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Abstract

The Pythagorean–hodograph (PH) curves offer distinct advantages in

planning curvilinear paths for unmanned or autonomous air, ground,

or underwater vehicles. Although several authors have discussed their

use in these contexts, prior studies contain misconceptions about the

properties of PH curves or invoke heuristic approximate constructions

when exact methods are available. To address these issues, the present

study provides a basic introduction to the key properties of PH curves,

and describes some exact constructions of particular interest in path

planning. These include (1) maintenance of minimum safe separations

within vehicle swarms; (2) construction of paths of different shape but

identical arc length, ensuring simultaneous arrival of vehicles travelling

at a constant speed; (3) determination of the curvature extrema of PH

paths, and their modification to satisfy a given curvature bound; and

(4) construction of curvature–continuous paths of bounded curvature

through fields of polygonal obstacles.

Keywords: path planning, unmanned vehicles, autonomous vehicles, obstacle avoidance,

safe separation, simultaneous arrival, curvature extrema, Pythagorean–hodograph curves.
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1 Introduction

Many authors have recently proposed the use of Pythagorean–hodograph (PH)

curves in the context of path planning for autonomous or remotely–operated

aerial, land, or submarine vehicles, such as unmanned aerial vehicles (UAVs)

or autonomous underwater vehicles (AUVs): see [2, 4, 5, 6, 18, 20, 21, 22, 23,

24, 25, 26, 28, 29, 30, 31]. Feasible paths must satisfy various constraints, such

as bounds on the path curvature or climb angle, avoidance of environmental

obstacles, and maintenance of safe separations in vehicle swarms.

The PH curves were introduced in [16] to facilitate exact computations

of basic geometrical properties that require numerical approximations in the

context of general polynomial curves (see [10] for a comprehensive treatment).

These properties have been extensively and systematically exploited in the

context of computer numerical control (CNC) manufacturing systems [13].

The existing autonomous vehicle path planning literature, on the other hand,

embodies several misconceptions concerning PH curves, and does not fully

exploit their advantageous properties and existing capabilities.

For example, it has been claimed [20, 23, 24, 25, 28, 31] that the PH curves

possess a “uniform distribution of points on the curve” or “uniformity in the

parametric distribution” [25] and this “contributes to the smoothness of the

path” [23, 24, 25]. A “uniform distribution of points” has also been claimed

[28] for the offsets to planar PH curves. However, these claims are incorrect.

The parametric speed σ(ξ) = |r′(ξ)| of a curve r(ξ) is the derivative ds/dξ of

arc length s with respect to the parameter ξ. For a polynomial curve, other

than a straight line, σ(ξ) cannot be constant since |r′(ξ)| → ∞ as |ξ| → ∞
if r(ξ) is not a straight line. It is a much more subtle matter [17] that this is
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also true of rational curves. Moreover, smoothness is an intrinsic geometrical

property, that is independent of parameterization uniformity.

Although uniform (i.e., arc–length) polynomial and rational curved path

parameterizations paths are impossible, the PH curves come nearest to this

unattainable ideal since their arc lengths are defined1 by monotone–increasing

polynomial functions s(ξ) in the curve parameter. Thus, for a given distance

s∗ along a PH curve, one can compute the corresponding curve parameter

ξ∗ — and hence the curve point r(ξ∗) — to machine precision, as the unique

real root of the equation s(ξ∗)−s∗ = 0 by a few Newton–Raphson iterations.

This property is useful for real–time execution of curved paths at constant

or variable speed [13] and can be used to accurately assess maintenance of

safe separations between multiple autonomous vehicles. It is also possible to

construct multiple paths of precisely equal arc length.

The intent of this paper is to (1) summarize the construction, properties,

and applications of the PH curves, and dispel some common misconceptions

concerning them; (2) describe an open–source software library incorporating

some basic construction and analysis functions for planar PH curves; and (3)

introduce some novel PH curve utilities that are of particular interest in the

path planning problem for multiple autonomous vehicles.

The focus of this study is on geometrical and kinematical considerations

in path planning. Although vehicle dynamical limitations are not explicitly

considered at present, path geometry and kinematics are of direct relevance

1Only polynomial PH curves are considered here: rational PH curves do not (in general)

have rational arc lengths, since the integrals of rational functions may incur transcendental

terms. The focus is on regular curves, with r
′(ξ) 6= 0 for all ξ (see [10] for further details).
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in ensuring physically realizable trajectories. For example, at a specified fixed

speed, the path curvature must be bounded to ensure compatibility with the

maximum vehicle steering rate, and path inclination with the horizontal must

be consistent with the maximum climb rate of the vehicle.

