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Abstract The glycyl radical enzyme (GRE) superfamily utilizes a glycyl radical cofactor to catalyze

difficult chemical reactions in a variety of anaerobic microbial metabolic pathways. Recently, a GRE,

trans-4-hydroxy-L-proline (Hyp) dehydratase (HypD), was discovered that catalyzes the dehydration

of Hyp to (S)-D1-pyrroline-5-carboxylic acid (P5C). This enzyme is abundant in the human gut

microbiome and also present in prominent bacterial pathogens. However, we lack an

understanding of how HypD performs its unusual chemistry. Here, we have solved the crystal

structure of HypD from the pathogen Clostridioides difficile with Hyp bound in the active site.

Biochemical studies have led to the identification of key catalytic residues and have provided

insight into the radical mechanism of Hyp dehydration.

Introduction
The microbes that inhabit the human body, collectively referred to as the human microbiome, cata-

lyze a diverse range of chemical reactions that can have profound impacts on human health

(Sharon et al., 2014; Joice et al., 2014; Koppel et al., 2017). The most densely populated micro-

bial environment among human body sites is the gastrointestinal (GI) tract with an estimated 1011

bacterial cells per gram (Tropini et al., 2017; Sender et al., 2016). Due to the largely anoxic nature

of the GI tract, this body site is inhabited by facultative and obligate anaerobes that perform a wide

variety of challenging chemical transformations. Recent studies suggest correlations between

changes in gut microbiome composition and diseases, such as metabolic disorders, cardiovascular

diseases, autoimmune diseases, and neurological disorders (Sharon et al., 2014; Kang et al., 2013).

Although it is clear that the gut microbiome plays a significant role in human health, the biochemical

reactions governing bacterial-host homeostasis remain unclear.

Elucidating the activities of uncharacterized enzymes present in the human gut microbiome can

enhance our understanding of this microbial community. trans-4-Hydroxy-L-proline (Hyp) dehydra-

tase (HypD) is a newly discovered glycyl radical enzyme (GRE) that catalyzes the transformation of

Hyp to (S)-D1-pyrroline-5-carboxylate (P5C) and water (Figure 1A; Levin et al., 2017). Hyp is an

abundant nutrient in the GI tract. Generated from hydroxylation of Pro residues within proteins like

collagen (Gorres and Raines, 2010), this nonproteinogenic amino acid represents the most abun-

dant post-translational modification in mammals and is also found in the human diet

(Vázquez-Ortı́z et al., 2004; Verbeken et al., 2003; Valiente et al., 1995). Bioinformatic analyses
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of metagenomes indicate HypD is one of the most abundant GREs in the healthy human gut micro-

biome, thus suggesting it plays an important role in many bacteria (Levin et al., 2017). P5C is a cen-

tral metabolite in amino acid biosynthetic pathways, providing a source of building blocks for

protein synthesis and/or of carbon and nitrogen (Figure 1A). In gut Clostridiales, Hyp enables amino

acid fermentation, also known as Stickland fermentation (Stickland, 1934). These organisms encode

HypD near a P5C reductase (P5CR), which reduces the product P5C to L-proline (Pro), which can

undergo further reduction. The formation of Pro as a downstream metabolite during Hyp fermenta-

tion by Clostridiales results in the chemical reversal of the post-translational modification of Pro to

Hyp, which was not previously thought to occur. In addition to commensal Clostridiales, HypD is

found in the prominent antibiotic-resistant opportunistic pathogen Clostridioides difficile, formerly

known as Clostridium difficile. In 2015, C. difficile was responsible for approximately 500,000 infec-

tions and 29,000 deaths, making this pathogen a major health concern (Leffler and Lamont, 2015;

Lessa et al., 2015). As a key metabolic enzyme, with no protein homolog in humans, HypD could be

a promising antibiotic target for C. difficile and other pathogens.

The discovery of HypD also revealed a previously unknown enzymatic activity, expanding the

known chemistry of the GRE superfamily. This evolutionarily ancient protein superfamily is essential

for anaerobic primary and secondary metabolism in bacteria and archaea. All GREs use a glycine-

centered radical cofactor for catalysis. Briefly, these enzymes are activated by a cognate S-adenosyl-

methionine (AdoMet)-dependent activating enzyme (AE), generating a protein-based radical on a

conserved Gly residue positioned within the GRE active site (Figure 1B; Conradt et al., 1984). The

glycyl radical in turn generates a catalytically essential thiyl radical on a conserved Cys, which

Figure 1. Hyp dehydration is catalyzed by the GRE HypD in a prominent gut microbial metabolic pathway. (A)

Anaerobic microbial metabolism of trans-4-hydroxy-L-proline (Hyp) is catalyzed by Hyp dehydratase (HypD), a

glycyl radical enzyme (GRE). The product of this transformation, (S)-D1-pyrroline-5-carboxylate (P5C), is an

intermediate in many primary metabolic pathways. Hyp can be used to generate ATP for energy metabolism,

converted to other amino acids for protein synthesis, and catabolized to form sources of carbon and nitrogen. (B)

General mechanism proposed for GREs. A [4Fe-4S]-cluster dependent radical S-adenosylmethionine (AdoMet)

activating enzyme (AE) generates a radical species on a conserved glycine residue in the GRE, using S-

adenosylmethionine and an electron, and forming 5’-deoxyadenosine (5’dA) and methionine. The glycyl radical

generates a thiyl radical species on a conserved Cys, and this thiyl radical initiates catalysis by abstracting a

hydrogen atom from the substrate (S). Upon product (P) formation, the thiyl radical is regenerated to complete the

catalytic cycle.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Transformations catalyzed by GRE eliminases.

Figure supplement 2. Enzymatic transformations involving 5-membered heterocyclic substrates.
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initiates the chemical transformation. Upon product formation, the thiyl radical is regenerated and

the radical species is returned to the Gly residue for storage.

HypD is part of the eliminase class of GREs, which includes glycerol dehydratase (GD), propane-

diol dehydratase (PD), choline trimethylamine-lyase (CutC), and the recently identified isethionate

sulfite-lyase (IslA) (Backman et al., 2017; O’Brien et al., 2004; LaMattina et al., 2016;

Kalnins et al., 2015; Xing et al., 2019). Interestingly, several of the eliminases catalyze transforma-

tions with reactivities that are also performed by adenosylcobalamin (coenzyme B12)-dependent

enzymes. For example, dehydration of 1,2-propanediol and glycerol was first discovered in the

1960s as an activity catalyzed by a B12-dependent propanediol dehydratase (Zagalak et al., 1966;

Rétey et al., 1966). Additionally, choline cleavage by CutC resembles the activity of ethanolamine

ammonia-lyase, a B12-dependent enzyme that catalyzes an analogous C–N bond cleavage of etha-

nolamine using radical chemistry (Craciun and Balskus, 2012; Mori et al., 2014). In contrast, dehy-

dration of Hyp to P5C does not have precedence in B12 enzymology, nor does the C–S bond

cleavage of IslA (Xing et al., 2019). In particular, the oxidation of a C–N bond that occurs in HypD is

unprecedented among GREs since all other eliminases catalyze the oxidation of a C–O bond to gen-

erate aldehyde products (Figure 1—figure supplement 1).

Another notable feature of HypD is that its substrate is a conformationally constrained pyrrolidine

ring lacking a freely rotatable Ca–Cb bond (Figure 1—figure supplements 1–2). Among GREs, the

enzyme with the most similar substrate is the class III ribonucleotide reductase (RNR), which also acts

on a substrate with a 5-membered heterocyclic ring (Figure 1—figure supplement 2). The reaction

of RNR, however, is more similar to that of diol dehydratases than it is to HypD. Perhaps the

enzyme-catalyzed reaction most similar to the reaction catalyzed by HypD is the dehydration of the

ribose-containing substrate cytidine triphosphate (CTP) performed by the recently characterized

AdoMet radical enzyme viperin (Gizzi et al., 2018). This reaction is reminiscent of Hyp dehydration

because it involves the elimination of a hydroxyl group on the carbon position b to a C–O bond

within the 5-membered ring (Gizzi et al., 2018), although it lacks the C–N oxidation catalyzed by

HypD (Figure 1—figure supplement 2).

