 2, we study a classical incremental primal-dual gradient algorithm for the

solution of constrained optimization problems. Through an original proof we establish

its linear convergence and give useful step-size and convergence rate upper bounds.

We then relate the incremental implementation to the non-incremental Arrow-Hurwicz

implementation. The analysis in this chapter will allow us to reveal (in Chapter 3) the

influence of the augmented Lagrangian penalty term on the performance of decentralized

algorithms. Part of these results are based on the work [83].

• In Chapter 3, we study problem (1.1) for smooth and strongly-convex aggregate

costs. We propose a general adapt-then-combine (ATC) algorithmic framework that

captures various state-of-the-art decentralized gradient based algorithms including all

the variations of the gradient tracking methods. This result shows that ATC gradient

tracking methods admit primal-dual interpretations. We also establish the linear

convergence of the proposed framework, thus unifying the analysis of many existing

algorithms. This result is important since it reveals the performance and behavior

of these various algorithms. For example, we show that the ATC implementations

have better performance than non-ATC implementations. Using the analysis from

Chapter 2, we will reveal the benefits of the augmented Lagrangian penalty term on

the convergence rate of decentralized algorithms. Part of these results are based on the

works [83–85].

• In Chapter 4, we study problem (1.1) in the presence of a common general non-smooth

term. For the first time, we establish the linear convergence of a proximal decentralized

gradient based algorithm with a non-smooth term. This result closes the gap between

centralized and decentralized proximal gradient algorithms. We then tailor an exiting

result to the decentralized set-up where each agent owns a local non-smooth term,

and show that global linear convergence cannot be established (in the worst case) for
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decentralized proximal gradient algorithms for that case. Part of these results are based

on the works [84,85].

• In Chapters 5 and 6, we study problems (1.1) and (1.2) under general multiple coupling

across the agents. Specifically, we consider scenarios where there can exist multiple

consensus variables or multiple coupling constraints with only a subset of agents involved

in them. We then show how to design algorithms to exploit these structures. More

importantly, we show theoretically that algorithms exploiting the structure can greatly

improve the convergence rate compared to algorithms that do not exploit such structure.

Part of these results are based on the works [86–90].

• In Chapter 7, we state some future directions that can build upon this dissertation.
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Appendices

In this dissertation, we shall study several decentralized algorithms for the solution of

optimization problems of the form (1.1) or (1.2) by networked agents. For these discussions,

we introduce in this section the main notation, the network weights used to implement these

algorithms, and review some important concepts, which are useful for our derivations and

analysis.

1.A Notation

All vectors are column vectors unless otherwise stated. All norms are 2-norms unless otherwise

stated. We use col{xj}Nj=1 to denote a column vector formed by stacking x1, ..., xN on top of

each other, diag{xj}Nj=1 to denote a diagonal matrix consisting of diagonal entries x1, ..., xN ,

and blkdiag{Xj}Nj=1 to denote a block diagonal matrix consisting of diagonal blocks X1, ..., XN .

We let blkrow{Xj}Nj=1 = [X1 · · · XN ]. For any integer setM = {m1,m2, · · · ,mN}, we let

U = [gmn]m,n∈M denote the N ×N matrix with (i, j)−th entry equal to gmi,mj . For a vector

x ∈ RM , the notation ‖x‖2
D denotes xTDx for a positive semi-definite matrix D. Similarly,

for a positive constant c > 0, we let ‖x‖2
c denote the scaled norm c‖x‖2.

For a matrix A ∈ RM×N , σmax(A) denotes the maximum singular value of A, and σ(A)

denotes the minimum non-zero singular value. The range space and null space of the matrix

A are denoted by Range(A) and Null(A), respectively. For two symmetric matrices of similar

dimensions, A ≥ B means that A−B is positive semi-definite. Likewise, A > B means that

A − B is positive definite. The N × N identity matrix is denoted by IN . We let 1N be a

vector of size N with all entries equal to one. The Kronecker product is denoted by ⊗. R

and RM denote the set of real valued numbers and vectors, respectively. The gradient of

a differentiable function f(.) : RM → R is ∇f(.) = col{ ∂f
∂x(1)

, · · · , ∂f
∂x(M)

} where x(m) is the

m-th entry in x and ∂f
∂x(m)

is the derivative of f with respect to the entry x(m). We use

O(α) to indicate values on the order of the scalar α (e.g., O(α) = cα for some constant c

independent of α).
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1.B Network Combination Weights

For any network topology (see, e.g., Fig. 1.1b) we let ask denote a scalar weight used by

agent k to scale information arriving from agent s. We let ask = 0 if s is not a direct neighbor

of agent k, i.e., there is no edge connecting them. We let Nk denote the set of agents the

are directly connected to agent k, including agent k itself. We let A denote the combination

matrix constructed from these weights:

A
∆
= [ask] (1.3)

The matrix A is assumed to be symmetric and doubly stochastic. We also assume A is

primitive, i.e., there exists an integer j > 0 such that all entries of Aj are positive. As

long as the network is connected1, there exist many rules to choose the weights {ask} in a

decentralized fashion – [8, 91]. For example, we can use the Metropolis rule to construct the

combinations weights {ask; s ∈ Nk} as follows [8, 92]:

ask =



1

max{nk, ns}
, if s ∈ Nk, s 6= k

1−
∑

e∈Nk\{k}

aek, s = k,

0, otherwise.

(1.4)

where nk = |Nk| denote the number of agents directly connected to agent k. We will utilize

the following well established result to derive many decentralized strategies [55,93].

Lemma 1.1. (Consensus Matrix) Let A = [ask] ∈ RK×K be a symmetric doubly stochastic

matrix constructed from the network combination weights {ask}. Then, it holds that I − A is

symmetric and positive semi-definite. Moreover, if we introduce the eigen-decomposition

V
∆
= c(I − A) = UΣUT, V

1
2

∆
= UΣ1/2UT

1A network is connected if there exists a path with positive weights {ask} connecting any two agents.
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for any c > 0 and let:

A = A⊗ IM , V = V ⊗ IM , V
1
2 = V

1
2 ⊗ IM .

Then, for primitive A and any block vector X = col{x1, ..., xK} in the nullspace of IMK −A

with entries xk ∈ RM it holds that:

VX = 0 ⇐⇒ V
1
2X = 0 ⇐⇒ (IMK −A)X = 0 ⇐⇒ x1 = x2 = ... = xK (1.5)

�

1.C Optimization Background

In this section, we briefly review some basic optimization concepts. A set C is convex if for

any two points x1, x2 ∈ C it holds that

θx1 + (1− θx2) ∈ C for 0 ≤ θ ≤ 1.

A function f(.) : RM → R is convex if its domain domf is convex and [94]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), for all x, y ∈ domf

with 0 ≤ θ ≤ 1. The function f(.) is strongly-convex with parameter νf > 0 if domf is

convex and [94]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− νf
2
θ(1− θ)‖x− y‖2.
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If f(.) is differentiable then strong-convexity is equivalent to the gradient being strongly-

monotone:

(
∇f(x)−∇f(y)

)T
(x− y) ≥ νf‖x− y‖2 (1.6)

for all x, y ∈ domf . Equivalently, strong-convexity gives

f(y) ≥ f(x) +∇f(x)T(y − x) +
νf
2
‖y − x‖2.

The cost f is δf -smooth or equivalently the gradient of f is Lipschitz continuous with

parameter δf > 0 if

‖∇f(x)−∇f(y)‖ ≤ δf‖x− y‖. (1.7)

If f is convex with domf = RM and ∇f is δf -Lipschitz, then it holds that [95, Theorem

2.1.5]

(
∇f(x)−∇f(y)

)T
(x− y) ≥ 1

δf
‖∇f(x)−∇f(y)‖2. (1.8)

The subdifferential ∂f(x) of a function f(.) : RM → R at some x ∈ RM is the set of all

subgradients:

∂f(x) =
{
gx | gTx (y − x) ≤ f(y)− f(x),∀ y ∈ RM

}
. (1.9)

The proximal operator relative to a function f(x) with step-size µ is defined by [96]:

proxµf (x)
∆
= arg min

u

(
f(u) +

1

2µ
‖x− u‖2

)
. (1.10)

The proximal mapping is firmly nonexpansive [96]:

‖proxµf (x)− proxµf (y)‖2 ≤
(
proxµf (x)− proxµf (y)

)T
(x− y).
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Using Cauchy-Schwarz in the previous inequality, it holds that:

‖proxµf (x)− proxµf (y)‖ ≤ ‖x− y‖. (1.11)
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CHAPTER 2

Primal-Dual Gradient Methods

In this chapter, we revisit a discrete incremental implementation of the primal-descent dual-

ascent gradient method applied to optimization problems with affine constraints. Through an

original short proof, we establish linear convergence of the algorithm for strongly-convex cost

functions with Lipschitz continuous gradients. We then relate the classical non-incremental

implementation (Arrow-Hurwicz) to the incremental primal-dual implementation and establish

its linear convergence as well. The proof technique in this chapter is important to the following

chapters where we study primal-dual decentralized algorithms.

2.1 Problem Set-up

We consider the constrained problem:

minimize
w∈RM

J(w), subject to Bw = b (2.1)

where w ∈ RM , B ∈ RE×M , and b ∈ RE. The cost J(w) : RM → R is assumed to be δ-smooth

and ν-strongly convex – see (1.6)–(1.7). Problem (2.1) can be reformulated into an equivalent

saddle-point problem. Indeed, consider the following saddle-point formulation:

min
w

max
λ

L(w, λ) = J(w) + λT(Bw − b) (2.2)

where λ ∈ RE is the dual variable. Since J(w) is convex and differentiable, then an optimal

point (w?, λ?) exists that solves (2.2); moreover, w? is an optimal solution to the constrained

problem (2.1) – see Section 2.2. In this chapter, we study the following classical algorithm.
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Choose positive step-sizes µw and µλ and let w−1 and λ−1 be arbitrary initial conditions.

Repeat for i ≥ 0:

{
wi = wi−1 − µw

(
∇J(wi−1) +BTλi−1

)
(2.3a)

λi = λi−1 + µλ(Bwi − b) (2.3b)

Note that the update (2.3) is incremental since the dual update (2.3b) uses the most recent

primal variable wi and not wi−1. This chapter focuses on the primal-dual (PD) algorithm

(2.3), which is aimed at solving (2.2), establishes its linear convergence properties and studies

its relation to the non-incremental implementation:

{
wi = wi−1 − µw

(
∇J(wi−1) +BTλ′i−1

)
(2.4a)

λ′i = λ′i−1 + µλ(Bwi−1 − b) (2.4b)

Note that algorithms (2.3) and (2.4) are applied to the Lagrangian, and not the augmented

Lagrangian (AL) (which would an extra quadratic penalty term ρ‖Bw − b‖2 added to the

Lagrangian (2.2) where ρ > 0). Since we can absorb the quadratic term into a new cost

Jρ(w)
∆
= J(w) + ρ‖Bw − b‖2, our convergence analysis is still applicable for that case.

Algorithms of the form (2.3) and (2.4) have been applied in various scenarios including but

not limited to wireless systems [97,98], power systems [99], reinforcement learning [100,101],

and network utility maximization [48,102].

2.1.1 Related Works

There exists a large body of literature on primal-dual saddle-point algorithms – see [48,102–109]

and the references therein, including the seminal work [104], which proposed the classical

recursion (2.4) and established its convergence. These works focus on proving convergence

to an optimal solution without providing convergence rates, provide sub-linear convergence

rates (e.g., 1
i
where i is the iteration index), or show linear convergence from a starting point

that is sufficiently close to a solution (local convergence). Some other works examined linear

convergence under different settings.
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The work [110] focuses on the continuous version of the primal-dual gradient dynamics

and establishes linear convergence but using the augmented Lagrangian (AL). The work [111]

proves linear convergence for a continuous primal-dual gradient dynamics on a smoothed

AL called “proximal augmented Lagrangian”, which can handle a non-smooth term. The

work [112] focuses on the continuous version of the primal-dual dynamics for problem (2.1)

with additional affine inequality constraints and establishes exponential convergence under

the assumption that J(w) is twice-differentiable with upper and lower bounded Hessian (i.e.,

strongly convex and smooth in addition to twice differentiability). It was shown in [112]

that if the continuous dynamics is discretized using Euler discretization, then the discrete

version converges linearly under small enough step sizes. However, no upper bound is given

on the step-size. Moreover, the derived linear convergence bound depends on the continuous

dynamics bounds. Note that Euler discretization uses identical step-sizes for the primal and

dual updates (i.e., µw = µλ) and results in a non-incremental primal-dual dynamics, i.e., the

dual update does not use the most recent primal update. Thus, the results in [110–112] are

not directly applicable to incremental discrete implementation and/or do not provide useful

bounds on the step-size and convergence rates.

The work [113] establishes the linear convergence of a primal-dual gradient algorithm for

saddle-point problems with

L(w, λ) = J(w) + λTBw − g(λ) (2.5)

where J(w) is convex and smooth, and g(λ) is strongly-convex and smooth. Unlike the

current chapter, the algorithm used in [113] is non-incremental; moreover, a particular fixed

step-sizes are needed to establish linear convergence – [113, Theorem 3.1].

We remark that the works [114–117] established the linear convergence of operator-splitting

based algorithms, which solve a general saddle point problem with

L(w, λ) = J(w) + λTBw − g(λ) (2.6)
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where g(.) is not necessarily differentiable. However, they require both the primal and dual

functions, J(.) and g(.), to be strongly-convex functions. When either is missing, the matrix

B plays a critical role for linear convergence, which was not the focus of these works. Note

that in this chapter we focus on the linear convergence of the classical methods (2.3) and

(2.4) that are different from the operator splitting methods [114–119].

2.1.2 Contribution

Given the above, our contribution in this chapter is twofold: 1) Through an original self-

contained short proof, we establish the linear convergence of the incremental implementation

(2.3). Our analysis holds with or without the augmented Lagrangian penalty term; 2) We

relate the non-incremental implementation (2.4) to the incremental one (2.3) and show that

its linear convergence follows from the analysis of the incremental one. We provide explicit

upper bounds on the step-size parameters for stable behavior and on the resulting convergence

rate

2.2 Convergence Results

This section gives the auxiliary results leading to the main convergence result. It is known

that a pair (w?, λ?) is an optimal solution to (2.2) if, and only if, it satisfies the optimality

conditions [94]:

{
0 = ∇J(w?) +BTλ? (2.7a)

0 = Bw? − b (2.7b)

Note that w? coincides with the minimizer of (2.1). To see that w? must be an optimal

solution to (2.1), we follow arguments similar to the ones in [94, Section 4.2.3]. Thus, consider

the optimality criterion of (2.1) for differentiable J(w) [94]:

∇J(w?)(z − w?) ≥ 0 for all z such that Bz = b (2.8)
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Since B(w? − z) = b− b = 0, the above condition implies that:

∇J(w?)Tx ≥ 0 (2.9)

for all x belonging to the null space of B (i.e., Bx = 0). If a linear function is nonnegative on a

subspace, then it must be zero on the subspace [94]. Thus, the gradient ∇J(w?) is orthogonal

to the null space of B, i.e., ∇J(w?)Tx = 0 for all x belonging to the null space of B. Since the

range of BT is orthogonal to the null space of B, it follows that ∇J(w?) belongs to the range

of BT [120]. This implies that condition (2.7a) holds for some λ?. Hence w? solves (2.1) if,

and only if, the optimality conditions (2.7) holds. This means that problems (2.1) and (2.2)

are equivalent. Note that since J(w) is strongly convex, w? is unique –see [94, Example 5.4].

From (2.7a) and uniqueness of w?, λ? will be unique if B has full row rank. In general λ?

is not necessarily unique. We will now characterize a particular dual solution that we later

show convergence to. For that result and later analysis, we need the following result.

Lemma 2.1. If λx is in the range space of B ∈ RE×M , then it holds that:

‖BTλx‖2 ≥ σ2(B)‖λx‖2 (2.10)

where σ(B) denotes the minimum non-zero singular value of B.

Proof. Introduce the truncated singular value decomposition [120] of the positive semi-definite

matrix BTB = UrΣrU
T
r , where Ur ∈ RM×r (r denotes the rank of BTB) with UT

r Ur = Ir and

Σr > 0 is a diagonal matrix with entries equal to the non-zero eigenvalues of BTB ( i.e., the

squared non-zero singular values of B). Since λx is in the range space of B, it holds that

λx = Bx for some x. Then,

‖BTλx‖2 = ‖BTBx‖2 = xTUrΣ
2
rU

T
r x ≥ σ2(B)xTUrΣrU

T
r x

= σ2(B)‖λx‖2. (2.11)
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Lemma 2.2. (Particular dual λ?b) There exists a unique optimal dual variable, denoted by

λ?b , lying in the range space of B.

Proof. Any solution λ? of the linear system of equations given in (2.7a) can be decomposed

into two parts λ? = λ?b + λ?n, where λ?b ∈ Range(B) and λ?n ∈ Null(BT) – see [120]. Therefore,

if (w?, λ?) satisfies (2.7), then (w?, λ?b) also satisfies (2.7). We now show λ?b is unique by

contradiction. Assume we have two distinct dual solutions λ?b1 = Bx1 and λ?b2 = Bx2 lying in

the range space of B. Then, substituting into (2.7a) and subtracting, we get BTB(x1−x2) = 0.

It follows that ‖B(x1 − x2)‖2 = 0 and, consequently, B(x1 − x2) = 0. This means that

λ?b1 = Bx1 = Bx2 = λ?b2 , which is a contradiction.

From (2.3b) we know that

λi = λi−1 + µλ(Bwi − b).

Therefore, from the fact that b = Bw?, λi will be in the range space of B if λi−1 belongs to

the range space of B or λi−1 = 0. Thus, {λi}i≥0 will always remain in the range space of B if

λ−1 = 0 or λ−1 belongs to the range space of B. This observation will allow us to utilize the

bound (2.11) to establish linear convergence to the particular saddle-point (w?, λ?b) without

requiring a rank condition on the matrix B. For analysis, we let

w̃i
∆
= wi − w? and λ̃i

∆
= λi − λ?b

denote the primal and dual errors, respectively. We are now ready to establish our main

result whose proof is given in Appendix 2.A.

Theorem 2.1. (Linear convergence): Assume that the cost J(w) is δ-smooth and ν-

strongly-convex and the step-sizes are positive and satisfy:

µw <
1

δ
, µλ ≤

ν

σ2
max(B)

(2.12)
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If λ−1 = Bw−1 (or λ−1 = 0), then algorithm (2.3) converges linearly to the particular

saddle-point (w?, λ?b), namely, it holds that

‖w̃i‖2
cw + ‖λ̃i‖2

cλ
≤ γ

(
‖w̃i−1‖2

cw + ‖λ̃i−1‖2
cλ

)
(2.13)

where cλ > 0, cw = 1− µwµλσ2
max(B) > 0, and

γ
∆
= max

{
1− µwν(1− µwδ), 1− µwµλσ2(B)

}
< 1

�

Theorem 2.1 guarantees linear convergence for any step-sizes satisfying (2.12). Moreover,

the convergence rate is upper bounded by γ, which clearly shows the effect of B on the

convergence rate. We remark that in the analysis of Theorem 2.1 , we did not utilize any

augmented penalty term ρ‖Bw − b‖2, which is used in augmented Lagrangian formulations.

The presence of such term can allow us to remove the bound on µλ given in (2.12) and only

require µwµλ < 1/σ2
max(B). We will use this result in the following chapter to see the how

the absence of such penalty term affects the performance of decentralized algorithms.

2.3 Non-Incremental Implementation

In algorithm (2.3), the dual update uses the most recent primal estimate wi and not wi−1. A

more classical implementation updates both primal and dual variables based on the previous

iterates as listed in (2.4). The following results relates the non-incremental implementation

to the incremental implementation.

Lemma 2.3. Consider the following cost:

J ′(w)
∆
= J(w)− µλ

2
‖Bw − b‖2 (2.14)
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Then, the primal iterates of the non-incremental implementation (2.4) are equivalent to primal

iterates of incremental recursion (2.3) with cost J ′(w) instead of J(w).

Proof. Applying the incremental implementation (2.3) using cost J ′(w), we get:

{
wi = wi−1 − µw

(
∇J(wi−1) +BT[λi−1 − µλ(Bwi−1 − b)]

)
(2.15a)

λi = λi−1 + µλ(Bwi − b) (2.15b)

By introducing the change of variable λ′i = λi − µλ(Bwi − b), we can rewrite the previous

recursion as in (2.4). Thus, the primal iterates of recursion (2.4) are equivalent to the primal

iterates of recursion (2.15) if λ′−1 = λ−1 − µλ(Bw−1 − b).

A direct consequence of the previous lemma and Theorem 2.1 is the following corollary.

Corollary 2.1. Assume that the cost J(w) is δ-smooth and ν-strongly-convex and the step-

sizes satisfy:

µw <
1

δ + µλσ2
max(B)

, µλ ≤
ν

2σ2
max(B)

(2.16)

Then, recursion (2.4) converges linearly to the particular saddle-point (w?, λ?b) if λ′−1 = 0. �

The proof of the previous result is given in Appendix 2.B.

Appendices

2.A Proof of Theorem 2.1

Proof of Theorem 2.1. Subtracting w? and λ?b from both sides of (2.3) and using the opti-

mality conditions (2.7) we get the coupled error recursion:

w̃i = w̃i−1 − µw
(
∇J(wi−1)−∇J(w?) +BTλ̃i−1

)
(2.17a)

λ̃i = λ̃i−1 + µλBw̃i (2.17b)
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Squaring both sides of (2.17a) and (2.17b) we get

‖w̃i‖2 = ‖w̃i−1 − µw
(
∇J(wi−1)−∇J(w?)

)
‖2 + µ2

w‖BTλ̃i−1‖2

− 2µwλ̃
T
i−1B

(
w̃i−1 − µw

(
∇J(wi−1)−∇J(w?)

))
(2.18)

and

‖λ̃i‖2 = ‖λ̃i−1‖2 + µ2
λ‖Bw̃i‖2 + 2µλλ̃

T
i−1Bw̃i

(2.17a)
= ‖λ̃i−1‖2 + µ2

λ‖Bw̃i‖2 − 2µλµw‖BTλ̃i−1‖2

+ 2µλλ̃
T
i−1B

(
w̃i−1 − µw

(
∇J(wi−1)−∇J(w?)

))
(2.19)

Using the bound ‖Bw̃i‖2 ≤ σ2
max(B)‖w̃i‖2, multiplying equation (2.19) by cλ

∆
= µw/µλ and

adding to (2.18) gives:

‖w̃i‖2
cw + ‖λ̃i‖2

cλ
≤ ‖w̃i−1 − µw

(
∇J(wi−1)−∇J(w?)

)
‖2 + ‖λ̃i−1‖2

cλ
− µ2

w‖BTλ̃i−1‖2 (2.20)

where cw
∆
= 1− µwµλσ2

max(B). Note that from Lemma 2.2, λ?b lies in the range space of B.

Moreover, since λ−1 = 0, then we know that λ̃i will always lie in the range space of B. Thus,

from (2.10) it holds that ‖BTλ̃i−1‖2 ≥ σ2(B)‖λ̃i−1‖2. Using this bound in (2.20), we get:

‖w̃i‖2
cw + ‖λ̃i‖2

cλ
≤ ‖w̃i−1 − µw

(
∇J(wi−1)−∇J(w?)

)
‖2 + (1− µwµλσ2(B))‖λ̃i−1‖2

cλ
(2.21)

Since J(w) is δ-smooth, we know from (1.8):

‖∇J(wi−1)−∇J(w?)‖2 ≤ δw̃T
i−1

(
∇J(wi−1)−∇J(w?)

)
(2.22)
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Using this bound, it holds that

‖w̃i−1 − µw
(
∇J(wi−1)−∇J(w?)

)
‖2

= ‖w̃i−1‖2 − 2µww̃
T
i−1

(
∇J(wi−1)−∇J(w?)

