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Abstract

Motivation: Interpreting genetic variation in noncoding regions of the genome is an important

challenge for personal genome analysis. One mechanism by which noncoding single nucleotide

variants (SNVs) influence downstream phenotypes is through the regulation of gene expression.

Methods to predict whether or not individual SNVs are likely to regulate gene expression would

aid interpretation of variants of unknown significance identified in whole-genome sequencing

studies.

Results: We developed FIRE (Functional Inference of Regulators of Expression), a tool to score both

noncoding and coding SNVs based on their potential to regulate the expression levels of nearby

genes. FIRE consists of 23 random forests trained to recognize SNVs in cis-expression quantitative

trait loci (cis-eQTLs) using a set of 92 genomic annotations as predictive features. FIRE scores dis-

criminate cis-eQTL SNVs from non-eQTL SNVs in the training set with a cross-validated area under

the receiver operating characteristic curve (AUC) of 0.807, and discriminate cis-eQTL SNVs shared

across six populations of different ancestry from non-eQTL SNVs with an AUC of 0.939. FIRE scores

are also predictive of cis-eQTL SNVs across a variety of tissue types.

Availability and implementation: FIRE scores for genome-wide SNVs in hg19/GRCh37 are avail-

able for download at https://sites.google.com/site/fireregulatoryvariation/.

Contact: nilah@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Whole-genome sequencing technologies have enabled studies of gen-

etic variation in increasingly large cohorts of healthy and diseased

individuals. However, interpreting the biological and clinical signifi-

cance of the variation identified in these studies remains a critical

challenge, which has motivated the development of numerous com-

putational tools to predict variant pathogenicity or deleteriousness

(Adzhubei et al., 2010; Fu et al., 2014; Huang, et al., 2017;

Ioannidis et al., 2016; Ionita-Laza et al., 2016; Jagadeesh et al.,

2016; Kumar et al., 2009; Kircher et al., 2014; Li et al., 2009, 2016;

Quang et al., 2015; Ritchie et al., 2014; Shihab et al., 2015). While

most are specific to single nucleotide variants (SNVs) in protein cod-

ing regions, an increasing number of pathogenicity prediction tools

also apply to SNVs in noncoding regions of the genome (Fu et al.,

2014; Huang, et al., 2017; Ionita-Laza et al., 2016; Kircher et al.,

2014; Li, et al., 2016; Quang et al., 2015; Ritchie et al., 2014;

Shihab et al., 2015). As almost 90% of trait-associated SNVs identi-

fied in genome-wide association studies (GWAS) are either inter-

genic or intronic (Hindorff et al., 2009), noncoding regions are

critical for clinical variant interpretation.

The potential functional effects of noncoding SNVs differ from

those of coding SNVs, which often disrupt protein function by alter-

ing amino acid sequences. While most computational tools classify

SNVs by predicting their overall pathogenicity or deleteriousness, a

complementary approach is to develop predictors for specific down-

stream functional effects, which can then be combined to provide a

more detailed mechanistic hypothesis about the potential role of any

SNV in disease pathogenesis. A few recent tools for functional inter-

pretation of noncoding SNVs predict specific effects such as altered

DNase I sensitivity, transcription factor binding, or histone modifi-

cation (Lee et al., 2015; Zhou and Troyanskaya, 2015), while un-

supervised methods are argued to classify SNVs based on their

overall functional importance (Ionita-Laza et al., 2016; Lu et al.,

2015). As different functions are likely to be best predicted by differ-

ent features of SNVs, prediction tools tailored to individual func-

tional effects are needed to fully interpret the significance of any

observed SNV.