The remainder of this paper is organized as follows. First, the definitions,

constructions, and key properties of planar PH curves are briefly described

in Section 2, based on the complex–number representation. Section 3 then

summarizes an existing open–source software library for the construction and

analysis of planar PH quintics, that can be exploited in the path planning

context. Some representative applications of PH curves are then addressed:

the maintenance of safe separations within swarms of autonomous vehicles

in Section 4; the construction of families of curved paths with identical arc

lengths, ensuring the simultaneous arrival of multiple autonomous vehicles

travelling at constant speed in Section 5; the imposition of path curvatures

consistent with vehicle steering rates in Section 6; and curvature–continuous

rounding of sharp corners in piecewise–linear paths through a field of polygon

obstacles in Section 7. Finally, Section 8 summarizes the key results of this

study, and suggests directions for further investigation.

2 Planar Pythagorean-hodograph curves

For brevity, the focus of this study will be on planar Pythagorean–hodograph

(PH) curves, based on the complex–number representation [8]. Many of the

results can be extended to the case of paths specified by spatial PH curves,

using the quaternion representation (see [10] for further details).

3



A plane polynomial PH curve r(ξ) = (x(ξ), y(ξ)), ξ ∈ [ 0, 1 ] has derivative

components x′(ξ), y′(ξ) that satisfy [16] the condition

x′2(ξ) + y′2(ξ) = σ2(ξ) (1)

for some polynomial σ(ξ), which specifies the parametric speed of r(ξ) — i.e.,

the derivative of the arc length s with respect to the curve parameter ξ. This

feature endows PH curves with many attractive computational properties —

they have rational unit tangents, normals, curvatures, and offset curves; their

arc lengths are exactly computable; and they are particularly well suited to

real–time precision motion control applications [10].

For a primitive curve, with gcd(x′(ξ), y′(ξ)) = constant, a sufficient and

necessary condition for satisfying (1) is that x′(ξ), y′(ξ) must be expressible

in terms of polynomials u(ξ), v(ξ) with gcd(u(ξ), v(ξ)) = constant in the form

x′(ξ) = u2(ξ) − v2(ξ) , y′(ξ) = 2 u(ξ)v(ξ) .

This structure is embodied in the complex representation, wherein a PH curve

of degree n = 2m+1 is generated [8] from a degree–m complex “pre–image”

polynomial

w(ξ) = u(ξ) + i v(ξ) =

m
∑

k=0

wk

(

m

k

)

(1 − ξ)m−kξk (2)

with Bernstein coefficients wk = uk + i vk by integration of the expression

r′(ξ) = w2(ξ) . (3)

The parametric speed, unit tangent, and curvature of r(ξ) may be formulated

[8] in terms of w(ξ) as

σ(ξ) = |w(ξ)|2 , t(ξ) =
w2(ξ)

σ(ξ)
, κ(ξ) = 2

Im(w(ξ)w′(ξ))

σ2(ξ)
. (4)
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Since σ(ξ) is a polynomial of degree 2m, the cumulative arc length function

s(ξ) =

∫ ξ

0

σ(τ) dτ

is likewise just a polynomial in ξ, of degree 2m + 1.

The simplest planar PH curves that can inflect, and have shape freedoms

similar to those of “ordinary” cubics, are the quintics. A planar PH quintic is

defined by choosing a quadratic polynomial w(ξ), with Bernstein coefficients

w0,w1,w2. On integrating (3), the Bézier control points pk = xk + i yk of

the resulting PH quintic

r(ξ) =

5
∑

k=0

pk

(

5

k

)

(1 − ξ)5−kξk

may be expressed [8] as

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 , (5)

where p0 is a free integration constant. The parametric speed polynomial

σ(ξ) =
4

∑

k=0

σk

(

4

k

)

(1 − ξ)4−kξk (6)

has the Bernstein coefficients

σ0 = |w0|2 , σ1 = Re(w0w1) ,

σ2 =
2|w1|2 + Re(w0w2)

3
,

σ3 = Re(w1w2) , σ4 = |w2|2 .
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Correspondingly, the Bernstein form

s(ξ) =

5
∑

k=0

sk

(

5

k

)

(1 − ξ)5−kξk (7)

of the arc length polynomial is specified by the coefficients

s0 = 0 and sk =
1

5

k−1
∑

j=0

σj , k = 1, . . . , 5 (8)

and the total arc length is

S = s(1) = s5 =
σ0 + σ1 + σ2 + σ3 + σ4

5
. (9)

Based on the complex representation, algorithms for the construction and

analysis of planar PH curves have reached a mature state of development —

for example, see [11, 12, 14] and Section 3 below.

3 Open-source PHquintic software library

An open–source library of key functions for the construction and analysis of

planar PH quintic curves has been developed in the C programming language

[7]. The complex–number representation was employed to facilitate compact

and efficient implementations. Each PH quintic segment r(ξ) is defined by a

data structure that incorporates complex arrays specifying the Bézier control

points p0, . . . ,p5 and the coefficients w0,w1,w2 of the pre–image polynomial,

and real arrays for the coefficients σ0, . . . , σ4 and s0, . . . , s5 of the parametric

speed and arc length polynomials. These data are redundant, but their pre–

computation helps to improve the efficiency of subsequent computations, and

circumvents possible inconsistencies. The functions currently available in the

PHquintic library are as follows.
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• construct PHquintic: for given initial and final pairs of control points

p0,p1 and p4,p5 this function “fills in” the two interior points p2,p3 so

as to generate a PH quintic segment r(ξ), ξ ∈ [ 0, 1 ]. This amounts to

solving a first–order Hermite interpolation problem, with four distinct

formal solutions [14]. The function returns the “good” solution, having

the least value of the absolute rotation index Rabs =
∫

|κ| ds.

