
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
On Cohomology of The Space of Linear Generic Points in Three Dimensional Projective 
Space

Permalink
https://escholarship.org/uc/item/1p37c9fv

Author
Bai, Yuzhe

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1p37c9fv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

On Cohomology of The Space of Linear Generic Points in Three Dimensional Projective

Space

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of

Philosophy

in

Mathematics

by

Yuzhe Bai

Committee in Charge:

Professor Justin Roberts, Chair
Professor John McGreevy
Professor David Meyer
Professor Dragos Oprea

2024



Copyright

Yuzhe Bai, 2024

All rights reserved.



The Dissertation of Yuzhe Bai is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii



Dedication

I would like to dedicate this thesis to my loving parents.

iv



Table of Contents

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction of the generic configuration spaces and result about them . . . . . . 1

1.1 Basic structures of Cm
n and PCm

n . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some results of Cm
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cohomology of PC2
n and PC3

n . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on Grothendieck-Lefschetz and Twisted Point Counts . . . . . . . . 14

2.1 Fixed points of Frobenius morphism and Grothendieck-Lefschetz formula . 14

2.2 Formula for twisted coefficients . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Comparison theorem with singular cohomology . . . . . . . . . . . . . . . 16

2.4 Applying Grothendieck-Lefschetz trace formula . . . . . . . . . . . . . . . 17

2.5 Representation polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Preparation for Twisted Point-Counting . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Basic structures for B3
n(Fq) . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



3.2 Generic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Counting generic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Twisted Point-Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Computation for twisted point counting for B3
6(Fq) . . . . . . . . . . . . . 41

4.1.1 Cycle type e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Cycle type (12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Cycle type (12)(34) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.4 Cycle type (12)(34)(56) . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.5 Cycle type (123) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.6 Cycle type (123)(45) . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.7 Cycle type (123)(456) . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.8 Cycle type (1234) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.9 Cycle type (1234)(56) . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.10 Cycle type (12345) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.11 Cycle type (123456) . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Proof for Theorem 1.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Computation for twisted point counting for B3
7(Fq) . . . . . . . . . . . . . 57

4.3.1 Cycle type e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.2 Cycle type (12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Cycle type (12)(34) . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 Cycle type (12)(34)(56) . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.5 Cycle type (123) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.6 Cycle type (123)(45) . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.7 Cycle type (123)(45)(67) . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.8 Cycle type (123)(456) . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.9 Cycle type (1234) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



4.3.10 Cycle type (1234)(56) . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.11 Cycle type (1234)(567) . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.12 Cycle type (12345) . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.13 Cycle type (12345)(67) . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.14 Cycle type (123456) . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.15 Cycle type (1234567) . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Proof for Theorem 1.3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



List of Figures

Figure 1.1 Parallel Problem When n = 5 . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.2 Intersection Problem When n = 6 . . . . . . . . . . . . . . . . . . . . 6

Figure 3.1 When a q2-line intersect a q3-line at a q6-point . . . . . . . . . . . . . 40

Figure 4.1 l intersect l′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



List of Tables

Table 1.1 The cohomology of X2
7 and X3

7 as S7-representation . . . . . . . . . . 13

Table 2.1 Point counts for B2
5(Fq) twisted by conjugacy classes of S5 . . . . . . 25

Table 2.2 Point counts for B2
6(Fq) twisted by conjugacy classes of S6 . . . . . . 26

Table 2.3 Point counts for B3
6(Fq) twisted by conjugacy classes of S6 . . . . . . 26

Table 2.4 Point counts for B3
7(Fq) twisted by conjugacy classes of S7 . . . . . . 27

ix



Acknowledgements

First, I would like to thank my advisor, Justin Roberts, for his help and instructions

through my years as a PhD student. His patient help really guide me through the difficult

time and I wouldn’t have done the work without his encouragement and dedication.

I want to thank David Meyer, Dragos Oprea, and John McGreevy for their review of this

paper as committee members. Also, I want to thank Golsefidy Alireza for his help through

my first few years at UCSD. I also want to thank the department of mathematics at UCSD

for the resource and instruction provided.

I would like to appreciate the help and support provided by my family throughout my

years of education including both undergraduate and graduate school. Especially the support

from my loving mother as without her, I would have not gone this far.

Last but not least, I want to thank my friends who provide their company during the years.

Specially, I want to thank Bochao Kong for the discuss in Algebraic Geometry, and thank

Gongping Niu, Xie Wu, and Zichen He for the valuable communication and memories we

shared.

x



VITA

2018 Bachelor of Science, University of California Davis

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

“Quadratic ideals and Rogers–Ramanujan recursions.” The Ramanujan Journal 52, pp: 67-89,

2018

FIELDS OF STUDY

Major Field: Mathematics

Studies in Algebraic Topology

Professors Justin Roberts

xi



Abstract of The Dissertation

On Cohomology of The Space of Linear Generic Points in Three Dimensional Projective

Space

by

Yuzhe Bai

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Justin Roberts, Chair

In this paper, we first introduce a type of generalized configuration spaces Cm
n

and PCm
n , namely, it consists the n-tuples in affine or projective m spaces where any

m + 1 points are not contained in a hyperplane. The spaces can be considered as

complements of affine and projective algebraic sets respectively and hence are quasi-
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projective varieties. There is a free action of AGLm+1(C) and PGLm+1(C) on Cm
n and

PCm
n respectively, which gives the spaces a structure as trivial bundles. Also, similar to

the classic configuration spaces, there is a natural Sn action on these spaces and that puts

an induced Sn-represnetation structure on the cohomology.

Based on these structures, there are a few result in fundamental group and cohomology

group of these spaces studied by other mathematicians. We will introduce some of the

results and focus on the cohomology of PCm
n . To go one more step further, let Xm

n

be the quotient of PCm
n by PGLm+1(C), we will study the cohomology of X3

n as a Sn

representation for n= 6 and 7. In the case that n= 7, our result is based on the assumption

that the cohomology groups Hk(Xm
n ) are pure of Hodge-Tate type (k,k). The calculation

is done by the technique of twisted point counting introduced by [3]. To utilize the point

counting technique, we will discuss the background that makes it possible and introduce

the Grothendiecck-Lefchetz formula which is the main foundation of the calculation.
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Chapter 1

Introduction of the generic configuration

spaces and result about them

The configuration space Confn(X) of a given topological space X is defined as the subspace

of Xn which consists of the ordered n-tuples of distinct points in X . When X is affine or

projective, we can generalize the conditions to some other intuitively generic cases. In this

thesis, we will study the cases where X is the complex affine space Cn or complex projective

space CPn. We denote Cm
n , where n ≥ m+1, the subspace of (Cm)n consisting of the n-tuples

of points in Cm such that each m+1 points don’t lie on the same affine hyperplane in Cm.

We can define PCm
n corresponding to the projective case in the same manner.

These collection of generalized configuration spaces are studied by many mathematicians,

but not much is learned of the topological properties of the topological properties of them.

Moulton has studied the fundamental groups of C2
n and found a series of groups project into

the fundamental groups. In recent years, there are several studies about the cohomology of

the projective case PCm
n for m = 2. Namely, Ashraf and Bercenau calculated the cohomology

of PC2
3 , Das and O’connor[4] computed the cohomology for PC2

6 as well as Begvall[2]

studied the cohomology of PC2
7 .
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In this thesis, we will talk about some basic structure of Cm
n and PCm

n as well as some

results about the topology by other mathematicians. At the end, we will mainly focus on the

cohomology of the PCm
n where m = 3 and n ≤ 7.

1.1 Basic structures of Cm
n and PCm

n

As we defined earlier, we can see that when m = 1, Cm
n is the classic configuration space

Confn(C) and for general Cm
n , it is also a subspace of the configuration space Confn(Cm).

Therefore, the natural Sn action on the configuration space will also work on Cm
n , that is, for

a permutation σ , σ sends an n-tuple (x1, ...,xn) to (xσ(1), ...,xσ(n)). Moreover, Cm
n can be

viewed as a complement of affine algebraic set. Namely, define ∆ = (Cm)n −Cm
n . We have

∆ = {(x1, ...,xn) ∈ Cm : ∃{i1, ...im+1} ∈ [n] s.t. span{xi1, ...xim+1} ̸= Cm}.

Then for any of the xi, we can write xi = (zi,1, ...zi,m) with respect to the standard basis.

Consider the (m+1)×n matrix

A =



1 · · · 1

z1,1 · · · zn,1

... . . . ...

z1,m · · · zn,m


.

The product of all possible (m+1)× (m+1) minors of A will be the defining polynomial

for the algebraic set ∆.
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The exact same argument can be used for the projective case. That is, ∆′ = (CPm)n−PCm
n .

For any point xi ∈ CPm the ith, we have xi = [zi,1 : ... : zi,m+1]. Define the matrix

B =


z1,1 · · · zn,1

... . . . ...

z1,m+1 · · · zn,m+1

 .

Then ∆′ is a projective algebraic set that is defined by the product of all the (m+1)× (m+1)

minors of B.

Remark 1.1.1. These observations make Cm
n and PCm

n quasiprojective varities, and in fact

smooth schemes over Z.

Moreover, based on the definition of Cm
n , the affine general linear group AGLm+1(C) can

act on Cm
n diagonally. The action is free for all n ≥ m+1 and is transitive when n = m+1.

Let Cm
n =Cm

n /AGLm+1(C). We have

Cm
n ≃ {(x1, ...xn) ∈Cm

n : x1 =
−→
0 ,xi = ei−1 if 2 ≤ i ≤ m+1}

where ei’s are the standard basis vector of Cm.

By the action, Cm
n is a principal AGLm+1(C) bundle over Cm

n with a section. Hence, we

have the following lemma,

Lemma 1.1.2. Cm
n ≃Cm

n ×AGLm+1(C).

Corollary 1.1.2.1. π1(Cm
m+1)≃ Z

Proof. When n = m+ 1, since the action of AGLn(C) on Cm
n is free and transitive, the

orbit map is a diffeomorphism. Hence, Cm
n is diffeomorphic to AGLm+1(C). Also, since

Cm → AGLm+1(C)→ GLm(C) is a fibration, the fundamental group π1(Cm
m+1) of Cm

m+1 is

isomorphic to the fundamental group of GLm(C), which is Z.

3



Remark 1.1.3. Notice that the action of AGLm+1(C) commutes with the action of Sn, hence

the action of AGLm+1(C) will descend to the quotient space Cm
n /Sn and the covering map will

be AGLm+1(C)-equivariant. Similarly, the action of Sn will descend to Cm
n and the covering

map is Sn-equivariant.

Similar to the affine case, the projective general linear group PGLm+1(C) acts on PCm
n

diagonally. The action is free for all n ≥ m+ 2 and is transitive when n = m+ 2. Let

PCm
n ≃ PCm

n /PGLm+1(C). Let w = [1 : 1 : ... : 1] ∈ CPm. Then we have

PCm
n = {(x1, ...xn) ∈ PCm

n : xi = e′i if 1 ≤ i ≤ m+1,xm+2 = w}

where e′i is the ith basis vector of the standard basis.

By similar argument, we have the following lemma

Lemma 1.1.4. PCm
n ≃ PCm

n ×PGLm+1(C).

Corollary 1.1.4.1. π(PCm
m+1)≃ Z/(m+1)Z

Proof. Again, since when n = m+2 the action is free and transitive, PCm
n is diffeomorphic

to PGLm+1(C). Now, we have π(PCm
m+1)≃ π1(PGLm+1(C))≃ Z/(m+1)Z.

The exact same argument can be made as the last remark with respect to PGLm+1(C) and

Sn in the projective case.

1.2 Some results of Cm
n

Because of the similarity of the structure of Cm
n to the structure of the configuration space,

we want to calculate the fundamental group of Cm
n in the way we calculate the fundamental

group of Confn(C). Namely, the forgetting map π : Confn(C)→ Confn−1(C) by forgetting

the last entry for each n− tuple is a fibration where the fiber is C minus n−1 points. The

4



fibration will give us a long exact sequence which result in the following sequence

1 → Fn → Pn → Pn−1 → 1,

where Fn is the free group of rank n and Pn is the classical pure braid group.

However, although we can still define the forgetting map on Cm
n and PCm

n by omitting the

last entry, the map is not generally a fibration. For example, when m = 2, the forgetting map

will no longer be a fibration when n = 5 for the affine case. We can see an example in figure

1.1. When n = 5, the fiber can be considered as the complement of a hyperplane arrangement

generated by four points that no three of them are not collinear. Six lines will be generated

by these four points and when we move the points in the base, it is possible that some of the

lines are parallel to each other, which change the number of connected component in the

fiber and make the map a fibration no more.

Figure 1.1 Parallel Problem When n = 5

Things become a little bit better in the projective case since we don’t need to worry about

parallel lines. However, when n gets to 7, the fiber can be considered as the complement of

the hyperplane arrangement created by six points in general position. There is a neighborhood

that moving some points may cause three lines intersecting at a single point that is not from

5



those six points like what happened in figure 1.2. Therefore, the fibration argument won’t

help us a lot.

Figure 1.2 Intersection Problem When n = 6

Even though we cannot use the exact same argument as for pure braid group, there are

some work around that help us gain some knowledge of the fundamental groups. For the

affine case, Moulton[10] provided a finitely presented group that surjects onto π1(C2
n) and

conjectured that they are actually isomorphic. Moreover, for some special cases, we can use

some other way to derive the fundamental groups. As an example, we will show that for all

m ≥ 2, π1(Cm
m+2)≃ Zm+3.

Notice that Cm
m+2 ≃ AGLm+1(C)×Cm

m+2. Since

Cm
n ≃ {(x1, ...xn) ∈Cm

n : x1 =
−→
0 ,xi = ei−1 if 2 ≤ i ≤ m+1},

Cm
m+2 can be viewed as a complex hyperplane complement where the hyperplane arrangement

M is given by the set of points S = {0,e1, ...,em}. In fact, by the points in the set S, the

hyperplanes in M are defined by real equations. Hence, we can instead consider the complex

hyperplane complement M as a complexified real hyperplane arrangement M′. Then by [11],

we can compute the fundamental group of the complement of M by the structure of the

complement of M′.

6



Generally, let M be a complex hyperplane arrangement in Cn where each of the hyper-

plane is defined by a real polynomial and M ′ be the real hyperplane arrangement defined by

the same polynomials in Rn. Let X be the complement of M ′ in Rn. Then X is the disjoint

union of codimension 0 connected components in Rn that were separated by hyperplanes in

M ′. Then we can define a groupoid base on M ′ and X as following.

• For each connected component in X , we call it a chamber and pick a point in it and we

ambiguously denote both of them by c

• For each hyperplane, we call it a cut denoted by l

• For any two adjacent chambers c1, c2, which means we can go from c1 to c2 by across

only one cut, we define e12 to be the edge from c1 to c2 pass through the cut l12 that

separates them

• A path p from one chamber ci to another chamber c j is a composition of connected

edges en1
1 , ...,enk

k where em are edges between adjacent chambers and nm = ±1. e−1
i

means the inverse edge of ei.

Then we have a groupoid where vertices are the points we picked from each chamber, and

elements are the paths and ei, j where ci, c j are adjacent form a generating set. We call a path

p positive path if p = e1, ...,ek and call it negative if p = e−1
1 ...e−1

k . A path from c1 to c2 is

shortest if the path only passes through the cuts that separating c1 and c2 and passes through

them exact once. Let ∼ be the relation such that for any two positive paths p1 and p2 who

have the same starting and ending points, p1 ∼ p2.

Let the groupoid G be the one we constructed above and Y be the complement of

corresponding complex hyperplane arrangement. Then by Salvetti[11], we have the following

theorem,

Theorem 1.2.1. π1(Y ) is isomorphic to any vertex group of G/∼.

7



Back to our case, M′ can be considered as the boundary of a m-simplex whose faces are

extended to a hyperplane. Thus, each pair of hyperplanes intersect at a codimensional two

space and no three hyperplanes will share a codimensional two intersection. The vertex group

with respect to M′ will have m+2 generators and they commute with each other. Therefore,

π1(C
m
m+2)≃ Zm+2. As a result, we have the following lemma,

Lemma 1.2.2. For all m ≥ 2, π1(Cm
m+2)≃ Zm+3.

Using this method, we can also try to calculate the fundamental groups of the generic

fibers where there are no singularity. However, the obstacles will still hold us back from

finding out the actual fundamental groups of Cm
n as a whole and that remain an open problem.

There are also results about the cohomology of Cm
n and PCm

n . Ashraf and Bercenau [1]

calculated the cohomology of PC2
3 and B2

3 where the result is given as following.

Theorem 1.2.3. The Poincaré series of B2
3 is given by

PB2
3
(t) =

(1+ t5)(1− t4)

1− t2 = 1+ t2 + t5 + t7.

Theorem 1.2.4. The Poincaré series of PC2
3 is given by

PPC2
3
(t) =

(1− t2)(1− t4)(1− t6)

(1− t2)3 = 1+2t2 +2t4 + t6.

1.3 Cohomology of PC2
n and PC3

n

From now on, we will focus on the projective case PCm
n , especially when m = 2 and 3.

For brevity, we will use Bm
n to denote PCm

n /Sn and Xm
n to denote PC

m
n .

By the transitive and free action of PGLm+1(C) on PCm
m+2, we have the following

proposition.

8



Proposition 1.3.1. For a chosen basepoint x ∈ PCm
m+2, the orbit map PGLm+1 → PCm

m+2

which is given by g → g · x is a homeomorphism.

