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Systems/Circuits

Balanced Cortical Microcircuitry for Spatial Working
Memory Based on Corrective Feedback Control

Sukbin Lim1 and Mark S. Goldman1,2

1Center for Neuroscience and 2Departments of Neurobiology, Physiology, and Behavior, and Ophthalmology and Vision Science, University of California,
Davis, Davis, California 95618

A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memo-
rized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially
specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of
working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore,
although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the
substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is
capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on
long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibi-
tory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially
specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are
robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate
irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–
inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory.

Key words: balanced networks; computational model; decision making; derivative feedback; integration; working memory

Introduction
Working memory refers to an ability to hold information “on-
line” in the absence of sensory inputs. In spatial working mem-
ory, the item held in memory is the spatial location of an object
that must be recalled after a delay period of up to several seconds.
Electrophysiological recordings have revealed neurons in the pari-
etal and frontal cortices that encode the remembered location of a
cue through spatially tuned patterns of persistent neural firing (Fu-
nahashi et al., 1989; Constantinidis and Steinmetz, 1996; Chafee and
Goldman-Rakic, 1998), but the circuit mechanisms maintaining this
sustained neural activity remain poorly understood.

Computational modeling has been useful in suggesting possi-
ble mechanisms for the generation and storage of spatially spe-
cific patterns of persistent neural activity. The vast majority of

models consist of networks of excitatory and inhibitory neuronal
populations connected by short-range excitation and longer
range inhibition (for review, see Ermentrout, 1998; Compte,
2006). Local recurrent excitation between neurons having similar
preferred features provides positive feedback that supports long-
lasting reverberation of activity, while long-range inhibition sta-
bilizes and shapes the spatially localized patterns of activity.
However, although long-range inhibition could be achieved
through disynaptic pathways (Melchitzky et al., 2001) or large
basket cells (Markram et al., 2004), the neural substrate for wide-
spread inhibition in memory circuits remains unclear because
inhibitory projections are typically shorter ranged than excitatory
projections (Braitenberg and Schüz, 1998; Douglas and Martin,
2004).

Recent studies of frontal cortical microcircuitry suggest an
alternative mechanism, based on negative-derivative feedback
rather than positive feedback, may play a critical part in main-
taining persistent neural activity. The key experimental observa-
tions motivating this hypothesis are that, first, inhibitory and
excitatory inputs have been suggested to be balanced in strength
in frontal cortical neurons (Shu et al., 2003; Haider et al., 2006) or
more generally positively covary in other cortical neurons (Ru-
dolph et al., 2007; Haider and McCormick, 2009), and, second,
the kinetics of excitatory-to-excitatory synaptic connections are
slower than those of excitatory-to-inhibitory connections (Wang
et al., 2008; Wang and Gao, 2009; Rotaru et al., 2011). Recent
modeling work (Lim and Goldman, 2013) has shown how these
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two conditions provide a mechanism for maintaining persistent
activity through negative-derivative feedback that opposes drifts
in firing rate: changes in firing rate trigger fast negative feedback
that opposes the drift, followed by slower excitatory feedback that
rebalances the net synaptic input. Here, we show how such
negative-derivative feedback can operate in a spatially specific
manner to maintain spatial working memory. Unlike traditional
spatial working memory networks that have stereotyped spatial
profiles of activity, and thus lose information about stimulus
amplitude, we show that negative-derivative feedback models
can temporally integrate their inputs and store analog values of
stimulus amplitudes as well as spatial locations. Furthermore, by
examining the relationship between the structure of the synaptic
connectivity and the spatial profiles of persistent activity, we
show that derivative-feedback memory networks do not require
widespread, lateral inhibition. Finally, we show that the balance
of inhibition and excitation that underlies persistent activity is
robustly maintained across a range of common perturbations
and leads to irregular neuronal firing similar to that observed
experimentally (Compte et al., 2003).

Materials and Methods
Here we describe how our firing rate and spiking networks are structured
to maintain spatially tuned patterns of persistent firing through a
negative-derivative feedback mechanism. Consistent with experimental
observations in prefrontal cortex (Goldman-Rakic, 1995), the model
networks are organized in a functionally columnar architecture of excit-
atory and inhibitory neurons (Fig. 1) with each column defined by hav-
ing a similar preferred spatial feature of the stimulus. Following previous
work (Ermentrout, 1998; Wang, 2001; Compte, 2006), we assume that
these preferred spatial features are uniformly distributed along a ring and
can be characterized by an angular variable �. Below, we first describe the
network structure and equations governing the dynamics of both the
firing rate and spiking models. Then, we analytically derive conditions
for producing spatially localized persistent activity in networks with
either linear or nonlinear dynamics, and with or without translation-
invariant symmetry.

Firing rate model of spatial memory network. In the firing rate models,
the activities of, and synaptic interactions between, the neurons are pa-
rameterized by their preferred spatial feature �, which ranges from –� to
�. The dynamics of the firing rates and synaptic state variables are gov-
erned by the equations:

�E

drE��,t�

dt
� � rE��,t� � fE��

j�E,I
�

��

�

JEj��,��� sEj���,t�d�� � iE��,t��
�I

drI��,t�

dt
� � rI��,t� � fI��

j�E,I
�

��

�

JIj��,��� sIj���,t�d�� � iI��,t��
�ij

dsij���,t�

dt
� � sij���,t� � rj���,t� for i, j � E or I

(1)

where ri(�,t) represents the mean firing rate of the excitatory ( E) or
inhibitory ( I) population i with preferred feature �. sij���,t� denotes the
synaptic state variable for the connections from population j with pre-
ferred feature �� onto population i for i,j � E or I, and approaches the
presynaptic firing rate rj(��,t) with time constant �ij.

The mean firing rate ri(�,t) approaches fi(xi(�,t)) with intrinsic time
constant �i, where fi(x) represents the steady-state neuronal response to
input current x. We consider two types of neuronal response functions:
linear f�x� � x (Figs. 4, 5A–D, top, 6 –10) and a nonlinear neuronal
response function (Fig. 5A–D, bottom) having the Naka–Rushton (Wil-
son, 1999) form

f� x� � M
� x � x��

2

x0
2 � � x � x��

2 h� x � x��, (2)

where M represents the maximal neuronal response, x� represents the
input threshold, x0 defines the value of (x � x�) at which f(x) reaches its
half-maximal value, and h(x) denotes the step function h�x� � 1 for x
� 0 and h�x� � 0 for x 	 0.

The input xi(�,t) to population i with the preferred feature � is a sum of
the recurrent synaptic currents Jij��,��� sij���,t� from population j with
the preferred feature �� and the external current ii(�,t) (not to be con-
fused with the subscript i). Jij(�,��) represents the synaptic connectivity
strength and, except for the nontranslationally invariant model described
in the final section of the Materials and Methods, we assume that it
depends only on the distance between � and �� and can be rewritten as
Jij(� � ��). In Figures 6 –10, we consider networks with Gaussian-shaped
profiles of synaptic connectivity Jij(� � ��) � Jij exp[ � (� � ��)2/

ij

2], where 
ij here and below denotes �2 times the standard deviation of the
Gaussian. In Figures 4 and 5, in which only the first cosine Fourier component is
tuned to provide negative-derivative feedback, we consider networks that have a
(different)Gaussian-shapedprofile,plusadditionalconstantandcosinecompo-
nents Jij�� � ��� � Jij,const � Jij,cos cos�� � ��� � Jij,gaus

exp� � �� � ���2/
ij
2�.

We assume that the external input ii(�,t) is the sum of constant back-
ground input ii,c and time-varying input, where the time-varying com-
ponent can be expressed separably as the product of a spatial component
ii,s(�) and a temporal component ii,t(t), so that ii(�,t) � ii,c 	 ii,s(�) ii,t(t).
The temporal component ii,t(t) represents an external pulse of input that
has undergone smoothing before its arrival at the memory network, and
is modeled as a pulse of duration twindow � 500 ms that is exponentially
filtered with time constant �ext � 100 ms. The spatial component ii,s(�) is
a Gaussian function centered at �0. For the unimodal activity described in
most of the paper, ii,s��� � ii,s,0 � ii,s,1 exp[ � (� � �0)

2/
iO
2]. For the

multi-modal activity in Figure 6D, it is the sum of Gaussian functions
ii,s��� � ii,s,0 � �

k�1
3 ii,s,1

k exp[ � (� � �0
k)2/�
iO

k �2], where the super-

script k denotes the Gaussian component and is not an exponent. For the
temporal integration of spatially localized input in Figure 5, ii,s(�) is given
by ii,s��� � ii,s,0 � ii,s,1 cos�� � �0�.

Throughout the paper except in Figure 8, the intrinsic time con-
stants of excitatory and inhibitory neurons, �E and �I, are 20 and 10
ms, respectively (McCormick et al., 1985). The time constants of
GABAA-type inhibitory synapses, �EI and �II, are each 10 ms (Salin
and Prince, 1996; Xiang et al., 1998). Based upon experimental mea-
surements of excitatory synaptic currents in prefrontal cortex (Rotaru
et al., 2011), the time constants of excitatory synaptic currents, �EE

and �IE, were set to 100 and 25 ms, respectively. Note that these time
constants reflect the kinetics of postsynaptic potentials triggered by
activation of NMDA- and AMPA-type receptors, but likely include
the effects of additional intrinsic ionic conductances since these ex-
periments were performed without blocking intrinsic ionic currents
(Rotaru et al., 2011).

