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Summary—We analyze the transcriptome of baseline and on-therapy tumor biopsies from 101 

patients with advanced melanoma treated with nivolumab (anti-PD-1) alone or combined with 

ipilimumab (anti-CTLA-4). We find that T cell infiltration and interferon-γ (IFNγ) signaling 

signatures correspond most highly with clinical response to therapy, with a reciprocal decrease in 

cell cycle and WNT signaling pathways in responding biopsies. We model the interaction in 58 

human cell lines, where IFNγ in vitro exposure leads to a conserved transcriptome response unless 

cells have IFNγ receptor alterations. This conserved IFNγ transcriptome response in melanoma 

cells serves to amplify the antitumor immune response. Therefore, the magnitude of the antitumor 

T cell response and the corresponding downstream IFNγ signaling are the main drivers of clinical 

response or resistance to immune checkpoint blockade therapy.

eTOC Blurb—Analyzing the transcriptome of biopsies of patients during immune checkpoint 

blockade therapy, Grasso et al. show that the increase of T cell infiltration and the downstream 

IFNγ signaling drive clinical responses.

Graphical Abstract

Introduction

Immune checkpoint blockade (ICB) therapy with antibodies targeting the cytotoxic T-

lymphocyte–associated protein 4 (CTLA-4) or the programmed cell death-1 receptor (PD-1) 

blocks two main negative regulators of antitumor immune responses (Curran et al., 2010; 

Sharma and Allison, 2015a; Wei et al., 2017) and induces durable responses in a subset of 
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patients with melanoma and other cancers (Ribas and Wolchok, 2018; Sharma and Allison, 

2015b). Pathological studies performed in tumor biopsies from treated patients support that 

clinical responses induced by the use of ICB are mediated by tumor-infiltrating T cells that 

have been re-activated by inhibiting these immune checkpoints (Sharma et al., 2019; Tumeh 

et al., 2014). Transcriptomic and genomic sequencing of baseline and on-therapy biopsies 

from patients treated with ICB allow for a comprehensive analysis of mechanisms 

underlying tumor response and resistance. As the mechanism of action is based on the 

interaction between immune effector cells with their cancer cell targets, these studies have to 

focus not only on the genetic alterations and gene expression profiles of cancer cells (Hugo 

et al., 2016; Liu et al., 2019; Riaz et al., 2017; Rodig et al., 2018), but they also need to 

analyze the composition of the immune infiltrate and its expression of immune activating 

gene programs (Auslander et al., 2018; Ayers et al., 2017; Cabrita et al., 2020; Chen et al., 

2016; Cristescu et al., 2018; Fehrenbacher et al., 2016; Gide et al., 2019; Helmink et al., 

2020; Jerby-Arnon et al., 2018; Jiang et al., 2018; Liu et al., 2019; Petitprez et al., 2020; 

Rodig et al., 2018; Roh et al., 2017; Sade-Feldman et al., 2018). A major focus has been on 

the study of biopsies from patients with advanced melanoma treated with anti-PD-1 

antibodies administered alone, in sequence or in combination with anti-CTLA-4 antibodies. 

A study combining immunohistochemistry analyses with RNAseq in biopsies from patients 

treated sequentially with the anti-CTLA-4 antibody ipilimumab before or after the anti-PD-1 

antibody nivolumab concluded that primary response to anti-CTLA-4 required high levels of 

major histocompatibility complex (MHC) class I expression by cancer cells at baseline, 

while response to anti-PD-1 was more associated with a preexisting interferon-gamma 

transcriptome signature (Rodig et al., 2018). Another study combining 

immunohistochemistry analyses with RNAseq in tumor biopsies from patients treated with 

anti-PD-1 monotherapy or combined with anti-CTLA-4 confirmed the association of 

response to PD-1 blockade therapy with baseline evidence of activated T cells using 

morphological and transcriptome signatures, in particular of an effector memory T cell 

phenotype (Gide et al., 2019). A third study with a large cohort of baseline biopsies from 

patients treated with anti-PD-1 therapy, with or without prior anti-CTLA-4 therapy, revealed 

that response to PD-1 blockade was associated with increased MHC class I and II expression 

(Liu et al., 2019). In this study, whole exome sequencing revealed occasional genetic 

alterations in antigen presentation machinery genes in biopsies of patients who did not 

respond to therapy (Liu et al., 2019).

CheckMate 038 is a prospective, multicenter, international, multi-cohort clinical trial 

designed to collect tumor biopsies from patients with metastatic melanoma treated with the 

anti-PD-1 antibody nivolumab as front-line therapy or after progressing on therapy with the 

anti-CTLA-4 antibody ipilimumab, or receiving the combination of both antibodies. 

Biopsies of 68 patients receiving nivolumab monotherapy in part 1 of this study have been 

previously reported (Riaz et al., 2017). These samples were analyzed by whole-exome, 

transcriptome, and TCR sequencing. Data revealed increases in distinct immune cell subsets 

and upregulation of immune activation gene programs that was more pronounced in patients 

with a clinical response to therapy (Riaz et al., 2017). In the current study, we provide 

information on the transcriptome analysis of tumor biopsies from the complete set of 101 

patients treated with single agent nivolumab or with the combination of nivolumab and 
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ipilimumab, which is correlated with the in vitro analysis of how a panel of melanoma cell 

lines change gene expression upon exposure to interferon-gamma.

Results

Patient characteristics and response to ICB therapy

We analyzed tumor biopsies obtained from patients treated with nivolumab or nivolumab 

plus ipilimumab within the CheckMate 038 study (NCT01621490), which required baseline 

and on-therapy biopsies from all patients. The clinical trial had several parts (Figure S1). 

Part 1 included two cohorts that received nivolumab monotherapy: patients whose 

melanomas had previously progressed on anti-CTLA-4 monotherapy, and those who were 

naïve to prior anti-CTLA-4. In Part 2, patients who were anti-CTLA-4-naïve received 

combination therapy with nivolumab and ipilimumab. Part 3 was also restricted to patients 

who were anti-CTLA-4-naïve, and randomized patients 1:2 to receive either nivolumab 

monotherapy or combination therapy with ipilimumab. Part 4 was similar to Part 3 in being 

restricted to patients naïve to anti-CTLA-4, but included patients with active brain 

metastases that received either nivolumab monotherapy or combination therapy with 

ipilimumab. Results of analysis of biopsies of patients from Part 1 have been reported 

previously by Riaz et al. (Riaz et al., 2017), while analyses from Parts 2–4 have not been 

previously reported. Biopsies were planned at baseline and during treatment (week 4 for Part 

1, and week 2 or 4 for Parts 2–4) and were processed centrally to obtain RNA for 

sequencing analyses.

