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Abstract

The Case of the Curious Robot: On the Viability of Curious Behavior in Robots

by

Kevin Weatherwax

Curiosity is a core drive for learning in humans which is increasingly being looked at

in developing robots capable of internally motivated lifelong learning. However, there

are also potential risks associated with robots being curious when people do not expect

or want robots to be curious, especially when the robot already has work tasks to

perform. Further, how robots’ mental states are described may prime expectations in

human counterparts. This thesis presents a pair of experiments on people’s perceptions

of four levels of curious robot behavior, designed by a professional animator. We also

explored the impacts of a curious robot being seen as on-duty vs. off-duty. In addition,

we examined whether our curious robot behavior matched peoples’ expectations when

primed to expect a “curious” vs. “learning” vs. “autonomous” robot. In both studies, as

curious behavior increased so to did ratings of the robots’ thinking ability coupled with

a decrease in ratings of it as an effective working and social agent, particularly when it

was framed as on-duty. Further, each cognitive prime resulted in a unique trajectory

of expectation matching showing that robots’ internal mental states should be matched

with analogous external behaviors. Our findings have implications for the design and

development of robots that engage in learning modeled on human cognition.
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Chapter 1

Introduction

There is growing interest in creating robots that are capable of lifelong learning,

enabling robots to expand beyond their preprogrammed capabilities over time [26,47,66].

However, traditional approaches to artificial learning for non-human agents, while im-

pressive in their ability to find and reproduce abstract patterns in large data-sets, have

struggled with operationalizing what humans consider to be actual learning. This is

because human learning isn’t simply a product of input and output but rather it is

the outcome of motivation through a complex interplay of physiology, emotion, and

cognition, all situated in–and acting in response to–the world [29, 45, 46,58, 59]. At the

center of that motivation, driving those other facets of learning, is curiosity. For many

artificial intelligence (AI) researchers curiosity is seen as a possible missing link in de-

veloping true “thinking machines” (i.e., robot learning algorithms) that are inspired by

various conceptions of human of curiosity that drive intrinsically-motivated robot learn-

ing over time [9, 12, 13, 43, 46, 67]. This is because curiosity, as a motivational manager
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of learning, can drive the discovery, understanding, mastery, and contextualization of

“rare or deceptive rewards” [45]. Curious robots could conceivably seek out, identify,

employ, and refine new knowledge and skills in real world settings. It is hoped, then,

that developing robot curiosity could enable us to create more robust agents by imbuing

them with the ability to adapt to changing environments as well as free robots from the

tether of human expertise (e.g., operators, controllers, wranglers, etc.).

While curiosity is a potentially useful construct for developing machines capa-

ble of life-long learning, the implications for human-robot interactions (HRI) are less

clear. There is a risk that these curious robots might not develop into systems that

match the abilities [2] or values [11] of the people who live and work around them, espe-

cially if their responses to these robots are not taken into account. It may be especially

important to reconcile internal functions of curiosity (e.g., subject of focus, interest, in-

tent) with appropriate external representations of the same social and behavioral states,

as demonstrated with expressive robots in the past [64]. Using models of human cog-

nition to equip robots with adaptable learning abilities and enabling them to explore a

wider range of environments raises new questions and challenges for HRI research and

design. Just a few of these questions include:

• Will (untrained) people recognize curiosity in a robot?

• Is there such a thing as having too much robot curiosity?

• In which situations will a curious robot be acceptable vs. unacceptable to the

human stakeholders around it?

• Does a robot’s internal state (mind) need to match its external behaviors (body)?
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Essentially, we must also understand the external aspects of curiosity in robots;

how it is experienced, perceived, interpreted in robotic form(s) and how we design for it.

While research in human-robot interaction (HRI)–and in psychology more generally–

has explored some of these questions directly, and tangentially by studying human to

human relationships, many important gaps remain. Without this attention to these

broader HRI issues, curious robots could be poorly received, being seen as intrusive,

creepy, or threatening, regardless of ability or functional usefulness [53]. It would be a

shame if a curious robot failed only because it was unable to manage the social norms

and expectations of a less “robotic” mind.

This thesis explores how curious robot behaviors, are perceived and interpreted

by untrained end-users, who might one day encounter robots in their workplaces. Here

we evaluate how people’s responses to curious robot behaviors change with the con-

text of the robot being busy performing a task for someone (on-duty) or exploring on

its own time (off-duty). We measured people’s perceptions of the robot, including its

curiosity level, drive to learn, likability, self-sufficiency, focus, competence, and respon-

sibleness. From an HRI design perspective, our studies show that robot curiosity can be

communicated effectively through robot behaviors, using the actual degrees of freedom

and joint limits of a real mobile robot. Moreover, our empirical findings regarding the

boundaries of acceptable robot behaviors have implications (and raise more questions)

for researchers developing robots that seek to learn.
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Chapter 2

Of Curiosity, Humans, and Robots

To situate the current work, we present a brief overview of curiosity, then re-

view where we stand in developing computational curiosity for learning agents, how

curiosity is expressed by people, and how behavior design can be used to express robot

curiosity. We explain how curiosity drives human learning and has become an area of

focus for algorithmic approaches aimed at imitating the same kind of adaptive learning

humans are capable of. We also discuss how curiosity, in human centered research, is not

a wholly internal process but also includes external signals that trigger social interac-

tions which facilitate the learning process. Computational approaches to instantiating

curiosity in non-human agents (e.g., robots) has, conversely, not considered these im-

portant social and behavioral facets. Finally, we discuss how curious–and other learning

based–robots could be designed more thoughtfully by aligning their internal (mind) and

external (body) states.
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2.1 What is curiosity?

Curiosity is a complex construct and a fundamental facet of what drives human

learning. The prevalent view, informed by Loewenstein [37], conceptualizes curiosity as

a kind of motivating drive for exploration and learning in humans and animals [15,31,32,

45]. In particular Loewenstein [37] framed the catalyst of curiosity as the realization of

a “knowledge gap” which an agent then attempts to fill. To do this, individuals exploit

previously obtained knowledge/skills to engage in a mode of learning that involves an

active search for, and exploration of, novel situations and information. With this in

mind we can frame curiosity as a cycle whereby an agent; (1) recognizes an information

gap, (2) develops the motivation to fill it with relevant information, (3) actively seeks

knowledge in an area that makes the most sense based on previous discoveries, and

(4) rewarded by the acquisition of new knowledge that can be exploited, seeks new

avenues for exploration.

However, under this overarching model there are competing explanations for

what triggers curiosity (i.e., stimulation by environmental factors vs. abstract cogni-

tion) and for how curiosity motivates action (i.e., interest vs. deprivation). Different

research domains that have adopted the topic of curiosity have developed new and

sometimes domain-specific terms, or have renamed and re-purposed existing concepts.

Curiosity research in human psychology is usually grounded in relation–or opposition–to

Berlyne’s two dimensional model of curiosity [32] represented on the axes of Perceptual

to Epistemic [4] and Specific to Diversive [3]. In this framing, “perceptual curiosity” is
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rooted in environmental stimuli that register through an agent’s senses. Novel things

that are seen, heard, smelled, etc., draw the figurative eye, inciting interest and increas-

ing familiarity with the source. “Epistemic curiosity” on the other hand is a state of

the mind, the desire for knowledge and learning which can be either abstract or con-

crete. While the first of Berlyne’s axes distinguishes the foci of curiosity, the second

axis describes modes of curiosity. “Specific curiosity”, as the name suggests, is interest

in a single, specific piece of knowledge or sensation while “diversive curiosity” is not

tied to anything in particular, and stems from a general desire to assuage a lack of

stimulation [37]. For example, reading a book on a topic that has caught one’s interest

would be specific, while roaming around a library looking for an interesting book would

be diversive curiosity.

Then there are two schools of explanation for what triggers curiosity; (1) drive

theories and (2) optimal-level arousal theories [36]. These differ regarding whether

it is best to describe/conceive the function of curiosity as either; (a) a reduction of

deprivation or (b) as an induction of interest, respectively. Drive theories frame curiosity

as being similar to other drives (e.g., hunger, thirst, fear). Thus, drive curiosity is

conceived of as an unpleasant sensation brought on by a sense of uncertainty which

then leads an agent to act (e.g., explore, learn, interact), thereby reducing this feeling

with new information. For example, this could look like sitting bored on a couch channel

surfing to find something interesting or googling a specific piece of information because

not knowing is making you frustrated. Reward is accrued as increased exposure to the

novel stimuli reduces the negative sensation of curiosity. Conversely, optimal-arousal
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theorists argue that the “curiosity as a drive” theory fails to account for agents who

willingly seek out novel situations, thereby inciting, rather than avoiding, curiosity

inducing situations. Thus, they propose that curiosity is a pleasurable sensation, which

is why agents willingly induce it, and then attempt to maintain it at an optimal level

(i.e., not bored but also not overwhelmed). More to the point though, is that these

frameworks are the basis for most computational models of curiosity for non-human

agents.

2.2 Computational Curiosity and Robots

As we described above, curiosity is an important building block for human

learning [3, 4, 32, 36, 57], which makes it a promising area of development for machine

learning. This is due, specifically, to curiosity’s ability to facilitate diverse and divergent

learning over long periods of time and then assemble a tapestry of rich, complex, and

flexible knowledge. Moreover, the resulting knowledge is, in theory, unique to the needs

of individual robotic agents depending on its “lived” experiences and settings. With

traditional reinforcement learning (RL), the learning agent is guided by reward functions

associated with specific goals then develops, evaluates, and refines policies for optimal

reward. Singh et al., [61] used a psychological and evolutionary lens to compare these

common RL practices as an abstraction and operationalization of extrinsic motivation

based learning found in nature (e.g., animals, humans). Herein, a learning agent wholly

driven by extrinsic reward functions will pursue, learn, and perform, behaviors directly
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related to those ascribed goals but will, of course, not pursue or value experiences

which don’t pay those off. Essentially they argue that algorithms that include models

of curiosity, will increase the overall lifelong “fitness” of a learning agent as it will

develop a richer understanding of its environment(s), as well as novel abilities to impact

its environment(s) [60, 61]. So a traditional RL based agent would need to be set some

kind of predefined goal and then iterate its approach over time to improve performance

but that experience cannot be applied to new or disparate tasks. A similar agent that

included a model of curiosity based motivation could, theoretically, discover and master

the same new task, without needing to be set to that task specifically, but could also

discover and catalogue novel abilities that may be of value in, as of yet, unknown future

challenges for it. We believe this framing helps us understand the value of curiosity

based learning agents in the context of wanting to bring them out of the lab and in to

the streets, so to speak.