Structure of network connectivity

from E
from I

JEE(θ,θ’), τEE

JIE(θ,θ’), τIE

JEI(θ,θ’), τEI

JII(θ,θ’), τII

Figure 1. Structure of network model for spatial working memory. We consider a columnar
architecture of excitatory and inhibitory neurons such that neurons in the same column have
similar preferred feature �. The connectivity strength J is dependent only on the preferred
features � and �� of the presynaptic and postsynaptic neurons and � represents the decay time
of synaptic currents at the shown connections. Blue and red curves represent excitatory and
inhibitory connections, respectively.
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For the nonlinear function of Naka–Rushton form in Equation 2, the
maximal response M � 100, the half-activation parameter x0 � 40, and
the input threshold x� � 10. The parameters for the spatial components
of the synaptic connectivity and external input were assigned as follows:
in Figures 4 and 5, the parameters for the Gaussian component of the
connectivity are JEE,gaus � 50/�, JIE,gaus � JEI,gaus � JII,gaus � 100/�,

EE� 
IE � 
EI � 
II � 0.2�. The parameters for the amplitudes of the
constant and cosine terms of the connectivity were defined as JEE,const �
250/� � JEE,gaus a0, JIE,const � JEI,const � JII,const � 300/� � JIE,gaus a0,
JEE,cos � 150/� � JEE,gaus a1, JIE,cos � 300/� � JIE,gaus a1, JEI,cos � 100/
� � JEI,gaus a1, JII,cos � 200/� � JII,gaus a1, where a0 and a1 are multipli-
cative factors deriving from the constant and first cosine components of

the Gaussian portion of the connectivity, and are defined as a0 �
1

2�

�
��
� d� exp[ � (�/0.2�)2] � 0.1�� and a1 �

1

�
�

��
� d� cos��� exp

[ � (�/0.2�)2] � 0.2e�0.01�2 ��. With these definitions, the overall first
cosine component of the connectivity satisfied the balance condition of
Equation 9 below. 
EO � 0.25�, iEc � 10,000, iIc � 9000, iE0 � 500, iI0 �
0, and iI1 � 0 in Figures 4 and 5 A, B. iE1 � 300 in Figures 4 and 5A, varies
between 200 and 500 in Figure 5B, top, and varies between 200 and 800 in
Figure 5B, bottom. iEc � 5000, iIc � 0, iI0 � iI1 � 0, iE0 � iE1 � 80 in
Figure 5C,D. The parameters in Figures 6 –9 are the following: JEE,1 �
100, JIE,1 � 200, JEI,1 � 100, JII,1 � 200, 
EE � 
IE � 0.1�, 
EI � 
II �
0.2�, 
EO � 0.4�, iEc � iIc � 0, iE0 � 100, iI0 � 0, iE1 � 135, and iI1 � 0,
except in Figure 6D where iE0 � 100, iI0 � 0, iI1 � 0, and iE,1

1 � 150,
iE,1
2 � iE,1

3 � 100, �0
1 � 0, �0

2,3 � � 2�/3 and 
EO
1,2,3 � �/6.

In the spatial working memory networks without negative-derivative
feedback (Fig. 8), �EE and �IE equal 100 ms, and the remaining time
constants are the same as the corresponding ones for the negative-
derivative feedback networks. The neuronal response (input current–
output firing rate) functions in this figure were chosen to be linear for the
inhibitory neurons and, for the excitatory neurons, a piecewise linear
function given by f(x) � 1.4(x � 1) 	 3.5 for x 
 1, f(x) � 14(x � 1) 	
3.5 for 1 � x 
 2, and f(x) � 7(x � 2) 	 17.5 for 2 � x. The spatial
component of the synaptic connectivity is a Gaussian function
Jij(� � ��) � Jij exp[ � (� � ��)2/
ij

2] with no I-to-I connection (and,
for Fig. 8 D, H, L, P only, with the addition of a constant function). The
corresponding parameters are as follows: JEE,gaus� JIE,gaus � 0.5/�,
JEI,gaus � 2.5/�, 
EE � 
IE � 0.2�, 
EI � 0.1� for Figure 8A, E, I, and M;
JEE,gaus � 0.5/�, JIE,gaus � 1/�, JEI,gaus � 0.5/�, 
EE � 0.2�, 
IE � �, 
EI

� 0.1� for Figure 8B, F, J, and N; JEE,gaus� JIE,gaus � JEI,gaus � 0.5/�,

EE� 
IE � 0.2 �, 
EI � � for Figure 8C, G, K, and O; and JEE,gaus�
JEI,gaus � 0.5/�, JIE,gaus � 1/�, 
EE� 
IE � 0.2�, 
EI � 0.1�, and with the
addition of a constant value 0.1/� to the I-to-E connection for Figure
8 D, H, L, and P. The spatial profile of the transient external input is the
same for all networks and is given by ii,s��� � 0.5 � 0.5 cos���.

All the simulations of the firing rate models were run with a fourth-
order explicit Runge–Kutta method in MATLAB.

Spiking network of leaky integrate-and-fire neurons. In Figure 11, we
constructed a recurrent network of excitatory and inhibitory populations
of spiking neurons with balanced excitation and inhibition. The activities
of, and synaptic interactions between, the neurons are parameterized by
their preferred spatial feature �, which ranges from –� to �, as in the
firing rate models. Here, we describe the intrinsic dynamics of the indi-
vidual neurons and the synaptic currents connecting the neurons.

The spiking network consists of NE excitatory and NI inhibitory
current-based leaky integrate-and-fire neurons that emit a spike when a
threshold is reached and then return to a reset potential after a brief
refractory period. The neurons are recurrently connected to each other
and receive transient stimuli from an external population of NO neurons.
The connectivity between neurons is sparse and random with constant
connection probability 
i so that, on average, each neuron receives NE
E,
NI
I, and NO
O synaptic inputs from the excitatory, inhibitory, and ex-
ternal populations, respectively. The strengths of the recurrent connec-
tions and connections from the external population are dependent on the
difference between the preferred feature � of the postsynaptic neuron and
the preferred feature �� of the presynaptic neuron.

The dynamics of the subthreshold membrane potential Vi
l of the lth

neuron in population i and the dynamics of the synaptic input variables
sij

lm onto this neuron from the mth neuron in population j are given as
follows:

�i

dVi
l

dt
� � �Vi

l � VL� � �
m

J̃iE
lmpiE

lm�qiE
N siE

lm,N�t� � qiE
A siE

lm, A�t��

� �
m

J̃iI
lmpiI

lmsiI
lm�t� � �

m
J̃iO

lmpiO
lmsiO

lm�t� (3)

�ij
k

dsij
lm,k

dt
� � sij

lm,k � �
tj

m

��t � tj
m�, for j � E,I, or O, and

k � N or A. (4)

The first term on the right-hand side of Equation 3 corresponds to a
neuronal intrinsic leak process such that, without the input, the voltage
decays to the resting potential VL with time constant �i. The second term
is the sum of the recurrent NMDA- and AMPA-mediated excitatory
synaptic currents. The dynamic variables siE

lm,N and siE
lm, A represent

NMDA- and AMPA-mediated synaptic currents from cell m of the ex-
citatory population. The fractions of NMDA- and AMPA-mediated cur-
rents are assumed to be uniform across the population and are denoted
by qiE

N and qiE
A � 1 � qiE

N , respectively. piE
lm is a binary random variable

with probability 
E and represents the random connectivity between
neurons. The sum of the strengths of the NMDA- and AMPA-mediated
synaptic currents is a Gaussian function given by the following:

J̃ iE
lm � J̃ iE exp� � ��i

l � �E
m�2/
iE

2� where �i
l � 2�l/Ni � �,

�E
m � 2�m/NE � �. (5)

Similarly, the third and fourth terms represent the total synaptic inputs
from the inhibitory population and the external population. The dy-
namic variables siI

lm and siO
lm denote inhibitory and external synaptic cur-

rents of strengths J̃iI
lm and J̃iO

lm, respectively, and piI
lm and piO

lm are binary
random variables with probability 
I and 
O, respectively.

In the dynamics of sij
lm,k in Equation 4, a presynaptic spike at time tj

m

from neuron m in population j causes a discrete jump in synaptic current
followed by an exponential decay with time constant �ij

k . The spikes ar-
riving from the external population represent stimulus-driven inputs to
be remembered and are generated by a Poisson process with rate rO

during a time window twindow (rO � 0 during the memory period). Note
that the strength of sij

lm, j, denoted by J̃ij
lm in Equation 3, corresponds to the

integrated area under a single postsynaptic potential, not the height of a
single postsynaptic potential. Furthermore, the connectivity strengths J̃ij

lm

were scaled as follows:

J̃ ij
lm � Ĵ ij

lm��Njp for fixed Ĵij
lm. (6)

This scaling enabled the fluctuations in the input to remain of the same
order of magnitude as the mean input as the network size varied (van
Vreeswijk and Sompolinsky, 1996, 1998).

In Figure 11, E and H, the coefficients of variation of the interspike inter-
vals were computed for 3 s from time 300 to 3300 ms using all excitatory
neurons that exhibited �5 spikes during this period. CV2 measures the vari-
ability of the interspike intervals locally when the activity is not stationary,

and is defined as �CV2
 �
1

N � 1
�

n
CV2�n�, CV2�n� �

2	ISIn	1 � ISIn	
ISIn	1 � ISIn

where ISIn denotes the nth interspike interval (Holt et al., 1996).
In all spiking simulations, NE � 16000, NI � 4000, NO � 20000,


E � 
O � 0.2, and 
I � 0.4. The time constants and the fractions of
NMDA-mediated currents were �E � 20ms, �I � 10ms, �EI � �II � 10ms,
�EE

N � 150ms, �EE
A � 50ms, �IE

N � 45ms, �IE
A � 20ms, qEE

N � 0.5, and
qIE

N � 0.2 (Rotaru et al., 2011). Note that, as in the rate models, these
time constants reflect the kinetics of postsynaptic potentials triggered by
activation of NMDA- and AMPA-type receptors, but likely include the
effects of additional intrinsic ionic conductances since these experiments

6792 • J. Neurosci., May 14, 2014 • 34(20):6790 – 6806 Lim and Goldman • Spatial Working Memory through Derivative Feedback



were performed without blocking intrinsic ionic currents (Rotaru et al.,
2011). The remaining parameters of the integrate-and-fire neuron,
which were the same for both excitatory and inhibitory neurons, were
VL� �60 mV, V� � �40 mV, and Vreset � �52 mV, with a refractory
period �ref � 2 ms. The parameters for the synaptic strengths were tuned
to achieve a balance, on average, between the excitatory and inhibitory
inputs arriving onto each population during sustained activity (Eq. 9),
and were set as follows: JEE �JIE � 29.70, JIE �JII � 42.43, JEO,0 � 2.1,
JIO,0 � 0, JEO,1 � 2.1, JIO,1 � 0, 
EE � 
IE � 0.25�, and 
EI � 
II � 0.2�.
rO � 40 Hz for excitatory external input neurons with indices from
0.45NE (7200) to 0.55NE (8800) and was zero otherwise.

The numerical integration of the network simulations was performed
using the second-order Runge–Kutta algorithm. Spike times were ap-
proximated by linear interpolation, which maintains the second-order
nature of the algorithm (Hansel et al., 1998).