Among the 170 patients enrolled in the clinical trial (Figure 1A), 106 patients received 

nivolumab alone and 62 received nivolumab and ipilimumab combined therapy. RNA was 

isolated from 101 baseline and 99 on-therapy biopsies (Figure 1A). Several biopsies were 

not included in this analysis for different reasons, including specimens not meeting quality 

standards, patients who received a treatment that was not assigned, not having adequate 

tumor response assessment, and a diagnosis of primary choroidal melanoma (8 patients) due 

to the distinct biology of this uncommon melanoma subtype (Figure 1A). At the end, there 

were 84 baseline and 85 on-therapy biopsies (68 of which were paired), that contributed to 

transcriptome analyses for RNAseq (Figure 1A). Table 1 shows the clinical characteristics of 

the analysis cohort, including 101 total patients: median age was 56 years (range 22–89). 

The majority (71%) of patients had cutaneous melanoma, with 11% mucosal and 4% acral 

melanoma. The majority of patients had stage IV disease (93%), and the adverse prognosis 

factor of elevated lactate dehydrogenase (LDH) was present in 28% of patients.

CheckMate 038 was not designed to assess comparisons between study groups as these were 

mostly non-randomized cohorts (Figure S1). Therefore, the account of tumor responses and 

time-to-event outcomes is descriptive and used for the interpretation of the tumor biopsy 

analyses. Overall, there were more patients with an objective response (complete response or 

partial response, CRPR) in the group receiving the combination of nivolumab and 

ipilimumab than among patients treated with nivolumab monotherapy, whether or not naïve 

to anti-CTLA-4 therapy (Figure 1B). Analyses of overall survival (OS) and progression-free 

survival (PFS) suggested that survival outcomes were similar among patients receiving 

nivolumab monotherapy, whether or not they had received prior anti-CTLA-4; OS and PFS 
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among patients receiving combination nivolumab plus ipilimumab therapy appeared to 

exceed nivolumab monotherapy outcomes (Figure S2A). When analyzing OS and PFS 

according to tumor response assessment, patients with CRPR unsurprisingly had prolonged 

survival compared to those with stable disease (SD) or progressive disease (PD) (Figure 

S2B). Based on these observations, for the RNAseq analyses we compared patients receiving 

combination therapy to those receiving nivolumab monotherapy (merging the groups that 

had or had not previously received ipilimumab), and clinical response was defined as CRPR 

compared to SD or PD.

The dominant signal associated with response or resistance to ICB therapy in patient 
biopsies is mediated by T cells

Consistently, it has been shown that high levels of CD8 T cell infiltration of tumors at 

baseline and on-treatment are predictive of clinical response to ICB in patients with 

advanced melanoma (Chen et al., 2016; Gide et al., 2019; Tumeh et al., 2014). We used the 

method denominated microenvironment cell populations-counter (MCP-counter) (Becht et 

al., 2016) for RNAseq data deconvolution to define immune cell types. We applied an 

optimal pooled t-test, since only a subset of the samples were paired. Using these 

approaches, we documented that biopsies of patients with a response to therapy had higher 

baseline levels of T cells than those with PD (Figure 2A). They also had significantly higher 

baseline levels of B lineage cells, myeloid dendritic cells, and NK cells (Figure 2A). The 

change from baseline to on-therapy was greater in biopsies of patients with a response to 

therapy, and there were increases in T cell infiltrates in biopsies of patients whether or not 

they had an objective clinical response to therapy, and regardless of receiving combination 

therapy or nivolumab alone (Figure 2A and 2B).

With the goal to define the main drivers explaining the overall biopsy data, we then analyzed 

the whole transcriptome RNAseq dataset using principal component analysis. Analysis of 

the first two principal components showed that the signature for T cell score derived from 

MCP-counter RNAseq data deconvolution was the main factor organizing the data, and it 

segregated with response to therapy (with the exception of 19 outlier samples, 12 of which 

were matched from the same patients with baseline and on-therapy biopsies, Figure 2C). Of 

note, in prior work we had previously validated the MCP-counter T cell score with 

pathological analysis of immune infiltrates in corresponding patient biopsies (Grasso et al., 

2018). In the Chekcmate-038 biopsy dataset, the best organization of the samples was 

according to the degree of T cell infiltration regardless whether this was observed in baseline 

or on-therapy biopsies, with or without prior treatment with ipilimumab, single or 

combination ICB therapy, as well as clinical response or no response to therapy, with the 

paired CRPR samples showing the most consistent alignment along the T cell score vector 

(Figure 2C and D). Figure S3 shows the degree to which the T cell score dominates the data, 

with the large number of genes correlated (n = 2,047) and anticorrelated (n = 1,087) with 

this score based on a Pearson correlation cut-off of ± 0.3. This supplemental figure also 

includes information about the effect of the melanoma subtype (cutaneous, mucosal or acral) 

on the tumor transcriptome. The coordinated alignment of the correlated and anti-correlated 

genes on treatment is reflected in the significant up-regulation of the correlated genes and 

the significant down-regulation from baseline to on-treatment in CRPR biopsies (optimal 
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pooled t-test p value < 1e-4 and p value < 1e-4, respectively, Figure 2C). The correlated 

genes accounted not only for systematic changes in the tumor cell gene expression, but also 

in the tumor microenvironment. Except for neutrophils, the MCP-counter immune cell 

signatures were highly correlated with the T cell signature (R^2 ≥ 0.6, Figure S4A and S4B). 

Use of t-SNE embedding to cluster genes with their closest MCP-Counter immune cell 

signature resulted in only two main clusters: genes that correlated with the T cell score and 

genes that were anti-correlated (Figure S4C). These data indicate a truly coordinated 

immune response, including large numbers of genes, which was dominated by changes in T 

cells. We acknowledge that this conclusion is limited by being derived from bulk RNAseq 

analyses as opposed to single cell RNAseq. Based on these analyses, we conclude that ICB 

therapy has the potential to increase T cell infiltrates regardless of whether there are clinical 

responses to therapy, and that a greater degree of T cell infiltrate increases from baseline to 

on-therapy biopsies is associated with improved response to therapy.

Interferon-gamma response genes play an integral role in response and resistance to 
therapy as mediators of the T cell program

We examined the expression of effector cytokines and toxic granules induced by TCR 

engagement with cognate antigen, including the cytotoxic molecules perforin and granzyme 

B, TNF-alpha family members FAS, TRAIL (TNFSF10) and TNF-alpha, and interferon-

gamma, applying an optimal pooled t-test. The expression of perforin, granzyme B, TRAIL 

and TNF-alpha followed the pattern of expression of interferon-gamma, and was higher in 

biopsies of patients with a clinical response to therapy (Figure S5). As exposure to most of 

these molecules results in cytotoxic death of cancer cells, we reasoned that the cancer cell 

expression of interferon-response genes may be relevant to attracting other immune cells 

into the tumor microenvironment and amplifying the antitumor immune response once it is 

initiated.