• open PHquintic spline and closed PHquintic spline: for a given

sequence of N + 1 points q0, . . . ,qN in the plane, these two functions

compute C2 piecewise PH quintic spline curves interpolating q0, . . . ,qN

as nodal points. An efficient Newton–Raphson iteration, commencing

with an accurate starting approximation, ensures rapid convergence to

the solution of the non–linear equations governing the PH quintic spline

construction [12]. The “open” splines employ cubic end spans, while

the “closed” splines (with qN = q0) use periodic end conditions.

• PHquintic energy: this function provides an exact computation of the

bending energy integral
∫

κ2 ds for a single PH quintic curve segment,

based on a complex partial fraction expansion of the integrand [9].

• PHquintic offset: for a given PH quintic segment r(ξ) and a (signed)

offset distance d, this function returns the control point homogeneous

coordinates (Wk, Xk, Yk), k = 0, . . . , 9 that exactly define [16] the offset

curve rd(ξ) = r(ξ) + dn(ξ), where n(ξ) is the unit normal to r(ξ).
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4 Maintenance of minimum separations

For brevity, this study deals primarily with vehicles travelling at a prescribed

constant speed. However, a key advantage of the PH curves is the ability to

specify continuously–variable speeds along curved paths — as functions of

time, path arc length, curvature, etc. This capability has been demonstrated

in the context of real–time motion control of CNC machines [13].

Consider the problem of determining whether the traversal of two planar

PH quintic paths r(µ), µ ∈ [ 0, 1 ] and s(ν), ν ∈ [ 0, 1 ] at a constant speed

V will incur a close approach with separation less than a safe minimum

distance δ. If p(µ) and q(ν) are the polynomial arc length functions for r(µ)

and s(ν), and the motions start at r(0) and s(0) at time t = 0, this amounts

to identifying if parameter values (µ, ν) ∈ [ 0, 1 ]2 exist, such that

p(µ) = q(ν) and | r(µ) − s(ν) | < δ .

Geometrically, this corresponds to asking whether the value of the bivariate

function d(µ, ν) = | r(µ) − s(ν) |, restricted to the degree 5 algebraic curve

defined by the equation f(µ, ν) = p(µ) − q(ν) = 0, dips below δ.

In general, this problem has no closed–form solution, but the polynomial

nature of p(µ) and q(ν) allows an essentially exact test for a maintenance of

the safe closest–approach threshold δ for any specified sampling distance ∆s

(corresponding to a sampling time ∆t = ∆s/V ) along the paths. Namely, if

µk, νk (≤ 1) are the unique real roots of the equations

p(µk) = q(νk) = k∆s , k = 0, 1, 2, . . .

the distance at time tk = k∆t is δk = | r(µk)− s(νk) |. For modest ∆s values

8



µk, νk are good estimates of µk+1, νk+1 so the latter can be accurately and

efficiently computed from the former by a few Netwon–Raphson iterations.
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Figure 1: Left: two planar PH quintic paths of equal arc length traversed at

constant speed, with the points of closest approach indicated as dots. Right:

fractional separation along the paths as a function of fractional path length.

Figure 1 illustrates an application of this methodology. Two planar PH

quintic paths, of equal arc length S, are to be traversed at the same constant

speed and a minimum safe separation of 0.025 S is desired. Although these

paths intersect twice, the computation with sampling distance ∆s = 0.005 S

indicates that the minimum separation has nevertheless been achieved. The

method can be easily extended to spatial PH curves, and can also be adapted

to accommodate variable speeds along the paths [13].

The use of offset curves to define “safety zones” of a specified width about

the paths of multiple autonomous vehicles has also been proposed [27, 28, 29].

This is a conservative approach, that considers only the path geometry (not

path timing) in maintaining safe vehicle separations: see Figure 2. PH curves

have the advantage, in this context, that their offsets rd(ξ) = r(ξ) ± dn(ξ),

where n(ξ) is the unit normal to r(ξ) and d is the offset distance, are rational
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curves [16]: they admit parameterizations rd(ξ) = (X(ξ)/W (ξ), Y (ξ)/W (ξ))

where W (ξ), X(ξ), Y (ξ) are relatively prime polynomials specifying the offset

curve homogeneous coordinates. However, it should be noted that the offset

curves illustrated in [27, 28, 29] are clearly incorrect.

Figure 2: Two paths (blue) of identical arc length S with their offsets (red) at

distance ±0.025 S. Although the intersection of the offset curves indicates a

potential violation of the prescribed minimum safe separation δ = 0.05 S, the

actual points of closest approach (indicated by dots) are at distance 0.0515 S.