Derivation of conditions for negative-derivative feedback using Fourier
analysis: linear dynamics. Here, we analytically derive conditions for
maintaining persistent spatial patterns of activity in firing rate models
based on negative-derivative feedback control. First, to illustrate the con-
ditions for negative-derivative feedback control in a simple manner, we
assume that the network dynamics are linear and the connectivity pattern
is translation invariant. In such a case, Fourier analysis can be used to
obtain the conditions for negative-derivative feedback in terms of the
Fourier coefficients of the synaptic strengths.

Under the assumption that the connectivity is translationally invari-
ant, that is, the connectivity strength depends only on the difference
� � �� between the preferred features of the presynaptic and postsynap-
tic neurons so that Jij��,��� � Jij(� � ��), all variables and functions of
� in Equation 1 can be rewritten in terms of their Fourier series so that

�E �
n���

n�� dr̂E�n,t�

dt
ein� � � �

n���

n��

r̂E�n,t�ein� �

fE� �
n���

n��

ein�
 2� �
j�E,I

ĴEj�n� ŝEj�n,t� � ı̂E�n,t���
�I �

n���

n�� dr̂I�n,t�

dt
ein� � � �

n���

n��

r̂I�n,t�ein� �

fI� �
n���

n��

ein�
 2� �
j�E,I

Ĵ Ij�n� ŝIj�n,t� � ı̂I�n,t���
�ij �

n���

n�� dŝij�n,t�

dt
ein� � � � ŝ ij�n,t� � r̂ j�n,t��ein� for i, j � E or I,

(7)

where the x̂�n� are the Fourier coefficients of the function x���, and are

defined by x̂�n� �
1

2�
�

��
� x���e�in� d� (Folland, 2009). The expression

for the recurrent input is obtained by using the convolution theorem,
which states that the Fourier coefficient of���

� Jij�� � ���sij���,t�d�� is
the product of the Fourier coefficients of Jij��� and sj���. Furthermore, if
we assume linear dynamics with fE,I�x� � x, the Fourier components of
the different spatial frequencies do not interact with each other and the
equation governing the dynamics of each Fourier coefficient is given by
the following:

�E

dr̂E�n,t�

dt
� � r̂E�n,t� � 2� �

j�E,I
ĴEj�n� ŝEj�n,t� � ı̂E�n,t�

�I

dr̂I�n,t�

dt
� � r̂I�n,t� � 2� �

j�E,I
Ĵ Ij�n� ŝIj�n,t� � ı̂I�n,t�

�ij

dŝij�n,t�

dt
� � ŝ ij�n,t� � r̂ j�n,t� for i, j � E or I

.

(8)

Thus, we obtain a 6D linear system for each Fourier component, obeying

dy�/dt � A↔y� where y� � �r̂E�n�,r̂I�n�,ŝEE�n�,ŝIE�n�,ŝEI�n�,ŝII�n��, and A↔ is

defined in terms of the time constants �E,�I, and �ij and the Fourier compo-
nents Ĵij�n�.

The conditions for negative-derivative feedback control within each
Fourier mode of this spatially structured network are analogous to those
found previously for spatially uniform networks (Lim and Goldman,
2013). Here, we summarize the approach taken in the previous work, and
refer the reader to that work for more extensive analysis. To analyze the
linear networks, we used the eigenvector decomposition to decompose
the coupled 6D system into noninteracting eigenvectors. For a linear

system obeying dy�/dt � A↔y�, the right eigenvectors q�i
r and correspond-

ing eigenvalues �i satisfy the equation A↔q�i
r � �iq�i

r and the decay of each
mode is exponential with time constant �i,eff � � 1/Re��i�, where Re
denotes the real part. To obtain persistent firing (large �i,eff), the system
should have at least one eigenvector with its corresponding eigenvalue
equal to or close to zero. Also, to maintain persistent activity without
unbounded growth of activity in the nonpersistent modes requires that
all eigenvalues except those close to 0 have a negative real part (Lim and
Goldman, 2013, their Supplementary information 1.2 and 1.3).

Applying this analysis to the system in Equation 8, we found condi-
tions for the maintenance of persistent activity in each Fourier compo-
nent by negative-derivative feedback. The conditions for each Fourier
mode n are given by the following:

2� ĴEE�n� � �2��2ĴEI�n� Ĵ IE�n�/�2� Ĵ II�n� � 1�

O� J�,

i.e., ĴEI�n�ĴIE�n�/�ĴEE�n�ĴII�n�� � 1 (9)

��IE � �EI� ĴEE�n� � ��EE � �II� ĴEI�n� Ĵ IE�n�/ Ĵ II�n� � O� J�,

i.e., �IE � �EI � �EE � �II, (10)

where here we have assumed that the magnitudes of the Ĵij�n� are large so
that lower order terms in Ĵij�n� can be neglected. Equation 9 represents
the balance between the strengths of positive feedback ĴEE�n� and nega-
tive feedback ĴEI�n�ĴIE�n�/ĴII�n� in each mode, and we thus refer to it as the
balance condition (Fig. 3B). Equation 10 constrains the time constants of
the positive and negative feedback. The time constants multiplying the
feedback strengths correspond to the timescales for the positive and neg-
ative feedback, that is, �	 � �EE � �II and �� � �IE � �EI, where we
note that �II acts as a time constant for positive feedback since the I-to-I
connection inhibits the negative feedback pathway. From Equation 10,
these time constants must be unequal, �	���. Under these conditions, the
recurrent input approximates derivative feedback and thus defines the
derivative-feedback models.

Additionally, we found the stability conditions on the network
parameters for a system in which all eigenvalues except those close to
0 have a negative real part. Using the Routh–Hurwitz criterion (Nise,
2004), we found necessary conditions for stability given by the fol-
lowing:

Ĵ II�n�

�I�II
�

ĴEE�n�

�E�EE

ĴII�n�

�I�II
� 1

�E
�

1

�EI
�

1

�IE
�

1

�EE
� �

ĴEE�n�

�E�EE
� 1

�I
�

1

�EI
�

1

�IE
�

1

�II
�

�EE�II � �IE�EI

�EE � �II � �IE � �IE (11)

The last condition is similar to Equation 10, which showed that the
timescales for the positive and negative feedback must be different to
have stable persistent firing. The stability condition above additionally
specifies that the positive feedback should be slower than the negative
feedback. The third condition is similar to the last condition, except that
it constrains the product of the time constants, and the first two condi-
tions require that the excitatory time constants be slower than the inhib-
itory ones.

Derivation of conditions for negative-derivative feedback using Fourier
analysis: nonlinear dynamics. In this section, we consider a network
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model in which the individual neurons have a nonlinear firing rate versus
input current relationship. In the presence of such nonlinearity, the Fou-
rier components of the firing rates and synaptic variables are no longer
independent for the different Fourier modes. However, as shown below,
the core principles for the conditions on the network parameters are
similar to those for the linear networks, that is, negative-derivative feed-
back requires, first, a balance between the strengths of positive and neg-
ative feedback and, second, that positive feedback is slower than negative
feedback.

To find analytically the conditions on negative-derivative feedback in
nonlinear networks, we consider a simple model in which the connection
strengths and the external input are described by their first two Fourier
components, a constant mode and a cosine mode (Ben-Yishai et al.,
1995). The first two Fourier coefficients of the quantity x, denoted a0, x

and a1, x, are given by al, x �
1

�
�

��
� cos�l��x���d� for l � 0 or 1 (note that

a0, x � 2x̂�0� and a1, x � x̂�1� � x̂� � 1� � Re � x̂�1�� in Eq. 8). Then,
by projecting the system of Equation 1 onto the first two Fourier com-
ponents, we obtain the following equations governing the dynamics of
a0, x and a1, x, for x � rE, rI, sEE, sIE, sEI, or sII, during the memory period
(when the external input is zero):

�i

d

dt
a0,ri

� � a0,ri
�

1

��
��

�

d�fi�2�
 �
j�E,I

a0,Jij
a0,sij

2
�

cos��� �
j�E,I

a1,Jij
a1,sij��

�i

d

dt
a1,ri

� � a1,ri
�

1

��
��

�

d�cos��� fi�2�
 �
j�E,I

a0,Jij
a0,sij

2
�

cos��� �
j�E,I

a1,Jij
a1,sij��

�ij

d

dt
a0,Sij

� � a0,Sij
� a0,rj

for i, j � E, or I

�ij

d

dt
a1,Sij

� � a1,Sij
� a1,rj

for i, j � E, or I.

(12)

In the presence of nonlinearity, global analysis of the network dynamics
through the eigenvector decomposition is not possible. Instead, we find
the conditions by locally linearizing the system around possible steady
states and note that the conditions obtained must hold for all steady
states that can be maintained persistently. For the steady state to belong
to a continuous attractor, there should be at least one eigenvector equal
to or close to 0 in the local linearization. If we assume that there exists a
steady state and denote it by the superscript SS as a0, x

SS and a1, x
SS for x � rE,

rI, sEE, sIE, sEI, or sII, Equation 12 becomes

�i

d

dt
�a0,ri

� � �a0,ri
� 2�c0,i �

j�E,I

a0,Jij

2
�a0,sij

� 2�c1,i �
j�E,I

a1,Jij
�a1,sij

�i

d

dt
�a1,ri

� � �a1,ri
� 2�c1,i �

j�E,I

a0,Jij

2
�a0,sij

� 2�c2,i �
j�E,I

a1,Jij
�a1,sij

�ij

d

dt
�a0,Sij

� � �a0,Sij
� �a0,rj

for i, j � E, or I

�ij

d

dt
�a1,Sij

� � �a1,Sij
� �a1,rj

for i, j � E, or I,

(13)

where c0,i �
1

��
��

�

d�fi��2�
 �
j�E,I

a0,Jij
a0,sij

SS

2
� cos��� �

j�E,I
a1,Jij

a1,sij

SS ��
c1,i �

1

��
��

�

d� cos��� fi��2�
 �
j�E,I

a0,Jij
a0,sij

SS

2
� cos��� �

j�E,I
a1,Jij

a1,sij

SS ��
c2,i �

1

��
��

�

d� cos2��� fi��2�
 �
j�E,I

a0,Jij
a0,sij

SS

2
� cos��� �

j�E,I
a1,Jij

a1,sij

SS ��.

