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Abstract of the Dissertation

How Does the Bond Market Perceive

Macroeconomic Risks under Zero Lower Bound?

by

Yuji Sakurai

Doctor of Philosophy in Management

University of California, Los Angeles, 2016

Professor Mikhail Chernov, Co-chair

Professor Francis A. Longstaff, Co-chair

I present a joint model of yield curves and macroeconomic variables with an ex-

plicit effective zero lower bound by employing the concept of shadow interest rates.

Bond yields are derived by assuming no arbitrage opportunities. However, they

are not affine due to the zero lower bound. I thus develop a new approximate

bond pricing formula that is correct up to a second order. To describe macroeco-

nomic dynamics, I employ a standard New Keynesian macroeconomic model and

estimate the model parameters for the US and Japan.

In the first chapter, I conduct three different types of counterfactual analyses

of monetary policy. First, I evaluate a counterfactual analysis of raising the target

inflation level. For both the US and Japan, I find that a higher inflation target

steepens the yield curve when the current policy interest rate is not constrained by

the zero lower bound. On the other hand, a higher inflation target increases long-

term nominal yields while keeping short-term nominal yields unchanged when the

current policy interest rate is constrained by the zero lower bound. Second, I

study the effect of suddenly ending the zero interest rate policy. Third, I examine

the impact of introducing a negative interest rate on the bond markets and the

macro economy.
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In the second chapter, I investigate whether the empirical findings documented

before the zero lower bound period holds during the zero lower bound period. For

example, I study how macroeconomic risks impact the shape of yield curves by

looking at their decompositions and their factor loadings.

In the third chapter, I conduct two additional exercises. First, I incorporate

a Markov regime switching feature into a New Keynesian macro finance model

with the zero lower bound for nominal bond pricing. Second, I study the excess

sensitivity of long-distant real forward interest rates to changes in the short-term

nominal interest rate using a dataset of Japanese fixed income investors.
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CHAPTER 1

New Keynesian macro finance model with the

zero lower bound

1.1 Introduction

Central banks in developed countries have been confronting the zero lower bound

and inflation that is below their targets over several years. A central bank can end

the zero interest rate policy any time it wants. Yet, such a sudden interest rate

hike could be contractionary to the economy. As an alternative, some prominent

policy makers have proposed that a central bank should raise the inflation target

level to generate a higher expected inflation and thus increase the future nominal

interest rate.1 They argue that higher expected nominal interest rates ease the

zero lower bound problem.2 This chapter evaluates the merit of this approach.

A common approach in describing interactions between various macroeconomic

variables and how they are impacted by policy shocks is to estimate Vector Au-

toregressions (VARs). However, when an economy is constrained by the zero lower

bound, such a method is not applicable for two reasons. First, a policy interest

rate is constant and therefore difficult to directly incorporate into VARs. Second,

evaluating a policy that has never been implemented requires a counterfactual

1See Blanchard et al. (2010), McCallum (2011), Ball and Mazumder (2011), Ball (2013),
Williams (2014), Krugman (2014), Aruoba and Schorfheide (2015) for reference.

2For instance, Krugman (2014) argues “Escaping from this feedback loop appears to require
more radical economic policies than are likely to be forthcoming. As a result, a relatively
high inflation target in normal times can be regarded as a crucial form of insurance, a way of
foreclosing the possibility of very bad outcomes.”
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analysis, which needs a structural model.

With respect to the first issue, the term structure of interest rates contains

the information about the future policy interest rate that helps us describe the

relationship between interest rates and macroeconomic variables even under the

zero lower bound. I extract a shadow policy interest rate that is equal to the

nominal policy interest rate as long as that rate is above the zero lower bound.

The concept of a shadow interest rate was developed by Black (1995). In this

research, I generalize the original definition of the shadow interest rate to allow

for a non-zero lower bound and estimate it using data. The approach of a shadow

interest rate is a parsimonious way to allow a short-term nominal rate to stay at

zero for a certain period of time. The shadow interest rate can be easily included

as a proxy for an actual policy interest rate in specifying the joint dynamics of

interest rates and macroeconomic variables.

To resolve the second issue, I assume that macroeconomic variables are de-

scribed by a standard New Keynesian model that is widely used among policy

makers. I take the zero lower bound into account in the New Keynesian model.

This feature allows us to conduct a counterfactual analysis such as raising the

inflation target and introducing a negative interest rate on central bank’s reserve.

It also naturally captures a possible change in macroeconomic dynamics when an

economy is constrained by the zero lower bound.

Specifically, I develop and estimate a joint model of yield curves and macroeco-

nomic variables with an explicit modeling of the zero lower bound both in nominal

bond pricing and macroeconomic dynamics. There are four state variables: real

GDP, potential GDP, inflation and the shadow interest rates. These variables

follow a VAR (1) system with time-varying coefficient matrices.

I employ a no-arbitrage term structure model of interest rates that is flexi-

ble enough to capture the cross-section of nominal bond yields before and during

the zero interest rate policy. Since the model is non-affine to the state variables

2



due to the zero lower bound, I develop a second order approximation for pricing

bonds. The approximation reflects the optionality arising from the zero lower

bound. The no-arbitrage restrictions allow us to transform the private sector’s

expectations about macroeconomic variables into the bond market’s expectations

contained in yield curves while keeping the joint model internally consistent. Once

the no-arbitrage term structure model is estimated with the cross-section of nomi-

nal bond yields, one can decompose nominal bond yields into the path of expected

nominal interest rates and the term premium. The expected nominal interest rate

is a key input in a standard New Keynesian model as I will explain below. For

simplicity, I assume a linear market price of risk.3

Four equations describe the standard New Keynesian model. The first one

is the Investment-Saving (IS) equation that determines the relationship between

expected nominal interest rates, expected inflation and real output. The IS equa-

tion is derived from an inter-temporal consumption Euler equation. The zero lower

bound is explicitly modeled in the IS equation. The other three equations follow

a standard New-Keynesian model. First, the shadow interest rate mean-reverts

to a policy target level that is specified by a Taylor rule. Second, current infla-

tion depends on lagged inflation, expected inflation and the output gap. Third,

potential GDP is assumed to be exogenously driven and mean-reverting. These

structural assumptions are widely used in macroeconomic studies and made for

conducting counterfactual analyses. They also facilitate the interpretation and

estimation of the parameters in the VAR (1) system.

I apply my model of yield curves and macroeconomic variables for the US

and Japan. I jointly estimate parameters of a standard New Keynesian model

and market price of risk parameters. Using market price of risk parameters, I

3In general, it is difficult to match nominal bond yields generated from a standard macroe-
conomic model to actual data because of undervaluation of term premium. To fix this issue,
one needs more sophisticated utility functions such as Epstein-Zin preferences documented by
Rudebusch and Swanson (2012). Yet, these more sophisticated utility functions are then diffi-
cult to incorporate into the term structure model with the zero lower bound. Thus, I employ a
simple no-arbitrage term structure model with the linear market price of risk.

3



compute nominal bond prices with the zero lower bound and fit model-implied

nominal bond yields to actual yields with some measurement errors. The parame-

ters of a standard New Keynesian model are estimated to capture the dynamics of

shadow interest rates and other macroeconomic variables in the physical measure.

After estimating the model parameters, I conduct different types of coun-

terfactual analyses of the interaction between interest rates and macroeconomic

variables given a change in monetary policy. The estimated term structure model

also provides some interesting results such as long-run real interest rates and an

evolution of the shadow interest rates during the zero lower bound period.

Not surprisingly, extracted shadow interest rates for the US show that the ef-

fective (zero) lower bound became binding in 2009. It is approaching the bound

recently, again. In the case of Japan, the shadow interest rates have been nega-

tive since the fourth quarter of 2008 and became more negative since 2014 as the

long-term nominal bond yields are further lowered by the Bank of Japan’s QQE

(Quantitative and Qualitative Easing). When the long-run real interest rate is

computed as a mean-reverting level of the real shadow interest rate with zero

output and inflation gaps, it is equal to 1.02% in the US during the 1991-2015

period and it is −2.60% in Japan during the 2004-2015 period.

I conduct a counterfactual analysis of raising the target inflation level with

negative shadow interest rates for the initial time period. Recall that a negative

current shadow interest rate means that the zero lower bound is currently binding.

In both the US and Japan, a higher inflation target increases long-term nominal

bond yields while keeping short-term yields unchanged. For comparison, I also

study the case when the zero interest rate policy is suddenly abandoned. Given

the sudden termination of the zero interest rate policy, the long-term nominal

bond yields do not increase as much as those in the case of higher inflation target

for the US. Plus, I examine the response of real output and inflation given a higher

inflation target and suddenly ending the zero interest rate policy. I find that a

4



sudden ending of the zero interest rate policy is contractionary while raising the

inflation target is expansionary. In this respect, raising the inflation target is pre-

ferred as it is expansionary.

It is also possible to conduct other types of counterfactual analyses. For ex-

ample, I evaluate an introduction of a negative lower bound. I consider the case

when a current shadow interest rate is negative. I document that it steepens the

nominal yield curve by allowing the short-term nominal yields to be negative and

by increasing the long-term nominal yields.

The rest of the first chapter is structured as follows. Section 1.2 provides a

literature review. Section 1.3 describes a joint model of macroeconomic and term

structures dynamics with an explicit zero lower bound. Section 1.4 discusses the

datasets used and the estimation methodology employed in this study. Section

1.5 shows the main results. Section 1.6 concludes.

1.2 Literature review

The two strands of the literature are closely related to the model I developed in

this paper. I briefly review relevant papers in each strand in this section. The list

of the papers is not exhaustive but chosen based on relevance.

1.2.1 Shadow interest rate models

One theoretical contribution of this research is modeling yield curves under zero

lower bound. After the Federal Reserve lowered its policy rate to zero, there have

been many studies on modeling the zero lower bound in the term structure of in-

terest rates. As an early study, Longstaff (1992) examines the CIR term structure

model and discusses a sticky boundary behavior of interest rates. Black (1995)

interprets the nominal rate as an option on a hypothetical interest rate called a

5



shadow interest rate.4 Gorovoi and Linetsky (2004) revisit Black (1995)’s work

and obtain analytical expressions for yield curves when a shadow interest rate

follows Vasicek process or CIR process. Equipped with this analytical formula,

Ueno, Baba and Sakurai (2006) calibrate the term structure model of shadow in-

terest rates to the Japanese government bond markets and find that it fits better

than the conventional Vasicek model. Oda and Ueda (2007) is an early study of

macro-finance term structure models using a concept of a shadow interest rate.

As in this paper, they assume that a shadow interest rate is specified by the

Taylor rule and find that the Bank of Japan’s unconventional monetary policy

functioned through the zero interest rate commitment. More recently, Kim and

Singleton (2012) develop a two-factor model of shadow interest rates and esti-

mate their model parameters using extended Kalman filtering. They show that

the model outperforms conventional affine counterparts and quadratic Gaussian

models. Christensen and Rudebusch (2015) and Ichiue and Ueno (2013) estimate

two-factor shadow interest rate models based on an approximation developed by

Krippner (2013a,b). Bauer and Rudebusch (2013) employ a simulation-based for-

mula for bond pricing. Wu and Xia (2014) approximate forward interest rates

with zero lower bound in a discrete-time farmework. Priebsch (2013) develops

a cumulant-based technique to approximate bond yields under Gaussian shadow

interest rate models. 5 Lombardi and Feng (2014) estimate a dynamic factor

model using a dataset up until the time when the Federal Reserve started the

zero interest rate policy and extrapolate a shadow policy rate during the zero

lower bound period. Yet, none of those studies develop multi-factor shadow in-

terest rate models with an explicit modeling of the effect of the zero lower bound

4Bomfim (2003) estimates the probability that the federal funds rate hits the zero lower
bound. Yet, he employs a conventional affine model for that.

5Imakubo and Nakajima (2015) also employ a shadow interest rate model to decompose a
nominal yield into an expected real interest rate, real rate risk premium, expected inflation and
the inflation risk premium but they use first order approximation and abstract the convexity
effect.
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on macroeconomic dynamics.6 My approximation formula is related to Krippner

(2013a,b) in which he applies an option-based approximation for nominal bond

prices. A technical contribution of this research is that it develops a second-order

approximation for bond pricing with the zero lower bound by solving a system of

partial differential equations. The approximation is interpreted as the convexity

adjustment based on the delta of the option arising from zero lower bound. I

provide a formal proof as well as an intuitive derivation in the Appendix of this

chapter.

1.2.2 New Keynesian macro finance models

The empirical part of this research contributes to testing term structure models

that explicitly incorporate structural macroeconomic dynamics. In these models,

forward-looking agents optimize their behavior. An evolution of real output is

described by the Investment-Saving (IS) equation derived from an intertempo-

ral consumption Euler equation. An evolution of inflation is determined by the

Aggregate-Supply (AS) equation. To the best of my knowledge, Hördhal, Tris-

tani and Vestin (2006) and Wu (2006) pioneer the literature by incorporating a

New Keynesian macro framework into a no-arbitrage affine term structure model.

Hördhal, Tristani and Vestin (2006) find that forecasting performance of their

model is superior to affine counterparts without structural macroeconomic dy-

namics. In a similar framework, Wu (2006) reports that the slope factor of the

yield curve is driven by monetary policy shocks while the level factor is explained

by technology shocks. Bakaert, Cho and Moreno (2010) further extend the model

6There are several other approaches to impose the zero lower bound on nominal interest
rates. The first one is directly modeling a diffusion process of a discount bond or pricing kernel
as it is done by Jin and Glasserman (2001). The second one is using CAR process developed by
Gourieroux et al. (2014) and Monfort et al. (2015). The third one is modeling the zero interest
rates as one specific state triggered by some stochastic process as in Kabanov, Kijima and
Rinaz (2006). These different approaches have their own advantages and disadvantages. Yet,
the approach of the shadow interest rate is easy to integrate into a structural macroeconomic
model.
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in Hördhal, Tristani and Vestin (2006) by modifying its pricing kernel to be con-

sistent with the IS equation. In this respect, the model estimated in this research

is very close to theirs. However, they assume constant risk premia. Thus, it is dif-

ficult to understand the effect of monetary policy on the expected path of nominal

policy interest rates and the term premium separately. The other closely related

papers are Bikbov and Chernov (2013), Dew-Becker (2014) and Kung (2015). Bik-

bov and Chernov (2013) incorporate a log-linearized New Keynesian model with

regime switching into a no-arbitrage affine term structure model. Dew-Becker

(2014) and Kung (2015) also construct term structure models with New Key-

nesian macroeconomic dynamics and solve their forward-looking macroeconomic

models using higher-order approximations. One difference from these three pa-

pers is an explicit consideration of zero lower bound that is important to analyze

a recent behavior of interest rates. Campbell, Pflueger and Viceira (2015) study

the impacts of monetary policy rules and macroeconomic shocks on nominal bond

risks by employing New Keynesian macroeconomic term structure models. They

conduct a counterfactual analysis and find that nominal bond risk increases after

1977 due to a more anti-inflationary stance. In this paper, I primarily focus on

implications of the zero lower bound for term structure and macroeconomic dy-

namics. To do so, I employ a textbook-style New Keynesian model since solving

a large-scale forward-looking macroeconomic model with the zero lower bound is

computationally difficult.

1.3 Model

I develop a joint model of yield curves and macroeconomic variables with the zero

lower bound in this section. First, I explain the building blocks of a textbook-

style New Keynesian macroeconomic model. I show that the New Keynesian

model has a VAR (1) representation. For expository simplicity, I first explain the

8



model without the zero lower bound and then discuss the case with an explicit

zero lower bound.

Second, I explain a no-arbitrage term structure model of interest rates with an

explicit modeling of the zero lower bound. The dynamics of state variables in the

physical measure are modeled as a VAR(1). The coefficient matrices of VAR (1)

is determined by the New Keynesian model. Given the physical measure process,

I need to specify the market price of risk for pricing nominal bonds. I employ a

linear market price of risk. I then discuss the approximation to price the bonds

with the zero lower bound.

1.3.1 Structural New Keynesian macroeconomic dynamics

I rely on a simple New Keynesian macroeconomic model. Variants of this model

are widely used for macroeconomic analyses. The model has micro foundations

in the sense that it can be derived by assuming forward-looking households and

profit-maximizing firms. Thus, it is suitable for conducting counterfactual analy-

ses of monetary policy.

The main reason to adopt a structural model is to conduct a counterfactual

analysis. Yet, there are some other advantages. First, a stylized structural macroe-

conomic model helps us interpret estimated parameters. Second, it reduces the

number of model parameters to be estimated.7 I admit that the model may be

too simple to describe a complicated behavior of an economy. However, this is

the first step towards a joint modeling of term structure and structural macroe-

conomic dynamics with the zero lower bound. The model can be easily extended

if one is interested in some other aspects.

In what follows, I explain each building block of the model in detail. There

7There are 2×4×4 = 32 parameters in the VAR coefficient F and the matrix H. The vector
G has 4 parameters. In total there are 36 parameters. When we allow the time to exit from the
zero lower bound affects VAR coefficients, F , G, H, in macroeconomic dynamics, these VAR
coefficients become time-varying so that the number of model parameters increase dramatically
and makes their direct estimation difficult.
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are four key equations: an inflation equation, policy rule equation, and two out-

put equations for real and potential output. I show how the structural model is

represented as a reduced VAR form.

First, let us describe how inflation evolves over time. As in textbook-style

New Keynesian models, current inflation is determined by three components:

an expected inflation Et[πt+1], lagged inflation πt−1 as well as the output gap

∆yt = yt − ynt .

πt = µπEt[πt+1|It] + (1− µπ)πt−1 + κ(yt − ynt ) + ϵAS,t, (1.1)

where ϵAS,t is sampled from a normal distribution N(0, σAS). This equation is of-

ten called the Aggregate-Supply (AS) equation or as the New Keynesian Phillips

curve. The information set It is defined as It = {yt, πt, xt, y
n
t }. Real output is

denoted with yt. Potential output is denoted with ynt . In my empirical analysis, I

use real GDP and potential GDP as a proxy for yt and ynt , respectively.