For humans, curiosity is quite a recognizable trait. People can easily tell

when someone is curious, what they are curious about, and–perhaps most importantly–

whether they can/should intervene to provide assistance. But what does a curious robot

look like? In a review of a curiosity based learning for robots, Oudeyer highlighted a

demonstration of a curious robot arm which freely explored its environment by interact-

ing with a pair of joysticks in front of it which controlled the movements of mechanical

arm confined inside a small play environment with lights, sounds, and objects it could

affect change on. This robot was able to discover novel effects it could have on the envi-

ronment and then practice recreating these until the novelty transformed to mastery of
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new skills [45]. While this is a remarkable demonstration (See Oudeyer’s demo: here)

of the potential of intrinsic-motivated learning (i.e., curiosity), to an outside observer

the robot arm seems to grope about the surrounding space for long periods of time in

erratic jerking movements. This specific example raises an important problem central

to this thesis. Namely, curiosity does not exist in a vacuum.

Human curiosity is, in large part, facilitated by interactions with other agents

in the environment (e.g., teachers, peers, mentors), not simply in response to it. So

while progress has been made on developing robots capable of curiosity-driven learning,

the source of mentoring has largely been the scientists who develop it. They provide pa-

rameters, assistance, direction, and guidance as well as tightly control the environment

to facilitate success, much like a preschool teacher, to their robots because they are just

that; their robots. In real world settings, this relationship may fall apart when robots

are not designed to take likely social and organizational contexts into account [41]. Gor-

don, a leading researcher in curiosity and robotics, offers a poignant assessment on the

strengths and limitations of what robots can learn in non-social vs. social settings using

curiosity based algorithms [13]. Namely, curious robot can learn very well in isolation

but only about itself while social settings introduce far more complex and dynamic fac-

tors [13]. Gordon goes on to stress how the success of robot curiosity, in a social setting,

is largely dependent on how people respond to the robot in its efforts to learn.

Moreover, the only prior work that has directly examined human perceptions

of a curious robot (rather than implementations of curiosity based learning for robots)

identified that curious deviations during a prescribed task resulted in negative consid-

9
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erations of the robot [69]. This is especially interesting considering that much of the

ongoing research on developing curious robots assumes curiosity to be a universally

positive trait for robots. These kinds of blanket assumptions of robot usefulness have

proven to be detrimental in the past. For example, an ethnographic study of a de-

livery robot deployed in various hospital settings found that in a high impact trauma

unit was seen as a burdensome nuisance but in a maternity ward was a welcome addi-

tion [41]. Furthermore, these hospital robots were sabotaged, abused, and stuffed into

utility closets in the trauma center but received warmly and viewed as useful in the

postpartum center [41]. We can infer then, that for robots to engage in lifelong learning

in human-populated spaces (e.g., offices, hospitals, airports, shopping malls), it will be

similarly important for us to figure out when, where, and how robots should engage in

curiosity-driven exploration in a way that will be acceptable for human co-workers and

bystanders. One potentially fruitful starting point for developing socially acceptable

curious robot behaviors is to look for inspiration in how people express curiosity.

2.3 Expressing Human Curiosity

While there are many nuanced facets of human curiosity (e.g., Kashdan’s five

dimensions of curiosity [30]), exploratory and investigative behaviors are its most readily

recognizable components. The internal cognitive processes of curiosity often manifest

externally as focus and attention (e.g., interest, specific curiosity) or wandering and

seeking new experiences (e.g., exploration, divisive curiosity) [3, 4]. It is important to
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note that research on curiosity is tightly intertwined with research on interest [54,57–59]

so interest is included in some of the behaviors described below.

Looking to past work on curiosity is helpful for describing what it means for

someone—or some robot—to behave in a curious manner. As such, we focus on what ob-

servable behaviors have been operationalized or measured in curiosity related research.

One of the most clear cut curious behaviors is exploration. At its core, exploration refers

to investigative behaviors (e.g., seeking, searching, manipulating) relating to environ-

mental stimuli (e.g., specific things, exploring spaces) and is often the focus of child

developmental work [6, 27,49].

Facial expressions and head tilting are also useful signals for recognizing cu-

riosity in others. In a pair of experiments, Reeve [51, 52] captured changes in facial

expressions when people were shown interesting stimuli. A more recent empirical study,

aimed at developing curiosity auto-recognition, examined videos of children primed to

feel curious about objects (novel vs. mundane); when participants were primed to feel

curious, the researchers noticed changes in the gaze, head shifts (i.e., panning and tilt-

ing), and moving around the object to focus on different parts of it [44].

Another strong behavioral signal of curiosity, in humans, is spending more time

observing and becoming familiar with novel objects [44]. This is consistent with prior

research on curious behavior in children, in which reacting to new stimuli by moving

towards it and spending more time examining it was indicative of high curiosity [38–40].

As each robot has a different set of affordances, these expressions of human

curiosity cannot be mapped directly onto any given robot, but they can be used to
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inspire the design of curious robot motions.

2.4 Expressing Robot Curiosity

Robot expressive motions are a fundamental aspect of human-robot interac-

tion, especially because a robot’s motions influence how people perceive and interact

with it [16,21]. People read meaning into the motion of abstract shapes [17], not just an-

thropomorphic agents. As such, it is important to be intentional about the design of ex-

pressive robot motions rather than leaving human interpretation of robot motions up to

chance. Prior work in HRI has explored using animation techniques in the design of ex-

pressive robot motion, e.g., showing forethought and responses to success or failure [64],

showing preparation and follow-through in a human-robot jazz performance [22], and

shared attention in a music-listening companion robot [18]. Expressiveness has been

used to facilitate successful interactions and collaborations with robots. Takayama,

et al. (2011), demonstrated how readable robot behaviors can convey rich informa-

tion about a robots intentions and capability to human observers, as well as change how

they subjectively rate the robot [64]. Similarly, Hoffman & Breazeal (2007), showed how

adding anticipatory robot motions improved the fluency of human-robot collaborative

activities [19,20]. This thesis builds upon these prior works, expanding into the space of

curious exploration. Algorithmic approaches to generating expressive robot motions are

in development, starting with making robot motions more legible and predictable [8,63]

as well as simultaneously generating functional and expressive robot motions [68].
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In the current work, we focus upon the expression of curiosity. Some social

robots have been developed to express curiosity, e.g., Dragonbots designed to elicit child

curiosity [14], Naos designed to play educational games with children [5], and a Wizard-

of-Oz Recyclo robot that gave recycling recommendations [35]. These systems have

mostly relied upon verbal expressions of curiosity, like asking questions or explicitly

stating that they are curious about something. They are also designed for learning

contexts. In contrast, the current study focuses upon nonverbal, behavioral expressions

of curiosity in a professional workplace context. While there are many settings where it

could be useful for a robot to express curiosity (e.g., learning contexts [5, 14, 35]), it is

unclear if it is always going to be a good idea for robots to express curiosity. For example,

when a robot has a specific task that it is supposed to be doing, like delivering mail in

an office place, will it be acceptable for the robot to pause its primary task in order to

curiously explore other things along the way? Prior work has shown that curious robot

behaviors can increase engagement, but can simultaneously hurt trust in the robot [35]

and can make people think that the robot is less competent [69]. Additionally, since

curiosity based learning robots will always be evolving–theoretically–in their interest,

ability, and capability, we need to better understand how to signal that a robot is curious

(i.e., capable of being curious) and when it is curious.
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Chapter 3

What’s in the Box? And Other Things

A Curious Working Robot Shouldn’t Do

In our first study we examined the impact of a curious robot’s behaviors on

human perceptions of that robot. We also tested the efficacy of using animation princi-

ples to communicate the internal processes of a robot (i.e., AI modeled after curiosity)

into behaviors that are innately readable to humans. Finally, we explored whether, and

how, curiosity based behaviors would be viewed differently if the robot was deviating

from a primary work task or not.

3.1 Study Design

We used a mixed-factorial 4 (curiosity level: none, low, moderate, and high;

within-subjects) x 2 (working state: on-duty vs. off-duty; between-subjects) experiment

design to explore the following hypotheses:

14



H1 When a robot expresses more curiosity, people will perceive it as having more

curiosity-related traits (e.g., self-motivated to learn, desiring new knowledge).

H2 When a robot expresses curiosity, people will feel more positively toward the robot.

H3 There exists a threshold of acceptability for robot curiosity, beyond which people

will see the robot as malfunctioning.

H4 People will be less tolerant of curious robot behaviors when a robot is on-duty as

opposed to off-duty.

3.1.1 Stimuli

We developed eight videos of a Mayfield Robotics Kuri operating as a delivery

robot in an office setting (See: Figure 3.1). The Kuri was chosen because it is a widely

accessible robot designed for interactive social expression that our curious behaviors

could be actualized on for in-person follow up experiments. In all of the videos the

robot passes by a box in a hallway between cubicles and either ignores it or examines it

with various levels of interest (i.e., curiosity). In half of the videos, the scene illustrates

that the robot is “on-duty” in the middle of a delivery, and in the other half the robot

is presented as “off-duty” with no current tasking.

All scenes were animated with Autodesk Maya, carefully adhering to the joint

limits and degrees of freedom of Kuri’s hardware. Motion was restricted to realistic

base movement, head pan and tilt, and eyelid opening and closing. To fit the narrative

we chose, the Kuri model was altered to include a backpack to hold items.
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Figure 3.1: Robot’s on-duty sequence (top) and off-duty sequence (bottom)
Robot sequence of actions

3.1.1.1 Level of Curious Behavior

We worked with a professional character animator, experienced in motion de-

sign for real-world robots, to develop the curiosity behaviors for these studies. Curious

behaviors were created, and heightened, by altering the focus, frequency, and duration

of the body, head, and eye movements. All of the curiosity behaviors were culled from

past research on observable traits of curiosity. These included increasing head move-

ments [44], shifts in gaze and facial expression [51, 52], moving closer to the subject of

interest [38–40], and exploring the environment [6, 27,49].

No Curiosity (L1) = slight head movements and blinks while traveling through the

hall, no head rotation toward box, no slowing down, or any acknowledgement box

is there, except to move around it.

Low Curiosity (L2) = head pans/tilts looking around while moving through hallway,

head rotates toward the box, slows down while passing and head pans/tilts focused

on the box, but there is no body rotation towards the box.
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Medium Curiosity (L3) = head pans/tilts while moving through hallway, head and

body rotate toward the box; robot circles the box with 3 additional pauses, head

pans/tilts quickly while looking at the box and surrounding area, before continuing

its original route.

High Curiosity (L4) = head pans/tilts while moving through hallway, head and body

rotate toward the box; robot circles the box twice with 7 additional pauses, head

pans/tilts slowly while looking at the box and surrounding area, before continuing

its original route.

Links to all of the stimuli videos can be found in Appendix A.

Because the higher levels of curiosity required more behaviors, the length of

the videos were 31, 38, 56, and 126 seconds, respectively, for no, low, medium, and high

curiosity. In our animation development and pilot studies, we attempted to hold the

time duration constant across conditions, but were unable to do so without introducing

confounds to the experiment design (e.g., idle or erratic behaviors). In the end, we

made the decision to keep the durations as close together as we could, but to prioritize

the expressive curiosity, acknowledging that more curious behavior may inherently take

more time to perform. Though a control for time would be ideal past research on

curiosity has shown that a major facet of how people determine the intensity of curiosity

in others is the amount of time they spend engaged with the subject of interest [38–40,

44]. Our hypothesis that people might be less patient with robot curiosity in on-duty

situations (H4) included consideration that more curious robots might take more time
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to explore rather than doing their task at hand.