5 Simultaneous arrivals

Several authors have discussed the problem of ensuring simultaneous arrival

of autonomous vechicles that follow different paths to a specified destination

[5, 28, 29]. If the vehicles maintain the same constant speed, this amounts

to designing smooth paths with different shapes but identical arc lengths. It

has recently been demonstrated [11] that, for the case of planar PH quintic

paths with different initial and final conditions, the requirement of equal arc

lengths can be exactly achieved using a simple algorithm.
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Consider the problem of constructing paths for the simultaneous arrival

of vehicles with specified initial/final states travelling at constant speed (this

may be considered a “strategic” path planning problem — it does not address

short–term issues that may require communications between vehicles or path

modification in real time). The construction of planar PH quintic paths with

prescribed initial/final points q0,q1, tangents t0, t1, and arc length S may

be summarized as follows (see [11] for complete details).

Using the complex representation with q0 = x0 + i y0, q1 = x1 + i y1 and

t0 = exp(i θ0), t1 = exp(i θ1) and setting ∆q = q1 − q0 := |∆q| exp(i α), the

specified data is first reduced to canonical form by: (i) subtracting q0 from

q0 and q1; (ii) dividing q1 by ∆q; (iii) multiplying t0 and t1 by exp(− i α);

and (iv) dividing S by |∆q|. This amounts to a translation/rotation/scaling

transformation, that maps q0 and q1 to the points 0 and 1 on the real axis.

Once the canonical form solution has been computed, it can be restored to

the original coordinates by taking p0 = q0 in (5) and multiplying w0,w1,w2

by
√

|∆q| exp(i 1

2
α) before substituting in (5). For brevity, only the generic

case θ1 6= ± θ0 is considered here (see [11] for the special cases θ1 = ± θ0).

For canonical form data, the coefficients of (2) are expressed as

w0 = w exp(i1
2
θ0) , w1 = u + i v , w2 = w exp(i1

2
θ1) ,

where the real unknowns u, v, w are determined as follows. First, setting

a2 = 2(c0s1 − c1s0)
2 ,

a1 = 3 [ 2(c0c1 + s0s1 − 3)S + 3(c2
0 − s2

0 + c2
1 − s2

1) − 2(c0c1 − s0s1) ] ,

a0 = 36(S2 − 1) ,

11



where (c0, s0) := (cos 1

2
θ0, sin

1

2
θ0) and (c1, s1) := (cos 1

2
θ1, sin

1

2
θ1), let

z =
− a1 −

√

a2
1 − 4a2a0

2a2

(10)

be the smaller root2 of the equation a2z
2 + a1z + a0 = 0, and set w =

√
z.

Then, let µ, ν = ±1 be such that µν and (c0s1 + c1s0 − 3c0s0 − 3c1s1)z have

the same sign. For each of the two µ, ν pairs thus identified, set

u =
−3(c0 + c1)w + µ

√

p(z)

4
and v =

−3(s0 + s1)w + ν
√

q(z)

4
, (11)

where

p(z) = 60(S + 1) − (15c2

0 + 15c2

1 − 10c0c1)z , (12)

q(z) = 60(S − 1) − (15s2

0 + 15s2

1 − 10s0s1)z . (13)

In general, this yields two formal solutions to the problem of matching the

given data, of which one has an attractive shape and the other exhibits an

undesirable looping behavior — the latter can be identified and discarded by

comparing the absolute rotation index for the two solutions (see Section 3).

Figure 3: A family of simultaneous–arrival paths for a swarm of six unmanned

constant speed vehicles, departing and arriving in different directions from a

set of corresponding equidistant points on an initial and final target circle.

2It has been shown [11] that this equation always has two positive real roots, and the

expressions (12) and (13) are both non–negative at the particular root (10).
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Figure 3 shows a family of simultaneous–arrival paths for a swarm of six

unmanned vehicles that start from equidistant points on an initial circle, and

end at corresponding points on a target circle. The path length S is chosen to

be 12.5% greater than the linear distance between the start and end points,

and each vehicle has different departure/arrival directions. It is evident from

Figure 4, which plots the 15 pair–wise separations (computed by the method

described in Section 4), that a minimum safe separation equal to 1% of S is

achieved despite the criss–cross nature of the different paths.
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Figure 4: The 15 pair–wise separation plots for the six paths in Figure 3.

6 Curvature extrema of PH quintics

An unmanned vehicle can exert only a finite steering torque, which imposes

an upper bound on the magnitude of feasible path curvatures [1, 4, 24, 27, 29].