Melanoma cells have a uniform gene set response to interferon-gamma provided that they 
can signal through the interferon-gamma receptor

With the goal of addressing the question if differential responses to ICB may be due to a 

different inherent ability of melanoma cells from different patients to respond to interferon-

gamma, we set out to examine the transcriptome changes in a panel of ex vivo cultured 

melanoma cells exposed to interferon-gamma. For this study, we used 57 previously 

established and described cell lines from cultures of human melanoma biopsies or surgical 

resections (Atefi et al., 2014; Neubert et al., 2017; Shin et al., 2017; Tsoi et al., 2018) and 

the primary melanocyte line, HeMa, as a non-malignant pigmented cell control. This cell 

line panel included three variants of corresponding parental melanoma cell lines that had 

been rendered resistant to BRAF inhibitors by continuous in vitro drug exposure, denoted as 

AR for acquired resistance (Atefi et al., 2014; Nazarian et al., 2010; Tsoi et al., 2018); three 

cell lines that had developed Janus kinase 1 (JAK1) or JAK2 loss of function mutations in 

patients; as well as variants of parental cell lines that had JAK1 (N=5), JAK2 (N=5) or 

beta-2 microglobulin (B2M) (N=2) loss of function generated in vitro through CRISPR/Cas9 

gene editing, as these are genetic events known to be associated with resistance to anti-PD-1 

therapy (Garcia-Diaz et al., 2017; Gettinger et al., 2017; Sade-Feldman et al., 2017; Shin et 

al., 2017; Sucker et al., 2017; Torrejon et al., 2020; Zaretsky et al., 2016). These cell lines 
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were exposed to 5 ng/ml of interferon-gamma for 6 hours to assess immediate whole 

transcriptome changes by RNAseq analysis.

We found that a cell line’s gene expression profile was most correlated with itself at baseline 

and upon exposure to interferon-gamma, indicating that cell line identity is a major 

contributor to gene expression (Figure S6). In addition, we observed that the baseline 

samples were not correlated with each other, nor were the interferon-gamma exposed 

samples correlated with each other (Figure S6). However, for the 46 cell lines that responded 

to interferon-gamma, the changes between on-treatment and baseline for interferon-gamma 

were highly correlated as a result of consistent large changes in interferon-gamma response 

genes (Figure S7). Figure S8A shows the high-level of concordance among expression 

changes of known interferon-gamma response genes, making it possible to identify outlier 

gene expression changes, such as the two samples whose JAK2 expression decreased 

significantly compared to the rest of the samples. Analysis of all increased and decreased 

gene expression showed that there were two broad groups of cell lines: the great majority (n 

= 46) that could signal through the interferon-gamma receptor and had large changes in the 

expression of the same set of interferon-gamma response genes; and a distinct set of 12 cell 

lines that had JAK1 or JAK2 natural or induced loss of function mutations and were largely 

unable to signal through the interferon-gamma receptor (Figure 3 and Figure S8B). Of note, 

there were no major differences in gene expression profiles induced by interferon-gamma 

exposure in cell lines with acquired resistance to BRAF inhibitors or in B2M knockout cell 

lines. Therefore, this large panel of melanoma cell lines, each of which had a unique gene 

expression signature, responded consistently to interferon-gamma exposure.

To identify a set of genes up- and down-regulated in response to interferon-gamma in typical 

melanoma cell lines, we used all the samples that were not experimentally modified 

(excluding cases with JAK1, JAK2, and B2M loss generated by CRISPR-CAS9, as well as 

the AR samples but including naturally occurring JAK and B2M loss cases). We performed a 

paired t-test between cell lines before and after treatment with interferon gamma and 

observed a significant decrease in the expression of 1,176 genes and increase in the 

expression of 549 genes after applying an FDR cut-off of 0.01. These changes clustered with 

the changes in the primary melanocyte line HeMa, included as a normal control, indicating 

that normal interferon-gamma signaling was intact in all of these cases (Figure S8B). This 

transcriptome signature includes previously reported interferon-gamma response genes, 

melanoma-specific responses, as well as a deeper look into the genes whose expression 

decreases in response to interferon-gamma (Figure S9).

Interferon-gamma triggers melanoma cells to increase expression of interferon pathway 
genes, antigen presenting machinery and T cell attracting chemokines

We next focused the analysis on changes in known genes that are related to interferon-

gamma exposure, including interference with cell proliferation (the first functional effect 

that led to the description of interferons), upregulation of antigen presentation machinery, 

enhancement of immune cell-attracting chemokines, as well as genes involved in positive 

and negative downstream interferon signaling pathways (Bach et al., 1997). Figure 3A 

shows the response as fold changes, while Figure S10 shows it in terms of baseline and on-
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treatment gene expression. The overall change in transcripts involved in cell proliferation 

was low after 6 hours of in vitro interferon-gamma exposure (Figure 3A). There was 

evidence of increased expression of multiple HLA class I and II genes, with the most 

consistent increase being in HLA-E. The two major clusters in the data were defined by 

whether or not HLA class II genes are expressed at baseline or not. There was a very strong 

and consistent increase in the expression of additional genes in the antigen presentation 

pathway, in particular NLRC5 (also known as HLA class I transactivator) and CIITA (HLA 

class II transactivator), TAP transporters and proteasome subunits. Another set of genes with 

large increases were those involved in the interferon signaling pathway itself, representing 

an amplification of the interferon-gamma signal, including JAK2 (but not JAK1), several 

signal transductors and activators of transcription (STATs) and interferon response factors 

(IRFs), in particular the transcription factor IRF1 which serves as a well-defined positive 

control gene of interferon-gamma response (Garcia-Diaz et al., 2017), going up in all the 

samples with JAKs intact (Figure 3B). With this gene group, there was also an increase in 

negative regulators of the pathway including SOCS genes, as well as PD-L1 (CD274), which 

are also well characterized interferon-gamma immediate response genes (Garcia-Diaz et al., 

2017; Shin et al., 2017) (Figure 3C). Chemokines, in particular CXCL9, CXCL10 and 

CXCL11, were increased more consistently than immune effector molecules and 

physiologically serve to attract more T cells in response to interferon-gamma exposure. 

These increases in gene expression were very inconsistent or non-existent in the 12 cell lines 

that had JAK1 or JAK2 natural or induced loss-of-function mutations. Overall, melanoma 

cell lines have a near uniform transcriptome response to interferon-gamma exposure, with 

increases in transcripts for antigen presentation, interferon pathway and chemokine genes, 

that is lost if there are loss-of-function mutations in interferon-gamma receptor pathway 

signaling at the level of JAK1 or JAK2.