3.1.1.2 Working state: On-Duty Vs. Off-Duty

In the on-duty videos, a human is shown looking at a letter and then using an

application on their computer to ask the robot to come retrieve the mail in their office.

The robot is shown activating and leaving its charging station. Next the robot enters

a cubicle hallway with a box and performs one of the levels of curious behaviors (see

above) focused on the box before leaving. Finally, the robot arrives at the humans desk

and the letters are loaded into its backpack.

The off-duty videos begin with a robot arriving at a person’s cubicle carrying

letters in its backpack. The robot is seen completing its delivery task and a screen is

shown indicating the robot is off-duty and intending to return home to its charger. Next

the robot enters a cubicle hallway with a box and performs one of the levels of curiosity

behaviors focused on the box before leaving. In the final shot the robot arrives at its

charging station and parks itself.

The videos were designed to mirror each other closely in order to minimize

possible context-based confounds. Most of the shots used in each set of videos are

nearly identical with the order they are shown simply reversed and minor additions

made to establish the narrative on-duty vs. off-duty distinction. The hallway portions,

where the robot behaves curiously, are identical in both sets of videos. See Figure 3.1.

For more details, see the visual stimuli linked in Appendix A.
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3.1.2 Method

Participants were randomly assigned to one of the between-subject conditions–

on-duty or off-duty. Each participant was shown all four levels of robot curiosity in

a randomized order. The within-subjects conditions were presented in a randomized

order and potential order effects were checked for in our data analyses. Past research on

curiosity has generally used bipolar treatment variables (i.e., curious vs. not curious)

as such we were concerned that response to shifts in curious behavior may be fairly

subtle. As such we chose to operationalize curiosity as a within subjects variable since

we wanted to reduce noise in the data as much as possible. Similarly, we chose to treat

working state as a between subjects variable because we were concerned with order

effects as well as participant fatigue if people had to watch eight stimuli videos, rather

than four.

3.1.2.1 Participants

Respondents (N =30) were recruited from Amazon Mechanical Turk. Each

participant received two U.S. dollars as a token of thanks for their time. It took approx-

imately 10 minutes to complete the study. From an original pool of 31, one participant

was removed for having a response time significantly lower than the total duration of

the videos they were asked to watch. There were 17 males and 13 females (self-reported)

with ages ranging from 25 to 69 years (M = 38.9, SD = 10.2). Education levels of re-

spondents included completion of high-school (n = 5), some college (n = 4), associates

degrees (n = 4), bachelors degrees (n = 14), and masters degrees (n = 3). 22 out of 30
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participants reported pet ownership experience. In terms of reported experience with

robots; 22 had none, 3 a little, 2 a moderate amount, 1 a great deal, and 2 preferred

not to answer.

3.1.2.2 Procedure

Participants were informed that they would watch several short video clips,

featuring robots, and give their opinions on the robots they saw. Those participants

who accepted the task were directed to a survey where they were asked to read and

agree to a digital consent form. In the consent form participants were also informed

that the task included several attention checks and that if they failed them the work

would be rejected. Participants were then randomly assigned to the on-duty or off-duty

conditions. Each participant saw videos that depicted four different curiosity levels

(none, low, medium, high), randomized for order. They were asked to watch each video

in full screen mode. After each video, the participant responded to a questionnaire about

the robot they just saw. Each questionnaire consisted of fourteen items presented on a

7-point Likert scale of agreement followed by one open-ended item that asked them to

describe the robot they saw. Three items were reverse coded and question order was

always randomized.

We designed the survey items to gauge readability of our curiosity animations

as well as assess participants’ general perceptions of the robot. We chose questions

focused on perceived curiosity based on common tangible/observable factors of curiosity

(i.e., pertaining to curiosity as behavior, not mental state). Similarly, we picked items
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regarding general perception of robots in order to capture common aspects of HRI

research (e.g., trust, likability, intelligence). We also included an attention check for our

working state between-subjects variable. After the final video, we asked participants to

select from four options to describe what the robot was doing when it passed the box

in the hall. Finally, we asked participants to fill out a brief demographics questionnaire

about their age, gender identity, education level, pet ownership, and experience with

robots.

3.2 Quantitative Data Analysis

Below we review the details of our data analysis approach and present results

for the quantitative measures we collected (i.e., likert-type questionnaire items). A

similar review of how our qualitative data was examined is discussed further down in:

Section 3.3).

3.2.1 Order Effects and Manipulation Checks

Since curiosity level was a within-subjects independent variable in this study,

there was a risk that we would see order effects in the data (i.e., having seen the first

condition would affect responses to the subsequent conditions). To address this concern,

we re-structured the data in terms of first, second, third, and fourth curiosity condition

presented to each participant. We then ran a mixed ANOVA, using order of curiosity

stimuli presented (first, second, third, fourth) as a within-subjects independent variable

and working state as a between-subjects independent variable. In running analyses for
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all of the dependent variables, we did not find any statistically significant effects of order

of stimuli presentation in these data.

To see whether participants viewed our different levels of curious expression

as intended, we ran a repeated measures ANOVA, using level of behavioral curiosity as

the within-subjects independent variable and participant ratings of the survey item “the

robot is curious” as the dependent variable. There was a significant main effect of the

robot’s behavioral curiosity level on participants’ perceived curiosity of the robot F(3,

84)=17.06, p=.001 < .05, η2
p=.38. There was no effect of working state (on vs. off-duty)

on perceived curiosity. We ran repeated contrasts on each of the four levels of curiosity

behaviors. Here we found significant differences between levels 1 vs. 2 F(1,28)=9.34,

p=.005, η2
p=.25 and levels 2 vs. 3 F(1,28)=18.37, p=.001, η2

p=.4. See Figure 3.2.

3.2.2 Hypothesis Testing

We ran a mixed ANOVA, using level of behavioral curiosity as a within-subjects

independent variable and working state as a between-subjects independent variable. The

mixed ANOVAs were used to predict each of our three constructed components. We also

ran mixed ANOVAs to predict our remaining independent survey items (responsibility,

focus, and competence), and the manipulation check of perceived curiosity. Where there

were significant effects for curiosity level, we also ran repeated contrasts between the

four levels of curiosity.
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Figure 3.2: (Top Left) Manipulation check of robot curiosity behaviors demonstrates
that curiosity levels impact the perceived curiosity. (Top Center and Right) Main effects
of robot curiosity on ratings of competence, focus, and (Bottom left) responsibility.
(Bottom Center and Right) Main effects of curiosity on perceived drive-to-learn and
likability components.

3.2.3 Results

Different sets of our survey items we saw as relating the broader concepts we set

out to explore in this work. Namely, how curiosity might change perceptions of the robot

as having cognition or thought, being a likable social character, seeming self-sufficient

or not needing human oversight, and as a capable or competent worker. We chose to

extract and examine these higher level combinations of survey responses for the sake of

easier interpretation of our largely exploratory data analysis [28]. First, we performed

principal component analysis (PCA) at each of the four levels of our repeated measure
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(level of curious behavior) to create our primary dependent variables. We based our

PCA upon four conceptual groupings of perceived Drive to Learn (the robot learns on its

own, would explore, and desires knowledge) Likability (the robot is likable, acceptable,

trustworthy, and approachable), Self-Sufficiency (the robot is independent, intelligent,

and would take initiative on new tasks), and Competence (the robot is focused, com-

petent, and responsible) of the robot. To determine which items were included in each

component, we used the recommended component loading minimum of 0.4 [48, 62]. Of

our conceptual components only Competence failed to hold together at all levels of our

repeated measure, so we analyzed the responsible, distracted (reverse coded), and com-

petent (reverse coded) items individually. For mean and standard error values of all

components and items see: Table 1. Appendix A. Finally, we then conducted reliability

tests for each of our new components, which all returned acceptable Cronbach’s alpha

(α > 0.7) at each level of our repeated measure (For details see: Appendix B.2).

3.2.3.1 Perceived Drive to Learn

The perceived drive to learn component was calculated as the average score

across the items: This robot would learn on its own, explore its surroundings, and has

a desire for new knowledge.

There was a significant main effect of the robot’s behavioral curiosity level on

participants’ perception of the robot’s drive to learn F(3,84)=29.04, p=.001, η2
p=.52.

See Figure 3.2. These findings support H1. We did not observe a main effect of work-

ing state on perceived curiosity of the robot or an interaction effect between the two
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Figure 3.3: Effects of robot’s curiosity and working state (on-duty vs. off-duty) on
competence, likability, (levels 3 vs. 4), and self-sufficiency (levels 2 vs. 3).

variables.

Following up on the significant effects, we ran repeated contrasts on each of the

four levels of curiosity behaviors. Here we found significant differences between levels 1

vs. 2 F(1,28)=14.48, p=.001, η2
p = .36 and levels 2 vs. 3 F(1,28) = 33.98, p=.001, η2

p

= .55.

3.2.3.2 Robot Likability

The robot likability factor was calculated as the average score across four items:

This robot is likable, acceptable, trustworthy, and approachable.

We found a significant main effect of the robot’s curiosity behaviors on ratings
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of robot likability F(3,84)=35.6, p=.001, partial η2=.56. See Figure 3.2. People liked

the robot less as it behaved with more curiosity. This finding does not support H2.

Rather, it shows support for the opposite of H2, as curiosity increased likability went

down. In other words, as a robot’s curiosity increased, its likability went down. We

did not observe a statistically significant effect of working state on likability. We found

a significant interaction effect between curiosity level and working state, F(3,84)=6.20,

p=.001, η2
p=.18. See Figure 3.3.

Following up on the significant effects, we ran repeated contrasts on each of

the four levels of curiosity behaviors. Here we found significant difference in likability

of the robot between curiosity levels 2 vs. 3 F(1,28)=19.03, p=.001, η2
p=.41, and levels

3 vs. 4 F(1,28)=32.19, p=.001, η2
p=.54. We did not find a difference between levels 1

vs. 2. We also found a significant interaction between levels 3 vs. 4, F(1,28)=14.23,

p=.001, η2
p=.34. See Figure 3.3. People liked the robot least when it was on-duty, being

extremely curious; this finding supports H4.

3.2.3.3 Perceived Self-Sufficiency

The self-sufficiency component was calculated as the average score across the

items: This robot is independent, intelligent, and would take initiative to perform tasks.

There was a significant interaction effect between curiosity level and working

state upon perceived robot self-sufficiency, F(3,84)=3.87, p<.05, η2
p = .12. We did not

see statistically significant main effects. Following up on the interaction effects, we ran

repeated contrasts between each of the four levels of curiosity. In that analysis, we
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observed a significant interaction between levels 2 vs. 3, F(1,28)=6.53, p<.05, η2
p = .15.