In the above, fi��xi� denotes the derivative of fi�x� evaluated at xi, �a0, x

� a0, x � a0, x
SS , and �a1, x � a1, x � a1, x

SS for x � rE, rI, sEE, sIE, sEI, or sII.
Thus, these equations describe a 12D linear system (two coupled 6D
systems, one for the constant mode and the other for the cosine mode).
As shown in the previous section, we obtain the conditions for negative-
derivative feedback by examining the conditions for the system given by
Equation 13 to have an eigenvalue close to 0. These conditions are given
by the following:

�a0,JEE
a0,JII

� a0,JEI
a0,JIE

��a1,JEE
a1,JII

� a1,JEI
a1,JIE

� 		 O�J4�, (14)

�	 � ��EE � �II� � ��IE � �EI� � ��. (15)

Equation 15 is the condition for slower positive feedback, which is the
same as Equation 11 for the linear networks. Equation 14 can be achieved
either when a0,JEE

a0,JII
� a0,JEI

a0,JIE


O� J2� or a1,JEE

a1,JII

� a1,JEI
a1,JIE



O� J2�, that is, when either the constant mode or the first
cosine mode satisfies a balance condition identical to Equation 9 for the
linear networks. Additional inequality conditions for the stability of the
system can likewise be obtained by analogy to the analysis underlying
Equation 11 for the linear networks.

We note that, for both the linear and nonlinear networks, the con-
dition that positive and negative feedback are balanced leads to a
corresponding requirement that the excitatory and inhibitory inputs
onto at least the excitatory cells (and, unless JEI and JIE are very
different, also the inhibitory cells) are closely balanced as well. The
reason for this is that achieving large negative-derivative feedback
requires correspondingly large excitatory and inhibitory recurrent
inputs. If these inputs were unbalanced, then the total current driving
the neural response functions fE and fI would be very large. This would
cause very large synaptic input to the neurons that would drive strong
changes in firing rates rather than maintaining persistent activity.
Thus, even in the presence of higher Fourier components of the con-
nection strengths or nonlinear response functions, the balance con-
dition remains the same (derivation not shown) and the core
principles for negative-derivative feedback remain the same as in the
linear networks.

Derivation of conditions for negative-derivative feedback to maintain
arbitrary patterns of activity in nontranslationally invariant networks.
In the previous sections, we found the conditions necessary for
negative-derivative feedback when the connection strengths are
translationally invariant. In this section, we extend our analysis to
networks without translation invariance and generalize the condi-
tions for negative-derivative feedback control to such networks.

For simplicity, we assume the network obeys linear dynamics and
assume that the neuronal index � is discrete and uniformly spaced along
the ring, with the total number of neurons in either the excitatory or
inhibitory population equal to N�. Then, in Equation 1, the firing activ-
ities and synaptic variables are vectors of length N�, the connection

strengths are N� � N� matrices that we denote as M
↔

ij for i,j � E or I, and
Equation 1 can be rewritten as follows:
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�E

dr�E�t�

dt
� � r�E�t� � M

↔
EEs�EE�t� � M

↔
EIs�EI�t� � i�E�t�

�I

dr�I�t�

dt
� � r�I�t� � M

↔
IEs�IE�t� � M

↔
IIs�EI�t� � i�I�t�

�ij

ds�ij�t�

dt
� � s�ij�t� � r� j�t� for i, j � E, or I.

(16)

In this case, the slower positive than negative feedback can be
achieved under the same conditions (bottom two equations of Equa-
tion 11) found for the translationally invariant networks. On the
other hand, the balance condition now is expressed as a relation
between the connectivity matrices

��M
↔

EE � I
↔

� � M
↔

EI�M
↔

II � I
↔

��1 M
↔

IE�v� � 0 for some v� � 0,

(17)

and the persistent pattern of activity under this condition is

r�E � v� and r�I � M
↔

EI
�1�M

↔
EE � I

↔
�r�E � �M

↔
II � I

↔
��1 M

↔
IEr�E.

(18)

For example, if the M
↔

ij’s commute with each other and have a common

eigenvector v� such that M
↔

ijv� � �ijv�, then the balance condition becomes
�EE � �EI�IE/�II for large �, and r�E � v� and r�I � �EE/�EIr�E � �IE/�IIr�E.

Note that if M
↔

ij is translationally invariant, the common eigenvectors of

M
↔

ij are the Fourier components discussed previously.

Results
Principle of negative-derivative feedback control for spatial
working memory
We consider a spatial working memory model that maintains
persistent activity through a negative-derivative feedback mech-
anism that counteracts drift in memory representations. In this
section, we review recent work (Lim and Goldman, 2013) show-
ing how a negative-derivative feedback mechanism can maintain
spatially uniform patterns of persistent activity in networks with
no spatial structure. In the following sections, we show how this
framework can be extended to networks whose spatial structure
allows them to maintain stimulus-dependent spatial patterns of
activity, and we describe salient properties of these networks.

To illustrate how negative-derivative feedback networks slow
memory decay and maintain a graded range of spatially uniform
persistent activity, we consider a simple mathematical model of a
memory cell with mean firing rate r(t), which receives transient
input I(t) to be integrated and maintained during a delay period
(Fig. 2A):

�
dr

dt
� � r � Wder

dr

dt
� I�t�

f�� � Wder�
dr

dt
� � r � I�t�. (19)

The first term on the right side of the top equation, –r, represents
intrinsic leak processes that lead to activity decay with time con-

stant � in the absence of feedback. The second term, � Wder

dr

dt
,

represents negative-derivative feedback that resists changes in
activity such that increases (decreases) in firing rates result in a

feedback signal of negative (positive) sign (Fig. 2B). For strong
derivative feedback, Wder �� �, the effective time constant of
activity decay �eff � � � Wder is dominated by this derivative
feedback, so that the system becomes proportionately more re-
sistant to memory decay as the strength of derivative feedback
increases.

Mechanistically, this negative-derivative feedback can arise
from recurrent network interactions in memory-storing circuits
that contain positive and negative feedback pathways (Fig. 2C).
When positive feedback mediated by recurrent excitation and
negative feedback mediated by recurrent inhibition have equal
strength, but positive feedback has slower kinetics, a neuron re-
ceives derivative-like recurrent input: the equal-strength positive
and negative feedback lead to nearly zero net input during per-
sistent activity, but the faster negative feedback leads to large
input that opposes changes in activity whenever activity fluctu-
ates. In spatially uniform networks, the strength of negative-
derivative feedback has been shown (Lim and Goldman, 2013) to
be proportional to the strength of the balanced positive and neg-
ative feedback and the difference in their timescales, so that
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Figure 2. Memory networks with negative-derivative feedback. A, Block diagram illustrat-
ing the principle of negative-derivative feedback control for a system with transient external
input I(t) and output firing rate r(t). B, A negative-derivative feedback mechanism maintains
persistent activity by providing corrective feedback that opposes upward or downward changes
in activity. C, Simple black-box model of a neural population with negative-derivative feedback
that maintains spatially uniform patterns of persistent activity (top) and simplified network
illustrating key components underlying the conditions on the positive and negative feedback
pathways for negative-derivative feedback (bottom). D, Time course of average firing rates in
spatially uniform negative-derivative feedback networks in response to three example ampli-
tudes of transient stimuli (left) and corresponding maintenance of spatially uniform patterns of
activity at different amplitudes (right) during the delay period. E, F, Extension of the mechanism
of negative-derivative feedback control to maintaining spatially localized patterns of activity.
The basic principles are the same as for the negative-derivative feedback networks for spatially
uniform patterns of activity (E), but what negative-derivative feedback detects and corrects is
the amplitude of particular spatial patterns of activity (F ). In D, the neurons were rank ordered
and the neuronal index is the neuron’s order number divided by the network size. In F, the
neuronal index is the neuron’s preferred spatial feature �.
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Wder � J��	 � ���, (20)

where J denotes the strength of the balanced positive and negative
feedback pathways, and �	 and �� denote the timescales of pos-
itive and negative feedback, respectively (Fig. 2C). Thus, when
the recurrent synaptic interactions contain strong positive and
negative feedback that are balanced in strength (large J) but with
slower positive feedback (�	 � ��), the network temporally
integrates its input with long integration time constant �eff �
Wder, showing step-like activity in response to spatially uniform
transient input (Fig. 2D). We note that, although the derivative-
feedback mechanism maintains persistent activity by resisting
changes in firing rate, this does not keep the system from re-
sponding to external inputs as long as these inputs are of the same
scale as the recurrent synaptic inputs, which would be expected if
the strengths of recurrent and external inputs both scale with
population size. Furthermore, external input can transiently im-
balance the recurrent excitatory and inhibitory feedback, allow-
ing for more rapid response to external inputs (Lim and
Goldman, 2013).

Requirements for negative-derivative feedback in circuits
with functionally columnar architecture
Here we describe how the mechanism of negative-derivative
feedback described above can be extended to networks that main-
tain spatially localized patterns of persistent neural activity char-
acteristic of those observed during spatial working memory tasks
(Fig. 2E). The basic concept is the same as above, but for spatial
working memory, the feature that negative-derivative feedback
detects and corrects is a deviation in the amplitude of a particular
spatial pattern of activity r� � �r1,r2,. . .,rn�, where ri is the firing
rate of the ith neuron in the network (Fig. 2F). That is, for any
maintained spatial pattern r�, we require that this activity drives
recurrent synaptic interactions containing positive and negative
feedback signals of equal strength but with slower kinetics for the
positive feedback (Fig. 2E). Below, we show mathematically how
these conditions can be met in a spatially structured network and
find the conditions on the spatial profile and kinetics of the syn-
aptic connectivity for negative-derivative feedback control.

We consider networks of excitatory and inhibitory popula-
tions that store the angular location of a transiently presented
spatial cue that must be remembered during a subsequent delay
period. Recordings of the persistent activity of spatially selective
memory cells identified in such tasks suggest a functionally co-
lumnar architecture in which neurons in the same column have
similar preferred features of the stimulus (Goldman-Rakic, 1995;
Wimmer et al., 2014). To capture this functional organization, we
parameterize the activities of the excitatory and inhibitory neu-
rons by their preferred feature �, which we assume to be uni-
formly distributed along a ring (Fig. 1). The connection strength
between a presynaptic neuron from the jth population with pre-
ferred feature ��and a postsynaptic neuron from the ith popula-
tion with preferred feature � is denoted by Jij��,���, where i �E or
I denotes whether the presynaptic and postsynaptic neurons are
part of the excitatory (E) or inhibitory ( I) populations. Time
constants for these connections similarly are denoted as �ij, which
is assumed to be independent of � and �� for given population
types i and j (Fig. 1).