Proposition 1.3.2. The Sm+2-action on PCm
m+2 is homotopically trivial. In particular,

H∗(PCm
m+2(C);Q)∼= H∗(PGLm+1(C);Q)

is trivial as an Sm+2-representation.

Proof. Since the action of PGLm+1(C) is free and transitive, for any point x ∈ PCm
m+2 and

σ ∈ Sm+2, there is a corresponding element gσ ∈ PGLm+1(C) which acts on x same as σ . By

fixing x, we can define a homomorphism from Sm+2 to PGLm+1(C) and the action of Sm+2

goes through this homomorphism. The conclusion comes from the fact that PGLm+1(C) is a

path-connected group.

We will talk about the case that m = 2 which is done by Das and O’Connor, and show the

result on the case m = 3. To compute the cohomology of Fm
n in these cases, the following

remark will come in handy.

Remark 1.3.3.

H∗(PGL3(C);Q) =


Q if ∗= 0,3,5,8

0 otherwise.

Where the generators are in degree 3 and 5 have Hodge weight 2 and 3 respectively. Also,

we have

H∗(PGL4(C);Q) =


Q if ∗= 0,3,5,7,8,10,12,15

0 otherwise.

Where the generators are in degree 3, 5 and 7 have Hodge weight 2, 3, and 4 respectively.
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For n > m+ 2, the action of PGLm+1(C) on PCm
n is no longer transitive, but it is still

free. Which makes the the bundle Fm
n → Xm

n principal. Furthermore, we will show that there

always exists a section. Therefore, we have the proposition as following.

Proposition 1.3.4. For n > m+2, PCm
n is a trivial bundle over Xm

n .

Proof. Let x ∈ PCm
m+2 be the point formed by the standard bases. For any point y =

(y1, ...,yn) ∈ PCm
n , there is an unique element g(y) ∈ PGLm+1(C) that maps the first m+2

coordinates to x. Then y → g(y)y give us a section. Hence the PCm
n is a principle bundle with

a section, which implies that it is a trivial PGLm+1(C) bundle over Xm
n .

By the argument above, we can identify the quotient Xm
n with the fiber of the projection

PCm
n → PCm

m+2 to the first m+2 coordinates. Obviously, and inclusion map [m+2]→ [n] will

give us a projection on the the corresponding coordinates. In fact, for a choice of basepoint

in PCm
m+2 and an inclusion [m+2]→ [n], there is an corresponding injection

H∗(PGLm+1(C);Q)∼= H∗(PCm
m+2;C)→ H∗(PCm

n ;Q).

Because PCm
m+2 is connected, the injection is independent from the choice of the basepoint.

Also we have the following regarding the cohomology of the direct product based on

Lemma 2.5.3.

Proposition 1.3.5. With the trivial action on H∗(PGLm+1;Q), the isomorphism

H∗(PCm
n ;Q)∼= H∗(PGLm+1(C);Q)⊗H∗(Xm

n ;Q)

is Sn-equivariant.

In this thesis, we will focus on find the cohomology of Bm
n , PCm

n , and Xm
n for m = 3 and

n = 6,7. We will use the technique called "twisted point count". The techniqual background

and the method will be showed in next Chapter and the calculation will be showed in the last
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chapter. The case of m = 2 and n = 5 was calculated by Kisin and Lehrer[7] and the m = 2,

n = 6 case is calculated by Das and O’Connor[4] by the same method. Let U be the trivial

representation and other irreducible representation will be subscripted by the corresponding

partitions.

Theorem 1.3.6. With terminology above, as S5-representations, we have

H∗(X2
5 ;Q)∼=



U if ∗= 0,

S3121 if ∗= 1,

S31 if ∗= 2,

0 otherwise.

Theorem 1.3.7. Similarly, as S6-representations, we have

H∗(X2
6 ;Q)∼=



U if ∗= 0,

S32 ⊕S4121 if ∗= 1,

S51 ⊕S⊕2
41 ⊕S31 ⊕S3,3 ⊕S⊕2

3,2,1 if ∗= 2,

S51 ⊕S⊕3
41 ⊕S⊕3

31 ⊕S32 ⊕S23 ⊕S⊕2
41,21

⊕S⊕2
22 ⊕S⊕3

3121 if ∗= 3

U ⊕S16 ⊕S51 ⊕S21 ⊕S41 ⊕S⊕2
31 ⊕S⊕2

32

⊕S⊕3
23 ⊕S⊕2

4121 ⊕S22 ⊕S⊕3
3121 if ∗= 4

0 otherwise.

Then since we have

B2
n = PC2

n/Sn = (PGL3(C)×X2
n )/Sn,

11



we can use transfer to derive the cohomologies for B2
n for n = 5 and n = 6.

Corollary 1.3.7.1. With terminology as above, we have

H∗(B2
5;Q)∼=


Q if ∗= 0,3,5,8

0 otherwise,

H∗(B2
6;Q)∼=


Q if ∗= 0,3,4,5,7,8,9,12

0 otherwise,

The first isomorphism is induced by the orbit map and hence is an isomorphism of mixed

Hodge structures. Similarly, the inclusion of H∗(PGL3(C)) into H∗(B6) preserves the mixed

Hodge structures, and the extra generator in H4(B6) has weight 4.

The following theorem is the main result of this paper.

Theorem 1.3.8.

H∗(X3
6 ;Q)∼=



U if ∗= 0,

S4121 if ∗= 1,

S41 ⊕S3121 if ∗= 2,

S41 ⊕S32 ⊕S22 if ∗= 3,

0 otherwise.

Which as a direct consequence, we have

Corollary 1.3.8.1.

H∗(B3
6;Q)∼= H∗(PGL4(C))∼=


Q if ∗= 0,3,5,7,8,10,12,15

0 otherwise,
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Also, Bergvall [2] calculated the cohomology for X2
7 and we will calculate the coho-

mology for X3
7 in the third chapter of this thesis. These two spaces will have the same

cohomology. The result is given by table 1.1 where the irreducible representations of S7 are

demonstrated by the corresponding partitions.

Theorem 1.3.9. The cohomology of X3
7 as S7 representation is given by the table 1.1.

Table 1.1 The cohomology of X2
7 and X3

7 as S7-representation

U 61 5121 51 4131 4121 41 32 3122 3121 31 23 22 21 17

H0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

H2 0 1 1 3 1 3 1 3 1 1 0 0 0 0 0

H3 0 3 6 9 7 15 10 9 6 12 3 5 3 0 0

H4 3 9 21 19 20 47 27 25 29 42 20 17 13 6 1

H5 3 14 34 31 31 78 42 44 48 75 34 30 29 13 1

H6 2 9 18 25 23 50 31 34 28 52 19 23 22 9 4

It is curious that these two spaces have the same cohomology even if they share the same

dimension. Study can be made about the potential relation between them. Moreover, we may

also study if similar situation will happen for other pairs of m’s and n’s.
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Chapter 2

Background on Grothendieck-Lefschetz

and Twisted Point Counts

The main technique we are going to use is introduced by Church, Ellenberg and Farb [3]

and also used by Das and O’Connors. In the following sections, we will make an exposition

of the context and summarise the important definitions and results that we need to do our

calculations.

2.1 Fixed points of Frobenius morphism and Grothendieck-

Lefschetz formula

For a finite field Fq where q = pr for some prime number p, let X be a variety defined over

Fq. We will have the geometric Frobenius morphism Frobq : X → X acts on X via coordinates

by sending x ∈ X to xq. Moreover, for the algebraic closure Fq for Fq, the Frobenius map

will also acts on, x ∈ X(Fq), the set of Fq-points of X the same way. If a point x ∈ X(Fq)

is fixed by Frobq, then we can see that for any coordinate xi of x, we have xq
i = xi, which

implies that xi ∈ Fq for all xi. Then we can see that the points that lie in X(Fq) are precisely
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the points that are fixed by the Frobenius morphism. Namely,

∣∣X(Fq)
∣∣= Fix(Frobq : X(Fq)→ X(Fq)).

For an endomorphism f : Y →Y of a compact topological space Y , the classical Lefschetz

fixed point formula will relates the number of fixed points of f and the trace of the induced

action of f ∗ on the rational cohomology H∗(Y ;Q) of Y . Namely,

#Fix( f : Y → Y ) = ∑
i≥0

(−1)iTr( f : H i(Y ;Q)). (2.1)

An analogue made by Grothendieck[5] was that the fixed points of Frobq could be

analyzed in the same fashion, but instead based on the étale cohomology of the base change

X/Fq
of X to Fq, which we denote as H i

ét(X/Fq
;Ql) of X , where l is coprime to q. After

this point, we will follow the notation from [3] and use H i
ét(X ;Ql) as an abbreviation for

H i
ét(X/Fq

;Ql). In this paper, we will treat the étale cohomology as a black box and omit the

definition of it as we will not use the actual étale cohomology directly but use it as a tool to

build up the bridge between point counting and the singular cohomology.

Grothendieck-Lefschetz fixed point theorem is the main result of the analogue introduced

by Grothendieck, which relates the number of fixed points of a morphism f : X → X with the

trace of its action on the étale cohomology H i
ét(X ;Ql) of X , exactly the same as the classic

Lefschetz fixed point formula. With f being the Frobenius map Frobq, we will have the

following fundamental formula which holds for any smooth projective variety X over Fq:

∣∣X(Fq)
∣∣= #Fix(Frobq) = ∑

i≥0
(−1)iTr(Frobq : H i

ét(X ;Ql)). (2.2)

In the case that X is not projective, we will use the compactly-supported étale cohomology

instead and if X is smooth, we can use Poincaré duality to make a switch back.
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2.2 Formula for twisted coefficients

Much more subtle counts of Fq-points can be obtained by using a version of Grothendieck-

Lefschetz with twisted coefficients. For any appropriate coefficients F on a smooth projective

variety X defined over Fq (namely a so-called l-adic sheaf), we have a version of (2.2) with

coefficients in F :

∑
x∈X(Fq)

Tr(Frobq|Fx) = ∑
i
(−1)iTr(Frobq : H i

ét(X ;F )). (2.3)

If Frobq fixes a point x∈X(Fq), it acts on the stalk Fx of F at x, and the local contribution on

the left side of equation (2.3) are the trace of Frobq on each of these stalks. On the right side,

we have the étale cohomology of X/Fq
with coefficients in F . For non-projective X , again,

we need to correct the formula by using the compactly-supported version of H i
ét(X ;F ).

2.3 Comparison theorem with singular cohomology

Let X be a smooth scheme such that we have a Sn action on it and Y = X/Sn. Then given

a finite-dimensional Sn representation V over Ql , let V be the associated locally constant

sheaf on Y (Fq). Then by Theorem 21.3 and 21.5 from [9], there is a corresponding locally

constant sheaf Van on Y (C) whose pullback to X(C) is trivial and

H∗
ét(Y ;V )∼= H∗(Y (C);Van)∼= H∗

sing(X(C);V )Sn (2.4)

where the local coefficients V are given by the action π1(Y (C))→ Sn acting on V . Then by

transfer, we get the following isomorphism

H∗
sing(X(C);V )Sn ∼= H∗

sing(X(C);Ql)⊗Sn V.

16



Moreover, V can be considered as defined over Q in the sense that V =VQ⊗Ql for some

rational Sn-representation VQ. Then we also have the following isomorphism,

H∗
sing(X(C);Ql)⊗Sn V = (H∗

sing(X(C);Q)⊗Sn V )⊗Ql.

As a result, we can see that

H∗
ét(Y ;V )∼= (H∗

sing(X(C);Q)⊗Sn V )⊗Ql.

By similar reasons, we can see that on the left hand side of equation (2.4), we have

H∗
ét(Y ;V )∼= H∗

ét(X ;V )Sn ∼= H∗
ét(X ;Ql)⊗Sn V ∼= (H∗

ét(X ;Ql)⊗Sn V )⊗Ql.

Hence, we can see that in terms of Sn-representation, the character χ i
w, which we will

talk about in the next section, of the étale cohomology is precisely the characters of the

degree i, weight w part of the singular cohomology H∗
sing(X(C)). This helps us relates the

Sn-representation structure of the étale cohomology of PCm
n and the Sn-representation of its

singular cohomology.

2.4 Applying Grothendieck-Lefschetz trace formula

In our case, we need to use the formula for twisted coefficient to do point counts for

the varieties Bm
n (Fq) to calculate the cohomology H∗(PCm

n ;Q) as Sn-representation for the

case. Das and O’Connor[4] computed the case where m = 2, n = 5 and 6. We will do the

computation for m = 3, n = 6 and 7.

Since PCm
n and Bm

n are varieties of complex points defined over Z, we can define them

over Fq and we will keep the same notation to make our life easier. Because Bm
n = PCm

n /Sn,

the Sn action on PCm
n define an Sn-Galois covering PCm

n → Bm
n . By Milne [9], we will obtain
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a natural correspondence between the set of Sn-representaions with finite dimensions up to

conjugacy and the set of finite dimensional local systems on Bm
n up to isomorphism whose

pullbacks to PCm
n are trivial. Then for an irreducible finite dimensional Sn-representation V ,

let V be the corresponding local system, by equation (2.3), we have

∑
p∈X(Fq)

Tr(Frobq|Vp) = ∑
i
(−1)iTr(Frobq : H2n−i

ét,c (X ;V )), (2.5)

where H∗
ét,c denotes the compactly supported étale cohomology.

The action of Frobq on the stalk Vp ≃V is given as follows. For a point p ∈ Bm
n (Fq), we

can view p as a set {p1, ..., pn} ⊆ P2(Fq) (i.e. no m+1 points are in the same hyperplane)

that is fixed by the Frobenius morphism as a set. Then Frobq acts on p by permutation,

so it will determine a unique permutation σp ∈ Sn up to conjugacy. Frobq acts on the Sn-

representation V ≃ Vp as σp. If χV is the character for the corresponding representation, then

we have Tr(Frobq|Vp) = χV (σp), and we can transfer the left-hand side of equation (2.5)

into

∑
p∈Bm

n (Fq)

χV (σp).

For a conjugacy class C ∈ Class(Sn), let 1C be the indicator function for C and denote

pm
n,C(q) =

∣∣p ∈ Bm
n (Fq)|σp ∈C

∣∣ . We can see that χV (σp) = ∑C χV (C)1C(σp) and

∑
p∈Bm

n (Fq)

χV (σp) =∑
p

∑
C

χV (C)1C(σp)

=∑
C

χV (C)∑
p

1C(σp) (2.6)

=∑
C

χV (C)pm
n,C(q)
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Now, for the right-hand side of (2.5), let Ṽ be the pullback of V to PCm
n . Then by transfer,

we have

H2mn−i
ét,c (Bm

n ;V )∼= H2mn−i
ét,c (PCm

n ; Ṽ )Sn

Moreover, by the argument above, we know that Ṽ is a constant sheaf. Then

H2mn−i
ét,c (PCm

n ; Ṽ )∼= (H2mn−i
ét,c (PCm

n ;Ql)⊗V )

as Sn-representation. By combining these, we have

H2mn−i
ét,c (Bm

n ;V )∼= (H2mn−i
ét,c (PCm

n ;Ql)⊗V )Sn ∼= H2mn−i
ét,c (PCm

n ;Ql)⊗Ql [Sn]V.

Now, because V is an irreducible Sn-representation, it is self-dual, so we have the following

identification

H2mn−i
ét,c (PCm

n ;Ql)⊗Ql [Sn]V
∼= HomQl [Sn](V,H

2mn−i
ét,c (PCm

n ;Ql)).

At last, since PCm
n is smooth, we are able to apply Poincaré duality to get the following

isomorphism

HomQl [Sn](V,H
2mn−i
ét,c (PCm

n ;Ql))∼= HomQl [Sn](V,Hom(H i
ét(PCm

n ;Ql);Ql(−mn))).

where Ql(−mn) is the mnth cyclotomic character, i.e. the vector space Ql that acted on by

Frobq as multiplying qmn.

Denote H i
w(PCm

n ) the subspace of H i
ét(PCm

n ;Ql) on which Frobq acts by qw and letting

χ i
w(PCm

n ) be the character of the corresponding representation, the equations above let us

19



compute the trace of Frobq as:

Tr(Frobq : HomQl [Sn](V,HomQl [Sn](H
i
ét(PCm

n ;Ql);Ql(−mn)))

=Tr(Frobq : HomQl [Sn](V,⊕wHomQl [Sn](H
i
w(PCm

n ;Ql);Ql(−mn)))

Since Frobq acts on Ql(−mn) as multiplication by qmn and on H i
w(PCm

n ;Ql) by qw, then it

acts on HomQl [Sn](H
i
w(PCm

n ;Ql);Ql(−mn)) by qmn−w. Hence, we have

Tr(Frobq : HomQl [Sn](V,⊕wHomQl [Sn](H
i
w(PCm

n ;Ql);Ql(−mn)))

=∑
w

qmn−w dim(HomQl [Sn](V,HomQl [Sn](H
i
w(PCm

n ;Ql);Ql(−mn)))

=∑
w

qmn−w⟨χV ,χ
i
w(PCm

n )χQl(−mn)⟩Sn

=∑
w

qmn−w⟨χV ,χ
i
w(PCm

n )⟩Sn

The right-hand side of equation (2.5) then becomes

∑
i,w

qmn−w(−1)i⟨χV ,χ
i
w(PCm

n )⟩ (2.7)

Combining equations (2.6) and (2.7) gives

∑
C

χV (C)pn,C(q) = ∑
i,w

qmn−w(−1)i⟨χV ,χ
i
w(PCm

n )⟩. (2.8)

Since both sides of this equation are linear over the space of class functions on Sn, and since

the irreducible characters from a basis for this space, the equation (2.8) holds for a general
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class function χ:

∑
C

χ(C)pn,C(q) = ∑
i,w

qmn−w(−1)i⟨χ,χ i
w(PCm

n )⟩. (2.9)

2.5 Representation polynomials

To help us calculate the cohomologies, we need to define a class of polynomials that is

analogous to the Poincaré polynomials. Let X be a variety defined over Fq that has an action

on it by a group G. Define H i
w(X) like what we did above, that is, to be the qw-eigenspace

with respect to the Frobenius morphism. Let χ i
w to be the corresponding character of H i

w(X)

as a G-representation. Let

PX(x, t) = ∑
i,w

χ
i
w(X)xitw.