In order to gain insight into the chemical mechanism of HypD, we set out to elucidate the struc-

ture of this GRE to identify active site residues that may be important for catalysis. This information

could guide analysis of microbiome sequencing data and development of enzyme inhibitors. Here,

we present a Hyp-bound structure of HypD from C. difficile 70-100-2010 along with biochemical

assays performed with enzyme variants and deuterated substrate to better understand how this

newly discovered GRE eliminase performs Hyp dehydration.

Results

Overall architecture of HypD is similar to other GRE eliminases
A structure of HypD from C. difficile 70-100-2010 was solved by molecular replacement to 2.05 Å

resolution using the GRE homolog CutC (PDB: 5FAU) (Bodea et al., 2016) as the search model

(Table 1). During model refinement, we observed electron density resembling glycerol in the active

site (Figure 2—figure supplement 1). Although we believe that glycerol binding is an artifact (glyc-

erol was used as a cryoprotectant), it is not surprising that glycerol is able to bind given HypD’s high

sequence similarity to GD. To obtain a Hyp-bound structure, we used a different cryoprotectant (see

Methods) and included Hyp in both the crystallization buffer and cryoprotectant solution. This sec-

ond HypD structure was solved to 2.52 Å resolution by molecular replacement using the glycerol-

bound HypD structure as the search model (Table 1).

In agreement with all characterized GREs (O’Brien et al., 2004; LaMattina et al., 2016;

Kalnins et al., 2015; Xing et al., 2019; Bodea et al., 2016), HypD is dimeric with each monomer

consisting of two five-stranded half b-barrels, anti-parallel to one another and surrounded by a-heli-

ces (Figure 2A). The active site is buried within the center of the barrel, which is thought to protect

radical species from being quenched by solvent. Two loops essential for catalysis are juxtaposed in

the active site: the Gly loop and the Cys loop (Figure 2A). The Gly loop contains the conserved Gly

residue (Gly765 in HypD) and is part of the C-terminal glycyl radical domain that is found in all GREs

(Backman et al., 2017) whereas the neighboring Cys loop contains the catalytic Cys434 (Figure 2A–

Backman et al. eLife 2020;9:e51420. DOI: https://doi.org/10.7554/eLife.51420 3 of 23

Research article Biochemistry and Chemical Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.51420


C). Gly765 is located 3.9 Å from Cys434 (Figure 2C), consistent with radical transfer from Gly765 to

Cys434 to generate a transient thiyl radical for initiation of catalysis on substrate.

Positioning of Hyp in active site suggests hydrogen atom abstraction
from C5 of Hyp
In the active site of the Hyp-bound HypD structure, electron density was observed for the substrate

Hyp (Figure 2B). To investigate whether Hyp binds to HypD in the Cg-exo or Cg-endo pucker state

(Figure 2—figure supplement 2), we modeled and refined both configurations of Hyp into the elec-

tron density and found that the electron density maps are best fit by a Cg-exo configuration (Fig-

ure 2—figure supplement 3). Additionally, we calculated the energies associated with these two

configurations of zwitterionic Hyp (see Methods) and found the Cg-exo pucker to be more energeti-

cally favorable than the Cg-endo pucker by 2.7 kcal mol�1. A preference for the Cg-exo pucker has

also been noted for free Hyp (Lesarri et al., 2005) and peptidyl Hyp in the context of collagen struc-

ture (Shoulders and Raines, 2009). The Cg-exo puckering of the pyrrolidine ring orients C5 of Hyp

in closest proximity to Cys434, prompting us to propose C5 as the site of hydrogen atom abstrac-

tion. The distance between C5 and the sulfur atom of Cys434 is 3.8 Å (Figure 2C), a typical distance

Table 1. Data collection and model refinement statistics for crystallography.

Values in parentheses denote highest resolution bin.

HypD with glycerol bound HypD with Hyp bound

Space group P21 P21

Unit cell (Å) 100.3, 341.7, 122.6, 90.0˚, 107.1˚, 90.0˚ 101.2, 350.2, 124.5, 90.0˚, 105.7˚, 90.0˚

Resolution (Å) 50–2.05 (2.09–2.05) 50–2.52 (2.59–2.52)

Rsym 16.8 (75.7) 20.4 (97.5)

CC1/2 99.0 (58.8) 99.4 (72.1)

<I/s> 8.40 (1.82) 10.75 (2.12)

Completeness (%) 99.0 (98.3) 99.7 (99.4)

Unique reflections 486251 (24062) 278476 (44812)

Total reflections 1626596 (168674) 1944676 (294711)

Redundancy 7.07 (7.01) 6.98 (6.58)

Rwork/Rfree 0.166/0.193 0.186/0.224

RMSD bond length (Å) 0.007 0.008

RMSD bond angles (˚) 0.86 0.966

Chains in asymmetric unit 8 8

Number of:

Total atoms 54954 52103

Protein atoms 49994 49851

Water molecules 4834 2180

Gol/Hyp 48 72

Ramachandran analysis

Favored (%) 98.16 97.71

Allowed (%) 1.71 1.99

Disallowed (%) 0.13 0.30

Rotamer outliers (%) 1.46 3.27

Average B factors

Protein (Å2) 21.0 35.8

Water (Å2) 27.2 27.7

Gol/Hyp (Å2) 22.3 31.2
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between the site of hydrogen atom abstraction and the catalytic cysteine in other structurally charac-

terized GREs (Backman et al., 2017; Vey et al., 2008). We calculate that in the observed Cg-exo

pucker conformation, the dihedral angle between the amino group and the hydroxyl leaving group

of Hyp is 75.8˚, similar to the dihedral angles (~60˚) observed for substrates bound to other GRE

eliminases (Figure 3—figure supplement 1; O’Brien et al., 2004; LaMattina et al., 2016;

Bodea et al., 2016). In contrast, Hyp in the Cg-endo pucker conformation has a dihedral angle of

165˚ between the amino group and the hydroxyl leaving group. Hyp is distinct from other GRE elimi-

nase substrates in that it contains a constrained 5-membered ring and thus has decreased conforma-

tional flexibility; the similarity in the conformations of different GRE eliminase substrates may

indicate an important role for this binding mode in catalysis.

Figure 2. Structure of C. difficile HypD with Hyp bound. (A) Dimeric structure of HypD (green) with the glycyl

radical domain that houses the Gly loop in yellow and the Cys loop in purple. Gly765, Cys434, and Hyp are shown

in spheres. (B) 2Fo-Fc maps (contoured at 1.0s, gray) indicate electron density for Hyp. Hyp is positioned above

the Gly loop (yellow) and Cys loop (purple) with residues from the strands of the b-barrel (green) forming the sides

of the active site. A water molecule is shown as red sphere. (C) C5 of HypD (starred) is the closest atom to the

catalytic Cys (Cys434), which is found in the active site within van der Waals distance of Gly765, the site of the

glycyl radical. See Figure 8A for additional distances between Hyp and Cys434.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Cartesian coordinates for zwitterionic Hyp in Cg-exo pucker calculated from DFT.

Source data 2. Cartesian coordinates for zwitterionic Hyp in Cg-endo pucker calculated from DFT.

Figure supplement 1. A 2.05 Å resolution structure of HypD with glycerol bound in the active site.

Figure supplement 2. HypD conformers generated by DFT calculations.