Analysis of interferon-gamma response genes in patient biopsies reveals increased HLA 
expression as the major difference between response and lack of response to ICB therapy

We analyzed the Checkmate-038 patient biopsies for interferon-gamma response genes 

before and during ICB therapy. For this analysis, we acknowledge that cells other than 

melanoma cells may be responsible for the expression of interferon-gamma response genes 

when analyzing bulk RNAseq from biopsies as opposed to the experiment using human cell 

lines or single cell RNAseq from fresh tumor biopsies. Biopsies of patients with PD and SD 

included samples with and without expression of interferon response genes at baseline 

(Figure 4). There was evidence of an increase in the frequency and intensity of gene 

expression in on-therapy biopsies, in particular for chemokines and immune effector 

molecules (Figure 4). Biopsies of patients with CRPR had higher baseline expression of 

interferon response genes, which increased substantially in the on-therapy biopsies (Figure 

4). The largest difference between the PD and SD groups compared to the CRPR group was 

in the marked increase in antigen presentation pathway genes, in particular in HLA class I 

and class II genes, B2M, TAP1, TAP2, NLRC5 and CIITA. After normalizing the data by 

leukocyte common antigen (LCA, CD45 gene) expression to account for changes in immune 

cell infiltrates, the HLA class I gene expression did not increase. This does not mean that it 

did not increase in the tumor, but rather that the predicted increase in HLA class I expression 

due to interferon-gamma signaling was not large enough to be detected against the 
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background of other changes in the tumor microenvironment (Figures S11 and S12). 

Therefore, the main difference between interferon-gamma genes in biopsies of patients with 

response and resistance to ICB was an increase in antigen presentation genes in biopsies 

obtained during therapy, a conclusion that can be confounded by being derived from bulk 

RNAseq analyses.

CRPR cases were associated with consistent changes in hallmark pathways, while PD 
cases involve different pathways for each sample

We found a large set of genes that were significantly different between on-treatment CRPR 

and on-treatment PD, likely driven in part by the large number of consistent changes in the 

on-treatment CRPR relative to the pre-treatment CRPR (1,935 up and 3,503 down after 

applying an optimal pooled t-test with an FDR cut-off of 0.05, Figure S13). The SD and PD 

samples did not change consistently from pre-treatment to on-treatment, except for four 

genes, ADI1, ARHGEF9, POU6F2, RGPD4, which were significantly different on-treatment 

relative to pre-treatment SD cases (after applying an optimal pooled t-test with an FDR cut-

off of 0.05). Only one gene in baseline samples was associated with response, as expression 

of GPR31 was significantly different between biopsies of patients with CRPR or PD (p = 

8.4e-7, after applying an optimal pooled t-test with an FDR cut-off of 0.05).

To understand the major pathways driving response or lack of response, we applied Gene Set 

Enrichment Analysis (GSEA) using the Hallmark Gene Signatures to identify enrichment of 

gene sets changing on-treatment in CRPR (Figure 5A). We identified a set of gene signatures 

that were also present when we applied GSEA to genes significantly altered in cell lines 

after interferon-gamma treatment (Figure 5B). When analyzed individually for the two top-

scoring pathways according to response to therapy, most biopsies with CRPR had increases 

in interferon-gamma genes and decreases in G2M checkpoint genes, while biopsies from 

patients with PD had increases or decreases of these gene sets with no apparent 

directionality (Figure S14). This implies that interferon-gamma response, presumably 

resulting from higher tumor antigen-specific T cell infiltration, is the major driver of clinical 

response in the CRPR samples. Despite the caveat of the mixed cell content of the tumor 

microenvironment contributing to the bulk RNAseq transcriptome analysis, the CRPR and 

SD cases had high increases in interferon-gamma response gene sets that were consistent 

with the interferon-gamma 6 hour in vitro human cell line data, while there were PD cases 

for which all the interferon-gamma genes were downregulated (Supplemental Figures 14 and 

15). Similarly, for the HALLMARK_G2M_CHECKPOINT gene set, most of the CRPR and 

SD cases were decreased, consistent with the interferon-gamma 6-hour in vitro exposure 

data (Figure S14 and S15). However, there were biopsies from multiple patients with PD and 

one with SD for which all the cell cycle genes increased. Other individual Hallmark Gene 

Sets similarly revealed fold changes consistent with interferon-gamma treatment for CRPR 

cases, while changes for the PD cases were the opposite of what would be expected based on 

interferon-gamma biology. This is true both for additional immune gene sets (Figures S16 

and S17) and for additional cell cycle gene sets for E2F targets and mitotic spindle (Figure 

S18). The main observation was that the gene expression profile of biopsies from patients 

with clinical response is well-defined and consistent with exposure to interferon-gamma, 

while there was a large diversity of gene expression changes in SD and PD cases.
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Changes in WNT, MYC and T cell exclusion programs as tumor-intrinsic responses to 
interferon-gamma

Several publications have recently shown that high WNT signaling contributes to immune 

exclusion (Grasso et al., 2018; Luke et al., 2019; Nsengimana et al., 2018; Spranger et al., 

2015; Spranger and Gajewski, 2018). We used a 9-gene RNAseq based WNT score to assess 

the level of WNT signaling in each biopsy (Nsengimana et al., 2018). The WNT score is the 

geometric average of APC, APC2, CTNNB1, MYC, SOX11, SOX2, TCF12, TCF7, 

VEGFA. Analysis of WNT gene score revealed that biopsies of patients with CRPR 

exhibited a consistent significant decrease in WNT score in the on-therapy biopsies, while 

there was no change in the score in biopsies of patients with SD or PD (after applying an 

optimal pooled t-test) (Figure 6A). To explore if this effect was correlated with the degree of 

change in T cell infiltration, we plotted the WNT score with T cell infiltration by RNAseq 

deconvolution with baseline and on-therapy biopsies tracked with arrows. Again, we 

acknowledge that this analysis is limited by the bulk RNAseq that includes cellular changes 

in the tumor microenvironment in responding biopsies, which may make it harder to 

interpret the results. Despite this caveat, we noted that biopsies of patients with PD or SD 

had a rather random distribution in this WNT/T cell space, while the majority of biopsies 

from patients with CRPR had a trend of going from a high WNT/low T cell to a low WNT/

high T cell when comparing the baseline and on-therapy biopsies (Figure 6B). A key 

advantage of the data derived from the cell lines before and after exposure to interferon-

gamma in vitro was that the results were not confounded by tumor purity. We observed the 

same significant downward trend in the WNT gene score (p value < 7.8e-06 after applying a 

paired t-test) in the interferon-gamma responsive melanoma cell lines (Figure 6C), as six of 

the genes comprising the 9-gene WNT score were significantly decreased in response to 

interferon-gamma exposure. MYC, a WNT target gene used to monitor changes in WNT 
signaling, was similarly down-regulated in response to interferon-gamma exposure across 

most samples (Figure 6D and Figure S19). Upstream WNT signaling genes also changed 

consistently in response to interferon-gamma exposure, including DKK1 and the frizzled 
gene family (Figure S20A). In fact, up-regulation of FZD5 was one of the highest increases 

across all samples (Figure S20B).

