UC Irvine
ICS Technical Reports

Title
A Study of the Recoverability of Computing Systems

Permalink
https://escholarship.org/uc/item/1p80c4fq

Author
Merlin, Philip Meir

Publication Date
1974-11-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1p80c4fg
https://escholarship.org
http://www.cdlib.org/

A Study of the Recoverability
of Computing Systems

Philip Meir Merlin

TECHNICAL REPORT #58 - November 1974

UNIVERSITY OF CALIFORNIA

Irvine

A Study of the Recoverability of Computing Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Information and . Computer Science

by
Philip Meir Merlin

Committee in charge:

Professor David J. Farber, Chairman
Professor Kim P. Gostelow

Professor Arvind

1974

© 1975

PHILIP MEIR MERLIN
ALL RIGHTS RESERVED

The dissertation of Philip Meir Merlin is approved,

and it is acceptable in quality and form for
‘publication in microfilm:

Cizéiftee Chairman

University of California, Irvine

1974

ii

DEDICATION

To Bracha, and my Mother.

iii-

List of Figures

Acknowledgements

Vita . . .

Abstract .

Chapter 1:

Chapter 2:
2.1

2.2

2.3
2.4

Chapter 3:
3.1
3.2
3.3
3.4

Chapter 4:

CONTENTS

. L] . . . L] L] . . . - .

Introduetion
Background
Related Work

Outline of this Dissertation . .

The Model [2 . L L] . —~— . L] . L 2
Petri Nets

The Representation of
Possible Failure

Multiple Failures

Discussion

The Petri Net of a Given Token Machine
General Explanation
Formal Definitions
Formal Analysis

Examples

The TM and the Loss of a Token .

iv

vii

xii

xiv

11
14
25

27
27
34
40
45

51

4,1 Definitions and Properties 52

4,2 The Possible States After
a "loss of token" Failure . . . ¢« o« o «

4.3 The Structure of Recoverable TMs 59

B.h ExampleS v & & ¢ ¢ ¢ o o o o o o o o o« o+ o bU

Chapter 5: Practical Limitations of
Recoverable TMs

B ¥
5.1 Properties of Processes of Kind 1 83
5.2 Properties of Processes of Kind 2
5.3 Properties of Both Kind of Processes. . . . 87

5.4 Discussion ¢ . . .

Chapter 6: The Time“Petr‘i"Net . . 3 . . . - 92
6.1 Definitions . « v o o « o o &
6.2 Properties of the TPN . . . v + ¢« « « « « . 94

6.3 Recoverability of TPN after a
*loss of token"

60“ Example . . . 3 . - L] . . - . . - 100

Chapter 7: A Practical Example - Recoverability of
a Communication Protocol 110
7‘ 1 Example 1 L] . - . L] . » - . - L] . . - l L d * * 1 10

7.2 Example 2 . 115

L]
L]
.
.
.
]
.
.
L
*
.
*
.
.
.
-

Chapter 8: Conclusions
8‘ 1 Summar‘y - L] . L . L] . . L] - . L] L3 -* * L] . L] 136

8.2 Limitations of the Described Methodology . 138

8.3 Suggestions for Further Exploration 138

References & & & 4 ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« « 140

Appendix A:

Appendix B:

Theorems of Chapter 3

Theorems of Chapter 4

vi

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
3.1
. 3.2
3.3
3.4
3.5
3.6
4,1
4.2
4.3
h.y
4.5
4.6
.7

LIST OF FIGURE

Petri-net representation of proc
Token Machine of the PN of figur
ETM for figure 2.2 under a failu
Petri net of example 2.3.1 . .
ETM of example 2.3.1
ETM of example 2.3.1
Petri net of example 2.3.2 l .
ETM of example 2.3.2
A Token machine (TM)
The possible implementations of

The possible implementations of

S

esses . . .
e 2.1 . . .

re in M . .

.

CD->CB . .

BD‘)BB . .

The possible implementation of AB->AC . . .,

A PN that implements the TM of figure 3.1 .

A Token Machine (TM)
A Token Machine (TM)
A PN for the TM of figure 4.1 .
The ETM for the PN of figure 4.2
A PN for the TM of figure 4.1 .
The ETM for the PN of figure 4.4

A Token Machine (TM)

.

-

* . . . L] -

Transitions of kind t3 for the TM of figure

vii

10
13
16
17
18
20
21
28
30
31
33
438
L9
66
67
68
69
70
72
73

4.8
4.9

A PN for the TM of figure 4.6

A Token Machine (TM)

4,10 Transitions between states 82 in the

4.11 A recoverable T™™

™M of figure 4.9

. L3 .