This inflation equation (1.1) is derived as a first-order condition of the mo-

nopolistically competitive firms’ optimal price setting. In the right hand side of

the equation, output gap yt − ynt measures real marginal costs for the firms. The

dependence of current inflation on the lagged inflation is motivated by empirical

studies of the dynamics of inflation. It captures the degree of backward-looking

behavior of the firms or nominal price indexation.

Second, I assume that a central bank determines its policy target by following

a Taylor rule with current real output yt, potential output y
n
t and inflation πt.

xtarget
t = i∗t + γy(yt − ynt ) + γπ(πt − π̄), (1.2)

where i∗t is a policy-neutral nominal interest rate. The sum of the second and

the third terms reflects the central bank’s adjustment of its target interest rate.

I assume that the policy-neutral nominal interest rate i∗t is decomposed into two

components.

i∗t = r∗ + πt, (1.3)
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where r∗ is constant. I interpret r∗ as the long-run real interest rate or an equi-

librium real interest rate. I set a target inflation rate π̄ = 0.02 in my empirical

analysis since there are two constant terms, r∗ and γππ̄. 2% inflation target is

realistic in both the US and Japan. 8

A shadow interest rate mean-reverts to the target shadow interest rate xtarget
t .

xt = µxx
target
t + (1− µx)xt−1 + ϵx,t, (1.4)

where ϵx,t is sampled from a normal distribution N(0, σx). The speed of mean

reversion µx is smaller than one and captures the fact that a central bank gradually

changes its policy interest rate to a desired target interest rate. Empirical studies

on the US Treasury bonds often document µx to be very close to zero and thus a

policy interest rate is close to a random walk.9

Third, potential output ynt follows AR(1) process.

ynt = µyn ȳn + (1− µyn)y
n
t−1 + ϵyn,t, (1.5)

where ϵyn,t is sampled from a normal distribution N(0, σyn). Notice that this

specification allows both (1) a very persistent process as µyn goes to zero and (2)

a very fast mean-reverting process as µyn goes to 1. The former case is relevant

to US while the latter is relevant to Japan. The equation (1.5) is also employed

by Bakaert, Cho and Moreno (2010).

Finally, I close the model by introducing one more equation for real output

and a real interest rate. The equation is called Investment-Saving (IS) equation.

I consider two different specifications. The first one is

[IS-ZLB] yt = αIS + µ+
y Et[yt+1|It] + (1− µ−

y )yt−1 − ϕ(it − Et[πt+1|It]) + ϵIS,t,

(1.6)

8The Bank of Japan announced that they will strictly target 2% inflation in April of 2013.
Before that, the target inflation was not explicitly stated but Masaaki Shirakawa, the former
governor of the Bank of Japan, stated that the inflation consitent with the price stability is in
a positive range of 2 percent or lower. See Shirakawa (2012).

9See Clarida, Gaĺı and Gertler (2000) for reference.
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where ϵIS,t is sampled from a normal distribution N(0, σIS).
10 Notice that a

current real output depends on both the expected real output and the lagged

real output. This type of the IS equation is derived as a first-order condition

of a utility-maximizing representative agent with external habit formation. The

parameter µ−
y measures the degree of the agent’s external habit. I call (1.6) IS-

ZLB. The second one is given by

[IS-SR] yt = αIS + µ+
y Et[yt+1|It] + (1− µ−

y )yt−1 − ϕ(xt − Et[πt+1]) + ϵIS,t.

(1.7)

I call the specification above IS-SR. 11 The only difference between IS-ZLB and

IS-SR is that a nominal policy interest rate it is replaced with a shadow policy

interest rate xt in IS-SR.

The reason why I consider these two specifications is as follows. Recall that a

nominal interest rate (policy interest rate) is a non-linear function of the shadow

policy interest rate.

it = max(xt, ī), (1.8)

where the max operator arises from the effective (zero) lower bound on nomi-

nal interest rates. Substituting (1.8) for (1.6), one obtains a nonlinear forward-

backward-looking equation.

yt = αIS + µ+
y Et[yt+1|It] + (1− µ−

y )yt−1 − ϕ(max(xt, ī)− Et[πt+1|It]) + ϵIS,t.

(1.9)

A non-linearity arising from the zero lower bound makes it difficult to apply a

conventional method to solve forward-backward equations. In this respect, the

IS-SR case is more tractable than the IS-ZLB case. I first explain how a VAR (1)

form is obtained from the structural New Keynesian macroeconomic dynamics in

10ZLB is the abbreviation for zero lower bound.
11SR is the abbreviation for a shadow interest rate.
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the IS-SR case for expository simplicity. I will discuss the IS-ZLB case in the next

subsection. I focus on the IS-ZLB case in my empirical analysis. Notice that the

zero lower bound in nominal bond pricing is not abstracted in the IS-SR case even

if the max operator in (1.9) is dropped.

There can be another reason to consider the IS-SR case in addition to its

tractability. Suppose that a shadow interest rate xt is below the effective lower

bound ī at time t. In the IS-ZLB case, (1.6) is reduced to

yt = αIS + µ+
y Et[yt+1|It] + (1− µ−

y )yt−1 − ϕ(̄i− Et[πt+1]) + ϵIS,t. (1.10)

There is no term involving a current shadow interest rate xt in (1.10). Thus,

a current shadow interest rate does not have any direct impact on current real

output although it may have an indirect impact on future real output (Et[yt+1])

by changing the future path of the nominal policy rate. In IS-SR case, a current

shadow interest rate has a direct impact on current real output. Recall that a

more negative shadow interest rate leads to lower long-term nominal bond yields.

One can interpret the IS-SR case as a parsimonious way to capture a possible

relationship between current long-term interest rates and current real output when

the zero lower bound is binding.

Combining these four equations of macroeconomic dynamics, an entire system

is described as follows. For notational simplicity, I write Et[yt+1|It] and Et[πt+1|It]

as Et[yt+1] and Et[πt+1], respectively.

yt = αIS + µ+
y Et[yt+1] + (1− µ−

y )yt−1 − ϕ(xt − Et[πt+1]) + ϵIS,t, (1.11)

πt = µπEt[πt+1] + (1− µπ)πt−1 + κ(yt − ynt ) + ϵAS,t, (1.12)

xt = µx (r
∗ + πt + γy(yt − ynt ) + γπ(πt − π̄)) + (1− µx)xt−1 + ϵx,t,

(1.13)

ynt = µyn ȳn + (1− µyn)y
n
t−1 + ϵyn,t, (1.14)

Recall that IS-SR (1.11) is replaced with IS-ZLB (1.6) when the zero lower bound is

explicitly modeled in the New Keynesian macroeconomic dynamics. The system
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of these four equations above is standard in the New Keynesian literature and

almost the same as the one employed in Gürkaynak, Sack and Swanson (2005)

and Hördhal, Tristani and Vestin (2006) except that (1) they abstract the zero

lower bound and (2) they do not have the equation (1.14) and model output gap

∆yt(= yt−ynt ) directly.
12 In this paper, I separately treat the two equations, (1.11)

and (1.14), to make it clear that the zero lower bound arises in the IS equation for

real output, not for the output gap in the IS-ZLB case. 13 The other closely related

papers such as Bakaert, Cho and Moreno (2010) and Campbell, Pflueger and

Viceira (2015) also abstract the zero lower bound. Precisely speaking, Bakaert,

Cho and Moreno (2010) have one additional equation to associate the long-run

expected inflation with the inflation target. Similarly, Campbell, Pflueger and

Viceira (2015) assume that the inflation target follows a random walk and describe

the macroeconomic dynamics by the four equations. To keep my macroeconomic

model as simple as possible, I employ the four equations described above.

The IS equation (1.11) and the AS equation (1.12) are rewritten as

−µ+
y Et[yt+1]− ϕE[πt+1] = −yt − ϕxt + (1− µ−

y )yt−1 + αIS + ϵIS,t, (1.15)

−µπEt[πt+1] = −πt + (1− µπ)πt−1 + κ(yt − ynt ) + ϵAS,t. (1.16)

The policy rule equation (1.13) and the potential output equation (1.14) are also

rearranged as

0 = µxγyyt + µx(1 + γπ)πt − xt − µxγyy
n
t + (1− µx)xt−1 + µxr

∗ − µxγππ̄ + ϵx,t,

(1.17)

0 = −ynt + µyn ȳn + (1− µyn)y
n
t−1 + ϵyn,t. (1.18)

The four equations, (1.15), (1.16), (1.17) and (1.18) are represented as a VAR (1)

system:

AEt[Xt+1] = BXt + CXt−1 +D + ϵt, (1.19)
12A textbook-style New Keynesian model is often represented by the first three equations:

the IS equation for output gap, the AS equation and a policy rule equation.
13Recall that the potential output ynt follows AR(1) process in this research.
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where X = (yt, πt, xt, y
n
t )

T and ϵt = (ϵIS,t, ϵAS,t, ϵx,t, ϵyn,t)
T . Specifically, coefficient

matrices A and B are given by

A =



−µ+
y −ϕ 0 0

0 −µπ 0 0

0 0 0 0

0 0 0 0


, B =



−1 0 −ϕ 0

κ −1 0 −κ

µxγy µx(1 + γπ) −1 −µxγy

0 0 0 −1


.

(1.20)

Matrix C is specified as

C =



1− µ−
y 0 0 0

0 1− µπ 0 0

0 0 1− µx 0

0 0 0 1− µyn


. (1.21)

Vector D is given by

D = (αIS, 0, µx(r
∗ − γππ̄), µyȳn)

T . (1.22)

In the literature of a structural New Keynesian macroeconomics, the techniques

to solve the VAR system are widely known. So I briefly review how to solve (1.19).

Let us assume the solution of (1.19) is represented as

Xt+1 = FXt +G+Hϵt. (1.23)

Substituting (1.23) for (1.19) yields

Xt = (AF −B)−1(CXt−1 +D − AG+ ϵt). (1.24)

Applying the method of undetermined coefficients, one obtains

F = (AF −B)−1C, (1.25)

G = (AF −B)−1(D − AG), (1.26)

H = (AF −B)−1. (1.27)
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(1.25) and (1.26) are simplified as

AF 2 −BF − C = 0, (1.28)

G = (AF −B + A)−1D. (1.29)

It is straightforward to solve the quadratic equation (1.28) for the matrix F . Once

F is obtained, substituting F for (1.29) and (1.27) yields G and H. One technical

issue is the existence of multiple solutions when the quadratic equation (1.28) is

numerically solved. I select a solution that is not explosive. 14

Once (1.23) is obtained, one can forecast the state variablesX = (yt, πt, xt, y
n
t )

T .

The forecasts of k-period-ahead state variables Et[Xt+k] are given by

Et[Xt+k] = F kXt + (I + F + F 2 + · · ·+ F k−1)G, (1.30)

where I is a 4 × 4 identity matrix. The forecasts of the time average of state

variables over n periods are given by

Et[X̄t+n] =
n∑

k=1

Et[Xt+k]/n = F̄nXt + Ḡn, (1.31)

where F̄n =
∑n

k=1 F
k/n and Ḡn =

∑n
k=1

∑k
j=1 F

j−1G/n. The second element of

Et[X̄t+k] is the forecast of the average inflation over n periods at time t, denoted

as Et[π̄t+k]. In estimating the model, I use survey-based forecasts of the average

inflation. I denote the survey-based forecasts of the average inflation over n periods

at time t with snt . I assume that snt is determined by

snt = Et[π̄t+k] + αn
s + ϵs

n

t , (1.32)

where αn
s captures a bias of the survey-based forecast of inflation. ϵs

n

t is sampled

from N(0, σsn). Notice that s
n
t is a linear function of all state variables Xt because

Et[π̄t+k] is a linear function of Xt. Therefore, one can rewrite (1.32) as

snt = F̄n,2Xt + Ḡn,2 + αn
s + ϵs

n

t , (1.33)

where F̄n,2 is the second row of F̄n and Ḡn,2 is the second element of Ḡn.
14It is worth mentioning that F44 = 1− µyn and G4 = µyn ȳn.
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1.3.2 Zero lower bound in macroeconomic dynamics

In the previous subsection, I replace a nominal policy interest rate with a shadow

(nominal) policy interest rate and focused on the IS-SR case (1.7). In the following

subsection, I discuss the IS-ZLB case (1.6) where the zero lower bound is explicitly

considered in a structural New Keynesian macroeconomic model.

The system of four equations with zero lower bound is given by

yt = αIS + µ+
y Et[yt+1] + (1− µ−

y )yt−1 − ϕ(it − Et[πt+1]) + ϵIS,t, (1.34)

πt = µπEt[πt+1] + (1− µπ)πt−1 + κ(yt − ynt ) + ϵAS,t, (1.35)

xt = µx (r
∗ + πt + γy(yt − ynt ) + γπ(πt − π̄)) + (1− µx)xt−1 + ϵx,t, (1.36)

ynt = µyn ȳn + (1− µyn)y
n
t−1 + ϵyn,t, (1.37)

where it = max(xt, ī). Notice that a shadow interest rate xt cannot have any

impact on current real output yt if the zero lower bound is binding (xt < 0) in

(1.34). Yet, a shadow interest rate could have an impact on current real output

by changing the expected real output.15 This effect depends on how long a central

bank keeps its policy rate at zero percent. As a result, coefficients F and G are

time-dependent when the shadow interest rate is negative.

The four equations above can be expressed in the form of two matrix equations.

A∗Et[Xt+1] = B∗Xt + C∗Xt−1 +D∗ + ϵt if xt ≤ ī, (1.38)

AEt[Xt+1] = BXt + CXt−1 +D + ϵt if xt > ī, (1.39)

where A, B, C and D are already defined in the previous subsection. It is easy

to confirm the coefficient matrix A∗ = A that is defined by (1.20) and a diagonal
15To see this, consider a simplified IS equation below:

yt = Et[yt+1]− ϕ(it − Et[πt+1])

= −ϕEt

[ ∞∑
k=1

(it+k − πt+k+1)

]
− ϕ(it − Et[πt+1]).

From the first term in the equation above, one can see a theoretical possibility that a real output
can be increased if the future nominal interest rate is lowered even when a current policy interest
rate it is at zero percent in the second term.
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matrix C∗ = C in (1.21) because the zero lower bound does not appear in these

matrices. The coefficient matrix B∗ and the vector D∗ are different from their

counterparts, B and D in the IS-SR case.

B∗ =



−1 0 0 0

κ −1 0 −κ

µxγy µx(1 + γπ) −1 −µxγy

0 0 0 −1


. (1.40)

Vector D∗ is given by

D∗ = (αIS − ϕī, 0, µx(r
∗ − γππ̄), µyȳn)

T . (1.41)

To solve a set of the two forward-backward looking matrix equations, (1.38) and

(1.39), I employ the method developed by Guerrieri and Iacoviello (2015) with

a little modification. Loosely speaking, I extrapolate a solution obtained in the

region without the zero lower bound to the region with the zero lower bound by

taking into account the ending time of the zero interest rate policy.

The key assumption of their method is that a nominal policy interest rate

reverts to a positive level and the economy will not be constrained by the zero

lower bound after a certain time period τ . This assumption allows us to have a

boundary condition and dramatically reduces a complexity of (1.34)-(1.37). My

modification of their method is that (1) I maintain shocks ϵt in (1.38) while they

drop them. (2) I restrict the case when τ is the first exit time from the zero lower

bound while they allow regimes to switch from one to another before t < τ .

I denote the first expected ending time of zero interest rate policy with τ that

is mathematically defined as

τ = min(s; Et[xs] > ī,Et[xs−1] ≤ ī). (1.42)

When a shadow interest rate xt < ī at time t = 1, the solution at the time period

t = 1 takes the following form.

Xt+1 = F ∗
t Xt +G∗

t +H∗
t ϵt if 1 ≤ t < τ, (1.43)
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Xt+1 = FXt +G+Hϵt if t ≥ τ, (1.44)

where F , G and H are VAR coefficients without the zero lower bound and nu-

merically computed by solving (1.19). F ∗
t , G

∗
t and H∗

t are solved recursively from

t = τ to t = 1, given F , G and H. My additional assumption is that the expected

shadow interest rate hits to zero and gets above the zero lower bound only when

t = τ . Notice that the expected exit time of zero interest rate policy τ becomes

more distant from now when a current shadow interest rate xt is more negative.

Thus, the expected exit time τ must be consistent with the current shadow in-

terest rate xt when solved. The numerical solution is postponed to the Appendix

1.7.1.

1.3.3 No-arbitrage term structure model

When the zero lower bound is binding, a policy interest rate is kept constant and

thus a shadow policy interest rate xt is not directly observable. I use the infor-

mation contained in the cross section of nominal bond yields to extract a shadow

interest rate xt. In doing so, I construct a term structure model of interest rates

with the zero lower bound. Since the model is non-linear and thus a closed-form

solution is not available, I develop an approximate bond pricing formula that is

correct up to second order.

I incorporate the structural macroeconomic model as parameter restrictions on

the dynamics of state variables into a no-arbitrage term structure model.16 Recall

that I have shown that forward-looking equations in a New Keynesian macroeco-

nomic model is reduced to a VAR (1). That VAR (1) describes the dynamics of

the state variables in the physical measure when modeling term structure.

As in empirical studies of no-arbitrage term structure models, the model en-
16There are 2×4×4 = 32 parameters in the VAR coefficient F and the matrix H. The vector

G has 4 parameters. In total there are 36 parameters. When we allow the time to exit from the
zero lower bound affects VAR coefficients, F , G, H, in macroeconomic dynamics, these VAR
coefficients become time-varying so that the number of model parameters increase dramatically
and makes their estimation difficult.
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ables us to decompose nominal bond yields into the expected real rates, the real

interest rate risk premium, the expected inflation, and the inflation risk premium.