Expression of genes that drive immune exclusion are selectively decreased in biopsies 
during response to therapy

Recently, Jerby-Arnon et al. (Jerby-Arnon et al., 2018) developed an immune exclusion 

signature by single cell RNA sequencing of melanoma cells from biopsies with low levels of 

immune infiltration. This work identified a set of transcripts originating from tumor cells 

that were positively or negatively associated with immune exclusion by that tumor. Figure 

S21 shows a heatmap of these two sets of genes for the Checkmate-038 dataset. CRPR cases 

showed a significant decrease in the immune excluded-high genes (p value < 1.4e-4, after 

applying an optimal pooled t-test, Figure 6F and 6G). These genes did not change 

significantly in response to interferon-gamma in our in vitro testing in melanoma cell lines 

(the immune excluded-down genes do go up significantly, p value < 0.006, after applying a 

paired t-test). We similarly observed significant down-regulation in CDK4 restricted to 

CRPR cases (after applying an optimal pooled t-test, Figure 6H), which was reported as the 

driver of the immune exclusion signature (Jerby-Arnon et al., 2018). Based on our 

Grasso et al. Page 10

Cancer Cell. Author manuscript; available in PMC 2021 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



melanoma cell line cohort, interferon-gamma does not appear to significantly alter CDK4 
expression. On the other hand, MYC genes followed the same pattern (after applying an 

optimal pooled t-test, Figure 6I), consistent with the WNT gene score (Figure 6A), while 

also going down significantly in response to interferon-gamma. We previously reported, 

using a separate set of biopsies, that PAK4 was over-expressed in biopsies of patients with 

low T cell infiltration and lack of response to PD-1 blockade therapy, and that in 

experimental mouse models the T cell exclusion and anti-PD-1 resistance could be reversed 

by PAK4 inhibition (Abril-Rodríguez et al., 2020). In the Checkmate 038 biopsy dataset, 

PAK4 expression did not differ significantly between baseline and on-treatment for patients 

with PD or SD, but expression was significantly (p value < 2.7e-4) downregulated in on-

treatment biopsies of patients with CRPR (after applying an optimal pooled t-test, Figure 

6J). This change was not explained by interferon-gamma signaling, since in our melanoma 

cell line cohort, PAK4 did not change significantly in response to interferon-gamma. 

Interestingly, all of these biomarkers of immune exclusion were highly correlated, except for 

the T cell exclusion-up signature, which, as expected, was anti-correlated (Pearson 

correlation, Figure 6K). Together, these data indicate that ICB therapy results in decreased 

expression of immune exclusion gene programs in biopsies of patients who experience 

clinical response to therapy. While interferon-gamma from T cells directly decreases WNT 
signaling and MYC, decreases in the Jerby-Arnon immune exclusion down signature, CDK4 
or PAK4 expression are likely downstream effects in clinically responding tumors.

Discussion

Results from the current study provide a possible scenario by which response to ICB 

therapy, either PD-1 blockade alone or in combination with CTLA-4 blockade, can be 

explained by the development of a strong T cell response that can overcome immune cell-

intrinsic, tumor-intrinsic and tumor microenvironment limitations to a clinically-effective 

antitumor immune response (Kalbasi and Ribas, 2020). Key contributing factors are: i) the 

pre-existing level of T cell infiltration of the tumor (Herbst et al., 2014; Taube et al., 2014; 

Tumeh et al., 2014), which reflects both the immunogenicity of the cancer cells and the 

ability of the host immune system to have made a serious attempt to attack them specifically; 

ii) the baseline expression of immune suppressive gene programs by cancer cells that are 

detrimental to the initiation of an antitumor immune response, such as WNT signaling 

(Grasso et al., 2018; Spranger et al., 2015; Spranger and Gajewski, 2018); and iii) the 

strength of the antitumor immune response that results from the release of the immune 

checkpoint PD-1, alone or together with the checkpoint CTLA-4, driving the expression of 

interferon-gamma response genes in the tumor microenvironment (Ayers et al., 2017; 

Cristescu et al., 2018). The release of interferon-gamma from T cells recognizing cognate 

antigen on cancer cells serves to amplify the nascent antitumor immune response, which our 

and prior data (Neubert et al., 2017) suggest is mediated by the conserved ability of the great 

majority of melanoma cells to signal through the interferon-gamma receptor. Amplification 

of the immune response is a result of an increase in antigen-presentation machinery, positive 

feed-back resulting in increased interferon-gamma pathway signaling, production of 

chemokines that attract other immune cells favorably altering the tumor microenvironment 

and inhibition of immune exclusion cancer signatures.
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The strength of the antitumor immune response is dependent on the interplay of these key 

contributing factors, which could be individually modulated with additional interventions as 

there does not seem to be a dominant process that would always inhibit mounting the 

antitumor response in the majority of cases without clinical response to ICB therapy. In 

preclinical modeling (Curran et al., 2010; Wei et al., 2019; Wei et al., 2017) and in clinical 

series (Larkin et al., 2019), the combination of anti-PD-1 and anti-CTLA-4 is arguably a 

stronger immune stimulation than either therapy alone, thereby shifting the balance in favor 

of an antitumor immune response in a greater number of cases. Another way to shift this 

balance would be to induce a physiological process of intratumoral interferon production by 

triggering pattern recognition receptors, such as the use of intratumoral administration of 

oncolytic viruses or Toll-like receptor agonists, two approaches already successfully 

reported to improve response rates of PD-1 blockade therapy (Ribas et al., 2018a; Ribas et 

al., 2018b; Vanpouille-Box et al., 2019). Additional combinatorial approaches to enhance 

responses to ICB, not yet demonstrated to be clinically active in patients, include the 

triggering of the STING pathway (Li and Chen, 2018), inhibition of immune suppressive 

factors such as WNT signaling or the adenosine pathway (Abril-Rodríguez et al., 2020; 

Grasso et al., 2018; Smyth et al., 2016; Spranger and Gajewski, 2018), or the release of other 

immune checkpoints, such as LAG-3, TIM-3 or TIGIT, and others in T cells (Smyth et al., 

2016). These observations provide hope that the benefit of cancer immunotherapy can be 

expanded to more patients and indications by using a combination therapy that reaches the 

level where antitumor T cells are potent enough to overcome the different nodes that restrict 

immune responses to cancer (Smyth et al., 2016).

It was possible that cancer cells may have different inherent abilities to respond to 

interferon-gamma, and this may lead to some patients responding or not to ICB because 

some cancers may not induce the full set of interferon-gamma response genes that are 

needed to mount a productive antitumor immune response. However, our data using a panel 

of melanoma cell lines suggests that this is very unlikely, at least in patients with metastatic 

melanoma. The data on interferon-gamma response in these cell lines was dichotomous, 

clearly separating the cell lines with or without the ability to signal from the interferon-

gamma receptor. The cell lines unable to signal had natural or modelled homozygous loss-

of-function mutations in JAK1 or JAK2. These mutations can develop sporadically in 

patients with melanoma and other cancers before receiving ICB immunotherapy, but they are 

infrequent, likely less than 1% of the cases (Liu et al., 2019; Shin et al., 2017). Upon 

selective immune pressure they may become more frequent and lead to acquired resistance, 

but these seem to also be rather infrequent cases (Sucker et al., 2017; Zaretsky et al., 2016). 