PX(x, t) is a polynomial with two variables with coefficients in the ring of class functions on

G. Moreover, for a direct product X ×Y , whose cohomology satisfies the Kunneth formula

in terms of G-representation, i.e., H∗
ét(X ×Y )≃ H∗

ét(X)⊗H∗
ét(Y ), we can derive that

PX×Y = PX ·PY .

Then by letting x =−1 and t = q−1, we can write equation 2.9 as

∑
C

χ(C)
pm

n,C(q)

qmn = ⟨χ,PPCm
n
(−1,q−1)⟩.

In our case, by the decomposition formula and Lemma 2.5.3, we have

PPC3
n
(x, t) =PPGL4(x, t) ·PX3

n
(x, t)

=(1+ x3t2 + x5t3 + x7t4 + x8t5 + x10t6 + x12t7 + x15t9) ·PX3
n
(x, t). (2.10)
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To get PX3
n
(x, t), especially in our case n = 6, we need the following facts.

Let k be a field, and let L : An → A1 be a nontrivial k-linear form. If H ⊆ An is the

hyperplane defined by L = 0, this form restricts to a map L : An −H → A1 −{0}. The fibers

of this map are An−1, so on cohomology, L induces an isomorphism

L∗ : H1
ét(A1 −{0};Ql)∼= H1

ét(An −H;Ql).

Moreover, by Kim[6] and Lehrer[8], we have

Proposition 2.5.1. Let k be a field, and fix a prime l different from the characteristic of k.

Given a finite set off hyperplanes H1, ...,Hm in An defined over k, let A be the complement

A := An −
⋃

H j. Then:

(i). H1
ét(A ;Ql) is spanned by the images of the m maps

H1
ét(An −H j;Ql)→ H1

ét(A ;Ql)

induced by the inclusion of A into An −H j for j = 0, ...,m.

(ii). H i
ét(A ;Ql) is generated by H1

ét(A ;Ql) under cup product.

Let k = Fq and suppose that L is defined over Fq. Consider the Frobenius map Frobq :

A → A . We will derive the following corollary from Proposition 2.5.1.

Corollary 2.5.1.1. The induced action of Frobq on H i
ét(A ;Ql) is scalar multiplication by qi.

Therefore, we can derive the following lemma.

Lemma 2.5.2. H i
ét(X

3
6 ;Ql) = H i

i (X
3
6 ).

Proof. Let x = (x1, ...,x5) ∈ PC3
5 and let Mx be the arrangement of planes consist planes that

formed by points in x, namely Mx = {Pi, j,k|1 ≤ i < j < k ≤ 5} where Pi, j,k is the plane that
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contains xi, x j and xk. Then we can see that the fiber of the map PC3
6 → PC3

5 over x is

P3\
⋃

P∈Mx

P ≃ A3\
⋃

p∈M ′
x

p

where M ′
x is the arrangement of planes by letting one of the plane p ∈ Mx to be the plane at

infinity defining A3 ≃ P3\p.

Then X3
6 can be viewed as the hyperplane complement of a hyperplane arrangement in

the affine space A3. Then by 2.5.1, the geometric Frobenius map Frobq acts as multiplication

by qi on H∗
ét(X

3
6 ;Ql). Therefore we established our claim.

In the case when n = 7, we will need to conjecture that H i
ét(X

3
7 ;Ql) = H i

i (X
3
7 ) at the

moment.

Therefore, the polynomial for X3
n for n = 6 and n = 7 can be written as

PX3
n
(x, t) = ∑

k
χ

3
n,kxktk (2.11)

where χ3
n,k is the character of Hk

ét(X
3
n ;Ql) as Sn-representation. Then by combining the

equations above, we have

∑
C

χV (C)p3
n,c(q) =q3n

∑
k

q−k(−1)k(⟨χV ,χ
3
n,k⟩−⟨χV ,χ

3
n,k−2⟩+ ⟨χV ,χ

3
n,k−3⟩

−⟨χV ,χ
3
n,k−4⟩−⟨χV ,χ

3
n,k−5⟩+ ⟨χV ,χ

3
n,k−6⟩−⟨χV ,χ

3
n,k−7⟩ (2.12)

+ ⟨χV ,χ
3
n,k−9⟩).

Because χ3
n,k = 0 for n < 0, we can find the characters inductively by using the character

table for irreducible Sn-representations after gain complete knowledge about p3
n,c(q).

Now, we want to establish that H∗
ét(PCm

n ) ≃ H∗
ét(X

m
n )⊗H∗

ét(PGLm+1(C)) in terms of

Sn-representation for m = 3.
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Lemma 2.5.3. For any pairs of I,J : [5] ↪→ [n], which induce the map fI, fJ : PC3
n → PC3

5 ,

the induced map on cohomology always have the same image. Namely, f ∗I
(
H∗

ét(PC3
5 ;Ql)

)
=

f ∗J
(
H∗

ét(PC3
5 ;Ql)

)
.

Proof. Since any injection [5]→ [n] will factor through an injection [5]→ [6], we only need

to consider the case that n = 6. Since the Frobenius morhpism acts on H i
ét(X

3
6 ) by qi and the

Kunneth formula

H∗
ét(PC3

6)≃ H∗
ét(X

3
6 )⊗H∗

ét(PGL4(C))

provides that the two sides have the same weight structure. Then we can see that for any

generator in the sense of cup product of H∗
ét(PC3

5) = H∗
ét(PGL4(C)) with weight w and degree

i, the corresponding part of cohomology of H∗
ét(PC3

5) and the weight w, degree i part of

H∗
ét(PC3

6) always have the same dimension. Since the induced maps f ∗I and f ∗J are injections

maintaining the weight structure, they will always have the same image.

Therefore, different injections [5]→ [n] yields the same image for the corresponding map

H∗
ét(PGL4(C)) = H∗

ét(PC3
5)→ H∗

ét(PC3
n). Moreover, the image is trivial as Sn-representation

and that implies that H∗
ét(PC3

6)≃ H∗
ét(X

3
6 )⊗H∗

ét(PGL4(C)) in terms of Sn-representation. In

fact, although we are dealing with étale cohomology here, the statement also holds in singular

cohomology by comparison. Therefore, we get Proposition 1.3.5.

Back to p3
n,C(q), since the space of class functions is spanned by the characters χV of

irreducible representations, we can decompose 1C = ∑ j α jχVi where α j ∈Q for all j. Then
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Table 2.1 Point counts for B2
5(Fq) twisted by conjugacy classes of S5

Conjugacy Class (C) p2
5,C(q)

e 1
120(q−3)(q−2)(q−1)2q3(q+1)(q2 +q+1)

(12) 1
12(q−1)3q4(q+1)(q2 +q+1)

(12)(34) 1
8(q−2)(q−1)2q3(q+1)2(q2 +q+1)

(123) 1
6(q−1)2q4(q+1)2(q2 +q+1)

(123)(45) 1
6(q−1)3q4(q+1)(q2 +q+1)

(1234) 1
4(q−1)2q4(q+1)2(q2 +q+1)

(12345) 1
5(q−1)2q3(q+1)(q2 +1)(q2 +q+1)

we can will have

p3
n,c(q) =∑

C′
1C(C′)p3

n,C′(q)

=∑
i,w

q3n−w(−1)i⟨1C,χ
i
w⟩

=∑
i,w

q3n−w(−1)i⟨∑
j

α jχV j ,χ
i
w⟩

=∑
j

α j ∑
i,w

q3n−w(−1)i⟨χV j ,χ
i
w⟩

which implies that p3
n,c(q) is a polynomial with rational coefficients.

The results for p2
n,c, which derived by Das and O’connor, and p3

n,c, which derived by me,

are given by the tables 2.1, 2.2, 2.3 and 2.4.
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Table 2.2 Point counts for B2
6(Fq) twisted by conjugacy classes of S6

Conjugacy Class (C) p2
6,C(q)

e 1
720(q−3)(q−2)(q−1)2q3(q+1)(q2 +q+1)(q2 −9q+21)

(12) 1
48(q−1)3q4(q+1)(q2 +q+1)(q2 −3q+3)

(12)(34) 1
16(q−2)(q−1)2q3(q+1)2(q2 +q+1)(q2 −q−3)

(12)(34)(56) 1
48(q−1)2q3(q+1)(q2 +q+1)(q4 −6q2 +q+8)

(123) 1
18(q−1)2q6(q+1)2(q2 +q+1)

(123)(45) 1
6(q−1)3q6(q+1)(q2 +q+1)

(123)(456) 1
18(q−1)2q3(q+1)(q2 +q+1)(q4 −2q3 −3q+9)

(1234) 1
8(q−1)2q4(q+1)2(q2 +q+1)(q2 +q−1)

(1234)(56) 1
8(q−1)2q3(q+1)(q2 +q+1)(q4 −2q2 −q−2)

(12345) 1
5(q−1)2q3(q+1)(q2 +1)(q2 +q+1)2

(123456) 1
6(q−1)2q3(q+1)(q2 +q+1)(q4 +q−1)

Table 2.3 Point counts for B3
6(Fq) twisted by conjugacy classes of S6

Conjugacy Class (C) p3
6,C(q)

e 1
720(q−4)(q−3)(q−2)(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)

(12) 1
48(q−2)(q−1)4q7(q+1)2(q2 +1)(q2 +q+1))

(12)(34) 1
16(q−2)(q−1)3q7(q+1)3(q2 +1)(q2 +q+1)

(12)(34)(56) 1
48(q−2)(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q2 −q−4)

(123) 1
18(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)

(123)(45) 1
6(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)

(123)(456) 1
18(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 −q−3)

(1234) 1
8(q−1)3q8(q+1)2(q2 +q+1)(q3 +q2 +q+1)

(1234)(56) 1
8(q−1)4q8(q+1)2(q2 +1)(q2 +q+1)

(12345) 1
5(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 +q2 +q+1)

(123456) 1
6(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 +q−1)
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Table 2.4 Point counts for B3
7(Fq) twisted by conjugacy classes of S7

Conjugacy Class (C) p3
7,C(q)

c 1
5040(q−5)(q−3)(q−1)3q6(q+1)2(q2 +q+1)(q2 +1)(
q4 −20q3 +148q2 −468q+498

)
(12) 1

240(q−3)(q−2)(q−1)4q7(q+1)2(q2 +1)(q2 +q+1)

(q2 −4q+6)

(12)(34) 1
48(q−1)4q6(q+1)3(q2 +1)(q2 +q+1)(q4 −4q3 +12q−6)

(12)(34)(56) 1
48(q−2)(q−1)3q6(q+1)3(q2 +1)(q2 +q+1)(q2 −q−4)

(q2 −6)

(123) 1
72(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

(123)(45) 1
12(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

(123)(45)(67) 1
24(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

(123)(456) 1
18(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)

(q6 −q5 −q4 −8q3 +9q2 +6q+18)

(1234) 1
24(q−1)4q9(q+1)3(q+2)(q2 +1)(q2 +q+1)

(1234)(56) 1
8(q−1)4q6(q+1)3(q2 +1)(q2 +q+1)(q4 −2q2 −2)

(1234)(567) 1
12(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

(12345) 1
10(q−1)3q7(q+1)3(q2 +1)2(q2 +q+1)2

(12345)(67) 1
10(q−1)4q7(q+1)2(q2 +1)2(q2 +q+1)2

(123456) 1
6(q−1)3q8(q+1)3(q2 +1)(q2 +q+1)(q3 +q−1)

(1234567) 1
7 (q−1)3 q6 (q+1)2 (q2 +1)(q2 +q+1)(q2 −q+1)

(q4 +q3 +q2 +q+1)
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Chapter 3

Preparation for Twisted Point-Counting

3.1 Basic structures for B3
n(Fq)

Let q be a power of a odd prime number, we know that the Frobenius morhpism Frobq will

acts on a point p ∈ B3
n(Fq) as a permutation. Each point will define a unique representation

up to conjugacy. Namely, it will be unique up to cycle type and and let’s denote the

corresponding cycle type by σp. We want to count the number of points

p3
n,c(q) =

∣∣{p ∈ B3
n(Fq)|σp ∈C}

∣∣
for each conjugacy class C of Sn.

To make our life easier, we will abbreviate the Frobenius automorphism Frobq into f or

fq when we need to emphasize the power from this point. For a point p in PN(Fq), we denote

{ f (p)} the orbit of p under the Frobenius morphism. The orbit is finite for all p and we call

|{ f (p)}| the order of p and denote it by ordp. We call a point p with order n a qn-point and

sometime write p(n) when we want to emphasize the order.

To count the number of points corresponding to a certain cycle type, we need to know

how to count the number of qn-points in PN(Fq) or some subspaces of it. Notice that for any
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qn-point p, we have p ∈ (PN(Fq))
f n

and (PN(Fq))
f n ∼= PN(Fqn). Let’s denote PN(F(n)

q ) the

set of qn-points in PN(Fq). We can see that

PN(Fqn) =
⊔
k|n

PN(F(k)
q ).

Then we have

PN(F(n)
q ) = PN(Fqn)\

⋃
k|n,k ̸=n

PN(F(k)
q )

Then we can count the number of qn-points recursively by the following equation

∣∣∣PN(F(n)
q )

∣∣∣= ∣∣PN(Fqn)
∣∣− ∑

k|n,k ̸=n

∣∣∣PN(F(k)
q )

∣∣∣ . (3.1)

For a linear subspace of P ⊆ PN(Fq), the order P is also denoted by ordP which is the

smallest integer n such that f n(P) = P. Similar to the points, we will call such a space qn-

space, which are planes and lines in this paper as we are working in three dimensional space,

if ordP = n. By the projective duality, there is a f -equivariant correspondence between the set

of qn-hyperplanes and PN(F(n)
q ). Namely, one direct result is the number of qn-hyperplanes

is equal to the number of qn-points. To be more general, the number of k-dimensional

qn-subspace is equal to the number of N − k-dimensional qn-subspace in PN(Fq). Besides,

the duality also gives us the following results. First, for any qk-subspace P, there is an

f k-equivariant correspondence between P and PN−m(Fqk) where m is the codimension of P.

Secondly, for a q-point p, the number of k-dimensional q-subspace containing p is equal to

the number of q-point on a k-dimensional q-subspace.

To count the number of points, for example, for p3
7,C(q) where C = (1234)(56), we need

to find the number of ways to choose a q4-point a, a q2-point b and a q-point c. This will give

us a set p = { f (a)}
⋃
{ f (b)}

⋃
{ f (c)} that corresponding to cycle type C. However, different

choices of points may result in a same set, namely, different point from the same orbit will
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not change the resulting set. As a result, we need to correct for the overcounting. Besides

overcounting, we also need to make sure the points we choose satisfy our requirement, that

is, not four points can be on a same plane.

To achieve that in this example, we first of all need to choose a q4-point a whose orbit

are not contained in a same line. Then for the q2-point b, we first of all need to make sure

that it is not contained in the existing plane, and also make sure the line ⟨b, f (b)⟩ doesn’t

intersect with the any of the six lines decided by the orbit of a. At last, we need our q-point c

not on any of the ten existing planes and then divded by 3 ·2 to correct for the overcounting.

To count for pm
n,C generally, we need to know how the order of points, lines and planes

interact with each other. For points p1, p2, and p3 in P3(Fq), we use ⟨p1, p2, p3⟩ to denote

the space spanned by these three points. Usually ⟨p1, p2, p3⟩ is a plane and ⟨p1, p2⟩ is a line.

Dually, for three planes P1, P2, and P3 in P3(Fp), ⟨P1,P2,P3⟩ is usually a point and ⟨P1,P2⟩ is

a line. We will discuss how the order of p1, p2, and p3 affect the order of ⟨p1, p2, p3⟩ and

⟨p1, p2⟩.

By the properties of projective spaces, we will have the following observation.

Remark 3.1.1. Two different lines l1 and l2 intersect if and only if they are in a same plane

P.

Lemma 3.1.2. For two different points p1, p2 in P3(Fq) where ord(p1) = n1 and ord(p2) =

n2. Let n = ord(l), where l = ⟨p1, p2⟩. Then n|lcm(n1,n2) and for each i, we either have

ni|n or n|ni. Similar conclusion can be make for two different lines l1, l2 in a same plane

P. Notice that ⟨l1, l2⟩ can be considered as a point that is their intersection or a plane that

contains both of them.

Proof. We will only show the case for the points, the case for lines can be proved with the

exact same procedure. Let k = lcm(n1,n2), then

f k(l) = ⟨ f k(p1), f k(p2)⟩= ⟨p1, p2⟩= l,
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so we have n|k.

For the second part, if f n(pi) = pi, then ni|n. If not, then f n(pi) ∈ f n(l) = l. Then l also

equal to ⟨pi, f n(pi)⟩ and we have

f ni(l) = ⟨ f ni(pi), f ni( f n(pi))⟩= ⟨pi, f n(pi)⟩= l.

Therefore, n|ni.