Thus, the ability to identify the curvature extrema of PH curves is required,

in order to ensure that prescribed curvature bounds are observed. From (4),
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the curvature of a planar PH quintic has the form κ(ξ) = h(ξ)/σ2(ξ), where

the quadratic polynomial h(ξ) has the Bernstein coefficients

h0 = 4 Im(w0w1) , h1 = 2 Im(w0w2) , h2 = 4 Im(w1w2) . (14)

Extrema of the curvature occur at the roots of its derivative,

κ′(ξ) =
f(ξ)

σ3(ξ)
, f(ξ) := σ(ξ)h′(ξ) − 2 h(ξ)σ′(ξ) .

The quintic polynomial f(ξ) has the Bernstein coefficients

f0 = 2σ0h1 + 6σ0h0 − 8σ1h0 ,

f1 = (2σ0h2 + 14σ0h1 − 8σ1h1 + 16σ1h0 − 24σ2h0)/5 ,

f2 = (4 σ0h2 + 20σ1h1 − 18σ2h1 + 6σ2h0 − 12σ3h0)/5 ,

f3 = (12 σ1h2 − 6σ2h2 + 18σ2h1 − 20σ3h1 − 4σ4h0)/5 ,

f4 = (24σ2h2 − 16σ3h2 + 8σ3h1 − 14σ4h1 − 2σ4h0)/5 ,

f5 = 8σ3h2 − 6σ4h2 − 2σ4h1 ,

and its real roots on the interval ξ ∈ [ 0, 1 ] may be efficiently computed using

the subdivision and variation–diminishing properties of the Bernstein form.

Prior studies [28] have suggested modifying the PH curve end derivative

magnitudes as a means of subduing the extremum path curvature magnitude

below a prescribed bound. However, no information is provided on how the

extremal curvature is identified, and whether the prescribed curvature bound

can always be satisfied by modifying the derivative magnitudes. Moreover,

the plots in Figure 3 of [28] appear to be incorrect, since they indicate that

curvature is non–differentiable at certain points along the paths.

Two methods for minimizing the maximum curvature magnitude κmax of

paths with prescribed end points and tangent directions are considered here.
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In the first, the magnitudes ℓ0 = |r′(0)| and ℓ1 = |r′(1)| of the end derivatives

are varied to obtain the (ℓ0, ℓ1) combination that gives the smallest κmax. The

second employs the procedure described in Section 5 in constructing paths

of increasing arc length S, to identify the value that yields the smallest κmax.

Both methods use exact κmax values, determined by comparing the values

of κ(ξ) at the roots ξ ∈ (0, 1) of the polynomial f(ξ), and the interval end

points ξ = 0 and 1. Both also impose an upper bound Smax on the allowed

path arc length, since S should be reasonably commensurate with the linear

distance between the path end points, and in some cases it may be possible

to make κmax very small by allowing S to become unreasonably large [3].
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Figure 5: Left: A family of planar PH quintic interpolants to the end points

q0 = (0, 0) and q1 = (1, 0) with tangent angles θ0 = π/3 and θ1 = −3π/4, for

arc lengths S = 1.1, . . . , 1.6. Right: curvature profiles for these interpolants.

Figure 5 shows interpolants to the end points q0 = (0, 0) and q1 = (1, 0)

and end tangent directions θ0 = π/3, θ1 = −3π/4 for prescribed arc lengths

S = 1.1, . . . , 1.6, together with their curvature plots. For smaller values of S

the extremal curvature occurs at an end point, but for larger values it is at an

interior point. As seen in Figure 6, no minimum of κmax exists for S ≤ 1.6,
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Figure 6: Maximum curvature magnitude versus arc length for paths with

end points q0 = (0, 0), q1 = (1, 0) and tangent angles θ0 = π/3, θ1 = −3π/4.

and increasing S beyond ∼ 1.3 yields only marginal reduction of κmax.

As an alternative to varying S, Figure 7 illustrates the effect of changing

the end derivative magnitudes (for brevity, assumed equal) for interpolants

to the end points q0 = (0, 0) and q1 = (1, 0) and tangent directions θ0 = π/6

and θ1 = π/4, using ℓ0 = ℓ1 = 1.0, 1.5, . . . , 4.0. In this case, it is seen that

the value of ℓ0 = ℓ1 has a strong influence on the nature of the curvature

variation, and Figure 8 shows that the extremum curvature magnitude κmax

has a distinct minimum with respect to the magnitude of the end derivatives.

7 G2 path corner rounding among obstacles

Another topic of considerable recent interest [20, 24, 27, 30] is path planning

for autonomous vehicles that must navigate collision–free paths of bounded

curvature through a field of obstacles. The classical problem of constructing

a planar path of minimum length through a field of polygonal obstacles is

considered here. At present, only the case of static obstacles is addressed, and
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Figure 7: Left: Planar PH quintic interpolants to end points q0 = (0, 0) and

q1 = (1, 0) with tangent angles θ0 = π/6, θ1 = π/4 and derivative magnitudes

ℓ0 = ℓ1 = 1.0, 1.5, . . . , 4.0. Right: the curvature plots for these interpolants.
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Figure 8: Largest curvature magnitude versus end derivative magnitude for

paths from q0 = (0, 0) to q1 = (1, 0) and tangent angles θ0 = π/6, θ1 = π/4.
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the vehicle is assumed to be of negligible size compared to the obstacles. This

may be considered an “off–line” path planning problem, that is dependent on

complete a priori knowledge of the obstacle field. The problem of “on–line”

path planning, which may employ real–time vehicle sensing and control to

accommodate a changing environment, is not addressed herein.