Given the low baseline frequency of loss-of-function mutations in the interferon-gamma 

signaling pathway, signaling through the interferon-gamma receptor inducing the full set of 

interferon-gamma response genes may be a positively selected feature of melanoma cells, 

which is rather counter-intuitive. At baseline, it may be favorable to the cancer cells to 

maintain this signaling and express immune-suppressive molecules such as PD-L1, 

indoleamine 2,3-dioxygenase (IDO), colony stimulating factor-1 (CSF-1), vascular 

endothelial growth factor (VEGF), or IL-6, for example, to stop the antitumor immune 

response, but this is at the expense of making the cancer cells more vulnerable to a future 

immune response.
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A common feature of biopsies from patients who respond to ICB is the expression of 

immune activation genes with mostly overlapping signatures (Ayers et al., 2017; Cristescu et 

al., 2018; Fehrenbacher et al., 2016; Jerby-Arnon et al., 2018; Liu et al., 2019; Rodig et al., 

2018; Roh et al., 2017; Rooney et al., 2015; Sade-Feldman et al., 2018). Our studies suggest 

that the common denominator of these immune activation transcriptomes is the expression 

of interferon-gamma response genes initiated by the activation of tumor antigen-specific T 

cells, which increases upon ICB. Key among these gene sets is the expression of antigen 

presenting machinery, most notably MHC class I and class II, among biopsies of patients 

that go on to respond to ICB therapy (Liu et al., 2019; Rodig et al., 2018). This was the most 

relevant feature separating patients who responded or not to therapy in our series, in 

particular the increase in MHC genes in on-therapy biopsies. However, a significant 

component of the increase in expression of MHC genes had to be from the infiltration with 

hematopoietic lineage cells into responding tumors as assessed by LCA correction. 

Therefore, future analyses would need to use techniques allowing determination of cancer 

cell-intrinsic antigen processing and presentation pathway.

The baseline expression of several T cell immune exclusion signatures has been associated 

with lack of response to ICB in different series, most of which also have overlapping gene 

sets (Auslander et al., 2018; Jerby-Arnon et al., 2018; Jiang et al., 2018; Liu et al., 2019). In 

our series, baseline and on-therapy biopsies of patients without a response to ICB therapy 

had a higher expression of the Jerby-Arnon signatures of T cell exclusion (Jerby-Arnon et 

al., 2018), with the relevant feature that responding biopsies displayed decreases in 

expression of WNT and MYC genes on-therapy, while non-responding biopsies continued to 

express the immune exclusion genes. Overall, our data together with transcriptome analyses 

of other biopsy series (Auslander et al., 2018; Ayers et al., 2017; Cabrita et al., 2020; Chen 

et al., 2016; Cristescu et al., 2018; Fehrenbacher et al., 2016; Gide et al., 2019; Helmink et 

al., 2020; Hugo et al., 2016; Jerby-Arnon et al., 2018; Jiang et al., 2018; Liu et al., 2019; 

Petitprez et al., 2020; Riaz et al., 2017; Rodig et al., 2018; Roh et al., 2017; Sade-Feldman et 

al., 2018), implies the presence of feedback loops between the tumor and CD8 T cells 

mediated by interferon-gamma that modulates immune exclusion secondary to WNT 

signaling (Luke et al., 2019).

In conclusion, T cell infiltration and expression of interferon gamma-regulated genes 

increase in biopsies of patients receiving ICB therapy regardless of clinical response, 

whereas the degree of HLA upregulation on-therapy and the decrease in expression of genes 

associated with immune exclusion are features of clinically responding biopsies. The 

difference between responsive and non-responsive melanomas does not seem to be due to an 

inherent ability of some cancer cells to respond differently to interferon-gamma, as the 

quality of the interferon-gamma response program was similar in the great majority of 

melanoma cell lines tested. As we did not have single cells for RNA sequencing analyses, 

we were not able to directly determine if the same was true in the tumor biopsies. In most 

cases, ICB was able to change the transcriptome of melanoma biopsies, but it did so to 

different degrees that correlate with favorable changes in the immune cell infiltrate. The 

ability to provide a more powerful anti-melanoma immune response with combination ICB 

explains a higher rate of responses. This information also provides hope that additional 

combinatorial strategies may dial up the antitumor immune response to become clinically 
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meaningful in more patients, in particular when combining immune checkpoint blockade 

therapy with treatments that increase interferon signaling inside tumors to jump-start an 

antitumor immune response when it is not already pre-existing, such as the intratumoral 

administration of oncolytic viruses or nucleotide sequences that trigger pattern recognition 

receptors to produce interferons (Ribas et al., 2018a; Ribas et al., 2018b; Torrejon et al., 

2020; Vanpouille-Box et al., 2019).

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Antoni Ribas (aribas@mednet.ucla.edu).

Materials Availability

Melanoma cell lines are available from the Lead Contact with a completed Materials 

Transfer Agreement following institutional policies.

Data and Code Availability

RNA-seq data from patients who consented to deposition has been deposited in the 

European Genome-phenome Archive, with accession numbers CM38_DNA - 

EGAS00001004548 and CM38_RNA - EGAS00001004545. The RNA-seq data for human 

melanoma cell lines with and without interferon-gamma exposure for 6-hours is deposited in 

the Gene Expression Omnibus (GEO), with accession number GSE154996. Both are listed 

in the Key Resources Table.

EXPERIMETNAL MODEL AND SUBJECT DETAILS

Clinical Trial and Biopsy Collections

Study CheckMate 038 (NCT01621490) was a multi-arm, multi-institutional, prospective 

study to investigate the effects of nivolumab (3 mg/kg every 2 weeks) single agent, or the 

combination of nivolumab (1 mg/kg every 3 weeks) plus ipilimumab (3 mg/kg every 3 

weeks) given for four doses and followed by nivolumab (3 mg/kg every 2 weeks) single 

agent. The protocol and its amendments were approved by the relevant institutional review 

boards, and the study was conducted in accordance with the Declaration of Helsinki and the 

International Conference on Harmonization Guidelines for Good Clinical Practice. All 

patients signed written informed consent prior to having any study procedures performed. 

Patients were treated until progression or for a maximum of 2 years, or were stopped due to 

toxicities. Radiographic assessment of response was performed approximately every 8 

weeks until progression. Progression was confirmed with a repeat CT scan at least four 

weeks later. Tumor response for patients was defined by RECIST v1.1. Response to therapy 

indicates best overall response unless otherwise indicated. All patients underwent a baseline 

biopsy before commencing therapy (1 to 7 days before the first dose of therapy) and a repeat 

biopsy, on cycle 1, day 29 (between days 23–29).
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Human Melanoma Cell Lines

Human melanoma cell lines were established from patient’s biopsies under UCLA IRB 

approval # 11–003254 as previously described (Atefi et al., 2014; Nazarian et al., 2010; 

Sondergaard et al., 2010; Tsoi et al., 2018).