Furthermore, one can investigate how factor loadings of yield curves change be-

fore and during the zero lower bound period without treating these two periods

separately.

Following Black (1995), I employ the concept of a shadow interest rate to model

the zero lower bound on nominal interest rates. A shadow interest rate xt can

take a negative value and a positive part of the shadow interest rate is set equal

to an observed nominal policy interest rate it. The mathematical definition is

it = max(xt, ī). (1.45)

In (1.45), I slightly generalize the original definition of shadow interest rates by

introducing an additional parameter ī. I call ī effective lower bound. The effective

lower bound ī can be understood as interest rate on reserve (IOR). It arises from

the fact that banks cannot keep cash physically and they are required to hold

reserves at a central bank. I estimate ī for actual data.

Next, let us introduce a vector of stochastic factors Xt = (yt, πt, xt, y
n
t )

T that

drive a shadow interest rate at the next time step, xt+1. There are three other

macroeconomic variables: real output yt, inflation πt, potential output y
n
t .

I assume that the vector of these stochastic factors Xt follows a VAR(1).

Xt = FXt−1 +G+Hϵt, (1.46)

where F and H are 4 × 4 matrix and G is 4 × 1 vector. ϵt is a 4 × 1 vector of

fundamental shocks. The i-th element of ϵt is sampled from a normal distribution

N(0, σi). These innovations ϵi,t are not correlated with each other. Correlations

between them are captured by H.

If we look at the dynamics of the shadow interest rate xt, it is given by

xt = F31yt−1 + F32πt−1 + F33xt−1 + F34y
n
t−1 +G3 +H3ϵt, (1.47)
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where Fij is the (i, j) element of the matrix F . H3 are the third-row of each

matrix. G3 is the third element of the vector G. The equation (1.47) tells us that

the H3 mixes different fundamental shocks on a shadow interest rate xt.

One potential concern for (1.46) is that a shadow interest rate may not be able

to have any impact on real output when it is negative and a nominal rate is equal

to zero. In other words, F13 may depend on the level of xt. To avoid this issue, I

have explicitly modeled the dependence of macroeconomic dynamics on a shadow

interest rate using the IS-ZLB specification in Section 1.3.2.

As it is often used in the literature, I assume that a market price of risk λt

is a linear function the state variables Xt in order to model the dynamics of the

vector Xt under the risk neutral measure.

λt = λ0 + λ1Xt, (1.48)

where λ0 = [λ0
y, λ

0
π, λ

0
x, λ

0
yn ]

T and λ1 is 4× 4 upper triangle matrix except modifi-

cation that allows λ1
2,1 to be non-zero.17

Nominal bond price P n
t with maturity τ at time t is recursively computed. Sup-

pose that we are pricing bonds under the time frequency ∆t such that τ = n∆t.

The pricing formula for a nominal bond is given by

P n
t (X) = EQ

t [e
−
∑n

k=0
it+k∆t |Xt = X], (1.49)

where the expectations are computed under the risk neutral measure. Henceforth,

EQ
t is the expectations under the risk-neutral measure. X is an initial value of

macroeconomic variables including a shadow interest rate (Xt = X).

The dynamics of the four stochastic factors under the risk-neutral measure are

given by

Xt = FQXt−1 +GQ +Hϵt, (1.50)

17If λ1
2,1 is non-zero, the dependence of inflation on previous real output is different between

the risk neutral measure and the physical measure.
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where FQ an GQ are given by

FQ = F −Hµ1, (1.51)

GQ = G−Hµ0. (1.52)

Similarly, real bond price Dn
t with maturity τ at time t is also recursively com-

puted. The formula for real bond pricing is given by

Dn
t (X) = EQ

t [e
−
∑n

k=0
rt+k∆t|Xt = X], (1.53)

where rt is a real interest rate rt = it − πt = max(xt, ī)− πt. Nominal bond yields

int with maturity τ at time t are defined as

int (X) = − log(P n
t (X))/τ. (1.54)

Similarly, real bond yields rnt with maturity τ at time t are defined as

rnt (X) = − log(Dn
t (X))/τ. (1.55)

In estimating the model for actual nominal bond yields, I assume that there is

an observation noise for bond yields. The observation noise wt is sampled from

the normal distribution N(0, σR) with the standard deviation σR.

in,datat (X) = in,model
t (X) + wt. (1.56)

I assume that the observation noise wt is independent of shocks to other macroe-

conomic variables ϵt. I also assume that wt for the maturity τ is independent from

wt for other maturity τ ′( ̸= τ).

When estimating a joint model of yield curves and macroeconomic variables,

bond yields are computed many times given different parameters. Thus, it is

important to obtain either a closed-form solution or an approximate solution for

computational feasibility. One cannot use a well-known affine bond pricing for-

mula here even though stochastic factorsXt follow VAR(1) system since stochastic

factors Xt are non-linearly related to a policy interest rate it.
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To overcome this issue, I develop an approximate formula for nominal bond

prices when there exists an effective (zero) lower bound on nominal interest rates.

Recall the definition of the shadow interest rate and notice that it can be repre-

sented as

it = max(xt, ī) = xt +max(̄i− xt, 0). (1.57)

The second term is analogous to a put option with the strike ī on the shadow

interest rate xt. The nominal bond yield is

int (X) = in,affinet (X) + P n
t (X, ī). (1.58)

The value of the put option P n
t depends on (1) the volatility of the underlying

shadow interest rate and (2) to what extent the shadow interest rate is negative.

For example, the option value arising from the zero lower bound is ignorable if the

shadow interest rate is strongly positive and its volatility is low. Loosely speaking,

the approximation takes the volatility effect into account up to a second order.

The second effect is captured as delta of the option.18 I provide an intuitive

derivation in Appendix 1.7.2. A more formal proof is postponed to the Appendix

1.7.3.19

1.4 Data and estimation methodology

1.4.1 Data

I study government bond yields and macroeconomic variables in the US and Japan.

The frequency of the data used in my empirical analysis is quarterly. For the US

case, I study the period from October of 1991 (4th quarter) to October of 2015 (4th

18Delta is a terminology widely used in the option pricing literature. It refers to as the
first-order derivative of the option value with respect to the underlying asset. Delta captures
moneyness of the put option. In other words, delta naturally takes into account to what extent
the shadow interest rate is negative.

19Section 1.7.7 shows detailed comparisons of bond prices based on the approximate formula
with the bond prices based on Monte Carlo simulation.
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quarter). I obtain the US Treasury bond yields from the website of the Federal

Reserve Board of Governors. The data is constructed based on Gürkaynak, Sack

and Wright (2007).20 GDP growth and CPI inflation are downloaded from FRED

at the website of the Federal Reserve Bank of St. Louis. I also use 10-year

CPI forecasts from the Survey of Professional Forecasters. The starting date is

determined due to availability of 10-year CPI forecasts. I use nominal bond yields

data constructed by Gürkaynak, Sack and Wright (2007). Figure 1.1 shows a time

series plot of the nominal bond yields used in estimating the model for US. It is

clear that the zero lower bound has been binding in the US since December of

2008.

For the case of Japan, I focus on the period from July (3rd Quarter) of 2004 to

October (4th quarter) of 2015 because fixed income investors’ inflation forecasts

are available only from July of 2004. Survey-based inflation forecasts are from

Quick. For computing the average of CPI forecasts, I adjust a consumption tax

hike in 2013 April. I obtain the Japanese government bond yields from the website

of Ministry of Finance.21 GDP growth and CPI inflation are downloaded from

Cabinet Office and Statistics Bureau. Figure 1.2 shows the historical data of

nominal bond yields used in estimating the model for Japan. One can see that

10-year bond yield is very low and even became lower than 50 bps in 2015.

I use demeaned real GDP and potential GDP as a proxy for real output yt and

potential output ynt , respectively. I employ CPI inflation as a proxy for inflation

πt.

Table 1.1 shows the average nominal yields of the US Treasury bonds and

the Japanese government bonds, respectively. The US Treasury bond yields are

constrained by the zero lower bound after the Federal Reserve employed the zero

interest rate policy. To formally test this argument, I estimate the effective lower

bound ī in the next section. The Japanese government bond yields have been

20http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
21http://www.mof.go.jp/english/jgbs/reference/interest rate/index.htm
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very low during the entire sample period. After QQE (Quantitative Qualitative

Easing), they are further lowered.

Table 1.2 shows summary statistics of survey-based CPI inflation forecasts. In

the US case, the historical average of realized CPI inflation was around 2.32%

during 1991-2015 period. The historical average of 10-year-average CPI inflation

forecast is 0.31% higher than that. The difference seems not large. This is in sharp

contrast to Japan. The historical average of realized CPI inflation was 0.03%

during 2004-2015 period in Japan. The historical average of 10-year-average CPI

inflation forecast is 1.10%.

1.4.2 Estimation methodology

As described in the previous sections, my joint model of yield curves and macroe-

conomic variables is described by (1.23), (1.33) and (1.56). To clarify what I am

going to estimate, I reproduce those equations below:

in,datat = in,model
t (Xt,Θ, λ0, λ1) + wn

t , (1.59)

Xt = F (Θ)Xt−1 +G(Θ) +H(Θ)ϵt, , (1.60)

snt = F̄n,2(Θ)Xt + Ḡn,2(Θ) + αn
s + ϵs

n

t , (1.61)

where Xt = (yt, πt, xt, y
n
t )

T . snt is n-quarter-average inflation forecast at time t. I

set n = 40 and use the 10-year-average CPI forecasts as a proxy of the long-term

inflation forecast. Measurement error wn
t is sampled from a normal distribution

N(0, σM). λ0 and λ1 are parameters of market price risk as discussed in the

previous section. Θ is a vector of the New Keynesian model parameters.

Θ =
{
αIS, µ

+
y , µ

−
y , ϕ, µπ, κ, µx, r

∗, γy, γπ, π̄, ȳn, µyn , ī
}
. (1.62)

Notice that volatilities of four macroeconomic shocks σ = {σIS, σAS, σx, σyn} are

standard deviations of a vector of these shocks ϵt. When IS-ZLB is employed,

(1.60) should be replaced with (1.43) and (1.44). I estimate the model under
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the specification of IS-ZLB unless otherwise mentioned. Recall that the shadow

interest rate xt is latent when the zero lower bound is binding.

I estimate the model by two methods. In the first method, I extract a shadow

interest rate xt at time t by fitting the model-implied nominal yield curve in,model
t

to cross-sectional nominal bond yields in,datat . This approach is widely used in

empirical studies of affine term structure models. Unlike affine term structure

models, one cannot analytically solve the state variables as a function of observable

bond yields.22 Thus, I numerically solve the state variable xt.

x̂t = argmin
∑
n∈N

(
in,datat − in,model

t (Xt,Θ, λ0, λ1)
)2

, (1.63)

where a vector of maturities N = {0, 1, 2, 3, 4, 5, 7, 10}. The nominal interest rate

with N = 0 means the policy interest rate. the Rather than assuming that nom-

inal bond yields with specific maturities can be observed without noise, I use all

cross-sectional bond yields to extract the shadow interest rate.23 Then, I employ

maximum likelihood estimation for the VARs (1) ((1.60) and (1.61)) where the

four state variables are given by X̂t = (yt, πt, x̂t, y
n
t )

T .

To reduce the computational time for estimation, I estimate model parameters

ȳ, µyn , σyn in the equation of potential output (potential GDP), (1.14) (or equiv-

alently (1.37)) separately because the potential output is completely exogenous.

I also fix Taylor rule coefficients γy = 0.5 and γπ = 0.5 for both the US and

Japan, as in the original Taylor rule. This assumption is not necessary but helps

us obtain an estimate of the long-run real interest rate r∗ in the shadow policy

22In M -factor affine term structure models, a vector of M number of yields, iMt is given by

iMt = A+BXt,

where A is a M × 1 vector. B is M ×M matrix. Then one obtains

X̂t = B−1(iMt −A).

The above explicit function of X̂t cannot be obtained in non-linear term structure models.
23I have also estimated the model by assuming no observable noise for nominal bond yield for

one specific maturity. Yet, it makes solving a nonlinear equation unstable due to non-linearity
of the model, especially when the bond yield is approaching zero.
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rule equation (1.13) (or (1.36)).

In the second method, I treat shadow interest rates as a latent factor and

thus employ unscented Kalman Filtering. Since bond yields in my term struc-

ture model are not linear to latent variables, I cannot use conventional Kalman

filtering to compute likelihood. Unscented Kalman Filtering (UKF) developed by

Julier and Uhlmann (2004) is applicable to non-linear models. It is possible to

estimate the model parameters by extended Kalman filtering based by linearizing

the model. Yet, Christoffersen et al. (2014) report that unscented Kalman filter

performs better than extended Kalman Filtering.

The second method is just for a robustness check. All of results are based on

the first method.

1.5 Results

1.5.1 Estimated parameters and pricing errors

Table 1.3 shows absolute pricing errors of the model. The average errors across all

maturities are 24bps for US and 7bps for Japan. These numbers are reasonably

low, considering that the model has some restrictions on the dynamics of the state

variables Xt under the physical measure.

Tables 1.4 and 1.5 present estimates of structural New Keynesian model pa-

rameters as well as market price of risk parameters for the two countries. We

observe the following: First, the effective lower bound ī is slightly positive for

both cases. For US, ī is 17bps while it is 10bps for Japan. This indicates that

specifying exactly zero percent as the zero lower bound in modeling might give

misleading results.24

Second, the long-run real rate is negative for Japan with r∗ = −2.60%. The

24The Bank of Japan has been keeping an interest rate on reserve (IOR) to 10bps since 2008
October.
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Bank of Japan is currently targeting for a 2% inflation. If the Japanese inflation

πt converges to the official target inflation of 2%, the long-run (policy-neutral)

nominal interest rate i∗t (= r∗ + πt) is equal to −0.60%. Yet, it is still lower than

the effective (zero) lower bound ī(= 0.10%). It indicates that the Bank of Japan

might need to have a higher inflation (> 2.70%) in order to exit from the (effec-

tive) zero lower bound. In the case of the US, the long-run real rate is equal to

1.02%. Thus, policy-neutral nominal interest rate should be above the effective

lower bound if the inflation is higher than -0.85(=0.17-1.02) %.

Third, the bias of inflation survey α40
s is 0.36% for the US while it is around

-1.00% for Japan. Survey-based inflation forecasts are biased compared to ratio-

nal expectations of inflation, especially for the case of Japan.

Figure 1.3 shows the evolution of the shadow interest rate extracted from the

yield curves and the federal funds rate in the US. The shadow interest rate hit the

zero lower bound in early 2009 and became very negative in 2012. It is approach-

ing the bound recently, again. In the case of Japan, although I do not report here,

the shadow interest rates have been negative over years and became more negative

since 2014 as the long-term nominal yield is further lowered by Quantitative and

Qualitative Easing (QQE).

1.5.2 Counterfactual analyses

Equipped with the estimated New Keynesian macroeconomic model, I conduct a

counterfactual analyses of monetary policy. Figures 1.4 and 1.5 show the nominal

bond yield curve given a higher inflation target level for the US.25 In Figure 1.4,

the zero lower bound is not binding at the current time period (xt = 1.00%).

Thus, a higher inflation target lowers a policy interest rate in the short run, but

it increases the long-run expected inflation. Thus, long-term nominal bond yields

25I assume that an initial value of the shadow interest rate is lowered by 0.50% due to the
1.00% increase in the target inflation rate because the target shadow rate is lowered by 0.50%.
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increase.

In Figure 1.5, the zero lower bound is binding (xt = −1.00%). As a result,

a higher inflation target cannot further lower short-term nominal yields. Figure

1.5 also shows the yield curve when the zero interest rate policy is suddenly

abandoned. The short-term yields increase more than those in the case of a

higher inflation target, but the long-term yields do not. Furthermore, Figure 1.6

shows that real output increases when a higher inflation target is adopted. By

contrast, Figure 1.7 shows that real output decreases when the zero interest rate

policy suddenly ends. These results indicate that raising the inflation target is

better than suddenly ending the zero interest rate policy in stimulating the macro

economy and generating higher long-run nominal interest rates.

Figure 1.8 documents that the increase in the nominal yields caused by the

higher inflation target is explained by the increase in the expected nominal interest

rate as well as the increase in the term premium. That indicates that a higher

inflation target generates higher expected inflation and thus increases the expected

nominal interest rates. Not surprisingly, the term premium is also impacted by a

higher target inflation.

Figures 1.9 and 1.10 show the nominal bond yield curves given a higher inflation

target level for Japan. In Figure 1.9, the zero lower bound is not binding at the

current time period (xt = 1.00%). In Figure 1.10, the zero lower bound is binding

(xt = −1.00%). The result is similar to the US case although long-term yields are

less impacted in the case of Japan.

Figures 1.11 and 1.12 show the nominal bond yield curves given an introduction

of a negative lower bound for the US and Japan. The negative lower bound

steepens the nominal yield curve by allowing short-term nominal yields to be

negative and by increasing the long-term nominal yields. Figure 1.13 shows that

real output and inflation increase given an introduction of a negative lower bound

in the US case. The long-term nominal yields increase as these macroeconomic
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variables increase.

1.6 Conclusion

In this paper, I present a joint model of term structure and macroeconomic vari-

ables with an explicit zero lower bound. I employ the concept of a shadow in-

terest rate to model the zero lower bound in bond pricing. Bond yields satisfy

no-arbitrage condition, but not affine to the state variables due the zero lower

bound. A well-known closed form solution for bond prices under an affine term

structure model is not available. Thus, I develop a new approximate bond pricing

formula that is correct up to a second order of shadow interest rate volatility. The

formula is intuitive and compatible with other features such as regime switching.

I assume that the market price of risk is a linear function of the state variables.