Corollary 3.1.2.1. For three noncollinear points p1, p2, and p3 in P1(Fq) where ord(pi) = ni.

Let n = ord(P) where P = ⟨p1, p2, p3⟩. We have n|lcm(p1, p2, p3)

The next lemma can also be useful in our calculation.

Lemma 3.1.3. Let p be a qk-point that is in a qm-plane P where m< k, then let d = gcd(k,m),

there exists a plane P′ such that f d(P′) = P′ and p ∈ P′.

Proof. If m = d, then we are done. Otherwise, we can see that for each i ∈ N such that

i < m/d, p is in f id(P). Then p will be in their intersection which has order that divides d.

Since d < m < k, the intersection must be a line, so we can always construct a plane using

the intersection to create a plane P′ that have the same order.

3.2 Generic points

When choosing a qn−point p, we would like to make sure that the points { f i(p)}0≤i<n are

in general position, that is, no four points are in a same projective plane, no three points are

collinear. To make sure selected points satisfy our requirement, we will need to understand

what does the term "in general position" really mean for each n and determine the number of

points that satisfy the condition. In [4], Das and O′Connor set up a collection of sets that
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can be described in a consistent way. An analog will work for n < 6 in our condition but

things will get much more complicated when n = 6. Nevertheless, we will still use the same

terminology.

Definition 3.2.1. A qn-point p in Pk(Fq) is called a generic point if all point in its orbit

{ f (p)} are in general position, namely, for any m ≤ min(n,k+1) points in the orbit, these

points will form a codimensional k+1−m subspace in Pn(Fq). We will denote the set of

generic qn-points by Pk(F(n,gen)
q ).

In our case, where n = 3, a point being generic means any four points from the orbit

cannnot be in a same plane, and no three points are collinear, which is precisely what. In this

paper, when we say generic points, we usually mean the generic points in P3(Fq). There are

several cases that we will consider the generic points in P2(Fq). Those cases will either be

obvious under context or noted specially.

Now, we want to know what does a qn-point being generic actually mean geometrically

and how to calculate the cardinality of P3(F(n,gen)
q ) for different n. The following lemma

describes the generic points in a way that we can use to compute
∣∣∣P3(F(n,gen)

q )
∣∣∣.

Lemma 3.2.1. For 3 ≤ n ≤ 6, we can describe P3(F(n,gen)
q ) as followings:

• when n = 3, p ∈ P3(F(3,gen)
q ) if and only if p is not on any q-line;

• when n = 4,5, p ∈ P3(F(n,gen)
q ) if and only if p is not on any q-plane;

• when n = 6, p ∈ P3(F(6,gen)
q ) if and only if p doesn’t fell into any one of the following

conditions:

– p is in a q-plane;

– p is in a q2-line

– p is in a non-generic q3-line, which is a q3-line containing a q-point.
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Proof. It is obvious that when p does not satisfy the requirement from the lemma, the points

from { f (p)} cannot be in general position. Then we only need to show that when the points

from { f (p)} are not in the general position, then the point p cannot fulfill the requirement to

be a generic point as we described above.

Due to the cyclic structure of the orbit under the Frobenius action, we can treat the case

that four points in the orbit of p on a same plane as a cyclically ordered partition of n into four

parts. For example, the case that p, f (p), f 3(p), f 4(p) are on the same plane where n = 6 can

be demonstrated by the partition (1,2,1,2) where the ith part of the partition demonstrates

the cyclic distance of the ith point to the next one. Moreover, since the parts are ordered

cyclically in the partitions, we only need to consider a few cases for each n.

When n = 3, a q3-point is in a q-line if and only if every point from its orbit are collinear.

When n = 4 and 5, we only have one partition for each, and it is trivial to see that in each of

the cases, all points in the orbits will be on a same plane. Then p must be on a q-plane.

When n= 6, we have three different partitions, which are (1,1,1,3), (1,1,2,2), (1,2,1,2).

In the case of (1,1,1,3), without loss of generality, we suppose { f i(p)}0≤i≤3 are on the

same plane P, then by applying the map f , we can see that { f i(p)}1≤i≤4 are on the same

plane P′ whose intersection with P contains f (p), f 2(p) and f 3(p). If these three points are

on a same line, then this line will be a q-line and every point in the orbit of p will be on it,

then they will also be on a q-plane. If these three points are not collinear, then we can see

that P′ = P. Using the same argument, we can see that ever point in the orbit of p will be

contained in P, which implies that P is a q-plane and p is not q-generic.

In the case (1,2,1,2), let P be the plane that contains {p, f (p), f 3(p), f 4(p)}, we can see

that f (P) contains { f (p), f 2(p), f 4(p), f 5(p)} and f (P) contains {p, f 2(p), f 3(p), f 5(p)}.

Then let l = ⟨p, f 3(p)⟩, we can see that l is a q-lines or a q3-line. If l is a q-line, then p must

be in a q-plane. If l is a q3-line, then the three lines from { f (l)} are the intersections of the
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three pairs of planes from { f (P)} respectively, which means the three lines in { f (l)} must

intersect at a q-point. Therefore, p is contained in a non-generic q3-lines.

In the case (1,1,2,2), let’s suppose {p, f (p), f 2(p), f 4(p)} are in the same plane P, then

f 2(P) will contain {p, f 2(p), f 3(p), f 4(p)}. Their intersection contains {p, f 2(p), f 4(p)}.

If the three points are not collinear, then we can see that all points from { f (p)} will be in the

plane ⟨p, f 2(p), f 4(p)⟩, hence p is in a q-plane. Otherwise, these three points will form a

line which has order 1 or 2. No matter what, p will violate the condition for being generic.

When n = 7, we can see that if three points in { f (p)} is collinear then all seven points

must be collinear, let’s start with the assumption that no three points from { f (p)} are

collinear. There are five different partitions (1,1,1,4), (1,1,2,3), (1,1,3,2), (1,2,1,3) and

(1,2,2,2) with n = 7. The first partition will result in all points in a same plane obviously.

As for (1,2,1,3), let P = ⟨p, f (p), f 3(p), f 4(p)⟩. We can see that there are three points from

{ f (p)} are in both P and f 3(P). Since no three points are collinear, we must have P = f 3(P)

and it will contain five points from { f (p)}. Which implies that P contains all points from

{ f (p)} and p is in a q-plane. Similarly, for (1,2,2,2), let P = ⟨p, f (p), f 3(p), f 5(p)⟩. We

will have P = f 2(P) and it will contain five points from the orbit. Hence p is in a q-plane in

this case.

To deal with the partition (1,1,2,3), let

P = ⟨p, f (p), f 2(p), f 4(p)⟩ and P′ = ⟨ f 3(p), f 5(p), f 6(p)⟩.

Then we can see that f 3(P) = ⟨p, f 3(p), f 4(p), f 5(p)⟩, which implies that ⟨p, f 4(p)⟩ inter-

sect ⟨ f 3(p), f 5(p)⟩ at a point a. By the same logic, since f 5(P) = ⟨p, f 2(p), f 5(p), f 6(p)⟩,

and f 6(P) = ⟨p, f (p), f 3(p), f 6(p)⟩, ⟨p, f 2(p)⟩ intersects ⟨ f 5(p), f 6(p)⟩ at a point b and

⟨p, f (p)⟩ intersects ⟨ f 3(p), f 6(p)⟩ at a point c. Moreover, we also see that a is also the

intersection of ⟨p, f 4(p)⟩ and ⟨ f 1(p), f 2(p)⟩, b is also the intersection of ⟨p, f 2(p)⟩ and

⟨ f (p), f 4(p)⟩, and c is also the intersection of ⟨p, f (p)⟩ and ⟨ f 2(p), f 4(p)⟩. Hence, a, b, and
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c are not collinear. Since they are contained in both P and P′, we have to have P = P′. As a

result, P is a q-plane.

For (1,1,3,2), let P = ⟨p, f (p), f 2(p), f 5(p)⟩ and let P′ = ⟨ f 3(p), f 4(p), f 6(p)⟩. Follow

the same method as (1,1,2,3), P and P′ must share three noncollinear points, which implies

P = P′ and P is a q-plane. As a result, if we have four points from { f (p)} that are in a same

plane, then p must be in a q-plane when p is a q7-point.

Remark 3.2.2. Dual to generic points, we can also define generic lines and planes in a

similar manner. We will list the conditions for a few kinds of lines and planes to be generic

that we will use when we count the cardinality of P3(F(n,gen)
q ) and the numbers of twisted

points:

• a qn-line is generic if it doesn’t contain a q-point when 2 ≤ n ≤ 5, and doesn’t contain

any q-point as well as q2-point when n = 6. Notice that although we don’t have generic

q2-line in P2(Fq), we do have such lines in P3(Fq).

• a qn-plane is generic if it doesn’t contain any q-point when n = 4,5.

3.3 Counting generic points

By Definition 3.2.1, it is crucial to find the number of generic qn-points to calculate p3
n,c,

and by Lemma 3.2.1, we can find those numbers geometrically. Since we will also need the

number of points in P2(F(n,gen)
q ), we will refer to the the following proposition by Das and

O’Connor[4].

Proposition 3.3.1. When m = 2, for each n ≥ 3, let P2(F(n,gen)
q ) denote the set of generic

qn-points in plane (no three points in an orbit are collinear). Then for n < 6,

∣∣∣P2(F(n,gen)
q )

∣∣∣= ∣∣∣P2(F(n)
q )

∣∣∣− (q2 +q+1)
∣∣∣P1(F(n)

q )
∣∣∣ .
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For n = 6,

∣∣∣P2(F(6,gen)
q )

∣∣∣= ∣∣∣P2(F(6)
q )

∣∣∣− (q2 +q+1)
∣∣∣P1(F(6)

q )
∣∣∣− (q4 −q)

∣∣∣P1(F(3)
q2 )

∣∣∣ .
We will use these result when we do twist points counting. The next remark is also

crucial for us to compute the number of generic points for m = 3 as well as some of the

point-counting.

Remark 3.3.2. For a finite field Fk, the number of lines in Pn(Fk) is (kn+1−1)(kn−1)
(k−1)2(k+1) . We can

derive the result by choosing two different points in the space and then divide the number of

choices by the number of overcounting.

Proposition 3.3.3. For P3(F(n,gen)
q ), the set of generic qn-points in P3(Fq), we can calculate

the cardinality of these sets as follow.

When n = 3, we have

∣∣∣P3(F(3,gen)
q )

∣∣∣= ∣∣∣P3(F(3)
q )

∣∣∣− (q2 +1)(q2 +q+1)
∣∣∣P1(F(3)

q )
∣∣∣ .

When n = 4,5,7, we have

∣∣∣P3(F(n,gen)
q )

∣∣∣= ∣∣∣P3(F(n)
q )

∣∣∣−(q3+q2+q+1)
∣∣∣P2(F(n)

q )
∣∣∣+q(q2+1)(q2+q+1)

∣∣∣P1(F(n)
q )

∣∣∣ .
When n = 6, we have

∣∣∣P3(F(6,gen)
q )

∣∣∣= ∣∣∣P3(F(6)
q )

∣∣∣− (q3 +q2 +q+1)
∣∣∣P2(F(6)

q )
∣∣∣+q(q2 +1)(q2 +q+1)

∣∣∣P1(F(6)
q )

∣∣∣
−q4(q−1)2(q2 +q+1)

∣∣∣P1(F(3)
q2 )

∣∣∣
−q3(q+1)2(q−1)2(q2 +1)

∣∣∣P1(F(2)
q3 )

∣∣∣ .
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Proof. In the case that n = 3, we want to exclude the q3-points that are on a q-line, that

means, the q3-points p such that all the points in the orbit { f (p)} are on a same q-line. To

exclude all such points, we just need to find the number of q-lines in the space and multiply

the number of q3-points on a q-line. Moreover, there is no double counting since q-lines will

only intersect at q-points. Thus, we have the above result.

When n = 4,5, we first of all need to get rid of all the qn-points that are on the q-planes.

However, since each pair of q-planes will intersect at a q-line, we multiple counted all of

the q-lines. To adjust for that, notice that each q-lines is contained in q+1 many q-planes.

Therefore, for each q-line, we add back q times the number of qn-points in the line. Again,

since q-lines will only intersect each other at q-points, we don’t need to do more adjustment.

As a result, we will derive the desirable result.

When n = 6, we need additionally throw away the q6-points that are in q2-lines which

are not in q-planes and the q6-points such that the three q3-lines formed by the orbit intersect

at a q-point.

For the first case, we need to find out the number of q2-lines which are not in a q-plane. By

remark 3.3.2, there are (q4 +1)(q4 +q2 +1) lines in P3(Fq2) including q2-lines and q-lines.

By the same remark, there are (q2 +1)(q2 +q+1) many q-lines in the space. Moreover, in a

q-plane, there are q4 +q2 +1 many q2-lines and q-lines in total and q2 +q+1 many q-lines.

Since intersections of q2-lines are either q2-point or q-point, we don’t need to worry about

overcounting. For each of the q2-lines l(2), the Frobq2-equivariant isomorphism from l(2) to

P1(Fq2) will identifies the q6 points in l with the (q2)3-points in P1(Fq2). Since there are

q3 +q2 +q+1 many q-planes, and each pair of q-planes only intersect at a q-plane, we need

to rule out

(
(q4 +1)(q4 +q2 +1)− (q2 +1)(q2 +q+1)− (q3 +q2 +q+1)(q4 −q)

)∣∣∣P1(F(3)
q2 )

∣∣∣
= q4(q−1)2(q2 +q+1)

∣∣∣P1(F(3)
q2 )

∣∣∣
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q6-points in this case.

For the second case, we first need to find the number of non-generic q3-lines that are not

in a q-plane. Since a non-generic q3-lines can always be constructed by connecting a q-point

and a q3-point, we start the search by find all such pairs and there are

∣∣P3(Fq)
∣∣ ∣∣∣P3(F(3)

q )
∣∣∣

of them. However, these pairs contains a lot of q-lines and also have a great amount of

overcounting. Since for each q-line, there are
∣∣∣P1(F(3)

q )
∣∣∣ many q3-points and

∣∣P1(Fq)
∣∣ many

q-points on it and there are total (q2 +1)(q2 +q+1) many q-lines, by the way we find all

those pairs, there are

(q2 +1)(q2 +q+1)
∣∣∣P1(F(3)

q )
∣∣∣ ∣∣P1(Fq)

∣∣
counts that are q-lines for the pair. Because any non-generic q3-line contain only one q-point,

there are
∣∣∣P1(Fq3)

∣∣∣−1 many q3-points on it. Therefore, there are

∣∣P3(Fq)
∣∣ ∣∣∣P3(F(3)

q )
∣∣∣− (q2 +1)(q2 +q+1)

∣∣∣P1(F(3)
q )

∣∣∣ ∣∣P1(Fq)
∣∣∣∣∣P1(Fq3)

∣∣∣−1

non-generic q3-lines in total. Now, we need to rule out all non-generic q3-lines that are

contained in a q-plane. Since in a plane, every two lines must intersect at a point, for any

generic q3-point p, we can get a generic q3-line l by letting l = ⟨p, f 2(a)⟩ and for any generic

q3-line l, we can get a generic q3-point by letting p = ⟨l, f (l)⟩. These will create a one-to-one

correspondence between the generic q3-point in the plane and the generic q3-lines in the

plane. Hence, there are totally q6 + q3 + 1 lines altogether in a q-plane with order 1 or

3, q2 + q+ 1 lines that are q-lines and
∣∣∣P2(F(3,gen)

q )
∣∣∣ are generic q3-lines, where there are
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q3 +q2 +q+1 many q-planes in total. Therefore, we have

∣∣P3(Fq)
∣∣ ∣∣∣P3(F(3)

q )
∣∣∣− (q2 +1)(q2 +q+1)

∣∣∣P1(F(3)
q )

∣∣∣ ∣∣P1(Fq)
∣∣∣∣∣P1(Fq3)

∣∣∣−1

− (q3 +q2 +q+1)
(
(q6 +q3 +1)− (q2 +q+1)−

∣∣∣P2(F(3,gen)
q )

∣∣∣)
=q3(q+1)2(q−1)2(q2 +1)

non-generic q3-lines. Similar to the argument we used in the last case, the Frobq3-

equivariant isomorphism from the q3-lines to P1(Fq3) will identifies the q6 points in the

q3-lines with the (q3)2-points in P1(Fq3). Therefore, we will exclude

q3(q+1)2(q−1)2(q2 +1)
∣∣∣P1(F(2)

q3 )
∣∣∣

q6 points in this case. Moreover, notice that if a non-generic q3-line intersects a q2-line at a

q6-point that fell into both of the cases, then the q6-point must be in a q-plane, so these two

cases won’t affect each other (see figure 3.1, where p′ is the q-point contained in all three

q3-lines). Therefore, we got the result.

Lemma 3.3.4. If p is a q-generic qn-point where n > 3, the plane P = ⟨p, f (p), f 2(P)⟩ is a

q-generic plane.

Proof. By contradiction, suppose P contains a q-point p′, then p′ either on the line ⟨p, f (p)⟩

or not. If p′ is on ⟨p, f (p)⟩, then we can see that p, f (p), f 2(p) are collinear, hence not

q-generic. Otherwise, ⟨p, f (p), p′⟩ defines the same plane. we can see that

P = ⟨p, f (p), p′⟩= ⟨ f (p), f 2(p), p′⟩= f ⟨p, f (p), p′⟩= f (P).