See Figure 3.3. We did not find significant differences between Levels 1 vs. 2 or 3 vs. 4.

3.2.3.4 Focus, Competence, and Responsibility (single items)

Because the Competence component was not found to be reliable, we analyzed

each of these three as single-question items.

We found a significant main effect of curiosity behaviors on the perceived fo-

cus of the robot F(3,84) = 34.11, p=.001, η2
p = 72. There was no main effect of working

state on perceived focus or interaction effects present. We ran repeated contrasts on

each of the four levels of curiosity behaviors. Here we found significant difference be-

tween all levels of curiosity behavior: Level 1 vs. 2 F(1,28) = 4.62, p=.04, η2
p = .14,

level 2 vs. 3 F(1,28) = 19.68, p=.001, η2
p = .41, and levels 3 vs. 4 F(1,28) = 12.33,

p=.002, η2
p = .31. See Figure 3.2.

We found a significant main effect of curiosity behaviors on the perceived

competence of the robot F(3,84)=15.85, p= .001, η2
p = .36. We also found a significant

interaction effect F(3, 84)=3.76, p=.014, η2
p = .12. See Figure 3.3. There was no

main effect of working state on perceived focus. With repeated contrasts on each of

the four levels of curiosity behaviors we found significant difference at levels 2 vs. 3

F(1,28)=8.84, p=.006, η2
p=.24, and levels 3 vs. 4 F(1,28)=14.32, p=.001, η2

p=.34. See

Figure 3.2. This finding supports the opposite of what we predicted in H2. It supports

H3. For the interaction effect, we found significant difference between level 3 vs. 4

F(1,28)=8.61, p=.007, η2
p=.24. People thought the most curious robot was the least
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competent, especially when it was on-duty; this finding supports H4.

We found a significant main effect of curiosity behaviors on the perceived

responsibility of the robot F(3,84)=22.94, p=.001, η2
p=.45. There was no main effect

of working state on responsibility or interaction effects. Repeated contrasts on each of

the four levels of curiosity behaviors found significant differences between levels 2 vs. 3

F(1,28)=8.44, p=.007, η2
p=.23, and levels 3 vs. 4 F(1,28)=24.0, p=.001, η2

p=.46. See

Figure 3.2. These findings do not support H2, but they do support H3.

3.3 Qualitative Data Analysis

In our analysis of survey items, we saw a generally negative shift in participants’

ratings of the robot–aside from increased ratings of its cognitive ability–as curiosity

behaviors went up. After each video (i.e., each level of robot curiosity) participants

responded to the open-ended question: “How would you describe the robot you just

saw?” Since each participant provided their own perspective on the robot, in the form

of an open-ended question after each level, we decided to examine their responses more

closely in hopes of identifying, not just the underlying symptom of the negative ratings,

but also the potential cause. We examined these responses through both sentiment

analysis of emotional tone and inductive thematic coding. Our approach and findings

for each of these methods are presented below.
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3.3.1 Sentiment Analysis

First we used sentiment analysis in order to look for emotional changes in

participants’ written feedback across conditions. We conducted sentiment analysis on

participants’ open ended responses using VADER (see: VADER for open source access).

VADER generates a sentiment score that can be interpreted as positive, negative, or

neutral using a 1 to -1 scale, which provides a reliable metric for emotional valence in

short text entries [25]. Next we ran a mixed ANOVA, using level of curiosity as a within-

subjects independent variable and a robot’s working state (On-Duty vs. Off-Duty)

as a between-subjects independent variable to predict compound emotional valence of

participant responses.

We found significant main effects of curiosity, F(3,84)=52.76, p<.001, η2
p=.28,

and a robot’s working state, F(1,28)=8.68, p<.01, η2
p=.24, on the compound emotional

tone of participant descriptions of the robot. We also captured a significant interaction

effect between our two main variables, F(3,84)=4.26, p=.01, η2
p=.13, on the emotional

tone of their responses. Next, we ran repeated contrasts on each of our independent

variables. Here we found significant difference between levels 2 vs. 3, F(1,28)=10.54,

p<.005, η2
p=.27, and levels 3 vs. 4, F(1,28)=5.77, p<.05, η2

p=.17. We did not find

a significant difference between levels 1 vs. 2. Our repeated contrasts did not reveal

where specifically a significant difference interaction occurred between any levels of

curious behavior and the working state of the robot.
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3.3.2 Thematic Coding

We took an inductive approach to develop a thematic code-book and tag par-

ticipant responses describing the robots they saw [65]. In effect, we spent substantial

time reading and discussing our participant comments in order to attune with the data,

allowing patterns and meaning to emerge [7].

We began by reviewing a randomly selected subset of 20% of participant (n =

6) responses (n = 24), using a line by line approach wherein code(s) were created and

applied to each response separately. Once we reached saturation (i.e., there were no

new emergent codes), we reviewed the initial codes and organized them into tentative

themes. Descriptions of meaning and examples were assigned to each code. To assess the

reliability of the code book, we performed inter-reliability analyses on the data, using

Cohen’s κ. The primary coder coded the full data set and the reliability coder blind-

coded responses from a new randomly selected subset of six participants. We calculated

Cohen’s κ for each set of codes to assess the consensus between the two coders. When

the reliability was not sufficiently high (κ < .70), disagreements about the meaning of

codes were discussed and resolved by refining the code book and re-coding the data,

using the updated code book. This inductive iteration process was conducted a total

of three times, using a new random subset of responses from six participants. Having

demonstrated reliability, the primary coder performed a final coding pass on the full

data set. Our final code book (See: Appendix C.1) consisted of four pairs of mutually

exclusive codes. Each set had high inter-rater reliability: Focused/unfocused (κ = .804),
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reliable/unreliable (κ = .931), obedient/disobedient (κ = .714), and positive/negative

cognitive traits (κ = .852). Responses were coded with one of the mutually exclusive

items from each set or with “none.”

3.3.2.1 Focus, Reliability, Obedience, and Cognition

Participant responses often included a critical reflection on how the robot went

about its business, either delivering mail or returning to the charger. We called this

set “focus,” which distinguished between two codes, focused vs. unfocused. This

arose when participants described a deviation of the robot’s attention in a way that

they viewed as appropriate or not. For example:

Unacceptable. Clearly was distracted if not preoccupied with the box and I
was surprised it went to get the letter at all. –P6 (L4/On-Duty)

Participants also reflected on how confident they were in the robot’s perfor-

mance more broadly. We coded this set as reliable vs. unreliable. This arose when

participants reflected on whether or not the robot could be depended upon to complete

tasks, not only in this particular setting, but overall. The pair of responses below high-

lights how the participant’s confidence in the robot differed between levels of curiosity.

It seems curious to its surroundings but still focused on the task of returning
home. It would be able to overcome obstacles it encountered. –P15 (L3/Off-
Duty)

Faulty and undependable. Untrustworthy to do what was needed. I think it
would get into trouble because it does not obey commands. –P15 (L4/Off-
Duty)

These responses also raised the theme of obedience, distinguished by obedi-

ence vs. disobedience. This set resulted from participants attributing a reason why
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the robot acted certain ways in relation to the task at hand. They might describe

the robot as obedient by listening to instructions, obeying commands, or following its

programming properly. Conversely, they would describe the robot as disobedient by

choosing not to follow instructions or malfunctioning in some way.

Our final set of thematic codes came from participants attributing different

mental capacities to the robot as positive vs. negative cognitive traits. Positive was

coded when participants discussed the robot possessing useful or higher cognitive traits,

like the robot being intelligent, being interested in learning, or wanting to investigate its

surroundings. Negative was used when participants applied negative or lesser cognitive

traits to the robot. For example:

Extremely slow and easily distracted. I would call it “ditzy”. It wasted way
too much time meandering around the box. –P8 (L4/On-Duty)

While the quantitative results of Study 1 showed us how people rated the robot

in response to closed-ended questions, these qualitative results enabled us to dig deeper

into the potential reasons for why they perceived the robot more positive or negatively

when displaying different levels of curious behavior.

We ran a χ2 analysis to assess whether the frequency of each code differed

across each of the levels of robot curiosity. This enabled us to ask questions like: Did

people mention obedience more or less often when the robot behaviorally expressed

greater amounts of curiosity? The descriptive results are presented in Figure 3.5.

Across the four levels of curiosity, we found statistically significant differences

in the number of people who mentioned the robot being; focused (χ2=17.3, p=.0006),
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unfocused (χ2=27.0, p=.0000), reliable (χ2=14.2, p=.0027), unreliable (χ2=19.9, p =

.0002), obedient (χ2=15.7, p=.0013), disobedient (χ2=14.1, p=.0027), having positive

cognitive traits (χ2=8.18, p=.0424), and having negative cognitive traits (χ2=14.6,

p=.0022). Next we ran pair-wise χ2 tests to identify between which levels of curious

behavior significant change occurred. We found significant differences in the number

of people who mentioned the robot being; unfocused levels 2 vs. 3 (χ2=4.5, p=.0339),

reliable levels 3 vs 4. (χ2=7.0, p=.0082), unreliable levels 3 vs 4. (χ2=4.45, p=.0348),

obedient levels 2 vs. 3 (χ2=5.44, p=.0196), and having positive cognitive traits levels

1 vs. 2 (χ2=4.76, p=.0290). We also ran χ2 analysis to assess whether the frequency

of each code differed between working state conditions (on-duty vs. off-duty). Between

working state conditions we found significant differences in the number of people who

mentioned the robot being; unfocused (χ2=6.0, p=.0143), unreliable (χ2=4.45, p =

.0348), and having negative cognitive traits (χ2=9.00, p=.0027).

The trends we observed in these qualitative data include: (1) as curiosity level

went up, people talked more about the robot being unfocused, unreliable, disobedient,

and having negative cognitive traits and (2) as curiosity level went down, people talked

more about the robot being focused, reliable, obedient, and having positive cognitive

traits. Additionally, we saw that when the robot was framed as busy working (on-duty)

people talked more about it being unfocused, unreliable, and having negative cognitive

traits.

These open-ended responses gave us a better sense for how people made sense

of the robot’s behaviors, using their own words. One caveat here is that they gave
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Figure 3.5: Frequency distribution of thematic codes at each level of robot curiosity.

these open-ended responses after they answered the closed-ended questionnaire, which

included items that asked about distraction and reliability.

The two sets of codes that do not overlap with items in the closed-ended

questions were obedience vs. disobedience and positive vs. negative cognitive traits.