4.12 A PN for the TM of figure 4.11

4.13 The ETM of the PN of figure 4,12

5.1
6.1

6.2
6.3
6.4
6.5
6.6
6.7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

7.10 TM for the TPN of figure 7.9

A recoverable TM

(a) a PN
(b) a TPN of the previous PN

A Token Machine (TM)
A PN for the TM of figure 6.2
The ETM for the PN of figure 6.3
A PN for the TM of figure 6.2
The ETM for the PN of figure 6.5
A recoverable TPN for the TM of figure 6.2
A PN of a protocol process
ETM for the PN of figure 7.1
Recoverable TPN for the TM of figure 7.1 .
ETM for the TPN of figure 7.3
PN of a protocol process . . « & o o . . .
ETM for the PN of figure 7.5
Recoverable TPN for the PN of figure 7.5 .
TM for the case that (7.2.3) and (7.2.4)

are satisfied - pseudo-failures (tokens
added before time)

Anew TPN + v v v o . .

. *

viii

T4
76

77
79
80
81
90

95
101
102
103
106
107
109
112
113
116
117
119
120

122

125
128

129

7.11 TM for the TPN of figure 7.9 .

T7.12 ETM for the TPN of figure 7.9

ix

ACKNOWLEDGMENTS

I am indebted to Professor David J. Farber, committee
chairman, who provided excellent support, guidance and
encouragement throughout my education at UCI.

There are many others who have assisted in my studies
here. In particular, I would like to express my sincere
thanks to Professor Kim P. Gostelow and Professor Arvind,
the committee members, for their insightful discussions and
constructive criticism. I am grateful to Professor Peter
Freeman, who contributed in many ways to the completion of
my studies, and Professor Fred M. Tonge for his help during
my first steps at UCI.

I thank the Faculty of Electrical Engineering at
Technion, The Israel Institute of Technology, for providing
the stimulating atmosphere during my formative years. In
particular, I thank Dr. Jehuda Kella, my M.S. Thesis
advisor, for his continuous encouragement and guidance. My
gratitude is due to Professors Zvi Kohavi, Michael Yoeli,
Israel Cederbaum and Michael Werner who introduced me to the
fields of computer science and computer engineering.

I am grateful for the financial support received
through the National Science Foundation under grant GJ-1045

"The Distributed Computer System", the Department of

Information and Computer Science, and the Graduate Division

of the University of California at Irvine.

xi

VITA

April 17, 1947 - Born - San Luis, Argentina

Nationality: Israeli

1969-1971:

1970:

1970:

1971 B.S.,

1971-1973:

1972-~1973:

1972-1973:

1973 M.S.,

1973~

Lecturer, Preliminary Course,

Technion - Israel Institute of Technology,
Haifa, Israel

Associate Project Engineer, Elsint,
Haifa, Israel

Teacher, Technion Preliminary Course,
The Mirnistry of Absortion,
Haifa, Israel

"Cum Laude™

Technion - Israel Institute of Technology,
Electrical Engineering

Assistant, Faculty of Electrical Engineering,
Technion - Israel Institute of Technology,
Haifa, Israel

Teacher, Bosmat-Technion,
Haifa, Israel

Projects Supervisor, Bosmat-Technion,
Haifa, Israel

Technion - Israel Institute of Technology,
Electrical Engineering

Research Assistant, Department of

Information and Computer Science,
University of California, Irvine, U.S.

xii

PUBLICATIONS

"Communication Between the PDP-15 and the Mahatz-1
Computers"; M.S. Thesis; Technion - Israel
Institute of Technclogy, Haifa, Israel; July 1973

"A Parallel Mechanism for detecting Curves in Pictures",

with D.J. Farber; accepted for publication in I.E.E.E.
Trans. on Computers; January 1975

PATENT

"The V.P.P.", with D.J. Farber and J. Sklansky;
Submltted to the Board of Patents of the University of
California

xiii

ABSTRACT OF THE DISSERTATION

A STUDY OF THE RECOVERABILITY OF COMPUTING SYSTEMS
by
Philip Meir Merlin

Doctor of Philosophy in Information and
Computer Science

University of California, Irvine, 1974

Professor David J. Farber, Chairman

This work is an approach to the study of computer
systems. Although only the problem of recoverability of
processes is presented, the same method seems applicable to
solve other problems as well, such as “fail-soft",
"fault-tolerant", "best-effort", “security", etec..

This study is theoretic but its results are of
practical interest. The theoretic study was carried out
using a model of computation, the Petri-net, in which a
representation of failures was introduced. A process is
defined as "recoverable" if and only if after the occurrence
of a failure, the process will return to one of its "legal

states". In the Petri-net model, this definition can be

xXiv

formally stated and studied.

Recoverability of a Petri-net, after the occurrence of
any kind of failure, is formally defined. Recoverability
for a particular kind of failure is extensively analyzed,
and the necessary and sufficient conditions that a "state
description" of a process must satisfy in order to represent
a recoverable process, is found. A procedurev to find a
structural description of a process (a Petri-net)
corresponding to any given state description of the process
(the Token Machine) is developed. Thus, it is possible to
design recoverable processes in two steps. First, a state
description of the process is designed so that it satisfies
the conditions of recoverability. Then the structure of the
process is derived from its state description. In’a similar
way, it 1is possible to transform a non recoverable process
into a recoverable one with the same state description, if
such a recoverable process exists.