To conduct a counterfactual analysis of monetary policy, I assume that macroe-

conomic dynamics are described by a standard New Keynesian model with the

zero lower bound. The New Keynesian model has a VAR (1) representation with

time-varying coefficient matrices that depend on the level of the shadow interest

rate. I include the shadow policy interest rate as a state variable in the VAR

(1). The other macroeconomic variables are real output, inflation, and potential

output.

The yield curve contains the information about the expected policy interest

rate that is a key input in the IS equation of the New Keynesian model. Thus, I

extract a shadow policy interest rate by using yield curves.

I apply the model for the US and Japanese economy. I jointly estimate the

New Keynesian model parameters and the linear market price of risk parameters

using yield curves, survey-based inflation forecasts and macroeconomic variables.

I find that the long-run real interest rate is equal to 1.02% in the US during the

1991-2015 period and it is -2.60% in Japan during the 2004-2015 period. I also
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document that the effective (lower) bound on nominal interest rates is slightly

positive for both the US and Japan.

I conduct different types of counterfactual analyses. As the main feature of my

model, I conduct a counterfactual analysis of raising the target inflation level. In

both the US and Japan, a higher inflation target steepens the yield curve when

the zero lower bound is not binding. On the other hand, a higher inflation target

increases long-term yields while keeping short-term yields unchanged under the

zero lower bound. For comparison, I also conduct a counterfactual analysis of

suddenly ending the zero interest rate policy. Given the sudden termination of

the zero interest rate policy, the long-term nominal yields do not increase as much

as those in the case of a higher inflation target for the US. When I look at the

effects of these policies on real output, raising the inflation target is expansionary

while ending the zero interest rate policy is contractionary. In this respect, raising

the inflation target is more appropriate.

One methodological contribution of this research is the use of information con-

tained in the yield curves for estimating structural macroeconomic models with a

zero lower bound. The structural macroeconomic model employed in this research

is so stylized that many aspects of a real economy are not captured. I assume a

textbook-style New Keynesian macroeconomic dynamics in this research to keep

the key aspects of my joint model clear. More empirical investigations about

macro-finance models with a zero lower bound should be conducted to facilitate

a robust monetary policy.
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1.7 Appendix

1.7.1 Solving a log-linearized New Keynesian model with the zero

lower bound

The numerical procedure is as follows.

During the time period when the zero lower bound is binding, VAR coefficients

F ∗
t , G

∗
t and H∗

t are computed given F , G and H. First, guess the expected exit

time τ . From (1.44), the evolution of Xt at time t = τ is determined by

Xτ+1 = FXτ +G+Hϵτ . (1.64)

Substituting (1.64) for (1.38) at time t = τ , one obtains

A∗(FXτ +G) = B∗Xτ + C∗Xτ−1 +D∗ + ϵt.

⇔ Xτ = (A∗F −B∗)−1(C∗Xτ−1 +D∗ − A∗G+ ϵt). (1.65)

Comparing (1.65) with (1.43) at time t = τ − 1, we have

F ∗
τ−1 = (A∗F −B∗)−1C∗, Gτ−1 = (A∗F −B∗)−1(D∗ − A∗G), (1.66)

H∗
τ−1 = (A∗F −B∗)−1. (1.67)

Given Fτ−1, Gτ−1, Hτ−1, one can recursively compute the previous coefficients Ft,

Gt, Ht (1 ≤ t ≤ τ − 1).

F ∗
t = (A∗F ∗

t+1 −B∗)−1C∗, Gt = (A∗F ∗
t+1 −B∗)−1(D∗ − A∗Gt+1), (1.68)

H∗
t = (A∗F ∗

t+1 −B∗)−1. (1.69)

Equipped with Ft, Gt, one can compute the expected exit time τ ′. If τ ′ < τ ,

lower τ . Otherwise raise τ . Repeating this procedure, one should obtain τ that is

consistent with xt at time t = 1.

The algorithm is summarized as outlined below.

• Solve VAR coefficient F , G and H without the zero lower bound.
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Step 1 Guess the ending time of the zero interest rate policy τ .

Step 2 Compute VAR coefficient F ∗
t G∗

t , and H∗ during the time period

of zero interest rate policy (from t = τ − 1, · · · , 1) using (1.68) and

(1.69).

Step 3 Generate the expected path of shadow interest rates E1[xt] for t =

1, · · · , τ − 1 using (1.43) and compute τ ′ as the first hitting time of

the shadow interest rate to the effective (zero) lower bound ī. E1[xt]

is obtained as one element of the vector E1[Xt].

Step 4 compare whether τ ′ is equal to τ or not. If not, update τ .

• Repeat the Step 1 to Step 4 until convergence.

In practice, I set the upper bound for the hitting time τ equal to 40 (10 years)

since I extract the information about expected interest rate up to 10 years.

1.7.2 Approximate bond pricing formula (single-factor case): An in-

tuitive derivation

In this section, I give an intuitive derivation of the approximate bond pricing

formula with zero lower bound. A formal proof is in the Appendix 1.7.3.

In a continuous-time framework, the approximate formula is given by

int (X) =
1

τ

∫ t+τ

t
V (X, t, s)ds− 1

τ

∫ t+τ

t
EQ

t

[
σ2
x

2

(∫ t+τ

s
∆(Xs, s, u)du

)2
]
ds.

(1.70)

In a discrete-time framework, the approximate formula is represented as

int (X) =
1

n

n∑
k=0

V (X, t, t+ kδt)− 1

n

n∑
k=0

EQ
t

σ2
x

2

n∑
j=k

∆(Xt+jδt, t+ jδt, T )2

 ,
(1.71)
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where I define a call option on shadow interest rates with ī strike V (x, τ) and its

first-order derivative ∆(x, τ) as

V (X, t, T ) = EQ
t [max(xT , ī)|Xt = X], ∆(X, t, T ) =

∂V (X, t, T )

∂x
, (1.72)

where x is the value of a shadow interest rate at time t(xt = x).

In the following, I briefly explain the intuition behind the approximate formula.

First, consider the the following identity.

log E0 [e
yτ ] = E0 [yτ ] + log E0

[
eyτ−E0[yτ ]

]
, (1.73)

where yt is some stochastic variable. One can approximate the second term in the

equation (1.73).

log E0 [e
yτ ] = E0 [yτ ] + log

[
1 + E0[yτ − E0 [yτ ]] +

1

2
E0[(yτ − E0 [yτ ])

2] + · · ·
]

≈ E0 [yτ ] +
1

2
Var0[yτ ]. (1.74)

Consider a special case when yt is given by

yτ = −
∫ τ

0
max(xs, ī)ds, (1.75)

where xt is a shadow interest rate at time t. Substituting (1.75) for (1.73), we

obtain

log E0

[
e−
∫ τ

0
max(xs ,̄i)ds

]
≈ −

∫ τ

0
E0 [max(xs, ī)] ds+

1

2
Var0[

∫ τ

0
max(xs, ī)ds].

(1.76)

The first term in the right hand side of the equation (1.76) corresponds to V (X, t, T )

in (1.70). The second term is difficult to approximate directly. A more rigorous

proof of the approximate formula (1.70) is provided in the Appendix 1.7.3. So

suppose that one can rewrite (1.76) as

log E0

[
e−
∫ τ

0
max(xs ,̄i)ds

]
≈ −

∫ τ

0
E0 [max(xs, ī)] ds+

(
∫ τ
0 ∆(x0, 0, s)ds)

2

2
Var0[xτ ],

(1.77)
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where ∆(t) is defined as

∆(xt, t, T ) =
∂

∂xt

Et [max(xs, ī)] . (1.78)

Finally, one obtains

iτ0 ≈ 1

τ

∫ τ

0
E0 [max(xs, ī)] ds−

(
∫ τ
0 ∆(x0, 0, s)ds)

2

2τ
Var0[xτ ]. (1.79)

The second term in (1.79) is now easily associated with the second term in (1.70).

Also notice that (1.79) is represented as

iτ0 ≈ 1

τ

∫ τ

0
E0 [xs] ds+

1

τ

∫ τ

0
E0 [max(̄i− xs, 0)] ds−

(
∫ τ
0 ∆(x0, 0, s)ds)

2

2τ
Var0[xτ ].

(1.80)

In (1.80), the first term can be associated with a nominal bond yield without the

zero lower bound. The second and the third term are analogous to a put option

arising from the zero lower bound. As discussed in the main text, the value

of this put option naturally reflects (1) the volatility of the underlying shadow

interest rate and (2) to what extent the shadow interest rate is negative. Yet, as

I mentioned above, it is not easy to justify the derivation from (1.76) to (1.77).

In the next appendix, I derive (1.70) by solving a system of partial differential

equations.

1.7.3 Approximate bond pricing formula (single-factor case): A more

formal proof

In this section, I provide a formal proof of the approximate bond pricing formula

with the zero lower bound. First, I drive an approximate pricing formula for

nominal bonds under zero lower bound using an asymptotic expansion. The first

step is to obtain the approximate formula in a continuous time and then discretize

it. Consider that a shadow interest rate follows the stochastic differential equation

below.

dxt = µ(xt)dt+ σ(xt)dWt, (1.81)
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where Wt is a Brownian motion. Let us denote xt = x. The Feynman-Kac formula

provides a link between a stochastic process and its partial differential equation.

It tells us that the price of a nominal discount bond P (x, t, T ) with expiry T at

time t is a solution of the following partial differential equation.

∂P

∂t
+ µ(x)

∂P

∂x
+

σ(x)2

2

∂2P

∂2x2
= x+P, (1.82)

where x+ is defined as max(x, ī). Notice that this definition is slightly different

from the conventional notation in which x+ = max(xt, 0). Suppose that the bond

price is represented as P (x, t, T ) = e−f(x,τ) where τ = T − t. Substituting this for

(1.82), one obtains

∂f

∂τ
= µ(x)

∂f

∂x
+

σ(x)2

2

∂2f

∂2x2
+ x+ − σ(x)2

2

(
∂f

∂x

)2

. (1.83)

Suppose that the last term in the right-hand side of (1.83) is replaced with

ϵσ(x)
2

2

(
∂f
∂x

)2
where 0 < ϵ ≤ 1. Also, consider that f(x, τ) has an asymptotic

expansion.

f = f0 + ϵf1 + ϵ2f2 + · · · . (1.84)

Substituting (1.84) for (1.83), one obtains a system of PDEs.

∂f0
∂τ

= µ(x)
∂f0
∂x

+
σ(x)2

2

∂2f0
∂2x2

+ x+, (1.85)

∂f1
∂τ

= µ(x)
∂f1
∂x

+
σ(x)2

2

∂2f1
∂2x2

− σ(x)2

2

(
∂f0
∂x

)2

, (1.86)

∂f2
∂τ

= µ(x)
∂f2
∂x

+
σ(x)2

2

∂2f2
∂2x2

− σ(x)2
(
∂f0
∂x

)(
∂f1
∂x

)
. (1.87)

...

The first term f0 in the asymptotic expansion is given by

f0(x, t, T ) =
∫ T

t
Et[x

+
s ]ds =

∫ T

t

∫ +∞

−∞
x+
s ϕ(xs, s|xt, t)ds, (1.88)

where ϕ(xs, s|xt, t) is a transition density of a shadow interest rate xs at time s

from xt = x at time t. This transition density ϕ(xs, s|xt, t) becomes a normal
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distribution, when xt follows Vasicek process (AR(1) process).

Substituting (1.88) for (1.86) leads to

f1(x, t, T ) =
∫ T

t
Et

−σ(xs)
2

2

(
∂f0(xs, s, T )

∂xs

)2
 ds. (1.89)

The equation above clearly shows that a convexity effect depends on the volatility

of a shadow interest rate and moneyness of a call option arising from the zero

lower bound.

An asymptotic expansion for a nominal bond price P (x, t, T ) is

f(x, τ) = − logP (x, t, T )

=
∫ T

t
Et[x

+
s ]ds+ ϵ

∫ T

t
Et

−σ(xs)
2

2

(
∂f0(xs, s, T )

∂xs

)2
 ds+O(ϵ2).

(1.90)

Let us denote a nominal bond yield with maturity τ = nδt at time t with ynt (x).

As in the main text, I define a call option V (x, t, T ) arising from the zero lower

bound and its first-order derivative ∆(x, t, T ) as

V (x, t, s) = Et[max(xs, 0)], ∆(x, t, s) =
∂V (x, t, s)

∂x
. (1.91)

It is easy to confirm that∫ T

t
V (x, t, s)ds = f0(x, t, T ),

∫ T

s
∆(xs, s, u)du =

∂f0(xs, s, T )

∂xs

. (1.92)

One can obtain an approximation for a nominal bond yield by the order of ϵ is

computed as

int (x) = − logP (x, t, T )/τ

=
1

τ

∫ t+τ

t
V (x, t, s)ds− 1

τ

∫ t+τ

t
Et

[
σ(xs)

2

2

(∫ t+τ

s
∆(xs, s, u)du

)2
]
ds.

(1.93)

In a discrete-time framework, the pricing formula above is written as

int (x) ≈
1

n

n∑
k=0

V (x, t, t+ kδt)− 1

n

n∑
k=0

Et

σ(xt+jδt)
2

2

n∑
j=k

∆(xt+jδt, t+ jδt, T )2

 .
(1.94)
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Notice that in both (1.93) and (1.94), it suffices to have a transition density

ϕ(xs, s|xt, t) of a shadow interest rate to compute int .

1.7.4 Example: Random walk

Consider that a shadow interest rate follows a random walk.

dxt = σxdW
x
t . (1.95)

Suppose that the effective (zero) lower bound ī = 0. Applying the approximate

formula developed in the previous subsection, one obtains:

V (x, t, s) = x

(
1−N

(
−x

σx

√
s− t

))
+

σx

√
s− t√
2π

e
− x2

2σ2
x(s−t) , (1.96)

∆(x, t, s) = 1−N

(
−x

σx

√
s− t

)
. (1.97)

If x
σ
√
s−t

is large, V (x, t, s) ≈ x and ∆(x, t, s) ≈ 1. Substituting these for (1.93),

one obtains:

int (x) ≈ 1

τ

∫ t+τ

t
xds− 1

τ

∫ t+τ

t

σ2
x

2

(∫ t+τ

s
1du

)2

ds

= x− 1

τ

∫ t+τ

t

σ2
x

2
(t+ τ − s)2ds = x− σ2

x

6
τ. (1.98)

This is consistent with a theoretical bond price under a random walk without

the zero lower bound. The bond price computed from the approximate formula

approaches the theoretical price without the zero lower bound as x
σ
√
s−t

is large.

1.7.5 Approximate formula for nominal bond yields (multi-factor case)

Next, suppose that a shadow interest is driven by multiple stochastic factors.

dxt = µx(xt, Zt)dt+ σx(xt, Zt)dW
x
t , (1.99)

where the vector Zt = [z1t , z
2
t , · · · , zNt ] and a stochastic process for each element of

stochastic factor zit is given by

dzit = µi(xt, Zt)dt+ σi(xt, Zt)dW
i
t . (1.100)
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W x
t and W i

t are Brownian motions with correlation ρi. The correlations between

W i
t and W j

t are ρij. I denote xt = x and zit = zi. The Feynman-Kac formula

shows the price of a nominal discount bond P (x, Z, t, T ) with expiry T at time t

as a solution of the following partial differential equation.

x+P =
∂P

∂t
+ µx

∂P

∂x
+

σ2
x

2

∂2P

∂2x2
+

N∑
i=1

(
µi
∂P

∂zi
+

σ2
i

2

∂2P

∂2z2i
+ ρiσxσi

∂2P

∂zi∂x

)

+
N∑

i=1,j>i

ρijσiσj
∂2P

∂zi∂zj
,

(1.101)

where I drop the subscripts of σi(xt, Zt) for notation simplicity.

Suppose that the nominal bond price is represented as P (x, Z, t, T ) = e−f(x,Z,τ)

where τ = T − t. Substituting this for (1.101), one obtains

∂f

∂τ
= x+ + µx

∂f

∂x
+

σ2
x

2

∂2f

∂2x2
+

N∑
i=1

(
µi

∂f

∂zi
+

σ2
i

2

∂2f

∂2z2i
+ ρiσxσi

∂2f

∂zi∂x

)

+
N∑

i=1,j>i

ρijσiσj
∂2f

∂zi∂zj
− σ2

x

2

(
∂f

∂x

)2

−
N∑
i=1

σ2
i

2

(
∂f

∂zi

)2

+ ρiσxσi

(
∂f

∂zi

)(
∂f

∂x

)
−

N∑
i=1,j>i

ρijσiσj

(
∂f

∂zi

)(
∂f

∂zj

)
. (1.102)

Suppose that the following nonlinear terms in the right-hand side of (1.102) are

multiplied by ϵ where 0 < ϵ ≤ 1.

−σ2
x

2

(
∂f

∂x

)2

−
N∑
i=1

σ2
i

2

(
∂f

∂zi

)2

+ ρiσxσi

(
∂f

∂zi

)(
∂f

∂x

)−
N∑

i=1,j>i

ρijσiσj

(
∂f

∂zi

)(
∂f

∂zj

)
.

(1.103)

Also, consider that f(x, Z, τ) has an asymptotic expansion.

f = f0 + ϵf1 + ϵ2f2 + · · · . (1.104)

Repeating the same analysis as we did in the previous subsection, the first term

f0 is given by

f0(x, π, t, T ) =
∫ T

t
Et[x

+
s ]ds. (1.105)
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The second term f1 is given by

f1(x, Z, t, T ) = −
∫ T

t
Et

σ2
x

2

(
∂f

∂x

)2

+
N∑
i=1

σ2
i

2

(
∂f

∂zi

)2

+ ρiσxσi

(
∂f

∂zi

)(
∂f

∂x

)
+

N∑
i=1,j>i

ρijσiσj

(
∂f

∂zi

)(
∂f

∂zj

) ds.
(1.106)

(1.105) and (1.106) indicate that we only need to compute the transition density

of a shadow interest rate x, even when a shadow rate is driven by more than one

stochastic factors. Especially, if we know that a shadow interest rate follows a

Gaussian process (even though a nominal interest rate does not), what we need

to compute is only its mean and variance at time t = s.