Regulation of gene expression is a key functional mechanism by

which noncoding SNVs may achieve clinical significance. RNA

sequencing studies of gene expression across individuals have

enabled the identification of SNVs associated with variation in ex-

pression levels of proximal genes in the genome, termed cis-expres-

sion quantitative trait loci (cis-eQTLs) (Battle et al., 2014; GTEx

Consortium, 2015; Lappalainen et al., 2013). cis-eQTL SNVs par-

tially overlap with SNVs associated with DNase I sensitivity

(Degner et al., 2012) and are also enriched for GWAS trait associ-

ations (Nicolae et al., 2010). However, cis-eQTL studies have lim-

ited power to detect associations involving SNVs with low minor

allele frequencies (MAFs) or small effects, and it is presently infeas-

ible to experimentally catalog all human SNVs that regulate gene ex-

pression. Computational prediction of the potential of all genome-

wide SNVs to alter gene expression levels would aid the functional

and clinical interpretation of SNVs, particularly noncoding SNVs,

discovered in genome sequencing studies. As previous studies have

noted enrichment of cis-eQTL SNVs in various genomic annota-

tions, here we explore the use of such annotations as predictive fea-

tures to develop FIRE (Functional Inference of Regulators of

Expression), a tool that scores all SNVs in the human genome based

on their relative potential to regulate the expression level of one or

more nearby genes.

2 Materials and methods

FIRE is a set of 23 random forests (Breiman, 2001; Hastie et al.,

2009) trained using a chromosome exclusion approach, as described

below, to prevent overfitting. The positive and negative SNVs in the

FIRE training set, as well as their predictive features, are also

described below. A random forest is a machine learning approach in

which an ensemble of classification or regression trees is fit to boot-

strapped samples from a labeled training set. Each classification tree

in a FIRE random forest consists of a series of splits on individual

feature values that best separate positive from negative SNVs in the

bootstrapped sample, measured as a decrease in node impurity or

Gini index (Breiman, 2001; Hastie et al. 2009). We fit random for-

ests using the randomForest package (Liaw and Wiener, 2002) in R

(R Core Team, 2014). After training, the score for any SNV is equal

to the proportion of trees in the relevant random forest that classify

the SNV as positive. Higher scores reflect stronger evidence that the

SNV regulates the expression level of a nearby gene.

2.1 Training sets
2.1.1 Positive set

The positive training set consisted of 57 117 autosomal cis-eQTL

SNVs identified by the Geuvadis Consortium (Lappalainen et al.,

2013) in lymphoblastoid cell lines (LCLs) derived from 373 individ-

uals of European descent (EUR). This set included only those SNVs

in the Geuvadis EUR analysis that were associated at a nominal P-

value<10�10 with the expression level of at least one gene with

transcription start site (TSS) within 50 kb of the SNV. Alternative

definitions of the positive and negative training SNVs are discussed

in Supplementary Text S.4.

2.1.2 Negative set

We first assembled a set of 537 291 non-eQTL autosomal SNVs

meeting the following criteria: (1) located within 50 kb of the TSS of

at least one gene included in the Geuvadis EUR analysis, and thus

expressed in LCLs; (2) not associated (P>0.1) in the Geuvadis EUR

analysis with the expression level of any gene with TSS within one

megabase of the SNV; and (3) not associated (false discovery rate,

FDR>5%) with the expression level of any tested gene with TSS

within one megabase of the SNV in three other analyses: (i) the

Geuvadis analysis of cis-eQTLs in Yoruban individuals (YRI)

(Lappalainen et al., 2013), (ii) the GTEx Consortium V6p analysis

of cis-eQTLs in 44 different tissue types (GTEx Consortium, 2015)

and (iii) a separate analysis of prostate tissue cis-eQTLs (Larson

et al., 2015). These eligible negative SNVs had a MAF distribution

in the Geuvadis EUR dataset skewed towards lower MAFs than the

positive set SNVs, due to reduced power to detect associations for

low-MAF SNVs. Therefore, we extracted a subset of the eligible

negative SNVs with the same MAF distribution as the positive SNVs

by defining ten MAF bins of width 0.05 and randomly including

each eligible negative SNV with a probability proportional to the

ratio of the number of positive to eligible negative SNVs in the rele-

vant bin, resulting in a set of 78 643 frequency-matched negative

SNVs. Finally, we matched the number of positive and negative

SNVs on each chromosome by taking a random subsample of

whichever set, positive or negative, had the most SNVs on that

chromosome. Thus the final frequency-matched training set con-

sisted of 43 364 positive and 43 364 negative SNVs. We also

explored performance on negative sets that were matched on TSS

distance distribution or restricted to the same set of genes as the
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positive set SNVs (Supplementary Text S.4). However, the final

FIRE training set was not matched on the exact distribution of TSS

distances or on other features such as GC content, as these features

are informative for the variant interpretation goal of predicting

whether a particular SNV is likely to regulate gene expression.