The core requirements for negative-derivative feedback, a bal-
ance between the strengths of the positive and negative feedback
pathways and slower positive than negative feedback, impose a
tuning condition on the connection strengths Jij��,��� and a con-
straint on the time constants of the connections, �ij. To derive the

tuning condition on Jij��,���, we assume as in most previous
models of orientation-selective spatial working memory that the
connectivity Jij��,��� is translationally invariant, that is, indepen-
dent of the absolute values of � and �� but dependent on the
difference between � and �� as Jij�� � ��� (Ermentrout, 1998;
Wang, 2001; Compte, 2006). Furthermore, if the dynamics of the
system is linear, Fourier analysis can be used to decompose the
spatial activity and recurrent interactions into cosine and sine
functions of � that do not interact with each other (Fig. 3A). In
this case, the strengths of the recurrent connections within each
Fourier component are denoted by Ĵij�n� and their timescales are
given by �ij (Fig. 3B, top; see Materials and Methods). However,
we note that, although translation invariance and linear dynam-
ics are helpful in building intuition and providing a simple illus-
tration of conditions for negative-derivative feedback, neither of
these features are necessary requirements for negative-derivative
feedback (see Materials and Methods and Fig. 5 for networks with
nonlinear dynamics and Materials and Methods for linear net-
works without translationally invariant connectivity).

Since the dynamics of each Fourier component are indepen-
dent, negative-derivative feedback can be achieved indepen-
dently for each component (Fig. 3A). Specifically, for the nth
Fourier component to be governed by negative-derivative feed-
back, the positive feedback and negative feedback pathways onto
this Fourier component should have equal strength, and the pos-
itive feedback pathway should have slower kinetics than the neg-
ative feedback pathway. This can be accomplished when two
conditions are met:

ĴEE�n� � ĴEI�n� Ĵ IE�n�/ Ĵ II�n�, (21)

�	 � �EE � �II � �EI � �IE � ��. (22)

Equation 21 is the condition for balancing positive feedback and
negative feedback for the nth Fourier component. The left side of
this condition represents the strength of positive feedback in this
Fourier component, which is mediated by the E-to-E connection.
The right side represents the strength of negative feedback and is
mediated by the E-to-I-to-E feedback loop, with normalization of
the strength of this loop provided by the I-to-I connection (Fig.
3B, bottom). Equation 22 is the condition for slower positive than
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Figure 3. Negative-derivative feedback in linear networks can be analyzed through the
Fourier decomposition. A, Example spatial pattern of persistent activity (top) and its Fourier
decomposition (middle). Negative-derivative feedback can occur within any or all of the Fourier
components (bottom). B, Conditions for negative-derivative feedback in each Fourier compo-
nent. Top, Illustration of the projection onto the nth Fourier component of the network’s activity
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the negative feedback within the component.
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negative feedback. The sum �	 � �EE � �II represents the sum
of the positive feedback contributions, where �II plays the role of
a positive feedback time constant because the I-to-I connection
inhibits the negative feedback pathway, and this feedback must be
slower than the time constant associated with the traversal time
around the negative feedback loop �� � �EI � �IE (Fig. 3B,
bottom; see Materials and Methods).

Throughout this paper, we assume that �EE is longer than the
time constants of the other connections. This assumption is
based upon recent experimental observations in prefrontal cor-
tex that found that E-to-E connections are much slower than
E-to-I connections, due to a relative prominence of slow NMDA-
type synapses (Wang et al., 2008; Wang and Gao, 2009; Rotaru et
al., 2011). Thus, because the time constants are independent of
the particular Fourier component, Equation 22 is satisfied for all
Fourier components.

In contrast, the balance condition, given by Equation 21, can
be satisfied independently for each Fourier component. To main-
tain spatially nonuniform persistent activity across the popula-
tion, this condition must be satisfied by at least one of the
nonconstant Fourier components, and the specific spatial profile
of persistent activity observed during the delay period reflects the
relative balance of the different components satisfying the bal-
ance condition.

Maintenance of spatially modulated activity based on a
balance between excitation and inhibition
To illustrate the dynamics of the negative-derivative feedback
networks and how they maintain spatially localized patterns of
persistent activity, we first consider a simple network that has
been structured to receive negative-derivative feedback only in its
first cosine component (Fig. 4A). This network’s synaptic con-
nectivity profile contained three components, an untuned uni-
form component of the connectivity, an untuned component
with Gaussian connectivity profile, and a tuned component with
cosine profile (see Materials and Methods). The network received
a spatially localized input of narrow Gaussian profile centered at
0 degrees during a brief cue period, plus a constant background
input that was present during both the cue and delay periods (Fig.
4B,C). During the cue presentation and shortly after the offset of
the cue, the spatial profile of the network activity had a narrow
width that directly followed the spatial profile of the transient
input (Fig. 4B, bright horizontal band centered at 0 degrees dur-
ing the cue period; C, left). However, during the delay period, the
activity profile quickly broadened so that only the activity pattern
of the first cosine component was maintained (Fig. 4 B, C, mid-
dle and right). This is because all Fourier components except
the first cosine component decayed quickly back to their base-
line activity, which was zero for the higher Fourier compo-
nents and a constant level driven by the tonic background
input for the constant component. In contrast, the first cosine
component was maintained throughout the delay period by
the negative-derivative feedback (Fig. 4B, broad brighter re-
gion during delay period; C, middle and right). More gener-
ally, this example illustrates that the profile of activity
maintained by the network reflects only those components
that receive negative-derivative feedback.

A feature of the derivative-feedback networks is that, during
the delay period, neurons in the network receive strong excitatory
and inhibitory inputs that are closely balanced with each other
(Fig. 4D; see Materials and Methods). The cosine component
receives a balance of recurrent excitatory and inhibitory synaptic
inputs, as required by the balance condition (Fig. 4F). The con-

stant component likewise receives a balance of excitation and
inhibition (Fig. 4E). However, this balance is achieved through
inclusion of the external background input; the recurrent inputs,
in contrast, are dominated by inhibition so that the network does
not contain negative-derivative feedback in this component and
cannot maintain spatially uniform activity in the absence of back-
ground input (data not shown). This reflects that both the excit-
atory and inhibitory inputs to each neuronal population (but not
necessarily the excitatory and inhibitory tuning curves or connec-
tivity, as shown in Fig. 7) are spatially localized and have the same
spatial tuning widths.

A close balance between excitatory and inhibitory inputs in
memory cells is a distinct feature of negative-derivative feedback.
In most previous studies, it has been suggested that spatially lo-
calized activity patterns result from excess excitation in high-
firing rate neurons and widespread lateral inhibition that
stabilizes the bump of activity during the delay period (Ermen-
trout, 1998; Wang, 2001; Compte, 2006). This leads to inhibitory
synaptic inputs onto a postsynaptic cell being more broadly
tuned than excitatory inputs in such networks, whereas the spa-
tial tuning of excitatory and inhibitory inputs are similar in
negative-derivative feedback networks. Thus, a balance between
excitation and inhibition is one prediction of the negative-
derivative feedback mechanism that can be tested experimentally
(see Discussion).
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Location codes, amplitude codes, and neural integration in
negative-derivative feedback networks
Traditional spatial working memory models maintain the analog
spatial location of a stimulus through stereotyped patterns of
network activity centered on the maintained stimulus location, as
observed experimentally (Goldman-Rakic, 1995; Wang, 2001).
However, a fundamental feature of these models is that the am-
plitude of the pattern of neuronal activity during the delay period
is bistable, either exhibiting untuned background activity or par-
ticipating in a fixed-amplitude pattern of activity corresponding
to the location of the maintained stimulus (Ermentrout, 1998;
Wang, 2001; Compte, 2006). Because of this bistability, only the
location of the cue can be stored in such networks and, for exam-
ple, the amplitude or value of the cue cannot be distinguished
beyond a binary discrimination.

Negative-derivative feedback networks likewise can maintain
an analog spatial location in memory (Fig. 5A) and, as in tradi-
tional memory models, this can be achieved by having a
translation-invariant network connectivity profile that permits

the network to maintain a given spatial pattern of activity cen-
tered at any location in the network. However, because the
negative-derivative feedback models operate by resisting changes
in activity, without regard for the absolute level of activity, they
can also maintain analog amplitudes of activity at a given location
(Fig. 5B). Thus, these networks can convey information simulta-
neously about the amplitude and location of a spatial cue (for
related examples in the context of optimal Bayesian cue combi-
nation and storage and efficient spike-based coding, see Boerlin
and Denéve, 2011; Boerlin et al., 2013).

A related feature of the negative-derivative feedback networks
is that they can temporally integrate their inputs. Temporal inte-
gration is the defining property of neural accumulators that in-
tegrate evidence over time (in the sense of calculus) during
decision-making processes (Gold and Shadlen, 2007). However,
most previous work modeling evidence accumulation has fo-
cused primarily upon temporal aspects of this facility, without
considering that the accumulated evidence could occur across an
analog range of spatial locations. A hallmark of feedback control
theory is that the input– output transformation performed by
systems with strong negative feedback is approximately equal to
the inverse of the function that was fed back. In the case of the
negative-derivative feedback networks, the signal that is nega-
tively fed back is the derivative of the activity pattern. Thus, since
the functional inverse of a temporal derivative is a temporal in-
tegral, these networks output a temporal integral of their inputs.
For example, if the inputs are spatially structured, but constant in
time, the negative-derivative feedback networks accumulate
these signals into a uniformly increasing spatial pattern of activity
(Fig. 5C,D). Thus, negative-derivative feedback networks can
maintain in memory both the spatial identity of accumulated
evidence as well as its running total.

Notably, even in the presence of nonlinearities in intrinsic
neuronal dynamics such as thresholds and saturation, negative-
derivative feedback networks accumulate and maintain spatially
localized activity under the same conditions as in linear networks:
a balance between positive and negative feedback, with slower
positive feedback than negative feedback, leads to negative-
derivative feedback. This occurs even though the Fourier compo-
nents in a nonlinear network are no longer decoupled and cannot
easily be decomposed into independent components (see Mate-
rials and Methods). Furthermore, the features of negative-
derivative feedback discussed for linear dynamics are maintained
under nonlinear dynamics, that is, the networks receive balanced
excitation and inhibition during persistent activity (data not
shown), and can accumulate and maintain spatially localized pat-
terns of activity at different locations (Fig. 5A, bottom) or at
different amplitudes (Fig. 5B–D, bottom; note that at t � 5 s, the
neuron with preferred location � � 0 has approached its absolute
maximum firing rate of 100 Hz, demonstrating that in this ex-
treme case the profile does become significantly affected by the
nonlinearity).