)
+ µ2

w‖
(
∇J(wi−1)−∇J(w?)

)
‖2

(2.22)
≤ ‖w̃i−1‖2 − µw(2− δµw)w̃T

i−1

(
∇J(wi−1)−∇J(w?)

)
≤
(
1− µwν(2− µwδ)

)
‖w̃i−1‖2

where we used the strong-convexity bound (1.6) in the last step. Let γ1 = 1− µwν(1− µwδ).

Since cw
∆
= 1− µwµλσ2

max(B), it holds that:

(
1− µwν(2− µwδ)

)
‖w̃i−1‖2 = γ1‖w̃i−1‖2 − µwν‖w̃i−1‖2

= γ1‖w̃i−1‖2
cw − µw(ν − µλσ2

max(B)γ1)‖w̃i−1‖2

≤
(
1− µwν(1− µwδ)

)
‖w̃i−1‖2

cw (2.23)

where the last step we used the fact that the last term is non-positive under the conditions

µw <
1
δ
and µλ ≤ ν/σ2

max(B). Using the previous two equations in (2.21), we get:

‖w̃i‖2
cw + ‖λ̃i‖2

cλ
≤
(
1− µwν(1− µwδ)

)
‖w̃i−1‖2

cw + (1− µwµλσ2(B))‖λ̃i−1‖2
cλ

(2.24)

Equation (2.24) is exactly (2.13). Note that for positive step-sizes it holds that cλ = µw
µλ
> 0.

Moreover, cw = 1 − µwµλσ2
max(B) > 0 and 0 < γ2 = 1 − µwµλσ2(B) < 1 if µwµλ < 1

σ2
max(B)

.

This condition is satisfied under condition (2.12) because under these conditions we have

µwµλ <
ν

δσ2
max(B)

≤ 1

σ2
max(B)

where the last inequality hold because ν ≤ δ.
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2.B Proof of Corollary 2.1

Proof of Corollary 2.1. We know from Lemma 2.3 that the analysis of (2.3) follows directly

from Theorem 2.1 with cost J ′(w) = J(w)− µλ
2
‖Bw − b‖2 instead of J(w). Hence, we only

need to verify that J ′(w) is smooth and strongly-convex for small enough µλ. Using the

triangle inequality and Lipschitz property of the gradient (1.7) it can be easily verified that:

‖∇J ′(w1)−∇J ′(w2)‖ = ‖∇J(w1)−∇J(w2)− µλBTB(w1 − w2)‖

≤
(
δ + µλσ

2
max(B)

)
‖w1 − w2‖ (2.25)

Moreover, from the strong-convexity property (1.6) it also holds that

(
∇J ′(w1)−∇J ′(w2)

)T
(w1 − w2) =

(
∇J(w1)−∇J(w2)

)T
(w1 − w2)− µλ‖B(w1 − w2)‖2

≥ ν‖w1 − w2‖2 − µλ‖B(w1 − w2)‖2

≥
(
ν − µλσ2

max(B)
)
‖w1 − w2‖2 (2.26)

Therefore, the cost J ′(w) is δ + µλσ
2
max(B) smooth and ν − µλσ2

max(B) > 0 strongly-convex

if µλ < ν/σ2
max(B). Using these Lipschitz and strong-convexity constants in (2.12) we get

conditions (2.16).
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CHAPTER 3

Decentralized Primal-Dual Algorithms

In this chapter, we study the decentralized optimization problem (1.1) where a network of

agents are interested in minimizing a sum of local cost functions. We propose a general

algorithmic framework for the solution of such problems that captures various existing state-

of-the-art algorithms. We then establish the linear convergence of this general algorithm

when the aggregate cost function is strongly-convex. Our unified analysis reveals interesting

facts about the performance of these various algorithms such as the advantages of the adapt-

then-combine variants over the other variants. Finally, we study the effect of the augmented

Lagrangian penalty term on the stability and performance of decentralized algorithms.

3.1 Decentralized Optimization Set-up

Consider a network of K agents that are connected through a static and undirected network.

Through only local interactions (i.e., with agents only communicating with their immediate

neighbors), each node is interested in finding a solution to the following problem:

w? = arg min
w∈RM

J̄(w)
∆
=

1

K

K∑
k=1

Jk(w) (3.1)

where Jk(w) : RM → R is a local cost function associated with agent k. We adopt the

following assumption throughout this chapter.

25



Assumption 3.1. (Cost function): Each cost function Jk(w) is convex with δ-Lipschitz

continuous gradients:

‖∇Jk(wo)−∇Jk(w•)‖ ≤ δ‖wo − w•‖ (3.2)

for any wo and w• and some δ > 0. Moreover, the aggregate cost J̄(w) is ν̄-strongly-convex:

(wo − w•)T
(
∇J̄(wo)−∇J̄(w•)

)
≥ ν̄‖wo − w•‖2 (3.3)

for any wo and w• and constant 0 < ν̄ ≤ δ. �

Note that from the strong-convexity condition (3.3), it holds that the global solution w? is

unique.

3.1.1 Related Works

Various gradient based algorithms have been proposed to solve decentralized optimization

problems of the form (3.1) – see [39,53–65]. Only few works have attempted to unify some

of these algorithms [121–123]. For example, the work [122] proposed a general method that

includes EXTRA [55] and DIGing [61, 62] (for static and undirected network) as special

cases. However, the method in [122] does not include the adapt-then-combine1 (ATC)

gradient-tracking algorithms [57, 59, 60]. The work [121] proposed a canonical form that

captures decentralized algorithms that require a single round of communication and gradient

computation per iteration, which does not include the Aug-DGM (ATC-DIGing) [59, 60].

Reference [121] only focused on the canonical form without providing any analysis for this

form. The work [123] studied a special class of the algorithms in [121] and provided worst

case linear convergence rates through numerical solution of semidefinite programs. This

special class does not include algorithms that require communicating two different vectors

per iteration such as gradient tracking methods [57–62].

1The Adapt-then-Combine (ATC) structure was first proposed in [69] to distinguish between different
implementations of diffusion learning strategies – see also [8, Ch. 7].
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Different from existing works we propose an adapt-then-combine (ATC) primal-dual

framework that captures more algorithms including EXTRA [55], Exact diffusion [39],

NIDS [56], and different variation of the gradient tracking methods [57–61] including Aug-

DGM [59]. Our framework is the first to show that the ATC gradient-tracking methods can

be represented as primal-dual recursions. We then establish the linear convergence of this

framework under Assumption 3.1. The linear convergence result clarifies the performance of

these various algorithms with respect to each other. In particular, we show that the ATC

implementations have larger step-size stability range than non-ATC implementations.

We will see that most state-of-the-art methods are based on augmented Lagrangian (AL)

derivations. It was found in [124] that unlike AL methods, Lagrangian based methods

(without AL penalty term) suffer from stability issues when the individual costs are not

strongly-convex. However, it is unclear what the benefit of the AL penalty term is if the

individual costs are strongly-convex. Due to our unified Lagrangian and AL proof technique

from the previous chapter, we clarify the effect of the AL penalty term on the convergence

rates of decentralized algorithms.

3.1.2 Contribution

Given the above, this chapter has three contributions: I) we propose an adapt-then-combine

(ATC) unifying primal-dual framework that covers many existing state-of-the-art algorithms

[39,55–62]. To our knowledge, this is the first primal-dual interpretation of the ATC gradient

tracking methods [57–60]. II) we provide a unifying linear convergence analysis for strongly-

convex aggregate cost functions. Our step-size and convergence rate upper bounds shed light

on the stability and performance of these various methods. Most notably, we show that the

ATC implementations are more stable than non-ATC implementations. III) we show the

effect of the augmented penalty term on the convergence rate of decentralized algorithms. It

is found that the penalty term can greatly improve the convergence rate when the individual

costs are ill-conditioned but the aggregate cost is well conditioned.
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3.2 Adapt-then-Combine Framework

In this section, we present an adapt-then-combine (ATC) algorithmic framework that covers

various state-of-the-art algorithms as special cases.

3.2.1 General Primal-Dual Algorithm

For algorithm derivation and motivation purposes, we will rewrite problem (3.1) in an

equivalent manner. To do that, we let wk ∈ RM denote a local copy of w available at agent k

and introduce the network quantities:

W
∆
= col{w1, · · · , wK} ∈ RMK (3.4)

J (W)
∆
=

K∑
k=1

Jk(wk) (3.5)

Further, we introduce two general symmetric matrices B ∈ RMK×MK and C ∈ RMK×MK that

satisfy the following conditions:

{BW = 0 ⇐⇒ w1 = · · · = wK (3.6a)

CW = 0 ⇐⇒ BW = 0 or C = 0 (3.6b)

For algorithm derivation, the matrices {B, C} can be any general symmetric consensus matrices.

Later, we will see how to specifically choose these matrices to get different decentralized

implementations – see Section 3.2.3. With these quantities, it is easy to see that problem

(3.1) is equivalent to the following problem:

minimize
W∈RMK

J (W) +
ρ

2
‖W‖2

C, s.t. BW = 0 (3.7)
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where ρ ≥ 0, and the matrix C ∈ RMK×MK is a positive semi-definite consensus penalty

matrix. To solve problem (3.7), we consider the saddle-point formulation:

min
W

max
Y

L(W, Y)
∆
= J (W) +

1

µ
YTBW +

ρ

2
‖W‖2

C (3.8)

where µ > 0 and Y ∈ RMK is the dual variable. To solve (3.8), we propose the following

algorithm: let W−1 take any arbitrary value and Y−1 = 0 or Y−1 ∈ Range(B). Repeat for

i = 0, 1, · · ·


Zi = (I − C)Wi−1 − µ∇J (Wi−1)− BYi−1 (primal-descent) (3.9a)

Yi = Yi−1 + BZi (dual-ascent) (3.9b)

Wi = ĀZi (Combine) (3.9c)

In the above algorithm, Ā = Ā⊗IM where Ā is a symmetric and doubly-stochastic combination

matrix. Step (3.9a) is a gradient descent followed by a gradient ascent step in (3.9b), both

applied to the saddle-point problem (3.8) with step-size µ and ρ = 1
µ
. The last step (3.9c) is

a combination step that enforces further agreement. Next we show that by proper choices

of Ā, B, and C we can recover many state of the art algorithms. To do that, we need to

introduce the combination matrix associated with the network.

3.2.2 Network Combination Matrix

Recall from Section 1.B, that the network is associated with the matrix A = [ask] ∈ RK×K

where the weight ask = 0 if there is no edge connecting agents k and s. Using this matrix, we

introduce the augmented network combination matrix

A = A⊗ IM (3.10)

Recall from Section 1.B that the matrix A (different from Ā) is assumed to be symmetric,

doubly stochastic matrix , and primitive. Under these conditions it holds that (IMK−A)W = 0
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if, and only, if wk = ws for all k, s — see Lemma 1.1. Note that

AW =


∑
s∈N1

as1ws

...∑
s∈NK

asKws


Hence, the k-th block

∑
s∈Nk

askws can be computed by agent k through communicating with

its neighbors Nk only. Therefore, by choosing the matrices {Ā,B, C} from A we can recover

different decentralized algorithms as we show next.

3.2.3 Specific Decentralized Algorithms

We start by rewriting recursion (3.9) in an equivalent manner by eliminating the dual variable

Yi. Thus, from (3.9a) it holds that

Zi − Zi−1 = (I − C)(Wi−1 − Wi−2)− B(Yi−1 − Yi−2)− µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(3.9b)
= (I − C)(Wi−1 − Wi−2)− B2Zi−1 − µ

(
∇J (Wi−1)−∇J (Wi−2)

)
for i ≥ 1 and initialization can be set to Z0 = (I − C)W−1 − µ∇J (W−1) and W0 = ĀZ0 with

arbitrary W−1. Rearranging the previous equation we can rewrite (3.9) equivalently as:

Zi = (I − B2)Zi−1 + (I − C)(Wi−1 − Wi−2)− µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(3.11a)

Wi = ĀZi (3.11b)

for i ≥ 1. Utilizing the above recursion, we will now choose specific matrices {Ā,B, C} and

show that we can recover many state of the art algorithms:

• (DIGing [61,62]): If B2 = (I −A)2, C = I −A2, and Ā = I in (3.11a), we get:

Wi = A(2Wi−1 −AWi−2)−µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(3.12)
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where we used the fact Wi = ĀZi = Zi from (3.11b). Consider the DIGing algorithm

from [61,62]:

{
Wi = AWi−1 − µX i−1 (3.13a)

X i = AX i−1 +∇J (Wi)−∇J (Wi−1) (3.13b)

for i ≥ 0 with X−1 = ∇J (W−1) and arbitrary W−1. By eliminating the gradient tracking

variable X i, it can be shown that recursion (3.12) is equivalent to the DIGing algorithm

(3.13) – see [62, Section 2.2.1]. Since agent k is responsible for one block of Wi in (3.13),

each agent k can update its block vector wk,i as follows:

wk,i =
∑
s∈Nk

askws,i−1 − µxk,i−1 (3.14a)

xk,i =
∑
s∈Nk

askxs,i−1 +∇Jk(wk,i)−∇Jk(wk,i−1) (3.14b)

for i ≥ 0 with xk,−1 = ∇Jk(wk,−1) and arbitrary wk,−1.

• (EXTRA [55]): If B2 = 0.5(I −A), C = 0.5(I −A), and Ā = I in (3.11a), we get:

Wi = 0.5(I +A)(2Wi−1 − Wi−2)−µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(3.15)

where we used the fact Wi = ĀZi = Zi from (3.11b). Recursion (3.15) is the EXTRA

algorithm2 from [55]. A per agent implementation of (3.15) can be obtained as follows.

Let Ā = [āsk] = (IK +A)/2. Initialize wk,0 =
∑

s∈Nk āskws,−1−µ∇Jk(wk,−1) with wk,−1

set to any arbitrary value . For every agent k, repeat for i = 0, 1, 2, ...

wk,i =
∑
s∈Nk

āsk(2ws,i−1 − ws,i−2)−µ
(
∇Jk(wk,i−1)−∇Jk(wk,i−2)

)
(3.16)

2Recursion (3.15) is the recommended version of EXTRA with W̃ = 0.5(I +W ) – see [55]
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• (Exact diffusion [39]): If we choose Ā = 0.5(I +A), C = 0 and B2 = 0.5(I −A) in

(3.11a), we get:

Zi = ĀZi−1 + Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
Multiplying the previous equation by Ā and noting from (3.11b) that Wi = ĀZi, we

get:

Wi = 0.5(I +A)

(
2Wi−1 − Wi−2 − µ

(
∇J (Wi−1)−∇J (Wi−2)

))
(3.17)

The above recursion is the exact diffusion recursion first proposed in [39]. We also note

that if we choose C = 0, B2 = c(I −A) (c ∈ R), and Ā = I − B2 then we recover the

smooth case of the NIDS algorithm from [56]. As highlighted in [56], NIDS is identical

to exact diffusion for the smooth case when c = 0.5. At the agent level, recursion (3.17)

can be represented as follows [39]. Let Ā = [āsk] = (IK + A)/2. Initialize xk,−1 = ψk,−1

and wk,−1 arbitrary. For every agent k, repeat for i = 0, 1, 2, ...

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (3.18a)

zk,i = wk,i−1 + ψk,i − ψk,i−1 (3.18b)

wk,i =
∑
s∈Nk

āskzs,i (3.18c)

• (Aug-DGM [59]): Let C = 0, Ā = A2, and B = I −A. Substituting into (3.11a):

Zi = (2A−A2)Zi−1 + Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
By multiplying the previous equation by Ā = A2 and noting from (3.11b) that Wi =

A2Zi, we get the recursion:

Wi = A
(

2Wi−1 −AWi−2 − µA
(
∇J (Wi−1)−∇J (Wi−2)

))
(3.19)
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The above recursion is equivalent to the Aug-DGM [59] (also known as ATC-DIGing [60])

algorithm:

{
Wi = A(Wi−1 − µX i−1) (3.20a)

X i = A
(
X i−1 +∇J (Wi)−∇J (Wi−1)

)
(3.20b)

By eliminating the gradient tracking variable X i, we can rewrite the previous recursion

as (3.19) – see Appendix 3.A. Since agent k is responsible for one block of Wi in (3.20),

each agent k can update its block vector wk,i as follows:

wk,i =
∑
s∈Nk

ask
(
ws,i−1 − µxs,i−1

)
(3.21a)

xk,i =
∑
s∈Nk

ask
(
xs,i−1 +∇Js(ws,i)−∇Js(ws,i−1)

)
(3.21b)

for i ≥ 0 with xk,−1 = ∇Jk(wk,−1) and arbitrary wk,−1.

• (ATC tracking method [57,58]): Let C = I −A and B = I −A. Substituting into

(3.11a):

Zi = (2A−A2)Zi−1 +AWi−1 −AWi−2 − µ(∇J (Wi−1)−∇J (Wi−2))

By multiplying the previous equation by Ā = A and noting from (3.11b) that Wi = AZi,

we get the recursion:

Wi = A
(

2Wi−1 −AWi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

))
(3.22)

The above recursion is equivalent to the following variant of the ATC tracking method

[57,58]:

{
Wi = A(Wi−1 − µX i−1) (3.23a)

X i = AX i−1 +∇J (Wi)−∇J (Wi−1) (3.23b)
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By eliminating the gradient tracking variable X i, we can show that the previous recursion

is exactly (3.22) – see Appendix 3.A. Since agent k is responsible for one block of Wi in

(3.23), each agent k can update its block vector wk,i as follows:

wk,i =
∑
s∈Nk

ask
(
ws,i−1 − µxs,i−1

)
(3.24a)

xk,i =
∑
s∈Nk

askxs,i−1 +∇Jk(wk,i)−∇Jk(wk,i−1) (3.24b)

for i ≥ 0 with xk,−1 = ∇Jk(wk,−1) and arbitrary wk,−1. It can also be shown that (3.23)

is equivalent to the following recursion as well (see Appendix 3.A):

{
Wi = AWi−1 − µX i−1 (3.25a)

X i = A
(
X i−1 +∇J (Wi)−∇J (Wi−1)

)
(3.25b)

Remark 3.1 (Communication cost). Notice that EXTRA (3.15) and exact diffusion

(3.17) communicate one vector per iteration. On the other hand, the gradient tracking method

(3.23) and DIGing (3.13) requires communicating two vectors at each iteration i. Similarly,

the Aug-DGM (ATC-DIGing) method (3.20) also requires sharing two variables; moreover, it

requires communicating the two variables , Wi−1 − µX i−1 and X i−1 +∇J (Wi)−∇J (Wi−1),

sequentially (at different communication rounds). �

3.3 Convergence Results

In this section, we will give the auxiliary results leading to the main convergence result. To

this end, we will first derive the error recursion.

It can be easily verified that the optimality conditions of problem (3.7) (see e.g. (2.7))

must satisfy the following conditions:

{
0 = µ∇J (W?) + BY? (3.26a)

0 = BW? (3.26b)
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Since problems (3.1) and (3.7) are equivalent, it holds that W? = 1K ⊗ w? where w? is the

unique solution for problem (3.1). Recall from Lemma 2.2 in Chapter 2 that there exists a

particular saddle-point (W?, Y?b) where Y?b is a unique vector that belongs to the range space

of B. In the following we will show that the iterates (Wi, Yi) in (3.9) converge linearly to the

point (W?, Y?b). To this end, we introduce the error quantities:

W̃i
∆
= Wi − W?

Ỹi
∆
= Yi − Y?b

Z̃i
∆
= Zi − W?

Note that from condition (3.6) it holds that CW? = 0 since W? = 1K ⊗ w?. Thus, using

(3.26a)–(3.26b) in (3.9a)–(3.9c) we can reach the following error recursions:


Z̃i = (I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

)
− BỸi−1 (3.27a)

Ỹi = Ỹi−1 + BZ̃i (3.27b)

W̃i = ĀZi − W? = ĀZ̃i (3.27c)

where equation (3.27c) holds since ĀW? = W?. This follows from the fact that W? = 1K ⊗w?

and Ā = Ā⊗ IM with Ā being doubly-stochastic. To analyze (3.27), we need the following

technical conditions.

Assumption 3.2. (Combination matrices) It is assumed that either one of the following

conditions hold: {
0 < Ā ≤ I − B2 (3.28a)

0 ≤ C < 2I (3.28b)

or {
Ā = I (3.29a)

0 ≤ B2 ≤ C < I (3.29b)

�
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Conditions (3.28a)–(3.28b) will be utilized for the analysis of the ATC algorithms and

conditions (3.29a)–(3.29b) will be used for the analysis of NON-ATC algorithms (Ā = I).

Remark 3.2 (Convergence conditions). Recall that for exact diffusion [93] (see equation

(3.17)) we have Ā = 0.5(I + A) = I − B2 and C = 0. Note that any primitive symmetric

and doubly stochastic matrix A satisfies −1 < A ≤ 1 – see Section [8, Lemma F.4]. Thus,

exact diffusion satisfies conditions (3.28a)–(3.28b) for any primitive symmetric and doubly

stochastic matrix A. Similar to exact diffusion, NIDS [56] also satisfies similar conditions.

Recall also for EXTRA [55] (see equation (3.15)) we have Ā = A and B2 = C = 0.5(I −A),

which satisfy conditions (3.29a)–(3.29b) for any primitive symmetric and doubly stochastic

matrix A. For the ATC tracking methods [57–60], the conditions translate to the requirement

that the eigenvalues of A must be in (0, 1], rather than the typical (−1, 1] — see e.g. [60].

Although this condition is not necessary, it can be easily satisfied by redefining A← 0.5(I+A).

Note that most works that analyze decentralized methods under more relaxed conditions

on the network topology impose restrictive step-size conditions that depend on the network

and on the order of O(νθ1/δθ2) where 0 < θ1 ≤ 1 and θ2 > 1 – see [60, 61, 63, 122]. On the

other hand, we require step sizes on the order of O(1/δ). Moreover, we will show that any

algorithm that fits into our setup with C = 0 can use a step-size as large as the centralized

gradient descent – see discussion after Theorem 3.1.

�

For the statement of our next results, we let σ(B2) = σ2(B) denote the minimum non-zero

singular value of the matrix B2. Since B2 is symmetric, its singular values are equal to its

eigenvalues and condition (3.28a) or (3.29b) implies 0 < σ2(B) < 1. We also let σmax(C)

denote the maximum singular value of C.

In our analysis, we will utilize the following useful result from [55, Proposition 3.6].

Lemma 3.1. (Augmented Cost) Under Assumption 3.1, the penalized augmented cost
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J (W) + ρ
2
‖W‖2

B2 with any ρ > 0 is restricted strongly-convex with respect to W?:

(W − W?)T
(
∇J (W)−∇J (W?)

)
+ ρ‖W − W?‖2

B2 ≥ ν̄ρ‖W − W?‖2 (3.30)

where

ν̄ρ = min

{
ν̄ − 2δc,

ρσ2(B)c2

4(c2 + 1)

}
> 0, for any c ∈

(
0,
ν̄

2δ

)
(3.31)

for any W with W? = 1⊗w? and where w? denotes the minimizer of (3.1). Moreover, ν̄ρ → ν̄

as ρ→∞. �

The following lemma gives a useful inequality that will be used in our next results. The proof

is provided in Appendix 3.B.

Lemma 3.2. (Useful inequality) If Assumption 3.1 and step-size condition µ < 2−σmax(C)
δ

hold, then the following inequality holds for any ρ > 0 and for all i ≥ 0:

‖Z̃i‖2
Q + ‖Ỹi‖2 ≤

(
1− µν̄ρ(2− σmax(C)− µδ)

)
‖W̃i−1‖2 +

(
1− σ2(B)

)
‖Ỹi−1‖2

+ µρ(2− µδµ)‖W̃i−1‖2
B2 − (2− µδµ)‖W̃i−1‖2

C (3.32)

where Q = I − B2 and ν̄ρ denote the strongly-convex parameter given in (3.31).