Then p cannot be q-generic.
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Figure 3.1 When a q2-line intersect a q3-line at a q6-point

Remark 3.3.5. In fact, using the same way as we decide the conditions for generic position,

we can see that for qn-points p where 4 ≤ n ≤ 6, the qn-planes formed by { f (p)} will always

be q−generic.
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Chapter 4

Twisted Point-Counting

4.1 Computation for twisted point counting for B3
6(Fq)

Now, we will start the calculation for the twisted point counting. To improve the readability,

the number of generic qn-points will be given as below.

∣∣∣P3(F(3,gen)
q )

∣∣∣= (q−1)2q3(q+1)2(q2 +1)

= q9 −q7 −q5 +q3∣∣∣P3(F(4,gen)
q )

∣∣∣= (q−1)3q6(q+1)(q2 +q+1)

= q12 −q11 −q10 +q8 +q7 −q6∣∣∣P3(F(5,gen)
q )

∣∣∣= (q−1)3q2(q+1)2(q2 +1)(q2 +q+1)

= q11 −q9 −q8 −q7 +q6 +q5 +q4 −q2∣∣∣P3(F(6,gen)
q )

∣∣∣= (q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 +q−1)

= q18 −2q15 −2q14 +q13 +q12 +3q11 −q9 −q8 −q7 +q6∣∣∣P3(F(7,gen)
q )

∣∣∣= (q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q2 −q+1)(q4 +q3 +q2 +q+1)

= q21 −q17 −q16 −q15 +q12 +q11 +q10 −q6
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4.1.1 Cycle type e

For p ∈ B6(Fq) with cycle type σp = e, each pi ∈ p is a q−point. An ordering of p gives

an element p̃ ∈ F6(Fq)≃ PGL4(Fq)×X6(Fq). Therefore, we only need to calculate
∣∣X6(Fq)

∣∣.
That is, we want to count the number of ways to pick a q-point that is not on the existing ten

q-planes formed by a subset S = {p1, p2, p3, p4, p5} ∈ P3(Fq). We can see that there are ten

q-lines, which are lines that contains two points in S and each of them is contained in three

q-planes, let’s call them kind one lines. Moreover, for a pair of planes that only share one

common points pi in S, they will intersect at a line that going through pi. For each point in S,

there are three pairs of such planes. Hence, we have fifteen such lines that only goes through

one point in S. We call this kind of lines as kind 2 lines.

Now, we need to analyze how those lines intersect with each other. First of all, two kind

1 lines intersect each other if and only if they share a point in S since otherwise we will have

four points in the same plane. Then, we want to show that two kind 2 lines going through the

same point in S cannot be the same, that is, there are indeed fifteen kind 2 lines. Without

loss of generality, let’s say both of them goes through p2 and l1 is in the plane ⟨p1, p2, p3⟩

and l2 is in the plane ⟨p2, p3, p4⟩. Notice that this two planes must have two common points

in S otherwise they will just be the pair of planes that decide a kind 2 lines. If l1 and l2

are the same, then since it in both of the planes and both of the planes contain p3, then

either these two planes are the same or the line contain p3, both of this cases will fell into

the result that we have four points in a plane. Moreover, we want to show that two kind

2 lines that build with different planes and goes through two different points in S will not

intersect. Namely, for example, let l1 be the intersection of ⟨p1, p2, p3⟩ and ⟨p2, p4, p5⟩, and

let l2 be the intersection of ⟨p2, p3, p4 and ⟨p1, p3, p5. Then we can see that l1 and l2 don’t

share a common building plane. By contradiction, suppose that l1 and l2 intersect, then

their intersection will be in both ⟨p1, p2, p3⟩ and ⟨p2, p3, p4⟩. Then either l1 = l2 = ⟨p2, p3⟩

or these two planes are the same, and no matter what we will have four points in a same

42



plane. Lastly, we need to show that a kind 2 line l will not intersect a kind 1 line that is

not inside any of the two planes we used to build l and not going through the same point in

S as l. Without loss of generality, let’s say l is the lines passing through p2 in ⟨p1, p2, p3⟩

the possible kind 1 lines are ⟨p1, p4⟩, ⟨p1, p5⟩, ⟨p3, p4⟩ and ⟨p3, p5⟩. Again, without loss of

generality and by contradiction, suppose l intersects ⟨p1, p4⟩. Then either p1 is on l or p4 is

in ⟨p1, p2, p3⟩. We will reach a contradiction whatsoever.

At this point, we are safe to consider the intersections of kind 2 lines and kind 1 lines.

Without loss of generality, let l1, l2, l3 be the kind 2 lines in ⟨p1, p2, p3⟩ such that li goes

through pi. Then we can see that l1 is in ⟨p1, p4, p5⟩, l2 is in ⟨p2, p4, p5⟩, and l3 is in

⟨p3, p4, p5⟩. It is obvious that l1, l2, and l3 all intersect with ⟨4,5⟩. Therefore, since ⟨4,5⟩

only intersect ⟨p1, p2, p3⟩ at one point, the four lines l1, l2, l3 and ⟨4,5⟩ all intersect at a

single point. We can see that for all kind 1 lines, there is one such point on the line that is

contained in one kind 1 lines and three kind 2 lines.

Therefore, there are
∣∣P3(Fq)

∣∣−10
∣∣P2(Fq)

∣∣+10 ·(3−1)
∣∣P1(Fq)

∣∣+15 ·(2−1)
∣∣P1(Fq)

∣∣−
5 · (−6+2 ·4+3+1)−10 · (−4+2 ·1+3+1) choices for the last point. Hence,

∣∣X3
6 (Fq)

∣∣= ∣∣P3(Fq)
∣∣−10

∣∣P2(Fq)
∣∣+35

∣∣P1(Fq)
∣∣−50

=q3 −9q2 +26q−24

Since we have an order for the q-points, we should divide the result by 6! to correct for

overcounting. Then we have the point count

p3
6,e =

1
6!

(∣∣PGL4(Fq)
∣∣ ∣∣X3

6 (Fq)
∣∣)

=
1

720
(q−4)(q−3)(q−2)(q−1)3q6(q+1)(q2 +q+1)(q3 +q2 +q+1).
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Remark 4.1.1. By using the trace formula on X3
6 with trivial Ql-coefficients, we have

∣∣X3
6 (Fq)

∣∣= q3
(

dimH0
ét(X

3
6 )−

1
q

dimH1
ét(X

3
6 )+

1
q2 dimH2

ét(X
3
6 )−

1
q3 dimH3

ét(X
3
6 )

)
.

Hence the Poincaré polynomial of X3
6 is 1+9x+26x2 +24x3.

4.1.2 Cycle type (12)

After choosing the q2-point a, the first q-point b can be choose arbitrarily away from the

q-line ⟨a, f (a)⟩, so we have
∣∣P3(Fq)

∣∣− ∣∣P1(Fq)
∣∣ choices. Once we picked b, we can form

a q-plane and the second q-point c can be choose anywhere away from this q-plane, so we

have
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣ choices. Now, we have two q-planes intersect at line ⟨a, f (a)⟩ and

a pair of q2-planes intersect at ⟨b,c⟩. Since the pair of q2-planes already contain a q-lines,

containing a q-point outside the q-line ⟨b,c⟩ will result in the four points in a same plane.

Hence, the two q2-planes contain no q-point away from ⟨b,c⟩, so we can choose the third

q-point d anywhere away from the two q-planes and the q-line ⟨b,c⟩. Notice that the two

q-planes intersect at the q-line ⟨a, f (a)⟩ and ⟨b,c⟩ intersect each of the q-planes at a single

points. Thus, we can choose d in
∣∣P3(Fq)

∣∣−2
∣∣P2(Fq)

∣∣+ ∣∣P1(Fq)
∣∣− ∣∣P1(Fq)

∣∣+2 ways.

Now, with one q2-point and three q-points, we have three pairs of q2-planes where each

pair of the planes each contains two q-points and one q2-point from { f (a)}. By the same

argument before, these planes contain no q-point away from their intersection. Besides the

q2-planes, we also have four q-planes. One of them contains all the three q-points, let’s call

it P = ⟨b,c,d⟩. For the other three q-planes, let’s call them Pb, Pc, and Pd intersect at the

line ⟨a, f (a)⟩. Then for each Pα , α ∈ {b,c,d}, Pα intersect P at a q-line lα going through α .

Since for each of Pα , we can consider it as Pα = ⟨a, f (a),α⟩. Since lα is the intersection of

Pα and P, it is in both of them hence it must intersect ⟨a, f (a)⟩. Since we choose α arbitrarily
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and ⟨a, f (a)⟩ intersect P at a single point, lb, lc, ld and ⟨a, f (a)⟩ intersect at a single point.

Then we can choose any q-point outside these four q-planes and the q-line ⟨a, f (a)⟩.

As a result, by inclusion-exclusion formula, there are
∣∣P3(Fq)

∣∣−4
∣∣P2(Fq)

∣∣+5
∣∣P1(Fq)

∣∣−
2 ways to choose the last q-point. Notice the the order of selection for the q-point and the

choice from the orbit of a won’t affect the result, so we need to divide the result by 2 ·4! to

correct the overcounting. Therefore,

p3
6,(12) =

1
2 ·4!

∣∣∣P3(F(2)
q )

∣∣∣(∣∣P3(Fq)
∣∣− ∣∣P1(Fq)

∣∣)(∣∣P3(Fq)
∣∣− ∣∣P2(Fq)

∣∣)
(∣∣P3(Fq)

∣∣−2
∣∣P2(Fq)

∣∣+ ∣∣P1(Fq)
∣∣− ∣∣P1(Fq)

∣∣+2
)

(∣∣P3(Fq)
∣∣−4

∣∣P2(Fq)
∣∣+3

∣∣P1(Fq)
∣∣− ∣∣P1(Fq)

∣∣+1
)

=
1

48
q(q3 −1)(q2 +1)(q3 +q2)q3(q3 −q2 −q+1)(q3 −3q2 +2q)

=
1

48
(q−2)(q−1)4q7(q+1)2(q2 +1)(q2 +q+1)

4.1.3 Cycle type (12)(34)

For the first q2-point a, we can choose arbitrarily. To choose the second q2-point b, we

want to make sure that the line l = ⟨b, f (b)⟩ will not intersect the line l′ = ⟨a, f (a)⟩. Since

both l and l′ are q-lines, they intersect if and only if they are in the same q-plane. To form a

q-plane with l′ in it, we can choose any q-point outside q′ and divides the total number of

choices by the number of q-point on a q-plane outside a q-line. Hence, there are

∣∣P3(Fq)
∣∣− ∣∣P1(Fq)

∣∣∣∣P2(Fq)
∣∣− ∣∣P1(Fq)

∣∣ = (q3 +q2 +q+1)− (q+1)
(q2 +q+1)− (q+1)

= q+1

q-planes that contain l′ and by the duality, each plane contains q2 +q+1 many q-lines hence

q2 +q many q-lines other than l′. Therefore, we need to rule out in total (q+1)(q2 +q)+1

many q-lines including l′. Since the intersections of q-lines are always q-points, we don’t
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need to care about how they intersect each other to pick b. Hence, there are

∣∣∣P3(F(2)
q )

∣∣∣− [
(q+1)(q2 +q)+1

]∣∣∣P1(F(2)
q )

∣∣∣
different choices for b.

With the chosen pairs of q2-points, we will have two pairs q2-planes one intersect at the

q-line ⟨a, f (a)⟩ and the other intersect at the q-line ⟨b, f (b)⟩. These q2-planes will contain

no q-point outside the two q-lines since otherwise the orbit of a and orbit of b will all in a

same plane. Then for the first q-point c, it can picked anywhere outside the two q-lines which

don’t intersect. Thus, we have
∣∣P3(Fq)

∣∣−2
∣∣P1(Fq)

∣∣ options.

Now, with the existing points, we will the same two pairs q2-planes we considered earlier

that only contain points for { f (a)} and { f (b)}, two pairs of q2-planes that contains one point

from each of { f (a)} and { f (b)} as well as c, and two q-planes ⟨a, f (a),c⟩ and ⟨b, f (b),c⟩.

The first kind of q2-planes still contain no q-points outside l′ = ⟨a, f (a)⟩ and l = ⟨b, f (b)⟩.

Each pair of the second of q2-planes will have an intersection that is a q-line. Let’s call them

l1 and l2. The two q-planes will also intersect at a line that going through c, let’s call it l′′. To

utilize inclusion-exclusion formula, we need to know how these q-lines intersect with each

other. In fact, since both l1 and l2 are intersections of two planes that contain c, both of the

lines will go through c, so we only need to know if any of these three lines are actually the

same. Let’s say l1 is the intersection of ⟨a,b,c⟩ and ⟨ f (a), f (b),c⟩, then l2 is the intersection

of ⟨a, f (b),c⟩ and ⟨b, f (a),c⟩. Since l1 intersect ⟨a,b⟩, l1 = l2 will make a, f (a),b, f (b) in

the same plane. Hence, l1 ̸= l2. Since l′′ is the intersection of ⟨a, f (a),c⟩ and ⟨b, f (b),c⟩,

both l′′ = l1 and l′′ = l2 while result in the same condition.

Thus, we can pick the last q-point anywhere other than the two q-planes and the two

q-lines where the two q-lines intersect at the intersection of the two q-planes at a single point.
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Hence, we have

∣∣P3(Fq)
∣∣−2

∣∣P2(Fq)
∣∣+ ∣∣P1(Fq)

∣∣−2
∣∣P1(Fq)

∣∣+2

ways to choose the second q-point. Since the different choice from orbits and the order of

choosing will create overcounting, we need to correct it doing division by 22 ·2! ·2! As a

result,

p3
6,(12)(34) =

1
22 ·2! ·2!

∣∣∣P3(F(2)
q )

∣∣∣(∣∣∣P3(F(2)
q )

∣∣∣− [
(q+1)(q2 +q)+1

]∣∣∣P1(F(2)
q )

∣∣∣)(∣∣P3(Fq)
∣∣−2

∣∣P1(Fq)
∣∣)(∣∣P3(Fq)

∣∣−2
∣∣P2(Fq)

∣∣+ ∣∣P1(Fq)
∣∣−2

∣∣P1(Fq)
∣∣+2

)
=

1
16

q(q3 −1)(q2 +1)
(
q(q3 −1)(q2 +1)−q(q+1)2(q2 −q)− (q2 −q)

)
(q3 +q2 −q−1)

(
q3 −q2 −2q

)
=

1
16

(q−2)(q−1)3q7(q+1)3(q2 +1)(q2 +q+1)

4.1.4 Cycle type (12)(34)(56)

For the first two q2-points a and b, we con just follow the same procedure as we did in the

previous part. Hence we have
∣∣∣P3(F(2)

q )
∣∣∣− [

(q+1)(q2 +q)+1
]∣∣∣P1(F(2)

q )
∣∣∣ different choices

for b. For the last q2-point c, we first of all don’t want it to be on the four q2-planes and the

line l = ⟨c, f (c)⟩ doesn’t intersect any of the six lines formed by { f (a)} and { f (b)}. For the

two q-lines l′ = ⟨a, f (a)⟩ and l′′ = ⟨b, f (b)⟩, we can do the same thing as we did to find b.

However, it is possible for a line that passes through both l′ and l′′, so we need to find out

how many lines are counted twice. Since the intersection between q-lines must be q-points,

then there is a one-to-one correspondence between the q-lines intersect both l′ and l′′ and the

pair of q-points one from each of l′ and l′′. Therefore, there are
∣∣P1(Fq)

∣∣2 = (q+1)2 lines
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counted twice. Hence, there are total

2(q+1)(q2 +q)−2(q+1)2 = (2q−2)(q+1)2

such q-lines that intersect one of l′ or l and not including l′ and l′′. Notice that when l

intersect l′ or l′′, then it will intersect one pair of the q2-planes at their intersection at a

q-point and the other pair of q2-planes at a q2-point on each plane of the pair, and if l intersect

both, then it will not intersect the plane anywhere else, so we exclude

(2q−2)(q+1)2
(∣∣∣P1(F(2)

q )
∣∣∣−2

)
+(q+1)2

∣∣∣P1(F(2)
q )

∣∣∣
q2-points outside the q2-planes in total.

Moreover, We have two pairs of q2-lines which contain one point from each of { f (a)}

and { f (b)}. For one such q2-lines L, l intersects L if and only if l intersects f (L) since l is

a q-line. Let’s say L = ⟨a,b⟩ and L′ = ⟨a, f (b)⟩, we want to show that if l intersect L, then

it cannot intersect L′. If l intersect both L and L′, then either a is in l or f (b) is in L. The

latter case will result in a contradiction as we have three points collinear. The former one

will make l = L since l is a q-line. This will belong to the part that c is in the q2-planes.

Now, if l intersect L, the intersection must be a q2-point because otherwise L and f (L)

will intersect and that will make the four points from the two orbits in the same plane. Let p

be the intersection of l and L, then f (p) will be the intersection of l and f (L). By the same

reason, both L and L′ cannot intersect, so every point on them is q2-point. We can see that

there is a one-to-one correspondence between q-lines passing through L and q2-points on L.

Therefore, we can find 2
(∣∣∣P1(Fq2)

∣∣∣−2
)

such q-lines for each orbit in total excluding l and

l′′. Moreover, l will only intersect with the planes at L and f (L) or L′ and f (L′), where the
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intersections will be q2-points. Hence, we can exclude

2
(∣∣∣P1(Fq2)

∣∣∣−2
)(∣∣∣P1(F(2)

q )
∣∣∣−2

)

options for c.