Figure supplement 3. Comparison of electron density maps for Cg-exo Hyp versus Cg-endo Hyp modeled into

HypD active site.
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Hyp leaving group is pointing toward a conserved CXE motif
Hyp is positioned in the active site through a series of hydrogen bonds that include: Glu436 of the

Cys loop, Asp278 of the b1 strand, Ser334 of a short a-helix between the b2 and b3 strands, Thr645

of b8 strand, and a water molecule that interacts with Asp339 of the b3 strand (Figure 2B). In addi-

tion, hydrophobic contacts may play a role in the positioning of Hyp (Figure 3D). The Cys loop of

HypD contains the CXE motif (Cys434-Val435-Glu436) that is conserved among GRE eliminases

(Figure 3A–C; Figure 3—figure supplement 2A–C; O’Brien et al., 2004; LaMattina et al., 2016;

Xing et al., 2019; Bodea et al., 2016). In previous GRE eliminase structures, the Glu of the CXE

motif is observed to interact with a hydroxyl group of substrate through a hydrogen bond

(Figure 3B–C; Figure 3—figure supplement 2B–C; O’Brien et al., 2004; LaMattina et al., 2016;

Xing et al., 2019; Bodea et al., 2016). In these cases, the Glu is proposed to deprotonate the sub-

strate’s hydroxyl group to form a ketyl radical intermediate that aids in the elimination of a different

hydroxyl group (diol dehydratases), trimethylamine (CutC), or sulfite (IslA) (Figure 3; Figure 1—fig-

ure supplement 1; Figure 3—figure supplement 3; O’Brien et al., 2004; LaMattina et al., 2016;

Xing et al., 2019; Bodea et al., 2016). Thus in these GREs, the hydroxyl group, which is ultimately

converted to a product aldehyde, is pointing toward and interacting with the Glu of the CXE motif,

and the substrate’s leaving group is pointing away from the Glu. In HypD, we also find that Glu436

is positioned to hydrogen bond with the hydroxyl group of Hyp (Figure 3A). However, in HypD, the

Hyp hydroxyl group is the leaving group, and therefore it is the leaving group that points toward

and interacts with the Glu of the CXE motif rather than pointing away as is the case for the other

Figure 3. Active site of HypD has unique features that enable Hyp dehydration. Conserved Gly and Cys loops in

addition to active site residues are displayed for (A) HypD, (B) GD, and (C) CutC. PDB-deposited structures for GD

(1R9D) and CutC (5FAU) were used to generate this figure. The Cys loop is highlighted in purple and the Gly loop

is highlighted in yellow. Hydrogen bonds are shown as black dashed lines and CH–O interactions as yellow

dashed lines. Aromatic residues in the active sites of HypD (D), GD (E), and CutC (F) aid in substrate packing.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Dihedral angles of substrates bound in GRE eliminases.

Figure supplement 2. Active sites of propanediol dehydratase (PD) and isethionate sulfite-lyase (IslA) compared

to HypD.

Figure supplement 3. Proposed mechanism for CutC elimination reaction.

Figure supplement 4. A multiple sequence alignment of putative HypDs with characterized GREs.
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GRE eliminases. Thus, the orientation of the substrate’s leaving group with respect to the CXE is

reversed and the fate of this hydroxyl group is unique in the HypD-catalyzed reaction.

Outside of the Cys and Gly loop motifs, there are no strictly conserved sequences among GRE

eliminases (Figure 3—figure supplement 4). Each eliminase is adapted to accommodate its sub-

strate and HypD is no exception. In addition to interacting with Glu436, the hydroxyl group of Hyp

is also within hydrogen bonding distance of Asp278 (Figure 4A). The amino group of Hyp, which

must be deprotonated as part of the reaction cycle, makes interactions with Asp278 and Asp339,

the latter through water (Figure 4A). Notably, these water interactions are present in all active sites

of the 8 molecules in the asymmetric unit. Asp339 and Asp278 are strictly conserved in HypD but

are not conserved in other GRE eliminases (Figure 3—figure supplement 4).

Interestingly, HypD uses three polar, uncharged residues (Ser334, Thr645, Tyr450) to hydrogen

bond to the Hyp carboxylate moiety (Figure 4B), all of which are conserved in HypD (Figure 3—fig-

ure supplement 4). Ser334 is positioned in the space that is often occupied by a Phe residue in

other GRE eliminases (Phe333 in GD, Phe389 in CutC, Phe338 in PD, and Phe680 in IslA)

(Figure 3A–C; Figure 3—figure supplement 2A–C). Arg156 and Lys326 may contribute to charge

stabilization of the Hyp carboxylate, although they do not directly interact with substrate

(Figure 4D).

As is the case for other GREs, HypD has many aromatic residues in its active site (Figure 3D–F;

Figure 3—figure supplement 2D–F; Backman et al., 2017). Possible roles of these residues include

Figure 4. Hydrogen bonding and proline-aromatic interactions with nearby residues and bound water molecules

allow for HypD chemistry. (A) Residues and ordered water molecule (red sphere) that are within hydrogen

bonding distance to the hydroxyl and amine of Hyp shown with corresponding distances. (B) Residues within

hydrogen bonding distance of the carboxylate group of Hyp. (C) Phe340 is positioned such that it could make

proline-aromatic interactions (shown as red dashed line) with Hyp. (D) An extended hydrogen bonding network

among Hyp, protein residues, and water molecules (red spheres) is observed in the active site. (E) Diagram of

protein and water interactions with Hyp. All hydrogen bonds are indicated with gray dashed lines. Distances (Å)

can be found in panels A-D.
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exclusion of solvent, creation of hydrophobic packing interactions with substrates, and/or stabiliza-

tion of substrate and reaction intermediates through cation-p interactions. In HypD, Phe152, Trp277,

and Phe340 are in contact with the substrate, with Phe340 positioned to stabilize Hyp through a pro-

line-aromatic interaction, which is characteristically similar to a cation-p interaction (Figure 4C). Pre-

vious studies have shown that energetically favorable interactions occur between proline and

aromatic residues within proteins (Zondlo, 2013). These favorable interactions are thought to be

due to hydrophobic effects and the interaction of the p face of the aromatic ring with the polarized,

partially positively charged C–H bonds of the prolyl ring (Zondlo, 2013). Overall, hydrogen bonding,

hydrophobic packing, and proline-aromatic interactions create a tight binding pocket in HypD, spe-

cifically catered to a larger cyclic, polar substrate such as Hyp.

Site-directed mutagenesis experiments confirm that residues
coordinating Hyp play critical roles in substrate stabilization and
catalysis
With structural data in hand, we sought to explore the importance of active site residues through

site-directed mutagenesis experiments. We first confirmed that Gly765 forms the glycyl radical spe-

cies and that Cys434 is catalytically essential by constructing HypD variants containing G765A and

C434S substitutions. As expected, EPR spectroscopy showed no Gly radical formation for the

G765A variant (Table 2, Figure 5—figure supplement 1). Although the C434A variant can be acti-

vated by HypD-AE (Table 2, Figure 5—figure supplement 1), it had no detectable Hyp dehydration

activity in our endpoint assay (Figure 5A–C), supporting an essential role for Cys434 in catalysis.

We next investigated residues predicted to mediate acid-base chemistry. A series of HypD var-

iants were constructed to disrupt putative interactions with the hydroxyl group of Hyp (E436Q,

H160Q, D278N), the amino group of Hyp (D278N), and the ordered water molecule (D339N)

(Figure 4E). Detection of glycyl radical by EPR spectroscopy confirmed that substitution of these res-

idues did not abolish activation by HypD-AE (Figure 5—figure supplement 1). However, these var-

iants were all activated at substantially reduced levels, indicating these residues may participate in

interactions that affect glycyl radical formation and/or stability.

Table 2. Glycyl radical quantification, activity, and kinetic parameters for HypD variants.

Mean and SD are displayed for glycyl radical quantification where n = 3 independent experiments for each protein. HypD activity was

coupled to P5CR and absorbance at 340 nm was measured to calculate initial rates for NADH consumption. The un-normalized turn-

over number (kcat) was calculated using the concentration of dimeric HypD in assays. The kcat was normalized by the amount of acti-

vated enzyme as determined by EPR spectroscopy. Catalytic efficiency was calculated using normalized kcat values.

HypD

Radical per
monomer
(%)

Activity detected by
quantification of
proline

Km

(mM)
Un-normalized kcat
(s�1)

Glycyl radical-
normalized kcat
(s�1)

Catalytic efficiency
using
normalized kcat (M

�1

s�1)

Wildtype (Levin et al.,
2017)

51 ± 1 Yes 1.2 ± 0.1 46 ± 1 45 ± 1 3.8 ± 0.3 � 104

G765A 0 No ND ND ND

C434S 34 ± 8 No ND ND ND

E436Q 12.4 ± 0.5 No ND ND ND

H160Q 4.4 ± 0.8 No ND ND ND

D278N 16 ± 4 No ND ND ND

D339N 18 ± 8 No ND ND ND

S334A 50 ± 19 No ND ND ND

Y450F 29 ± 4 Yes 19 ± 3 0.33 ± 0.01 0.57 ± 0.04 30 ± 6

T645A 19 ± 1 Yes 4.9 ± 0.4 0.75 ± 0.01 1.98 ± 0.04 400 ± 30

Y450F/T645A 3.4 ± 0.8 No ND ND ND

F340A 23 ± 5 No ND ND ND
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The D278N variant lacked Hyp dehydration activity, supporting a crucial role for Asp278 in cataly-

sis (Figure 5B–C, Table 2). The close proximity of Asp278 to both the amino (3.1 Å) and hydroxyl

(3.5 Å) moieties of Hyp suggests that this residue could both deprotonate the amino group of zwit-

terionic Hyp and protonate the departing hydroxyl group (Figure 4A,E). Either or both of these roles

would explain the loss of activity in the D278N variant. Additionally, E436Q and H160Q variants

lacked Hyp dehydration activity in an endpoint assay, confirming that these residues are also essen-

tial (Figure 5B–C, Table 2). Because of the close proximity of Glu436 to His160 (2.5 Å) (Figure 4A),

we propose that His160 tunes the protonation state of Glu436, potentially allowing it to be a hydro-

gen bond acceptor of the hydroxyl group of Hyp (2.7 Å) (Figure 4E). As discussed above, this role

for Glu436 would be unique in comparison to other GRE eliminases.