�

The previous lemma applies for the ATC primal-dual case (ATC-PD) where Ā is a primitive

combination matrix, which covers exact-diffusion and ATC-gradient-tracking methods; and

the NON-ATC primal-dual case (NON-ATC-PD) where Ā = I, which covers EXTRA and

DIGing. For the convergence result we will distinguish between these two cases. We start by

stating the result for the ATC-PD case.

Theorem 3.1. (ATC-PD) Let Assumption 3.1 and condition (3.28) given in Assumption
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3.2 hold. If the step-size satisfies

µ <
2− σmax(C)

δ
(3.33)

then it holds that ‖W̃i‖2
I+B2 +‖Ỹi‖2 ≤ γiCo where Co ≥ 0 and

γ = max
{

1−µν̄ρ(2− σmax(C)− µδ), 1− σ2(B), µρ(2− σmax(C)− µδ)
}
< 1 (3.34)

for any 0 < ρ < 1/µ(2− σmax(C)− µδ) with ν̄ρ denoting the strongly-convex parameter given

in (3.31).

�

The proof of Theorem 3.1 is given in Appendix 3.C. We see that the convergence rate γ

given in (3.34) clearly shows how the matrices B and C affect the convergence rate. For

example, recall that for exact diffusion, σ2(B) denote the smallest non-zero singular value (or

eigenvalue) of the matrix 0.5(I −A). Thus, the effect of the network on the convergence rate

is evident through the term 1− σ2(B), which becomes close to one as the network becomes

sparser. Another useful conclusion is for the case when C = 0, the step-size bound becomes

(3.33) becomes µ < 2
δ
, which is as large as the centralized gradient descent. This means

that exact diffusion and Aug-DGM (ATC-DIGing) have wider stability range than the other

variation discussed in Section 3.2 with C 6= 0. Moreover, for C = 0 the convergence rate

becomes γ = max{1−µν(2− µδ), 1− σ2(B)} < 1, which separates the network effect from

the cost function. We now give the result for the NON-ATC case, which covers EXTRA as

special case.

Theorem 3.2. (NON-ATC-PD) Let Assumption 3.1 and condition (3.29) given in As-

sumption 3.2 hold. If the step-size satisfies

µ ≤ 1− σmax(C)
δ

(3.35)

38



then it holds that ‖W̃i‖2
Q + ‖Ỹi‖2 ≤ γiCo where Q > 0, Co ≥ 0, and

γ
∆
= max

{
1− µ(2− σmax(C)− µδ)ν̄ρ, 1− σ(B2)

}
< 1 (3.36)

with ν̄ρ denoting the strongly-convex parameter given in (3.31) for any ρ satisfying (3.55).

�

The proof of Theorem 3.2 is given in Appendix 3.D. Note that for the EXTRA case (C = B2)

our step-size condition (3.35) does not depend on the strongly-convex parameter. On the

other hand, the bound given in the original work [55, Theorem 3.7] is µ < 2ν̄ρ(1−σmax(B2))

δ2
,

which scales badly for ill-conditioned problems. We see that the step-size condition (3.35)

range is smaller than the NON-ATC case. This means that the ATC case has larger stability

range than the NON-ATC case. We can see from this that exact-diffusion (3.17) has larger

stability range than EXTRA (3.15), which is inline with the results from [93]. Similarly,

ATC-DIGing has larger stability range than DIGing, which has not been shown prior to this

work.

3.4 Influence of Augmented Lagrangian Term

So far we have utilized the existence of the matrices C or Ā in (3.9) to establish our result

under strongly-convex aggregate costs. In this section, we ask our self what is the affect of

these terms on the performance of decentralized algorithms. To answer this question it is

sufficient to study the primal-dual gradient algorithms (2.3) applied on any specific instance

of problem (3.7). Thus, a direct application of (2.3) to the Lagrangian of problem (3.7) with

C = B2 gives:

Wi = Wi−1 − µw∇Jρ(Wi−1)− µwBλi−1 (3.37a)

λi = λi−1 + µλBWi (3.37b)
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where Jρ(W) = J (W) + ρ
2
‖W‖2

B2 and we are allowing ρ = 0. We will next show how the

presence of the term ρ
2
‖W‖2

B2 affects the performance of recursion (3.37).

As before, one can choose different choices for B and recover different algorithms. However,

for illustration and later simulation, we will choose B = (I −A)
1
2 . Recursion (3.37) is not

decentralized yet because B = (I −A)
1
2 need not have the network structure. However, this

can be easily handled by removing the dual variable or by a change of variable. We choose

the later and let Yi = Bλi and multiply (3.37b) by B so that (3.37) becomes:

{
Wi = Wi−1 − µw∇Jρ(Wi−1)− µwYi−1 (3.38a)

Yi = Yi−1 + µλB2Wi (3.38b)

Since B2 = (I −A) has the network structure, then the k-th block of B2Wi = col{uk,i}Kk=1

(of size M) has the decentralized form uk,i = wk,i −
∑

s∈Nk askws,i where Nk denotes the

neighbors of agent k, including agent k. Therefore, recursion (3.38) is decentralized and

each can update its corresponding k-th blocks in Wi and Yi. The convergence of (3.38) easily

follows from the convergence of recursion (3.37), which follows from Theorem (2.1).

Corollary 3.1. Let (W?, λ?b) be the optimal point for the Lagrangian of (3.7) where λ?b lies

in the range space of B. Assume that the cost Jρ(W) is ν-strongly convex and J (W) has δ-

Lipschitz gradients. Under the step-size conditions in Theorem 2.1 with B = B and Lipschitz

constant δρ = δ + ρσ2
max(B) , recursion (3.38a)–(3.38b) converges linearly to (W?,Bλ?b) if

Y−1 = 0.

Proof. Since J (W) has δ-Lipschitz gradients, it holds that Jρ(W) = J (W) + ρ
2
‖B2W‖2 is

δρ = δ + ρσ2
max(B)-smooth. We know that under the conditions in Theorem 2.1, recursion

(3.37a)–(3.37b) converges to the point (W?, λ?b) linearly if λ−1 = 0. Now, note that if λ−1 = 0

and Y−1 = 0, then from (3.37b) and (3.38b) it holds that Yi = Bλi for all i ≥ −1. Since λi

lies in the range space of B, it follows from Lemma 2.1 that Yi = 0 ⇐⇒ λi = 0. Therefore,

if recursions (3.37a)–(3.37b) converge linearly to (W?, λ?b), then recursions (3.38a)–(3.38b)

converge linearly to (W?,Bλ?b).
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It can be seen that the addition of the augmented term with ρ > 0 leads to a larger Lipschitz

constant δρ = δ+ρσ2
max(B) > δ and consequently to a smaller stability range for µw compared

to the case when ρ = 0. However, the augmented term can be beneficial as we now explain.

From Corollary (3.1) and Theorem 2.1 we have that the convergence rate of recursion (3.38)

is upper bounded by

γ = max
{

1− µwν(1− µwδρ), 1− µwµλσ2(B)
}

(3.39)

If the aggregate cost J̄(w) = 1
K

∑K
k=1 Jk(w) : RM → R is ν̄-strongly-convex, then from

Lemma 3.1 we know that the augmented penalized cost Jρ(W) is ν̄ρ- strongly convex for

ρ > 0. Therefore, for ρ > 0 recursion (3.38) is guaranteed to converges linearly as long as the

aggregate cost J̄(w) is strongly-convex, which does not necessarily imply that each individual

cost is strongly-convex. In this case ν = ν̄ρ and γ will depend on ν̄ρ. On the other hand,

if ρ = 0 then J0(W) = J (W) =
∑K

k=1 Jk(wk) : RMK → R is ν-strongly-convex if, and only,

if each local cost Jk(wk) is νk-strongly convex, so that ν = min νk. This implies that for

ρ = 0, the cost J0(W) = J (W) is not strongly-convex (can even be non-convex) unless each

individual cost is strongly convex, which unlike the case ρ > 0 can lead to convergence issues.

Moreover, the convergence rate γ will depend on ν = min νk. Since from (3.31) we know that

ν̄ρ ≈ ν̄ for large enough ρ, the convergence rate when ρ > 0 depends on ν̄. On the other

hand, for ρ = 0 the convergence rate depends on ν = min νk. Therefore, the AL method can

converge much faster if ν̄ is much larger than ν = min νk. However, when ν̄ ≈ ν, then the AL

penalty term is not that beneficial. These findings will be illustrated by means of simulations

in the next section.

3.5 Numerical Simulations

We consider the distributed optimization problem (3.1) with quadratic costs Jk(w) = wTRkw+

rTkw where w ∈ R20, Rk ∈ R20×20, and rk ∈ R20. A network of K = 20 agents shown in top

rightmost side of Fig. 3.1 was randomly generated across a 1.2 × 1.2 grid and two agents
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are neighbors if they are less than d = 0.25 distance away from each other. This network is

used for all implementations. The matrix A is generated using the Metropolis rule [8]. In all

results, PD non-distributed refers to (3.37) (ρ = 0), PD distributed refers to (3.38) ( ρ = 0),

and AL PD distributed refers to (3.38) with ρ > 0. The step-sizes are manually chosen to

get the best possible convergence rate for each algorithm.

The top leftmost plot of Fig. 3.1 shows the evolution of the relative error ‖Wi−W?‖2/‖W?‖2

over iterations. The matrix Rk > 0 is a random diagonal matrix with integer diagonal entries,

each chosen between [2, 8], which is well conditioned because 8/2 is not very large. Similarly,

rk is randomly generated vector with each entry uniformly selected between [0, 2]. The

dual step-size is set to µλ = 30 for all algorithms in the top leftmost plot of Fig. 3.1. All

algorithms converge linearly with close performance. It is seen that PD non-distributed and

PD distributed have identical performance. We also see that unlike PD distributed, AL PD

distributed has a smaller primal stability range for a fixed dual step-size – see explanation

below Corollary 3.1. To test the dual stability range, we fixed µw = 0.07 and simulated PD

distributed and AL PD distributed for different dual step-size. The results are shown in the

middle leftmost plot of Fig. 3.1. We see that in this settings, the AL PD distributed also

has a smaller dual stability range for a fixed primal step-size. Under the same set-up, we

compare the algorithm with the EXTRA algorithm from [55] and exact diffusion from [39],

both are AL based methods. The results are shown in the middle rightmost plot of Fig. 3.1.

We see that all algorithms perform similarly. In this scenario, we do not see any advantages

of AL methods compared to the Lagrangian method (ρ = 0).

To show the advantages of the AL method, we consider the same setting as before but

under two scenarios: non-convex individual costs or ill-conditioned strongly-convex costs. For

the non-convex case, we let all entries to be zero except for the following diagonal entries:

the (k, k)-th diagonal entry for each agent (Rk(k, k)) are chosen randomly between [2, 8], the

entries Rk(k−1, k−1) = −Rk−1(k − 1, k − 1)/2 for all k ≥ 2. In this case, the aggregate cost∑K
k=1(w

TRkw + rTkw) is strongly convex since R =
∑K

k=1 Rk > 0, but the individual costs

{Jk(w)}k≥2 are non-convex and therefore J (W) =
∑K

k=1(wT
kRkwk + rTkwk) is non-convex as
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well. This is because the Hessian ∇2J (W) = blkdiag{Rk}Kk=1 is indefinite. The results of this

set-up is shown in the bottom leftmost plot of Fig. 3.1. We see that the AL PD distributed

method still converges linearly. However, the PD distributed method diverges even under

much smaller step-sizes than the previous set-ups. The bottom rightmost plot of Fig. 3.1

shows the ill conditioned case. We let all entries to be zero except for the diagonal entries:

the (k, k)-th diagonal entry for each agent (Rk(k, k)) are chosen randomly between [2, 8] and

the other diagonal entries are chosen uniformly between (0, 1), which can be very small. In

this case, we see that the Lagrangian methods performs poorly compared to the other PD

AL method (ρ = 50) and the other AL methods, which is in agreement with our conclusion

from the previous section.

43



Strongly-convex aggregate cost
Non-convex local costs well conditioned aggregate cost

ill-conditioned local costs

Figure 3.1: Simulation results illustrating the influence of the AL term.
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Appendices

3.A Equivalent Representation

3.A.1 Aug-DGM (ATC-DIGing)

Here we show that (3.20) is equivalent to (3.19). From (3.20a) we have

Wi −AWi−1 = A
(
Wi−1 −AWi−2 − µ

(
X i−1 −AX i−2

))
(3.20b)

= A
(
Wi−1 −AWi−2 − µA

(
∇J (Wi−1)−∇J (Wi−2)

))

Rearranging the previous equation we get:

Wi = A
(

2Wi−1 −AWi−2 − µA
(
∇J (Wi−1)−∇J (Wi−2)

))

which is recursion (3.19).

3.A.2 ATC-Tracking I

In a similar manner we can show that (3.23) is equivalent to (3.22). From (3.23a) we have

Wi −AWi−1 = A
(
Wi−1 −AWi−2 − µ

(
X i−1 −AX i−2

))
(3.23b)

= A
(
Wi−1 −AWi−2 − µ

(
∇J (Wi−1)−∇J (Wi−2)

))

Rearranging the previous equation we get:

Wi = A
(

2Wi−1 −AWi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

))

which is recursion (3.22).
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3.A.3 ATC-Tracking II

Repeating similar arguments to the previous section, we can show that (3.25) is equivalent

to (3.22). From (3.25a) we have

Wi −AWi−1 = A
(
Wi−1 −AWi−2

)
− µ

(
X i−1 −AX i−2

)
(3.25b)

= A
(
Wi−1 −AWi−2

)
− µA

(
∇J (Wi−1)−∇J (Wi−2)

)
Rearranging the previous equation we get:

Wi = A
(

2Wi−1 −AWi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

))

which is recursion (3.22).

3.B Proof of Lemma 3.2

Proof. Squaring both sides of (3.27a) and (3.27b) we get

‖Z̃i‖2 = ‖(I − C)W̃i−1 − µ
(
∇J (Wi−1)−∇J (W?)

)
‖2 + ‖BỸi−1‖2

− 2ỸTi−1B
(
(I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

))
(3.40)

and

‖Ỹi‖2 = ‖Ỹi−1 + BZ̃i‖2 = ‖Ỹi−1‖2 + ‖BZ̃i‖2 + 2ỸTi−1BZ̃i
(3.27a)

= ‖Ỹi−1‖2 + ‖Z̃i‖2
B2 − 2‖BỸi−1‖2

+ 2ỸTi−1B
(
(I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

))
(3.41)

Adding equation (3.41) to (3.40) and rearranging, we get

‖Z̃i‖2
Q+‖Ỹi‖2 =‖(I − C)W̃i−1−µ

(
∇J (Wi−1)−∇J (W?)

)
‖2 +‖Ỹi−1‖2−‖BỸi−1‖2 (3.42)
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where Q = I − B2 is positive definite from (3.28a). Since Y0 = 0 and Yi = Yi−1 + BZi, we

know Yi ∈ Range(B) for any i. Thus, both Yi and Y?b lie in the range space of B, and it holds

that ‖BỸi−1‖2 ≥ σ(B2)‖Ỹi−1‖2. Therefore, we can bound (4.41) by

‖Z̃i‖2
Q + ‖Ỹi‖2 ≤ ‖W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
‖2 +(1− σ(B2))‖Ỹi−1‖2

(3.43)

Since J (W) + 1
2µ
‖W‖2

C is δµ = δ + 1
µ
σmax(C)-smooth, it holds from (1.8) that:

∥∥∇J (Wi−1)−∇J (W?) +
1

µ
CW̃i−1

∥∥2 ≤ δµW̃
T
i−1

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
(3.44)

Moreover, recall from (3.30) that

−W̃T
i−1

(
∇J (Wi−1)−∇J (W?)

)
≤ −ν̄ρ‖W̃i−1‖2 + ρ‖W̃i−1‖2

B2 (3.45)

for any ρ > 0. Using the above two bounds, it holds that:

‖W̃i−1 − µ
(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
‖2

(3.44)
≤ ‖W̃i−1‖2 − µ(2− µδµ)W̃T

i−1

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
= ‖W̃i−1‖2 − µ(2− µδµ)W̃T

i−1

(
∇J (Wi−1)−∇J (W?)

)
− (2− µδµ)‖W̃i−1‖2

C

(3.45)
≤
(
1− µν̄ρ(2− µδµ)

)
+ µρ(2− µδµ)‖W̃i−1‖2

B2 − (2− µδµ)‖W̃i−1‖2
C (3.46)

where in the last inequality step we used the fact that 2− µδµ > 0, which follows from the

condition µ < (2− σmax(C))/δ. Substituting (3.46) into (3.43) gives (3.32).
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3.C Proof of Theorem 3.1

Proof of Theorem 3.1. Recall from Lemma 3.2 that

‖Z̃i‖2
Q + ‖Ỹi‖2 ≤

(
1− µν̄ρ(2− σmax(C)− µδ)

)
‖W̃i−1‖2 +

(
1− σ2(B)

)
‖Ỹi−1‖2

+ µρ(2− µδµ)‖W̃i−1‖2
B2 − (2− µδµ)‖W̃i−1‖2

C (3.47)

Note that:

(
1−µν(2− σmax(C)− µδ)

)
< 1 ⇐⇒ µ <

2− σmax(C)
δ

(3.48)

Let γ1 = 1− µν̄ρ
(
2− σmax(C)− µδ

)
and γ2 = 1− σ2(B). Then inequality (3.47) becomes

‖Z̃i‖2
Q + ‖Ỹi‖2 ≤ γ1‖W̃i−1‖2 + γ2‖Ỹi−1‖2 + µρ(2− µδµ)‖W̃i−1‖2

B2 − (2− µδµ)‖W̃i−1‖2
C

≤ γ1‖W̃i−1‖2 + γ2‖Ỹi−1‖2 + µρ(2− µδµ)‖W̃i−1‖2
B2 (3.49)

We will now show that ‖W̃i‖2
I+B2 ≤ ‖Z̃i‖2

Q. Since Ā is doubly stochastic and from condition

(3.28) we know that 0 < Ā ≤ I. Therefore it holds I − Ā ≥ 0 and thus

0 ≤ Ā
1
2 (I − Ā)2Ā

1
2 ⇐⇒ Ā2 − Ā3 ≤ Ā − Ā2 (3.50)

Utilizing the above bound it holds that

ĀB2Ā
(3.28a)
≤ Ā(I − Ā)Ā = Ā2 − Ā3

(3.50)
≤ Ā − Ā2 (3.51)

From the above equation we conclude that

‖W̃i‖2 (3.27c)
= ‖Z̃i‖2

Ā2 = ‖Z̃i‖2
Ā − ‖Z̃i‖

2
Ā−Ā2

(3.51)
≤ ‖Z̃i‖2

Ā − ‖Z̃i‖
2
ĀB2Ā

≤ ‖Z̃i‖2
Q − ‖Z̃i‖2

ĀB2Ā (3.52)
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where we used condition (3.28a) in the last step, i.e., Ā ≤ Q = I − B2. Using

‖Z̃i‖2
ĀB2Ā = ‖ĀZ̃i‖2

B2 = ‖W̃i‖2
B2

in (3.52) gives ‖W̃i‖2
I+B2 ≤ ‖Z̃i‖2

Q. Using this bound in (3.49) yields:

‖W̃i‖2
I+B2 +‖Ỹi‖2 ≤ γ1‖W̃i−1‖2 + γ2‖Ỹi−1‖2 + γ3‖W̃i−1‖2

B2

≤ max{γ1, γ2, γ3}
(
‖W̃i−1‖2

I+B2 +‖Ỹi−1‖2
)

(3.53)

where we introduced γ3 = µρ(2 − µδµ) = µρ(2 − σmax(C) − µδ). Iterating we reach our

result.

3.D Proof of Theorem 3.2

Proof of Theorem 3.2. From condition (3.29b) we know that Ā = I; thus, from (3.27c) we

have W̃i = Z̃i. Using this the inequality in Lemma 3.2 gives

‖W̃i‖2
Q + ‖Ỹi‖2 ≤

(
1− µν̄ρ(2− σmax(C)− µδ)

)
‖W̃i−1‖2 +

(
1− σ2(B)

)
‖Ỹi−1‖2

+ µρ(2− µδµ)‖W̃i−1‖2
B2 − (2− µδµ)‖W̃i−1‖2

C

≤
(
1− µν̄ρ(2− σmax(C)− µδ)

)
‖W̃i−1‖2 +

(
1− σ2(B)

)
‖Ỹi−1‖2

− (2− µδµ)(1− µρ)‖W̃i−1‖2
B2

where we used (3.29) in the last step. Let γ1 = (1−µ(2−µδµ)ν̄ρ) and γ2 = 1−σ2(B). Adding

and subtracting γ1‖W̃i−1‖2
B2 to the previous inequality gives

‖W̃i‖2
Q + ‖Ỹi‖2 ≤ γ1‖W̃i−1‖2

Q + γ2‖Ỹi−1‖2−
(
(2− µδµ)(1− µρ)− γ1

)
‖W̃i−1‖2

B2 (3.54)
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We now need to ensure that −
(
(2−µδµ)(1−µρ)−γ1

)
‖W̃i−1‖2

B2 ≤ 0. To do that it is sufficient

to find µ and ρ such that

0 < ρ ≤ 2− γ1 − σmax(C)− µδ
µ(2− µδµ)

=
1− σmax(C)− µδ + µ(2− µδµ)ν̄ρ

µ(2− µδµ)
(3.55)

It remains to find µ such that ρ is non-negative. To do that, we note that 0 < γ1 < 1 if

µ <
2

δµ
⇐⇒ µ <

2− σmax(C)
δ

(3.56)

for γ1 < 1, it easy to verify that ρ is strictly positive if µ satisfy:

µ ≤ 1− σmax(C)
δ

<
2− σmax(C)

δ
(3.57)

Under this condition, we can upper bound (3.54) by

‖W̃i‖2
Q + ‖Ỹi‖2 ≤ γ1‖W̃i−1‖2

Q + γ2‖Ỹi−1‖2 ≤ max{γ1, γ2}(‖W̃i−1‖2
Q + ‖Ỹi−1‖2) (3.58)

Iterating we reach our result.
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CHAPTER 4

Decentralized Proximal Primal-dual Algorithms

This chapter studies decentralized composite optimization problems with a non-smooth

regularization term. For smooth optimization problems, decentralized methods have conver-

gence rates that match centralized methods. However, some gap between decentralized and

centralized proximal gradient methods continues to exist in the presence of a non-smooth

term. While centralized proximal gradient methods have been shown to converge linearly for

strongly convex objectives, it remains an open question to establish the linear convergence of

decentralized proximal gradient based methods. This chapter closes this gap by proposing a

proximal gradient decentralized algorithmic framework that is shown to converge linearly to

the desired solution. Next we explain the problem set-up and comment on existing related

works.

4.1 Problem Set-up

We consider a static and undirected network of K agents connected over some graph where

each agent k owns a private cost function Jk(w) : RM → R. Through only local interactions

(i.e., with agents only communicating with their immediate neighbors), each node is interested

in finding a solution to the following problem:

w? = arg min
w∈RM

1

K

K∑
k=1

Jk(w) +R(w) (4.1)

where R(w) : RM → R ∪ {+∞} is a convex function (not necessarily differentiable). We

adopt the following assumption throughout this chapter.
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Assumption 4.1. (Cost function): There exists a solution w? to problem (4.1) and each

cost function Jk(w) is first-order differentiable and ν-strongly-convex:

(wo − w•)T
(
∇Jk(wo)−∇Jk(w•)

)
≥ ν‖wo − w•‖2 (4.2)

with δ-Lipschitz continuous gradients:

‖∇Jk(wo)−∇Jk(w•)‖ ≤ δ‖wo − w•‖ (4.3)

for any wo and w•. Constants ν and δ are strictly positive and satisfy 0 < ν ≤ δ. We also

assume R(w) to be a proper1 and lower-semicontinuous convex function. �

Note that from the strong-convexity condition (4.2), we know the objective function in

(4.1) is also strongly convex and, thus, the global solution w? is unique.