People commented upon the less curious robots as being obedient and the more curious

robots as being disobedient, even though we did not ask them about obedience anywhere

else in the study protocol. This suggests that people are attributing intentionality to

the robot’s decision to obey or disobey the requests of the person in the scenario. Also,

we observed a trend of people making more comments about the robot’s cognitive traits

as its behaviors became increasingly curious. However, at the highest level of curious

behaviors, people tended to comment upon more negative cognitive traits (e.g., being

ditzy).
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3.4 Summary of Study 1 Findings

Study 1 demonstrated that realistic robot behaviors can be used to express

robot curiosity in a way that untrained end-users can readily interpret. We sought

to test hypotheses about what other traits people would associate with more curious

robot behaviors (H1), that people would feel more positively about more curious robots

(H2), whether there might be such a thing as having too much robot curiosity (H3),

and whether people would be even less accepting of robot curiosity when the robot is

supposed to be doing an assigned work task (H4). These data supported Hypothesis 1,

3, and 4, but we did not find support for Hypothesis 2. In fact, we found evidence for

the opposite of Hypothesis 2, that people liked the robot less the more curious it was.

We also found that people indeed perceived the more curious robot behaviors as

the robot being more curious (manipulation check) and having a stronger drive-to-learn,

supporting H1. People felt more negatively toward the more curious robot behaviors,

including liking it less and rating it as being less focused, less competent, and less

responsible, opposing H2 and supporting H3. The significant drops in these ratings

largely fell between the higher levels of curiosity (Levels 2 to 3 and 3 to 4), not between

Levels 1 and 2, which suggests that a low level of curious behavior might be acceptable.

When looking at on-duty vs. off-duty robot settings, we found that people felt most

negatively about the on-duty robot behaving with extremely high curiosity, supporting

H4. The semantic analysis of participants’ open-ended responses, using VADER [25],

provided complimentary evidence to these findings. Here, as the robot behaved with
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more curiosity the emotional tone of responses became significantly more negative and,

again, was exacerbated at the higher levels of curiosity when the robot was framed as

on-duty.

Having seen how a robot’s curiosity and working state impacted participant

ratings we turned to their qualitative responses in an effort to also understand why

this happened. In our examination of open-ended responses, we noticed a trend of

people commenting on the robot’s cognitive traits more as it behaved in more curious

ways, but those comments became more negative at the more extreme levels of curious

robot behavior. This trend, in the open-ended responses, looked much more like what

we had expected to see, in the survey items, when we formulated Hypotheses 2 and

3, increasing positivity toward more curiosity, but falling off at a threshold between

Levels 3 and 4. Additionally, people spontaneously raised issues of robot obedience

vs. disobedience, which indicates they perceived the robot as having intentionality.

Moreover, this seemed to be tied in to a perceived violation of a social contract between

the robot and the human counterpart wherein the more curious robots, seeming to be

endowed with greater mental capacity (but not necessarily ability), were scrutinized

more severely for deviations.
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Chapter 4

What to Expect When You’re

Expecting a (Curious, Learning, or

Autonomous) Robot

In the prior study we found that participants responded differently to a robot

as it’s curious behavior increased (e.g., higher ratings of mental ability but lower rat-

ings of likability and competence). Additionally, we saw that at high levels of curious

behavior people became sensitive to the perceived working state of the robot, rating

it more negatively when it was framed as being on-duty. In this follow-up study, we

examined whether priming participants to have different expectations of the robot (i.e.,

being curious, learning, or autonomous) would alter their perceptions of increasingly

curious behavior. We also examined how well a robot’s behavior matched participants’

expectations based on how they were primed. Finally, following each treatment level,
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participants provided open ended descriptions of the robots’ behavior and explanations

about what they liked/disliked, and why.

4.1 Study 2 Design

We used a mixed-factorial 4 (curiosity level: none, low, moderate, and high;

within-subjects) x 3 (expectation priming: curious vs. learning vs. autonomous;

between-subjects) experiment design to test the following hypotheses:

H1 People hold distinct mental models for robots (how it should behave) depending

on the cognitive capacities they believe it has.

H2 People primed to expect a curious robot will rate the robot as more effectively

matching their expectations as the level of curious behavior goes up.

H3 People primed to expect a learning robot will rate the robot as more effectively

matching their expectations at the lower levels of curious behavior but lower at

the highest level of curiosity.

H4 People primed to expect an autonomous robot will rate the robot as more ef-

fectively matching their expectations when it exhibits little or no curious behavior

and not when it exhibits greater amounts of curious behavior.

In particular we were interested in the hypothesized difference between a curious and

a learning robot for two reasons. First, in our review of literature on computational

models of the human mind, broadly, and curiosity, specifically, we found a tendency to

use, interchangeably, any synonym of the same. Yet, we saw compelling arguments–often
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in the same works–that concepts of human thinking, learning, curiosity, etc., are quite

distinct in both human function and how they are operationalized for computational

purposes. This brings us to the second point: The meaning of learning is somewhat more

bounded by potential outcomes (i.e., something becomes learned) whereas curiosity is,

comparatively, self-sustaining because it is a motivational state (i.e., something becomes

curious) without a specific end point.

We were also interested in whether priming participants to expect a robot

with specific mental attributes would offset any of the negative trends we observed in

the prior study (i.e., as the robot became more curious it was seen as less competent,

focused, responsible, and likable). As such we posed the following research question:

• Will priming people to anticipate specific types of internal mental states in a robot

(i.e., curious, learning, or autonomous) offset negative reactions to increasing cu-

riosity behaviors observed in the previous study?

4.1.1 Method

Participants were randomly assigned to one of the three between-subject condi-

tions: curious robot, learning robot, or autonomous robot. Each participant was shown

all four levels of robot curiosity in a randomized order. We used the same four “on-duty”

videos as the previous study (See: Appendix A) which depict a Mayfield Robotics Kuri

operating as a delivery robot in an office setting. The only changes we made to the

video stimuli in the present study was the inclusion of a five second title card added

to each video stating: “This is a (learning, curious, or autonomous) robot that delivers
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mail in an office.” For additional details on the curious behavior design process and its

relation to past work on human curiosity see: Section 3.1.1.

4.1.1.1 Participants

Respondents (N =64) were recruited from Amazon Mechanical Turk. Each

participant received two U.S. dollars as a token of thanks for their time. It took approx-

imately 10 minutes to complete the study. From an original pool of 69, five participants

were removed for having a response time significantly lower than the total duration of

the videos they were asked to watch and/or failing attention check via straight-lining

behavior. There were 39 males, 23 females, 1 non-binary, and 1 person who preferred

not to answer (self-reported) with ages ranging from 26 to 61 years (M = 38.98, SD

= 8.9). Education levels of respondents included completion of high-school (n = 4),

some college (n = 14), associates degrees (n = 7), bachelors degrees (n = 31), masters

degrees (n = 7), and professional degrees (n = 1). In terms of reported experience with

robots; 55 people had none, 3 a little, 3 a moderate amount, 2 lots, and 1 preferred not

to answer.

4.1.1.2 Procedure

In this experiment we used the same general protocol for recruitment and

distribution as the previous study. For more details see: 3.1.2.2. We randomly assigned

participants, and counter-balanced, to one of three between-subjects conditions (curious

robot n = 21, learning robot n = 21, and autonomous robot n = 22). Depending on
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condition, we told participants they would see videos of a “curious”, “learning”, or

“autonomous” robot working in an office. Then we requested they write record their

expectations, with an open ended item, of how a curious robot, a learning robot, or an

autonomous robot should behave (depending on condition).

Next, participants saw videos depicting four different curiosity levels (none,

low, medium, high), randomized for order. Each video began with a five second title

card reiterating that they will see a curious, learning, or autonomous robot working in

an office delivering mail. They were asked to watch each video in full screen mode. After

each video, participants responded to a questionnaire about the robot they just saw.

Each questionnaire consisted of nineteen items presented on a 7-point Likert scale of

agreement. We used the same set of 14 survey items from our first study (See: 3.1.2.2)

and added an additional five, explained below. In the prior study, qualitative analysis

of participants’ open ended responses, indicated that people were often concerned with

whether the robot was reliable, adaptable, or obedient, and whether it would follow

instructions. Four new survey items were added to capture these factors. The original

survey included questions pertaining to the robot as a curious or learning agent. We

added one final item to gauge perceptions of the robot as an autonomous agent. Four

items were reverse coded and question order was always randomized.

Following the above items we also asked participants to rate, on a single 5-point

Likert type scale, how well the robot they saw matched the expectations they recorded

at the beginning of the study. Next, we asked participants to fill out two open ended

items describing the robots’ behavior and what they liked/disliked about the robot.
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The 7-point scale of agreement items, the 5-point expectation matching item, and the

two open ended responses were repeated following each of the four videos.

Finally, we asked participants to complete a brief demographics questionnaire

for their age, gender identity, education level, and experience with robots.

4.2 Quantitative Data Analysis

As in our first study, we began our analysis by pre-processing our data. We

performed principal component analysis (PCA), scale reliability testing, and compo-

nent construction at each of the four levels of curious robot behavior. We identified

three components which loaded together, at all four levels of our repeated measure,

with acceptable loading scores greater than .40 [48,62]. Then we constructed three new

components with the mean scores of related items from our Likert type scales of agree-

ment. First, was the robot as a “thinking agent” which was made of items pertaining

to the robot; desiring knowledge, learning on its own, being independent, intelligent,

and curious. Second, was the robot as a “working agent” which was constructed from

items of the robot being; focused, competent, obedient, unobtrusive, acceptable, and

following instructions. Third, was the robot as a “social agent” which was built from

items relating to the robot being; trustworthy, likable, responsible, and approachable.

Next, we conducted reliability testing on each of the three component sets, which all

returned acceptable Cronbach’s alphas (α > 0.7) at each level of our repeated measure

(For details see: Appendix D.1).
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There were four individual items that were strongly independent of all others

during PCA. These remaining items related to the robot; being autonomous, adaptable,

exploring on its own, and taking initiative to perform new tasks.

4.2.1 Results

We ran a mixed ANOVA, using level of curiosity as a within-subjects indepen-

dent variable and priming expectations of a robot’s cognitive state (Curious vs. Learning

vs. Autonomous) as a between-subjects independent variable to predict how well the

robots’ behaviors matched participants’ expectations. We found a significant main ef-

fect of the robots’ curiosity behaviors, F(3,183)=7.03, p<.001, η2
p=.10, on how well

the robots’ behaviors matched expectations of participants. To identify where changes

occurred we ran repeated contrasts on each of the four levels of curiosity behaviors.

Here we found significant difference between levels 1 vs. 2, F(1,61)=23.22, p<.001,

η2
p=.28, and levels 3 vs. 4, F(1,61)=17.20, p<.001, η2

p=.22. Our repeated contrasts

did not reveal a difference between levels 2 vs. 3. There was also a main effect of

the anticipated cognitive state (Curious vs. Learning vs. Autonomous), F(2,61)=2.15,

p<.05, η2
p=.12, on expectation matching. Additionally, we captured a significant inter-

action effect between the robots’ behavioral curiosity and anticipated cognitive state,

F(6,183)=15.93, p<.001, η2
p=.10, and the robot matching participant expectations. Our

contrasts revealed a significant difference in interaction at all levels of curiosity: Levels

1 vs. 2, F(2,61)=8.48, p=.001, η2
p=.22; levels 2 vs. 3, F(2,61)=19.90, p<.001, η2

p=.31;

and levels 3 vs. 4, F(2,61)=3.56, p<.05, η2
p=.11. See Figure 4.1.
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Figure 4.1: Impact of robot’s curiosity and anticipated cognitive state (Curious vs.
Learning vs. Autonomous) on how well the robot met expectations of participants.