Strikingly, the D339N HypD variant also lacked Hyp dehydration activity (Figure 5B–C, Table 2).

The lack of activity in this variant is particularly surprising because of its distance from the HypD

active site (6.3 Å in the Hyp-bound structure, Figure 4A; 7 Å in the glycerol-bound structure, Fig-

ure 2—figure supplement 1B). However, the biochemical data and the absolute conservation of

Asp339 among HypD sequences support a critical role for this residue.

The residues predicted to mediate acid-base chemistry (His160, Asp278, Asp339, Glu436) are

part of an extensive hydrogen-bonding network surrounding the hydroxyl and amino groups of Hyp

Figure 5. Most HypD variants do not have detectable activity. (A) An in vitro coupled enzyme endpoint assay was

used to measure activity of HypD variants. P5C generated from HypD activity was reduced to Pro by P5CR in assay

mixtures. Pro and Hyp were quantified using LC-MS/MS. (B) Pro concentrations in assay mixtures after incubation

for 21 hr. (C) Hyp concentrations in assay mixtures after incubation for 21 hr. Data points represent mean ± SD with

n = 3 replicates. Individual data points are displayed for each assay (n = 3 individual experiments) along with the

mean and SD.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Quantification of Pro and Hyp after HypD coupled assay using LC-MS/MS.

Source data 2. Source data for kinetic analysis of HypD-Y450F and HypD-T645A enzyme variants.

Figure supplement 1. Activation of HypD variants detected by EPR spectroscopy.

Figure supplement 2. Kinetic analysis of HypD-Y450F and HypD-T645A.

Figure supplement 3. SDS-PAGE of purified proteins used in this study.
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and the conserved water molecule (Figure 4D–E). This network provides a plausible route for the

proton transfer required to reset the protonation states of active site residues for subsequent rounds

of turnover. Participation in proton transfer may contribute to the lack of activity observed when any

one of these residues is altered. Notably, the presence of a similar network was also reported in

CutC (Bodea et al., 2016). Overall, the loss of detectable activity in these variants strongly supports

catalytic roles for His160, Asp278, Asp339, and Glu436.

We also altered additional HypD residues predicted to be important for substrate binding

(F340A, S334A, Y450F, and T645A) (Figure 4B). Interestingly, although HypD-F340A was activated

by HypD-AE (Figure 5—figure supplement 1), it displayed no catalytic activity (Figure 5B–C,

Table 2). This result provides support for the proposal that a proline-aromatic interaction with

Phe340 is important for Hyp binding. Ser334, Tyr450, and Thr645 are positioned within hydrogen

bonding distance of the carboxylate group of Hyp (Figure 4B). As expected, glycyl radical formation

was detected in these three variants (Figure 5—figure supplement 1). Strikingly, these three var-

iants had different effects on activity. No activity was observed in the S334A variant, indicating this

amino acid is essential, likely because of a role in substrate binding/positioning and/or product

release. In contrast, HypD-Y450F and HypD-T645A exhibited drastically reduced activity (Figure 5B–

C, Table 2), suggesting that they may participate in important interactions but are not essential.

Kinetic assays were performed for HypD-Y450F and HypD-T645A to examine effects of these

mutations on catalysis. The catalytic efficiencies for each HypD variant were 2–3 orders of magnitude

lower than that of wildtype HypD due to increased Km and decreased kcat values (Table 2, Figure 5—

figure supplement 2A–B). Given that Tyr450 and Thr645 participate in hydrogen bonding interac-

tions with the carboxylate group, increased Km values support a role for these residues in substrate

binding. Decreases in kcat could be explained by changes in Hyp orientation that might reduce the

catalytic rate due to suboptimal distances between Hyp and the catalytic residues. Finally, conforma-

tional changes caused by these mutations may lead to protein destabilization and thus could also

contribute to a reduction in kcat. Since both Tyr450 and Thr645 interact with the same carboxylate

oxygen atom of substrate, we generated a double-mutant variant, HypD-Y450F/T645A, to test if

these two residues have redundant functions. HypD-Y450F/T645A was activated by HypD-AE as

detected by EPR spectroscopy (Figure 5—figure supplement 1) but showed no detectable activity

in the endpoint assay (Figure 5B–C, Table 2).

Experiments with deuterated Hyp suggest that a hydrogen atom is
transferred from C5 to C4 of Hyp during catalysis
We next investigated whether the deuterated substrate, [2,5,5-D3]-trans-4-hydroxy-L-proline (2,5,5-

D3-Hyp), could be used as a mechanistic probe in a coupled assay with P5CR (Figure 6A) to study

the radical-based reaction of HypD. Concerned about the potential issue of deuterium wash-out

from reaction intermediates in the coupled assay, we first conducted a control experiment. Nonenzy-

matic, hydrolytic ring-opening and tautomerization of the HypD product P5C (Figure 6B) and sol-

vent accessibility of Cys434 could both lead to substantial deuterium wash-out for a reaction

performed in H2O. To address these potential pitfalls, we performed the HypD coupled assay in

D2O using unlabeled Hyp, reasoning that if ring-opening and tautomerization presented a major

problem, and/or if Cys434 was solvent exposed during catalysis, we would see deuterium incorpo-

ration in the final product of the coupled assay, proline. Remarkably, we observed little deuterium

incorporation in product (~10% based on the assay run in triplicate and compared to a control of

Pro dissolved in D2O) (Figure 6C, see Figure 6—source data 1 for relevant MS/MS transitions).

These data indicate that solvent accessibility of Cys434 is not a major issue and that if P5C ring-

opening/tautomerization is occurring, it is not happening quickly enough to have a substantial

impact on P5C hydrogen/deuterium exchange.

We next performed the HypD coupled assay with 2,5,5-D3-Hyp as the substrate, and formation

of [2,4,5-D3]-L-proline was observed, characterized by high-resolution MS, LC-MS/MS and 1H, 13C,
1H-1H COrrelated SpectroscopY (COSY), and 1H-13C heteronuclear single quantum coherence

(1H-13C HSQC) NMR experiments (Figure 6D–E, Figure 6—figure supplements 1–3). Thus, we

observe a shift of a deuterium atom from C5 to C4, which is consistent with C5 being the site of

hydrogen-atom abstraction and C4 being the site of hydrogen-atom re-abstraction. A potential

mechanism consistent with this experimental result is described below.
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Discussion
Experimental and computational investigations have provided strong support for direct elimination

as the mechanism used by GRE eliminases (Feliks and Ullmann, 2012; Kovačević et al., 2018;

Levin and Balskus, 2018). On the basis of these previous studies and the structural insights gained

in this work, we propose a possible mechanism for HypD, similar to those proposed for other GRE

eliminases, that involves a direct elimination of the hydroxyl group on Hyp to generate P5C

(Figure 7).