4.1.1 Related Work

The core problem in decentralized optimization is to design methods with convergence rates

that are comparable to their centralized counterparts. For the smooth case (R(w) = 0),

the decentralized primal methods from [37, 41, 42, 125] can only converge linearly to a

biased solution and not the exact solution. For convergence to the exact solution, these

primal methods require employing a decaying step-size that slows down the convergence rate

making it sublinear at O(1/i) in general. The works [50–52] established linear convergence

to the exact solution for decentralized methods based on ADMM and inexact augmented

Lagrangian techniques. After that other works established linear convergence for simpler

implementations including linearized D-ADMM [53,54], EXTRA [55] , ESOM [126], gradient

tracking methods [61,62], exact diffusion [39], NIDS [56], and others. The work [127] study

the problem from the dual domain and propose accelerated dual gradient descent to reach an

optimal convergence rate for smooth strongly-convex problems.

1The function f(.) is proper if −∞ < f(x) for all x in its domain and f(x) <∞ for at least one x.
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Many works exist on decentralized composite optimization problems with a non-smooth

regularization term. The work [43] considered a similar set-up to this chapter and proposed

a proximal gradient method combined with Nesterov’s acceleration that is shown to achieve

O(1/i2) convergence rate, but requires an increasing number of inner loop consensus steps

with each iteration, which is expensive. Other works focused on the case where each agent k

has a local regularizer Rk(w) possibly different from other agents. For example, a proximal

decentralized linearized ADMM (DL-ADMM) approach is proposed in [53] to solve such

composite problems with convergence guarantees, while the work [128] establishes a sublinear

convergence rate O(1/i) for DL-ADMM when each Jk(w) is smooth with Lipschitz continuous

gradient. PG-EXTRA [129] extends EXTRA [55] to handle non-smooth regularization local

terms and it establishes an improved rate o(1/i). The NIDS algorithm [56] also has an o(1/i)

rate and can use larger step-sizes compared to PG-EXTRA. Based on existing results, there

is still a clear gap between decentralized algorithms and centralized ones when when using

proximal gradient methods.

The work [130] established the asymptotic linear convergence2 of a proximal decentralized

algorithm under the condition that all functions {Jk(w), Rk(w)} (possibly different regular-

izers) are piecewise linear-quadratic (PLQ) functions. While this result is encouraging, it

does not cover the global linear convergence rate we seek in this chapter since their linear

rate occurs only after a sufficiently large number of iterations and requires all costs to be

PLQ. Another useful work [131] extends the CoCoA algorithm [4] to COLA algorithm for

decentralized settings and shows linear convergence in the presence of a non-differentiable

regularizer. Like most other dual coordinate methods, COLA considers decentralized learning

for generalized linear models (e.g., linear regression, logistic regression, SVM, etc). This is

because COLA requires solving (4.1) from the dual domain and the linear model facilitates the

derivation of the dual functions, which do not necessarily admit a closed form expression under

our set-up. Additionally, different from this work, COLA is not a proximal gradient-based

method; it requires solving an inner minimization problem to a satisfactory accuracy, which

2A sequence {xi}∞i=0 has asymptotic linear convergence to x? if there exists a sufficiently large io such
that ‖xi − x?‖ ≤ γiC for some C > 0 and all i ≥ io.
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is often computationally expensive but necessary for the linear convergence analysis.

In order to establish global linear convergence, this chapter assumes the non-smooth

term to be common across all agents. One might wonder whether it is possible for a

decentralized proximal gradient algorithm to achieve global linear convergence in the presence

of different local non-smooth Rk(w) terms. As far as we know, this question has not been

explicitly answered in the literature. Many decentralized optimization problems where each

agent k has a local non-smooth term Rk(w) possibly different from other agents have been

proposed [53, 56, 128, 129, 132]. None of these methods have been shown to achieve global

linear convergence in the presence of general non-smooth terms. By adjusting the results

from [133] to the decentralized optimization set-up with agent-specific non-smooth terms

{Rk(w)}, we show that it is impossible for any proximal gradient based algorithm to achieve

linear convergence in the worst case. Note that the work [134] showed that global linear

convergence is not possible for non-smooth strongly-convex functions in the worst case for

the class of algorithms limited to one communication round but unlimited in the amount of

computation and access to the functions per iteration. In contrast, we consider algorithms

unlimited in the number of communications rounds but limited to one gradient and proximal

computations per iteration.

4.1.2 Contribution

This chapter considers the composite optimization problem (4.1) and has two main contri-

butions. First, for the case of a common non-smooth regularizer R(w) across all computing

agents, we propose a proximal decentralized algorithm framework whose fixed point coincides

with the desired global solution w?. We then provide a short proof to establish its linear

convergence for the general loss function Jk(w) that is smooth and strongly convex. This

result closes the existing gap between decentralized proximal gradient based methods and the

centralized proximal gradient descent for strongly-convex objectives. Second, by tailoring a

result from [133], we show that if each agent owns a non-smooth term, then linear convergence

cannot be achieved in the worst case for the class of decentralized algorithms where each
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agent can compute one gradient and one proximal mapping per iteration for the smooth

and non-smooth part, respectively. We further provide a numerical counter example where

PG-EXTRA [129] and proximal linearized ADMM [53, 128] fail to achieve global linear

convergence for strongly-convex objectives.

4.2 Proximal ATC Algorithms

In this section, we extend the ATC framework (3.9) to handle the non-differentiable component

R(w). To do that, let wk ∈ RM denote a local copy of w available at agent k and introduce

the network quantities:

W
∆
= col{w1, · · · , wK} ∈ RMK (4.4)

J (W)
∆
=

K∑
k=1

Jk(wk) (4.5)

R(W)
∆
=

K∑
k=1

R(wk) (4.6)

Recall from the Chapter 3, we introduced two general consensus symmetric matrices B ∈

RMK×MK and C ∈ RMK×MK that are assumed satisfy (3.6). Similar to reformulation (3.7),

it is easy to see that problem (4.1) with is equivalent to the following problem:

minimize
W∈RKM

J (W) +R(W) +
1

2µ
‖W‖2

C, s.t. BW = 0 (4.7)

where µ > 0, and the matrix C ∈ RMK×MK is a positive semi-definite consensus penalty

matrix satisfying (3.6b). We propose the following recursion: let Y−1 = 0 and W−1 take any

arbitrary value. Repeat for i = 0, 1, . . .
Zi = (I − C)Wi−1 − µ∇J (Wi−1)− BYi−1 (4.8a)

Yi = Yi−1 + BZi (4.8b)

Wi = proxµR
(
ĀZi

)
(4.8c)
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We refer the reader to Appendix 4.B for specific instances of the above algorithm and how to

implement them in a decentralized manner.

Remark 4.1 (Conventional update). Recursion (4.8) differs from conventional proximal

primal-dual algorithms in the dual update (4.8b). Different from conventional dual updates

that use Wi, we use Zi instead of Wi. This subtle (yet novel) difference changes the complexity

of the algorithm and allows us to close the linear convergence gap between centralized and

decentralized algorithms for problems of the form (4.1). �

In the following, we will show that Wi in the above recursion converges to 1K ⊗ w? where

w? is the desired solution of (4.1). We first prove the existence and optimality of the fixed

points of recursion (4.8).

Lemma 4.1. (Optimality point) Under Assumption 4.1 and condition (3.6), a fixed point

(W?, Y?,Z?) exists for recursions (4.8a)–(4.8c), i.e., it holds that


Z? = W? − µ∇J (W?)− BY? (4.9a)

0 = BZ? (4.9b)

W? = proxµR(ĀZ?) (4.9c)

Moreover, W? and Z? are unique and each block element of W? = col{w?1, · · · , w?K} coincides

with the unique solution w? to problem (4.1), i.e., w?k = w? for all k.

Proof. See Appendix 4.A.

4.3 Linear Convergence

Similar to Lemma 2.2, it can be easily shown that there exists a particular fixed point

(W?, Y?b , Z
?) where Y?b is a unique vector that belongs to the range space of B. In the following

we will show that the iterates (Wi, Yi, Zi) converge linearly to this particular fixed point
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(W?, Y?b , Z
?). To this end, we introduce the error quantities:

W̃i
∆
= Wi − W?, Ỹi

∆
= Yi − Y?b , Z̃i = Zi − Z? (4.10)

Note that from condition (3.6) we have CW? = 0. Therefore, from (4.8a)–(4.8c) and (4.9a)–

(4.9c) we can reach the following error recursions:


Z̃i = (I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

)
− BỸi−1 (4.11a)

Ỹi = Ỹi−1 + BZ̃i (4.11b)

W̃i = proxµR
(
ĀZi

)
− proxµR(ĀZ?) (4.11c)

For our convergence result, we need the following technical conditions.

Assumption 4.2. (Combination matrices) It is assumed that both condition (3.6) and

the following condition hold:

{
0 < I − B2 (4.12a)

Ā2 ≤ I − B2 and 0 ≤ C < 2I (4.12b)

�

Remark 4.2 (Convergence conditions). In this chapter, we focus on the adapt-then-

combine framework. See Remark 3.2 for more details regarding the above conditions.

�

To state our result, we let σ(B2) denote the minimum non-zero singular value of the

matrix B2. Since B2 is symmetric, its singular values are equal to its eigenvalues and condition

(4.12a) implies 0 < σ(B2) < 1. We also let σmax(C) < 2 denote the maximum singular value

of C.

Theorem 4.1. (Linear convergence) Under Assumptions 4.1–4.2, if Y0 = 0 and the

step-size satisfies µ < 2−σmax(C)
δ

, it holds that

‖W̃i‖2 + ‖Ỹi‖2 ≤ γ
(
‖W̃i−1‖2 + ‖Ỹi−1‖2

)
(4.13)
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where γ = max
{

1−µν(2− σmax(C)− µδ), 1− σ(B2)
}
< 1.

Proof. See Appendix 4.C

In the above theorem we established the linear convergence in the presence of a common

non-smooth term. Now, a natural question is what about the case where each agent owns a

local non-smooth term. Unfortunately, the answer to that question is that it is not possible

to establish global linear convergence for that case in general as we now show.

4.4 Separate non-smooth terms: Sublinear rate

In this section, we will show that global linear convergence cannot be attained (in the worst

case) if there exists more than one non-smooth term. Consider the more general problem

with agent specific regularizers:

min
w∈RM

1

K

K∑
k=1

Jk(w) +Rk(w), (4.14)

where Jk(w) is a strongly convex smooth function and Rk(w) is non-smooth convex with

closed form proximal mappings (each Jk(w) and Rk(w) are further assumed to be closed

and proper functions). Although many algorithms (centralized and decentralized) exist that

solve (4.14), none have been shown to achieve linear convergence in the presence of general

non-smooth proximal terms Rk(w). In the following, by tailoring the results from [133], we

show that this is not possible when having access to the proximal mapping of each individual

non-smooth term Rk(w) separately.

Let H be a deterministic algorithm that queries

{Jk(·), Rk(·),∇Jk(·),proxµi,kRk(·) |µi,k > 0, k = 1, . . . , K}

once for each iteration i = 0, 1, . . . . To clarify, the scalar parameter µi,k > 0 can differ for

i = 0, 1, . . . and k = 1, . . . , K or they can be constants (e.g. µi,k = µ > 0). Note that H has

58



the option to combine the queried values in any possible combination (it can only use certain

information from certain communications). Thus, H includes decentralized algorithms in

which communication is restricted to edges on a graph.

Consider the specific instance of (4.14)

min
w∈RM

Fν(w) =
ν

2
‖w‖2 +

1

K

K∑
k=1

Rk(w) (4.15)

where ν > 0 and Jk(w) = ν
2K
‖w‖2. Assume Rk(w) < ∞ if and only if ‖w‖ ≤ B and

|Rk(w1)−Rk(w2)| ≤ G‖w1 −w2‖ for all w1, w2 (where B and G are some positive constants)

such that ‖w1‖ ≤ B and ‖w2‖ ≤ B. To prove that linear convergence is not possible, we

will reduce our setup to minw∈RM F0(w), which has a known lower bound [133]. Let Ho be a

deterministic algorithm that queries

{Rk(·),proxµi,kRk(·)(·) |µi,k > 0, k = 1, . . . , K}

once for each iteration i = 0, 1, . . . and communicates through a fully connected network.

The following result is a special case of the more general result [133, Theorem 1].

Theorem 4.2. Let 0 < B, 0 < G, 2 ≤ K, and 0 < ε < GB/12. For a large enough problem

dimension M = O(KGB/ε), the algorithm Ho (in the worst case) requires O(GB/ε) or more

iterations to find a ŵ such that F0(ŵ)− infw F0(w) < ε. �

We argue that algorithm H cannot be too efficient at solving minw Fν(w) with ν > 0 as

otherwise it can be used to efficiently solve minw F0(w) and contradict Theorem 4.2.

Theorem 4.3. Let 0 < ν, 0 < B, 0 < G, 2 ≤ K, and 0 < ε < G2/(288ν). For a large

enough problem dimension M = O(KG/
√
νε), the algorithm H (in the worst case) requires

O(G/
√
νε) or more iterations to find a ŵ such that Fν(ŵ)− infw Fν(w) < ε.

Proof. This argument modifies the proof of [133, Theorem 2], which makes a similar but

slightly different claim. Let ν = ε/B2 and w?ν denotes the minimizer of Fν . Assume for
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contradiction that H can find a ŵ such that

Fν(ŵ)− Fν(w?ν) <
ε

2
(4.16)

in o(G/
√
νε) iterations. Note that for all w such that ‖w‖ ≤ B, it holds from (4.15):

Fν(w) ≤ F0(w) +
νB2

2
= F0(w) +

ε

2
. (4.17)

Putting these together, we get

F0(ŵ)− F0(w?0)− ε

2

(4.17)
≤ F0(ŵ)− Fν(w?0)

(a)

≤ Fν(ŵ)− Fν(w?ν) <
ε

2
, (4.18)

where in step (a) we used F0(w) ≤ Fν(w) and Fν(w?ν) ≤ Fν(w
?
0). We conclude that F0(ŵ)−

F0(w?0) < ε. Since ∇Jk(·) = ν
K
I is just a scaled identity, querying ∇Jk(·) does not provide a

new direction that Ho could otherwise not use. Thus, algorithm H applied to minimizing Fν

is an instance of algorithm Ho. This means that we have an algorithm for minimizing F0 in

o(G/
√
νε) = o(GB/ε) iterations, which contradicts Theorem 4.2. Note that 0 < ε < GB/12

from Theorem 4.2 and by using ν = ε/B2 we require 0 < ε < G2/(288ν) (an extra factor of 2

appears because of (4.16)).

Corollary 4.1. For the problem setup of (4.14) with strongly convex Jk(·) for all k =

1, 2, . . . , K, any algorithm that accesses the functions through evaluations of Jk(·) and Rk(·),

the gradients of Jk(·), and proximal operators of Rk(·) is not globally linearly convergent (in

the worst case). �

Remark 4.3. The lower bound of Theorem 4.3 is dimension independent in the same way

other Nesterov-type lower bounds are [95,133]. The result implies that it is not possible to

establish linear convergence of H with a rate depending on ν and G, but not on the problem

dimension K. That said, a dimension dependent linear convergence may be established. For

example, asymptotic linear convergence3 has been established in [130] when the functions

3A sequence {xi}∞i=0 has asymptotic linear convergence to x? if there exists a sufficiently large io such
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{Jk(·), Rk(·)} are piecewise linear quadratic. This result does not contradict our result as the

linear rate and the number of iterations needed to observe the linear rate are dependent on the

problem dimension. Our linear convergence result of Theorem 4.1 is dimension independent

as it holds for any dimension M . �

4.5 Simulations

4.5.1 Simulations of the Proposed Method

In this section we test the performance of three different instances of the proposed method

(4.8) along with some state-of-the-art algorithms. We consider the following sparse logistic

regression problem:

min
w∈RM

1

K

K∑
k=1

Jk(w) + ρ‖w‖1 where Jk(w) =
1

L

L∑
`=1

ln(1 + exp(−yk,`xTk,`w)) +
λ

2
‖w‖2.

where {xk,`, yk,`}L`=1 are local data kept by agent k and L is the size of the local dataset. We

consider three real datasets: Covtype.binary, MNIST, and CIFAR10. The last two datasets

have been transformed into binary classification problems by considering data with two labels,

digital two and four (‘2’ and ‘4’) classes for MNIST, and cat and dog classes for CIFAR-10.

In Covtype.binary we use 50,000 samples as training data and each data has dimension 54.

In MNIST we use 10,000 samples as training data and each data has dimension 784. In

CIFAR-10 we use 10,000 training data and each data has dimension 3072. All features have

been preprocessed and normalized to the unit vector.

For the network, we generated a randomly connected network with K = 20 nodes, which

is shown in Fig. 4.1. The associated combination matrix A is generated according to the

Metropolis rule [8, 92]. For all simulations, we assign data evenly to each agent. We set

λ = 10−4 and ρ = 2 × 10−3 for Covtype, λ = 10−2 and ρ = 5 × 10−4 for CIFAR-10, and

λ = 10−4 and ρ = 2 × 10−3 for MNIST. The simulation results are shown in Figure 4.2.

that ‖xi − x?‖ ≤ γiC for some C > 0 and all i ≥ io.
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Figure 4.1: The network topology used in the simulation.

The decentralized implementations of Prox-ED, Prox-ATC I, and prox-ATC II are given

in Appendix 4.B. For each algorithm, we tune the step-sizes manually to achieve the best

possible convergence rate. We notice that the performance of each algorithm differs in each

data set. Prox-ED always performs the best in our simulation setup. Prox-ATC I and

prox-ATC II have comparable performance to Prox-ED in the MNIST data set but performs

worst in th other two data-sets.
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Figure 4.2: Simulation results. The y-axis indicates the relative squared error
∑K

k=1 ‖wk,i −
w?‖2/‖w?‖2. Prox-ED refers to (4.8) with Ā = 0.5(I +A), B2 = 0.5(I −A), and C = 0. Prox-ATC
I refers to (4.8) with Ā = A2, B = I − A, and C = 0. Prox-ATC II refers to (4.8) with Ā = A,
B = I −A, and C = I −A. DL-ADMM [53], PG-EXTRA [129], NIDS [56].
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4.5.2 Numerical counter example

In this section, we provide a numerical counter example, which validates that linear conver-

gence is not possible for problem (4.14) in general. We consider an instance of (4.14) with

K = 2, M is a very large even number, and quadratic smooth terms Jk(w) = η/2‖w‖2 for

some η > 0. We let the non-smooth terms be

R1(w) = |
√

2w(1)− 1|+ |w(2)− w(3)|+ |w(4)− w(5)|+ · · ·+ |w(M−2)−w(M−1)|

(4.19a)

R2(w) = |w(1)− w(2)|+ |w(3)− w(4)|+ · · ·+ |w(M − 1)− w(M)| (4.19b)

Both proxR1
and proxR2

have closed forms — see Appendix 4.D for details. The above

example is related to the one in [134], which was used to derive lower bounds for a different

class of algorithms as explained in the introduction.

In the numerical experiment, we test the performance of two well known decentralized

proximal methods, PG-EXTRA [129] and DL-ADMM [53,128]. We set M = 2000 and η = 1.

The step-sizes for both PG-EXTRA and DL-ADMM are set to 0.005. The combination

matrix is set as A = 1
2
121

T
2 . The numerical results in Fig. 4.3 shows that both PG-EXTRA

and DL-ADMM perform almost the same, and they converge sublinearly to the solution. No

global linear convergence is observed in the simulation for sufficiently large dimension M and

algorithms independent of M , which is consistent with our discussion in Remark 4.3.

Appendices

4.A Proof of Lemma 4.1

To establish existence we will construct a point (W?, Y?, Z?) that satisfies equations (4.9a)–

(4.9c). Since each Jk(w) is strongly convex, there exists a unique solution w? for problem (4.1),

i.e., 0 ∈ 1
K

∑K
k=1∇Jk(w?) + ∂R(w?). This also indicates that there must exist a subgradient
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Figure 4.3: Both PG-EXTRA [129] and DL-ADMM [53,128] converge sublinearly to the solution
of the proposed numerical counter example.

r? ∈ ∂R(w?) such that

1

K

K∑
k=1

∇Jk(w?) + r? = 0 (4.20)

Now we define z? ∆
= µr? + w?. It holds that r? + (w? − z?)/µ = 0, i.e., 0 ∈ ∂R(w?) +

(1/µ)(w? − z?). This implies that

w? = arg min
w

{
R(w) +

1

2µ
‖w − z?‖2

}
. (4.21)

We next define W? ∆
= 1K ⊗ w? and Z?

∆
= 1K ⊗ z?. Since Z? = 1K ⊗ z?, it belongs to the

null space of B so that BZ? = 0 and, moreover, ĀZ? = Z? since Ā = Ā ⊗ IM where Ā is

doubly stochastic. Therefore, relation (4.21) implies that equation (4.9c) holds. It remains
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to construct Y? that satisfies equation (4.9a). Note that

(1N ⊗ IM)T
(
W? − Z? − µ∇J (W?)

)
= −µKr? − µ

K∑
k=1

∇Jk(w?) = 0, (4.22)

where the last equality holds because w? is the optimal solution of problem (4.1). Equation

(4.22) implies

1

µ

(
W? − Z? − µ∇J (W?)

)
∈ Null(1N ⊗ IM) = Null(B)⊥ = Range(B). (4.23)

where ⊥ denotes the orthogonal complement. Therefore, there exist a vector Y? satisfying

equation (4.9a).

We now establish that any fixed point is of the form W? = 1K ⊗ w? and w? is the

solution to problem (4.1). From (4.9b) and (3.6), it holds that the block elements of Z? are

equal to each other, i.e. z?1 = · · · = z?K , and we denote each block element by z?. Thus,

ĀZ? = Z? = 1K ⊗ z? because Ā = Ā ⊗ IM where Ā is doubly stochastic. Therefore, from

(4.9c) and the definition of the proximal operator it holds that

w?k = arg min
wk

{R(wk) + ‖wk − z?‖2/2µ} (4.24)

where we used z?k = z? for each k. Thus, we must have w?1 = · · · = w?K
∆
= w?. It is easy to

verify that (4.24) implies

0 ∈ ∂R(w?) + (w? − z?)/µ. (4.25)

Multiplying (1K ⊗ IM)T from the left to both sides of equation (4.9a), we get

Kz? = Kw? − µ
K∑
k=1

∇Jk(w?) (4.26)

Combining (4.25) and (4.26), we get 0 ∈ 1
K

∑K
k=1∇Jk(w?) + ∂R(w?). Thus, w? is the unique

66



solution to problem (4.1). Due to the uniqueness of w?, we see from (4.26) that z? is unique.

Consequently, W? = 1K ⊗ w? and Z? = 1K ⊗ z? must be unique.

4.B Implementation of (4.8)

We introduce the combination matrices

A = [ask] ∈ RK×K , A = A⊗ IM (4.27)

where the entry ask = 0 if there is no edge connecting agents k and s. The matrix A is

assumed to be symmetric and doubly stochastic matrix (different from Ā).

4.B.1 Prox-ED: Ā = 0.5(I +A), B2 = 0.5(I −A), and C = 0

Recursion (4.8) with Ā = 0.5(I + A), B2 = 0.5(I − A), and C = 0 is equivalent to the

proximal exact diffusion (Prox-ED) recursion listed in (4.32a)–(4.32d). To see this, note that

for i = 0, it is straight forward to check that each block in (4.8c) is the same as wk,0 in (4.32).