Although there are many terms in (1.106), several terms are very small. For

example, the volatility of potential output is often very smaller than those of

output, inflation and shadow interest rates. Furthermore, the sensitivities of the

zero lower bound option V with respect to y, π, yn are small compared to x in

empirical applications since a (shadow) interest rate is usually persistent. Thus,

the largest sensitivity is the derivative with respect to the shadow interest rate xt.

Thus, we can effectively reduce the number of terms in (1.106).

When a regime switching feature is introduced, expectations should be calcu-

lated not only over shadow interest rates x but also across regimes st.

1.7.6 Approximate formula for real bond yields

For real bond yields, we can apply a similar method. Let us consider that stochas-

tic processes for inflation and a shadow interest rate are given by

dxt = µx(xt)dt+ σx(xt)dW
x
t , (1.107)

dπt = µπ(πt)dt+ σπ(πt)dW
π
t , (1.108)

where W x
t and W π

t are Brownian motions with correlation ρ. Let us denote xt = x

and πt = π. The Feynman-Kac formula gives us the price of a real discount bond
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D(x, t, T ) with expiry T at time t as a solution of the following partial differential

equation.

∂D

∂t
+ µx

∂D

∂x
+ µπ

∂D

∂π
+

σ2
x

2

∂2D

∂2x2
+

σ2
π

2

∂2D

∂2π2
+ ρσxσπ

∂2D

∂π∂x
= (x+ − π)D.

(1.109)

Suppose that the real bond price is represented as D(x, t, T ) = e−f(x,π,τ) where

τ = T − t. Substituting this for (1.82), one obtains

∂f

∂τ
= µx

∂f

∂x
+ µπ

∂f

∂π
+

σ2
x

2

∂2f

∂2x2
+

σ2
π

2

∂2f

∂2π2
+ ρσxσπ

∂2f

∂π∂x
+ x+ − π

+
σ2
x

2

(
∂f

∂x

)2

+
σ2
π

2

(
∂f

∂π

)2

+ ρσxσπ
∂f

∂x

∂f

∂π
. (1.110)

Suppose that the last three terms in the right-hand side of (1.110) are multiplied

by ϵ where 0 < ϵ ≤ 1. Also, consider that f(x, τ) has an asymptotic expansion.

f = f0 + ϵf1 + ϵ2f2 + · · · . (1.111)

Repeating the same argument for nominal bonds, the first term f0 is given by

f0(x, π, t, T ) =
∫ T

t
Et[x

+
s ]ds−

∫ T

t
Et[πs]ds. (1.112)

The second term f1 is given by

f1(x, t, T ) =
∫ T

t
Et

−σ2
xs

2

(
∂f0(xs, πs, s, T )

∂xs

)2

−
σ2
πs

2

(
∂f0(xs, πs, s, T )

∂πs

)2

−ρσxsσπs

∂f0(xs, πs, s, T )

∂xs

∂f0(xs, πs, s, T )

∂πs

]
ds.

(1.113)

Discretizing (1.113), one obtains an approximate real bond pricing formula. Let

us denote a real bond yield with maturity τ = nδt at time t with rnt (x). We obtain

rnt (x) ≈ 1

n

n∑
k=0

(Vx(x, t, t+ kδt)− Vπ(π, t, t+ kδt))

− 1

n

n∑
k=0

Et

σ2
xt+jδt

2

n∑
j=k

∆x(xt+jδt, t+ jδt, T )2 +
σ2
πt+jδt

2

n∑
j=k

∆π(πt+jδt, t+ jδt, T )2


− 1

n

n∑
k=0

n∑
j=k+1

Et

[
ρσxt+jδt

σπt+jδt
∆x(xt+jδt, t+ jδt, T )∆π(πt+jδt, t+ jδt, T )

]
,

(1.114)
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where V x, V π, ∆x and ∆π are defined as

V x(x, t, s) = Et[max(xs, 0)], ∆x(x, t, s) =
∂V (x, t, s)

∂x
, (1.115)

V π(π, t, s) = Et[πs], ∆π(π, t, s) =
∂V π(π, t, s)

∂π
. (1.116)

1.7.7 Performance of the approximations

From Table 1.6 to Table 1.11, I show the comparisons between approximate nom-

inal bond yields and the benchmark yields computed based on Monte Carlo sim-

ulation with different model parameters for a two-factor Vasicek model. The

top panel of each table shows the comparison between the first-order approxima-

tion and the benchmark. The bottom panel shows the comparison between the

second-order approximation with the benchmark yields. One can see that the

second-order approximation outperforms the first-order approximation in almost

all cases. Both approximations perform more poorly as shadow rate volatility and

maturity increase.
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Table 1.1: Summary statistics of nominal bond yields

The table shows the average nominal bond yields for the US Treasury bonds

from October of 1991 to October of 2015 and the Japanese government bonds from

July of 2004 to October of 2015. “Before ZIRP” denotes the sub-sample period

starting on October of 1991 and ending on October of 2008, which is two and a half

months before the Federal Reserve announced the zero interest rate policy (ZIRP).

“After ZIRP” is the sub-sample period during January of 2009 to October of 2015.

“FFR” is the Federal Funds Rates. “Before QQE” is the sub-sample period that

starts on July of 2004 and ends on January of 2013, which is one quarter before the

Bank of Japan announced Quantitative Qualitative Easing (QQE). “After QQE”

is the sub-sample period from April of 2013 to October of 2015. “ON” stands for

overnight uncollateralized interest rate.

Maturity (years) FFR/ON 1 2 3 4 5 7 10

US

Full Sample 3.02% 3.00% 3.27% 3.52% 3.76% 3.97% 4.35% 4.77%

Before ZIRP 4.19% 4.10% 4.37% 4.58% 4.77% 4.94% 5.24% 5.58%

AfterZIRP 0.14% 0.29% 0.57% 0.91% 1.26% 1.59% 2.15% 2.75%

Japan

Full Sample 0.15% 0.22% 0.29% 0.38% 0.49% 0.59% 0.81% 1.17%

Before QQE 0.18% 0.27% 0.36% 0.47% 0.60% 0.72% 0.97% 1.36%

After QQE 0.05% 0.05% 0.06% 0.07% 0.12% 0.16% 0.29% 0.55%
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Table 1.2: Summary statistics of CPI inflation forecasts

The table shows summary statistics of survey-based CPI forecasts for the US

and Japan. For the US case, the data is from Survey of Professional Forecast-

ers. For the Japanese case, the data is from Quick Monthly Market Survey of

Bond. The average CPI inflation forecasts are computed after adjusting a con-

sumption tax hike in April of 2013. “Realized” means realized inflation during

the corresponding time period. “Avg” is the average forecast number of CPI for

each horizon. “Std” denotes the dispersion of opinions that is computed as the

cross-sectional standard deviation of CPI forecasts. “Before ZIRP” denotes the

sub-sample period from October of 1991 to October of 2008, which is two and a

half months before the Federal Reserve announced the zero interest rate policy

(ZIRP). “After ZIRP” is the sub-sample period from January of 2009 to October

of 2015. “Before QQE” means that the sub-sample period that starts on July

of 2004 and ends on January of 2013, which is one quarter before the Bank of

Japan announced Quantitative Qualitative Easing (QQE). “After QQE” is the

sub-sample period from April of 2013 to October of 2015.

Realized 1y-Avg 2y-Avg 10y-Avg 1y-Std 2y-Std 10y-Std

US

Entire Sample 2.32% 2.42% - 2.63% 0.98% - 0.52%

Before ZIRP 2.70% 2.62% - 2.77% 0.88% - 0.51%

After ZIRP 1.38% 1.94% - 2.30% 1.21% - 0.54%

Japan

Entire Sample 0.03% 0.19% 0.52% 1.10% 0.36% 0.41% 0.60%

Before QQE -0.15% 0.07% 0.36% 1.04% 0.27% 0.35% 0.59%

After QQE 0.60% 0.54% 1.02% 1.27% 0.67% 0.60% 0.63%
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Table 1.3: Average absolute pricing errors

The table shows summary statistics of the absolute pricing error for each ma-

turity in both the US and Japanese cases. Absolute errors are computed as the

difference between model-implied bond yields and actual bond yields. “Before

ZIRP” denotes the sub-sample period starting on October of 1991 and ending on

October of 2008, which is two and a half months before the Federal Reserve an-

nounced zero interest rate policy (ZIRP). “After ZIRP” is the sub-sample period

from January of 2009 to October of 2015. “Before QQE” means the sub-sample

period that starts on July of 2004 and ends on January of 2013, which is one quar-

ter before the Bank of Japan announced Quantitative Qualitative Easing (QQE).

“After QQE” is the sub-sample period from April of 2013 to October of 2015.

“Avg” is the average of absolute pricing error across all maturities.

Maturity (years) 1 2 3 4 5 7 10 Avg

US

Full Sample 0.30% 0.17% 0.15% 0.17% 0.22% 0.30% 0.40% 0.24%

Before ZIRP 0.36% 0.16% 0.14% 0.19% 0.26% 0.35% 0.42% 0.27%

After ZIRP 0.17% 0.18% 0.15% 0.12% 0.13% 0.16% 0.36% 0.18%

Japan

Full Sample 0.06% 0.05% 0.05% 0.06% 0.07% 0.07% 0.07% 0.07%

Before QQE 0.07% 0.05% 0.05% 0.06% 0.07% 0.08% 0.08% 0.07%

After QQE 0.06% 0.06% 0.05% 0.05% 0.06% 0.04% 0.04% 0.05%
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Table 1.4: Estimates of the New Keynesian model parameters

This table provides the estimated parameters of the structural New Keynesian

macro finance model for the US and Japan. Asymptotic standard errors are

computed as the estimate of the Fisher information matrix. For each parameter,

∗ denotes statistical significance at the 5% level. † means that the number is given

by the assumptions explained in the main text.

Description of parameters Notation US Japan

Sensitivity of real output to real interest rate ϕ 0.0096∗ 0.0095∗

Sensitivity of inflation to output gap κ 0.0106∗ 0.0250∗

Mean-reverting level of potential output ȳn 0.00† 0.00†

Sensitivity of policy rate to output gap γy 0.50† 0.50†

Sensitivity of policy rate to inflation gap γπ 0.50† 0.50†

Constant term in IS equation αIS 0.00 0.00

Equilibrium real interest rate i∗ 1.02∗% −2.60∗%

Effective lower bound ī 0.17∗% 0.10∗%

Bias of survey-based inflation forecast α40
s 0.36∗% −1.00∗%

Dependence on lagged real output µ−
y 0.543∗ 0.505∗

Dependence on expected real output µ+
y 0.540∗ 0.493∗

Dependence on expected inflation µπ 0.914∗ 0.692∗

Dependence on lagged shadow rate µx 0.072∗ 0.094∗

Dependence on lagged potential output µyn 0.001∗ 0.541∗

IS shock volatility σIS 0.0036∗ 0.0031∗

AS shock volatility σAS 0.0030∗ 0.0030∗

Shadow interest rate volatility σx 0.0093∗ 0.0080∗

Potential output volatility σyn 0.0028∗ 0.0027∗

Inflation survey noise σs 0.0087∗ 0.0100∗

Observation noise σob 0.0012∗ 0.0010∗
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Table 1.5: Estimates of the market price of risk

This table provides the estimated parameters of the market price of risk for

the US and Japan. λ0 is a constant term. λ1 is the sensitivity with respect to the

state variables Xt = (yt, πt, xt, y
n
t )

T . For example, λ1
i3 is the third column of λ1.

Recall that λ1
41, λ

1
42, λ

1
43 are equal to zero by assumption. Asymptotic standard

errors are computed as the estimate of the Fisher information matrix. For each

parameter, ∗ and ∗∗ denote statistical significance at the 5% level and at the 1%

level, respectively.

λ0 λ1
i1 λ1

i2 λ1
i3 λ1

i4

US

0.90∗∗ −22.10∗∗ −0.59∗∗ −28.66∗∗ 21.51∗∗

6.25∗∗ 24.21∗∗ −256.34∗∗ −26.82∗∗ −31.52∗∗

−0.12∗∗ 4.18∗∗ 8.53∗∗ −4.98∗∗ −3.40∗∗

0.00 0.00 0.00 0.00 3.02∗∗

Japan

−0.48∗∗ −25.99∗∗ 1.23∗∗ −12.11∗∗ 0.27∗∗

−0.89∗∗ 46.43∗∗ −122.62∗∗ −21.09∗∗ −13.43∗∗

−0.57∗∗ 5.95∗∗ 17.61∗∗ −9.56∗∗ −5.22∗∗

0.00 0.00 0.00 0.00 −206.19∗∗
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Table 1.6: Performance of approximation-based nominal bond yields given differ-

ent maturities and parameters L0

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of L0. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

L0/years 1 2 3 4 5 7 10

First-order approximation

-3.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

-1.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02%

1.0% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01% 0.03%

3.0% 0.04% 0.01% 0.01% 0.01% 0.02% 0.04% 0.06%

5.0% 0.13% 0.07% 0.05% 0.04% 0.05% 0.06% 0.08%

L0/years 1 2 3 4 5 7 10

Second-order approximation

-3.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.06%

-1.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%

1.0% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

3.0% 0.03% 0.01% 0.00% 0.00% 0.01% 0.02% 0.02%

5.0% 0.13% 0.13% 0.04% 0.04% 0.04% 0.04% 0.04%
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Table 1.7: Performance of approximation-based nominal bond yields given differ-

ent maturities and parameters σL

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of σL. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

σL/years 1 2 3 4 5 7 10

First-order approximation

0.4% 0.00% 0.00% 0.01% 0.01% 0.00% 0.01% 0.03%

0.8% 0.01% 0.00% 0.00% 0.01% 0.01% 0.03% 0.07%

1.2% 0.01% 0.00% 0.00% 0.01% 0.03% 0.07% 0.14%

1.6% 0.01% 0.00% 0.00% 0.01% 0.03% 0.09% 0.19%

2.0% 0.02% 0.03% 0.05% 0.08% 0.11% 0.18% 0.32%

σL/years 1 2 3 4 5 7 10

Second-order approximation

0.4% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%

0.8% 0.01% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00%

1.2% 0.01% 0.00% 0.01% 0.01% 0.00% 0.00% 0.01%

1.6% 0.01% 0.00% 0.01% 0.02% 0.02% 0.02% 0.02%

2.0% 0.02% 0.02% 0.02% 0.03% 0.03% 0.03% 0.01%
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Table 1.8: Performance of approximation-based nominal bond yields given differ-

ent maturities and parameters S0

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of S0. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

S0/years 1 2 3 4 5 7 10

First-order approximation

-3.0% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.05%

-1.0% 0.04% 0.02% 0.02% 0.02% 0.02% 0.03% 0.05%

1.0% 0.00% 0.00% 0.00% 0.01% 0.01% 0.03% 0.05%

3.0% 0.04% 0.02% 0.01% 0.00% 0.00% 0.01% 0.03%

5.0% 0.09% 0.04% 0.02% 0.01% 0.00% 0.01% 0.03%

S0/years 1 2 3 4 5 7 10

Second-order approximation

-3.0% 0.01% 0.01% 0.01% 0.00% 0.00% 0.01% 0.01%

-1.0% 0.04% 0.02% 0.01% 0.01% 0.01% 0.01% 0.02%

1.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%

3.0% 0.04% 0.02% 0.01% 0.01% 0.01% 0.00% 0.01%

5.0% 0.09% 0.04% 0.02% 0.02% 0.01% 0.01% 0.04%
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Table 1.9: Performance of approximation-based nominal bond yields given differ-

ent maturities and parameters θS

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of θS. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

θS/years 1 2 3 4 5 7 10

First-order approximation

0.6% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.04%

1.2% 0.00% 0.00% 0.01% 0.01% 0.00% 0.01% 0.03%

1.8% 0.01% 0.01% 0.01% 0.00% 0.00% 0.02% 0.04%

2.4% 0.01% 0.00% 0.01% 0.00% 0.00% 0.02% 0.05%

3.0% 0.02% 0.00% 0.01% 0.00% 0.00% 0.02% 0.05%

θS/years 1 2 3 4 5 7 10

Second-order approximation

0.6% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.01%

1.2% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01%

1.8% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

2.4% 0.01% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01%

3.0% 0.02% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01%
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Table 1.10: Performance of approximation-based nominal bond yields given dif-

ferent maturities and parameters κS

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of κS. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

κS/years 1 2 3 4 5 7 10

First-order approximation

0.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.03%

0.8 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.04%

1.2 0.00% 0.01% 0.01% 0.00% 0.01% 0.02% 0.05%

1.6 0.00% 0.02% 0.02% 0.01% 0.00% 0.02% 0.04%

2.0 0.02% 0.04% 0.03% 0.02% 0.01% 0.00% 0.02%

κS/years 1 2 3 4 5 7 10

Second-order approximation

0.4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.8 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.00%

1.2 0.00% 0.01% 0.01% 0.00% 0.00% 0.01% 0.02%

1.6 0.00% 0.03% 0.02% 0.01% 0.01% 0.00% 0.00%

2.0 0.02% 0.04% 0.03% 0.02% 0.02% 0.02% 0.02%
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Table 1.11: Performance of approximation-based nominal bond yields given dif-

ferent maturities and parameters σS

This table shows comparison of approximation-based nominal bond yields with

a bench mark based on Monte Carlo simulation for different maturities and dif-

ferent settings of σS. The numbers in the table show the difference between the

two prices. The absolute error is reported for each maturity. A stochastic pro-

cess for a shadow interest rate is given by xt = Lt + St where dLt = σLdWt and

dSt = κ(θS − St)dt + σSdWt where σL = 0.005, θS = 0.01, κ = 1.0, σS = 0.005,

ρdt = dWLdWS = 0. The initial value for L0 = 0.01 and S0 = −0.05. The number

of simulation paths is 10000 for Monte Carlo simulation.