Maintaining multiple bumps of activity in negative-derivative
feedback networks
In the previous sections, we considered networks receiving
negative-derivative feedback only in the first cosine component
and used this example to illustrate important features of the
negative-derivative feedback mechanism–a close balance be-
tween excitation and inhibition during persistent activity (Fig.
4D–F) and the ability to encode information both in the location
and in the amplitude of spatial patterns of activity (Fig. 5). While
these features are hallmarks of negative-derivative feedback net-
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Figure 5. Location codes, amplitude codes, and temporal integration of negative-derivative
feedback networks with linear (top) and nonlinear (bottom) firing rate ( f ) versus input current
( I) relationships. A, Maintenance during the delay period of spatial patterns of activity centered
at different locations in the network, corresponding to different spatial cues (shown as different
colors). B, Maintenance of spatial patterns of activity of different amplitudes during a delay
period for inputs at the same spatial location but with different strengths. Input amplitudes for
the linear case were smaller than those for the nonlinear case to avoid the negative firing rates
that are permitted in linear networks. C, D, Temporal integration of spatially structured input.
After time 0, a spatially structured input is continuously present and the amplitude of the spatial
pattern of activity linearly increases in time (C), resulting in ramp-like changes (D). Patterns in
A and B are shown at 3 s into the delay period. In C and D (bottom), the ripply activity pattern at
t � 5 s reflects the effect of reaching the extreme, saturating limit of the neuronal response
function, when the neuron with preferred location �� 0 has approached its limiting firing rate
of 100 Hz and becomes insensitive to additional input.
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works, the specific activity profile that is maintained during per-
sistent activity is not constrained to simple sinusoids and
ultimately is determined by which Fourier components receive
negative-derivative feedback. Here, we consider more general
networks that receive negative-derivative feedback in all Fourier
components and show that such networks can be obtained by a
condition analogous to the tuning condition used for the simple
cosine example discussed above.

To construct more general networks receiving negative-
derivative feedback (Fig. 6A), we consider networks with the
same spatial profiles of the excitatory E-to-E and E-to-I connec-
tions (Fig. 6B, left) and the same spatial profiles of the inhibitory
I-to-E and I-to-I connections (Fig. 6B, right), so that Jij���
� J̃ijwj��� for i, j � E or I (note that this assumption leads to a
simple form of the balance condition, but is not essential to
tuning negative-derivative networks more generally). In this
case, the Fourier components of the synaptic connectivity pro-
files are given by Ĵ ij�n� � J̃ ijŵj�n�, and the condition for
having a balance in strength of positive and negative feedback in
a given Fourier mode is given by ĴEE�n�ĴII�n� � J̃EEJ̃IIŵE�n�ŵI�n�~
J̃EIJ̃IEŵE�n�ŵI�n� � ĴEI�n�ĴIE�n�, so that J̃EEJ̃II~J̃EIJ̃IE for large values of
J̃ij for all n. When, in addition, positive feedback is slower than
negative feedback (due to a relatively slow combination of self-
excitatory and self-inhibitory time constants�EE 	�II ��EI 	�EI), the
network interactions provide negative-derivative feedback to all
Fourier components.

Unlike the network of Figure 4, which only could maintain
broad patterns of activity corresponding to its tuned, first cosine
component (Fig. 6C), networks that receive negative-derivative
feedback in multiple Fourier components can maintain spatially
localized activity with narrower tuning widths that reflect higher
order Fourier components. Furthermore, these networks can
maintain more general spatial patterns of activity comprised of
these different Fourier components, such as activity profiles with
multiple bumps (Fig. 6D), which have been suggested as a neural
correlate of the storage of multiple items (Laing et al., 2002; Edin
et al., 2009; Wei et al., 2012). Thus, networks receiving negative-
derivative feedback in multiple Fourier components have a
higher memory capacity than those that receive negative-
derivative feedback only in a single cosine component. Note,
however, that the strength of negative-derivative feedback in each
Fourier component, and thus the integration time constant asso-

ciated with this component, in general
will not be the same for all Fourier com-
ponents, because this strength depends
linearly upon the amount of the frequency
component that is present within the syn-
aptic connectivity profile. For this reason,
the network capacity over a given time-
scale will in general depend both upon the
specific form of the connectivity and the
shape of the profile to be maintained so
that, for example, networks with broad
synaptic connectivity profiles would not
be expected to maintain very long-lasting
activity for high-frequency components
that are minimally represented in their
synaptic connectivity. This feature may
explain why the long-lasting profiles ob-
served experimentally during spatial
working memory tend to be of relatively
broad width that likely reflects features of
the underlying connectivity profile.

Relation between the profile of synaptic connectivity and
tuning widths of activity
Traditional spatial working memory networks require long-
range inhibition to maintain the stability of localized patterns of
activity in memory (Ermentrout, 1998; Wang, 2001; Compte,
2006). Such long-range inhibition is not prevalent anatomically
in cortical networks, although it might be achieved functionally
through disynaptic connections (Melchitzky et al., 2001) or
through the broadly projecting basket cell subclass of inhibitory
interneurons (Markram et al., 2004). In any case, an interesting
question is whether long-range inhibition is critical for storing
spatial working memory, and what constraints experimental ob-
servations may place upon the form of synaptic connectivity.

Unlike traditional models, negative-derivative feedback net-
works are capable of maintaining spatially localized patterns of
activity regardless of the relative widths of excitatory and inhibi-
tory connections (Fig. 7A,C–E). In fact, narrower inhibitory con-
nections are required for our models to generate the
experimental observation (Rao et al., 1999, 2000; Constantinidis
and Goldman-Rakic, 2002) that inhibitory neurons have broader
tuning of activity (after subtracting off any constant baseline)
than excitatory neurons (Fig. 7B). When we define “widths” of
the activity or connectivity as the spatial spread of the tuned
portion after subtracting off any constant, untuned baseline
(Constantinidis and Goldman-Rakic, 2002), short-range excita-
tion and long-range inhibition lead to a spatially localized activity
profile with the excitatory neurons having broader tuning of ac-
tivity than the inhibitory neurons (Fig. 7C,F). On the other hand,
the reverse relationship of the excitatory and inhibitory synaptic
projections, that is, long-range excitation and short-range inhi-
bition (Fig. 7D, or with the addition of nonselective inhibitory
projections, Fig. 7E) lead to stable persistent activity with broader
tuning of the inhibitory neurons than that of the excitatory neu-
rons (Fig. 7G,H), as seen experimentally (Rao et al., 1999, 2000;
Constantinidis and Goldman-Rakic, 2002). In all cases, neurons
receive closely balanced excitation and inhibition and thus, the
excitatory and inhibitory inputs show the same tuning widths
(Fig. 7I–K). This balance of excitation and inhibition with the
same spatial tuning is a general feature of negative-derivative
feedback networks, since the large amount of excitation and in-
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hibition required for strong derivative feedback must cancel to
avoid saturation or total silencing of firing rates.

Thus, in the negative-derivative feedback networks, the rela-
tive tuning widths of the excitatory and inhibitory neurons are
inversely correlated with the widths of the excitatory and inhibi-
tory synaptic connections (Fig. 7A). This reciprocal relationship
between the tuning widths of the neurons and the widths of syn-
aptic projections is a consequence of the balance of excitatory and
inhibitory inputs (Fig. 7I–K): because the tuning width of the
total excitatory or inhibitory synaptic input onto a neuron is
given by a convolution of the synaptic connectivity onto this
neuron and the width of the presynaptic neurons’ tuning curves,
achieving balanced inhibitory and excitatory inputs requires that
the experimentally observed broader inhibitory (compared with
excitatory) tuning curves be offset by relatively narrower inhibi-
tory synaptic connectivity profiles. This is different from most
previous models for spatial working memory, which require
broader negative feedback and show no reciprocal relationship
between tuning widths of synaptic connectivity and activity pro-
files. Without different timescales for positive and negative feed-
back pathways (and, thus, without negative-derivative feedback),
narrower negative feedback cannot sustain spatially localized ac-
tivity (Fig. 8A,E, I,M; see Ermentrout and Cowan, 1980 for a
mathematical proof). To stabilize spatially localized activity in
such traditional lateral inhibitory models, broader negative feed-
back than positive feedback is required. This can be achieved
either by long-range E-to-I connections (Fig. 8B,F) or long-
range I-to-E synaptic connections (Fig. 8C,D,G,H). With
broader negative feedback, the excitatory neurons receive
broader inhibitory inputs than excitatory inputs (Fig. 8N–P).
With no requirement of a close balance between excitation and
inhibition, the reciprocal relationship between tuning widths and
widths of synaptic projections is not observed in these previous
models (Fig. 8J–L). Thus, this reciprocal relationship is a distinct
feature of the negative-derivative feedback networks that high-
lights the mechanism underlying spatial working memory based
on balanced excitatory and inhibitory inputs.

Robust memory performance against common perturbations
to synaptic weights
A major challenge in short-term memory networks is stably
maintaining analog memory representations in the face of per-
turbations. Although many types of memory networks, including
the negative-derivative feedback networks, are quite robust
against random noise in synaptic weights that largely can be av-
eraged out across the network or random noise inputs that are
filtered out by the slow network dynamics underlying persistent
activity, resisting systematic perturbations in weights or intrinsic
neuronal response properties has proven to be more challenging.
An advantage of negative-derivative networks is that the balance
condition that defines these networks is robust against many
types of such naturally occurring perturbations. For example,
global increases in the intrinsic gains of all neurons, which is
equivalent to multiplicatively scaling the strengths of all synaptic
connections, does not affect the balance of excitation and inhibi-
tion upon which negative-derivative feedback depends. As a re-
sult, such perturbations have minimal effect upon the ability of
the network to maintain spatially localized persistent activity
(Fig. 9A). Conceptually, this is because each neuronal popu-
lation participates in both positive (through the E-to-E and,
effectively, the I-to-I connections) and negative (through
E-to-I and I-to-E connections) feedback loops so that such
perturbations produce offsetting changes in positive and negative
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period. Firing rates were normalized for comparison by subtracting off the minimum
activity and scaling the resulting firing rates to unit amplitude. A broader tuned compo-
nent of the inhibitory connections (C) results in a narrower profile of the inhibitory pop-
ulation activity (F ). A broader tuned component of excitatory connections, with (E) or
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feedback. Quantitatively, this result reflects that the balance con-
dition for derivative-feedback networks is ratiometric, depend-
ing only upon the ratio of the synaptic strengths
ĴEE�n�ĴII�n�/ĴEI�n�ĴIE�n�~1 (see Eq. 21). Similarly, examination of
this ratiometric condition shows that maintenance of persistent
activity with negative-derivative feedback is also robust against
global changes in the intrinsic gain of excitatory neurons alone
(changes in ĴEE�n� and ĴEI�n�; Fig. 9B) or inhibitory neurons alone
(changes in ĴIE�n� and ĴII�n�; Fig. 9C). Likewise, global changes in
excitatory synaptic inputs (Figs. 9E, Fig. 10A,B; changes in ĴEE�n�
and ĴIE�n�), inhibitory synaptic inputs (Fig. 9F; changes in ĴEI�n�
and ĴII�n�) or all synaptic inputs (Fig. 9D) have minimal effect
upon the maintenance of persistent activity, as does loss of a
fraction of a subpopulation of neurons, which is equivalent to
loss of a fraction of the corresponding excitatory or inhibitory
synaptic inputs as in Figure 9D–F.