Now we will show the equivalence for i ≥ 1. From (4.8a), we know that:

Zi − Zi−1 = Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
− B(Yi−1 − Yi−2)

= Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
− B2Zi−1 (4.28)

where we used (4.8b) in the last step. Re-arranging and noting that B2 = 0.5(I −A) we get

Zi = ĀZi−1 + Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(4.29)

By multiplying Ā to both sides of the previous equation and introducing X i
∆
= ĀZi we get

X i = Ā
(
X i−1 + Wi−1 − Wi−2 − µ

(
∇J (Wi−1)−∇J (Wi−2)

))
(4.30)
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Thus from (4.8c) we get

X i = Ā
(
X i−1 + Wi−1 − Wi−2 − µ

(
∇J (Wi−1)−∇J (Wi−2)

))
(4.31a)

Wi = proxµR(X i) (4.31b)

The above recursion is equivalent to (4.32a)–(4.32d). This can be easily seen by substituting

(4.32a)–(4.32b) into (4.32c).

Algorithm (Prox-ED)
Setting: Let Ā = [āsk] = (IK + A)/2. Initialize xk,−1 = ψk,−1 and wk,−1 arbitrary. For every
agent k, repeat for i = 0, 1, 2, ...

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (4.32a)
zk,i = xk,i−1 + ψk,i − ψk,i−1 (4.32b)

xk,i =
∑
s∈Nk

āskzs,i (Communication step) (4.32c)

wk,i = proxµR(xk,i) (4.32d)

4.B.2 Prox-ATC I: Ā = A2, B2 = (I −A)2, and C = 0

For the choice Ā = A2, B2 = (I −A)2, and C = 0, we can represent (4.8) as listed in (4.35).

This can be seen by following the same approach as the previous subsection. To see this,

note that with B2 = (I −A)2 to get

Zi = (2A−A2)Zi−1 + Wi−1 − Wi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(4.33)

By multiplying A2 to both sides of the previous equation and introducing X i
∆
= A2Zi we get

X i = A
(

(2I −A)X i−1 +AWi−1 −AWi−2 − µA
(
∇J (Wi−1)−∇J (Wi−2)

))
(4.34)

Thus from (4.8c) we have Wi = proxµR(X i).
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Algorithm: Prox-ATC I
Setting: Initialize xk,−1 = ψk,−1 = 0 and wk,−1 arbitrary. For every agent k, repeat for
i = 0, 1, 2, ...

ψk,i = wk,i−1 − µ∇Jk(wk,i−1) (4.35a)

zk,i = 2xk,i−1 −
∑
s∈Nk

ask(xs,i−1 − ψs,i + ψs,i−1) (Communication step) (4.35b)

xk,i =
∑
s∈Nk

askzs,i (Communication step) (4.35c)

wk,i = proxµR(xk,i) (4.35d)

4.B.3 Prox-ATC II: Ā = A, B = I −A, and C = I −A

For the choice Ā = A, B = I −A, and C = I −A, we can represent (4.8) as listed in (4.38).

This can be seen by following the same approach as the previous subsection. To see this,

note that with B2 = (I −A)2 to get

Zi = (2A−A2)Zi−1 +AWi−1 −AWi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

)
(4.36)

By multiplying A to both sides of the previous equation and introducing X i
∆
= AZi we get

X i = A
(

(2I −A)X i−1 +AWi−1 −AWi−2 − µ
(
∇J (Wi−1)−∇J (Wi−2)

))
(4.37)

Thus from (4.8c) we have Wi = proxµR(X i).

Algorithm: Prox-ATC II
Setting: Initialize xk,−1 = ψk,−1 = 0 and wk,−1 arbitrary. For every agent k, repeat for
i = 0, 1, 2, ...

ψk,i = 2xk,i−1 − µ
(
∇Jk(wk,i−1)−∇Jk(wk,i−2)

)
(4.38a)

zk,i = ψk,i −
∑
s∈Nk

ask(xs,i−1 − ws,i−1 + ws,i−2) (Communication step) (4.38b)

xk,i =
∑
s∈Nk

askzs,i (Communication step) (4.38c)

wk,i = proxµR(xk,i) (4.38d)
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4.C Proof Theorem 4.1

Squaring both sides of (4.11a) and (4.11b) we get

‖Z̃i‖2 = ‖(I − C)W̃i−1 − µ
(
∇J (Wi−1)−∇J (W?)

)
‖2 + ‖BỸi−1‖2

− 2ỸTi−1B
(
(I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

))
(4.39)

and

‖Ỹi‖2 = ‖Ỹi−1 + BZ̃i‖2 = ‖Ỹi−1‖2 + ‖BZ̃i‖2 + 2ỸTi−1BZ̃i
(4.11a)

= ‖Ỹi−1‖2 + ‖Z̃i‖2
B2 − 2‖BỸi−1‖2

+ 2ỸTi−1B
(
(I − C)W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?)

))
(4.40)

Adding equation (4.40) to (4.39) and rearranging, we get

‖Z̃i‖2
Q+‖Ỹi‖2 =‖(I − C)W̃i−1−µ

(
∇J (Wi−1)−∇J (W?)

)
‖2 +‖Ỹi−1‖2−‖BỸi−1‖2 (4.41)

where Q = I − B2 is positive definite from (4.12a). Since Y0 = 0 and Yi = Yi−1 + BZi, we

know Yi ∈ range(B) for any i. Thus, both Yi and Y?b lie in the range space of B, and it holds

that ‖BỸi−1‖2 ≥ σ(B2)‖Ỹi−1‖2. Therefore, we can bound (4.41) by

‖Z̃i‖2
Q + ‖Ỹi‖2 ≤ ‖W̃i−1 − µ

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
‖2 +(1− σ(B2))‖Ỹi−1‖2

(4.42)

Also, since J (W) + 1
2µ
‖W‖2

C is δµ = δ + 1
µ
σmax(C)-smooth, it holds from (1.8) that:

‖
(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
‖2 ≤ δµW̃

T
i−1

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
(4.43)
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Using this bound, it can be easily verified that:

‖W̃i−1 − µ
(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
‖2

≤ ‖W̃i−1‖2 − µ(2− µδµ)W̃T
i−1

(
∇J (Wi−1)−∇J (W?) +

1

µ
CW̃i−1

)
≤
(
1− µν(2− µδµ)

)
‖W̃i−1‖2 =

(
1− µν(2− σmax(C)− µδ)

)
‖W̃i−1‖2 (4.44)

where in the last step we used the fact that 2− µδµ ≥ 0, which follows from the condition

µ < (2− σmax(C))/δ, and the fact that J (W) + 1
2µ
‖W‖2

C is ν-strongly convex. Thus, we can

substitute the previous inequality in (4.42) and get

‖Z̃i‖2
Q+‖Ỹi‖2 ≤

(
1−µν(2− σmax(C)− µδ)

)
‖W̃i−1‖2 + (1− σ(B2))‖Ỹi−1‖2 (4.45)

From (4.11c) and the nonexpansive property of the proximal operator, we have

‖W̃i‖2 = ‖proxµR
(
ĀZi

)
− proxµR(ĀZ?)‖2 ≤ ‖ĀZ̃i‖2 ≤ ‖Z̃i‖2

Q (4.46)

where the last step holds because of condition (4.12b) so that ‖ĀZ̃i‖2 = ‖Z̃i‖2
Ā2 ≤ ‖Z̃i‖2

Q.

Substituting (4.46) into (4.45) we reach our result. Finally we note that:

(
1−µν(2− σmax(C)− µδ)

)
< 1 ⇐⇒ µ <

2− σmax(C)
δ

(4.47)
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4.D Proximal mapping of (4.19)

To rewrite the non-smooth terms (4.19) more compactly, we introduce

D1
∆
=



√
2 0 0 0 0 0 0 · · · 0 0 0

0 1 −1 0 0 0 0 · · · 0 0 0

0 0 0 1 −1 0 0 · · · 0 0 0
...

...
...

...
...

...
... · · · ...

...
...

0 0 0 0 0 0 0 · · · 1 −1 0


∈ R

M
2
×M (4.48)

D2
∆
=



1 −1 0 0 0 0 0 · · · 0 0 0

0 0 1 −1 0 0 0 · · · 0 0 0

0 0 0 0 1 −1 0 · · · 0 0 0
...

...
...

...
...

...
... · · · ...

...
...

0 0 0 0 0 0 0 · · · 0 1 −1


∈ R

M
2
×M (4.49)

and b1
∆
= e1 where e1 is the first column of the identity matrix IM/2. With D1, D2 and b1,

we can rewrite R1(w) and R2(w) in (4.19) as

R1(w) = ‖D1w − b1‖1, R2(w) = ‖D2w‖1. (4.50)

Let us introduce g(w) = ‖w‖1 so that R1(w) = g(D1w − b1) and R2(w) = g(D2w). It can be

verified that D1D
T
1 = 2I and D2D

T
2 = 2I. Thus, from [135, Theorem 6.15] it holds that

proxµR1
(w) = w +

1

2µ
DT

1 [prox2µ2g(µD1w − µb1)− µD1w + µb1], (4.51a)

proxµR2
(w) = w +

1

2µ
DT

2 [prox2µ2g(µD2w)− µD2w]. (4.51b)

In other words, both proxµR1
(w) and proxµR2

(w) have closed forms which are easy to

calculate since proxκg(w) = col{sgn(wi) max{|wi| − κ, 0}} ∈ RM .
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CHAPTER 5

Multi-Coupled Consensus Problem

In Chapters 3 and 4, we studied decentralized optimization problems where all agents need

to agree on one common variable. However, there exist many scenarios where the global cost

function may involve multiple variables, and, moreover, each local cost may be a function

of only a subset of these variables. This situation motivates us to study in this chapter a

broader problem, where each local cost contains multiple variables that get to be chosen by

the network cooperatively. Examples of applications where this general scenario arises include

web page categorization [136], web-search ranking [137], minimum-cost flow problems [138],

decentralized model predictive control in smart energy systems [80], decentralized wireless

acoustic sensor networks [139], decentralized wireless localization [140], and decentralized

power systems monitoring [141].

5.1 Problem Set-Up

Consider a network of K agents that are connected through some network topology. As-

sume we have L vector variables denoted by {w1, · · · , wL}, where w` ∈ RM` . Let w ∆
=

col{w1, w2, ..., wL} ∈ RM denote the L × 1 block column vector formed by collecting all

those variables. The partitioning is used to represent the possibility of multiple independent

arguments for the cost functions. Without loss of generality, we assume that the variables

{w`} are distinct in that they do not share common entries. Let Ik denote the set of variable

indices that affect the cost of agent k – Figure 5.1 illustrates this situation for a simple
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Figure 5.1: A connected network of agents where different agents generally depend on different
subsets of parameter vectors. For this example, we have w = [w1, w2, w3, w4, w5, w6].

network. If we let wk denote the components of w that affect this same agent:

wk
∆
= col{w`}`∈Ik ∈ RQk , Qk

∆
=
∑
`∈Ik

M`. (5.1)

Then we are interested in determining the solution of the following optimization problem:

minimize
w1,w2,··· ,wL

K∑
k=1

Jk(wk), wk = col{w`}`∈Ik (5.2)

where Jk(wk) : RQk → R is a local cost function known by agent k. In this formulation, each

agent depends only on part of the decision vector w = col{w1, w2, ..., wL} ∈ RM , namely,

wk = col{w`}`∈Ik ∈ RQk .

Assumption 5.1. (Cost functions) : Each cost function Jk(wk) is δ-smooth and the

aggregate cost 1
K

∑K
k=1 Jk(wk) is ν̄-strongly-convex cost for some δ ≥ ν̄ > 0. �
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Under the above condition, a unique solution w? exists. We denote its block entries by

w? = col{w1,?, · · · , wL,?} ∆
= arg min

w1,··· ,wL

K∑
k=1

Jk(wk) (5.3)

We note that algorithms that solve (1.1) can be used to solve (5.2). For example, this can be

achieved by extending each local variable wk into the longer global variable w. However, this

solution method would require unnecessary communications and memory allocation. This is

because in (5.2) each local function contains only a subset of the global variable w. Therefore,

solving (5.2) directly and more effectively is important for large scale networks. Conversely,

we also note that algorithms that solve (5.2) are more general and can be used to solve (1.1).

To see this, let L = 1 and Ik = {L}, then problem (5.2) will depend only on one variable

w = wL. In this case, the cost function becomes
∑K

k=1 Jk(w), which is of the same exact form

as problem (1.1). For sparse networks with a large number of parameters to estimate, it is

much more efficient to devise decentralized techniques that solve (5.2) directly rather than

transform (5.2) into the form in (1.1) via vector extension. We will show that this extension

technique not only increases complexity but it often degrades convergence performance as

well. Therefore, it is desirable to address the solution of problem (5.2) directly.

Remark 5.1. (Useful case): We illustrate a special case of (5.2), which is common in

many applications. Consider the scenario where every agent wants to estimate its own

variable wk and is coupled with every neighboring agent, i.e., L = K and Ik = Nk so

that wk = col{w`}`∈Nk , where Nk denotes the neighborhood of agent k (including agent k).

To explicitly indicate that wk and the corresponding constraint depend exclusively on the

neighborhood variables, we let

wNk
∆
= wk, WNk

∆
= Wk (5.4)
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Then, problem (5.2) becomes

min
w

K∑
k=1

Jk(wNk), s.t. w ∈WN1 ∩ · · · ∩WNK (5.5)

Many important applications fit into problem (5.5). For, instance, such formulations arise

in wireless localization where each agent aims to estimate its position based on distance

measurements from its neighbors. Two other examples are decentralized model predictive

control [142] and minimum cost flow problems [138]. �

Example 5.1. (Power system state estimation): We describe one example in power

system state estimation [141], which is a special case of formulation (5.2). Thus, consider

a system consisting of K interconnected sub-systems with each sub-system consisting of

some subset of buses (or edges). Let w = [w1, · · · , wL] denote the state of the system (e.g.,

voltages and currents across all buses). Suppose each subsystem collects measurements

related to the voltages and currents across its local buses and voltages and currents across

the interconnection between neighboring sub-systems (see Figure 5.2).

Figure 5.2: Two neighboring sub-systems sharing states across their interconnection, i.e., buses
k1-s1 and k3-s3.

We let wk denote a vector that collects the states {w`} of system k (i.e., voltages and

currents across the buses of system k and across the buses to its neighboring subsystems).
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Then, the goal of each subsystem is to estimate the states wk from Sk observations:

yk = Hkwk + vk (5.6)

where Hk ∈ RSk×Qk is the measurement matrix and vk ∈ RSk is a zero-mean measurement

noise with known covariance matrix. One way to estimate the {wk} is by solving the following

problem:

min
w

K∑
k=1

‖yk −Hkwk‖2, s.t. w ∈W (5.7)

where {W} are a convex sets that capture some prior information about about the {w}. Now,

since neighboring agents measure some similar quantities across their interconnections, it

holds that wk and ws partially overlap if s ∈ Nk and hence this problem is a special case of

(5.2). �

5.1.1 Related works

Problems of the form (5.2) have received less attention in the literature compared to the

case of one consensus variable. Dual methods have been used to solve (5.2) or its special

case (5.5) in [141, 143–147]. For example, to solve (5.5) in [144, 145] ADMM methods are

employed, while the works [146, 147] propose other dual decomposition techniques. The

work [141] applies an ADMM method to solve a decentralized power system state estimation

problem of the form (5.2). The work [143] solves (5.2) by employing an extended ADMM

method to reduce communications at the expense of some stronger assumptions. In all of

these methods, a second auxiliary (sub-minimization) problem needs to be solved at each

iteration, which requires an inner iteration unless a closed form solution exists. In [148] a

quadratic problem is solved, where every agent has their own variable wk (i.e, L = K) and

the agents are coupled through linear constraints with neighboring node’s variables {w`}`∈Nk .

Moreover, it is further assumed that the agents involved in a constraint are fully connected,

i.e., they can communicate directly.
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Since in problem (5.2) different agents are influenced by different block vectors w`, the

network will be divided into overlapping clusters and each cluster ` will involve the agents

that need to agree on w` – see Equation (5.9). Similar clustering was used in [143] where the

ADMM method was employed with identical penalty factors across all clusters. There are

works that deal with problem (1.1) where all agents need to agree on the same w, however to

reduce communication, different agents transmit different blocks {w`} at each time instant

(see e.g. [149]). In this case, each cluster involves different agents at each time instant and,

over time, all agents will be involved in all clusters. Note also that the group diffusion

algorithm used in [150] deals with the problem where each agent is interested in its own

minimizer w•k = arg minw Jk(w) and can solve the problem individually but cooperation is

used since the estimation accuracy can be enhanced by cooperation if part of the minimizers

{w•k} are common across neighbors. To take advantage of this overlap, each agent assigns

different weights to different blocks w`.

5.1.2 Contribution

In this chapter, we develop a first-order method for solving (5.2), which unlike the methods

from [141,143] does not require inner minimization steps. More importantly, we analytically

show that algorithms that ignore the problem structure can be detrimental to its performance

compared to algorithms that exploit such structure. Such conclusion have been observed

in [143] but no analytical explanation was provided. We analytically explain how the

performance of an algorithm is effected if the sparsity structure in (5.2) is ignored.

5.2 Problem Reformulation for Decentralized Solution

In order to solve (5.2) in a decentralized manner, we first need to adjust the notation to

account for one additional degree of freedom. Recall from (5.2) that the costs of two different

agents, say, agents k and s, may depend on the same sub-vector, say, w`. Since these two

agents will be learning w` over time, each one of them will have its own local estimate for w`.
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We create a local copy of w` at agent k denoted by w`k and to the copy of w` at agent s by

w`s. With this in mind, recall that we denoted the collection of all sub-vectors that influence

agent k by wk; defined earlier in (5.1). In that definition, the sub-vectors {w`} influencing

Jk(·) were used to construct wk. In view of the new notation using virtual copies, we now

redefine the same wk using the local copies instead, namely, we now write

wk
∆
= col

{
w`k
}
`∈Ik

∈ RQk (5.8)

where w`k ∈ RM` is the local copy of the variable w` at agent k. We further let C` denote the

cluster of nodes that contains the variable w` in their costs:

C` = {k | ` ∈ Ik} (5.9)

We can view the cluster C` as a smaller network (or sub-graph) where all agents in this

sub-network are interested in the same parameter w`. To require all local copies w`k to coincide

with each other, we need to introduce the constraint

w`k = w`s, ∀ k, s ∈ C` (5.10)

Using relations (5.8) and (5.10), we rewrite problem (5.2) as

minimize
w1,....,wK

K∑
k=1

Jk(wk), wk = col{w`k}`∈Ik

subject to w`k = w`s ∀ k, s ∈ C`, ∀ ` ∈ {1, · · · , L}. (5.11)

For ease of reference, we summarize the main notation used in this chapter in following Table

5.1.
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Table 5.1: A listing of the main symbols used in this chapter

Symbol Meaning
Ik The set of variable indices that influence the cost of agent k.
w`k Local copy of w` at agent k.
wk Collection of parameters influencing agent k,

wk
∆
= col{w`k}`∈Ik

C` Cluster of nodes that are influenced by the variable w`.
K` Number of agents in cluster C`.
W` Stacks all local copies of w` across C`,

W` = col{w`k}k∈C`
W Stacks W` for all parameters, W = col{W`}L`=1

5.3 Cluster Combination Matrices

To solve (5.11), we associate weights {a`,sk}s,k∈C` with each cluster C` and and introduce the

cluster combination matrix

A` = [a`,sk]s,k∈C` (5.12)

Assumption 5.2. (Each cluster is a connected sub-graph): The neighboring agents

can communicate in both directions and the doubly-stochastic matrix A` is primitive and

symmetric. This implies that for any two arbitrary agents in cluster C`, there exists at least

one path with nonzero weights {a`,sk}s,k∈C` linking one agent to the other. �

We remark that two agents are coupled if they share the same variable w` and we are only

requiring the coupled agents to be connected. If all agents share the entire w, then all

agents are coupled by w and the above assumption translates into requiring the network

to be strongly-connected. Assumption 5.2 is satisfied for most networks of interest. For

example, all applications that fit into problem (5.5) given in Remark 5.1 naturally satisfy

this assumption, including but not limited to applications in decentralized power system

monitoring, decentralized control, and maximum-flow — see [141,144,148]. This is due to the

construction of problem (5.5): there exist L = K clusters, where w` affects the neighborhood
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of agent k = `, and hence Ck = Nk forms a star shaped graph (i.e., all agents s ∈ Ck

are connected through agent k), and hence this cluster is connected. Moreover, multitask

applications satisfy this assumption [136,137,151,152].

We emphasize that Assumption 5.2 is not limited to the case described in Remark 5.1

since it can be satisfied for any connected network, as we further clarify. To being with,

independently of the clusters, let us assume that the entire network is connected. Now, if

some cluster C` happens to be unconnected, we can embed it into a larger connected cluster

C ′` such that C` ⊂ C ′`. For example, consider the network shown in Figure 5.3. In this network,

Figure 5.3: A five-agent network with unconnected C2 and C3.

we have

C1 = {1, 2, 3, 4, 5}, C2 = {2, 4}, C3 = {1, 3}, C4 = {5} (5.13)

In these clusters, we find that C4 is a singleton. Therefore, w4 will be optimized solely

and separately by agent 5, and no communication is needed for that variable. Cluster C1

is connected, and agents {1, 2, 3, 4, 5} cooperate in order to optimize w1, with each agent

sharing its estimate with neighbors. However, clusters C2 and C3 have disconnected graphs.

This implies that agents 2 and 4 cannot communicate to optimize and reach consensus on w2.

Likewise, for agents {1, 3} regarding the variable w3. To circumvent this issue, we redefine
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J1(w1, w3) and J2(w1, w2) as:

J ′1(w1, w2, w3)
∆
= J1(w1, w3) + 0 · w2 (5.14)

J ′2(w1, w2, w3)
∆
= J2(w1, w2) + 0 · w3 (5.15)

By doing so, the augmented costs J ′1(w1, w2, w3) and J ′2(w1, w2, w3) now involve w2 and w3,

respectively, and the new clusters become

C ′2 = {1, 2, 4}, C ′3 = {1, 2, 3} (5.16)

which are connected and satisfy C2 ⊂ C ′2 and C3 ⊂ C ′3. Therefore, in this scenario, agents

{1, 2, 4} will now cooperate to optimize w2 with agent 1 acting as a connection that allows

information about w2 to diffuse in the cluster. Likewise, for agents {1, 2, 3}, with agent 2

allowing information about w3 to diffuse in the cluster. A second extreme approach would be

to extend each local variable wk to the global variable w, which reduces problem (5.2) to the

formulation (1.1). This way of embedding the clusters into larger connected clusters can be

done in a decentralized fashion – see for example [143].

5.4 Coupled Exact Diffusion

In this chapter, for illustration and simplicity we focus on one specific algorithm. In

particular, we will generalize the exact diffusion algorithm (3.17) to the case of multiple

coupled parameters.

Similar to the arguments in the previous chapters, we utilize Lemma 1.1 to rewrite the

constraints in (5.11) in an equivalent form that is amenable to decentralized implementations.