METHODS DETAILS

RNA Sequencing

Tumor tissue was divided for formalin-fixed paraffin-embedding (FFPE) for IHC analysis, 

and storage with RNAlater (Ambion) for subsequent RNA extraction using Qiagen kits. Of 

170 patients, 101 had enough RNA for RNAseq. RNAseq library was prepared using 

Illumina Truseq Stranded mRNA kit. Sequencing was done on an Illumina Hiseq sequencer 

using paired end sequencing of 50 bp for each mate pair. RNAseq reads were mapped using 

HISAT2 version 2.0.4 (Kim et al., 2019) and aligned to the hg19 genome using default 

parameters. Reads were quantified by HTSeq version 0.6.1 (Anders et al., 2015) with the 

intersection-non-empty mode and counting ambiguous reads if fully overlapping. Raw 

counts were then normalised to fragments per kilobase of exon per million fragments 

mapped (FPKM) expression values. Heatmaps of log2 FPKM expression data and z-scores 

were generated using the pheatmap R package. Progression free and overall survival plots 

were generated using the survival and ggsurv R packages. For melanoma cell line RNAseq 

analysis with and without interferon-gamma exposure, RNAseq reads were mapped using 

HISAT2 version 2.0.4 (Kim et al., 2019) and aligned to the hg19 genome using default 

parameters. Reads were quantified by HTSeq version 0.6.1 (Anders et al., 2015) with the 

intersection-non-empty mode and counting ambiguous reads if fully overlapping. Raw 

counts were then normalized to fragments per FPKM expression values.

RNA Immune Deconvolution Using MCP-Counter

RNA sequencing (RNA-seq)–based cell deconvolution of tissue-infiltrating immune and 

stromal populations using MCP-counter (Becht et al., 2016),based on 111 genes, including 

CD8A and ICOS, two genes in the T cell average measurement, was applied to all the 

samples to assess tumor infiltration of T cells, cytotoxic lymphocytes, CD8 T cells, myeloid 

dendritic cells, monocytic lineages, B lineage cells, NK cells, endothelial cells and fibroblast 

cells. A key advantage of MCP-Counter is that it accounts for the tumor cell fraction. As a 

result, T cell average from MCP-Counter is correlated with tumor-infiltrating lymphocyte 

(TIL) score, a pathology-based measure of T cell infiltration, based on 429 pathology slides 

available for TCGA samples (Grasso et al., 2018). This measurement is highly correlated 

with CD8A expression by itself (R2 = 0.73) and the “CYT” score (the average of GZMA 
and PRF1 expression, a measure of immune cytolytic activity based on two genes not 

present in the T cell average) (Rooney et al., 2015). We use the measurement with more 

genes here for robustness and for consistency with recent analyses, in addition, the including 

of stromal populations increases the overall accuracy.
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Interferon-gamma in vitro exposure and transcriptome analysis

Melanoma cell lines were seeded on 10 cm tissue culture plates in RPMI media with 10% 

FBS and 1% PSA. After allowing 2–3 passages during exponential growth phase at 70% 

confluence cells were exposed to interferon-gamma at concentration 5 ng/ml (Recombinant 

Human IFN-gamma, 0.1–2.0×108 units/mg, BD Biosciences, Cat No. 554617). Culture 

media without interferon-gamma was added simultaneously to the controls. Cells were 

collected, cell pellets were frozen immediately and stored at −80°C. RNA was extracted 

with miRNeasy Mini Kit (Qiagen, Cat No. 217004). RNA sequencing was performed on 

Illumina HiSeq 3000, with a 1×50 run and with data quality check done on Illumina SAV 

and demultiplexing performed with Illumina Bcl2fastq2 v 2.17 program.

QUANTIFICATION AND STATISTICA ANALYSIS

Statistics and Survival Analysis

Statistical analyses were performed in R. Paired t-tests were used on the melanoma cell lines 

before and after interferon gamma treatment. The patient data is a combination of paired and 

unpaired observations (partially paired data), so we used the “optimal pooled t-test” 

described by Guo and Yuan in their comparative review of such methods (Guo and Yuan, 

2017). An FDR was applied when we used either t-test to all the genes in a cohort in order to 

yield a list of significantly altered genes. An FDR was not applied when we looked at 

individual genes that we selected on the basis of biological interest, which is standard 

practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- T cell-induced IFNγ correlates the best to immune checkpoint blockade 

(ICB) therapy

- Immune signatures increase in on-therapy patients regardless response to 

therapy

- ICB therapy decreases MYC and WNT signalings in patients with clinical 

response

- IFNγ exposure of melanoma cells leads to a conserved transcriptome 

signature
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Figure 1. 
Outline of sample collection, patient treatments and response to therapy. A) Consort diagram 

describing data generation and selection of final transcriptome cohort. B) Alluvial plot 

showing the number of patients of each treatment subtype that resulted in each response. 

The numbers in the treatment subtype box represent the number of patients of that treatment 

type that had that response (Red = PD, Green = SD, Blue = CRPR). See also Figures S1 and 

S2.
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Figure 2. 
Immune cell infiltration in patient samples from clinical study CheckMate 038. A) Box plot 

the MCP-Counter T cell score according to response to therapy combining all treatment 

groups using an optimal pooled t-test since data is paired and unpaired. B) Principal 

component analysis showing all RNAseq samples, paired and unpaired, plotted on the first 

two components. The size of the data point is proportional to the T cell score. Open circles 

correspond to pre-treatment samples, while closed circles correspond to on-treatment 

samples. The data points are colored by response (Red = PD, Green = SD, and Blue = 

Grasso et al. Page 24

Cancer Cell. Author manuscript; available in PMC 2021 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CRPR). The vector for the T cell score is plotted as well. Outlier samples are labeled by 

case. The twelve paired outlier samples were either due to quality control issues that had not 

been detected, or may be due to an actual different biology. For example, cases 48, 20038, 

and 30022 all had interferon-gamma signaling either going down or not changing on 

treatment, while cases 30004 and 20001 have G2M cell cycle genes that either increase or 

did not respond. C) Box plots showing the average expression of the genes correlated with 

the T cells broken down by response and pre- and on-treatment using an optimal pooled t-

test since data is paired and unpaired. D) Box plots of MCP-Counter immune cell 

deconvolution types according to response to therapy. Mixed t-test for paired and unpaired 

samples using an optimal pooled t-test since data is paired and unpaired (*p value < 0.05, 

**p value < 0.01, ***p value < 0.001, ****p value < 0.0001). See also Figures S3, S4 and 

S5.
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Figure 3. 
Interferon-gamma-induced changes in gene expression in 58 human cell lines. A) Heatmap 

of changes in key interferon-gamma response genes after 6 hours of treatment at 5 ng/ml 

expressed as fold changes pre-treatment to post-treatment. Genes are organized by class: 

anti-proliferative (Black), antigen presentation (White), chemoattractants (Cyan), cytotoxic 

effectors (Orange), feedback/signaling (Purple). B) The pre- and post-treatment gene 

expression levels of IRF1, the transcription factor executing the down-stream interferon 

gamma program, shown as arrows (Red = up, Blue = down). C) The pre- and post-treatment 
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gene expression levels of CD274, the gene that codes for PD-L1, shown as arrows (Red = 

up, Blue = down). See also Figures S6, S7, S8, S9 and S10.
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Figure 4. 
Interferon-gamma-induced changes in gene expression in specimens in clinical study 

CheckMate 038. Heatmap of key interferon-gamma response genes in biopsies obtained at 

baseline and on-treatment with immune blockade therapy, separated by response to therapy. 