At this point, we can turn our view back to the q2-planes and try to find out how many

choices we should rule out for c. Each of the q2-plane will contain one of the q-lines l′ and

l′′, so they will contain no q-point outsides these two lines. Besides, it will contain L and L′

or f (L) and f (L′) and these three lines it contains will intersect pairwisely at three different

points from { f (a)} and { f (b)}. Thus, for each plane, there are
∣∣∣P2(Fq2)

∣∣∣−3
∣∣∣P1(Fq2)

∣∣∣+3

points outside the three lines it contains. So we can rule out

4
(∣∣∣P2(Fq2)

∣∣∣−3
∣∣∣P1(Fq2)

∣∣∣+3
)

more points at this stage. As for the lines, each q-lines contain
∣∣∣P1(F(2)

q )
∣∣∣ many q2-points

and each q2-lines contain
∣∣∣P1(Fq2)

∣∣∣ many q2-points. These lines intersect at points from

{ f (a)} and { f (b)} where each of the points is in three lines. Hence, there are

2
∣∣∣P1(F(2)

q )
∣∣∣+4

∣∣∣P1(Fq2)
∣∣∣−8

q2-points on the lines.

As a result, to can choose c in

∣∣∣P3(F(2)
q )

∣∣∣− (2q−2)(q+1)2
(∣∣∣P1(F(2)

q )
∣∣∣−2

)
− (q+1)2

∣∣∣P1(F(2)
q )

∣∣∣
−2

(∣∣∣P1(Fq2)
∣∣∣−2

)(∣∣∣P1(F(2)
q )

∣∣∣−2
)

−4
(∣∣∣P2(Fq2)

∣∣∣−3
∣∣∣P1(Fq2)

∣∣∣+3
)
−
(

2
∣∣∣P1(F(2)

q )
∣∣∣+4

∣∣∣P1(Fq2)
∣∣∣−8

)
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different ways. Since our way of selection distinguish the points from an orbit and also

gives an order for the three q2-points, we need to divide the result by 23 ·3! to correcct the

overcounting. Thus, we have

p3
6,(12)(34)(56) =

1
23 ·3!

∣∣∣P3(F(2)
q )

∣∣∣(∣∣∣P3(F(2)
q )

∣∣∣− (q+1)(q2 +q)
∣∣∣P1(F(2)

q )
∣∣∣− ∣∣∣P1(F(2)

q )
∣∣∣)(∣∣∣P3(F(2)

q )
∣∣∣− (2q−2)(q+1)2

(∣∣∣P1(F(2)
q )

∣∣∣−2
)
− (q+1)2

∣∣∣P1(F(2)
q )

∣∣∣−
2
(∣∣∣P1(Fq2)

∣∣∣−2
)(∣∣∣P1(F(2)

q )
∣∣∣−2

)
−

4
(∣∣∣P2(Fq2)

∣∣∣−3
∣∣∣P1(Fq2)

∣∣∣+3
)
−(

2
∣∣∣P1(F(2)

q )
∣∣∣+4

∣∣∣P1(Fq2)
∣∣∣−8

))
=

1
48

q(q3 −1)(q2 +1)
(
q(q3 −1)(q2 +1)−q(q+1)2(q2 −q)− (q2 −q)

)
(q+1)2 (q−1)(q−2)

(
q2 −q−4

)
=

1
48

q(q3 −1)(q2 +1)q5(q−1)(q+1)2 (q−1)(q−2)
(
q2 −q−4

)
=

1
48

(q−2)(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q2 −q−4)

4.1.5 Cycle type (123)

We first of all choose a generic q3-point a, then the orbit of a form a q-plane P. The first

q-point b can be chosen anywhere away from P, so there are
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣ choices.

These four existing points will form a q-plane and three q3-planes that contains two points

from { f (a)} and b. The three q3-planes contain no q-points other than p else b will be in P.

Therefore, we can choose c anywhere outside P and not b, so we have
∣∣P3(Fq)

∣∣−∣∣P2(Fq)
∣∣−1

different choices c. Now, we have one q-plane P, two groups of q3-planes that contain two

points in { f (a)} and one of b or c, and one group of q3-planes that contain a point from

{ f (a)} and both b and c. The first kind of q3-plane will still have no q-point other than b or

c, and the second kind of q3-plane will hold no q-point outside the line ⟨b,c⟩ as otherwise all
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five points must be in a same plane. Thus, we can choose the last q-point d anywhere away

from the plane P and the line ⟨b,c⟩. Since the line ⟨b,c⟩ intersect P at a single q-point, by

inclusion-exclusion formula, there are
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣− ∣∣P1(Fq)

∣∣+ 1 choices for the

d. Because we choose the points in a way that distinguish the points in { f (a)} and give an

order for b, c and d, we need to do a division by 3 ·3! to correct the overcounting. Hence,

there are in total

p3
6,(123) =

1
3 ·3!

∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣P3(Fq)
∣∣− ∣∣P2(Fq)

∣∣)(∣∣P3(Fq)
∣∣− ∣∣P2(Fq)

∣∣−1)

(
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣− ∣∣P1(Fq)

∣∣+1)

=
1

18

∣∣∣P3(F(3,gen)
q )

∣∣∣q3(q3 −1)(q3 −q)

=
1

18
(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)

4.1.6 Cycle type (123)(45)

We first of all choose a generic q3-point a. Then to pick a q2-point b, we want to make

sure it is not on the plane P formed by the { f (a)} and the line l = ⟨b, f (b)⟩ doesn’t intersect

any of the existing three q3-lines formed by { f (a)}. Let’s rule out the second case first.

Without loss of generality, suppose l intersects the line l′ = ⟨a, f (a)⟩, then their intersection

p is either a q-point or a q3-point since l is a q-line. If the intersection is a q-point, then we

will have

l′ = ⟨a, p⟩= ⟨ f (a), p⟩= f (l′).

Which makes l′ a q-line and a non-generic, hence not possible. If the intersection is a

q3-point, then l must also intersect f (l′) and f 2(l′) since l is a q-line, which implies that it

must be inside the q-plane P. Thus, we only need to rule out the q2-points that are in P, there

are
∣∣∣P3(F(2)

q )
∣∣∣− ∣∣∣P2(F(2)

q )
∣∣∣ choices for b.
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At this stage, we have one q-plane P, a group of q3-planes that contain the q-line l and

one point from { f (a)}, and one group of q6-planes that contain two points from { f (a)} and

one point from { f (b)}. The q3-planes cannot contain any q-point outside l or a will not be

generic. Now, we want to show that the q6-planes cannot contain any q-points. Without loss

of generality, let’s pick the q6-plane P′ = ⟨a, f (a),b⟩ and suppose that it contains a q-point p.

Since a is a generic q3-point, p cannot be on the line ⟨a⟩. If p is on the line ⟨a,b⟩ or ⟨ f (a),b⟩,

the line will contain a q-point, a q2-point and a q3-point, which makes the line a q-line and a

non-generic. Hence, p must be outside the three lines in P′. Then

P′ = ⟨a, f (a), p,b⟩= f 3(P′) = ⟨a, f (a), p, f 3(b)⟩= ⟨a, f (a), p, f (b)⟩

which give us the condition that four points in a same plane. As a result, the q6-planes cannot

contain any q-point, so we can choose any q-point away from P and l. Since l intersect P at a

single q-point, by inclusion-exclusion formula, there are
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣− ∣∣P1(Fq)

∣∣+1

choices for the q-point. Because we choose the points in the manner that will distinguish the

points in { f (a)} and { f (b)}, we need to divide everything by 3 ·2 to correct the overcounting.

As a result, we have

p3
6,(123)(45) =

1
3 ·2

∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣∣P3(F(2)
q )

∣∣∣− ∣∣∣P2(F(2)
q )

∣∣∣)(∣∣P3(Fq)
∣∣− ∣∣P2(Fq)

∣∣− ∣∣P1(Fq)
∣∣+1

)
=

1
6

∣∣∣P3(F(3,gen)
q )

∣∣∣(q6 −q3)(q3 −q)

=
1
6
(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)

choices after correction for overcounting.
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4.1.7 Cycle type (123)(456)

Let P be the plane formed by the { f (a)} where a is the first generic q3-point we chose.

Then to choose the second generic q3-point b, we want to make sure that b does not fell into

one of the following three conditions, which are

(1). b is inside the q-plane P;

(2). a line formed by { f (b)} intersects a line formed by { f (a)};

(3). a point in { f (a)} is contained in the q-plane formed by { f (b)}.

For the first condition, we only need to rule out the generic q3-points in P. For the second

case, without loss of generality and by contradiction, let’s suppose the q3-line l = ⟨b, f (b)⟩

intersects the q3-line l′ = ⟨a, f (a)⟩, where b is not in P. Let P′ be the plane that contains both

l and l′. P′ must be a q3-plane since otherwise P′ = P. Then the three planes from { f (P′)}

will intersect at a q-point p and points from { f (b)} will be on the pair intersection of the

planes in { f (P′)}. In fact, there is an one-to-one correspondence between the q-point outside

P and such orbits of planes. A q3 point fell into the second condition if and only if it is on a

q3-line that contains a q-point and one point from { f (a)}. There are 3
(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)

such lines on each of such lines, there are P1(Fq3)−2 many q3-points outside P. Hence we

can rule out

3(
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(P1(Fq3)−2)

points in this case.

As for the last condition, if a point in { f (a)} is contained in the q-plane formed by

{ f (b)}, then it must be on the intersection of two q-planes, which will be a q-line. Then this

condition will make a non-generic, so it cannot happen. Therefore, there are

∣∣∣P3(F(3,gen)
q )

∣∣∣− ∣∣∣P2(F(3,gen)
q )

∣∣∣−3(
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(P1(Fq3)−2)
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choices for b. Since the points in { f (a)} and { f (b)} are distinguished by our selection

procedure and an order of a and b is given, we need to divide the result by 32 ·2! to correct

the overcounting. Therefore,

p3
6,(123)(456) =

1
32 ·2!

∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣∣P3(F(3,gen)
q )

∣∣∣− ∣∣∣P2(F(3,gen)
q )

∣∣∣−3(
∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(P1(Fq3)−2)

)
=

1
18

∣∣∣P3(F(3,gen)
q )

∣∣∣(q−1)q3(q2 +q+1)(q3 −q−3)

=
1

18
(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 −q−3)

4.1.8 Cycle type (1234)

Once we chose the generic q4-point a, all the planes formed will be generic q4-planes.

Hence, we can choose the first q-point b arbitrarily. Now, with the q-point b, we will get four

more q4-planes, which are ⟨a, f (a),b⟩, ⟨ f (a), f 2(a),b⟩, ⟨ f 2(a), f 3(a),b⟩ and ⟨ f 3(a),a,b⟩,

and two q2-planes, ⟨a, f 2(a),b⟩ and ⟨ f (a), f 3(a),b⟩. These q4-planes can only contain one

q-point b since otherwise a will not be generic. and for the two q2-planes, they will intersect

at a q-line containing b. Therefore, we have
∣∣P3(Fq)−P1(Fq)

∣∣ choices for the second q-point

c. Then we have

p3
6,(1234) =

1
4 ·2!

∣∣∣P3(F(4,gen)
q )

∣∣∣ ∣∣P3(Fq)
∣∣(∣∣P3(Fq)−P1(Fq)

∣∣)
=

1
8
(q−1)3q8(q+1)2(q2 +q+1)(q3 +q2 +q+1)

4.1.9 Cycle type (1234)(56)

After choosing the generic q4-point a, we will have a group of q4-planes, and let’s first

show that there are no q2-points on these planes outside the pair of q2-lines ⟨a, f 2(a)⟩ and
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⟨ f (a), f 3(a)⟩. Without loss of generality, let’s suppose the plane P = ⟨a, f (a), f 2(a)⟩ contain

a q2-point p that is not on the q2-line ⟩a, f 2(a)⟩. First of all, p cannot be on the line ⟨a, f (a)⟩

or ⟨ f (a), f 2(a)⟩ or a will not be generic. Then p is not on any of the three lines in P and we

will have

P = ⟨a, f (a), f 2(a), p⟩= ⟨ f 2(a), f 3(a),a, p⟩= f 2(P)

which makes a non-generic. Hence, to choose the q2-points b, we only need to rule out the

cases that the line l = ⟨b, f (b)⟩ intersects some lines formed by { f (b)}. There are two cases,

l intersects a q4-line or a q2-line. If l intersect at a q4-line, without loss of generality, let’s

suppose it intersects ⟨a, f (a)⟩. Then since l is a q-line, it will intersect all the q4-lines, then l

must be one of the q2-lines ⟨a, f 2(a)⟩ and ⟨ f (a), f 3(a)⟩.

Now, for the other case, we can see that L = ⟨a, f 2(a)⟩ and f (L) = ⟨ f (a), f 3(a)⟩ doesn’t

intersect since a is generic. If l intersect one of L and f (L) then it will intersect both of them

since l is a q-line, and the intersections will be q2-points from a same orbit. Hence, there

is an one-to-one correspondence between the q-lines that intersect L and the q2-points on L.

Since there are
∣∣∣P1(Fq2)

∣∣∣ many q2-points on L and
∣∣∣P1(F(2)

q )
∣∣∣−2 many q2-points on each of

the q-lines outside L and f (L). Then we can rule out

∣∣∣P1(Fq2)
∣∣∣(∣∣∣P1(F(2)

q )
∣∣∣−2

)

choices for b that are not on the q2-lines. As a result, we have

∣∣∣P3(F(2)
q )

∣∣∣−2
∣∣∣P1(Fq2)

∣∣∣− ∣∣∣P1(Fq2)
∣∣∣(∣∣∣P1(F(2)

q )
∣∣∣−2

)
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different choices for b. Because the choice distinguish the points in { f (a)} and { f (b)}, we

need to get the result divided by 4 ·2 for correction. Hence, we have

p3
6,(1234)(56) =

1
4 ·2

∣∣∣P3(F(4,gen)
q )

∣∣∣(∣∣∣P3(F(2)
q )

∣∣∣−2
∣∣∣P1(Fq2)

∣∣∣− ∣∣∣P1(Fq2)
∣∣∣(∣∣∣P1(F(2)

q )
∣∣∣−2

))
=

1
8

∣∣∣P3(F(4,gen)
q )

∣∣∣q2(q2 +1)(q+1)(q−1)

=
1
8
(q−1)4q8(q+1)2(q2 +1)(q2 +q+1)

4.1.10 Cycle type (12345)

We first choose any generic q5-point a. Since all the planes formed by { f (a)} will be

generic, we can choose the q-point arbitrarily. We have totally

p3
6,(12345) =

1
5

∣∣∣P3(F(5,gen)
q )

∣∣∣ ∣∣P3(Fq)
∣∣

=
1
5
(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 +q2 +q+1)

4.1.11 Cycle type (123456)

We can choose any generic q6-point.

p3
6,(123456) =

1
6

∣∣∣P3(F(6,gen)
q )

∣∣∣
=

1
6
(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q3 +q−1)

4.2 Proof for Theorem 1.3.8

For irreducible S6-representation S, denote PS(q) = ∑C χS(C) · p3
6,C, where U is the trivial

representation and other irreducible representation will be subscripted by its corresponding
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partition. Then we have the following,

PU(q) = q18 −q16 −q15 −q14 +q13 +q12 +q11 −q9,

PS4121 (q) =−q17 +q15 +q14 +q13 −q12 −q11 −q10 +q8,

PS41 (q) = q16 −q15 −q14 +2q11 −q8 −q7 +q6,

PS32 (q) =−q15 +q13 +q12 +q11 −q10 −q9 −q8 +q6,

PS3121 (q) = q16 −q14 −q13 −q12 +q11 +q10 +q9 −q7,

PS21 (q) =−q15 +q13 +q12 +q11 −q10 −q9 −q8 +q6,

where the polynomials for the other irreducible representations are 0. Then combine with

equation (2.12), we can derive the result for Theorem 1.3.8.

4.3 Computation for twisted point counting for B3
7(Fq)

Since we have the result for B3
6(Fq), for some cases that contains a q-point for B3

7(Fq), we

only need to find the number of ways to choose the additional q-point. Since for each of

the cases we already have 20 planes, we just need to rule out the q-points on those planes.

However, as we can see from the calculation below, the projection map X3
7 →X3

6 by forgetting

the last point is not a fibration anymore, so we need to use some other ways to deal with

some of the cases.

4.3.1 Cycle type e

Instead of based on the case that we already have six points in general position, let’s start

from the case that we have the first five q-points {a,b,c,d,e} in general position. Then we
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know have ten q-planes and ten q-lines. There are

(q−1)3q6(q+1)(q2 +q+1)(q3 +q2 +q+1)(q3 +q2 +q−4)(q3 +q2 +q−5) =

= |PGL4(C)|(q3 +q2 +q−4)(q3 +q2 +q−5)

7-tuples total to start with. Let H be the unions of these planes, then there are

q3 +q2 +q+1− (q−4)(q−3)(q−2) = 10q2 −25q+25

q-points in H. For the last two points g and h, there are three cases to fail the general position

condition:

• at least one of {g,h} is in H;

• the q-line l = ⟨g,h⟩ passing through one point from {a,b,c,d,e}, and both g and h are

not in H;

• l intersects at least one of the ten q-lines away from {a,b,c,d,e}, but not containing

any point from {a,b,c,d,e}, and both g and h are not in H.

We can see that these three cases are mutually exclusive, so we can calculate them separately.

For the first one, there are

(10q2 −25q+20)(q3 +q2 +q−5)

ways to have g inside H and

(10q2 −25q+20)(10q2 −25q+19)

58



ways to have both g and h inside H. Hence, there are

(10q2 −25q+20)(2q3 −8q2 +27q−29)

pairs falling into the first condition.