First, for each parameter vector w`, we collect its local copies into the extended vector

W` ∆
= col{w`k}k∈C` ∈ RM`K` (5.17)
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where K` = |C`| denotes the number of agents in cluster C`. With this notation, we can

rewrite the cost function in problem (5.11) as

J (W1,W2, · · · ,WL)
∆
=

K∑
k=1

Jk(wk). (5.18)

Recall that each cluster is associated with a primitive doubly stochastic symmetric matrix

A`. If we define

A`
∆
= A` ⊗ IM`

(5.19)

B`
∆
=

1

2
(IM`K` −A`)

1
2 (5.20)

Then using Lemma 1.1 and the definition of W` in (5.17) we get

w`k = w`s, ∀ k, s ∈ C` ⇐⇒ B`W` = 0, ∀ `. (5.21)

Using relations (5.18) and (5.21), we can rewrite problem (5.11) equivalently as

minimize
W1,....,WL

J (W1, · · · ,WL) (5.22)

subject to B`W` = 0 = 0, ∀ `

To rewrite problem (5.22) more compactly, we introduce

B ∆
= blkdiag{B`}L`=1 =

1

2
(IS −A) (5.23)

where S ∆
=

L∑̀
=1

K`M` and

A ∆
= diag{A`}L`=1. (5.24)
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We further define the following

W
∆
= col{W`}L`=1 ∈ RS (5.25)

J (W)
∆
= J (W1, · · · ,WL) (5.26)

Then, problem (5.22) becomes:

minimize
W

J (W), s.t. BW = 0 (5.27)

The above problem is simply a linearly constrained problem. Therefore, similar to how (3.17)

is derived we can employ the following adapt-then-combine algorithm:
Zi = Wi−1 − µ∇J (Wi−1)− BYi−1 (primal-descent) (5.28a)

Yi = Yi−1 + BZi (dual-ascent) (5.28b)

Wi = 0.5(I +A)Zi (Combine) (5.28c)

By eliminating the dual variable we get

Wi = 0.5(I +A)

(
2Wi−1 − Wi−2 − µ

(
∇JW(Wi−1)−∇JW(Wi−2)

))
(5.29)

Algorithm (5.29) looks similar to the one in (3.17). However, there are two subtle differences.

First, the combination matrix A = diag{A`}L`=1 has a block diagonal structure and, second,

the gradient ∇WJ (W) couples the variables {W`} across the clusters. To see this, we note

that the gradient vector is given by

∇WJ (W) =


∇W1J (W)

...

∇WLJ (W)

 , ∇W`J (W) = col{∇w`k
Jk(wk)}k∈C` (5.30)

It is clear that each block col{∇w`k
Jk(wk)}k∈C` depends on other clusters since the argument

in Jk(wk) is wk and agent k may belong to more than one cluster. For the special case that

84



Algorithm (Coupled Exact Diffusion Strategy)
Setting: Let Ā` = (IK` + A`)/2, and wk,−1 = ψk,−1 arbitrary. For every agent k, repeat for
i = 0, 1, 2, ...

ψk,i = wk,i−1 − µ∇wkJk(wk,i−1) (5.31a)
φk,i = ψk,i + wk,i−1 − ψk,i−1 (5.31b)

w`k,i =
∑

s∈Nk∩C`

ā`,skφ
`
s,i, ∀ ` ∈ Ik (5.31c)

there exists only one cluster (i.e, L = 1, wk = w1
k, and A = A1), we recover the exact diffusion

algorithm (3.17). The decentralized implementation of (5.29) is listed in (5.31a)–(5.31c). In

this listing, the variables {ψk,i, φk,i} have the same structure as wk,i, i.e., ψk,i = col{ψ`k,i}`∈Ik
and φk,i = col{φ`k,i}`∈Ik .

Corollary 5.1. (Coupled Exact-Diffusion) Let Assumptions 5.1 and 5.2 hold. If the

step-size satisfies µ < 2
δ
, then it holds that each sub-block w`k,i in 5.31 converges linearly to

the optimal corresponding w`,? defined in (5.3) with rate

γ = max
{

1−µν̄ρ(2− µδ), 1− σ2(B), µρ(2− µδ)
}
< 1 (5.32)

for any 0 < ρ < 1/µ(2− µδ) with ν̄ρ denoting the strongly-convex parameter given in (3.31)

with B defined in (5.23). �

The proof of Corollary 5.1 directly follows from the proof of Theorem 3.1. Notice how the

convergence rate γ (5.32) depends on matrix B. Recall from (5.23) that in this chapter B =

blkdiag{0.5(IM`K`−A`)
1
2} has a block diagonal structure. Recall further that σ2(B) denote the

smallest non-zero singular value (or eigenvalue) of the matrix B = blkdiag{0.5(IM`K` −A`)}.

Thus, the effect of the clusters on the convergence rate is evident through the term 1−σ2(B) =

1 −min{σ(B2
` )}. We see that in this case, the convergence rate is affected by the clusters

through the matrices B2
` = {0.5(I − A`)}. This means that only the connectivity of each

cluster affects the convergence rate and not the connectivity of the whole network. Therefore,

for sparse networks but well connected clusters an algorithm that does not exploit the

85



structure will perform poorly. This is illustrated in the next section by means of simulations.

5.5 Simulation Results

In this section we illustrate the operation of the algorithm by considering a situation in which

the individual costs are quadratic. Each agent k seeks to estimate its own variable wk ∈ RMk

but is affected by the neighboring variables {w`; ` ∈ Nk} (i.e., L = N and Ik = Nk), through

a cost of the form:

Jk(wk) = wT
kRkwk + bTkwk + rk

=
∑
s∈Nk

∑
`∈Nk

(ws)TRk,s`w
` +

∑
`∈Nk

bTk,`w
` + rk (5.33)

where wk , col{w`}`∈Nk , Rk is a Qk×Qk positive definite matrix, and bk ∈ RQk . We partition

Rk and bk into block matrices {Rk,s` ∈ RMs×M`} and block vectors {bk,` ∈ RM`} according

to the block structure of wk. Each agent k only knows its local quantities {Rk, bk}. The

aggregate cost is given by

Jglob(w) ,
K∑
k=1

Jk(wk) = wTRw + b̄Tw (5.34)

where

R ,


N∑
k=1

Rk,11 · · ·
N∑
k=1

Rk,1L

...
...

N∑
k=1

Rk,L1 · · ·
N∑
k=1

Rk,LL

, (5.35)

b̄ ,


N∑
k=1

bk,1

...
N∑
k=1

bk,L

 (5.36)
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with

Rk,s` = 0, bk,` = 0, if ` /∈ Nk or s /∈ Nk (5.37)

In our simulation, we consider a randomly generated network with K = 20 agents shown in

Figure 6.4a, where neighbors are decided by closeness in distance. We randomly generate Rk

and bk. All combination matrices are generated using the Metropolis rule. Figure Figure 5.5

shows the relative error (‖Wi − W?‖2/‖W−1 − W?‖2) for the coupled exact-diffusion algorithm

(5.31) and the exact diffusion algorithm (3.17). In this figure we used M` = 5 for all variables

and step size µ = 0.02 for both algorithms. We also used the Metropolis rule to create

the combination matrices. We conclude that, in the case of problem formulation (5.2), it

is not efficient to extend each local vector to the global one and then solve this extended

problem [39,93]. Note that in each iteration i each agent k using the exact diffusion algorithm

needs to communicate an 5×K = 100 long vector, as opposed to the coupled exact diffusion

algorithm where each agent k only communicates 5× |Nk| < 100.
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Figure 5.4: Network topology used in the simulation results.

Figure 5.5: Relative errors for the coupled diffusion and the exact diffusion algorithms.
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CHAPTER 6

Multi-Coupled Resource Sharing Problem

In this chapter we develop a proximal dual exact diffusion strategy with guaranteed exact

convergence for a multi-agent optimization problems with generally coupled affine constraints.

Unlike other works, we will show analytically, and by means of simulations, the superior

convergence properties of an algorithm that considers the sparsity structure in the constraints

compared to others that ignore this structure.

6.1 Motivation

In this section, we will motivate the problem considered in this chapter. Recall from Section 1.3

we briefly described the resource sharing problem (1.2) where a collection of K interconnected

agents are coupled through an optimization problem of the following form:

minimize
w1,w2,··· ,wK

K∑
k=1

Jk(wk), s.t.
K∑
k=1

Bkwk − bk = 0, (6.1)

where Jk(.): RQk → R is a cost function associated with agent k and wk ∈ RQk is the variable

for the same agent. The matrix Bk ∈ RS×Qk and the vector bk ∈ RS are known locally by

agent k only.

However, in many other applications, the constraint is sparse in the sense that some rows

of Bk are zero. For example, in network flow optimization [138], multitask problems [148],

distributed model predictive control [142], and optimal power flow [153,154], the constraint

has a special sparse structure. Specifically, each agent s is coupled with its neighboring nodes

89



through an individual affine constraint of the form:

∑
k∈Ns

Bs,kwk = bs, ∀ s = 1, · · · , K (6.2)

where Bs,k ∈ RSs×Qk , bs ∈ RSs , and Ns denotes the neighborhood of agent s including agent

s itself. Note that we can rewrite the constraints (6.2) into a single constraint of the form

given in (6.1) by choosing Bk to be a block column matrix with blocks {B1,k, · · · , BK,k} and

by setting Bs,k = 0 if s /∈ Nk. However, under decentralized settings, applying an algorithm

that solves (6.1) directly and ignores the sparsity structure scales badly for large networks

and its performance deteriorates as shown in this chapter. In some other applications (see

Example 6.2 below), unlike (6.2), the number of constraints is arbitrary, and independent of

the number of agents K. Moreover, each constraint may include any subset of agents and not

only the agents in the neighborhood of some agent. Therefore, a general scalable algorithm

that can exploit the sparsity in the constraint set is necessary for large scale networks.

Example 6.1. (Distributed Model Predictive Control) We examine a distributed

finite-horizon control problem [142]. Thus, consider K subsystems. Given initial states {xs,0},

each subsystem evolves over t ≥ 0 according to the dynamics:

xs,t+1 = Fsxs,t +Gssus,t +
∑
k∈N ′s

(
Fskxk,t +Gskuk,t

)
(6.3)

where the matrices in (6.3) are of appropriate dimensions, us,t is the input of subsystem s at

time t, and N ′s denotes the neighborhood of agent s, excluding agent s. If we introduce the

T block finite horizon vectors:

xs
∆
= col{xs,t}Tt=1, us

∆
= col{us,t}T−1

t=0 (6.4)
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then, by iterating (6.3), it can be verified that [155]:

xs = G′ssus +
∑
k∈N ′s

(F ′skxk +G′skuk) + bs (6.5)

for matrices {G′sk, F ′sk} constructed from {Fs, Fsk, Gsk} and some vector bs constructed from

Fs, Fsk and the initial condition xs,0. If we let ws
∆
= col{xs, us}, and introduce:

Bs,s
∆
= blkrow{I,−G′ss}, Bs,k

∆
= −blkrow{F ′sk, G′sk},

then we can formulate the following problem:

minimize
w1,w2,··· ,wK

K∑
k=1

(
wT
kRkwk + rTkwk

)
(6.6)

subject to
∑
k∈Ns

Bs,kwk = bs, ∀ s = 1, · · · , K

where Ns denotes the neighborhood of agent s, including agent s. �

Example 6.2. (General exchange in smart-grids) In this example, we will describe an

example where unlike the previous examples, the number of constraints is arbitrary, and

independent of the number of agents K. For simplicity, we describe the resource management

(or economic dispatch) problem in smart grids [156] with minimum notation. To begin with,

let PGk and PLk be the power generation supply and power load demand at node k. Moreover,

let Pk = col{PGk , PLk} be a 2× 1 vector formed by stacking PGk and PLk . Then, the resource

management problem over a power network consisting of K nodes is [157]:

min
{Pk}

K∑
k=1

(
Jk(Pk) +Rk(Pk)

)
, s.t.

K∑
k=1

(
PGk − PLk

)
= 0, (6.7)

where the non-differentiable term Rk(Pk) is the indicator function of some capacity constraints

such as positive powers and the maximum power generation. This problem fits into (6.1) and

couples all nodes in a single constraint. The cost function typically used by power engineers is

quadratic [153,157]. In this formulation, it is assumed that each node is associated with one
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generator or load with Pk denoting the power generation or demand at that node. Assume

now that each node k has multiple generators and/or loads. For example, each generator (or

load) can be divided into sub-generators (or sub-loads). Moreover, assume that the power

network is divided into K nodes that provide power to E sub-areas. Let Ce denote the

collection of nodes providing power to sub-area e. Let Pe,Gk and Pe,Lk denote the power

supply and power load at node k in area e – see Figure 6.1. In this figure, there are six nodes

(agents) and three sub-areas (sub-networks). Each node associates different generators or

loads to different sub-areas.

Figure 6.1: An illustration for Example 6.2. In this illustration, there are E = 3 areas and K = 6
agents.

If we let Ce denote the nodes that are involved in area e and Pk to be the augmented vector

Pk = col{Pe,Gk , Pe,Lk}e:k∈Ce , which collects all local variables {Pe,Gk , Pe,Lk} over all areas that
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agent k belongs to. Then, we formulate the following more general problem:

minimize
{Pk}

K∑
k=1

(
Jk(Pk) +Rk(Pk)

)
(6.8)

subject to
∑
k∈Ce

(Pe,Gk − Pe,Lk) = 0, ∀ e = 1, · · · , E

This formulation fits into the problem of dynamic energy exchange in smart grids applications

[158] where each area is a connected sub-network. It can also be motivated as follows. Assume

each sub-area represents some city. Then, problem (6.8) is useful when the transmission losses

are costly in some parts of an area, which may require power generation from neighboring

power networks. It is also useful when there are maintenance to some generators or lines

causing high demands in some areas, which requires the need of extra generators from adjacent

power networks. �

6.2 Problem Setup

Consider a network of K agents and assume that the agents are coupled through E affine

equality constraint sets. For each constraint set e, we let Ce denote the sub-network of

agents involved in this particular constraint(s). We then formulate the following optimization

problem:

minimize
w1,··· ,wK

K∑
k=1

(
Jk(wk) +Rk(wk)

)
(6.9)

subject to
∑
k∈Ce

(Be,kwk − be,k) = 0, ∀ e = 1, · · · , E,

where Be,k ∈ RSe×Qk and be,k ∈ RSe . The function Jk(.) : RQk → R is a smooth convex

function, while Rk(.) : RQk → R is possibly a non-smooth convex function. For example,

Rk(.) could be an indicator function of some local constraints (e.g., wk ≥ 0). These functions

are assumed to satisfy the conditions in Assumption 6.1 further ahead. It is also assumed

that agent k ∈ Ce is only aware of Be,k and be,k. Note that for the special case E = 1 and
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C1 = {1, · · · , K}, problem (6.9) reduces to (6.1).

Assumption 6.1. (Cost function): It is assumed that the aggregate function, J (W) =∑K
k=1 Jk(wk) where W , col{wk}Kk=1, is a convex differentiable function with Lipschitz contin-

uous gradient:

‖∇WJ (W)−∇WJ (z)‖ ≤ δ‖W − z‖ (6.10)

Moreover, J (W) is also strongly convex, namely, it satisfies:

(W − z)T∇WJ (W) ≥ J (W)− J (z) +
ν

2
‖W − z‖2 (6.11)

where {δ, ν} are strictly positive scalars with δ > ν. The regularization functions {Rk(.)} are

assumed to be closed convex functions, which implies that at least one subgradient exists at

every point. �

These assumptions are widely employed in the literature and they are encountered in many

practical applications such as distributed model predictive control [142], power systems [153],

and data regression problems [53].

Assumption 6.2. (Sub-networks): The network of K agents is undirected (i.e., agents

can interact in both directions over the edges linking them) and each sub-network Ce is

connected. �

This assumption means that there exists an undirected path between any two agents

in each sub-network. This is automatically satisfied in various applications due to the

physical nature of the problem. This is because coupling between agents often occurs for

agents that are located close to each other. Applications where this assumption holds

include, network flow optimization [138], optimal power flow [153,154], and distributed model

predictive control [142] problems. As explained in the introduction, in these problems, the

constraints have the form given in equation (6.2). In this case, each constraint involves

only the neighborhood of an agent, so that Ce = Ns (for s = e) and neighborhoods are
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naturally connected. Now, more generally, even if some chosen sub-network happen to be

disconnected, we can always construct a larger connected sub-network as long as the entire

network is connected – an explanation of this construction procedure can be found in [90].

The problem of finding this construction is the well known Steiner tree problem [159] and,

fortunately, distributed algorithms and heuristics exist to solve it [160, 161]. We now provide

one motivational physical application that also satisfies the two previous assumptions.

6.2.1 Related Works

Many distributed algorithms have been developed for constraints of the form (6.2), but

for special cases and/or under a different settings from what is considered in this work

[153–155,162,163]. For example, the algorithms developed in [153–155,162,163] require the

sharing of primal variables among neighboring agents and, moreover, the s−th constraint is

of the form (6.2), which is limited to agents in the neighborhood of agent s. An augmented

Lagrangian solution is pursued in [164], which further requires two hop communications.

All these methods are not directly applicable for the case when the s-th constraint involves

agents beyond the neighborhood of agent s. Extending these methods to this case would

require multi-hop communication, which is costly. Moreover, the settings in these methods are

different from this work. In these methods, the parameters of the s-th constraint {Bs,k, bs}k∈Ns
are known solely by agent s. In this work, we consider a broader setting with arbitrary

number of constraints, and each constraint may involve any subset of agents – see Section

6.2. Moreover, each agent s is only aware of the constraints matrices multiplying its own

vector ws.

The setting in this work is closer to the one considered in [53,165–168]. However, these

works focused on problems with a single coupling constraint of type (6.1), which ignores any

sparsity structure. Problem (6.1) is solved in these references by using dual decomposition

methods, which require each agent to maintain a dual variable associated with the constraint.

Ignoring any sparsity structure means that each agent will be involved in the entire constraint.

By doing so, each agent will maintain a long dual vector to reflect the whole constraint, and
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all agents in the network will have to reach consensus on a longer dual vector. The work [169]

studied problem (6.1) for smooth functions with resource constraints (i.e., wk ≤ wk ≤ wk)

and focused on handling the useful case of dynamic and directed graphs. The matrix Bk in

that work has a specific structure; moreover, the solution employed also shares the whole dual

variable and neglects any sparsity structure. In other resource allocation problems [78,170–172]

all agents are involved in a single constraint of the form (6.1) with Bk = I.

Different from the previously mentioned works, we consider a broader class of coupled

affine constraints, where there exist multiple affine constraints and each constraint may

involve any subset of agents. Our solution requires sharing dual variables only and does not

directly share any sensitive primal information, e.g., it does not share the local variables {wk}.

Unlike the works [53,165–169], which solve problem (6.1) and do not consider the sparsity

structure in the constraint, this work exploits the constraint structure. In this way, each agent

will only need to maintain the dual variables corresponding to its part of the constraints and

not the whole constraint. Thus, only the agents involved in one particular part will need to

agree on the associated dual variables. An algorithm that ignores the sparsity structure scales

badly (in terms of communications and memory) as the number of constraints or agents

increases. Moreover, it is theoretically shown in this work that the sparsity in the constraint

set influences the performance of the algorithm in terms of convergence rate. Therefore, for

large scale networks, it is important to design a scalable algorithm that exploits any sparsity

in the constraint.

In [173], a multi-agent optimization problem is considered with stochastic quadratic

costs and constraints similar to what is considered in this chapter albeit with substantially

different settings. First, the work [173] considers quadratic costs only, does not handle

non-differentiable terms, and their solution solves an approximate penalized problem instead

of the original problem. Second, it is assumed that every agent knows all the matrices

multiplying the vectors of all other agents involved in the same constraint. For example, for

the constraint (6.2), agent s knows {Bk′,k} for all k ∈ Ns or k′ ∈ Ns. Lastly, the solution

method requires every agent to maintain and receive delayed estimates of primal variables
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wk from all agents involved in the same constraint through a multi-hop relay protocol. This

solution method suffers from high memory and communication burden; thus, it is impractical

for large scale networks. In network utility maximization problems, a similar formulation

appears, albeit with a different distributed framework; it is assumed that the agents (called

sources) involved in a constraint are connected through a centralized unit (called link) that

handles the constraint coupling these agents – see [79] and references therein.

6.2.2 Main Contributions

Given the above, we now state the main contributions of this work. A novel low computational

distributed algorithm is developed that exploits the sparsity in the constraints. The developed

algorithm handles non-differentiable terms and is shown to converge to the optimal solution

for constant step-sizes. Furthermore, linear convergence is shown in the absence of non-

differentiable terms and an explicit upper bound on the rate of convergence is given. This

bound shows the importance of exploiting any constraint sparsity and why not doing so

degrades the performance of the designed algorithm.

Table 6.1: A listing of repeatedly used symbols in this chapter.

Symbol Description
Ce Sub-network of nodes involved in constraint e.
Ne The cardinality of the set Ce.
Ek The set of equality constraints indices involving agent k.
W The vector formed by stacking {wk} over all agents.
J (W) The sum of all smooth functions, J (W) =

∑K
k=1 Jk(wk).

ve Dual variable for equality constraint(s) e.
{ve}e∈Ek Collection of all dual variables ve related to agent k.

vek Local copy of ve at agent k ∈ Ce.
Ye Collection of vek over all k ∈ Ce.
Y Collection of Ye over all e.
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6.3 Algorithm Development

In this section, we will derive our algorithm and introduce some important symbols, which

are necessary for algorithm description and later analysis. To do so, we start by introducing

the Lagrangian function of (6.9):

L
(
W, {ve}

)
=

K∑
k=1

J ′k(wk) +
E∑
e=1

(ve)T
(∑
k∈Ce

Be,kwk − be,k
)

(6.12)

where J ′k(wk)
∆
= Jk(wk) +Rk(wk), and ve ∈ RSe denotes the dual variable associated with

the e-th constraint. To facilitate the development of the algorithm we rewrite (6.12) as a

sum of local Lagrangian terms. To do so, we need to introduce the set Ek, which denotes the

set of equality constraints that agent k is involved in (e.g., if agent k is involved in equality

constraints one and three, then Ek = {1, 3}). From the definition of Ek and Ce, we have

Ce = {k | e ∈ Ek}, Ek = {e | k ∈ Ce} (6.13)

Using this notation, the second term on the right hand side of (6.12) can be rewritten as a

sum over all agents as follows: let Be,k = Be,k if k ∈ Ce (or e ∈ Ek) and zero otherwise and,

likewise, for be,k. then it holds that:

E∑
e=1

∑
k∈Ce

(ve)T (Be,kwk − be,k) =
E∑
e=1

K∑
k=1

(ve)T
(
Be,kwk − be,k

)
=

K∑
k=1

∑
e∈Ek

(ve)T (Be,kwk − be,k)

where in the last step we switched the order of summation and used the fact that k ∈ Ce

if, and only, if e ∈ Ek. Therefore, if we let {ve}e∈Ek denote the collection of dual variables

related to agent k, then using the previous equation we can rewrite (6.12) as a sum of local
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terms as follows:

L
(
W, {ve}

)
=

K∑
k=1

Lk
(
wk, {ve}e∈Ek

)
(6.14)

where

Lk
(
wk, {ve}e∈Ek

) ∆
= J ′k(wk) +

∑
e∈Ek

(ve)T
(
Be,kwk − be,k

)
(6.15)

is the local term for agent k. We are therefore interested in finding the minimizer of (6.9)

through the equivalent solution of the saddle point problem [94]:

min
W

max
{ve}
L(W, {ve}) (6.16)

Assumption 6.3. (Strong duality) A solution exists for problem (6.16) and strong duality

holds. �

Since our problem (6.9) is convex with affine constraints only, then Slater’s condition

is satisfied and strong duality holds [94, Section 5.2.3], which ensures that the solution of

(6.16) coincides with the solution of (6.9). We denote an optimal solution pair of (6.16) by

W? = col{w?k}Kk=1 and {ve,?}. From assumption 6.1, W? is unique, but {ve,?} are not necessarily

unique. To derive our algorithm, which solves the saddle point problem (6.16), we will now

relate the dual problem to the one considered in our previous work [90] and explain how the

dual variables are partially shared across the agents, which is important for our derivation.

6.3.1 Dual Problem

Note that the Lagrangian (6.14) is separable in the variables {wk}. Thus, the dual problem

is [94](we are reversing the min and max operations by negating the function):

minimize
v1,··· ,vE

−
K∑
k=1

fk
(
{ve}e∈Ek

)
(6.17)
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where1

fk
(
{ve}e∈Ek

) ∆
= min

wk
Lk
(
wk, {ve}e∈Ek

)
(6.18)

Figure 6.2 illustrates how the dual variables {ve} are shared across agents participating in

the same constraint. For example, agent k = 4 in Figure 6.2 is part of two sub-networks,

C1 and C2; it is therefore part of two equality constraints and will be influenced by their

respective dual variables, denoted by v1 and v2. Similarly, for the other agents in the network.