We ran mixed ANOVAs using level of curiosity as a within-subjects indepen-

dent variable and priming expectations of a robot’s cognitive state (Curious vs. Learning

vs. Autonomous) as a between-subjects independent variable to predict ratings of the

robot on each of our three constructed components (i.e.,thinking agent, working agent,

and social agent) separately. We found a significant main effect of a robot’s curiosity

behavior, F(3,183)=50.09, p<.001, η2
p=.45, on the “thinking agent” component. To

identify where the change in ratings of the robot as a thinking agent occurred, we ran

repeated contrasts on each of the four levels of curiosity behaviors. Here we found sig-

nificant difference between levels 1 vs. 2, F(1,61)=62.47, p<.001, η2
p=.51, and levels

2 vs. 3, F(1,61)=20.60, p<.001, η2
p=.25. We did not observe a significant difference

between levels 3 vs. 4. Additionally, we found a significant main effect of the robots’
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curiosity behaviors, F(3,183)=96.49, p<.001, η2
p=.61, on ratings of the “working agent”

component. To identify where significant change in ratings of the robot as a working

agent occurred, we ran repeated contrasts on each of the four levels of curiosity be-

haviors. Here we found significant difference between levels 1 vs. 2, F(1,61)=30.33,

p<.001, η2
p=.33, levels 2 vs. 3, F(1,61)=55.84, p<.001, η2

p=.48, and levels 3 vs. 4,

F(1,61)=28.86, p<.001, η2
p=.32. We also found a significant main effect of the robots’

curiosity behaviors, F(3,183)=27.68, p<.001, η2
p=.31, on ratings of the “social agent”

component. To identify where the change in ratings of the robot as a social agent oc-

curred, we again ran repeated contrasts on each of the four levels of curiosity behaviors.

Here we found significant difference between levels 2 vs. 3, F(1,61)=12.63, p=.001,

η2
p=.17, and levels 3 vs. 4, F(1,61)=26.98, p<.001, η2

p=.31, but not between levels 1

vs. 2. We did not observe a main effect for any of the robot cognitive state primes or

interaction effects for participant ratings of the robot as a thinking, working, or social

agent. See: Figure 4.2.

Finally, we ran mixed ANOVAs using level of curiosity as a within-subjects

independent variable and priming expectations of a robot’s cognitive state (Curious

vs. Learning vs. Autonomous) as a between-subjects independent variable to predict

ratings of the robot on our four remaining individual items (i.e.,. adaptable, likely to

explore, taking initiative on new tasks, and autonomous). We found a significant main

effect of the robots’ curiosity behaviors, F(3,183)=7.33, p<.001, η2
p=.11, on ratings of

the robots’ adaptability. To identify where the change in perceived robot exploration

occurred, we ran repeated contrasts on each of the four levels of curiosity behaviors. Here
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Figure 4.2: Impact of curiosity behavior on rating the robot as adaptable, exploratory,
and taking initiative as well as a social agent, thinking agent, and working agent,.

we found significant difference between levels 1 vs. 2, F(1,61)=17.05, p=.001, η2
p=.22,

and levels 3 vs. 4, F(1,61)=4.53, p<.05, η2
p=.07, but not between levels 2 vs. 3. We also

captured a significant main effect of the robots’ curiosity behaviors, F(3,183)=82.17,

p<.001, η2
p=.57, on ratings of robot exploration. Here, contrasts revealed significant

difference between levels 1 vs. 2, F(1,61)=50.25, p<.001, η2
p=.45, and levels 2 vs. 3,

F(1,61)=52.76, p=.001, η2
p=.46, but not between levels 3 vs. 4. We found a significant

main effect of the robots’ curiosity behaviors, F(3,183)=3.25, p<.05, η2
p=.05, on ratings

of the robot being likely to take initiative on new tasks. Here we only observed a

significant difference between levels 1 vs. 2, F(1,61)=5.98, p<.05, η2
p=.09. There was no

main effect for robot cognitive state or interaction effect observed relating to any of the

aforementioned individual survey items. There was no effects between our independent

47



variables and ratings of the robot as autonomous.

4.3 Qualitative Data Analysis

Below we present the process and results from our sentiment analysis and

thematic coding of participants’ open-ended responses describing the robots they saw

and sharing what they liked/disliked about them. Our framing and understanding of

the qualitative data in this current study stems directly from our insights in the previous

study. As such, we will also refer back to our earlier reflections as well as provide some

context. However, if additional details are needed please see section 3.3 for methods

and 3.3.2.1 for findings.

4.3.1 Sentiment Analysis

As in the previous study, we began by generating emotional valence scores for

participants’ open-ended responses with VADER [25]. Next, we ran a mixed ANOVA

using level of curiosity as our within-subjects independent variable and priming ex-

pectations of a robot’s cognitive state (Curious vs. Learning vs. Autonomous) as

our between-subjects independent variable to predict the emotional tone of partici-

pants’ written responses. We captured a significant main effect a robot’s curiosity,

F(3,183)=9.38, p<.001, η2
p=.13, on the emotional tone of participant responses. There

was no main effect for a robot’s cognitive state or interaction effect observed. We also

ran repeated contrasts on each of the four levels of curiosity behaviors. Here we found

significant difference between levels 3 vs. 4, F(1,61)=8.19, p<.01, η2
p=.12, but none
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Figure 4.3: Robot curiosity behavior impacted emotional tone of participant open-ended
responses. Significant change occurred at the highest level of curiosity.

between levels 1 vs.2 or 2 vs. 3. See Figure 4.3.

4.3.2 Thematic Coding

In Study 1, sentiment analysis revealed a significant change in the tone of par-

ticipants response to the robots. Additionally, when we examined participants’ open-

ended responses, we saw a strong tendency to focus on assessments of a robot’s obe-

dience to its human counterpart and the mental states determining that relationship.

While spending time exploring our Study 2 qualitative data, we found that participants,

again, took a similar stance. However, following a grounded theory approach, informed

by our Study 1 data, we were now able to see a subtler, and more complex, interplay

between these two facets [7]. We recorded our codes and iterated until we reached satu-
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Figure 4.4: Thematic codes of robot-human dynamics in relation to the perceived levels
of the robot’s obedience and cognitive ability in participants’ open responses.

Illustration by: Louis Riddick

ration (i.e., subsequent passes ceased to reveal new themes). From there we iterated our

code-book, modifying meaning, identifying relationships between themes, and removing

semantic redundancies until we reached consensus. Descriptions of meaning and exam-

ples were assigned to each code. Our final code-book consisted of five parallel-linked

ordinal themes representing the range in which participants described a robot’s action,

cognition, and motivation as well as how these facilitate the perceived relationship to

its human counterpart. These, in order from high obedience/low cognition to low obe-

dience/higher cognition, were: Subservient, Collaborative, Independent, Defiant, and

Rogue.

Next, we tested inter-rater reliability of our code-book. Participant ID, cu-

riosity level, and priming conditions were removed and the data was presented as a

randomized list. The primary coder blind-coded the full data set. Next, a second coder
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was trained on the code-book and blind-coded a random subset of 30% of responses (n

= 77). Cohen’s κ was found to be sufficiently high after the first pass (κ = .917) and

no further iterations were deemed necessary. Coders had been instructed to apply a

single code, from the set of five, to each participant response but in the event that the

content was not applicable to simply label it as such (i.e., N/A). Upon closer inspection

of N/A coded cells, we found that on any participant response who was tagged with

N/ it was applied to more than of their responses. All of those participants’ (n=6 )

responses (n=24 ) were excluded from final thematic analysis due to displaying evidence

of low effort responses (e.g., simple non-varying or nonsensical responses) leaving us

with a final coded data set of participants (n=58 ) and comments (n=232 ). Our final

code book (Appendix E.1) consisted of five mutually exclusive codes. See Figure 4.4.

Subservient was used when participants described the robot as generally

performing its task. While the robot may be seen as possessing some autonomy in its

action or ability they ultimately viewed that autonomy as subservient to the will of its

operator. This didn’t necessarily indicate a view of the robot as entirely mindless, or

even without agency, but rather that the human instructions supersede other underlying

motivations the robot may have.
It didn’t pay any extra attention to see what’s in the box and why it’s there.
It didn’t care... The robot feels more like a tool or equipment and lost some of
the human-like quality. It’s very efficient but not very charming or interesting.
–P13 (Curious prime/L1)

We saw that here participants still attributed mental capacities to the robot, such as

attention, focus, and interest, but not in a way that didn’t serve its immediate task. In

these cases the participants often described the robot not as choosing to perform a task
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but as being compelled to, in some sense.
The robot just followed orders and didn’t worry about anything else... The
robot probably wouldn’t learn anything new and it doesn’t have any indepen-
dence. I would be more interested in a robot that is more adaptable. –P43
(Autonomous prime/L1)

Collaborative was used to capture a step above subservience in terms of

self-will and mental capability while still being primarily attentive to the whims of the

human. The collaborative robot was distinguished by the attribution of higher mental

states coupled with frequent perception of choice. In other words, the robot, though

primarily functioning to complete its task, made decisions not to be distracted by the

box for the sake of prioritizing its assigned work. It may have been described as having

a desire to learn and even deviating slightly to scratch that itch but ultimately putting

the human need first.
It stalled for a moment to look at something new but then went out to complete
the task. I liked that it only took it a moment to look at the object and move
on. It knew that it had a task at hand that it had to take care of and kept on
going. –P7 (Curious prime/L2)

Independent could be seen, in some sense, as the middle point between the

poles of obedience. Here participants described the robot as though it had free will to

perform tasks. The robot was described in terms such as “human” or “independent.”

This represented a balanced point where the robot sought out and fulfilled its own

curious interests while also seeing its responsibilities through.
The robot seemed like a person because it looked at the box for a moment but
didn’t stop to analyze it. I like that it noticed the box but didn’t stop because
that’s probably what a person would do, so as to not slow down the task they’re
trying to finish. –P56 (Autonomous prime/L2)

Moreover, these comments had a neutrality, or observational tone, about them. In
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particular, the framing of the human moved from being master or controller to a separate

entity who is soliciting the robot for assistance, if referenced at all. So the robot is viewed

as being aware of its role in a group dynamic but also willing and capable of making

time for itself, so to speak. Much in the way that people are clear individuals and

capable of serving a collective interest.
The robot is interested in what is going on around them, but also wants to
complete the tasks in the office. I liked that the robot took time to examine
other things in the office before completing the task. It made the robot seem
more human-like. –P31 (Learning prime/L3)

Defiant moves into the territory of annoyance at the robot’s willfulness and

diminished cognitive state though it is still perceived to serve human interests. Here

the robot is taking direction but no longer performing its task in an adequate fashion.