For the second case, notice that if l intersect a point p from {a,b,c,d,e}, then it cannot

intersect any of the q-lines otherwise g and h will be in H. Since all the union of the

intersections of the four planes that don’t contain p is union of the q-lines, l will intersect all

those four planes each at a distinct point. There are q2 +q+1 lines passing through p and

6q−5 lines that are contained in H. Hence there are

5(q2 +q+1−6q+5)(q−4)(q−5)

pairs are in this case.

For the third case, if l intersect a lines l′ formed by {a,b,c,d,e}, then it will be in a same

plane as l′. Now, there are q−2 planes that contain l′ and not in H. For such a plane P, P

will intersect any planes that don’t contain l′ at a line and every intersection of two such

q-planes at distinct points. There are

q2 +q+1−8(q+1)+2 · (3)+6+1+2 ·3 = q2 −7q+12

q-points in P that not on H (See figure 4.1).

Therefore, we have

(q−2)(q2 −7q+12)(q2 −7q+11)

pairs of q-points forming such a line l. Notice that we didn’t exclude the lines that going

through the two points in {a,b,c,d,e} on l′, so we need to add them back later.
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Figure 4.1 l intersect l′

Moreover, it is possible that l intersect two lines, for example ⟨a,b⟩ and ⟨c,d⟩. Namely, l

can intersect a lines l′ and another line l′′ such that l′ and l′′ don’t contain a common point in

{a,b,c,d,e}. Without loss of generality, let’s consider the case that l intersect l′ = ⟨a,b⟩ and

l′′ = ⟨c,d⟩. Any pair of point one from each lines will give us a q-line that goes through both

of them. We don’t want the point we choose to be in {a,b,c,d} and for l, there is a point

that is contained in ⟨l′e⟩ and vice versa, so we also need to exclude this point. Thus, there

are (q−2)2 line intersect both of them.

l then will intersect four other planes that don’t contain either l′ or l′′, which are ⟨a,c,e⟩,

⟨a,d,e⟩, ⟨b,c,e⟩ and ⟨b,d,e⟩. Notice that there are two q-lines L and L′ which are the

intersections of ⟨a,c,e⟩ with ⟨b,d,e⟩ and ⟨b,c,e⟩ and ⟨a,d,e⟩ respectively. Both of L and

L′ contain e and the line l may go through one or two of them. In fact, consider the plane

⟨L,L′⟩, this plane will intersect both l′ and l′′ at a single point and the line connecting these

two points will not go through e. Hence, we have one line that intersect both L and L′. Then

pick a point on l′ that is not in H, this point and l′′ will form a plane that intersect both L

and L′′ at a single point. Then for each point, except one, we picked on l′, there is one line

intersect l′, l′′ and L (L′). The one exceptional point together with l′′ will form the plane
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⟨c,d,e⟩. Then we have 2(q−2)−2 lines passing through one of L and L′ and one line that

intersect both of them. Thus, there are

(q−2)2 −2(q−3)−1 = q2 −6q+9

lines that intersect both l′ and l′′ but intersect the four planes each at a separate point. Hence,

there are

(q2 −6q+9)(q−5)(q−6)+(2q−6)(q−4)(q−5)+(q−3)(q−4)

pairs of points that can form a line l intersect both l′ and l′′.

Since we have ten lines and fifteen pairs of lines where each pair is counted twice, we

will exclude

10(q−2)(q2 −7q+12)(q2 −7q+11)−15(q2 −6q+9)(q−5)(q−6)

−15(2q−6)(q−4)(q−5)−15(q−3)(q−4)

=10q5 −175q4 +1225q3 −4280q2 +7420q−5070

pair of points in this case.

As a result, there are

(q3 +q2 +q−4)(q3 +q2 +q−5)− (10q2 −25q+20)(2q3 −8q2 +27q−29)

+15(q2 +q+1−6q+5)(q−4)(q−5)

− (10q5 −175q4 +1225q3 −4280q2 +7420q−5070)

=q6 −28q5 +323q4 −1952q3 +6462q2 −11004q+7470

=(q−3)(q−5)
(
q4 −20q3 +148q2 −468q+498

)
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pairs of points that fulfill the general position condition Hence,

p3
7,e =

1
7!

|PGL4(C)|(q6 −28q5 +303q4 −1674q3 +5004q2 −7582q+4528)

=
1

5040
(q−5)(q−3)(q−1)3q6(q+1)2(q2 +q+1)(q2 +1)(

q4 −20q3 +148q2 −468q+498
)

Remark 4.3.1. Notice that
∣∣X3

7 (Fq)
∣∣ is not divisible by

∣∣X3
6

∣∣(Fq) for general q. We can verify

that X3
7 → X3

6 is not a fibration.

4.3.2 Cycle type (12)

Similar to the last one, we start from having five q-points {a,b,c,d,e} in general position,

there are total

|PGL4(C)|(q6 +q4 −q3 −q)

tuples to start with. Let H be the union of all the planes formed by {a,b,c,d,e}, there are

10(q4 −q)−20(q2 −q)−15(q2 −q) = 10q4 −35q2 +25q

q2-points in H. Again, for the q2-point g, we have three cases to make the general position

condition fail:

• g is in H;

• the q-line l = ⟨g, f (g)⟩ passing through one point from {a,b,c,d,e}, and g is not in H;

• l intersects at least one of the ten q-lines away from {a,b,c,d,e}, but not containing

any point from {a,b,c,d,e}, and g is not in H.
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Then for the first case, we have

10q4 −35q2 +25q

q2-points.

For the second case, for each point p in {a,b,c,d,e}, there are (q2 + q+ 1− 6q+ 7)

many q-lines going through p and not in H. Hence, we have

5(q2 +q+1−6q+5)(q2 −q)

q2-points in this case.

For the last case, for any line l′ = ⟨α,β ⟩, where α,β ∈ {a,b,c,d,e} we have

(q−2)
(
(q4 −q)−8(q2 −q)

)
q2-points that form lines that intersect l′ including at α and β . Also, there are 15(q−2)2

lines intersect a pair of lines that don’t intersect each other. Therefore we have

10(q−2)
(
(q4 −q)−8(q2 −q)

)
−15(q−2)2(q2 −q)−20(q2 −5q+6)(q2 −q)

q2-points for this one.

Therefore, we have

(q6 +q4 −q3 −q)− (10q4 −35q2 +25q)+15(q2 +q+1−6q+5)(q2 −q)

−10(q−2)
(
(q4 −q)−8(q2 −q)

)
+15(q−2)2(q2 −q)

=q6 −10q5 +41q4 −86q3 +90q2 −36q

=q(q−1)(q−2)(q−3)
(
q2 −4q+6

)
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choices for g. Hence, we have

p3
7,(12) =

1
5! ·2

|PGL4(C)|q(q−1)(q−2)(q−3)
(
q2 −4q+6

)
=

1
240

(q−3)(q−2)(q−1)4q7(q+1)2(q2 +1)(q2 +q+1)(q2 −4q+6).

4.3.3 Cycle type (12)(34)

For this one, let’s start with two q2-points a, b, and one q-point c in the general position.

Then we have two q-planes, two pairs of q2-planes each contains an orbit of a or b and one

of the other q2-point, and two pairs of q2-planes that contain one point from each orbits.

Moreover, there are two q-lines, two pairs of q2-lines that contain one point from each orbit

of q2-points, and two pairs of q2-lines that contain one point from a q2-orbit and c. Let H be

the union of these planes, then H contain

q3 +q2 +q+1−q3 +q2 +2q = 2q2 +3q+1

q-points. For the last two q-point d and e, we have (q3 +q2 +q)(q3 +q2 +q−1) choices in

total. Let l = ⟨d,e⟩, we will still consider the three cases as previous ones.

For the first case, there are

(2q2 +3q)(q3 +q2 +q−1)

pairs of points to have d inside H, and

(2q2 +3q)(2q2 +3q−1)
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pairs of points to have both d and e in H. Therefore, we rule out

(2q2 +3q)(2q3 −q−1)

pairs of points in the first case.

For the second case, if l contains a q2-point p, then it must also contain f (p), then both d

and e will be in H, so we only consider the case that l going through c. There are q2 +q+1

lines going through c and 2q+3 of them are in H. Since the only two q-planes both contain

c, l doesn’t intersect H at another q-point other than c. Then we rule out

(q2 −q−2)q(q−1)

pairs of points for this one.

For the last case, notice that if l intersects with a q2-line l′, then it must also intersect

f (l′). Then we have four conditions,

• l intersects at least one q-line;

• l intersects a pair of q2-lines which contains one point each of the orbits of a and b

Let’s start with the first one, without loss of generality, let’s suppose l intersect l′ =

⟨a, f (a)⟩. Then let P be a plane that containing l′ and not in H. P will intersect each plane at

a separated line and each of intersections of planes at a distinct point. Then there are two q-

lines and two q-points off the line in P that are in H. Hence, we have q2+q+1−2(q+1)−1

points in P that are not in H. Since we have q such plane P, there are

q(q2 −q−2)(q2 −q−3)
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pairs of points that form a line intersects l′. The only possible line that can be paired with l′

is l′′ = ⟨b, f (b)⟩. There are q2 lines that intersect both of them and one such a line will go

through c. l will intersect the planes ⟨a,b,c⟩, ⟨a, f (b),c⟩, ⟨ f (a),b,c⟩ and ⟨ f (a), f (b),c⟩.

Let L be the intersection of ⟨a,b,c⟩ and ⟨ f (a), f (b),c⟩, and let L′ be the intersection of

⟨a, f (b),c⟩ and ⟨ f (a),b,c⟩. L and L′ will be two q-lines that containing c. Moreover, these

four q2-planes contain no q-points outside L and L′. Consider plane P′ = ⟨L,L′⟩. P′ will

intersect L and L′ each at a point and the line connecting these two points will not go through

c. Then there is exactly one line that intersect l′, l′′, L, and L′ altogether. Moreover, for each

point p on l′ except one, the plane ⟨p, l′′⟩ will intersect L and L′ each at a point. So there

are 2q−2 lines that intersect one of L or L′. Then there are q2 −2q lines that don’t intersect

either of L and L′′. Hence, we have

(q2 −2q+1)(q−1)(q−2)+(2q−2)(q−2)(q−3)+(q−3)(q−4)

=q4 −3q3 −2q2 +8q+2

pairs of points that form a line intersect l′ and l′′.

For the first kind of q2-lines, without loss of generality, let’s suppose l intersect l′ = ⟨a,b⟩.

Then since l is a q-line, l must also intersect f (l′). Then there are q2 −2 such lines in total.

l will intersect two q-planes ⟨a, f (a),c⟩ and ⟨b, f (b),c⟩ and a pair of q2-planes ⟨a, f (b),c⟩

and ⟨ f (a),b,c⟩. Let L be the intersection of the two q-planes and L′ be the intersection of the

pair of q2-planes. Consider a plane P′ containing L. L will intersect l′ and f (l′) at a pair of

q2-points. The q-line connecting these two points will not going through c except for one

plane. Similar argument apply for planes containing L′. Moreover, there is one plane that

containing both L and L′ so there is one line that intersect both L and L′. There are q− 3

planes containing L but not L′ and not contained in H. For L′, there are q−1 such planes.

Therefore, there are 2q−4 lines intersect with one of L or L′ and one line that intersect both.

We have q2 −2− (2q−4)−1 = q2 −2q+1 lines that doesn’t intersect either L or L′. As a
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result, there are

(q2 −2q+1)(q−1)(q−2)+(q−3)q(q−1)+(q−1)(q−2)(q−3)+(q−1)(q−2)

=(q−1)
(
q3 −2q2 −2q+2

)
pairs for points that generates a line that intersect l′ and l′′.

Therefore, we have

(q3 +q2 +q)(q3 +q2 +q−1)− (2q2 +3q)(2q3 −q−1)− (q2 −q−2)q(q−1)

−2q(q2 −q−2)(q2 −q−3)+
(
q4 −3q3 −2q2 +8q+2

)
−2(q−1)

(
q3 −2q2 −2q+2

)
=(q−1)(q+1)

(
q4 −4q3 +12q−6

)
pairs of points to choose. As a result,

p7,(12)(34)3 =
1

22 ·2! ·3!
|PGL4(C)|(q−1)(q+1)

(
q4 −4q3 +12q−6

)
=

1
48

(q−1)4q6(q+1)3(q2 +1)(q2 +q+1)(q4 −4q3 +12q−6)

4.3.4 Cycle type (12)(34)(56)

Since we already know p3
6,(12)(34)(56), we only need to find the number of possible ways

to find the q-point d given three q2-points a, b, and c. With these points, we will have six

pairs of q2-planes which contains a q-line that formed by an orbit and q2-point from another

orbit and four pairs of q2-planes which contains a q2-point from each of the three orbits. The

first kind of q2-planes contain no q-point outside the q-lines. For each pair of the second

kind of q2-planes, they will intersect at a q-lines that is not intersecting any q-line formed by

an orbit. Moreover, the four intersections will not intersect each other as well. Therefore, we
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need to rule out all the q-points on the seven q-lines. There are
∣∣P3(Fq)

∣∣−7
∣∣P1(Fq)

∣∣. To

correct for the overcounting, we need to divides the result by 23 ·3! Hence, we have

p3
7,(12)(34)(56) =

1
23 ·3!

(48 · p3
6,(12)(34)(56))

(∣∣P3(Fq)
∣∣−7

∣∣P1(Fq)
∣∣)

=
1
48

(q−2)(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)(q2 −q−4)

(q3 +q2 −6q−6)

=
1
48

(q−2)(q−1)3q6(q+1)3(q2 +1)(q2 +q+1)(q2 −q−4)(q2 −6)

4.3.5 Cycle type (123)

We can solve this base on p3
6,(123). Suppose we already have one generic q3-point a

and three q-points b, c, and d. Then we will have two q-planes, three groups of q3-planes

which contains one point from { f (a)} and two points from {b,c,d}, and three groups of

q3-planes which contains two points from { f (a)} and one point from {b,c,d}. The first kind

of q3-planes cannot contain any q-point outside the q-line formed by two points from {b,c,d}

and the second kind of q3-planes cannot contain any q-points other than the intersection of

the planes from its orbit, and that will be a point from {b,c,d}. Therefore, we only need to

rule out the q-points that are on the two q-planes. Since the two q-planes will intersect at a

q-line, there are
∣∣P3(Fq)

∣∣−2
∣∣P2(F1)

∣∣+ ∣∣P1(F1)
∣∣ choices for the last q-point. The process

of selection will distinguish the points in { f (a)} and choose an order for the q-points, so to

correct the overcounting, the result need to be divided by 3 ·4! .Therefore,

p3
7,(123) =

1
3 ·4!

(18 · p3
6,(123))

(∣∣P3(Fq)
∣∣−2

∣∣P2(F1)
∣∣+ ∣∣P1(F1)

∣∣)
=

1
72

(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)(q3 −q2)

=
1

72
(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)
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4.3.6 Cycle type (123)(45)

Based on p3
6,(123)(45), we only need to find the number of choices for the second q-point d

when we already have a q3-point a, a q2-point b and a q-point c. Now, we have two q-planes,

one group of q3-planes that contains the line ⟨b, f (b)⟩, one group of q3-planes that contain

c, one group of q6-planes that contain two points in { f (a)} and one point in { f (b)}, and

one group of q6-planes that contain one point from { f (a)}, one point from { f (b)}, and c.

For the first kind of q3-planes, they contain no q-point outside ⟨b, f (b)⟩, and the second

kind of q3-planes contain not q-point other than c. The first kind of q6-planes contain no

q-point and the second kind of q6-planes contain no q-point other than c. Therefore, we have∣∣P3(Fq)
∣∣− 2

∣∣P2(Fq)
∣∣+ ∣∣P1(Fq)

∣∣. Since the choice from an orbit and the order of choice

won’t change the result, to correct the overcounting, we need to divides the total number of

choices by 3 ·2 ·2!. Therefore,

p3
7,(123)(45) =

1
3 ·2 ·2!

(6 · p3
6,(123)(45))

(∣∣P3(Fq)
∣∣−2

∣∣P2(Fq)
∣∣+ ∣∣P1(Fq)

∣∣)
=

1
12

(q−1)4q7(q+1)3(q2 +1)(q2 +q+1)(q3 −q2)

=
1

12
(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

4.3.7 Cycle type (123)(45)(67)

First we can choose a generic q3-point a freely, and that will give us a q-plane. For

the q2-point b, we only need to make sure that it is not on the existing q-plane P. Hence,

there are
∣∣∣P3(F(2)

q )
∣∣∣− ∣∣∣P2(F(2)

q )
∣∣∣ choices for b. Now, we will have one group of q6-planes,

one q-plane, and three q3-planes. The three q3-planes cannot contain any q2-point outside

the q-line ⟨b, f (b)⟩ and the q6-planes cannot contain any q2-point other than b and f (b).

Now, we only need to make sure the second q2-point c not on the q-plane P and the line
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l = ⟨c, f (c)⟩ doesn’t intersect the line l′ = ⟨b, f (b)⟩. Thus, we need to rule out the q-lines

that intersects l′ and not in P.