Problem (6.17) is of the form considered in [90]: it involves minimizing the aggregate sum of

cost functions fk
(
{ve}e∈Ek

)
where the arguments {ve}e∈Ek among different agents can share

block entries as illustrated in Fig. 6.2 . The main difference here, however, is that the

costs fk
(
{ve}e∈Ek

)
do not admit a closed form expression in general and are instead defined

by (6.18), i.e., in this work we are actually dealing with the more challenging saddle point

problem and not with a minimization problem as was the case in [90]. Thus, more is needed

to arrive at the solution of (6.16), as we explain later.

Figure 6.2: An example to illustrate the dual problem (6.17) for agent k = 4. In this example we
have three sub-networks and agent 4 is involved in the equality constraints for sub-networks C1 and
C2.

1Technically inf is used instead of min in (6.18), however, to avoid confusion we use min.
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6.3.2 Combination Coefficients

To proceed from here and for the algorithm description, we introduce combination coefficients

for the edges in Ce denoted by {ae,sk}s,k∈Ce ; ae,sk refers to the coefficient used to scale data

moving from agent s to agent k in subnetwork Ce with ae,sk = 0 if s /∈ Nk ∩ Ce. We collect

these coefficients into the combination matrix

Ae
∆
= [ae,sk]s,k∈Ce ∈ RNe×Ne (6.19)

where Ne denotes the number of agents involved in equality e. The matrix Ae is assumed to

be symmetric and doubly-stochastic. We also require Ae to be primitive, meaning that there

exists an integer j such that the entries of the matrix Aje are all positive. One way to meet

these conditions is to choose weights satisfying


∑
s∈Ce

ae,sk = 1,
∑
k∈Ce

ae,sk = 1 (6.20a)

ae,sk > 0 for s ∈ Nk ∩ Ce (6.20b)

with ae,sk = 0 if s /∈ Nk ∩ Ce. Under Assumption (6.2) many rules exists to choose such

weights in a distributed way – see [8, Ch. 14]. We are now ready to derive our algorithm.

6.3.3 Dual Coupled Diffusion

Using the combination matrix Ae, it was shown in [90] that problem (6.17) can be solved by

using the following coupled diffusion algorithm. Set vek,−1 = ψek,−1 to arbitrary values. For

each k and e ∈ Ek repeat for i ≥ 1:

ψek,i = vek,i−1 + µv∇vefk
(
{vek,i−1}e∈Ek

)
(6.21a)

φek,i = ψek,i + vek,i−1 − ψek,i−1 (6.21b)

vek,i =
∑

s∈Nk∩Ce

āe,skφ
e
s,i (6.21c)
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where vek,i is the estimate for ve at agent k, µv > 0 is a step-size parameter, and {ψek,i, φek,i}

are auxiliary vectors used to find vek,i. The coefficients {āe,sk} are the entries of the matrix

Āe defined as follows:

Āe = [āe,sk]s,k∈Ce
∆
= 0.5(INe + Ae) (6.22)

If the functions {fk(.)} are known and are differentiable, then each agent could run (6.21a)–

(6.21c) to converge to its corresponding optimal dual variable, which in turn could be used to

find the local minimizer w?k by solving minwk Lk
(
wk, {ve,?}e∈Ek

)
. However, this approach is

not always possible because the local dual function fk
(
{ve}e∈Ek

)
does not generally admit a

closed form expression nor is guaranteed to be differentiable. Moreover, this method involves

two time scales: one for finding the dual and the other for finding the primal. Therefore,

to solve (6.16) we propose to employ a distributed version of the centralized dual-ascent

construction [2] combined with a proximal gradient descent step. Specifically, recall first that

the dual-ascent method updates the primal variable wk at each iteration i as follows:

wk,i = arg min
wk

Lk(wk, {vei−1}e∈Ek), ∀ k (6.23)

Note that this minimization step, which need to be solved at each iteration, can be costly in

terms of computation unless a closed form solution exists, which is not the case in general.

Therefore, we approximate (6.23) by a proximal gradient descent step to arrive at what we

shall refer to as the dual coupled diffusion algorithm (6.24). At each time instant i, each agent

k first performs a proximal gradient descent step (6.24a) for the primal variable. Then, for

each dual-ascent step, the coupled diffusion (6.24b)–(6.24d) are applied where step (6.24b) is

obtained by using ∇veLk(wk,i, {vek}e∈Ek) to approximate the gradient at the minimum value

in (6.18). Note that only step (6.24d) requires sharing dual variables with the neighbors that

are involved in similar constraints.

To analyze algorithm (6.24) and show that it converges to an optimal solution of (6.16),

we will rewrite it in a compact network form, which facilitates its analysis.
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Algorithm (Dual Coupled Diffusion)
Setting: Let vek,−1 = ψek,−1 and wk,−1 arbitrary.
For every agent k, repeat for i ≥ 0:

wk,i = prox
µwRk

(
wk,i−1 − µw∇wkJk(wk,i−1)− µw

∑
e∈Ek

BT
e,kv

e
k,i−1

)
(6.24a)

For all e ∈ Ek:

ψek,i = vek,i−1 + µv

(
Be,kwk,i − be,k

)
(6.24b)

φek,i = ψek,i + vek,i−1 − ψek,i−1 (6.24c)

vek,i =
∑

s∈Nk∩Ce

āe,skφ
e
s,i (6.24d)

6.4 Network Recursion

We start by stacking the dual estimates within each cluster and then stacking over all the

clusters. This will allow us to rewrite the dual steps (6.24b)–(6.24d) in a form that enables

us to see the affect of each sub-network in our analysis. Thus, we introduce the sub-network

vector that collects the dual estimates vek,i over the agents in Ce:

Yei
∆
= col{vek,i}k∈Ce ∈ RNeSe , (6.25)

and the global network vector that collects Yei over all e:

Yi
∆
= col{Yei}Ee=1 (6.26)

We also repeat a similar construction for the quantities:

be
∆
= col{be,k}k∈Ce , b

∆
= col {be}Ee=1 (6.27)

Āe
∆
= Āe ⊗ ISe , Ā ∆

= blkdiag{Āe}Ee=1 (6.28)
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where Āe = 1
2
(INe + Ae). For the networked representation of the primal update (6.24a), we

introduce the network quantities:

Wi
∆
= col{wk,i}Kk=1 (6.29)

R(W)
∆
=

K∑
k=1

Rk(wk) (6.30)

∇J (Wi)
∆
= col{∇Jk(wk,i)}Kk=1 (6.31)

We also need to represent the term
∑

e∈Ek B
T
e,kv

e
k,i−1 in terms of the network quantity Yi−1

defined in (6.26). To do that we first rewrite each term BT
e,kv

e
k,i−1 in terms of the sub-network

vector Yei−1. This can be simply done by introducing the 1 × Ne block row matrix BT
ek of

similar block structure as Yei−1 such that BT
ekY

e
i−1 = BT

e,ky
e
k,i−1 if k ∈ Ce and zero otherwise –

Figure 6.3 illustrates this construction. This construction can be represented by:

BT
ek = blkrow{BT

e,kk′}k′∈Ce (6.32a)

BT
e,kk′

∆
=

BT
e,k, if k ∈ Ce , k = k′

0Qk,Se , otherwise
(6.32b)

Thus, we have
∑

e∈Ek B
T
e,kv

e
k,i−1 =

∑E
e=1 BT

ekY
e
i−1.

Figure 6.3: An illustration of constructions (6.25) and (6.26) for the network in Figure 6.2 as well
as construction (6.32) for agent k = 4 in that network.
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If we let

B ∆
=


B11 · · · B1K

...
...

BE1 · · · BEK

 (6.33)

then algorithm (6.24) can be rewritten compactly as follows:

Wi = prox
µwR

(
Wi−1 − µw∇J (Wi−1)− µwBTYi−1

)
(6.34a)

Yi = Ā
(

2Yi−1 − Yi−2 + µvB(Wi − Wi−1)

)
(6.34b)

for i ≥ 1 with initialization:

Y0 = Y−1 + µv(BW0 − b) (6.35)

Notice that step (6.34b) depends on the two previous estimates; thus it is tedious to analyze

directly. Therefore, to facilitate our analysis we will rewrite it in an equivalent form. To do

that, we let:

A = blkdiag{Ae ⊗ ISe}Ee=1 (6.36)

and introduce the singular value (or eigenvalue for symmetric matrices) decomposition [?]:

0.5(IN −A) =
[
U1 U2

]Σ 0

0 0

UT
1

UT
2

 = U1ΣUT
1 (6.37)

where N =
∑E

e=1 NeSe, U1 ∈ RN×r, U2 ∈ RN×(N−r), and Σ = diag{λj}rj=1 with λr ≤ · · · ≤ λ1

denoting the non-zero eigenvalues of the matrix 0.5(I −A). Using an approach similar to the
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one used in [56], we can rewrite (6.34b) equivalently as follows — see Appendix 6.A:

X i = X i−1 −
1

µv
UT

1

(
Yi−1 + µv(BWi − b) + µvU1ΣX i−1

)
(6.38a)

Yi = Yi−1 + µv
(
BWi − b

)
+ µvU1ΣX i (6.38b)

for i ≥ 1, where we introduced a new sequence X i with X0 = 0. Intuitively, step (6.38b) can

be regarded as a corrected gradient ascent step. Note that from the conditions in (6.20),

it holds that the eigenvalues of each matrix Ae are in (−1, 1] – see [8, Lemma F.4]. Thus,

from the block structure of A in (6.36), the eigenvalues of the matrix 0.5(I −A) are in [0, 1).

Therefore, the non-zero eigenvalues are positive and satisfy:

0 < λr ≤ · · · ≤ λ1 < 1 (6.39)

This property is important to show convergence.

6.5 Convergence Results

In this section, we give the Lemmas leading to the main convergence results.

Lemma 6.1. (Optimality condition) If there exists a point (W?, Y?, X?) and a subgradient

g? ∈ ∂WR(W?) such that:

∇J (W?) + g? + BTY? = 0 (6.40a)

UT
1 Y

? = 0 (6.40b)

(BW? − b) + U1ΣX? = 0 (6.40c)

Then, it holds that ve,?k = ve,? ∀ k ∈ Ce where (W?, v1,?, · · · , vE,?) is a saddle point for the

Lagrangian (6.12).

Proof. Using the block structure of ∇J (.) and B in (6.31) and (6.32)–(6.33), we can expand
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(6.40a) into its components to get:

∇wkJk(w
?
k) + g?k +

∑
e∈Ek

BT
e,kv

e,?
k = 0, ∀ k (6.41)

where g?k ∈ ∂wkRk(w
?
k). From the fact UT

1 U1 = I and Σ > 0, condition (6.40b) is equivalent

to:

UT
1 Y

? = 0 ⇐⇒ U1ΣUT
1 Y

? = 0 ⇐⇒ 1

2
(I −A)Y? = 0 (6.42)

Therefore, from (1.5), and the block structure of A in (6.36), condition (6.40b) gives:

ve,?k = ve,?s = ve,?, ∀ k, s ∈ Ce (6.43)

for some ve,?. Hence, condition (6.41) satisfies the first optimality condition for problem (6.9)

– see [94]. Now, let Z = blkdiag{1Ne ⊗ ISe}Ee=1. Multiplying equation (6.40c) on the left by

ZT gives:

0 = ZT(BW? − b) + ZTU1︸ ︷︷ ︸
=0

ΣX?
(a)
= ZT(BW? − b) (6.44)

where step (a) holds because because from (1.5), Z is in the nullspace of I − A and thus

also in the nullspace of UT
1 [88, Equation (51)]. Using the block structure of B and b in

(6.32)–(6.33) and (6.27), we can also expand (6.44) into its components to get:

(1T
Ne ⊗ ISe)

( K∑
k=1

(Bekw?k)− be
)

=
∑
k∈Ce

(Be,kw
?
k − be,k) = 0 (6.45)

for all e since

BT
ek(1Ne ⊗ ISe) =

∑
k′∈Ce

BT
e,kk′ =

BT
e,k, if k ∈ Ce

0, otherwise
(6.46)
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Equation (6.45) is the second optimality condition for problem (6.9) and, thus, (W?, v1,?, · · · , vE,?)

is an optimal point for (6.16) – [94].

Remark 6.1 (Existence and uniqueness). Note that there exists a point (W?, Y?, X?)

that satisfies the optimality conditions (6.40). Specifically, if W? = col{w?k} and Y? =

col{1⊗ ve,?}Ee=1, where (W?, v1,?, · · · , vE,?) is an optimal solution of the saddle point problem

(6.16), then, it can be easily verified that conditions (6.40a)–(6.40b) are satisfied. Now, by

following an argument similar to the one used in [93, Lemma 3], it can be shown that there

exists an X? such that (6.40c) holds; moreover, there exists a unique X? in the range space of

UT
1 . Now, we know from strong convexity that W? is unique. Thus, from (6.40a), the dual

point Y? is unique if the matrix B has full row rank. Under this condition and in the absence

of non-smooth terms, we will show that our algorithm converges linearly to this unique point

– see Theorem 6.2 . �

We will now show that the equivalent network recursions (6.34a) and (6.38a)–(6.38b) of

the proposed algorithm converge to a point that satisfies the optimality conditions given in

Lemma 6.1. To give the convergence results, we introduce the error vectors:

W̃i
∆
= W? − Wi, X̃ i

∆
= X? − X i Ỹi

∆
= Y? − Yi (6.47)

and the diagonal matrix:

D ∆
= µv(Σ− Σ2) > 0 (6.48)

where Σ was introduced in (6.37). Note that D is positive definite because of (6.39).

Lemma 6.2. (Primal-dual bound): Suppose Assumptions 6.1-6.3 hold, then:

‖W̃i‖2 − ‖W̃i−1‖2 ≤ −
(
1− µw(2δ − ν)

)
‖Wi − Wi−1‖2 − µwν

(
‖W̃i−1‖2 + ‖W̃i‖2

)
− 2µw(Yi−1 − Y?)TB(Wi − W?) (6.49)
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and

‖Ỹi‖2
µ−1
v

+ ‖X̃ i‖2
D − ‖Ỹi−1‖2

µ−1
v
− ‖X̃ i−1‖2

D = −‖X i − X i−1‖2
D − ‖ΣX̃ i‖2

µv + ‖BW̃i‖2
µv

+ 2(Yi−1 − Y?)TB(Wi − W?) (6.50)

where (W?, Y?, X?) satisfy the optimality conditions given in Lemma 6.1.

Proof. See Appendices 6.B and 6.C.

The previous Lemma is used to establish the following theorem.

Theorem 6.1. (Convergence): Suppose Assumptions 6.1–6.3 hold, then for positive con-

stant step-sizes satisfying: 
µw <

1

(2δ − ν)
(6.51a)

µv <
ν

λmax(BTB)
(6.51b)

recursions (6.34a) and (6.38a)–(6.38b) converge and it holds that Wi converges to the optimal

solution of (6.9).

Proof. See Appendix 6.D

At this point we showed that the dual coupled diffusion strategy, which handles non-smooth

terms, converges to the optimal point. However, it is still unclear how the sparsity of the

constraints affects the convergence behavior. Apart from saving communication and memory,

the next result reveals the advantage of exploiting the constraint structure.

Theorem 6.2. (Linear convergence): Suppose Assumptions 6.1–6.3 hold, and, further-

more, assume that each Rk(wk) = 0 and each matrix blkcol{Be,k}e∈Ek has full row rank. If

the step sizes satisfy (6.51), then it holds that:

‖W̃i‖2
Cw + ‖Ỹi‖2

µw
µv

+ ‖X̃ i‖2
µwµvΣ ≤ γiC0 (6.52)
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where Cw = I − µwµvBTB > 0, C0
∆
= ‖W̃0‖2 + ‖Ỹ0‖2

µw
µv

+ ‖X̃0‖2
µwµvΣ and

γ
∆
= max

{
1− µwν(1− δµw), 1− µwµvλmin(BBT), 1− λr

}
< 1

with λr denoting the smallest non-zero eigenvalue of 0.5(I −A).

Proof. See Appendix 6.E.

The above result shows why solving (6.9) directly is important for at least two reasons. First,

by using model (6.9), we are able to prove linear convergence under the assumption that each

blkcol{Be,k}e∈Ek has full row rank. If instead, we were to rewrite problem (6.9) into the form

(6.1) by embedding zeros into the matrices Bk, then our analysis would require Bk to be full

row rank for linear convergence. This will not be satisfied if some agent is not involved in

some constraint since in that case Bk will have zero rows and, thus, Bk is row rank deficient

even if blkcol{Be,k}e∈Ek has full row rank.

The second more important reason is that the convergence rate depends on the connectivity

of the sub-networks Ce and not on the connectivity of the entire network, as we illustrate

now. Note from the block structure of (6.36) that the smallest non-negative eigenvalue of

0.5(I −A) has the form λr = mine σe where σe denotes the smallest non-zero eigenvalue of

the matrix 0.5(I − Ae). Since

I − 0.5(I − Ae) = 0.5(I + Ae) = Āe (6.53)

it holds that 1− σe = λ̄e, where λ̄e denotes the second largest eigenvalue of Āe (the largest

eigenvalue is equal to one). Therefore,

1− λr = 1−min
e
σe = max

e
(1− σe) = max

e
λ̄e (6.54)

Thus, assuming 1 − λr is dominating the convergence rate, then the smaller maxe λ̄e is,

the faster the algorithm is. We see that this depends on the second largest eigenvalue of
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the matrices {Āe}, which depends on the sub-networks connectivity and not the whole

network. This observation reveals the importance of the algorithm for sparse networks and

under sparsely coupled constraints. Since in that case the small sub-networks are much well

connected than the whole network. This observation will be illustrated in the simulation

section next.

Remark 6.2 (Condition Number). By using the the upper bound (6.51), we conclude

from Theorem 6.2 that the number of iterations needed to reach ε accuracy is on the order of

O
(

max{κJκB, 1/λr}
)
log

1

ε

where κJ = δ/ν and κB = λmax(BBT)/λmin(BBT) are the condition numbers of the cost J (.)

and the matrix BBT, respectively. �

6.6 Numerical Simulation

In this section, we test the performance of the proposed algorithm with two numerical

experiments.

• (Distributed Linear Regression) The first set-up considers a linear regression problem

with costs:

Jk(wk) =
1

2Tk

Tk∑
t=1

‖uTk,twk − pk(t)‖2 + η1‖wk‖1

where uk,t ∈ RQk is the regressor vector for data sample t and pk(t) ∈ R.

• (Distributed Logistic Regression) The second set-up considers a logistic regression

problem with costs:

Jk(wk) =
1

Tk

Tk∑
t=1

ln
(
1 + exp(−xk(t)hTk,twk)

)
+ η2‖wk‖1
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with additional 2-norm regularizers R′k(wk) = 0.5η3‖wk‖2. The vector hk,t ∈ RQk is the

regressor vector for data sample t, and xk(t) is the label for that data sample, which is

either +1 or −1. In both costs, Tk denotes the amount of data for agent k.

In both experiments, the network used is shown in Fig. 6.4a with K = 20 agents. The

positions (x-axis and y-axis) of the agents are randomly generated in ([0, 1], [0, 1]), and two

agents are connected if the distance between them is less than or equal d = 0.3. As for the

constraints, we assume E = K = 20, and each constraint e (or k) (where e ∈ {1, · · · , 20})

is associated with a subnetwork involving agent e (or k) and all its neighbors as described

in equation (6.2). Each element in Be,k is generated according to the standard Gaussian

distribution N (0, 1). Each be,k is also randomly generated and we guarantee that there exists

a feasible solution to (6.9). All the combination matrices are generated according to the

Metropolis rule.

In the first simulation, we set Tk = 1000 for all k and each regressor uk,t is generated

according to the Gaussian distribution N (0, 1). To generate the associated pk(t), we first

generate a vector wk,0 ∈ RQk randomly from N (0, 1). We let 20% of the entries of w0,k to

be 0. With such sparse wk,0, we generate pk(t) as pk(t) = uTk,twk,0 + nk where nk ∼ N (0, 0.1)

is some Gaussian noise. In this experiment, we set Qk = 10 for k = 1, · · · , K. We also set

η1 = 0.3 and Be,k ∈ R3×10 to be an under-determined coefficient matrix. In the second set-up,

each Tk = 1000. Among all local data samples, half of them are generated by the Gaussian

distribution N (1, 1) and their corresponding labels {xk(t)} are +1’s. The other half are

generated by N (−1, 1) and their corresponding labels {xk(t)} are −1’s. We set Qk = 10 for

k = 1, · · · , K and η2 = η3 = 0.1. We let Be,k ∈ R3×10 to be an under-determined coefficient

matrix.
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(a) The network topology used in simulations.

(b) Least squares results.

(c) Logistic regression results.

Figure 6.4: Simulation results. *Dual diffusion refers to (6.24) applied on the same problem
reformulated into (6.1), which ignores the sparsity structure. Similarly, both IDC-ADMM [53] and
"dual DIGing" [174] are designed for problem (6.1) and ignore the sparsity structure.
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To illustrate the effect of the constraint structure, we consider two approaches to solve

problem (6.9). The first approach is to use the dual coupled diffusion (6.24) while considering

the structure of the problem (6.9), i.e., run (6.24) with E = K, Ce = Ne. The second approach

is to ignore the special structure of the problem and reformulate it into the form of problem

(6.1) and also run the dual coupled diffusion (6.24) with E = 1, C1 = {1, · · · , K}, which we

call dual diffusion. To compare with other related methods that only share dual variables, we

simulate the inexact distributed consensus ADMM (IDC-ADMM) from [53] and a modified

proximal version of the one in [174] in which the dual iterates are updated similar to the

DIGing algorithm in [62], which we call “Dual DIGing". Both of these algorithm are designed

for problem (6.1) and ignores any structure. The step-sizes are chosen manually to get the best

possible performance for each algorithm. In the first linear regression setup, the parameters

used are (µw = 0.28, µv = 0.28) for the dual coupled diffusion, (µw = 0.28, µv = 0.28) for

the dual diffusion, (c = 0.25, µw = 0.05) for the IDC-ADMM [53], and the step-sizes are set

to 0.45 for the dual DIGing method. In the second logistic regression set-up, they are set

to (µw = 0.2, µv = 0.2) for the dual coupled diffusion, (µw = 0.2, µv = 0.2) for the dual

diffusion, (c = 0.45, µw = 0.2) for the IDC-ADMM [53], and the step-sizes are set to 0.18

for the dual DIGing method. Figure 6.4 shows the relative error 1
K

∑K
k=1 ‖wk,i − w?k‖2/‖w?k‖2

for each of the previous algorithms for both set-ups. Note that the dual DIGing algorithm

requires two rounds of communication per iteration. Therefore, in the x-axis we use rounds

of communication for a fair comparison. It is observed that dual diffusion, the IDC-ADMM,

and the dual DIGing algorithms have a close performance (all ignores any structure), while

the dual coupled diffusion clearly outperforms them. This means that, apart from requiring

less amount of data to be exchanged per round of communication, our algorithm is also

able to reach an ε accuracy (where ε is arbitrarily small) with much less time compared

to these other algorithms. As explained before, this superiority is due to the sub-networks

being better connected compared to the whole network and the dual coupled diffusion takes

advantage of that. In this simulation, we have 1− λr = 0.911 for the dual coupled diffusion

and 1−λ = 0.973 for the dual diffusion (we dropped the sub-index since we have one network

combination matrix in this case), which backs up our theoretical findings. To further illustrate
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the effect of the sub-networks connectivity on the convergence rate, we simulate the dual

coupled diffusion (exploits sparsity) and dual diffusion (which does not exploit the sparsity)

with the same logistic regression set-up from before but for the three different networks shown

in top half of Fig. 6.5. The step sizes used in this simulation are adjusted to get the best

possible results, which are shown on the bottom of Figure 6.5. Note that the network on the

left has less connections compared to the network on the right, and thus, the sub-networks

on the left are more sparse than the one on the right. Note further that for the constraints

settings used (6.2), the more connections the network has, the closer the sub-networks are

to the entire network. It is seen that dual coupled diffusion performs significantly better

under sparser networks since in that case the sub-networks are much better connected than

the whole network. On the other hand, when we add more connections, the sub-networks

connectivity becomes closer to the network connectivity and, thus, the performance of the

two algorithms become closer and closer. The performance will become identical when all

agents are involved in all the constraint.