2.2 SNV features
We assembled 92 features characterizing each SNV (Supplementary

Table S1), including position relative to nearby gene boundaries,

conservation scores, overlapping elements from ENCODE and

Ensembl, and other features used in existing predictors of noncoding

SNV pathogenicity and deleteriousness, CADD (Kircher et al.,

2014) and GWAVA (Ritchie et al., 2014). We used median imput-

ation within the training set to fill in missing feature annotations for

quantitative features, and considered missing values as an additional

category for categorical features. The importance of each feature

was calculated as the total decrease in the Gini index measure of

node impurity over all splits involving that feature within each tree,

averaged over all trees in the full random forest (Breiman, 2001;

Hastie et al., 2009) as implemented in the randomForest package in R.

2.3 Chromosome exclusion strategy for FIRE scores
A standard approach to cross-validation is to randomly exclude SNVs

from training and then evaluate performance on these excluded

SNVs. In this application, however, the standard approach could

over-estimate performance due to correlation between proximally

located SNVs in the genome. In particular, scores for excluded SNVs

that are strongly correlated with nearby SNVs included in training

may be biased. Scores for non-training set SNVs in future applications

might also be biased by the presence of nearby correlated SNVs in the

training set. To avoid this potential bias, we implemented a chromo-

some exclusion strategy in which we trained a total of 23 random for-

ests: one was trained on the full training set described in Section 2.1,

and 22 random forests were trained each excluding all SNVs on one

of the 22 autosomes. We then obtained the FIRE score for any given

SNV from the random forest that excluded its chromosome from

training. Because the full training set in Section 2.1 did not include any

sex chromosome SNVs, the random forest trained on the full training

set was used to score SNVs on sex chromosomes. This chromosome

exclusion strategy for computing FIRE scores ensured that there was

no overlap between any test and training set SNVs, because the FIRE

score for any given test set SNV was computed using the random for-

est that excluded not only the test SNV itself, but also all other SNVs

on the same chromosome, from its training set. All genome-wide FIRE

scores, including all scores used throughout the manuscript, were com-

puted using this chromosome exclusion approach.

2.4 Evaluation of FIRE
We evaluated FIRE by examining its ability to distinguish cis-eQTL

from non-eQTL SNVs in the Geuvadis dataset and in several other

independent cis-eQTL datasets, including a uniform analysis of

cis-eQTLs from 11 different gene expression studies across seven cell

types (Brown et al., 2013), cis-eQTLs identified in six different

ancestries (Stranger et al., 2012) with equal numbers of sampled indi-

viduals, and cis-eQTLs identified in 44 different tissue types (GTEx

Consortium, 2015). We also compared FIRE to existing tools for scor-

ing genome-wide SNVs based on pathogenicity, deleteriousness, or

other predicted functional effects; in particular, CADD (Kircher et al.,

2014), DANN (Quang et al., 2015), GWAVA (Ritchie et al., 2014),

DeepSEA (Zhou and Troyanskaya, 2015), Eigen and Eigen-PC (Ionita-

Laza et al., 2016), fathmm-MKL (Shihab et al., 2015), FunSeq2

(Fu et al., 2014), deltaSVM (Lee et al., 2015), GenoCanyon (Lu et al.,

2015), PRVCS (Li et al., 2016), cepip (Li et al., 2017) and LINSIGHT

(Huang et al., 2017). Receiver operating characteristic (ROC) curves

and area under the curve (AUC) estimates with confidence intervals

were computed using the pROC package (Robin et al., 2011) in R.

Additional methods details are available in Supplementary Text.