Since the theoretical minimum–length path through a polygonal obstacle

field is piecewise–linear, it is incompatible with path curvature constraints

imposed by vehicle steering mechanisms. It is shown that planar PH quintic

segments can be employed to “round” the sharp corners of optimal piecewise–

linear paths in a curvature–continuous manner, that guarantees satisfaction

of both the obstacle avoidance and curvature bound constraints.

The solution to the basic path planning problem is based on constructing

a visibility graph, and using standard algorithms to identify the shortest path

between two graph vertices. In [19] this method was modified to replace the

linear path segments by a G1 sequence of PH quintics. The aim of the present

approach is to retain the piecewise–linear solution, as far as possible, but to

“round” its sharp corners using PH quintics meeting the linear segments with

G2 continuity. The obstacles are first offset3 by a distance d, to be determined

so as to ensure satisfaction of the obstacle avoidance and extremum curvature

constraints. The optimal piecewise–linear path through these offset obstacles

is then computed by means of the standard algorithms.

Consider the rounding of two line segments meeting at a corner point pc.

3For simplicity, a “polygonal” offset is used, without circular fillets at the sharp corners:

the obstacle avoidance constraint is nevertheless exactly observed. Note that the obstacle

offset is not required by the method in [19] if the vehicle is of negligible size.
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The sharp corner is to be replaced by a PH quintic r(ξ), ξ ∈ [ 0, 1 ] starting at

a point r(0) = pi on the incoming segment, and ending at a point r(1) = po

on the outgoing segment, where |pc − pi| = |po − pc| (= L, say). To ensure

a G2 rounded corner, the end tangents t(0) and t(1) should be parallel to

pc − pi and po − pc, and the end curvatures must satisfy κ(0) = κ(1) = 0.

It is convenient consider data in the canonical form4

pi = (0, 0) , pc = (L, 0) , po = ((1 + cos θ)L, sin θ L) ,

the “turning angle” θ being measured positive anti–clockwise (see Figure 9).

The solution for general data pi,pc,po is then obtained [15] by taking p0 = pi

in (5), and multiplying the coefficients w0,w1,w2 of (2) by exp(i1
2
φ) where,

writing pi = (xi, yi) and pc = (xc, yc), the angle φ is determined from

cos φ =
xc − xi

|pc − pi|
, sin φ =

yc − yi

|pc − pi|
.

The solution for canonical–form data is defined (see [15] for complete details)

in terms of L and θ by

w0 = λ
√

L , w1 = 0 , w2 = λ
√

L exp(i1
2
θ) , (15)

where

λ =
√

30 cos 1

2
θ/(6 cos 1

2
θ + 1) .

The control points of r(ξ) are obtained from (5). Note that p2 = p1 and

p4 = p3, since w1 = 0, so the G2 PH quintic corner curves have just four

distinct control points [8] — examples are illustrated in Figure 9.

4The canonical form employed here is somewhat different from that used in Section 5,

in the context of paths with equal arc lengths.

19



pi pc

po
L

L θ

Figure 9: Left: canonical data defining a G2 PH quintic corner curve. Right:

examples of PH quintic corner curves for turning angles θ = 45◦, 90◦, 135◦.

The parametric speed (6) of the corner curve has the Bernstein coefficients

σ0 = λ2L , σ1 = 0 , σ2 =
λ2L cos 1

2
θ

3
, σ3 = 0 , σ4 = λ2L ,

and the curvature can be expressed as

κ(ξ) = 4 λ2L sin 1

2
θ

(1 − ξ)ξ

σ2(ξ)
. (16)

The extremum curvature κe = κ(1

2
) and total arc length S are given [15] by

κe =
32(6 cos 1

2
θ + 1) tan 1

2
θ

15L(cos 1

2
θ + 1)2

and S =
2L(6 + cos 1

2
θ) cos 1

2
θ

6 cos 1

2
θ + 1

. (17)

Finally, the deviation of the mid–point r(1

2
) from the corner point pc is

δ =
(3 cos 1

2
θ + 8) | sin 1

2
θ |L

8(6 cos 1

2
θ + 1)

. (18)

Since θ is fixed by the corner geometry, the parameter L should be used to

adjust the extremum curvature κe and deviation δ.