σS/years 1 2 3 4 5 7 10

First-order approximation

0.4% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.03%

0.8% 0.00% 0.01% 0.02% 0.02% 0.01% 0.01% 0.02%

1.2% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.04%

1.6% 0.00% 0.01% 0.01% 0.00% 0.01% 0.03% 0.05%

2.0% 0.01% 0.01% 0.01% 0.00% 0.01% 0.02% 0.04%

σS/years 1 2 3 4 5 7 10

Second-order approximation

0.4% 0.00% 0.01% 0.01% 0.02% 0.02% 0.01% 0.00%

0.8% 0.00% 0.01% 0.02% 0.02% 0.02% 0.01% 0.01%

1.2% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.6% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01% 0.01%

2.0% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
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Figure 1.1: Evolution of the US Treasury bond yields

This figure provides a time series plot of US Treasury bond yields during the

period from October of 1991 to October of 2015. The data is obtained from the

website of the Federal Reserve Board of Governors. FFR is the federal funds rate.

The details of computation of the nominal bond yields are found in Gürkaynak,

Sack and Wright (2007).
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Figure 1.2: Evolution of the Japanese government bond yields

This figure provides a time series plot of the Japanese government bond yields

during the period from July of 2004 to October of 2015. The data is obtained

from the Ministry of Finance in Japan.
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Figure 1.3: Evolution of the US shadow interest rates

This figure provides a time series plot of the shadow interest rate and the

federal funds rate in the US during the period from October 1991 to October

2015. Estimates of the model parameters are in Tables 1.4 and 1.5.
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Figure 1.4: Raising the inflation target in the US during the normal period

This figure provides a counterfactual analysis of raising the inflation target

for the US when the zero lower bound is not binding at the initial time period.

Estimates of the model parameters are in Tables 1.4 and 1.5. The shadow interest

rate xt is equal to +1%(> 0). I call this setting normal period. Inflation πt = 2%

at the initial time period. Real and potential output are yt = ynt = 0%.
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Figure 1.5: Raising the inflation target in the US during the ZLB period

This figure provides counterfactual analyses of (A) raising the inflation target

and (B) suddenly ending the zero interest rate policy (ZIRP) for the US when

the zero lower bound is binding at the initial time period. Estimates of the model

parameters are in Tables 1.4 and 1.5. In benchmark case, I set xt = −1%(< 0).

I call this setting ZLB(zero lower bound) period. The benchmark case is colored

black. For (A), I set the inflation target to 3% (red line). For (B), I set the shadow

interest rate xt = 0% (blue line).
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Figure 1.6: The response of macroeconomic variables given the counterfactual

analysis of raising the inflation target in the US during the ZLB period

This figure shows the changes in three macroeconomic variables when the

inflation target is increased from 2% to 3% during the ZLB period. Estimates of

the model parameters are in Tables 1.4 and 1.5. The evolution of potential output

is not shown since it is exogenously driven and thus does not change.
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Figure 1.7: The response of macroeconomic variables given the counterfactual

analysis of suddenly ending the zero interest rate policy in US

This figure shows the changes in three macroeconomic variables when a central

bank suddenly abandons the zero interest rate policy. The shadow interest rate

increases from -1% to 0%. Estimates of the model parameters are in Tables 1.4

and 1.5. The evolution of potential output is not shown since it is exogenously

driven and thus does not change.
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Figure 1.8: Decomposition of nominal bond yield changes given an increased in-

flation target during the ZLB period in the US

This figure shows the changes in expected (nominal) interest rates and term

premium if the inflation target is hypothetically risen for the US when the zero

lower bound is binding at the initial time period. Estimates of the model param-

eters are in Tables 1.4 and 1.5. The shadow interest rate xt is equal to -1%. I call

this setting ZLB(zero lower bound) period. Inflation πt = 2% at the initial time

period. Real and potential output are yt = ynt = 0%. The target is changed from

2% to 3%.
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Figure 1.9: Raising the inflation target in Japan during the normal period

This figure provides a counterfactual analysis of raising the inflation target

for Japan when the zero lower bound is not binding at the initial time period.

Estimates of the model parameters are in Tables 1.4 and 1.5. The shadow interest

rate xt is equal to +1%(> 0). I call this setting normal period. Inflation πt = 2%

at the current time period. Real and potential output are yt = ynt = 0%.
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Figure 1.10: Raising the inflation target in Japan during the ZLB period

This figure provides counterfactual analyses of (A) raising the inflation target

and (B) suddenly ending the zero interest rate policy (ZIRP) for Japan when the

zero lower bound is binding at the initial time period. Estimates of the model

parameters are in Tables 1.4 and 1.5. In benchmark case, I set xt = −1%(< 0).

I call this setting ZLB(zero lower bound) period. The benchmark case is colored

black. For (A), I set the inflation target to 3% (red line). For (B), I set the shadow

interest rate xt = 0% (blue line).
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Figure 1.11: Introducing the negative lower bound of nominal interest rates in the

US

This figure provides a counterfactual analysis of introducing the negative lower

bound for the US when the shadow interest rate is negative. The effective lower

bound ī is set to -0.5%. Estimates of the model parameters are in Tables 1.4 and

1.5. Shadow interest rate xt is equal to -1.0%. Inflation πt is 2.0%. Real and

potential output are yt = ynt = 0%.
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Figure 1.12: Introducing the negative lower bound of nominal interest rates in

Japan

This figure provides a counterfactual analysis of introducing the negative lower

bound for Japan when the shadow interest rate is negative. The effective lower

bound ī is set to -0.5%. Estimates of the model parameters are in Tables 1.4

and 1.5. Shadow interest rate xt is equal to -1.0%. Inflation πt is 2%. Real and

potential output are yt = ynt = 0%.
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Figure 1.13: The response of macroeconomic variables given the counterfactual

analysis of introducing the negative lower bound in the US

This figure shows the changes in three macroeconomic variables when a central

bank introduces the negative lower bound for US. when the shadow interest rate

is negative. The effective lower bound ī is set to -0.5%. Estimates of the model

parameters are in Tables 1.4 and 1.5. Shadow interest rate xt is equal to -1.0%.

Inflation πt is 2.0%. Real and potential output are yt = ynt = 0%.
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CHAPTER 2

Revisiting empirical findings during the zero

lower bound period

2.1 Introduction

In this chapter, I investigate whether empirical findings documented before the

ZLB period hold during the ZLB period. As in the previous studies, I investigate

how macroeconomic risks are priced in the yield curves by looking at decomposi-

tions of the yield curves and the factor loading of the shape of the yield curves.

There are several notable findings.

First, I decompose the nominal bond yields into the expected interest rate and

the term premium. For both the US and Japan, the term premium is larger for

longer maturities. This finding is consistent with previous studies. In the case

of Japan, the nominal bond yields are almost entirely explained by the term pre-

mium. This is not surprising since the Bank of Japan has been employing the

zero interest rate policy during the 2004-2015 period studied in this paper.1

Second, I decompose nominal bond yields into expected real interest rates,

real interest rate risk premium, expected inflation, and inflation risk premium. I

show that the nominal bond yield curve is upward sloping mostly due to the real

interest rate risk premium in the US during the 1991-2015 period. Similarly, an

upward-sloping nominal bond yield is mostly explained by the real interest rate

risk premium in the case of Japan. The expected inflation implied by the nominal

1Precisely speaking, the Bank of Japan hiked its policy interest rate to the positive level
during the period between July of 2006 and December of 2008.
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bond yield is also contributing to an upward-sloping nominal bond yield. Yet,

it is negative or close to zero for all maturities. This is reasonable because the

historical average of realized inflation is almost zero as confirmed in Table 1.2.

Third, following Wright (2011), I investigate whether a larger cross-sectional

dispersion in survey-based inflation forecasts explains a larger inflation risk pre-

mium. Wright (2011) conducts the same analysis for ten industrialized countries

during the 1990-2010 period. He finds a statistically significant positive relation-

ship between the cross-sectional dispersion and the inflation premium. Yet, he

employs a conventional affine term structure model to obtain the inflation pre-

mium. I extend his analysis by modeling the zero lower bound explicitly. I find

that the signs of the coefficients are positive and thus consistent with his findings

in almost all maturities in the case of Japan, although the coefficients are not

statistically significant. In the US case, only the sign of the coefficient for 10-year

bond is positive. All of the coefficients are not statistically significant for the US.

Thus, I find limited support for Wright (2011)’s findings during the zero lower

bound period.

Fourth, the model also provides a unified understanding of the macroeconomic

drivers of yield curves. It is well known that (1) variations in yield curves are

explained by level, slope and curvature factors and (2) level and slope factors

are often associated with inflation and real economic activity. Yet, once the zero

lower bound is binding, there is no clear level factor.2 Without a macro-finance

term structure model that incorporates a zero lower bound, it is difficult to have

a consistent explanation of macroeconomic drivers of yield curves. The model

in this research offers a better understanding of macroeconomic effects on term

structure of interest rates both before and after the zero interest rate policy is em-

ployed. For example, in the case of the US, the results show that shadow interest

rate functions as a level factor during normal times but it works as a slope factor

2Figures 2.1 and 2.2 show the results of the principal component analysis before and during
the zero lower bound period. In Figure 2.2, there is no clear level factor.
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during the zero lower bound time period.

The rest of the second chapter is organized as follows. Section 2.2 briefly

discusses the literature. Section 2.3 explains the methodology and the dataset.

Section 2.4 presents main results. Section 2.5 concludes the chapter.

2.2 Literature review

There have been many studies on decomposing the yield curve into an expected

real interest rate, real rate risk premium, expected inflation and the inflation risk

premium. For example, Wright (2011) estimates affine term structure models and

documents that the term premium has been declining since the early 1990 for

both the US and Japan. Abrahams et al. (2015) find that the US nominal bond

risk premium is mostly driven by the real interest risk premium rather than the

inflation and the liquidity risk premium.

With respect to variance decompositions of nominal bond yields, Ang, Bakaert

and Wei (2008) document that the variations in expected inflation and the infla-

tion risk premium explain the most of the variations in nominal bond yields for

long maturities.

The relationship between the shape of yield curves and macroeconomic vari-

ables has been also well studied. Wu (2006) estimates a New Keynesian macro

finance model for the US economy and documents that the monetary policy shocks

affect the shape of yield curves mostly by changing its slope. On the other hand,

technology shocks affect the shape of yield curves by shifting its level. Hördhal,

Tristani and Vestin (2006) also report that a monetary policy shock functions

as a slope factor. Bakaert, Cho and Moreno (2010) document that inflation tar-

get shocks function as a level factor and monetary policy shocks are associated

with both slope and curvature factors. By contrast, Moench (2013) estimates a

reduced-form term structure model for the US economy and finds that the curva-
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ture factor is correlated with economic slowdowns.

Compared to the strands of the literature discussed above, there are a few

number of studies on the relationship between inflation risk premium and a cross-

sectional dispersion of inflation forecasts. Wright (2011) uses the cross-sectional

dispersion of inflation forecasts as a proxy for inflation uncertainty and finds that

the inflation risk premium is positively associated with the dispersion of inflation

forecasts for the US. Buraschi and Whelan (2012) document that disagreement

about the real economy predicts excess bond returns but disagreement about in-

flation does not forecast excess bond returns strongly in the case of the US.

2.3 Data and estimation methodology

I employ the same model described in the first chapter and use the same param-

eters reported in Tables 1.4 and 1.5. Cross-sectional dispersions in survey-based

inflation forecasts are computed as cross-sectional standard deviations of survey-

based inflation forecasts. The data of cross-sectional dispersions in survey-based

inflation forecasts is from FRED at the website of the Federal Reserve Bank of

St. Louis. For Japan, the data is from QUICK Corp.

2.4 Results

2.4.1 Decompositions of yields

Table 2.1 shows decompositions of nominal bond yields into the expected interest

rate and the term premium for the US and Japan. The numbers are the average

values during the entire sample period. For both countries, the term premium is

larger for longer maturities. This finding is consistent with previous studies. In

the case of Japan, the nominal bond yields are almost entirely explained by the

term premium. This is not surprising since the Bank of Japan has been employing
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the zero interest rate policy during the sample period except the period between

July of 2006 and December of 2008.

Table 2.2 shows decompositions of nominal bond yields into the expected real

rates, the real interest rate risk premium, the expected inflation, and the inflation

risk premium for the US and Japan.

In the US case, one can see that an upward-sloping nominal bond yield curve

arises mostly from the real interest rate risk premium. The expected real interest

rates and the inflation risk premium are also contributing to an upward-sloping

nominal bond yield curve. Expected inflation is almost constant across maturities.

Similarly, an upward-sloping nominal bond yield is mostly explained by the

real interest rate risk premium in the case of Japan. The real interest rate risk

premium is negative for 1-year maturity but it is positive for longer maturities.

The expected inflation is contributing to an upward-sloping nominal bond yield

curve as it is higher for longer maturities. Yet, the expected inflation is negative

or close to zero for all maturities. This is natural because the historical average of

realized inflation is almost zero as confirmed in Table 1.2. By contrast, the term

structures of the expected real interest rates and the inflation risk premium are

downward sloping in the case of Japan.

2.4.2 Dispersion of inflation forecasts and inflation risk premium

Following Wright (2011), I conduct regression analyses to investigate whether the

inflation risk premium can be explained by disagreement about future inflation

as summarized in Table 2.3. Wright (2011) finds that a larger cross-sectional

dispersion of inflation forecasts predicts a larger inflation risk premium. Yet,

his term structure model abstracts the zero lower bound. I extend his analysis

by taking this into account. I find that the signs of coefficients are negative

except for the ten year maturity in the US. However, none of these coefficients are

statistically significant. By contrast, the signs of coefficients are positive except tor
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the ten year maturity in Japan. Again, none of these coefficients are statistically

significant. 3 Overall, I confirm the very weak positive relationship between the

inflation risk premium and the dispersion of inflation forecasts only in the case of

Japan. 4

2.4.3 Variance decompositions

Table 2.4 presents variance decompositions of nominal bond yields into the ex-

pected interest rate variance and the term premium variance. Notice that the

sum of variances of these two components is not equal to the variance of nominal

yields since there is a covariance term. Also notice that the table shows standard

deviations, not variance itself.

In the US case, the variance of nominal yields is explained mostly by the

expected interest rate variance for the short maturity, but the term premium

variance is more dominant for longer maturity.

In the case of Japan, the variance of nominal bond yields arises from the vari-

ance of the term premium, not the variance of the expected nominal interest rates.

This is realistic because the policy interest rate in Japan has been staying at zero

percent during the almost entire sample period.

Table 2.5 presents variance decompositions of nominal bond yields into the

variances of the expected real interest rate, the real rate premium, the expected

inflation, and the inflation risk premium. Again, notice that the sum of variances

3There is a possibility that deflation risk premium (negative inflation risk premium) posi-
tively depends on cross-sectional inflation dispersion. Thus, I conduct the following asymmetric
regressions:

∆ipt+1(τ) = αip + βStd+∆Stdt · 1πt>0 + βStd−∆Stdt · 1πt<0 + ωip
t ,

where ipt(τ) is the inflation risk premium of τ -year maturity at time t. αip, βStd+ and βStd−

are constants. ωip
t is distributed from N(0, σip). ∆Stdt is the time change in the cross-sectional

standard deviation of CPI forecasts. Yet, the results are not statistically significant.
4I also investigate the relationship between the term premium and the dispersion of inflation

forecasts. I obtain quantitatively similar results. For both countries, the sign of coefficient for
the 10 year maturity term premium is positive but the signs of the other coefficients are negative.
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of these two components is not equal to the variance of nominal yields since there

are covariance terms. Consistent with the finding in Table 2.4, the contributions of

the variances of the real interest rate risk premium and the inflation risk premium

are larger for longer maturity for both the US and Japan.

2.4.4 Factor loadings relating yield curves to macroeconomic variables

Figures 2.1 and 2.2 show factor loadings of the first three factors of nominal bond

yields in a principal component analysis (PCA) in the US case. In Figure 2.1, I

conduct PCA for the nominal bond yields during from October of 1991 to October

of 2008. In Figure 2.2, I use the data from January of 2009 to October of 2015 when

the Federal Reserve had been employing the zero interest rate policy. In Figure

2.1, it is clear that PCA1, PCA2, PCA3 correspond to level, slope, curvature

factors, respectively. In Figure 2.2, such a clear mapping is difficult. Both PCA

1 and PCA 2 behave like slope factors. This means that the principal component

analysis cannot provide us a unified understanding of the macroeconomic drivers

of yield curves.

Figures 2.3 and 2.4 enable us to understand economic drivers of nominal bond

yields with and without the zero interest rate policy in the US case. These two

figures show factor loadings to four different macroeconomic variables. In Figure

2.3, the initial shadow interest rate is positive (x = 1.00%) but it is negative

(x = −1.00%) in Figure 2.4. Figure 2.3 shows that the shadow interest rate works

as a level factor. The other three variables function as slope factors. In Figure

2.4, there is no clear level factor. All four macroeconomic factors function as slope

factor but with different magnitudes.

Figures 2.5 and 2.6 show factor loadings of those four variables in the case of

Japan. In Figure 2.5, the initial shadow interest rate is positive (x = 1.00%), In

Figure 2.6 it is negative (x = −1.00%). The results are almost same as the US

case. One difference is that output functions as a curvature factor in Japan rather
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than a slope factor.

2.5 Conclusion

In this chapter, I revisit empirical findings documented by previous studies con-

ducted before the zero lower bound period. I use the model with an explicit zero

lower bound.to include the 2008-2015 period. The model developed in the first

chapter allows us to have a consistent understanding of term structure dynamics

before and after the zero interest rate policy. Thus, there is no need to divide a

full sample period into two subsample periods.