3 Results

3.1 FIRE performance on training set SNVs
We first assessed FIRE’s performance on the training set using the

chromosome exclusion approach (Section 2.3) to compute the FIRE

score for each SNV (Fig. 1A). FIRE discriminated between the posi-

tive and negative training SNVs with an AUC of 0.807 (Fig. 1B,

Supplementary Table S2). For comparison, a standard cross-

validation approach using random exclusion of SNVs from the

training set estimated this AUC as 0.934, illustrating the importance

of a cross-validation strategy such as chromosome exclusion to

avoid bias arising from correlated training and testing SNVs located

close to one another on the same chromosome. Other commonly

used tools for genome-wide interpretation of SNVs were less well

suited to this task of discriminating between expression-associated

and unassociated SNVs (Figs 1B and C, Supplementary Table S2).

Fig. 1. (A) FIRE score distributions for SNVs in the positive and negative train-

ing sets. FIRE scores throughout the manuscript were computed using the

chromosome exclusion approach (Section 2.3). Gray boxes extend from the

first to third quartiles, with a black horizontal line at the median. Means and

quantiles of these distributions are also listed in Supplementary Table S3.

(B) ROC curves for FIRE and six comparator tools with the highest AUCs

(in parentheses) when discriminating between positive and negative SNVs in

the FIRE training set. (C) AUC values for FIRE and all 16 tested comparator

tools, plotted with error bars representing double the 95% confidence inter-

vals. AUCs are also listed in Supplementary Table S2. The expected AUC for

an uninformative null model is 0.5 (solid gray line)
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SNVs in the negative set had a median chromosome exclusion

FIRE score of 0.22 and a mean of 0.28, while the positive set SNVs

had a median FIRE score of 0.63 and a mean of 0.59 (Fig. 1A,

Supplementary Table S3). Higher FIRE scores reflect stronger evi-

dence that a SNV regulates nearby gene expression levels. Score dis-

tributions were similar across most chromosomes (Supplementary

Fig. S1) with several exceptions, including decreased separation of

positive and negative SNVs on chromosome 6 and increased separ-

ation on chromosomes 16 and 17. We evaluated whether FIRE

scores for the positive SNVs varied with the strengths of their gene

expression associations in the Geuvadis EUR analysis and found a

shift towards higher FIRE scores for SNVs with large effect sizes

(Supplementary Fig. S2) and strong statistical significance

(Supplementary Fig. S3). There was no clear dependence on

Geuvadis MAF (Supplementary Figs S4 and S5), although the num-

ber of positive SNVs below 5% MAF in EUR was small due to

reduced power to identify cis-eQTL associations for rare SNVs in

the study population.

Random forest feature importances reflect both the predictive

ability of each feature as well as correlation with other features. The

most important SNV feature in the full FIRE random forest

(Supplementary Fig. S6) was the B statistic, the inferred level of

background selection at each position in the genome (McVicker

et al., 2009), which reflects negative selection against deleterious

variants and depends on local recombination rates, mutation rates

and functional site density (Halligan et al., 2013; McVicker et al.,

2009). Enrichment for high B values has been previously observed

among trait-associated GWAS SNVs (Maher et al., 2012). Other im-

portant features included Segway chromatin element annotations

(Hoffman et al., 2013) and distances to the nearest TSS, transcrip-

tion end site and splice site (Supplementary Fig. S6), consistent with

previous studies noting enrichment of such features among cis-

eQTL SNVs (Battle et al., 2014; Brown et al., 2013; Lappalainen

et al., 2013).

3.2 FIRE performance on an independent cis-eQTL

dataset
We next tested the ability of FIRE to identify cis-eQTL SNVs from

an independent cis-eQTL analysis of data from 11 different gene ex-

pression studies across seven cell types (Brown et al., 2013). That

analysis used a stepwise regression approach to identify the most

strongly associated cis-eQTL SNVs within linkage disequilibrium

(LD) blocks (Supplementary Text S.1). We computed FIRE scores

for these cis-eQTL SNVs identified at FDR<1, 5, or 10% and

found that FIRE could discriminate between them and non-eQTL

SNVs with matched MAF distribution (drawn from the eligible non-

eQTL set described in Section 2.1.2) with AUCs of 0.788, 0.770 and

0.755, respectively (Fig. 2, Supplementary Table S2). Other tools for

genome-wide interpretation of SNVs all had AUC values less than

0.7 (Fig. 2, Supplementary Table S2). As described above, to ensure

that none of these tested SNVs overlapped the FIRE training set, we

used the chromosome exclusion approach in which not only each

test SNV but also all SNVs on the same chromosome as the test

SNV were excluded from the training set used to generate its FIRE

score (Section 2.3).