After activation of HypD by HypD-AE, we predict that Hyp binds as a zwitterion in the active site

based on its protonation state at neutral pH (Figure 7, step I). The positive charge of the Hyp amino

group is likely stabilized by a cation-p interaction with Phe340 and hydrogen bonding interactions

with Asp292 and solvent. The Hyp carboxylate is anchored by hydrogen bonding with Ser334,

Figure 6. Coupled HypD and P5CR assay with trideuterated substrate 2,5,5-D3-Hyp results in the formation of

product 2,4,5-D3-Pro. (A) Overall reaction scheme for HypD P5CR coupled assay with 2,5,5-D3-Hyp. (B) P5C

nonenzymatically hydrolyzes to an aldehyde product that equilibrates between keto and enol tautomers. (C) HypD

assays in D2O were performed in triplicate, and products were detected by LC-MS/MS. The percentage of

undeuterated Pro is indicated. As a control, LC-MS/MS was also performed on Pro in D2O to determine the extent

of deuteration resulting from solvent exchange. (D) 1H-13C HSQC NMR of a commercial standard of Pro. Cross

peaks between 13C (f1, y-axis) and 1H (f2, x-axis) are indicated by color-coded lines matching the inset Pro

molecule. (E) 1H-13C HSQC NMR of the product of HypD assay using 2,5,5-D3-Hyp as substrate. HSQC spectra

were multiplicity edited. Red cross peaks correspond to CH2 signals, and blue cross peaks correspond to CH

signals. Notably, compared to panel D, the product shows only one H at position C4, suggesting deuterium

incorporation at this position. Furthermore, only one H is bonded to C5 showing that one deuterium atom was

lost at this position during catalysis.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. LC-MS/MS data for HypD D2O assay and HypD assay using 2,5,5-D3-Hyp as substrate.

Figure supplement 1. 1H NMR of Pro and HypD coupled assay product 2,4,5-D3-Pro.

Figure supplement 2. 13C NMR of Pro and HypD coupled assay product 2,4,5-D3-Pro.

Figure supplement 3. COrrelated SpectroscopY (COSY) NMR of HypD coupled assay product 2,4,5-Pro.

Backman et al. eLife 2020;9:e51420. DOI: https://doi.org/10.7554/eLife.51420 11 of 23

Research article Biochemistry and Chemical Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.51420


Tyr450, Thr645, and Asp339 (through a water molecule), with its negative charge counteracted by

nearby positively charged residues Lys326 and Arg156 (Figure 4D).

Once the radical has been transferred to the nearby Cys434 (Figure 7, step I), the transient thiyl

radical can then abstract a hydrogen atom from the substrate. Based on the biochemical assay with

2,5,5-D3-Hyp and our structural data, we propose that hydrogen atom abstraction occurs at the C5

carbon (Figure 7, step II). In particular, the structure suggests that Cys434 abstracts the pro-S hydro-

gen atom of C5, which is the closest to Cys434 (2.6 Å) (Figure 8A). Hydrogen atom abstraction of

the pro-S instead of the pro-R hydrogen atom is consistent with the stereochemistry determined for

the reaction catalyzed by PFL (Frey et al., 1994) and that is proposed for most other GRE eliminases

based on structural data (O’Brien et al., 2004; LaMattina et al., 2016; Xing et al., 2019;

Bodea et al., 2016). Since the initial hydrogen atom abstraction steps in GRE-catalyzed transforma-

tions have high activation energy barriers (Feliks and Ullmann, 2012; Liu et al., 2010; Yang et al.,

2019), we propose that deprotonation of the Hyp amino group occurs first, as the lone pair of a free

amino group could stabilize the radical forming on C5 through conjugative electron delocalization

Figure 7. Proposed mechanism for HypD dehydration of deuterated substrate 2,5,5-D3-Hyp.
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(Figure 7, step I to II) (Viehe et al., 1985). The structure suggests that Asp278 is positioned appro-

priately to act as the catalytic base that deprotonates the amino group (Figure 7, step I). Indeed,

activity assays confirm that Asp278 is essential. Here we show deprotonation of the amino group of

Hyp preceding hydrogen atom abstraction from C5 (Figure 7, step I to II).

Hydrogen atom abstraction from C5 of Hyp results in an a-aminoalkyl radical intermediate (Fig-

ure 7, step II to III). a-Aminoalkyl radicals are most often observed in amino acid-based intermedi-

ates generated during GRE activation, amino acid epimerization, and thioether bond formation in

biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs)

(Benjdia et al., 2017). Although Ca-centered radicals of amino acids are stabilized by delocalization

of the unpaired electron onto adjacent amino and carboxyl groups (the captodative effect)

(Viehe et al., 1985), HypD presents a unique case where an a-aminoalkyl radical intermediate forms

in the absence of an adjacent carboxyl group. Although rarely reported in enzymatic chemistry, a-

aminoalkyl radicals are often generated as reactive intermediates to drive substitution reactions in

organic chemistry (Renaud and Giraud, 1996; Nakajima et al., 2016; Mondal et al., 2014). Given

their wide utility to synthetic chemists, it is tempting to speculate that these radicals are more com-

mon among enzymatic reactions than has been previously appreciated.

A direct elimination of the hydroxyl group on C4 is expected to proceed from the a-aminoalkyl

radical species, which is in resonance with the corresponding aminyl radical (Figure 7, resonance

structures III and IV). We propose that rapid elimination of the hydroxyl leaving group from this inter-

mediate occurs and is facilitated by protonation of the departing hydroxyl group by a catalytic acid

(Figure 7, step IV to V). It is also possible that this elimination step occurs in a concerted manner

with N-deprotonation (Figure 7, step VI to VII). Based on the structure and mutagenesis, we pro-

pose that the catalytic acid is Asp278, the same residue that likely deprotonates the Hyp amino

group, which would reset Asp278’s protonation state (Figure 7, step II to IV). The structure also sug-

gests that His160 and Glu436 are likely to be important in positioning the hydroxyl group of Hyp for

protonation and elimination (Figure 7, step IV). Whereas the Glu residue of the CXE motif is gener-

ally believed to act as the catalytic base in other GRE eliminase mechanisms to generate ketyl radical

intermediates (Figure 3—figure supplement 3; O’Brien et al., 2004; LaMattina et al., 2016;

Xing et al., 2019; Bodea et al., 2016), here the role of Glu436 appears to be unique, but not less

important. Mutagenesis experiments showed that Glu436, along with Asp278 and His160, are essen-

tial (Figure 5).

Figure 8. Change in Hyp puckering throughout the mechanism is proposed to play a critical role in radical

transfer. (A) Cg-exo puckering of Hyp positions the pro-S hydrogen atom of Hyp C5 in closest proximity to Cys434

for hydrogen atom abstraction. (B) The product P5C is modeled into Hyp-bound HypD structure by manual

docking, such that carboxylate tails of both P5C and Hyp are anchored in the same location. (C) The pyrroline ring

of P5C exhibits a planar structure, positioning C4 closer to Cys434 than C5 for hydrogen abstraction from the thiyl

group. .
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The elimination of the hydroxyl group of Hyp generates a double bond, resulting in the genera-

tion of an enamine radical cation intermediate (Figure 7, step V). Because the HypD coupled assay

with 2,5,5-D3-Hyp resulted in formation of 2,4,5-D3-Pro (Figure 6D–E), suggesting that the initial

deuterium atom abstracted from C5 by Cys434 is transferred back to C4, we propose that the final

radical transfer from P5C to Cys434 occurs at C4 (Figure 7, step VII). This proposal also makes sense

from a structural perspective. Formation of this double bond settles the Hyp’s Cg-exo pucker into a

nearly planar pyrroline species. Manual docking of the product P5C into the active site (Figure 8B)

allows us to approximate how this change in ring puckering should affect the relative proximities of

substrate/product atoms to the thiyl radical-forming Cys434 (Figure 8). Specifically, modeling sug-

gests that C4 of P5C is closer to Cys434 than is C5 (Figure 8B).

Formation of such a C4 radical species on product will be facilitated by resonance delocalization

of the unpaired electron on the nitrogen atom across the adjacent alkene (Figure 7, resonance struc-

tures V and VI). Hydrogen atom re-abstraction from Cys434 could occur at this point or may follow

the deprotonation of an enamine radical cation intermediate (pKa ~5.5–7 Jonsson et al., 1996;

Wang et al., 2017), which would be expected to generate a more nucleophilic, a-iminyl radical spe-

cies (Figure 7, step VI to VII) (Roberts, 1999). Asp339, which we show here is catalytically essential,

appears well positioned to serve as the catalytic base via a water-mediated interaction (Figure 7

step VI to VII). Asp339 could also serve as a catalytic acid in the subsequent protonation of the P5C

carboxylate (Figure 7, step VII to VIII). Protonation of the P5C carboxylate should aid in its release

as the very close interaction with the P5C carboxyl group and Ser334 (2.5 Å) would be unfavorable if

the carboxyl moiety were protonated. The final mechanistic step is reformation of the glycyl radical

species on HypD (Figure 7, step VIII) and product release.