Figure 6.5: A comparison of algorithm (6.24) for different network connectivity and under two
implementations: dual coupled diffusion exploits structure while dual diffusion ignores the structure.

115



Appendices

6.A Equivalent Representation

In this appendix, we show that (6.38a)–(6.38b) is equivalent to (6.34b). Multiplying equation

(6.38a) by U1Σ and then collecting the term U1ΣX i−1 we get:

U1ΣX i = (I − U1ΣUT
1 )U1ΣX i−1 − µ−1

v

(
U1ΣUT

1

)(
Yi−1 + µv

(
BWi − b

))
(6.55)

Let X̄ i
∆
= U1ΣX i. Using (6.37) and collecting the term X i−1 on the right hand side of the last

equation, we get:

X̄ i = ĀX̄ i−1 − µ−1
v

1

2
(I −A)

(
Yi−1 + µv

(
BWi − b

))
(6.56)

Multiplying (6.38b) by Ā on the left and using the definition X̄ i
∆
= U1ΣX i we have:

ĀYi−1 = ĀYi−2 + µvĀ
(
BWi−1 − b

)
+ µvĀX̄ i−1 (6.57)

Now, subtracting (6.57) from (6.38b) we get:

Yi − ĀYi−1 = Yi−1 − ĀYi−2 + µv
(
BWi − b

)
− µvĀ

(
BWi−1 − b

)
+ µv(X̄ i − ĀX̄ i−1) (6.58)

Using (6.56) we can remove the term µv(X̄ i − ĀX̄ i−1) from the previous expression to get:

Yi − ĀYi−1 = Yi−1 − ĀYi−2 + µv
(
BWi − b

)
− µvĀ

(
BWi−1 − b

)
− 1

2
(I −A)

(
Yi−1 + µv

(
BWi − b

))
= ĀYi−1 − ĀYi−2 + µvĀ

(
BWi − b

)
− µvĀ

(
BWi−1 − b

)
(6.59)

Rearranging the last expression gives (6.34b).

116



6.B Primal Error Bound

In this appendix, we derive inequality (6.49). From the optimality condition of (6.34a), we

have:

Wi = Wi−1 − µw∇J (Wi−1)− µwBTYi−1 − µwgi (6.60)

for some gi ∈ ∂WR(Wi). Rearranging the last equation and using the optimality condition

(6.40a) we get:

Wi−1 − Wi = µw
(
∇J (Wi−1)−∇J (W?)

)
+ µw(gi − g?) + µwBT(Yi−1 − Y?) (6.61)

Multiplying (W? − Wi)
T to both sides of the previous equation, we get:

(W? − Wi)
T(Wi−1 − Wi) = µw(W? − Wi)

T
(
∇J (Wi−1)−∇J (W?)

)
+ µw(W? − Wi)

T(gi − g?)

+ µw(W? − Wi)
TBT(Yi−1 − Y?) (6.62)

From the conditions on Rk(wk) in Assumption 6.1, there exists at least one subgradient at

every point. And from the subgradient property (1.9) we have gTx (y − x) ≤ f(y)− f(x) and

gTy (x− y) ≤ f(x)− f(y). Summing the two inequalities with y = W? and x = Wi, we get:

(W? − Wi)
T(gi − g?) ≤ 0 (6.63)

Using this bound in (6.62) we get:

(W? − Wi)
T(Wi−1 − Wi) ≤ µw(W? − Wi)

T
(
∇J (Wi−1)−∇J (W?)

)
+ µw(W? − Wi)

TBT(Yi−1 − Y?) (6.64)
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Note that:

2(W? − Wi)
T(Wi−1 − Wi) = −‖W? − Wi − (Wi−1 − Wi)‖2 + ‖W? − Wi‖2 + ‖Wi−1 − Wi‖2

= −‖W̃i−1‖2 + ‖W̃i‖2 + ‖Wi−1 − Wi‖2 (6.65)

Substituting the last equation into (6.64) and rearranging terms gives:

‖W̃i‖2 − ‖W̃i−1‖2 ≤ −‖Wi−1 − Wi‖2 − 2µw(Wi − W?)TBT(Yi−1 − Y?)

− 2µw(Wi − W?)T
(
∇J (Wi−1)−∇J (W?)

)
(6.66)

Using Assumption 6.1 we can bound the inner product:

(Wi − W?)T∇J (Wi−1) = (Wi − Wi−1 + Wi−1 − W?)T∇J (Wi−1)

(6.11)
≥ (Wi − Wi−1)T∇J (Wi−1)

+ J (Wi−1)− J (W?) +
ν

2
‖W̃i−1‖2

= (Wi − Wi−1)T
(
∇J (Wi−1)−∇J (Wi) +∇J (Wi)

)
+ J (Wi−1)− J (W?) +

ν

2
‖W̃i−1‖2 (6.67)

We again use (6.11) in the last expression to get:

(Wi − W?)T∇J (Wi−1) ≥ (Wi − Wi−1)T
(
∇J (Wi−1)−∇J (Wi)

)
+ J (Wi)− J (Wi−1) +

ν

2
‖Wi − Wi−1‖2

+ J (Wi−1)− J (W?) +
ν

2
‖W̃i−1‖2

= −(Wi−1 − Wi)
T
(
∇J (Wi−1)−∇J (Wi)

)
+
ν

2
‖Wi − Wi−1‖2 + J (Wi)− J (W?) +

ν

2
‖W̃i−1‖2 (6.68)
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From (6.11) it holds that:

(Wi − W?)T∇J (W?) ≤ J (Wi)− J (W?)− ν

2
‖W̃i‖2 (6.69)

Therefore, the last inner product in (6.66) can be bounded as follows:

− 2µw(Wi − W?)T
(
∇J (Wi−1)−∇J (W?)

)
= −2µw(Wi − W?)T∇J (Wi−1) + 2µw(Wi − W?)T∇J (W?)

≤ 2µw(Wi−1 − Wi)
T
(
∇J (Wi−1)−∇J (Wi)

)
− µwν‖Wi − Wi−1‖2 − µwν‖W̃i−1‖2 − µwν‖W̃i‖2

≤ µw(2δ − ν)‖Wi − Wi−1‖2 − µwν(‖W̃i−1‖2 + ‖W̃i‖2) (6.70)

where the last step holds because

(W − z)T
(
∇WJ (W)−∇WJ (z)

)
≤ δ‖W − z‖2 (6.71)

holds by using the Cauchy-Schwartz inequality and (6.10). Substituting (6.70) into (6.66)

gives (6.49).

6.C Dual Error Bound

In this appendix, we derive equality (6.50). It holds that:

‖X̃ i−1‖2
D + ‖Ỹi−1‖2

µ−1
v

=‖X? − X i + X i − X i−1‖2
D + ‖Y? − Yi + Yi − Yi−1‖2

µ−1
v

=‖X? − X i‖2
D + ‖Y? − Yi‖2

µ−1
v

+ ‖X i − X i−1‖2
D

+ ‖Yi − Yi−1‖2
µ−1
v

+ 2(X i − X i−1)TD(X? − X i)

+ 2(Yi − Yi−1)Tµ−1
v (Y? − Yi) (6.72)
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Rearranging the last equality we have:

‖Ỹi‖2
µ−1
v

+ ‖X̃ i‖2
D − ‖Ỹi−1‖2

µ−1
v
− ‖X̃ i−1‖2

D

= −‖X i − X i−1‖2
D − ‖Yi − Yi−1‖2

µ−1
v

+ 2(X i−1 − X i)TD(X? − X i)− 2(Yi−1 − Yi)Tµ−1
v (Yi − Y?)

(6.73)

Note that:

(Yi − Y?)TU1Σ(X i − X?)
(a)
= (Yi − Yi−1 + Yi−1 − Y?)TU1Σ(X i − X?)
(b)
= (UT

1 (Yi − Yi−1) + UT
1 Yi−1)TΣ(X i − X?)

(6.38b)
=

(
UT

1 (µv(BWi − b) + µvU1ΣX i) + UT
1 Yi−1

)T
Σ(X i − X?)

=

(
UT

1

(
Yi−1 + µv(BWi − b) + µvU1ΣX i−1

)
+ µvΣ(X i − X i−1)

)T

Σ(X i − X?)

(6.38a)
=

(
µv(X i−1 − X i) + µvΣ(X i − X i−1)

)T

Σ(X i − X?)

= −
(
µv(I − Σ)(X i − X i−1)

)T
Σ(X i − X?)

(6.48)
= −(X i − X i−1)TD(X i − X?) (6.74)

where in step (b) we took U1 inside the first bracket and used UT
1 Y

? = 0 from (6.40b). From

step (a) and the last step we get:

(Yi−1 − Y?)TU1Σ(X i − X?) = −(Yi − Yi−1)TU1Σ(X i − X?)− (X i − X i−1)TD(X i − X?) (6.75)
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Furthermore, note that:

(Yi−1 − Y?)T(BWi − b− BW? + b)

(6.38b)
= (Yi−1 − Y?)T

(
−µ−1

v (Yi−1 − Yi)− U1ΣX i − BW? + b
)

(6.40c)
= (Yi−1 − Y?)T

(
−µ−1

v (Yi−1 − Yi)− U1ΣX i + U1ΣX?
)

= −(Yi−1 − Y?)Tµ−1
v (Yi−1 − Yi)− (Yi−1 − Y?)TU1Σ(X i − X?) (6.76)

Substituting (6.75) into (6.76), we have

(Yi−1 − Y?)T(BWi − b− BW? + b)

= −(Yi−1 − Y?)Tµ−1
v (Yi−1 − Yi)

+ (Yi − Yi−1)TU1Σ(X i − X?) + (X i − X i−1)TD(X i − X?)

=
(
−µ−1

v (Yi−1 − Y?)− U1Σ(X i − X?)
)T

(Yi−1 − Yi) + (X i − X i−1)TD(X i − X?)

(a)
=

(
− µ−1

v (Yi−1 − Y?) + µ−1
v (Yi−1 − Yi) + (BWi − b)− BW? + b

)T

(Yi−1 − Yi)

+ (X i − X i−1)TD(X i − X?)

=
(
−µ−1

v (Yi − Y?) + B(Wi − W?)
)T

(Yi−1 − Yi) + (X i − X i−1)TD(X i − X?)

= −(Yi − Y?)Tµ−1
v (Yi−1 − Yi) + (Wi − W?)TBT(Yi−1 − Yi) + (X i − X i−1)TD(X i − X?) (6.77)

where in step (a) we used (6.38b) and the optimality condition (6.40c). Re-arranging the last

equation (6.77), we get

− (Yi−1 − Yi)Tµ−1
v (Yi − Y?) + (X i−1 − X i)TD(X? − X i)

= (Yi−1 − Y?)TB(Wi − W?)− (Yi−1 − Yi)TB(Wi − W?) (6.78)
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Substituting (6.78) into (6.73), we get,

‖Ỹi‖2
µ−1
v

+ ‖X̃ i‖2
D − ‖Ỹi−1‖2

µ−1
v
− ‖X̃ i−1‖2

D = −‖X i − X i−1‖2
D − ‖Yi − Yi−1‖2

µ−1
v

+ 2(Yi−1 − Y?)TB(Wi − W?)

− 2(Yi−1 − Yi)TB(Wi − W?) (6.79)

The last term of (6.79) can be rewritten as:

−2(Yi−1 − Yi)TB(Wi − W?) = −‖Yi−1 − Yi + µvB(Wi − W?)‖2
µ−1
v

+ ‖Yi−1 − Yi‖2
µ−1
v

+ ‖B(Wi − W?)‖2
µv

= −‖Σ(X? − X i)‖2
µv + ‖Yi−1 − Yi‖2

µ−1
v

+ ‖B(Wi − W?)‖2
µv (6.80)

where in the last step we used (6.38b), (6.40c), and UT
1 U1 = I. Substituting the last equality

into (6.79), we get (6.50).

6.D Proof of Theorem 6.1

Let us introduce the energy function:

V (W̃i, Ỹi, X̃ i) = ‖W̃i‖2 + µw‖Ỹi‖2
µ−1
v

+ ‖X̃ i‖2
D (6.81)

Using (6.49) and (6.50) we have:

V (W̃i, Ỹi, X̃ i)− V (W̃i−1, Ỹi−1, X̃ i−1) ≤ −(1 + µwν − 2µwδ)‖Wi − Wi−1‖2

− µwν
(
‖W̃i−1‖2 + ‖W̃i‖2

)
+ µw‖BW̃i‖2

µv

− µw‖X i − X i−1‖2
D − µw‖ΣX̃ i‖2

µv (6.82)
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Note that:

‖BW̃i‖2
µv ≤ µvλmax(BTB)‖W̃i‖2

Therefore, under condition (6.51), it holds that:

V (W̃i, Ỹi, X̃ i)− V (W̃i−1, Ỹi−1, X̃ i−1)

≤ − (1 + µwν − 2µwδ)︸ ︷︷ ︸
>0

‖Wi − Wi−1‖2 − µwν‖W̃i−1‖2

− µw
(
ν − µvλmax(BTB)

)︸ ︷︷ ︸
>0

‖W̃i‖2 − µw‖X i − X i−1‖2
D − µw‖ΣX̃ i‖2

µv ≤ 0 (6.83)

Since V (W̃i, Ỹi, X̃ i) is non-negative, we conclude that the norm of the error is non-increasing

and bounded. Since V (W̃i, Ỹi, X̃ i) is non-negative, we conclude that the norm of the error is

non-increasing and bounded. Iterating the above inequality we have:

V (W̃i, Ỹi, X̃ i) ≤ V (W̃0, Ỹ0, X̃0)−
i∑

j=1

(
(1 + µwν − 2µwδ)‖Wj − Wj−1‖2 + µwν‖W̃j−1‖2

+ µw
(
ν − µvλmax(BTB)

)
‖W̃j‖2 + µw‖X j − X j−1‖2

D + µw‖ΣX̃ j‖2
µv

)
(6.84)

and thus

∞∑
j=1

(
(1 + µwν − 2µwδ)‖Wj − Wj−1‖2 + µwν‖W̃j−1‖2 + µw

(
ν − µvλmax(BTB)

)
‖W̃j‖2

+ µw‖X j − X j−1‖2
D + µw‖ΣX̃ j‖2

µv

)
≤ V (W̃0, Ỹ0, X̃0) (6.85)

Since the sum of the infinite positive terms is upper bounded by a constant, it holds that

each term (Wi − Wi−1), W̃i−1, W̃i, (X i − X i−1), and ΣX̃ i must converge to zero.
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6.E Proof of Theorem 6.2

In this Appendix, we show that the dual coupled diffusion strategy converges linearly for

smooth cost functions and under the additional assumption that the matrix B has full

row rank. From the structure of B in (6.33), it can be confirmed that B having full row

rank is equivalent to assuming that each matrix blkcol{Be,k}e∈Ek has full row rank. This is

illustrated in Fig. 6.6. Because two different agents belonging to the same cluster are located

differently in Ye, it holds that the block rows of B are zeros except at one location. Recall

that Bek ∈ RSe×Qk . Therefore, an equivalent statement is to say that blkcol{Be,k}e∈Ek has

full row rank.

Figure 6.6: An illustration of the construction B for the network in Figure 6.2.

Recall from (6.66) that

‖W̃i‖2 − ‖W̃i−1‖2 ≤ −‖Wi−1 − Wi‖2 − 2µw(Wi − W?)TBT(Yi−1 − Y?)

− 2µw(Wi − W?)T
(
∇J (Wi−1)−∇J (W?)

)
(6.86)
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It holds that

−2µw(Wi − W?)T
(
∇J (Wi−1)−∇J (W?)

)
= −2µw(Wi−1 − W?)T

(
∇J (Wi−1)−∇J (W?)

)
+ 2µw(Wi−1 − Wi)

T
(
∇J (Wi−1)−∇J (W?)

)
(6.87)

The last term can be upper bounded by

2µw(Wi−1 − Wi)
T
(
∇J (Wi−1)−∇J (W?)

)
= −‖Wi−1 − Wi − µw

(
∇J (Wi−1)−∇J (W?)

)
‖2 + ‖Wi−1 − Wi‖2 + µ2

w‖∇J (Wi−1)−∇J (W?)‖2

(a)
= −µ2

w‖BTỸi−1‖2 + ‖Wi−1 − Wi‖2 + µ2
w‖∇J (Wi−1)−∇J (W?)‖2

≤ −µ2
w‖BTỸi−1‖2 + ‖Wi−1 − Wi‖2 + µ2

wδ(Wi−1 − W?)T
(
∇J (Wi−1)−∇J (W?)

)
(6.88)

where in step (a) we used (6.34a) and (6.40a) with R(W) = 0. The last inequality holds from

(1.8) since J (W) has δ-Lipschitz gradients. Combining the last two equations we have

− 2µw(Wi − W?)T
(
∇J (Wi−1)−∇J (W?)

)
≤ −µ2

w‖BTỸi−1‖2 + ‖Wi−1 − Wi‖2 − µw(2− δµw)(Wi−1 − W?)T
(
∇J (Wi−1)−∇J (W?)

)
≤ −µ2

w‖BTỸi−1‖2 + ‖Wi−1 − Wi‖2 − µwν(2− δµw)‖W̃i−1‖2

where the last step holds from the strong-convexity condition (1.6) and µw < 2/δ. Substituting

into (6.86) we get:

‖W̃i‖2 ≤
(
1− µwν(2− δµw)

)
‖W̃i−1‖2 − µ2

w‖BTỸi−1‖2 − 2µw(Wi − W?)TBT(Yi−1 − Y?)

(6.89)

Note that −µw‖X i − X i−1‖2
D ≤ 0. Thus, multiplying (6.50) by µw, using D = µv(Σ − Σ2),

125



and rearranging terms we get:

µw‖Ỹi‖2
µ−1
v

+ µw‖X̃ i‖2
µvΣ = µw‖Ỹi‖2

µ−1
v

+ µw‖X̃ i‖2
D+µvΣ2

≤ µw‖BW̃i‖2
µv + µw‖Ỹi−1‖2

µ−1
v

+ µw‖X̃ i−1‖2
D + 2µw(Yi−1 − Y?)TB(Wi − W?) (6.90)

Since B is full row rank, it holds that ‖BTỸi−1‖2 ≥ λmin(BBT)‖Ỹi−1‖2. Using this bound and

combining (6.89) and (6.90), we get:

‖W̃i‖2 + ‖Ỹi‖2
µw
µv

+ ‖X̃ i‖2
µwµvΣ ≤ ‖X̃ i−1‖2

µwµv(Σ−Σ2)

+
(
1− µwν(2− δµw)

)
‖W̃i−1‖2 + µwµv‖BW̃i‖2 +

(
1− µwµvλmin(BBT)

)
‖Ỹi−1‖2

µw
µv

(6.91)

Since Σ > 0 we have −‖X̃ i−1‖2
µwµvΣ2 ≤ −λr‖X̃ i−1‖2

µwµvΣ. Substituting this bound into (6.91)

and rearranging, we arrive at the following inequality:

‖W̃i‖2
Cw + ‖Ỹi‖2

µw
µv

+ ‖X̃ i‖2
µwµvΣ ≤

(
1− µwν(2− δµw)

)
‖W̃i−1‖2 + γ2‖Ỹi−1‖2

µw
µv

+ (1− λr)‖X̃ i−1‖2
µwµvΣ (6.92)

where Cw = I − µwµvBTB and γ2 = 1− µwµvλmin(BBT). Let γ1 =
(
1− µwν(1− δµw)

)
. Note

that

(
1− µwν(2− δµw)

)
‖W̃i−1‖2 = γ1‖W̃i−1‖2

Cw − µwν‖W̃i−1‖2 + γ1µwµv‖W̃i−1‖2
BTB

≤ γ1‖W̃i−1‖2
Cw − µw

(
ν − µvλmax(BTB)

)
‖W̃i−1‖2

≤ γ1‖W̃i−1‖2
Cw

where the first inequality holds since γ1 < 1 for µw < 1
2δ−ν ≤

1
δ
and the last inequality holds

under (6.51). Substituting into (6.92) we get:

‖W̃i‖2
Cw + ‖Ỹi‖2

µw
µv

+ ‖X̃ i‖2
µwµvΣ ≤ γ1‖W̃i−1‖2

Cw + γ2‖Ỹi−1‖2
µw
µv

+ (1− λr)‖X̃ i−1‖2
µwµvΣ

Under condition (6.51), it holds that µwµv < 1/λmax(BTB); thus, γ2 = 1−µwµvλmin(BBT) < 1
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and Cw = I−µwµvBTB > 0. Since 0 < λr < 1, we have 1−λr < 1. By iterating the previous

inequality we arrive at (6.52).
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CHAPTER 7

Conclusion and Future Directions

Conclusion

In this dissertation, we have studied the performance and linear convergence of decentralized

multi-agent optimization algorithms. The main conclusions are summarized below.

• We studied the classical incremental primal-dual gradient algorithm (2.3) for the solution

of constrained optimization problems. Through an original proof we established its linear

convergence. We also related the incremental implementation to the non-incremental

Arrow-Hurwicz implementation (2.4) and established its linear convergence as well.

• We proposed a general adapt-then-combine algorithmic framework that captures most

existing decentralized gradient based algorithms. We then established its linear conver-

gence and showed that the ATC structure is more stable than the non-ATC structure.

We also studied the benefits of the augmented Lagrangian penalty term on the conver-

gence rate of decentralized algorithms and highlighted several benefits of this term and

gave cases where it is not that beneficial.

• We established the linear convergence of a proximal decentralized algorithm in the

presence of a non-smooth term. With this result, we closed the linear convergence gap

between decentralized and centralized proximal gradient algorithms.

• We studied decentralized multi-agent optimization problems under general multiple

coupling across the agents. Specifically, motivated by real applications, we considered

scenarios where there can exist multiple consensus variables or multiple coupling

constraints with only a subset of agents involved in them. We then showed how to
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design algorithms to exploit these structures. More importantly, we showed theoretically

that algorithms exploiting this structure can greatly improve the convergence rate

compared to algorithms that do not exploit such structure.

Future Directions

We now list several future directions that are worth investigating:

• In this dissertation, we considered undirected and static networks. In some applications,

the network is directed where agents can communicate only in one direction. In

these cases, the combination matrix A is not symmetric any longer. Moreover, the

combination matrix can be time varying where the network topology changes with

time. Thus, is it possible to extend the ATC algorithm framework to directed and

time-varying networks? For example, can the push-pull idea [63,64] or the push-sum

technique [175] be used to handle time-varying digraphs of the proposed framework?

• We showed that any decentralized proximal gradient algorithm cannot achieve global

linear convergence in the presence of more than one non-smooth term in the worst case.

However, asymptotic linear convergence have been established under piecewise linear

quadratic costs [130]. Can we establish the asymptotic linear convergence of proximal

decentralized algorithms under some other more practical conditions on the costs?

• In this work, we studied deterministic and convex problems. One direction is to study

the convergence of the proposed framework in stochastic and non-convex settings.

While decentralized non-convex problems have been studied widely, the efficient escape

from saddle-points have only been established recently for the diffusion algorithm [176].

Recently, it has been shown in [177] that the performance of the diffusion algorithm can

degrade over sparse networks compared to exact diffusion, which is a special case of our

proposed ATC framework. Therefore, studying the efficient escape from saddle-points

for the proposed method in stochastic and non-convex settings is of interest.
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