3.3 FIRE scores for cis-eQTL SNVs in other ancestries
We evaluated the generalizability of FIRE to non-European ances-

tries by comparing FIRE scores for cis-eQTL SNVs identified in

Geuvadis EUR and YRI individuals (Lappalainen et al., 2013). For

this comparison, we considered all SNVs identified as cis-eQTLs in

each ancestry at FDR<5%, rather than the stricter P<10�10

threshold used to train FIRE. We partitioned these SNVs into three

subsets: those identified as cis-eQTLs in both ancestries, those iden-

tified in YRI but not EUR, and those identified in EUR but not YRI.

FIRE score distributions were similar for all subsets, with a small

shift towards higher scores for the YRI-only subset (Supplementary

Fig. S7A, Supplementary Table S3). The smaller size of the YRI sam-

ple (89 YRI vs. 373 EUR individuals) could account for these

higher FIRE scores in the YRI-only subset, since larger effect

sizes are needed to meet statistical significance in smaller samples.

To address this potential confounding factor, we also examined

FIRE scores for cis-eQTL SNVs identified at FDR<5% in LCLs

from six different ancestries (Stranger et al., 2012) with equal sam-

ple sizes of 69 individuals each (Supplementary Text S.1). FIRE

score distributions were similar for all six ancestries, with slightly

higher scores in the CEU ancestry (Supplementary Fig. S8,

Supplementary Table S3).

SNVs associated with gene expression levels in multiple ances-

tries are more likely to be causal expression regulators, rather than
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in LD with causal regulators, because of differing LD structures be-

tween ancestries. We found a consistent shift towards higher FIRE

scores for cis-eQTL SNVs shared across greater numbers of ances-

tries (Fig. 3A, Supplementary Table S3). FIRE discriminates between

cis-eQTL SNVs shared across all six ancestries, which we expect to

be most enriched for causal regulators, and non-eQTL SNVs with

matched MAF distribution with an AUC of 0.939 (Fig. 3B,

Supplementary Table S2).

3.4 FIRE scores for cis-eQTL SNVs in other tissues
Since FIRE was trained on cis-eQTL SNVs identified in LCLs, we

also evaluated its generalizability to other tissues by comparing

FIRE score distributions for cis-eQTL SNVs identified in 44 differ-

ent tissue types in the GTEx Consortium V6p analysis (GTEx

Consortium, 2015). We found similar score distributions for cis-

eQTL SNVs identified at FDR<5% in each tissue (Supplementary

Fig. S9, Supplementary Table S4). We also found enrichment for

higher FIRE scores among cis-eQTL SNVs shared across multiple

GTEx tissues when compared to tissue-specific cis-eQTL SNVs, as

illustrated for example within the set of cis-eQTL SNVs identified in

GTEx skeletal muscle (Fig. 4, Supplementary Table S3). Similar en-

richment was observed when we compared FIRE scores for cis-

eQTL SNVs identified in a separate prostate tissue analysis (Larson

et al., 2015) to the Geuvadis EUR analysis in LCLs (Supplementary

Text S.1). We partitioned the prostate and Geuvadis EUR LCL cis-

eQTL SNVs into three subsets: those identified as cis-eQTLs in both

tissues, those identified in LCLs but not prostate, and those identi-

fied in prostate but not LCLs. FIRE score distributions were similar

for the LCL-only and prostate-only subsets, with a small shift to-

wards higher scores for cis-eQTL SNVs identified in both tissues

(Supplementary Fig. S7B, Supplementary Table S3).