Importantly, these structural and biochemical data have allowed us to identify a key set of HypD

residues important for catalysis and substrate binding, leading to a deeper understanding of how

this prominent human gut bacterial enzyme performs difficult radical chemistry. Not only will these

data inform drug design efforts directed toward C. difficile HypD, they should also allow us to more

accurately identify other pathogens that contain HypD enzymes. The Hyp dehydration is an exciting

transformation that is unique among GREs and more broadly among enzymes. Herein we propose

the first mechanism for chemical reversal of one of the most common post-translational modifica-

tions, proline hydroxylation. Through HypD, gut microbes have found a way to opportunistically

profit from the abundant yet catabolically underutilized metabolite Hyp.

Materials and methods
All chemicals, solvents, and reagents were purchased from Sigma-Aldrich unless otherwise noted.

Luria-Bertani Lennox (LB) medium was purchased from EMD Millipore or Alfa Aesar. DNA sequenc-

ing results and multiple sequence alignments were analyzed with Geneious 9.0.4 (Kearse et al.,

2012). Primers were purchased from Integrated DNA Technologies (Coralville, IA) or Sigma-Aldrich.

PCR was performed with a C1000 Gradient Cycler (Bio-Rad). All plasmid constructs were verified by

DNA sequencing through Eton Biosciences. All restriction enzymes, ligases, polymerases, and PCR

mixes were obtained from New England Biolabs. Protein solutions were routinely denatured at 90˚C

for 10 min in equal volume Laemmli sample buffer (BioRad) prior to visualization by SDS-PAGE (4–

15% Tris-HCl gel, Bio-Rad). 2-Mercaptoethanol was added at a final concentration of 355 mM to

Laemmli sample buffer. Fractions from protein purifications were routinely visualized by SDS-PAGE

following staining (Biosafe Coomassie, Bio-Rad). Isopropyl b-D-1-thiogalactopyranoside (IPTG) was

obtained from Teknova. Ni-NTA and TALON resin were obtained from Qiagen and Clontech,

respectively. All absorbance measurements in 96-well plates were carried out using a PowerWave

HT Microplate Spectrophotometer (Biotek) inside of an anaerobic chamber (MBraun). All absorbance

data shown for kinetic assays were obtained with pathlength corrected to 1 cm. All enzyme assays

were carried out in an MBraun anaerobic chamber.

Samples were made anaerobic as follows. Solids were brought into the anaerobic chamber

(MBraun) in perforated 1.7 mL microcentrifuge tubes. Protein solutions with volumes greater than 1

mL were made anaerobic on a Schlenk line by cycling between vacuum and argon. Buffers and other

solutions were rendered anaerobic in 1 to 20 mL volumes by bubbling argon or nitrogen through

the liquid for about 30 min.
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Vector constructs for the overexpression of HypD, HypD-AE, and P5CR
HypD (UniProt ID: A0A031WDE4), HypD-AE (UniProt ID: A0A069AMK2), and P5CR (UniParc ID:

UPI000235AE56) genes were amplified from C. difficile 70-100-2010 genomic DNA to construct

expression vectors pET28a-CdHypD, pET28a-CdP5CR, and pSV272-PfMBP-CdHypD-AE as previ-

ously reported (Levin et al., 2017).

Overexpression and purification of proteins used for biochemical
experiments
All proteins used in biochemistry studies were overexpressed and purified as previously reported

(Levin et al., 2017). Briefly, all proteins were overexpressed in E. coli BL21-CodonPlus(DE3)-RIL

DproC::aac(3)IV (apramycin resistant or AmR) and induced with 0.1 mM IPTG (HypD and HypD-AE)

or 0.5 mM IPTG (P5CR). Proteins were purified and then dialyzed into buffer containing 25 mM Tris

buffer pH 7.5, 50 or 100 mM KCl, 5 mM DTT to remove imidazole used for elution. HypD and HypD-

AE were purified using TALON metal affinity resin while P5CR was purified using Ni-NTA resin.

HypD-AE was rendered anaerobic using a Schlenk line for reconstitution of [4Fe-4S] clusters. Briefly,

HypD-AE was incubated with 10 mM DTT, 12 equiv Na2S . 9 H2O to protein, and 12 equiv Fe

(NH4)2(SO4)2. 6 H2O to protein for 12 hr. Reconstituted protein was buffer exchanged into 25 mM

Tris buffer pH 7.5,100 mM KCl, 5 mM DTT for storage.

All protein solutions were made anaerobic prior to freezing and storage at –80˚C. Protein concen-

trations were calculated using Abs280 measurements from Nanodrop as previously reported for

wild-type enzymes. A molar extinction coefficient of 80,680 M�1 cm�1 was used for Y450F and

Y450F/T645A variants, and 82,170 M�1cm�1 was used for remaining HypD variants. All proteins

were visualized by denaturing polyacrylamide gel electrophoresis to confirm high purity (Figure 5—

figure supplement 3).

Overexpression and purification of HypD for crystallography studies
A frozen glycerol stock of E. coli BL21-CodonPlus(DE3)-RIL transformed with pET28a-CdHypD vector

was streaked onto an LB-agar plate containing 50 mg mL�1 kanamycin. A 50 mL starter culture in LB

media and a monoclonal culture from this agar plate were incubated shaking at 37˚C overnight. Ali-

quots of the overnight culture were used to inoculate four 1 L cultures of LB media containing 50 mg

mL�1 kanamycin in Corning Erlenmeyer Baffled cell culture flasks. The cultures were incubated shak-

ing at 37˚C until OD600 ~0.70, at which point protein overexpression was induced with 1 mM IPTG.

Incubation continued for an additional 16 hr at 25˚C. Cells were pelleted and lysed with a buffer con-

taining 20 mM HEPES pH 8.0, 100 mM NaCl, 0.5 mM TCEP, and 4.25 mg of lysozyme (Sigma-

Aldrich). Soluble, overexpressed HypD was purified from clarified lysate using Ni-NTA resin, with

HypD eluting at 300 mM imidazole. HypD was buffer exchanged into 20 mM HEPES buffer pH 8.0,

100 mM NaCl, and 0.5 mM TCEP to remove imidazole, yielding approximately 10 mg of HypD, cal-

culated using a coefficient of 78,300 M�1cm�1, determined using the ProtParam tool (Wilkins et al.,

1999). All protein solutions were frozen and stored at –80˚C. Protein was visualized by sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to confirm high purity (Figure 5—

figure supplement 3).

Crystallization of HypD
All crystallization experiments were performed aerobically with unactivated wild-type HypD protein

with the intact N-terminal hexahistidine tag. Initial screening was performed with the aid of an Art

Robbins Phenix micro-pipetting robot and Formulatrix Rock Imager, and initial conditions were

found using the Qiagen Protein Complex screen, with optimization yielding a well solution contain-

ing 14% (w/v) polyethylene glycol (PEG) 3350, 100 mM potassium chloride, and 100 mM HEPES pH

7.5. Diffraction-quality crystals were optimized in hanging drop vapor diffusion trays at 21˚C. Protein

at 100 mM (9 mg mL�1) in buffer containing 20 mM HEPES buffer pH 8.0, 100 mM NaCl, and 0.5 mM

TCEP was mixed with well solution in a 1:1 ratio. Plate-like crystals formed and grew to maximum

size after 1–2 days of equilibration. Crystals were cryoprotected by soaking for 1 min in solution con-

taining 15% (v/v) glycerol, 14% (w/v) PEG 3350, 100 mM potassium chloride, and 100 mM HEPES pH

7.5. The following modification was made for the crystallization of substrate-bound HypD: 4 mM

Hyp was added to the crystallization buffer prior to mixing with protein at a 1:1 ratio. The 15% (v/v)
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glycerol was excluded in the cryoprotectant solution in which 25% (v/v) dimethyl sulfoxide (DMSO)

and 100 mM Hyp were added.