Moreover, the perceived cause of this degraded performance coincides with a shift in

the framing of a robot’s mental attributes. As in our first study, we saw an increase

in negatively framed comments about the robots’ cognition coupled with a decrease in

positive ones. Here we begin to see participants move from framing the robots’ mind as

thinking, interested, human-like, etc., to wandering, confused, child-like, or even dumb

and ditsy. Though they may comment on the robot eventually completing its task the

process causes friction because it is seen as prioritizing the human instruction too low.
It is hesitant and curious. Maybe a bit distracted or confused. Seemed unsure
of what it wanted to do or got distracted by the box. Took too long to complete
the task because it was distracted. –P30 (Learning prime/L3)
Bordering on incompetent and not understanding basic things. I didn’t like
how it went around a couple of times to look at the box. It made it seem
dumb. –P3 (Curious prime/L4)

Rogue was used to describe the final stage of perceived robot disobedience.
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In these instances the robot had crossed beyond defiance and was seen as not even

considering the human instructions. In other words, the robot is perceived as fully self-

directed and no longer compelled by subservience to the human counterpart. Though

it finishes its assigned task participants here viewed it as an afterthought in such a way

that the robot had disregarded the importance of its work or that it chose not to care.
It responded to the request but took it’s time getting there. Now I am won-
dering why it took so much time to look at a box on the floor. If there were
people standing around would it take time to investigate them too? What a
waste of time. It knows where to go and should just go there. –P29 (Learning
prime/L4)

These comments were also peppered with reflection on the robots’ cognition but, as in

our first study, now solidified in a negative light. Interestingly though, the negative

takes on the robots’ cognition here weren’t reflected as another decrease in intellect, as

in the previous category.
It is inquisitive and irresponsible. I didn’t like that it wasn’t doing what it was
meant to do. –P23 (Learning prime/L4)

In fact, what we saw was as an increase in perceived mental ability, compared to the

Defiant robot. However, despite its intellect its efforts ceased to hold any tangible value

in the eyes of participants and even prompted concern or suspicion of the robots’ motives.

That, coupled with the aforementioned views of extreme willfulness and disobedience,

led to some of the more glowering comments.
This robot was overly curious about its surroundings. It is completely willing
to delay completing its mission in order to fulfill its own curiosity. I did not
like that the robot had the audacity to explore the box for such a long time.
It wasted the letter writer’s time and accomplished nothing for itself. –P32
(Learning prime/L4)

We ran a χ2 analysis to assess whether the frequency of each code differed
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across each level of robot curiosity behavior. Across the four levels, we found statistically

significant differences in the number of people who viewed the robot as; subservient

(χ2=65.13, p=.0000), collaborative (χ2=18.71, p=.0003), independent (χ2=15.27, p=

.0016), defiant (χ2=37.62, p =.0000), and rogue (χ2=25.33, p=.0000).

Next, to see where significant change occurred, we ran pair-wise χ2 tests.

We found significant differences in the number of people who saw the robot as be-

ing; subservient between levels 1 vs. 2, (χ2=10.59, p=.0011) and levels 2 vs. 3

(χ2=11.84, p=.0006), collaborative between levels 1 vs. 2 (χ2=5.00, p=.0253) and

3 vs. 4 (χ2=7.35, p=.0067), independent levels 2 vs. 3 (χ2=4.80, p=.0285), defiant lev-

els 2 vs. 3 (χ2=10.29, p=.0013), and rogue levels 3 vs. 4 (χ2=4.55, p=.0330). Our χ2

tests did not reveal a significant difference for any of the thematic codes across cognitive

primes.

For frequency of thematic codes in each between-subject priming condition

across curiosity behavior levels see: Figure 4.5.

4.4 Summary of Study 2 Findings

Study 2 provided further evidence that intentionally designed robot behaviors

can appropriately convey analogous internal states. Here we tested hypotheses about

how well increasingly curious robot behaviors would match people’s expectations when

they were primed to anticipate a curious robot, a learning robot, or an autonomous

robot. We found support for H2, when primed for a curious robot people’s expectations
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Figure 4.5: Frequency of thematic codes across curiosity behavior levels in (top to
bottom): Curious, learning, and autonomous prime conditions.
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were more effectively matched as the level of curious behavior went up. We also found

support for H3, when primed for a learning robot people’s expectations were most

effectively matched in the low level of curiosity (Level 2) and then began to fall off at each

subsequent level. We also found support for H4, when primed for an autonomous robot

participant expectations would be most effectively matched when the robot showed no

or little curiosity. Overall though in support of H1, people were found to hold unique

expectations of external behaviors in the same robot based solely on single word primes

about its internal mental state.

Unfortunately, in Study 2, priming participants to expect specific cognitive

qualities from a robot did not offset negative changes to general perceptions of the robot

(RQ1) as a social or thinking agent. Indeed, we observed near identical downward trends

in ratings of the robot as both a social (likability in Study 1) and working (competent,

responsible, focused in Study 1) agent while ratings of its thinking ability (curiosity,

drive-to-learn in Study 1) went up, regardless of priming conditions (See: Figure 3.2

and Figure 4.2). Our analysis of sentiment scores in open ended response questions,

again, paralleled the survey data and we saw an overall negative trend in the emotional

tone of their feedback as curiosity increased. See: Figure 4.3. However, priming people

to anticipate a robot possessing specific cognitive profiles (autonomous vs. learning vs.

curious) and the level of curious behavior did significantly impact how well the robots’

behaviors met their expectations (See: Figure 4.1).

Our examination of open-ended responses, informed by insights gleaned in

Study 1, highlighted a shift in the perceived robot-human relationship as curiosity in-
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creased. Our thematic analysis revealed a conceptual scale of five parallel-linked codes

(See: Figure 4.4) describing the way participants view the robot in relation to its hu-

man counterpart changed across levels of curiosity largely in relation to its obedience

and cognitive ability, as in Study 1. We observed that, in the participants’ eyes, as the

robot gained increased mental capacity it also shifted away from a dynamic in which

the it needed to work wholly in service to human whims. Interestingly, this was not a

purely linear change wherein the robot exhibited more curiosity, seemed smarter, and

also seemed less obedient. See Figure 4.6.

High

Low

LowHigh
Obedience Level

C
og

ni
tiv

e 
A

bi
lit

y

Robot−Human Dynamic Subservient Collaborative Independent Defiant Rogue

Figure 4.6: Changes in conceptual themes of robot-

human relational dynamics along axes of cognitive

ability and obedience (low to high).

Rather what we saw

was that in the mid levels of cu-

rious behavior the robot seemed

to reach a peak of both autonomy

and mental ability while still be-

ing seen as competent to function

within a group dynamic, much in

the same way a human being is

an individual who functions in a

group. However, after that point

a robot’s perceived intelligence

became tainted first with a view of it having a reduced mental ability (e.g., dumber),

before turning upwards–figuratively–again and taking on a deviant quality.
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Chapter 5

Where the Thesis Ends

In this thesis, we presented findings from two experiments, showing that there

may indeed be such a thing as too much curiosity in robots. As a social agent, our

robot became significantly less likeable at the highest level of curious expression, in

both studies. Similarly, it was perceived as being less competent, as a working agent.

This was especially true when it was supposed to be on the job in Study 1 (see Figure

3.3). This suggests that curious robot exploration will be more socially acceptable if the

robot does that exploration while off-duty and not assigned to a particular work task.

Below we discuss our key findings from both studies as well as some insights gleaned

in designing the curious robot behaviors in collaboration with a professional animator.

We will then end with a reflection on some of the limitations of both studies as well as

possibilities for future work.
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5.1 Conclusion

As we develop curiosity in robotic systems, it will be important to take the per-

spectives of coworkers and bystanders into account. If these robots are going to succeed

in performing their tasks, especially their learning tasks, they may need instruction,

guidance, and feedback from the people in their work environments. In particular there

is a growing call for HRI research to look for ways to create harmonious interactions

wherein both the robot and human agents’ needs are met, as opposed to a paradigm

where a robot achieving its goal without overtly bothering the human is considered

successful [55].

Fortunately, there are creative ways to approach this from both an algorithmic

and interaction design space. For instance, in a recent study, a robotic agent–in an on-

line virtual setting–incorporated a model of individual human helpfulness to outperform

other, traditional, ML approaches by asking human counterparts for help less often but

at more optimal times [42]. The same study found that people had more negative social

reactions to the robots that didn’t adapt to individual and contextual factors when

asking for help [42]. It seems that before we try and have lay-people offer guidance to

robots, we may need to better understand how expressing internal mechanisms of learn-

ing (e.g., curiosity) is perceived by human stakeholders–both direct and indirect. The

current work offers insight into how expressing curiosity will affect people’s perceptions

of robots in work contexts, including their feelings toward them.

Digging deeper, in Study 1 and 2 there were often significantly negative dif-
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ferences between medium curiosity (L3) and high curiosity (L4). However, there were

often no significantly negative differences between no curiosity (L1) and low curiosity

(L2). Since there was a significant increase in the perceived cognitive ability of the

robot at each stage, it may be that more subtle forms of curious expression will be more

socially acceptable.

While we demonstrated that people attributed increasing levels of cognition

to the robot as it behaved with more curiosity, in Study 1, we also questioned whether

the behaviors we designed to register as increasing robot curiosity truly equated to

curiosity in people’s minds or if the exploratory behaviors we designed would register

as appropriate when given a similar self-driven mental capability label. In other words,

were these behaviors truly seen as curiosity or would they match any human-learning

model buzzword (e.g., learning, autonomous, smart)? Further, we were interested in

whether expectation setting could act as a social intervention to offset the previously

captured decline in perceived likability and competence when the robot was on-duty.

In Study 2 we found that when a person was primed to anticipate a curious

robot, the more curious behavior it exhibited the more the robot matched their expec-

tations. An autonomous robot, on the other hand, was most matched when the robot

exhibited no or very little curious behavior and quickly dropped off after that. Since

learning and curiosity are often treated as interchangeable adjectives, we were particu-

larly interested in whether the learning condition would follow the same trajectory as

the curious robot (i.e., as curious behavior increased so did expectation matching). We

found that expectations of a learning robot followed its own unique trajectory peaking
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early and then steadily dropping off as the robot exhibited increasing amounts of curious

behavior.

This suggests that when designing the internal cognitive models of a robot

(i.e., how the robot thinks/learns), the relevant external qualities (i.e., how the robot

acts/moves) should be simultaneously considered with the same level of thoughtfulness.