3.5 FIRE scores for clinically relevant cis-eQTL SNVs
Finally, we tested whether SNVs identified as cis-eQTLs at

FDR<5% in the Geuvadis EUR analysis were enriched for higher

FIRE scores if they also overlapped with either the GWAS Catalog

of trait-associated SNVs (MacArthur et al., 2017; Welter et al.,

2014) or the Human Gene Mutation Database (HGMD) of disease-

relevant SNVs (Stenson et al., 2014). We found moderate enrich-

ment for higher FIRE scores among cis-eQTL SNVs in HGMD, but

only minor enrichment among those in the GWAS Catalog (Fig. 5A,

Supplementary Table S3), suggesting that fewer GWAS SNVs than

HGMD SNVs are causal expression regulators. This observation is

consistent with the current consensus that a majority of GWAS risk

SNVs are not causal but are in LD with a causal variant (MacArthur

et al., 2017). We compared the ability of FIRE and existing genome-

wide variant interpretation tools to distinguish these two subsets of

clinically relevant cis-eQTL SNVs from non-eQTL SNVs with

matched MAF distributions. FIRE had the highest performance

(AUC¼0.798) on the GWAS-overlapping cis-eQTL SNVs and the

second highest performance (AUC¼0.880) on the HGMD-

overlapping cis-eQTL SNVs (Fig. 5B, Supplementary Table S2),

Fig. 4. FIRE score distributions for cis-eQTL SNVs identified in skeletal muscle

tissue in the GTEx Consortium V6p analysis and for the subsets of these

SNVs that were identified as cis-eQTLs only in skeletal muscle (tissue-spe-

cific) or shared as cis-eQTLs in other GTEx tissues (grouped by the total num-

ber of tissues, including skeletal muscle). Gray boxes extend from the first to

third quartiles, with a black horizontal line at the median. Means and quan-

tiles of these distributions are also listed in Supplementary Table S3. All FIRE

scores were computed using chromosome exclusion (Section 2.3)

Fig. 3. (A) FIRE score distributions for cis-eQTL SNVs shared in at least one,

two, three, four, five, or all six ancestries in an analysis of equal numbers of

CEU, CHB, GIH, JPT, LWK and YRI individuals (Stranger et al., 2012), com-

pared to SNVs in the negative training set. Gray boxes extend from the first

to third quartiles, with a black horizontal line at the median. Means and quan-

tiles of these distributions are also listed in Supplementary Table S3. (B)

Performance of FIRE and 16 comparator tools when discriminating between

the cis-eQTL SNVs shared in all six ancestries and MAF-matched non-eQTL

SNVs. AUC values are plotted with error bars representing 95% confidence

intervals and are also listed in Supplementary Table S2. All FIRE scores were

computed using chromosome exclusion (Section 2.3) to eliminate overlap be-

tween training and test SNVs
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although the AUC of the top performer, GWAVA unmatched, might

be overestimated on this dataset because GWAVA was trained on

SNVs from HGMD.

4 Discussion

FIRE is a genome-wide variant annotation tool that assigns higher

scores to SNVs that are more likely to alter the expression levels

of nearby genes. Since FIRE is specific to gene expression regula-

tion, FIRE scores do not directly correspond to pathogenicity or

deleteriousness. In addition, FIRE is specific to expression regulation

at the mRNA level and does not apply to SNVs that alter protein ex-

pression independently of mRNA expression. We have shown that

FIRE significantly outperforms existing genome-wide variant annota-

tion tools in the task of discriminating cis-eQTL SNVs from non-

eQTL SNVs across multiple independent cis-eQTL datasets. Our re-

sults also demonstrate the importance of computing genome-wide

scores for FIRE and other similar tools using an approach such as

chromosome exclusion that avoids biased scores from nearby corre-

lated SNVs in the training set.