Structure determination of HypD
Crystals were indexed in space group P21, and diffraction images were collected at the Advanced

Photon Source beamline 24ID-E at a wavelength of 0.9795 Å on a Pilatus 6M detector (Dectris)

(Table 1). Data were indexed, integrated, and scaled in XDS (Kabsch, 2010a; Kabsch, 2010b). The

first structure obtained for HypD contained a glycerol bound in the active site and was solved by

molecular replacement in the Phenix implementation of Phaser (McCoy et al., 2007). CutC was used

as a search model (PDB: 5FAU) (Bodea et al., 2016) after trimming of side chains in Phenix Ensem-

bler (Adams et al., 2010). A solution with eight molecules per asymmetric unit was found with an ini-

tial Rfree of 0.52 at 2.05 Å resolution. Several rounds of initial refinement in phenix.refine

(Adams et al., 2010) with tight NCS restraints and optimization of group B factors were sufficient to

reduce Rfree values below 0.4 (Table 1). Subsequently modeling in side chains and eventually model-

ing in water molecules, further reduced Rfree to ~0.3. NCS restraints were removed after initial refine-

ment. Positional and individual B-factor refinement continued at the full resolution until the model

was complete.

The Hyp-bound HypD structure was later solved using this glycerol-bound HypD structure as a

molecular replacement model. Initial molecular replacement of the Hyp-bound HypD

structure resulted in an initial Rfree of 0.31 at 2.52 Å resolution (Table 1). Simulated annealing was

performed after molecular replacement to decrease biases from the glycerol-bound structure. Posi-

tional and individual B-factor refinement continued at the full resolution until the model was com-

plete (Table 1). Hyp was fit into difference electron densities and verified with simulated annealing

composite omit maps in all active sites of molecules in the asymmetric unit. Substrate constraints

were calculated by density function theory (DFT) as described below. Parameter files for Hyp were

generated in Phenix eLBOW (Moriarty et al., 2009). Water molecules were placed automatically

after ligands were refined and verified manually. No density is observed for the hexahistidine affinity

tag in either the glycerol or Hyp bound structures. However, all other residues can be visualized.

Structural figures were made in PyMOL v2.0.7 (The PyMOL Molecular Graphics System, Version 2.0

Schrodinger, LLC). Crystallography software packages were compiled by SBGrid (Morin et al.,

2013).

Density function theory calculations for Hyp conformation
No small molecule structure of trans-4-hydroxy-L-proline has been reported. Thus, we calculated the

energies associated with the two different puckering possibilities of Hyp, Cg-exo and Cg-endo, for

modeling of Hyp in the refinement of the Hyp-bound crystal structure. Density Function Theory

(DFT) calculations were performed for the zwitterionic Hyp using B3LYP/6–31G* theory using Gauss-

ian 16 (Frisch, 2016) in the gas phase (Figure 2—figure supplement 2, Figure 2—source datas 1–

2). The zwitterionic structure was enforced by freezing the N–H bond length during optimization.

Without this constraint, the proton transferred to the carboxylate during optimization. These calcula-

tions revealed that the Cg-exo pucker is more energetically favorable than the Cg-endo pucker by

2.7 kcal mol�1. Energies were also calculated for the anionic Hyp containing a neutral amine. Simi-

larly, the Cg-exo pucker was found to be more energetically favorable by 2.9 kcal mol�1. Further-

more, deprotonation of the amino group did not significantly affect the conformation of each

pucker. Based on these results, zwitterionic Hyp in the Cg-exo pucker state was used to generate a

parameter file for the crystallographic refinement. Cartesian coordinates for the exo pucker are

listed in Figure 2—source data 1 and for the endo pucker in Figure 2—source data 2.

Site-directed mutagenesis and construction of overexpression vectors
for HypD variants
Single residue mutations were introduced in pET28a-CdHypD through site-directed mutagenesis

using the corresponding primers listed in Table 3. The following residue changes were made:

H160Q, D278N, S334A, D339N, F340A, C434S, E436Q, Y450F, T645A, G765A. A double-mutation

variant for CdHypD was constructed by introducing Y450F mutation into the vector pET28a-

CdHypD-T645A. PCR was carried out using Phusion-HF or Q5 polymerase according to the
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manufacturer’s protocol in a total reaction volume of 25 mL. An extension time of 200 s at 72˚C was

used for the PCR protocol, and the annealing temperatures used for each primer pair is listed in

Table 3. Template plasmid was removed by digesting with DpnI (NEB) in all PCR mixtures at 37˚C

for 1 hr. 2 mL of each PCR digestion was used to transform chemically competent E. coli TOP10 cells.

Sequenced vectors were then transformed into chemically competent E. coli BL21-CodonPlus(DE3)-

RIL DproC::aac(3)IV (AmR) cells for protein overexpression.

Glycyl radical detection and quantification by EPR spectroscopy
HypD wild-type and variants were activated using HypD-AE under previously published assay condi-

tions (Levin et al., 2017). Briefly, 60 mM HypD-AE was first incubated with 0.1 mM acriflavine for 20

min in buffer (20 mM Tris-HCl pH 7.5, 100 mM KCl, 50 mM bicine). 15 mM HypD and 1.5 mM Ado-

Met were then added to the solution and incubated for 2 hr. Samples at both steps were placed at

about 10 inches from the MBraun chamber light. The entire volume of 220 mL for each sample was

used for glycyl radical quantification. All activation assays were performed in triplicate and quantified

for glycyl radical content using EPR spectroscopy.

Perpendicular mode X-band EPR spectra were recorded on a Bruker ElexSysE500 EPR instrument

fitted with a quartz dewar (Wilmad Lab-Glass) for measurements at 77 K. All samples were loaded

into EPR tubes 4 mm in outer diameter and 8 inch in length (Wilmad Lab-Glass, 734-LPV-7), sealed,

and frozen in liquid nitrogen. Data acquisition was performed with Xepr software (Bruker). The mag-

netic field was calibrated with an external standard of a,g-bisdiphenylene-b-phenylallyl (BDPA),

g = 2.0026 (Bruker). X-band EPR spectroscopy modeling and spin concentration calculations were

carried out as previously described using EasySpin (Version 5.0.22) on MATLAB (MathWorks)

(Stoll and Schweiger, 2006). An external standard of K2(SO3)2NO was prepared under anaerobic

Table 3. Primers used in site-directed mutagenesis of HypD.

Nucleotides mutated are indicated in small letters.

Primer Sequence (50 to 30)
Annealing
temperature used, ˚C

pET28a-CdHypD-G765A-fwd GACTTAATAGTTAGAGTTGCAGcATATAGTGACCATTTC 66

pET28a-CdHypD-G765A-rev CTACTTAAATTATTGAAATGGTCACTATATgCTGCAACTCTAAC 66

pET28a-CdHypD-C434S-fwd AACCAGTGGTTcTGTTGAAACTGGATG 58

pET28a-CdHypD-C434S-rev CAGTTTCAACAgAACCACTGGTTCCACC 58

pET28a-CdHypD-E436Q-fwd CAGTGGTTGTGTTcAAACTGGATGTTTTGG 60

pET28a-CdHypD-E436Q-rev ACATCCAGTTTgAACACAACCACTGGTTC 60

pET28a-CdHypD-H160Q-fwd AGCCCCAGGACAgACAGTTTGTGGAGATAC 60

pET28a-CdHypD-H160Q-rev ACAAACTGTcTGTCCTGGGGCTCTTTGTTC 60

pET28a-CdHypD-D278N-fwd GAACTTAATATATGGaATGCTTTTACTCCAGGAAGACTTGACC 66

pET28a-CdHypD- D278N-rev CCTGGAGTAAAAGCATtCCATATATTAAGTTCAGTAGTAACCCC 66

pET28a-CdHypD- F340A-fwd GAAAGTAGCACATATACAGATgcTGCAAATATAAAC 54

pET28a-CdHypD- F340A-rev GATTTATTCCACCAGTGTTTATATTTGCAgcATCTGTATATG 54

pET28a-CdHypD- Y450F-fwd GTTTTGGTAAAGAAGCATATGTTCTAACTGGATtTATGAACATTCC 66

pET28a-CdHypD- Y450F-rev GTATTTTTGGAATGTTCATAaATCCAGTTAGAACATATGCTTCTTTACC 66

pET28a-CdHypD- S334A-fwd GTTGGTATAACATTAAAAGAAgcTAGCACATATACAGATTTTGC 60

pET28a-CdHypD- S334A-rev CTGTATATGTGCTAgcTTCTTTTAATGTTATACCAACTTTTGG 60

pET28a-CdHypD- T645A-fwd ATGTTACCAgCAACTTGTCATATATACTTTGGAGAAATTATGGG 66

pET28a-CdHypD- T645A-rev TATGACAAGTTGcTGGTAACATATCTACTCTGTATTCTCCACC 66

pET28a-CdHypD- D339N-fwd CATTAAAAGAAAGTAGCACATATACAaATTTTGCAAATATAAACACTGG 66

pET28a-CdHypD- D339N-rev GGATTTATTCCACCAGTGTTTATATTTGCAAAATtTGTATATGTGCTAC 66
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conditions in 0.5 M KHCO3 for each experiment. Standard concentration was calculated using absor-

bance at 248 nm (e = 1,690 M�1 cm�1) measured using a NanoDrop 2000 UV-Vis Spectrophotome-

ter (Li and Ritter, 1953). EPR spectra represent the average of 1 to 15 scans. Two to three spectra

were obtained for each assay mixture as technical replicates and were recorded under the following

conditions: temperature, 77 K; center field, 3350 Gauss; sweep width, 200 Gauss; microwave power,