For the (non–rounded) offset at distance d to a convex polygonal obstacle,

the offset point to a vertex with a turning angle θ is distance d sec 1

2
θ from

that vertex, and to prevent intrusion of the corner rounding curve within the
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obstacle, this must exceed the value (18) — i.e.,

d sec 1

2
θ >

(3 cos 1

2
θ + 8) | sin 1

2
θ |L

8(6 cos 1

2
θ + 1)

,

or equivalently

L < Lmax :=
8(6 + sec 1

2
θ) d

(3 cos 1

2
θ + 8) | sin 1

2
θ | . (19)

Now if κmax is the maximum allowed magnitude of path curvature, and rmin =

1/κmax is the minimum radius of curvature, from (17) the condition |κe| <

κmax becomes
32(6 cos 1

2
θ + 1)| tan 1

2
θ |

15L(cos 1

2
θ + 1)2

<
1

rmin

,

or equivalently

L > Lmin :=
32(6 cos 1

2
θ + 1)| tan 1

2
θ| rmin

15(cos 1

2
θ + 1)2

. (20)

If the bounds (19) and (20) on L are to be compatible, the condition

8(6 + sec 1

2
θ) d

(3 cos 1

2
θ + 8) | sin 1

2
θ | >

32(6 cos 1

2
θ + 1)| tan 1

2
θ | rmin

15(cos 1

2
θ + 1)2

,

must be satisfied, and this can be reduced to

d >
4(3 cos 1

2
θ + 8) sin2 1

2
θ

15(cos 1

2
θ + 1)2

rmin . (21)

The factor multiplying rmin on the right is monotonically increasing with |θ|,
from 0 when θ = 0 to 32/15 when θ = ±π. If rmin is specified a priori, and

the largest turning angle magnitude θmax is identified, substituting it in (21)

determines the minimum offset distance dmin ensuring satisfaction of both

the maximum path curvature and obstacle non–intrusion conditions.

With d = dmin, one has Lmin = Lmax at the corner(s) for which |θ| = θmax,

and the particular value L = Lmin = Lmax must be used. At the other corners,

21



Figure 10: Top: piecewise–linear path among a field of offset obstacles (left)

and this path with G2 PH quintic rounded corners (right). Bottom: G1 PH

quintic paths with tangents defined by the T1 (left) and T2 (right) method.
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it may be possible to use larger values of L, but the sum of the L values for

two consecutive corners cannot exceed the linear path length between them.

Thus, for small and closely–spaced obstacles, it may not be possible to satisfy

both the collision avoidance and curvature bound constraints.

Figure 10 shows the nominal piecewise–linear path among a field of offset

obstacles, and this path with G2 PH quintic rounded corners using d = 0.2136

and the curvature bound |κ| ≤ 5. Also shown are two paths specified by G1

PH quintic segments, that do not require obstacles offsets and use different

strategies for assigning the nodal tangents [19] — the T1 method employs a

weighted average of successive linear displacement vectors and the T2 method

uses tangents obtained from a C2 PH quintic spline fit [12]. The piecewise–

linear path with G2 rounded corners has an overall length 23.8254, somewhat

less than the value 23.9394 for the sharp–corner path. Note that the two G1

piecewise PH quintic paths take a different route through the obstacle field,

and have larger overall lengths — namely, 25.6534 using the T1 method for

assigning nodal tangents, and 25.3819 using the T2 method.

Figure 11 compares curvature plots for the G2 rounded–corner path and

the two G1 paths. The former evidently attains the curvature bound κmax = 5

around each corner. Using the T1 tangent assignment method, the G1 path

clearly exceeds this bound, and exhibits large curvature discontinuities. With

the T2 tangent method, the curvature extrema are substantially suppressed,

although significant path curvature discontinuites are still evident.

A more intricate example is shown in Figure 12, involving a path through

a single polygonal obstacle with many convex and concave corners, using the

values d = 0.1736 and κmax = 5. The piecewise–linear path involves 14 sharp
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Figure 11: Upper: curvature magnitude for the piecewise–linear path with

G2 PH quintic rounded corners, showing the curvature bound |κ| ≤ 5. Also

shown are curvature magnitudes for the G1 piecewise PH quintic paths with

nodal tangents defined by the T1 method (center) and T2 method (lower).
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corners, and in every case the G2 PH quintic corner rounding curves avoid

obstacle encroachment and exactly attain the specified curvature bound.
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Figure 12: Left: piecewise–linear path through a single intricate obstacle with

sharp corners rounded by G2 PH quintic segments that satisfy the curvature

bound |κ| ≤ 5. Right: variation of the curvature magnitude along this path.

The examples shown in Figures 10 and 12 employ the value Lmin defined

by (20) at each corner, so the corner curves are of minimun size and attain

the prescribed curvature magnitude bound κmax. Using larger L values yields

lower corner curvatures, and somewhat smaller total path lengths. However,

L values smaller than Lmax defined by (19) are generally necessary, to avoid

any overlap of consecutive corner curves. Figure 13 compares the path and

curvature distribution for the L = Lmin case in Figure 10 with a case in which

L is as large as possible for each corner, without overlap of the corner curves

(the path still avoid encroachment on any of the obstacles). The use of larger

L values evidently yields smaller peak curvature magnitudes, and the overall

arc length is slightly reduced, from S = 23.8254 to S = 23.5836.
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Figure 13: Paths and curvature plots for the obstacle field in Figure 10 using

PH corner curves of minimum size Lmin in each case (upper), and the largest

size L in each case that does not incur overlap of the corner curves (lower).
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8 Closure

Exploiting the distinctive properties of Pythagorean–hodograph (PH) curves,

a number of basic utilities have been presented in this paper that are useful in

path planning for unmanned or autonomous air, ground, or undersea vehicles.