Most of empirical findings documented before the zero lower bound period hold

during the zero lower bound period. Yet, I find that a monetary policy factor func-

tions as a slope factor once the zero lower bound is binding. Also, I report that the

relationship between the inflation risk premium and a cross-sectional dispersion

of inflation forecasts is not statistically significant.
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Table 2.1: Decomposition of nominal bond yields into two components

This table provides a decomposition of nominal bond yields into (1) the ex-

pected path of the nominal interest rate and (2) the term premium. The details of

the computation are as follows: First, I compute nominal bond yields under both

the physical measure and the risk-neutral measure. Second, expected interest rate

path components are computed as nominal bond yields under the physical mea-

sure. Third, term premium components are computed as the difference between

the nominal bond yields under the physical and the risk-neutral measure. Nom-

inal yields are estimated model-implied yields. These nominal yields are equal

to the sum of expectation component of the nominal interest rate and term pre-

mium. The numbers are the time average values for a specific maturity of each

component during the sample period.

Maturity (year) 1 2 3 4 5 7 10

US

Nominal yields 2.91% 3.29% 3.53% 3.74% 3.93% 4.27% 4.72%

Expectation 2.96% 3.03% 3.09% 3.14% 3.18% 3.23% 3.28%

Term premium -0.05% 0.27% 0.45% 0.60% 0.75% 1.04% 1.44%

Japan

Nominal yields 0.24% 0.30% 0.36% 0.44% 0.52% 0.77% 1.16%

Expectation 0.11% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10%

Term premium 0.14% 0.19% 0.26% 0.33% 0.41% 0.67% 1.06%
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Table 2.2: Decomposition of nominal bond yields into four components

This table provides a decomposition of nominal bond yields into (1) the ex-

pected path of the real interest rate, (2) the real risk premium, (3) the expected

inflation, and (4) the inflation risk premium. The details of the computation are

as follows: First, I obtain nominal and real bond yields under both the physical

measure and the risk-neutral measure. Second, expected real yields are computed

as those yields under the physical measure. Third, expected inflation is calculated

as the difference between nominal yields and real yields under the physical mea-

sure. Fourth, the real rate risk premium is computed as the differences between

the real bond yields under the physical and the risk-neutral measure. Fifth, the

inflation premium is computed as the differences between the nominal bond yields

under the physical and the risk-neutral measure and further subtracting the real

premium. Nominal yields are estimated model-implied yields. The numbers are

the time average values for a specific maturity during the sample period.

Maturity (year) 1 2 3 4 5 7 10

US

Nominal yields 2.91% 3.29% 3.53% 3.74% 3.93% 4.27% 4.72%

Expected real yields 0.69% 0.77% 0.84% 0.90% 0.95% 1.01% 1.07%

Real risk premium -0.48% -0.21% -0.10% 0.00% 0.11% 0.36% 0.74%

Expected inflation 2.28% 2.26% 2.25% 2.24% 2.23% 2.22% 2.21%

Inflation risk premium 0.42% 0.48% 0.54% 0.60% 0.63% 0.68% 0.70%

Japan

Nominal yields 0.24% 0.30% 0.36% 0.44% 0.52% 0.77% 1.16%

Expected real yields 0.50% 0.46% 0.42% 0.38% 0.34% 0.30% 0.26%

Real risk premium -0.20% 0.07% 0.32% 0.58% 0.85% 1.52% 2.54%

Expected inflation -0.39% -0.36% -0.31% -0.27% -0.24% -0.20% -0.16%

Inflation risk premium 0.34% 0.13% -0.06% -0.24% -0.44% -0.85% -1.48%
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Table 2.3: Regressions of the inflation risk premium on cross-sectional dispersion

of inflation forecasts

This table provides estimates of coefficients in the regressions of quarterly

changes in the inflation risk premium for n-year maturity nominal bond on previ-

ous quarter changes in the cross-sectional dispersion (ny-Std). For each parameter,

∗ denotes statistical significance at the 5% level based on the t-statistic.

Maturity (year) 1 2 3 4 5 7 10

US

1y-Std -0.103 -0.107 -0.098 -0.088 -0.077 -0.059 -

10y-Std - - - - - - 0.056

Japan

1y-Std 1.621 - - - - - -

2y-Std - 1.576 1.454 1.355 1.280 1.186 -

10y-Std - - - - - - -0.600
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Table 2.4: Variance decomposition of nominal bond yields into two components

This table provides a variance decomposition of τ -year nominal bond yields

yrnt (τ) into (1) the expected path of the nominal interest rate ypht (τ) and (2) the

term premium pt(τ). The following equation is used:

var(yrnt (τ)) = var(ypht (τ)) + var(pt(τ)) + 2cov(ypht (τ), pt(τ)).

Notice that the numbers in this table are standard deviations.

Maturity (year) 1 2 3 4 5 7 10

US

Nominal yield 0.49% 0.48% 0.48% 0.47% 0.45% 0.42% 0.37%

Expected yield 0.42% 0.36% 0.31% 0.26% 0.22% 0.17% 0.12%

Term premium 0.12% 0.15% 0.19% 0.22% 0.24% 0.26% 0.26%

Japan

Nominal yield 0.09% 0.12% 0.15% 0.17% 0.19% 0.22% 0.27%

Expected yield 0.03% 0.03% 0.02% 0.02% 0.02% 0.02% 0.02%

Term premium 0.08% 0.11% 0.13% 0.16% 0.18% 0.21% 0.25%
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Table 2.5: Variance decomposition of nominal bond yields into four components

This table provides a variance decomposition of τ -year nominal bond yields

yrnt (τ) into (1) the expected path of the real interest rate rpht (τ), (2) the real

interest rate premium rpt(τ), (3) the expected inflation πt(τ) and (4) the inflation

risk premium ipt(τ). The following equation is used:

var(yrnt (τ)) = var(rpht (τ)) + var(rpt(τ)) + var(πt(τ)) + var(ipt(τ)) + cov.

“cov” denotes the remaining covariance terms. Notice that the numbers in this

table are standard deviations.

Maturity (year) 1 2 3 4 5 7 10

US

Nominal yield 0.49% 0.48% 0.48% 0.47% 0.45% 0.42% 0.37%

Expected real yield 0.47% 0.41% 0.35% 0.30% 0.25% 0.19% 0.14%

Real risk premium 0.53% 0.45% 0.39% 0.36% 0.34% 0.32% 0.30%

Expected inflation 0.06% 0.05% 0.05% 0.04% 0.04% 0.03% 0.02%

Inflation risk premium 0.51% 0.45% 0.40% 0.35% 0.32% 0.26% 0.20%

Japan

Nominal yield 0.09% 0.12% 0.15% 0.17% 0.19% 0.22% 0.27%

Expected real yield 0.26% 0.20% 0.16% 0.13% 0.11% 0.08% 0.06%

Real risk premium 0.53% 0.48% 0.45% 0.44% 0.43% 0.48% 0.61%

Expected inflation 0.26% 0.19% 0.15% 0.12% 0.10% 0.07% 0.05%

Inflation risk premium 0.54% 0.48% 0.44% 0.41% 0.39% 0.38% 0.43%
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Figure 2.1: Principal component analysis of nominal bond yields during the nor-

mal period

This figure provides factor loadings of nominal bond yields to the first three

factors of nominal bond yields in principal component analysis: I conduct princi-

pal component analysis for nominal bond yields from October of 1991 to October

of 2008 (normal period) for the US and plot factor loadings. During this time

period, the policy rate is positive.
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Figure 2.2: Principal component analysis of nominal bond yields during the ZLB

period

This figure provides factor loadings of nominal bond yields to the first three

factors of nominal bond yields in principal component analysis: I conduct principal

component analysis for nominal bond yields from January of 2009 to October of

2015 (ZLB period) for the US and plot factor loadings. During this time period,

the Federal Reserve employs the zero interest rate policy.
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Figure 2.3: Factor loadings in the US during the normal period

This figure provides factor loadings of nominal bond yields to the macroe-

conomic variables in the case of the US. The shadow interest rate is positive

xt = 1%(> 0). I call this setting normal period. Inflation πt = 2%. Real and po-

tential output are yt = ynt = 0%. I compute the change in the nominal bond yields

given the change in each variable. The numbers shown are calculated relative to

the 10-year change.
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Figure 2.4: Factor loadings in the US during the ZLB period

This figure provides factor loadings of nominal bond yields to the macroe-

conomic variables in the case of the US. The shadow interest rate is negative

xt = −1%(< 0). I call this setting ZLB (zero lower bound) period. Inflation

πt = 2%. Real and potential output are yt = ynt = 0%. I compute the change in

the nominal bond yields given the change in each variable. The numbers shown

are calculated relative to the 10-year change.
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Figure 2.5: Factor loadings in Japan during the normal period

This figure provides factor loadings of nominal bond yields to the macroeco-

nomic variables in the case of Japan. The shadow interest rate is positive xt = 1%.

Inflation πt = 0%. Real and potential output are yt = ynt = 0%. I compute the

change in the nominal bond yields given the change in each variable. The numbers

shown are relative to the 10-year change.
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Figure 2.6: Factor loadings in Japan during the ZLB period

This figure provides factor loadings of nominal bond yields to the macroe-

conomic variables in the case of Japan. The shadow interest rate is negative

xt = −1%(< 0). I call this setting ZLB (zero lower bound) period. Inflation

πt = 0%. Real and potential output are yt = ynt = 0%. I compute the change in

the nominal bond yields given the change in each variable. The numbers shown

are relative to the 10-year change.

85



CHAPTER 3

Additional modeling and empirical exercises

3.1 Introduction

In this chapter, I conduct two different types of additional exercises.

As an additional modeling exercise, I incorporate a Markov regime switching

feature into the New Keynesian macro finance model. Specifically, I allow a long-

run real interest rate to depend on a regime. I assume that there are two regimes:

a high long-run real interest regime and a low long-run real interest regime. I

estimate the extended model for the US economy. 1 I find that the low long-run

real interest rate was dominant during the 2009-2011 period but the high long-run

real interest rate regime has been dominant since 2012.

As an additional application of the benchmark model, I study the excess sensi-

tivity of long-distant real forward interest rates to changes in the short-term nom-

inal rate in Japan. This has been studied as a puzzle in the US.2 I document that

there is a similar excess sensitivity in Japan. Utilizing a comprehensive dataset

of fixed income investors, I investigate the duration adjustment effect proposed

by Hanson and Stein (2015). Their hypothesis is as follows. When short-term

interest rates are lowered, fixed income investors re-balance their bond portfolios

1Due to the computational difficulty in solving the New Keynesian macroeconomic model
with both the zero lower bound and Markov regime switching features, I model the zero lower
bound only in bond pricing but not in the New Keynesian macroeconomic dynamics in this
additional modeling exercise.

2The puzzle is that a short-term nominal interest rate impacts long-distant real forward rate
although nominal changes are supposed not to have such a strong effect on long-distant real
interest rates in a standard New Keynesian model.
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toward longer-term bonds in an effort to keep their portfolio returns unchanged.

Such a re-balancing further lowers the longer-term bond yields. This feedback

effect is a key mechanism in creating the excess sensitivity in the hypothesis.

One issue in their study is that they use a crude measure of portfolio duration

held by commercial banks and primary dealers due to limited availability of data

in the US. For commercial banks, as a proxy for duration, they use the average

fraction of non-trading account securities with a current remaining maturity or

next repricing date of one year or longer. For primary dealers, they use the data

from the Federal Reserve Bank of New York that categorizes bonds into four buck-

ets: shorter than 3 years, 3 to 6 years, 6 to 11 years and longer than 11 years.

The dataset of Japanese fixed income investors used in this chapter is more

detailed. It allows us to see each institutional investor’s duration across several fi-

nancial sectors such as banking, asset management and insurance. Equipped with

this dataset, I investigate the hypothesis of Hanson and Stein (2015). Specifically,

I conduct two different types of regressions. In the first regression analysis, I study

the impact of each financial sector’s change in duration on nominal bond yields.3

In the second regression analysis, I investigate the reverse causality: whether a

change in nominal bond yields induces investor’s adjustment of duration. Al-

though the signs of some coefficients are consistent with the hypothesis of Hanson

and Stein (2015), I do not find statistically significant results in the first or second

regression analyses. Overall, the results do not strongly support the hypothesis

of Hanson and Stein (2015).

The rest of the third chapter proceeds as follows. Section 3.2 reviews the

literature related to each of the two additional exercises. Section 3.3 explains

the additional modeling exercise. Section 3.4 discusses the additional empirical

exercise. Section 3.5 concludes this chapter.

3Fixed income investors are quite segregated in terms of their bond maturities. For example,
banks are active in short-term maturities while insurance companies are more active in long-term
bonds. In my regression analyses, I take into account this heterogeneity.
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3.2 Literature review

3.2.1 Regime-switching term structure model of interest rates

Motivated by empirical evidence of a structural change in macroeconomic variables

or a central bank’s policy stance, several papers employ Markov-regime switching

term structure models. Ang, Bakaert and Wei (2008) present an affine term

structure model with regime switching where a nominal short rate is driven by

three factors including expected inflation. They show that unconditional real rate

curve is flat and around 1.3% although it is strongly downward sloping in one

regime. Li, Li and Yu (2013) study the effect of a central bank’s monetary policy

stance on the term structure of interest rates using regime switching. They find

that the Federal Reserve is more proactive in one regime than in other regime

and the stance contributes to Great Moderation. Bikbov and Chernov (2013)

formulate a term structure model in which inflation and real GDP are governed by

a forward-looking macroeconomic model with regime switching. They allow both

monetary policy stance and macroeconomic volatility to be regime-dependent. A

new aspect of the model in this research is an explicit consideration of zero lower

bound in nominal bond pricing under regime-switching term structure model.

3.2.2 Excess sensitivity of long-term real interest rates

This chapter contributes to empirical studies of excess sensitivity of long-term

forward interest rates to short-term nominal interest rates. Gürkaynak, Sack and

Swanson (2005) is the first study to document it for the US case during 1990 and

2002. They find that it is driven by a private sectors’ change in long-term expected

inflation. They also show that the similar pattern is not observable in the case

of UK Treasury bond markets. Nakamura and Steinsson (2013) conduct a similar

study and show that it is mostly driven by a change in forward real rates. Hanson

and Stein (2015) propose a hypothesis that some investors are yield-oriented and

88



those investor’s re-balancing of their fixed-income portfolio impacts on long-term

real interest rates. I study the excess sensitivity of long-term forward interest

rates in the case of Japan with a comprehensive dataset of fixed income investors.

3.3 Additional modeling exercise: Regime-switching macroe-

conomic dynamics

Recently, there is a debate that an equilibrium real interest rate has been declining

during the last decade. For example, Summers (2014) argues that an equilibrium

real interest rate in the US has recently declined by citing the estimates based

on Laubach and Williams (2003) model and lists several factors explaining such a

downward trend of the real interest rates.4 King and Low (2014) document that

weighted real interest rates across G7 countries have been gradually declining

since 1985. Motivated by such a debate, I incorporate regime switching feature to

a target shadow interest rate. Specifically, I assume that a target shadow interest

rate depends on two regimes, st = u, d.

xtarget
t = r∗(st) + πt + γy(yt − ynt ) + γπ(πt − π̄t). (3.1)

It is tough to allow regime switching feature in the case of IS-ZLB. Thus, I focus

on the case of IS-SR when employing (3.1). Given this modification, the four

equations are rewritten as the following forward-backward looking equation.

AEt[Xt+1] = BXt + CXt−1 +D(st) + ϵt, (3.2)

where the coefficient matrices A, B, C are same as those in the case of IS-SR.

The only vector D becomes regime-dependent.

D(st) = (αIS, 0, µx(r
∗(st)− γππ̄), µyȳn)

T . (3.3)

4See also Teulings and Baldwin (2014) for reference.
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There are several techniques to solve regime-dependent forward-backward equa-

tion.5 In this special case, one can apply a similar method used to solve a forward

and backward looking equation without a regime-switching feature. Let us guess

the solution takes the following form.

Xt+1 = FXt +G(st) +Hϵt, (3.4)

where F , G, H solve

AF 2 −BF − C = 0, G(st) = (AF −B + A)−1D(st), H = (AF −B)−1.(3.5)

It is easy to see that F does not depend on regime st. Thus, one can otain F first

and then compute G and H with already obtained F .

In pricing nominal bonds, we need to specify a function of market price of risk.

For simplicity, I assume that factor-dependent market price of risk is independent

of regimes.

µt = µ0(st) + λ1Xt. (3.6)

The constant market price of risk is allowed to depend on the regime st in general.

Yet, I assume that µ0 is independent of the regime st in my empirical analysis

below. The evolution of the four stochastic factors under the risk-neutral measure

is given by

Xt+1 = FQXt +GQ(st) +Hϵt, (3.7)

where FQ and GQ(st) are given by

FQ = F −Hµ1, (3.8)

GQ(st) = G−Hµ0(st). (3.9)

The approximate formula for nominal bond yields under regime switching is

briefly discussed in the Appendix 1.7.5. The approach to obtain the formula is

same as the one without regime switching.
5Davig and Leeper (2007), Farmer, Waggoner and Zha (2009, 2011) and Cho (2009) define

and discuss the concept of solutions based on minimum state variable. Svensson and Williams
(2005) also proposed a simple algorithm to solve this type of equations.
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3.3.1 Data and estimation methodology

When estimating shadow interest rate models with regime switching, I simply

apply a standard methodology to estimate regime switching model for VAR system

developed by Hamilton (1989).

In addition to that, I develop a regime-switching unscented Kalman filtering

as an additional robustness check. I integrate Kim(1994)’s method for regime-

switching dynamic linear model with unscented Kalman filtering.6 The second

approach is just for a robustness check. All of results are based on the first

approach.