Of the comparator tools that we tested, the best performers for

identifying cis-eQTL SNVs included LINSIGHT (Huang et al.,

2017), GWAVA (Ritchie et al., 2014), cepip (Li et al., 2017),

PRVCS (Li et al., 2016) and FunSeq2 (Fu et al., 2014). Many of the

comparator tools were designed for other purposes, such as predicting

pathogenic or deleterious SNVs, and have advantages over FIRE for

such applications. Tools such as cepip can also predict tissue-specific

regulatory potentials of SNVs, which is of interest for many biological

applications. We did not test tools that infer the most likely causal

regulatory SNV within sets of candidate cis-eQTL SNVs near individ-

ual genes but that do not provide genome-wide scores (Battle et al.,

2014; Gaffney et al., 2012; Hormozdiari et al., 2016).

We found that the performance of FIRE was robust across differ-

ent ancestries and tissues. Although FIRE was trained on cis-eQTL

SNVs identified in LCLs from individuals of European descent, it

was effective at scoring cis-eQTL SNVs identified in six tested ances-

tries and 44 tested tissue types, indicating an absence of substantial

ancestry or tissue specificity in the features of regulatory SNVs

among those in our feature set. One reason that FIRE may perform

well in diverse tissue types is that we removed cis-eQTL SNVs iden-

tified in these other tissue types from the negative training set to re-

duce the number of false negatives. Future studies will explore the

development of tissue-specific FIRE scores by incorporating tissue-

specific genomic annotations and training data.

The approach used here to develop FIRE has limitations due to

its dependence on association testing for constructing the training

sets. Specificity suffers when non-causal SNVs are associated with

gene expression due to LD with the underlying causal variant, and

sensitivity suffers when causal SNVs are not significantly associated

with expression due to low MAF, low effect size, or tissue specifi-

city. Therefore, we expect some overlap between FIRE score distri-

butions for SNVs in the positive and negative training sets.

Nevertheless, enrichment of causal eQTLs within the positive set en-

ables the FIRE random forest to identify genomic features that are

most predictive of these regulatory SNVs.

Importantly, FIRE scores for subsets of cis-eQTL SNVs that are

more likely to be causal expression regulators were higher than for

other cis-eQTL SNVs. SNVs associated with gene expression in six

different ancestries with different LD structures had much higher

FIRE scores than SNVs associated in one ancestry. FIRE scores for

cis-eQTL SNVs in HGMD, which requires evidence of involvement

in disease or functional effects, were also higher than for other cis-

eQTL SNVs. FIRE outperformed existing variant interpretation

tools when discriminating non-eQTL SNVs from clinically relevant

subsets of cis-eQTL SNVs overlapping either HGMD or the GWAS

Catalog in almost all cases. However, the fact that many existing

tools had higher performance on these clinically relevant subsets

than they did on cis-eQTL SNVs as a whole suggests that these cis-

eQTL subsets contain SNVs that are clinically relevant for other rea-

sons, not recognized by FIRE, in addition to SNVs that are causal

expression regulators.

Fig. 5. (A) FIRE score distributions for cis-eQTL SNVs identified at FDR<5% in the Geuvadis EUR analysis and for subsets of these SNVs overlapping either the

GWAS Catalog or HGMD. Gray boxes extend from the first to third quartiles, with a black horizontal line at the median. Means and quantiles of these distributions

are also listed in Supplementary Table S3. (B) Performance of FIRE and 16 comparator tools when discriminating between these Geuvadis cis-eQTL SNVs over-

lapping the GWAS Catalog (top panel) or HGMD (bottom panel) and MAF-matched non-eQTL SNVs. AUC values are plotted with error bars representing 95%

confidence intervals and are also listed in Supplementary Table S2. All FIRE scores were computed using chromosome exclusion (Section 2.3) to eliminate over-

lap between training and test SNVs
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In future studies, FIRE scores can be combined with tools tail-

ored to other functional effects to obtain a more complete prediction

of the significance of any observed SNV and to develop a mechanis-

tic hypothesis about its biological function or role in disease. FIRE

scores can be used to prioritize genome-wide SNVs of unknown sig-

nificance for follow up studies or to weight them in statistical associ-

ation tests combining many SNVs. Pre-computed genome-wide

FIRE scores for all possible alternative SNV alleles at every position

in hg19/GRCh37 can be downloaded from https://sites.google.com/

site/fireregulatoryvariation/.
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