Instead of addressing a specific path planning scenario in detail, the emphasis

herein has been to provide a family of rigorous, broadly applicable, and easily

implemented functions, and also to address pervasive misconceptions in prior

studies concerning the basic properties and capabilities of PH curves.

The problems treated in this study include: (1) maintenance of minimum

safe separations between vehicles that execute different paths at a fixed speed;

(2) design of curved paths with identical arc lengths, ensuring simultaneous

arrival at fixed speed; (3) path curvature minimization, subject to maximum

path length, to ensure compatibility with vehicle steering constraints; and (4)

curvature–continouous corner rounding of shortest paths through polygonal

obstacle fields, consistent with a prescribed maximum path curvature.

For brevity, the focus of this study has been on planar PH paths and the

complex representation has been extensively used. Although the quaternion

representation for spatial PH curves is more involved, many of the procedures

readily extend to three–dimensional paths. Another topic deserving further

investigation is the capability of PH paths to accommodate continuously–

variable path speeds, specified as functions of the elapsed time, path length

travelled, path curvature, or other variables of interest.
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List of figure captions

Figure 1. Left: two planar PH quintic paths of equal arc length traversed at

constant speed, with the points of closest approach indicated as dots. Right:

fractional separation along the paths as a function of fractional path length.

Figure 2. Two paths (blue) of identical arc length S with their offsets (red) at

distance ±0.025 S. Although the intersection of the offset curves indicates a

potential violation of the prescribed minimum safe separation δ = 0.05 S, the

actual points of closest approach (indicated by dots) are at distance 0.0515 S.

Figure 3. A family of simultaneous–arrival paths for a swarm of six unmanned

constant speed vehicles, departing and arriving in different directions from a

set of corresponding equidistant points on an initial and final target circle.

Figure 4. The 15 pair–wise separation plots for the six paths in Figure 3.

Figure 5. Left: A family of planar PH quintic interpolants to the end points

q0 = (0, 0) and q1 = (1, 0) with tangent angles θ0 = π/3 and θ1 = −3π/4, for

arc lengths S = 1.1, . . . , 1.6. Right: curvature profiles for these interpolants.

Figure 6. Maximum curvature magnitude versus arc length for paths with

end points q0 = (0, 0), q1 = (1, 0) and tangent angles θ0 = π/3, θ1 = −3π/4.

Figure 7. Left: Planar PH quintic interpolants to end points q0 = (0, 0) and

q1 = (1, 0) with tangent angles θ0 = π/6, θ1 = π/4 and derivative magnitudes

ℓ0 = ℓ1 = 1.0, 1.5, . . . , 4.0. Right: the curvature plots for these interpolants.
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Figure 8. Largest curvature magnitude versus end derivative magnitude for

paths from q0 = (0, 0) to q1 = (1, 0) and tangent angles θ0 = π/6, θ1 = π/4.

Figure 9. Left: canonical data defining a G2 PH quintic corner curve. Right:

examples of PH quintic corner curves for turning angles θ = 45◦, 90◦, 135◦.

Figure 10. Top: piecewise–linear path among a field of offset obstacles (left)

and this path with G2 PH quintic rounded corners (right). Bottom: G1 PH

quintic paths with tangents defined by the T1 (left) and T2 (right) method.

Figure 11. Upper: curvature magnitude for the piecewise–linear path with

G2 PH quintic rounded corners, showing the curvature bound |κ| ≤ 5. Also

shown are curvature magnitudes for the G1 piecewise PH quintic paths with

nodal tangents defined by the T1 method (center) and T2 method (lower).

Figure 12. Left: piecewise–linear path through a single intricate obstacle with

sharp corners rounded by G2 PH quintic segments that satisfy the curvature

bound |κ| ≤ 5. Right: variation of the curvature magnitude along this path.

Figure 13. Paths and curvature plots for the obstacle field in Figure 10 using

PH corner curves of minimum size Lmin in each case (upper), and the largest

size L in each case that does not incur overlap of the corner curves (lower).
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d distance

f, h real values

j, k, m integers

n curve degree

p, q real values

r radius of curvature

s arc length

t time

u, v real values

x, y Cartesian coordinates

L corner curve dimension

V speed

S total arc length

W, X, Y homogeneous coordinates

n curve normal

p,q, r, s position vectors

t curve tangent

w complex number

δ minimum distance

θ tangent angle/corner angle

κ curvature

µ, ν, ξ curve parameter

σ parametric speed

∆q displacement vector

∆s arc length increment

∆t sampling time

Table 1: List of notations