3.3.2 Results

Table 3.1 shows estimates of the parameters of an extended joint model with

Markov regime switching. I estimate only regime-dependent parameters and ob-

servation noise and keep other parameters fixed as in Tables 1.4 and 1.5. Thus,

I report only the estimates of the regime-dependent long-run real interest rates

r∗(st) in this table. The long-run real rate r∗(u) is equal to 1.17% in the high

regime and r∗(d) is equal to 0.91% in the low regime. This estimate is in line with

the estimated range of the long-run real interest rates reported in Laubach and

Williams (2015). One can see that the long-run real interest rate r∗(d) in the low

regime is still positive.

Figure 3.1 shows that the low regime was dominant during 2009-2011 period.

Yet, the high regime has been more dominant since 2012. This indicates that

the long-run real interest rate for the US temporarily declined during the Great

Recession but the US economy re-entered the high long-run real rate regime in

2012.

6Kim (1994) developed algorithm to estimate state space models with Markov regime switch-
ing. The detail is Appendix 3.6.
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3.4 Additional empirical exercise: Impact of yield-oriented

investors on bond yields

3.4.1 Data and estimation methodology

Hanson and Stein (2015) argue that investors’ adjustment of their fixed-income

portfolio can explain excess sensitivities of long-term real interest rates to short-

term nominal interest rates. Motivated by their study, I conduct a simple statis-

tical analysis to see whether duration adjustments by fixed income investors are

impacting interest rates and, reversely, that interest rates changes incentive to

the fixed income investors to adjust their durations (average maturity). One big

difference in my research from Hanson and Stein (2015) is that the dataset in this

chapter allows me to see each fixed income investor’s duration (average duration

of their bonds).

A comprehensive survey of Japanese fixed income investors provided by QUICK

Corp allows us to see the average duration (maturity) of each fixed income in-

vestor. Utilizing that data, I study how medium and long-term bond yields are

lowered by fixed income investors when they extend their average maturity given

lower bond yields of maturities to which they are exposed. For brevity, I call this

impact the duration adjustment effect.

The duration adjustment effect is related to a portfolio re-balancing effect often

used to justify the real economic effect of large-scale asset purchases. A portfolio

re-balancing effect is that investors increase the position in risky assets when the

returns from those assets currently held by them are lowered.

To quantify the duration adjustment, I consider the two way effects between fi-

nancial sector’s duration and bond yields in the following econometric framework.

First, I formulate the impact of duration on bond yields.

∆yactualt (τ) = αD−y +∆ymodel
t (τ) + βD−y∆Dt−1 + ϵD−y

t , (3.10)
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where Dt is a vector of durations for financial sectors. In the following analysis,

I define Dt = (DBank
t , DAM

t , DInsurance
t )T where DBank

t , DAM
t , and DInsurance

t are

the average duration of banking sector, asset management sector and insurance

sector, respectively. yactualt (τ) and ymodel
t (τ) are a N × 1 vector of actual and

model-implied τ -year bond yields. N is the number of bond yields used for the

estimation. ∆ is a time lag operator. αD−y is a N × 1 vector and βD−y is a

N × 3 matrix. The distribution of error term ϵD−y
t follows a multi-variate normal

distribution with zero mean and covariance matrix ΣD−y.

Next, I model the impact of bond yields on duration.

∆Dt = αy−D + βy−D∆yactualt−1 (τ) + ϵy−D
t , (3.11)

where αy−D is a 3 × 1 vector and βy−D is a 3 × N matrix. The distribution of

error term ϵy−D
t follows a multi-variate normal distribution with zero mean and

covariance matrix Σy−D.

Figure 3.2 shows the model-implied sensitivity of real forward rates to 2-year

yield change given a shadow rate policy shock under the physical measure as well

as the actual sensitivity.7 The actual sensitivity is computed using yield changes

before and after monetary policy meetings between April of 2006 and December

of 2008 during which the policy rate was above zero percent. It tells us that

model-implied sensitivity is not so persistent compared to the actual one. This is

in line with previous studies in the US.

Table 3.2 is the summary statistics of this data. It shows the average dura-

tions across the banking, asset management, and insurance sectors. Notice that

the banking sector’s duration ranges from 3.48 to 4.4 years while the asset man-

agement sector’s duration ranges from 5.01 to 8.32 years. The insurance sector’s

duration is distributed from 5.66 to 9.99 years. Figure 3.3 shows a time series plot

of those average durations. The average duration of the banking sector is stable.

7When the sensitivities are computed under the risk-neutral measure, they are almost flat
and around one since shadow interest rates function as a level factor.
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The average durations of the asset management sector and the insurance sector

have been increasing over time.

3.4.2 Results

Table 3.3 shows the interaction between the average durations and nominal bond

yields. The top and the bottom of the table shows estimated coefficients of regres-

sions, (3.10) and (3.11), respectively. In these regressions, I take into account the

range of each financial sector’s duration. For example, I do not regress residual

components of 10-year nominal bond yields on the banking sector’s duration since

the banking sector’s duration ranges from 3 to 5 years. It is difficult to imagine

that this could impact on 10-year nominal yield directly.

The top of the table shows that changes in the average durations have little

effect on changes in the residual components of nominal yields. Some coefficients

are negative but not statistically significant. The bottom of the table indicates

that the changes in yields have little effect on the average durations. For example,

the average maturities of the bonds held by the asset management sector become

longer if nominal bond yields with 5 years are lowered. The average maturities

of the bonds held by the insurance sector become longer if nominal bond yields

with 7 and 10 years are lowered. However, these coefficients are not statistically

significant. Also, the coefficients of the banking sector’s duration are not negative.

Given these two results, it is difficult to argue that there exists a strong effect of

the fixed-income investors’ bond portfolio adjustment on bond yields.8

8I also conduct the regression (3.11) at individual investor level. The average coefficient is
negative and thus supports the hypothesis of re-balancing but not statistically significant.
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3.5 Conclusion

In this chapter, I conduct two different types of additional exercises based on

the model developed in the first chapter. First, I incorporate a Markov regime

switching feature into the New Keynesian macro finance model with the zero lower

bound for nominal bond pricing. Specifically, I allow a long-run real interest rate

to depend on a regime. I find that the US economy was staying at the low regime

during 2009-2011 period but re-entered the high regime in 2012. Second, I study

the excess sensitivity of long-distant real forward interest rates to changes in the

short-term nominal rate using a dataset of Japanese fixed income investors. The

dataset allows us to observe each investor’s duration. I investigate whether a

portfolio-re-balancing effect helps us understand the excess sensitivity of long-

distant real forward interest rates. I cannot find any strong evidence.
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3.6 Appendix: Regime-switching unscented Kalman fil-

tering

I explain the algorithm of regime-switching unscented Kalman filtering that

combines unscented Kalman filtering developed by Julier and Uhlmann (2004)

and Kalman filtering for regime-switching state space model proposed by Kim

(1994). In unscented Kalman filtering, I match the first and second moments of

the distribution of observable variables using several sequences of latent variables.

In fact, Unscented Kalman Filtering can be understood as the special case of

Quasi-Monte Carlo filtering where the distribution is approximated by the quasi-

random sequences.

Let us denote the vector of yields with different maturities at time t with

yt = (y(t, τ1), y(t, τ2), · · · , y(t, τN)). Here, τn denotes n-th maturity. I also define

h(xt) as the function of the yield vector yt with respect to the vector of latent

variables. xt denotes the state variables. The number of regimes is L.

Similar to linear Kalman filtering, unscented Kalman filtering consists of two

operations: prediction and filtering. First, I describe the prediction algorithm.

Second, I explain filtering algorithm. Both of these algorithms are done given the

current and previous regimes. Thus, in the final part, I show how to take into

account regime changes given transition matrix and per-period log likelihood.

3.6.1 Prediction

I introduce σ points that are the collection of the vectors {x̂i
t|t−1(m)} (m =

1, · · · , 2d + 1). Here, d is the number of latent variables. i denotes the i-th

regime. In this paper, the model has d = 4 factors. Each σ point is calculated as

follows.

x̂i
t|t(0) = x̂i

t|t−1, (3.12)
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x̂i
t|t(m) = x̂i

t|t−1 +
(√

(d+ λ)P i
t|t−1

)
m
, (3.13)

x̂i
t|t(m+ d) = x̂i

t|t−1 −
(√

(d+ λ)P i
t|t−1

)
m
. (3.14)

To step forward in time, I calculate the vector of latent variables x̂ at time t + 1

for each σ point.

x̂i,j
t+1|t(m) = f j(x̂i

t|t(m)), (3.15)

where the function f j(xt) governs the time evolution of latent variables. In this

paper, given linear market price of risk and the VAR(1) dynamics of macroeco-

nomic variables, the function f(·) is specified as

xi,j
t+1|t(m) = F jxi

t|t(m) +Gj, (3.16)

where F j and Gj are defined in (1.46).

I then take an average of the 2d vectors x̂i
t+1|t as the predicted value.

x̂i,j
t+1|t =

2d∑
m=0

W (m)x̂i,j
t+1|t(m). (3.17)

I also calculate the covariance matrix P i,j
t+1|t.

P i,j
t+1|t =

2d∑
m=0

W (m)[x̂i,j
t+1|t(m)− x̂i,j

t+1|t][x̂
i,j
t+1|t(m)− x̂i,j

t+1|t]
′ +Qi, (3.18)

where Qi is the covariance matrix of system error and it is given by HΣH ′ where

the matrix Σ = diag([σ2
y, σ

2
π, σ

2
x, σ

2
yn]).

3.6.2 Filtering

Second, I explain the filtering algorithm. I compute σ points as I have done in

the prediction algorithm.

x̂i,j
t|t−1(0) = x̂i,j

t|t−1, (3.19)

x̂i,j
t|t−1(m) = x̂i,j

t|t−1 +
(√

(d+ λ)P i,j
t|t−1

)
m
, (3.20)

x̂i,j
t|t−1(m+ d) = x̂i,j

t|t−1 −
(√

(d+ λ)P i,j
t|t−1

)
m
, (3.21)
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where λ is a free parameter and need to be adjusted for each specific case.

I calculate the yield vector yt for each σ point.

ŷi,jt|t−1(m) = h(x̂i,j
t|t−1(m)), (3.22)

where h(·) is a non-linear function. In this paper, h(·) is a function of bond yields

with respect to stochastic factors Xt = [yt, πt, xt, y
n
t ]. The weighted prediction is

given by

ŷi,jt|t−1 =
2d∑

m=0

Wh(m)ŷi,jt|t−1(m), (3.23)

where the weight W (m) is defined as

W (0) =
λ

d+ λ
, (3.24)

W (m) =
λ

2(d+ λ)
, (3.25)

W (m+ d) =
λ

2(d+ λ)
. (3.26)

Conditional covariance matrices are given by

V i,j
t|t−1 = Σ2n

m=0Wh(m)[ŷi,jt|t−1(m)− ŷi,jt|t−1][ŷ
i,j
t|t−1(m)− ŷi,jt|t−1]

′ +R, (3.27)

U i,j
t|t−1 = Σ2n

m=0Wh(m)[x̂i,j
t|t−1(m)− x̂i,j

t|t−1][ŷ
i,j
t|t−1(m)− ŷi,jt|t−1]

′, (3.28)

where R is the covariance matrix of measurement errors, σ2
obIN where IN is a

N ×N identity matrix. Kalman gain is given by

Ki,j
t = U i,j

t|t−1(V
i,j
t|t−1)

−1. (3.29)

Filtered latent variables and covariance matrix are given by

x̂i,j
t|t = x̂i,j

t|t−1 +Ki,j
t [yt − ŷi,jt|t−1], (3.30)

P i,j
t|t = P i,j

t|t−1 − U i,j
t|t−1(V

i,j
t|t−1)

−1(U i,j
t|t−1)

T . (3.31)

Equipped with the time series of yt|t−1 and Vt|t−1, I can calculate the log like-

lihood as I have done in linear Kalman filtering.
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3.6.3 How to eliminate lagged regime dependence

What is remaining is to compute lagged-regime-dependent latent factors, xi
t|t given

xi,j
t|t . In order to eliminate the dependence of lagged regime dependence, one can

take expectations over regime transitions.

xj
t|t =

∑L
i=1 Pr[St−1 = j, St = j|ϕt]x̂

i,j
t|t

Pr[St = j|ϕt]
, (3.32)

P j
t|t =

∑L
i=1 Pr[St−1 = j, St = j|ϕt]

(
P i,j
t|t + (xj

t|t − x̂i,j
t|t)(x

j
t|t − x̂i,j

t|t)
T
)

Pr[St = j|ϕt]
.

(3.33)

The next problem is how to compute the probabilities of having two specific

regimes in current and previous states. That can be done in the following way:

Step 1 Predicting the probabilities of having two specific regimes in current and

previous states from the previous one using a given transition matrix.

Pr[St−1 = j, St = j|ϕt] = Pr[St = j|St−1 = i]×
L∑
i=1

Pr[St−2 = i′, St−1 = i|ϕt−1].

(3.34)

Step 2 Compute the joint density of observable variables yt, the current regime

St−1and the previous regime St−1 .

f(yt, St−1, St = j|ϕt−1) = f(yt, St−1 = i, St = j, ϕt−1)× Pr[St−1 = i,S t = j|ϕt−1],

(3.35)

where f(yt, St−1, St = j|ϕt−1) is a density function given current and previous

regimes that is per-period log likelihood.

Step 3 ”Filtering” the probabilities of having two specific regimes in current and

previous states from the previous one using per-period likelihood.

Pr[St−1 = i, St = j|ϕt] =
f(yt, St−1, St = j|ϕt−1)

f(yt|ϕt−1)
, (3.36)
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where f(yt|ϕt−1) is given by

f(yt|ϕt−1) =
L∑

j=1

L∑
i=1

f(yt, St−1 = i, St = j|ϕt−1). (3.37)

Step 4 This part is not mandate but needed when one wants to see the probability

of being in a specific regime.

Pr(St = j|ϕt) =
L∑

j=1

L∑
i=1

Pr[St−1 = i, St = j|ϕt−1]. (3.38)
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Table 3.1: Estimates of regime-dependent long-run real interest rates

This table provides the estimates of regime-dependent long-run real interest

rates and the transition probabilities for a structural New Keynesian term struc-

ture for the US case. I denote the low regime with st = d and the high regime

st = u. Asymptotic standard errors are computed as the estimate of the Fisher

information matrix. For each parameter, ∗ and ∗∗ denote statistical significance

at the 5% and 1% level, respectively.

Notation Value

Long-run real interest rate (low) r∗(d) 0.91%∗∗

Long-run real interest rate (high) r∗(u) 1.17%∗∗

Transition probability (low regime to low regime) Pr(st = d|st−1 = d) 0.968∗∗

Transition probability (high regime to high regime) Pr(st = u|st−1 = u) 0.950∗∗

Observation noise σob 0.010∗∗
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Table 3.2: Summary statistics of the average durations across different financial

sectors

The table shows summary statistics of the average durations for the bank-

ing, asset management, and insurance sectors. In banking, there are commercial

banks as well as regional banks, but no investment banks. AM sector denotes

asset management sector. Insurance sector includes both life insurance firms and

non-life insurance firms. For each category, I compute the average duration across

the same-type financial firms in each month. The original data source is Quick

Monthly Market Survey of Bond.

DurationBank
t DurationAM

t DurationInsurance
t

number of sample (average) 39.8 41.7 18.0

mean (year) 3.48 6.54 8.00

min (year) 3.03 5.01 5.66

max (year) 4.44 8.32 9.99

trend in monthly change 0.02 0.07 0.08

volatility of monthly change 0.15 0.21 0.39
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Table 3.3: Interaction between nominal bond yields and the average durations of

different financial sectors

This table shows the results of two different types of regressions. The top part

of the table (A) provides estimates of coefficients in the regressions of quarterly

changes in the residual nominal bond yield for each maturity on previous quarter

changes in the average duration of different financial sectors. The residual nomi-

nal bond yield is computed by subtracting the model-implied bond yield from the

actual nominal bond yield for each maturity. The bottom part (B) provides esti-

mates of coefficients in the regressions of changes in the average duration of differ-

ent financial sectors on previous quarter changes in the actual nominal bond yield

for each maturity. For each parameter, ∗ and ∗∗ denote statistical significance at

the 5% and 1% level, respectively. ∆yt(τ)
resi is defined as ∆yactualt (τ)−∆ymodel

t (τ).

(A) ∆yt(3)
resi ∆yt(4)

resi ∆yt(5)
resi ∆yt(7)

resi ∆yt(10)
resi

∆DurationBank
t−1 -0.02 0.02 0.03 - -

∆DurationAM
t−1 - - 0.01 -0.02 -

∆DurationInsurance
t−1 - - -0.02 0.01 0.02

(B) ∆yt−1(3) ∆yt−1(4) ∆yt−1(5) ∆yt−1(7) ∆yt(10)

∆DurationBank
t 0.10 0.07 0.07 - -

∆DurationAM
t - - -0.05 0.05 -

∆DurationInsurance
t - - 0.10 -0.02 -0.21

103



Figure 3.1: Evolution of the probability of being at each regime

This figure shows a time series plot of the probability of being at each regime:

The high regime (st = u) is defined as the regime where the long-run real interest

rate is equal to r∗(u)(r∗(u) > r∗(d)). The low regime (st = d) is defined as the

regime where the long-run real interest rate takes r∗(d)(r∗(d) < r∗(u)).
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Figure 3.2: Sensitivity of real forward interest rates to the policy interest rate in

Japan

This figure shows actual and model-implied sensitivities of the real forward

interest rates to the policy interest rate when the zero lower bound is not binding

in the case of Japan. In computing the model-implied sensitivity, I calculate the

sensitivity of real forward interest rates to the change in the shadow interest rate

xt. I then divide it by the 2-year sensitivity for standardization. The sensitivities

are computed under the physical measure.

105



Figure 3.3: Evolution of durations across three different financial sectors

This figure shows a time series plot of durations across three financial sectors

from July of 2004 to October of 2015: banking, asset management, and insurance

sectors. For each category, the solid line shows the average duration across the

same-type financial firms. The dotted line corresponds to a cross-sectional one

standard deviation.
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