Samples are ordered by T cell score and annotated by ipilimumab naïve status, monotherapy 

versus combination therapy and melanoma subtype. Genes are organized by class: anti-

proliferative (Black), antigen presentation (White), chemoattractants (Cyan), cytotoxic 

effectors (Orange), feedback/signaling (Purple). See also Figures S11 and S12.
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Figure 5. 
Global changes in gene expression in clinical study CheckMate 038 consistent with 

interferon-gamma induced changes in biopsies from patients with response but not without 

response to therapy. A and B) Gene Set Enrichment Analysis (GSEA) using Hallmark Gene 

Sets for significantly up- or down-regulated genes for CRPR post-treatment relative to pre-

treatment for clinical data set CheckMate 038 (A) and significantly up- or down-regulated 

genes for interferon gamma 6-hour treatment for the unmodified human cell lines (B). At 

most 2,000 of most significant genes by q-value submitted to GSEA for each class 

(maximum set by GSEA). See also Figures S13, S14, S15, S16, S17 and S18.
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Figure 6. 
Immune exclusion signatures and WNT signaling in biopsies of patients receiving ICB 

therapy. A) Box plot of the 9-gene Wnt Score (the geometric average of APC, APC2, 

CTNNB1, MYC, SOX11, SOX2, TCF12, TCF7, VEGFA), by RNAseq according to 

response to therapy in patient biopsies using an optimal pooled t-test since data is paired and 

unpaired (*p value < 0.05, **p value < 0.01, ***p value < 0.001). B) Plot of Wnt score 

versus T cell score with arrows connecting pre-treatment and on-treatment and one figure for 

each response PD (Red), SD (Green), and CRPR (Blue). C to E) Pre- and post-treatment 
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gene expression levels of the Wnt Score (C), MYC (D), and WNT5A (E), the Wnt ligand 

initiating the down-stream Wnt signaling programming (Red = up, Blue = down). F to J) 

Box plots of immune exclusion genes/signatures by RNAseq according to response to 

therapy: Jerby-Arnon, et al. associated immune exclusion gene sets 1 up in immune 

excluded tissues (F) and 2, down in immune excluded samples (G), CDK4 (H), MYC (I) and 

PAK4 (J) using an optimal pooled t-test since data is paired and unpaired (*p value < 0.05, 

**p value < 0.01, ***p value < 0.001). K) Heatmap showing the level of correlation between 

the immune exclusion genes and signatures. See also Figures S19, S20 and S21.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Patient tumor biopsies collected from advanced 
melanoma patients in clinical study CheckMate 
038

This article https://clinicaltrials.gov/ct2/show/NCT01621490

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human IFN-gamma BD Biosciences Cat No. 554617

Critical Commercial Assays

RNA extraction with miRNeasy Mini Kit Qiagen Cat No. 217004

Illumina Truseq Stranded mRNA kit Illumina https://www.illumina.com/products/by-type/
sequencingkits/library-prep-kits/truseq-stranded-
mrna.html
Cat No. 20020595

Deposited Data

Checkmate-038 biopsies RNAseq raw and 
analyzed data

This paper European Genome-phenome Archive CM38_DNA - 
EGAS00001004548
CM38_RNA - EGAS00001004545

M series human melanoma cell line RNAseq raw 
and analyzed data, with and without interferon-
gamma exposure

This paper Gene Expression Omnibus (GEO) GSE154996 https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE154996

Experimental Models: Cell Lines

Human: M-series patient derived cell lines This paper; Drs. James 
Economou, Antoni Ribas, and 
Roger Lo Labs

Søndergaard et al., 2010

Human: Primary Epidermal Melanocytes; Normal, 
Adult (HEMa)

ATCC PCS-200–013

Software and Algorithms

HISAT2 (v.2.0.5) (Kim et al., 2015) https://ccb.jhu.edu/software/hisat2/index.shtml

HTSeq (0.6.1) (Anders et al., 2015) https://ccb.jhu.edu/software/hisat2/index.shtml

R (v3.2) N/A https://www.r-project.org/

MCPcounter R Package N/A https://github.com/ebecht/MCPcounter
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Table 1.

Baseline patient characteristics

n (%)
N = 101

Age (years)

Median 56

Range 22–89

Sex, n (%)

Male 58 (57.4)

Female 43 (42.6)

ECOG performance status, n (%)

 0 70 (69.3)

 1 29 (28.7)

 Not Reported 2 (2.0)

Stage at study entry, n (%)

 III 8 (7.9)

 IV 93 (92.1)

Prior anti-CTLA-4 therapy, n (%)

 Yes 30 (29.7)

 No 71 (70.3)

BRAF mutation status, n (%)

 Positive 33 (32.7)

 Negative 61 (60.4)

 Not Reported 7 (6.9)

PD-L1 status at baseline, n (%)

 PD-L1 negative (TPSbaseline = 0) 30 (29.7)

 PD-L1 positive (TPSbaseline > 0) 48 (47.5)

 N/A (TPSbaseline = NA) 23 (22.8)

Metastatic staging, n (%)

 M0 2 (2.0)

 M1A 17 (16.8)

 M1B 15 (14.9)

 M1C 53 (52.5)

 Not Reported (Stage III) / Unknown 14 (13.9)

Brain metastases, n (%)

 Yes (*) 13 (12.9)

 No 80 (79.2)

 Not Reported (Stage III) 8 (7.9)

Lactate dehydrogenase, n (%)

 Normal (<= ULN) 72 (71.3)
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n (%)
N = 101

 Elevated (> ULN, <= 2*ULN) 24 (23.8)

 Highly elevated (> 2*ULN) 4 (4.0)

 Not Reported 1 (1.0)

Melanoma primary site, n (%)

 Acral 4 (4.0)

 Cutaneous 71 (70.3)

 Mucosal 11 (10.9)

 Other 15 (14.9)

ECOG, Eastern Cooperative Oncology Group; M1a, metastases to skin, subcutaneous tissues, or distant lymph nodes; M1b, metastases to lung; 
M1c, metastases to all other visceral sites or distant metastases at any site combined with an elevated serum concentration of lactate dehydrogenase; 
PD-L1, programmed death ligand 1.

(*)
In addition to all patients enrolled in Part 4, a number of patients in Parts 1–3 also had reported brain metastases.
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