Furthermore, persistent neural activity in negative-derivative
feedback networks is quite robust even against perturbations that

occur locally in clusters of neurons with
similar preferred spatial locations. To test
how well the networks responded to local
perturbations, we presented a transient
input centered at a location � � 0 (Fig.
9G–L) and asked how well this item could
be maintained in memory following a lo-
cal perturbation that affected 1/8 of the
network. When the perturbation was cen-
tered on the preferred location (possibly
modeling, for example, effects of atten-
tion that changed the gains of neurons
triggered by the stimulus), the amplitude
of activity increased or decreased mildly
for neuronal gain or synaptic weight in-
creases or decreases, respectively, but the
time course of persistent activity was only
mildly affected (Fig. 10C,D), with the
change in time constant approximately
linearly related to the perturbation size
(data not shown). When the perturbation
was located on the flanks of the presented
stimulus location (Fig. 9G–L; black bar
along x-axis), activity was again main-
tained persistently in time (data not
shown), although there was a small warp-
ing of the Gaussian-shaped bump that re-
flected that the perturbation disrupted the
translation-invariant form of the net-
work’s structure. Thus, in this case, the
perturbation would slightly bias the ob-
servation of the cue location if the readout
of the network activity remained the same
as before the perturbation. However, be-
cause the local perturbation does not af-
fect the balance of positive and negative
feedback that maintains persistent activ-
ity, the cue would remain in memory and,
if the perturbation were continually pres-
ent, a change in network readout could in
principle learn to compensate for the
changes in shape of the maintained activ-
ity profile.

The negative-derivative feedback net-
works are not robust against all forms of

perturbations, in particular those that break the balance between
excitation and inhibition that underlies the balance in strength of
the positive and negative feedback components of negative-
derivative feedback. For example, global or local perturbations in
specific excitatory pathways, such as the E-to-E pathways that are
dominated by NMDA-type synapses, do disrupt persistent activ-
ity (Fig. 10E–H). This is because NMDA-mediated currents are
stronger at E-to-E than E-to-I connections (Wang et al., 2008;
Wang and Gao, 2009; Rotaru et al., 2011); therefore their disrup-
tion imbalances the positive and negative feedback pathways,
consistent with recent experimental observations of lack of ro-
bustness of working memory to pharmacological blockade of
NMDA receptors (Wang et al., 2013). The disruption of persis-
tent activity under such perturbations can be quantified by
changes of the time constant of decay of activity at the perturbed
location, �eff. As the ratio between the strengths of the positive
and negative feedback Jpos/Jneg deviates from 1, �eff decreases in-
versely proportional to 1 � Jpos/Jneg (Fig. 10 I, J). Thus, while
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many common perturbations such as loss of neurons, changes in
intrinsic neuronal gains, or uniform changes in synaptic
strengths maintain Jpos/Jneg close to 1 (Fig. 10 I, dashed diagonal
line), the negative-derivative feedback networks are susceptible
to perturbations that break the tuning of Jpos/Jneg � 1 (Fig. 10I,
off-diagonal portions).

We note that the lack of robustness to perturbations that dis-
rupt the excitatory–inhibitory balance in our model is different
from the behavior observed in previous lateral inhibition models
that require rough but not exact balance between excitation and
inhibition and therefore exhibit robust memory performance
across a wider range of perturbations in connectivity. For exam-
ple, mild perturbations of the strength of the E-to-E connection
alone or the E-to-I or I-to-E connections alone do not affect the
memory performance of lateral inhibition models (Camperi and
Wang, 1998; Hansel and Sompolinsky, 1998). However, in these
models, the spatial patterns of activity can be maintained only at
a fixed amplitude, rather than the graded range of amplitudes
that can be sustained in models based upon derivative feedback.
Thus, the more stringent tuning conditions on synaptic connec-
tions in the negative-derivative feedback networks reflects a
trade-off between robustness to excitatory–inhibitory imbalance
and being able to encode the amplitude of spatial patterns of
activity and temporally integrate the strength of inputs.

Irregular firing activity during persistent activity
A characteristic feature of persistent neural activity during spatial
working memory tasks is the irregular, Poisson-like nature of the
firing activity (Compte et al., 2003). This has been a challenge for
most previous spatial working memory models because, in these
models, elevated persistent activity is maintained by a constant,
suprathreshold excitatory drive that causes relatively regular per-
sistent firing unless large external sources of noise are included
(Barbieri and Brunel, 2008; but see Barbieri and Brunel, 2007;
Renart et al., 2007; Roudi and Latham, 2007; Lundqvist et al.,
2010; Boerlin and Denéve, 2011; Mongillo et al., 2012; Boerlin et
al., 2013; Hansel and Mato, 2013). In contrast, negative-
derivative feedback networks operate in a regime of closely bal-
anced excitation and inhibition, so that the mean synaptic input
is subthreshold and firing is driven largely by fluctuations that
lead to a high coefficient of variation of the interspike intervals
(Shadlen and Newsome, 1994; van Vreeswijk and Sompolinsky,
1996; Amit and Brunel, 1997; Troyer and Miller, 1997; Renart et
al., 2007; Roudi and Latham, 2007). This spike-train irregularity
was shown previously in spatially uniform negative-derivative
feedback models (Lim and Goldman, 2013). Here, we show that
the same result occurs in negative-derivative feedback networks
with spatial structure.

We constructed spiking network models with the same co-
lumnar structure as in the firing rate models (Fig. 1). Each col-
umn consisted of excitatory and inhibitory integrate-and-fire
neurons with similar preferred spatial features, and the connec-
tivity between neurons within and across the columns was ran-
dom and sparse (van Vreeswijk and Sompolinsky, 1996). For
connected neurons, the strength of synaptic connections was as-
sumed to be a Gaussian function of the difference between the
preferred features of the presynaptic and postsynaptic neurons
(Fig. 6B), and the strengths of the excitatory and inhibitory con-
nections on average were set to satisfy the balance condition of
Equation 21. However, we note that the connection strengths
onto individual neurons were not precisely balanced and were
heterogeneous due to the sparse and random connectivity of the
network. Inhibitory currents were mediated by GABAA receptors
and recurrent excitatory currents were mediated by a mixture of
AMPA and NMDA receptors, with a greater proportion of and
slower kinetics of NMDA receptors in the excitatory feedback
pathways (Wang et al., 2008; Wang and Gao, 2009; Rotaru et al.,
2011). The networks receive spatially patterned input during the
stimulus presentation, but no input during the delay period.

As in the firing rate models, these spiking networks imple-
menting negative-derivative feedback showed spatially tuned
persistent activity encoding the cue location of the transiently
presented stimulus (Fig. 11B). Due to the balance between exci-
tation and inhibition, the neuronal spike trains were highly irreg-
ular during the delay period (Fig. 11C,D,F,G). Quantitative
analysis of the spike-train irregularity using the local coefficient
of variation CV2 (see Materials and Methods) found that the
model distributions were similar to those observed experimen-
tally in memory cells receiving preferred cue or nonpreferred cue
stimuli (Fig. 11A, experiments; E,H, model). Thus, the principle
of negative-derivative feedback also is applicable to spiking net-
works and networks incorporating this principle can reproduce
salient properties of biological working memory networks such
as spatially tuned delay period activity and irregular firing.

Discussion
Here we suggest a new model for spatial working memory based
on negative-derivative feedback control. When recurrent inhibi-
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Figure 9. Robustness to common perturbations in memory networks with negative-
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tion and excitation are balanced, and the feedback pathways me-
diating positive feedback are slower than those mediating
negative feedback, we have shown how a network with function-
ally columnar architecture can maintain analog amplitude sig-
nals corresponding to any spatial location. Furthermore, we have
demonstrated that these negative-derivative feedback networks
can temporally integrate their inputs, thus showing how accumu-
lation of sensory input can be performed in a spatially specific
manner. Given that recent experiments in frontal cortex suggest a
balance of inhibition and excitation (Shu et al., 2003; Haider et
al., 2006) as well as differential kinetics in the E-to-E versus E-to-I
pathways mediating positive versus negative feedback (Wang et al.,
2008; Wang and Gao, 2009; Rotaru et al., 2011), this suggests that
negative-derivative feedback may serve as a fundamental principle un-
derlying the accumulation and storage of signals in spatial working
memory.

Comparison to network models with lateral inhibition and
experimental predictions
A “Mexican-hat” network architecture with a broader range of
inhibitory interactions than excitatory interactions between neu-
rons is prevalent in cortical circuit models that generate spatial
patterns of activity for working memory (Ermentrout, 1998;
Wang, 2001; Compte, 2006). Compared with most previous net-

work models with functionally long-range
inhibition, negative-derivative feedback
networks exhibit several distinct features.
First, negative-derivative feedback net-
works do not require long-range inhi-
bition. Second, they receive massive
amounts of excitatory and inhibitory in-
puts that are closely balanced. Third, this
close balance between excitation and inhi-
bition leads to irregular firing activity dur-
ing the delay period, consistent with
experimental observations in cortical
memory circuits (Compte et al., 2003).
Fourth, negative-derivative feedback net-
works can encode information about a
transient stimulus not only in the location
but also in the amplitude of its spatial pat-
terns of activity and, in principle, can
maintain arbitrary spatial patterns of ac-
tivity (see also Carroll et al., 2014 for a
special network with fast inhibitory neu-
rons and tuning of both the form of
neuronal response nonlinearity and con-
nectivity to allow graded-amplitude spa-
tial patterns of activity to be maintained
with long-range inhibition).