For a q-line that intersects l′ and not in P, there are two possibilities. The first is that it

intersect l′ and P at two different q-points other than the intersection of l and P. There are(∣∣P2(Fq)
∣∣−1

)(∣∣P1(Fq)
∣∣−1

)
such lines. Also, l can go through the intersection of l′ and

P. There are q2 −1 such lines not contained in the planes we already have. Then there are(∣∣P2(Fq)
∣∣−1

)(∣∣P1(Fq)
∣∣−1

)
+(q2 −1) choices for the q-lines l. Therefore, we can choose

c in ∣∣∣P3(F(2)
q )

∣∣∣− ∣∣∣P2(F(2)
q )

∣∣∣− ((∣∣P2(Fq)
∣∣−1

)(∣∣P1(Fq)
∣∣−1

)
+q2)∣∣∣P1(F(2)

q )
∣∣∣

ways. Since the choice from an orbit and the order of choice won’t change the result, to

correct the overcounting, we need to divides the total number of choices by 3 ·2 ·2 ·2!. Hence,

p3
7,(123)(45)(67) =

1
3 ·2 ·2 ·2!

∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣∣P3(F(2)
q )

∣∣∣− ∣∣∣P2(F(2)
q )

∣∣∣)(∣∣∣P3(F(2)
q )

∣∣∣− ∣∣∣P2(F(2)
q )

∣∣∣− ((∣∣P2(Fq)
∣∣−1

)(∣∣P1(Fq)
∣∣−1

)
+q2)∣∣∣P1(F(2)

q )
∣∣∣)

=
1
24

q3(q+1)2(q−1)2(q2 +1)
(

q6 −q3
)

(
q6 −q3 −

(
(q2 +q)q+q2)(q2 −q)

)
=

1
24

(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

4.3.8 Cycle type (123)(456)

For this case, let’s start from the beginning, i.e. for two generic q3-points a,b and one

q-point c, how many ways do we have to put them in non-general position. There

∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣∣P3(F(3,gen)
q )

∣∣∣−3)
∣∣P3(Fq)

∣∣
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tuples in total. To violate the general position condition, we have six cases, and we will

use ∆i to demonstrate the set of tuples in the ith case. Let A = ⟨a, f (a), f 2(a)⟩ and B =

⟨b, f (b), f 2(b)⟩ as well as la = ⟨a, f (a)⟩ and lb = ⟨b, f (b)⟩. Then we have the cases as

following:

• ∆1 consists all the tuples such that c is in A;

• ∆2 consists all the tuples such that c is in B;

• ∆3 consists all the tuples such that A = B;

• ∆4 consists all the tuples such that a line in { f (la)} intersect a line in { f (lb)} where

A ̸= B;

• ∆5 consists all the tuples such that one point in { f (a)}, two points in { f (b)} and c are

in a same plane where the points in { f (a)} and c are not in B;

• ∆6 consists all the tuples such that one point in { f (b)}, two points in { f (a)} and c are

in a same plane where the points in { f (b)} and c are not in A.

For the first two cases, we start by choosing any two generic q3-points and put c in the

corresponding plane, then we have

|∆1|= |∆2|=
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣∣P3(F(3,gen)

q )
∣∣∣−3)

∣∣P2(Fq)
∣∣ .

The third case can be derived by first choosing a, then choose b from A and choose c

arbitrarily. Hence,

|∆3|=
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣∣P2(F(3,gen)

q )
∣∣∣−3)

∣∣P3(Fq)
∣∣ .

To get case four, we can first choose a arbitrarily, then pick any q-point p that is not on A

and choose any q3-points on the three q3-lines that connecting the p and a point from { f (a)}
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that is not in A. Lastly, choose an arbitrary c. Hence,

|∆4|= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)∣∣P3(Fq)

∣∣ .
For the last two cases, we first choose one generic q3-point and choose any c outside the

plane. Then choose the other generic q3-point on the three q3-planes outside the q-plane.

Hence,

|∆5|= |∆6|= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(q6 −q4 −2q3 +q+1).

To apply inclusion-exclusion formula, we also need to know about their intersections.

For case one and two, the intersection will be c in both A and B. Then either A = B and they

contain c or A and B are different plane and c is in their intersection. Hence,

∣∣∣∆1
⋂

∆2

∣∣∣= ∣∣∣P3(F(3,gen)
q )

∣∣∣(∣∣∣P2(F(3,gen)
q )

∣∣∣−3)
∣∣P2(Fq)

∣∣
+
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣∣P3(F(3,gen)

q )
∣∣∣− ∣∣∣P2(F(3,gen)

q )
∣∣∣) ∣∣P1(Fq)

∣∣ .
Both case one and case two intersect case three will result all the points in the same plane.

Therefore,

∣∣∣∆1
⋂

∆3

∣∣∣= ∣∣∣∆2
⋂

∆3

∣∣∣= ∣∣∣∆1
⋂

∆2
⋂

∆3

∣∣∣
=
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣∣P2(F(3,gen)

q )
∣∣∣−3)

∣∣P2(Fq)
∣∣ .

Case four and one of the first two cases will happen when c is in the corresponding plane,

hence,

∣∣∣∆1
⋂

∆4

∣∣∣= ∣∣∣∆2
⋂

∆4

∣∣∣= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)∣∣P2(Fq)

∣∣
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To get the intersection of ∆1 and ∆5 as well as ∆2 and ∆6, without loss of generality, let’s

consider the first pair. To have c in A, we want to find the number of generic q3-points in a

q3-plane, which contains two points in { f (b)} and c, and also in a q-plane that contains c.

Without loss of generality, let P = ⟨b, f (b),c⟩. There are q2 +q+1 many q-planes contain

c and they each intersect P at a distinct q3-line. These q3-line all contain c, so they each

contain q3 −q2 generic q3-points. Therefore,

∣∣∣∆1
⋂

∆6

∣∣∣= ∣∣∣∆2
⋂

∆5

∣∣∣= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(q2 +q+1)(q3 −q2).

For case four and case five or case six happen together, we either have two points from

{ f (a)}, two points from { f (b)} and c in a same plane, or la intersect l ∈ { f (lb)} and ⟨b′,c⟩

intersects la where b′ ∈ { f (b)} and b′ ̸∈ l. Since la is a q3-line that formed by a generic

q3-point, the q3-plane ⟨la,b′⟩ contains only one q-point, so we only have one choice for c.

Hence,

∣∣∣∆4
⋂

∆5

∣∣∣= ∣∣∣∆4
⋂

∆6

∣∣∣= 6
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)
.

Case five and six happen at the same time will make two points from { f (a)}, two points

from { f (b)} and c in a same plane, so

∣∣∣∆5
⋂

∆6

∣∣∣= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)

By the definition, we can see that ∆3 will not intersect ∆4, ∆5 and ∆6. We also have three

triple intersections where |∆1
⋂

∆2
⋂

∆3| been calculated. Case one, two, and four happen the

same time when c is in the intersection of A and B. We have

∣∣∣∆1
⋂

∆2
⋂

∆4

∣∣∣= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)∣∣P1(Fq)

∣∣ .
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Case four, five, and six happen the same time when we have two points in { f (a)}, two

points in { f (b)} and c are in a same plane, hence,

∣∣∣∆4
⋂

∆5
⋂

∆6

∣∣∣= 3
∣∣∣P3(F(3,gen)

q )
∣∣∣(∣∣P3(Fq)

∣∣− ∣∣P2(Fq)
∣∣)(∣∣∣P1(Fq3)

∣∣∣−2
)
.

Then by applying inclusion-exclusion formula, we can get the final result

p3
7,(123)(456) =

1
18

(q−1)3q6(q+1)2(q2 +1)(q2 +q+1)

(q6 −q5 −q4 −8q3 +9q2 +6q+18).

4.3.9 Cycle type (1234)

Let’s start with have one generic q4-point a and one q-point b in generic position. There

are two orbits of q4-planes of P1 = ⟨a, f (a),b⟩ and P2 = ⟨a, f (a), f 2(a)⟩, and a pair of q2-

planes { f (P3 = ⟨a, f 2(a),c⟩)}. Planes from { f (P1)} contain no q-points and planes from

{ f (P2)} contains no q-point other than b. The pair of q2-planes will intersect at a q-line that

containing b and contain no other q-point outside the intersection. Thus, there are q+1 many

q-points on the union of planes H. For the last two points c and d, let l = ⟨c,d⟩. There are

three cases to fail the general position condition:

• at least one of c or d is in H;

• l going through one existing point and c,d are not in H;

• l intersects at least one existing line but not go through any existing point, and c,d are

not in H.
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In the first case, we have q(q3 +q2 +q−1) pairs for c to be in H, and q(q−1) pairs for

c and d both in H. Hence we rule out

q(2q3 +2q2 +q−1)

pairs in this case.

In the second case, since a is generic, l cannot contain a, so the only possible case is l

contains b. There are q2 +q lines going through b and not in H. These lines intersect with H

at no q-point other than b, hence we rule out

(q2 +q)q(q−1)

pairs in this case.

For the third one, notice that if l intersect a q4-line l′, then it must intersect with all

lines in { f (l)}′. Then l intersect a q4-line if and only if l goes through b, which is already

considered, so we only need to consider the case that l intersect l′ = ⟨a, f 2(a)⟩. By the same

argument, l intersect l′ if and only if it intersect f (l′). Then for any q2-point on l′, we can

get a such q-line and there is exactly one such q-lines that is going through b and inside H.

Therefore, since l′ contain no q-point, we will get rid of

(q2 +1−1)(q+1)q

pairs to avoid this case.
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As a result, there are

(q3 +q2 +q)(q3 +q2 +q−1)−q(2q3 +2q2 +q−1)− (q2 +q)q(q−1)

− (q2 +1−1)(q+1)q

=(q−1)q3(q+1)(q+2)

pairs of q-points satisfying the general position condition. Hence,

p7,(1234)(56) =
1

4 ·3!

∣∣∣P3(F(4,gen)
q )

∣∣∣ ∣∣P3(Fq)
∣∣(q−1)q3(q+1)(q+2)

=
1

24
(q−1)4q9(q+1)3(q+2)(q2 +1)(q2 +q+1)

4.3.10 Cycle type (1234)(56)

We start with the same setup as the last one, let’s call the q2-point we want to find out

c and l = ⟨c, f (c)⟩. q4-planes in { f (P1)} have no q2-point outside the pair of q2-lines l′ =

⟨a, f 2(a)⟩ and f (l′) = ⟨ f (a), f 3(a)⟩. ⟨P2, f 2(P)⟩ defines another q2-line l′′ where f (l′′) =

⟨ f (P2), f 3(P2)⟩. l′′ and f (l′′) intersect at b and will not intersect any of { f (l′)}. Hence, we

have

2q4 +(q2 −q)+2q2

q2-points in H.

For the first case, it is obvious that we will rule out

2q4 +(q2 −q)+2q2

q2-points.

For the second case, there is again only one q-lines through b inside H and since l will

intersect the planes from { f (P1)} outside { f (l′)}, the intersections are always q4-points.
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Hence, we will rule out

(q2 +q)(q2 −q)

q2-points in this case.

For the last one, by the same reasoning, l cannot intersect any of the q4-lines. Thus, we

only need to consider the case that l intersect with l′. However, in this case, it is possible that

l intersect both l′ and l′′. Consider the q-plane P′ = ⟨l′′, f (l′′)⟩. If l intersect l′′, then l must

be in P′. Since l′′ doesn’t intersect l′ or f (l′), P′ will intersect l′ and f (l′) each at a q2-point

and it cannot going through b. Hence, there is exactly one line passing both l′ and l′′. As a

result, we can rule out

(q2 +1−2)(q2 −q−2)+(q2 −q−4)

q2-points in this case.

Therefore, we have

q6 +q4 −q3 −q− (2q4 +(q2 −q)+2q2)− (q2 +q)(q2 −q)

− (q2 +1−2)(q2 −q−2)− (q2 −q−4)

=(q−1)(q+1)(q4 −2q2 −2)

q2-point to choose. Thus,

p7,(1234)(56) =
1

4 ·2

∣∣∣P3(F(4,gen)
q )

∣∣∣ ∣∣P3(Fq)
∣∣(q−1)(q+1)(q4 −2q2 −2)

=
1
8
(q−1)4q6(q+1)3(q2 +1)(q2 +q+1)(q4 −2q2 −2)
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4.3.11 Cycle type (1234)(567)

Since choosing a q4-points won’t put any constraint on choosing a q3-points, so we can

choose both of the points arbitrarily. To correct the overcounting, we just need to divide the

result by the number of elements in each of the orbits, so we divide the result by 4 ·3. Thus,

p3
7,(1234)(567) =

1
4 ·3

∣∣∣P3(F(4,gen)
q )

∣∣∣ ∣∣∣P3(F(3,gen)
q )

∣∣∣
=

1
12

(q−1)5q9(q+1)3(q2 +1)(q2 +q+1)

4.3.12 Cycle type (12345)

The generic q5-point a can be chosen arbitrarily. Then the q5-planes are all generic, so

there is no restriction on the choice of first q-point b. With b, we will get ten more q5-planes

where each of them contains only one q-point which is b. Hence, we can choose any q-point

other than b. To correct for the overcounting, we need to ignore the order of choices and the

different choices of the elements from the orbit, so we divide the result by 5 ·2!. As a result,

p3
7,(12345) =

1
5 ·2!

∣∣∣P3(F(5,gen)
q )

∣∣∣ ∣∣P3(Fq)
∣∣(∣∣P3(Fq)

∣∣−1
)

=
1

10
(q−1)3q7(q+1)3(q2 +1)2(q2 +q+1)2

4.3.13 Cycle type (12345)(67)

We can choose the generic q5-point arbitrarily and it will put no constraint on the choice

of the q2-point. To correct the overcounting, we just need to divide the result by the number

of elements in each of the orbits, so we divide the result by 5 ·2. Hence,

p3
7,(12345)(67) =

1
5 ·2

∣∣∣P3(F(5,gen)
q )

∣∣∣ ∣∣∣P3(F(2)
q )

∣∣∣
=

1
10

(q−1)4q7(q+1)2(q2 +1)2(q2 +q+1)2
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4.3.14 Cycle type (123456)

After choosing a generic q6-point, we can check that all the eighteen q6-planes are generic.

Hence, there are no q-points on those planes. Moreover, we have a pair of q2-planes that

intersect each other on a q-line. Thus, there are
∣∣P3(Fq)

∣∣− ∣∣P1(Fq)
∣∣ many choices for the

q-point. Since we only need to correct the overcounting caused by distinguishing points in

the orbit of q6-point, we divide the result by 6 to get the correct result. Therefore, we have

p3
7,(123456) =

1
6

∣∣∣P3(F(6,gen)
q )

∣∣∣(∣∣P3(Fq)
∣∣− ∣∣P1(Fq)

∣∣)
=

1
6
(q−1)3q8(q+1)3(q2 +1)(q2 +q+1)(q3 +q−1)

4.3.15 Cycle type (1234567)

Since we can choose the generic q7-point arbitrarily, the overcounting is only caused by

different pick from the orbit, we have

p3
7,(1234567) =

1
7

∣∣∣P3(F(7,gen)
q )

∣∣∣
=

1
7
(q−1)3 q6 (q+1)2 (q2 +1)(q2 +q+1)(q2 −q+1)(q4 +q3 +q2 +q+1)
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4.4 Proof for Theorem 1.3.9

Similar to the proof for 1.3.8, with the character table of S7, we have

PU(q) = q21 −q19 −q18 +2q17 −2q16 +q14 −2q13 +3q12 −2q11 +2q10 −q9

−q8 +3q7 −2q6

PS61 = q19 −3q18 +8q17 −12q16 +2q15 +9q14 −6q13 +12q12 −17q11 +3q10

−2q9 +14q7 −9q6

PS5121 =−q20 +q19 −5q18 +21q17 −28q16 +q15 +19q14 −11q13 +32q12 −36q11

+4q10 −10q9 −3q8 +34q7 −18q6

PS51 = 3q19 −9q18 +16q17 −25q16 +12q15 +24q14 −19q13 +19q12 −46q11 +10q10

+3q9 +6q8 +31q7 −25q6

PS4131 =−q20 +q19 −6q18 +20q17 −24q16 +8q15 +18q14 −19q13 +22q12 −40q11

+11q10 −q9 +3q8 +31q7 −23q6

PS4121 = 3q19 −15q18 +44q17 −66q16 +15q15 +49q14 −31q13 +63q12 −96q11 +16q10

−13q9 +3q8 +78q7 −50q6

PS41 = q19 −10q18 +26q17 −33q16 +13q15 +26q14 −25q13 +29q12 −56q11 +15q10

−q9 +4q8 +42q7 −31q6

PS32 = 3q19 −9q18 +22q17 −38q16 +15q15 +31q14 −21q13 +29q12 −62q11 +12q10

−q9 +9q8 +44q7 −34q6

PS3122 = q19 −6q18 +28q17 −43q16 +4q15 +26q14 −14q13 +44q12 −53q11 +8q10

−14q9 −q8 +48q7 −28q6
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PS3121 = q19 −12q18 +41q17 −64q16 +21q15 +46q14 −30q13 +54q12 −97q11 +18q10

−11q9 +10q8 +75q7 −52q6

PS31 =−3q18 +20q17 −31q16 +2q15 +17q14 −8q13 +32q12 −36q11 +5q10 −12q9

−q8 +34q7 −19q6

PS23 =−5q18 +17q17 −25q16 +11q15 +18q14 −15q13 +19q12 −41q11 +10q10 −2q9

+6q8 +30q7 −23q6

PS22 =−3q18 +13q17 −26q16 +12q15 +19q14 −9q13 +17q12 −41q11 +6q10 −4q9

+9q8 +29q7 −22q6

PS21 = 6q17 −13q16 +3q15 +7q14 −2q13 +10q12 −16q11 +2q10 −4q9 +3q8

+13q7 −9q6

PS17 = q17 −q16 +3q15 −4q13 −2q12 −4q11 +4q10 +3q9 +3q8 +q7 −4q6.

Then combine with equation (2.12), we will derive the result for table (1.1).
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