20 mW; microwave frequency, 9.45 MHz; modulation amplitude, 0.4 mT; modulation frequency, 100

kHz; time constant, 20.48 ms; conversion time, 20.48 ms; scan time, 20.97 s; receiver gain, 60 dB (for

enzymatic assays) or 30 dB (for standards). Normalization for the difference in receiver gain was per-

formed by the spectrometer. All EPR assays with wild-type and variants were performed in triplicate.

End-point activity assays with HypD variants
All assays were prepared as previously described Levin et al. (2017). Briefly, assays contained 20

mM Tris-HCl pH 7.5, 100 mM KCl, 0.8 mM NADH, 3 mM P5CR, 0.2 mM Hyp, and 0.3 mM HypD.

HypD was first activated under conditions described for EPR spectroscopic assays. All assays were

carried out in triplicate and were initiated by adding Hyp into reaction mixtures, which were then

incubated for 21 hr at 22˚C. Upon removal from the anaerobic chamber, reactions were quenched

with a 2 � volume of methanol and protein precipitates were removed by centrifugation (15,200 g,

10 min). Supernatants were further diluted 30-fold with water for Pro detection and 7.5-fold for Hyp

detection by LC-MS/MS using previously published methods (Levin et al., 2017). Briefly, LC-MS/MS

analysis of Pro and Hyp were performed on an Agilent 6410 Triple Quadrupole LC-MS instrument

(Agilent Technologies) using a Luna SCX column (5 mm, 100 Å, 50 � 2.0 mm, Phenomenex). Precur-

sor and product ions of m/z 116.1 and m/z 70.1 were monitored for proline detection whereas m/z

132.1 and m/z 86.1 were monitored for hydroxyproline. Amino acid standards were dissolved in

water and diluted to a range of concentrations to generate standard curves used to quantify Pro and

Hyp in samples. Source data can be found in Figure 5—source data 1.

Kinetic analysis of HypD variants using a coupled spectrophotometric
assay
Activated HypD variants were used for coupled enzyme kinetic assays as previously described with a

few modifications (Levin et al., 2017). All kinetic assays contained 20 mM Tris-HCl pH 7.5, 50 mM

bicine pH 7.5, 100 mM KCl, and 400 mM NADH. 3 mM of HypD-Y450F (total monomer) and 0.75 mM

of HypD-T765A (total monomer) were used along with 2 � concentration of P5CR for each assay.

Assays were initiated by addition of Hyp to a final concentration of 0, 1, 2, 5, 10, 15, 30, and 60 mM.

Data points represent mean ± SD for n = 3 individual experiments. The data was fit simultaneously

to the Michaelis-Menten equation using nonlinear regression in Graphpad Prism 7.00. The kobs
parameter was calculated based on 29 ± 4% (mean ± SD) activation of HypD-F340A and 19 ± 1%

activation of HypD-T645A as determined by EPR spectroscopic assays. Source data can be found in

Figure 5—source data 2.

End-point assays in D2O
Enzyme was activated as described in ‘End-point activity assays with HypD variants.’ Assays con-

tained 0.8 mM NADH, 3 mM P5CR, 0.2 mM Hyp, and 0.3 mM HypD (HypD added as a mixture of

activation components) in Tris buffer made with D2O (20 mM Tris-HCl pH 7.5, 100 mM KCl). Assays

were carried out in triplicate and were initiated by adding Hyp into reaction mixtures, which were

then incubated for 21 hr at 22˚C. Upon removal from the anaerobic chamber, reactions were

quenched with a 2 � volume of methanol, and precipitated protein was removed by centrifugation

(15,200 g, 10 min). LC-MS/MS analysis of Pro, Hyp, and deuterated products were performed on an

Agilent 6410 Triple Quadrupole LC-MS instrument (Agilent Technologies) using a Luna SCX column

(5 mm, 100 Å, 50 � 2.0 mm, Phenomenex). Precursor and product ions listed in Figure 6—source

data 1 were monitored.

Preparative bioconversion of [2,5,5-D3] trans-4-hydroxy-L-proline and
detailed characterization of [2,4,5-D3] L-proline
All enzymes (HypD, HypD-AE, and P5CR) were purified as described above. Both the activation reac-

tion and preparative bioconversion of [2,5,5-D3] trans-4-hydroxy-L-proline (2,5,5-D3-Hyp) were
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conducted in an MBraun chamber. For the activation reaction, solutions of acriflavine (100 mM final

conc.) and bicine (50 mM final conc.) were added to reaction buffer (20 mM Tris pH 7.5, 100 mM

KCl) and mixed. HypD-AE (60 mM final conc.) was slowly added to the solution and incubated about

10 inches from the Mbraun chamber light for 30 min. HypD (15 mM final conc.) and AdoMet (1.5 mM

final conc.) were added to the activation reaction to a final reaction volume of 7.46 mL (all amounts

of activation components were calculated using this final volume). The activation reaction was incu-

bated in a 15 mL falcon tube about 10 inches from the Mbraun chamber light for 2 hr.

For the preparative bioconversion, NADH (4 equiv., 0.8 mM final conc.), P5CR (0.015 equiv., 3

mM final conc.), and activation reaction (HypD – 0.0015 equiv., 0.3 mM final conc.) were diluted with

reaction buffer (20 mM Tris pH 7.5, 100 mM KCl) to a final reaction volume of 373 mL in a 500 mL

glass bottle. The reaction was initiated by adding 2,5,5-D3-Hyp (1 equiv., 0.2 mM final conc., 10 mg

total), mixed, and incubated at 22˚C without agitation. Conversion to product was monitored by LC-

MS/MS using the protocol outlined above in ‘End point assays in D2O’ until no substrate could be

detected. Upon full conversion, the reaction was removed from the MBraun chamber and enzymes

were precipitated with aqueous HCl (1 M, until pH ~1–2). Precipitated protein was removed by cen-

trifugation (28,000 g for 15 min.) and subsequent filtration of supernatant through a 0.22 mm filter.

Filtrate was purified by strong cation exchange chromatography. Dowex resin was slurry-packed

with methanol and washed with ~100 mL deionized water. The resin was acidified with HCl (1 M)

until the flow through was pH <2. The resin was neutralized with deionized water and acidic filtrate

was added to the resin. The resin was washed with ~100 mL deionized water, and product was

eluted with NH4OH (1 M). Product-containing fractions, as determined by LC-MS, were lyophilized

to dryness. 1H NMR, 13C NMR, COSY, and 1H-13C HSQC spectra were collected and compared to

published 1H NMR and 13C NMR spectra for L-proline to assign peaks (Spectral Database for

Organic Compounds). An authentic standard of L-proline was used to obtain an 1H-13C HSQC

spectrum.

2,4,5-D3 L-proline: 1H NMR (400 MHz, D2O) d 3.18 (m, 1H, C5–H), 2.24 (dd, J = 12.7, 7.1 Hz, 1H,

C3–H), 2.00–1.84 (m, 2H, C3–H and C4–H). 13C NMR (101 MHz, D2O) d 175.16, 60.92 (t), 45.70 (t),

28.87, 23.43 (t). HRMS (ESI-TOF) calculated for C5H7D3NO2 [M + H]+: 119.0894, found: 119.0899.
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