The negative-derivative feedback net-
works require a tight tuning condition on
network connectivity to have positive and
negative feedback of equal strengths. This
tuning condition is more stringent than
that of the previous lateral inhibition
models, which require only rough balance
between the strengths of positive and neg-
ative feedback (Camperi and Wang, 1998;
Hansel and Sompolinsky, 1998). How-
ever, in such systems, spatial patterns of
activity can be maintained only at a fixed
amplitude and thus, the strictness of the

tuning condition in derivative feedback models can be consid-
ered as a trade-off with being able to maintain activity across a
graded range of levels and to temporally integrate inputs. Some-
what mitigating the strictness of this tuning condition is the fact
that it applies only to the average connectivity of the different
populations and does not require that the tuning be exact for each
individual neuron. As shown in Figure 9, this tuning condition
may be preserved following many natural perturbations, such as
changes in intrinsic or synaptic gains or loss of subpopulations of
neurons that occur globally or locally in the circuits. On a slower
timescale, recent work suggests that the excitatory–inhibitory
balance in cortical cells may be actively maintained by homeo-
static mechanisms (Liu, 2004; Vogels et al., 2011), or may be
achieved gradually through the developmental refinement of
synaptic connections (Tao and Poo, 2005). Thus, the balance of
inhibition and excitation required for derivative-feedback mem-
ory networks may be quite robust in normal situations.

The distinct features of our model provide testable predic-
tions. First, negative-derivative feedback networks predict simi-
lar spatial tuning between excitatory and inhibitory inputs due to
a close balance between them (Figs. 4D, 7I–K). Experimentally, a
balance between strong excitatory and inhibitory synaptic inputs
(Shu et al., 2003; Haider et al., 2006) and co-tuning between them
(Destexhe et al., 2003; Wehr and Zador, 2003; Priebe and Ferster,
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Figure 10. Memory performance following perturbations under which the E-I balance is maintained (A–D) or disrupted (E–H ).
A–D, Time course of activity under global (A, B) or local (C, D) perturbations in all excitatory synaptic weights, or equivalently under
loss of a corresponding fraction of the excitatory subpopulation. Since loss of a fraction of the cells or of all excitatory synapses
affects both the positive and negative feedback pathways equally, the balance between positive and negative feedback is main-
tained and persistent firing is minimally affected. The time course of activity is shown for an example neuron receiving an external
input stimulus centered on its preferred direction and for an example neuron receiving external input in its nonpreferred directions.
E–H, Disruption of persistent firing under global (E, F ) or local (G, H ) perturbations in the E-to-E connections, mimicking pertur-
bations in slow NR2B subunit-containing NMDA receptors located predominantly in this connection (Wang et al., 2013). Global
perturbations led to similar changes in activity throughout the entire network (E, F ), while local perturbations disrupted activity
most severely in the perturbed neurons (G, H ). I, J, Time constant of activity decay �eff in a neuron receiving an external input
stimulus centered on its preferred direction as a function of the strengths of positive and negative feedback pathways. �eff is
estimated by fitting the time course of delay activity between 500 and 2000 ms with an exponential function. As the overall
strengths Jpos and Jneg of the positive and negative feedback pathways change, �eff decays approximately in inverse proportion
to 1� Jpos/Jneg (linear change in 1/	�eff	 in I ). Local perturbations (data not shown) provided similar results. In J, Jneg was fixed and
only Jpos changed, corresponding to the red arrow in I. The black fit curve is given by 0.075 sec/	1 � Jpos/Jneg	�
��pos � �neg�/�1 � Jpos/Jneg�.
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2005; Rudolph et al., 2007) have been observed in cortical neu-
rons, although the ultimate test, intracellular recordings of mem-
ory cells in a behaving animal, has yet to be performed and
currently stands as a prediction of our model. Second, perturba-
tions in specific synaptic pathways–such as blockade of excitatory
or inhibitory transmission exclusively onto excitatory or inhibi-
tory neurons that break the balance between excitation and inhi-
bition–would cause more severe impairments of persistent
activity than completely silencing a subset of excitatory or inhib-
itory neurons. Consistent with this prediction, a recent experi-
ment blocking slow NMDA-mediated currents that are especially
prominent in the pyramidal-to-pyramidal (E-to-E) connections
of prefrontal cortex (Wang et al., 2013) did lead to strong impair-
ments in working memory performance. Third, the balance con-
dition between excitation and inhibition provides negative
correlation between the relative tuning widths of the excitatory
and inhibitory neurons and the widths of the excitatory and in-
hibitory synaptic connections, such that if the inhibitory synaptic
projection is shorter range, the balance in inputs is preserved
under broader tuning of the inhibitory neurons. Finally, we note
that it is possible that different mechanisms are used in networks
that maintain graded representations from those that maintain

only spatial location information, so experiments designed to test
these predictions ideally should be performed using paradigms
that require both the spatial location and amplitude (or duration
for integrators) of stimuli to be encoded.

Irregular firing statistics based on balanced excitation
and inhibition
The irregular firing activity observed during working memory
performance (Compte et al., 2003) provides indirect support for
a balance between excitation and inhibition in the neurons sup-
porting this activity. This balance has been a challenge to achieve
in most models of working memory, because these models de-
pend upon stronger excitation than inhibition to maintain ele-
vated firing rates, and such imbalanced excitation tends to lead to
regular patterns of neuronal firing (Barbieri and Brunel, 2008). In
contrast, negative-derivative feedback networks inherently de-
pend upon a balance of inhibition and excitation throughout an
analog range of firing rates, leading to irregular firing at all rates.

To account for irregular spiking activity during a delay period,
recent works have suggested bistable memory circuits based on
balanced excitation and inhibition. These balanced networks can
maintain elevated (UP) states through neuronal nonlinearities
(Barbieri and Brunel, 2007; Renart et al., 2007; Roudi and
Latham, 2007; Lundqvist et al., 2010) or through synaptic non-
linearities associated with short-term synaptic plasticity (Mon-
gillo et al., 2012; Hansel and Mato, 2013). However, with the
exception of Hansel and Mato (2013), these networks used iden-
tical time constants for positive and negative feedback pathways
so that they do not contain negative-derivative feedback, are not
able to maintain a graded range of persistent activity and perform
temporal integration, and can be distinguished from the
negative-derivative feedback networks by their essential depen-
dence upon lateral inhibition to stabilize spatially localized per-
sistent activity (Fig. 8).

Like our networks, the spatial working memory networks of
Hansel and Mato (2013) show similar tuning of excitatory and
inhibitory inputs and contain an asymmetric ratio of NMDA/
AMPA currents in the E-to-E versus E-to-I connections, resulting
in slower positive than negative feedback. Thus, these networks
also may contain a derivative-feedback signal that contributes to
their robustness, and an interesting question is whether the prin-
ciple of negative-derivative feedback could be useful in bistable,
as well as analog, spatial memory networks. In separate work,
networks built upon the principle of optimal inference of external
inputs and efficient spike-based coding can maintain analog-
valued amplitudes of irregular persistent activity (Boerlin and
Denéve, 2011; Boerlin et al., 2013). These networks require bal-
anced excitation and inhibition with slower excitation, and thus
likely also depend upon a large negative-derivative feedback
component, suggesting that the principle of negative-derivative
feedback control may be derived independently from the theory
of Bayesian inference and spike-based coding.

Memory capacity of negative-derivative networks
A distinctive feature of the negative-derivative feedback networks
is that they can maintain spatially localized activity of different
amplitudes as well as at different locations (Fig. 5). This could be
useful in modulating network response as a function of attention
(Reynolds and Chelazzi, 2004) or reward (Schultz et al., 1993;
Watanabe, 1996; Leon and Shadlen, 1999; Amemori and Sawa-
guchi, 2006). Alternatively, simultaneously being able to vary
amplitude and location could be useful in encoding quantities
such as the color of a patch that can vary in an analog manner in
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both spatial and nonspatial dimensions (Luck and Vogel, 1997;
Zhang and Luck, 2008), or in accumulating the value of a single
quantity over time (Gold and Shadlen, 2007) in a spatially specific
manner. However, we note that the ability to integrate external
inputs makes negative-derivative feedback networks relatively
more sensitive to noisy or interfering input present during mem-
ory performance. To enhance the signal-to-noise ratio of
negative-derivative feedback networks, additional mechanisms
may be required to suppress external inputs during memory per-
formance, for example, by dopamine regulation that is triggered
with the onset of task-related input (Sawaguchi et al., 1988;
Durstewitz et al., 1999).

Negative-derivative feedback networks also can maintain ac-
tivities with multiple bumps when negative-derivative feedback is
present in higher order Fourier components. Previous studies
have suggested that the width of recurrent excitatory connections
is a critical factor determining the maximal number of items that
can be stored in the network (Edin et al., 2009; Wei et al., 2012).
On the other hand, the memory capacity of negative-derivative
feedback networks is determined by the amount of negative-
derivative feedback in higher order Fourier components, and
thus the width of both the excitatory and inhibitory connections
affects memory capacity. Since storing more items requires the
maintenance of narrower, higher frequency-containing patterns,
this may provide a fundamental constraint on the forms of syn-
aptic connectivity in memory networks. Further work is needed
to explore the relationship between memory capacity and con-
nectivity structure, and to compare the performance of negative-
derivative feedback networks with that of previous network
models.

References
Amemori K, Sawaguchi T (2006) Contrasting effects of reward expectation

on sensory and motor memories in primate prefrontal neurons. Cereb
Cortex 16:1002–1015. Medline

Amit DJ, Brunel N (1997) Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb Cor-
tex 7:237–252. CrossRef Medline

Barbieri F, Brunel N (2007) Irregular persistent activity induced by synaptic
excitatory feedback. Front Comput Neurosci 1:5. CrossRef Medline

Barbieri F, Brunel N (2008) Can attractor network models account for the
statistics of firing during persistent activity in prefrontal cortex? Front
Neurosci 2:114 –122. CrossRef Medline

Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tun-
ing in visual cortex. Proc Natl Acad Sci U S A 92:3844 –3848. CrossRef
Medline

Boerlin M, Denève S (2011) Spike-based population coding and working
memory. PLoS Comput Biol 7:e1001080. CrossRef Medline

Boerlin M, Machens CK, Denève S (2013) Predictive coding of dynamical
variables in balanced spiking networks. PLoS Comput Biol 9:e1003258.
CrossRef Medline
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