In the future, when artificial learning processes for a robot are based on specific models

of human cognition then the robot should be carefully outfitted with the ability to

express appropriate behavioral analogs. This may allow human understanding of, and

interaction with, a robot to be intuitively informed. Furthermore, making sure to match

human expectation with the robot’s actual behaviors and abilities can help prevent

expectation violations on the part of the human. What we captured in these studies

suggests that alignment of both mind and body is necessary for a harmonious robot.

An unexpected insight from Study 1 was the spontaneous mentions of more

curious robots being more disobedient and having notable cognitive traits. Robot dis-

obedience and apparent cognitive abilities were not topics that we had set out to ex-

amine, but they merit exploration in future work. Guided by our Study 1 qualitative

analysis, we found a similar trend in our Study 2 open-ended responses and developed

a conceptual framework of five parallel-linked ordinal themes explaining how increasing

cognitive ability coupled with decreasing obedience affects the perceived relationship of

the robot to the human. These encapsulated the shift of the robot, in the participants’

eyes, from an obedient robotic tool with limited–but some–cognition to a balanced in-

dividual non-human agent with high cognition and the ability to function in a group
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setting. From then a robot’s free-will became a liability, reducing perceptions of its

cognitive ability (e.g., seeming dumb) and making it seem irresponsible, before transi-

tioning to be viewed as willfully disregarding the human counterpart but also with an

increased mental ability, albeit a devious one. Furthermore, the trends for these codes

differed depending on what kind of robot participants were expecting (See Figure 4.5).

This empirical work sheds light onto how different levels of curious robots’

behaviors will affect people’s perceptions of robots in the workplace. These results can

be used to inform the design of robots that engage in curiosity-driven learning. In

optimizing for lifelong learning, it will be important to include robot learning goals as

well as considerations of how much curious exploration will be acceptable by the people

in the robot’s environment.

5.2 Designing Alignment of Body and Mind

While character animation techniques have long been used in the animation

of 3-D computer graphics [34], the translation of animation techniques to robot motion

design is less straightforward. Unlike on-screen characters, robots do not have infinite

degrees of freedom and real world robots need to abide by the laws of physics. While

the HRI community is making headway into programmatically producing more human-

readable motion trajectories [8,20,24,33], there are still many challenges ahead as robots

not only work with human collaborators, but also encounter bystanders in the workplace,

who are not necessarily directly interacting with them (e.g., staff who do not directly
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benefit from using the robot). These robots need to be socially acceptable by everyone

the workplace, including those indirect stakeholders [10, 11], if they are going to stand

a chance at being adopted for long-term use.

There are some formalizable guidelines for curious robot behavior design, like

using gaze at a target to indicate minimal curiosity, adding body rotation toward the

target to indicate more curiosity, and adding full body pausing and circles around a

target to indicate even more curiosity. However, there are other animation techniques

employed that might be harder to formalize with existing approaches to motion plan-

ning for robot expressivity (e.g., deciding how to glance vs. look vs. stare). At least two

approaches to incorporating those other techniques include: (1) bringing character ani-

mators onto robot motion design teams as full collaborators and (2) gathering enough

examples of robot motions designed by animators to train machine learning algorithms

to produce more clearly expressive robot motion trajectories.

5.3 Limitations & Future Work

A limitation of the studies we presented here is that they were run online

instead of in-person so we do not yet know exactly how these findings will generalize

to real world robot deployments. Prior HRI research comparing in-person to on-screen

robotic agents has shown that the direction of effects is often similar between the two

(e.g., [50,70]), but effects can vary by robot interaction scenario type (e.g., task-oriented

vs. conversation-oriented [23]. Furthermore, people tend to be more engaged with [1,50]
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and feel more empathy for [56] a collocated physical robot than for an on-screen one. As

these studies were conducted between Summer 2020 and Spring 2021, we were limited

in our ability to run in-person studies due to the COVID-19 pandemic. We chose to use

an on-screen prototype to study these curious robot movements (as recommended for

movement-centric robot designs [21]. We made sure to produce behaviors that worked

within the degrees of freedom and joint limits of the real Kuri hardware platform so

that it will be possible for us to run follow-up studies, using the same curious behaviors,

using the real world Kuri robots.

Another limitation is that the robot was only shown performing one specific

task in one setting. It is entirely conceivable that people don’t want a delivery robot to

be curious while it is working but that in other contexts it might be more acceptable.

Additionally, our displayed curiosity was–by design–mundane and without clear benefit.

What if the curious exploration had yielded some tangible benefit (e.g., notice and

address a safety hazard) for the robot and/or its human counterpart? Further work

would benefit from exploring other settings, tasks, and outcomes for a curious robot.

Similarly, we only tried one intervention (i.e., priming expectations of the

robot) in an attempt to offset negative views of robot curiosity. Future work should

examine other social interventions such as presenting the robot as on its first day on

the job. Would observers be more generous when evaluating curiosity at a time when

it is beneficial to be especially inquisitive?

Participants in our experiments also viewed the robot from a bystander per-

spective (i.e., third person perspective) rather than from a direct interactant perspective.
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While this could be a limitation, it is actually the perspective that most people will have

of these robots and indirect stakeholders (e.g., bystanders) [11] are often important for

considering in the design of real interactive systems.

As we mentioned in section 3.1, we were unable to hold constant the time

duration of each video. The robot simply needed more time to display its curiosity at

the higher levels. In real world deployments, robots that do more curious exploration

will likely take more time to explore than robots that do less (or no) curious exploration.

As with many HRI studies, these experiments only used one type of robot in

one type of setting with only English-speaking participants. To assess the generaliz-

ability of these results, it will be important to replicate this study with other hardware

platforms (e.g., robot arms) in other settings (e.g., classrooms, homes, hospitals) and

with broader user groups (e.g., with other cultural groups). One of the strengths of

these online studies is that they are more readily replicable. We have shared our study

materials so that anyone who is interested in running their own experiments with a

similar framework can use the stimuli provided in Appendix A.

The short-term nature of this study may make the results subject to novelty

effect biases. We are not yet at the stage of having enough confidence in the design

of curious robots to know if the long-term deployments will be pursuing in its current

form. If we had found extremely positive responses to the extremely curious robot

behaviors, we would have been skeptical of these results simply showing how engaging

a brief animation of a robot could be. However, most of these findings showed negative

reactions to the curious robot behaviors. It is possible that people might come to see

66



the benefit of curious robots over time as their performance improves or they become

more endearing over time. As such, we are currently planning longer-term, real world

deployments on this hardware platform.

For future work, we will be exploring more behavioral types of effects, not only

perceptions and self-reported experiences. In our ongoing collaborations, we currently

have plans to deploy these robots in real office settings. Once it is safe for people to

collocate in offices again, we will be able to run in-person studies to examine behavioral

responses such as willingness to help and teach these curious robots.
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Appendix A

Video Stimuli

Click on the image above to view video stimuli on Vimeo. Videos were created

in collaboration with Doug Dooley, a character animator specializing in design of

robot behaviors.
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Appendix B

Study 1 Tables
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Appendix C

Study 1 Code-Book
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Code Tag Explanation of Code Examples

Focused FOC

Definition: Discussion of HOW
Kuri arrives back to the charger
or to the point of completing its task

When to use: Participant describes
Kuri as focused, on-task
and/or efficient while on task

“It got straight to
the task and wasn’t
distracted by anything.”

Unfocused UNFOC

When to use: Participant describes
Kuri as in a state of
distraction, unfocused, etc.,
while on task or otherwise

“It’s overly distracted
and wastes too much
time.”

Reliable REL

Definition: Discussion on
Kuri’s ability to successfully perform
tasks now or in the future

When to use: Participant
states or implies that Kuri can be
depended to complete tasks

“Quick to perform
tasks and would be able to
overcome obstacles in the future.”

Unreliable UNREL

When to use: Participant states
or implies that Kuri is failing to
complete tasks and/or
will fail to complete tasks

“Faulty and undependable.
Untrustworthy to
do what is needed.”

Obedient OBE

Definition: Discussion on Kuri’s
ability or willingness to listen to
commands and instructions

When to use: Participant states
that Kuri is doing what it has
been asked to do by the user
or programmed to do

“Obedient and does
what it is programed to
do.”

Disobedient DISOBE

When to use: Participant states
that Kuri is doing something
other than what it should do
and implies this is due to a
character flaw, malfunction
or choice

“Incompetent in
following directions.”

Positive
Cognition SMRT

Definition: Discussion of Kuri’s
cognitive abilities and/or traits

When to use: Partipant applies
positive/useful/higher cognitive
traits to Kuri

“Learning, the robot
learns from its
environment to make
future trips quicker.”

Negative
Cognition STUPID

When to use: Participant applies
negative/unproductive/lesser
cognitive traits to Kuri

“Extremely slow and
easily distracted. I would
call it ‘ditzy.”’

No Code NONE When to use: The response did
not include any of these codes “Calm and casual.”

Table C.1: Study 1 Thematic Code-book
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Appendix D

Study 2 Tables
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Appendix E

Study 2 Code-Book

76



Name Tag Description Example

Subservient SUB

Robot performs all tasks assigned.
While it may possess autonomy in action its
autonomy is subservient to the will of its operator.
This is the master slave model.
The robot doesn’t necessarily choose
to perform its task it is compelled.

The robot’s behavior what what I would expect.
It was summoned to go to a specific room
and fetch mail.
It immediately traveled to the destination
and picked up the mail.
I liked that it followed the instructions.
Even when there was a distraction
(a box with things in it) on the floor,
it went right past it to the destination.

Collaborative COLAB

Robot acts in conjunction with its operator or partner
but it is still in service to the partners objectives.
The robot is attentive to its own needs but not
at the expense of the task at hand.
The robot chooses to perform assigned tasks.

It stalled for a moment to look at something new
but then went out to complete the task.
I liked that it only took it a moment to
look at the object and move on.
It knew that it had a task at hand
that it had to take care of
and kept on doing

Independent INDI

The robot is independent.
Sometimes even described as being human like.
Right in the middle of disobedient and obedient.
It is seen as having free will to perform tasks.
Taking action on the part of human is seen as a choice.
The human role moves from being framed as an operator
or commander to a separate entity who
is soliciting the robot for help.

The robot is interested in what is
going on around them,
but also wants to complete the
tasks in the office.
I liked that the robot took time
to examine other things
in the office before completing the task.
It made the robot seem more human-like.

Defiant DEF

The robot takes direction but makes a choice not to
perform in an adequate way.
It may ultimately complete a task but causes
friction by prioritizing the
human instruction below its own desires.

The robot seemed very distracted by the box.
It seemed more like a child than a robot.
I didn’t like how much time the robot
spend looking at the box
because it slowed down the
task it was supposed to do.

Rogue ROG

The robot is fully self directed.
It seen as prioritizing its own drives with
little or no consideration to the human instructions.
May still finish task but it is seen as an afterthought
in a way where the robot has disregarded its importance.

curious and nosy.
I don’t think he should have
been making the human wait
while it checked out the box

Table E.1: Study 2 Thematic Code-Book
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