The recoverable processes represented by Petri-nets
were found to have some practical limitations. In order to
remove these limitations, a new model, the Time-Petri-Net,
is defined. This model is a modification of the Petri-nets.
In the Time-Petri-Net, practical examples of recoverability
were demonstrated. The Time-Petri-Net has many interesting
properties outside the area of recoverébility. A future

general study of this new model looks to be profitable.

XV

Chapter 1

INTRODUCTION

In this work, we will deal with the ﬁodeling of
systems, 'trying to gain insight into the design of
recoverable processes. From one hand, many models of
bcomputation have been developed. On the other hand, models
at the hardware level have given solutions to the problems
of hardware reliability. Cur work studies the
recoverability problems at the system level, using a model

of computation and applying an approach motivated by that

used in the hardware area.

1.1 Background

During the 1last few years, computing systems have
become more and more complex and, in many cases, are
composed of several, almost independent, units working in an
asynchronic parallel mode. This characterization seems to
be clear for distributed computer systems as well as for the
centralized systems. Today, "one" computer is composed by
several CPUs, memories, I/O processors, pieces of software,

and each of these units are almost independent. Several

computer networks, connecting tens of computers and serving
a wide range of wusers, have been developed and are

operating. This increase in the gcomplexity of the computing

systems will, probably, continue in the future [FALKT74].

With the increased number of elements that composé
computer systems, the probability of a failure of at least
one of these elements is relatively high. 1In this case, it
is important to protect the remaining elements and the
operation of the system. Thus, it is necessary to organize
the systems so that if parts of its elements are
malfuctioning, the rest of the elements will continue to
work correctly. The total performance of the system can be
reduced by a failure (and several users can be affected),
but one or a few elements may not cause the entire system to
. collapse. This philosophy is called the ‘“best-effort"
[FARB72, FARB73, ROWET73, METC73].

To deal with the complexity of these systems, the
concept of "process" was introduced [DENN66, SALT66, HORN66,
DENNT1, GOST74, and many others]. To study the properties
of processes, several models have been proposed [PETR62,
ESTR63, KARP69, GOST71, CERF72]. But a great amount of
obscurity covers parts of these concepts. Many properties
of processes are not well understood to date. The concept
of failure recoverable processes has béen almost totally

ignored. Without a better understanding of this concept, it

is unlikely to expect a good impleméntation of the

"best-effort" philosophy in complex systems that will be
designed in the near future.
This manuscript proposes an approach to the study of

failure recoverable processes and for the analysis of the

possible sequences of events that happens when a failure
occurs. By ‘“recoverability" we mean that after the
occurrence of a failure the control of the process is not
lost, and after several steps it will return Vto "normal
execution'. Note the difference between this concept and
the concept of "correctness of results". In the present
work, we do not deal with the problem of correctness. We
are concerned with control recoverability, that is,
structural recoverability. Our approach is motivated by the
philosophy that we can accept the situation in which a user
get some erroneous results, but we do not accept the
possibility that a single error (or failure) may cause the
entire break-down of the total system.

The approach presented in this work is based on a model
of process behavior, the Petri-nets, in which we have
introduced the concept of a failure.

This dissertation solves only a small part of the
problem that we belive it is necessary to solve in order to
achieve the implementation of the "“best-effort” philosophy.
But this work not only solves a practical problem (with the
aid of a theoretical handling), but it shows a possible way

of solving many other important open questions. I believe

that the most important achievement of this research is that
I have demonstrated that a formal definition of our "“world"
and a theoretic analysis of this definition can lead to the

solution of many of the practical problems .

1.2 Related Work

Many efforts have contributed, or in some way are
related to this research.

First, the development of several models of
computation. Among them the Petri’ nets [PETR62, HOLT68,
HOLT69], the UCLA Graph Model of Computation [ESTR63,
MART66, BAER68, BOVE68, RUSS69, VOLA70, GOST71, FERNT2,
CERFT71)], the Karp and Miller - Slutz model [SLUT68, KARP69],
the coordination net [PATI70] and the Rodrigez model
[RODR69]. All these models have many common features. For
example, Gostelow proved the equivalence of Petri nets and
the UCLA model [GOSTT71], and coordination nets are based on
Petri nets [PATI7O0].

These models are used, in the main, to study the
problems of parallel computation 1like deadlocks, resource
allocation, coordination , ete.. Although much work has
been done, most of the results remain limited to research
circles and they have had 1little influence in practical
designs.

In contrast to this models, "hardware" research has

succeded 1in developing powerful tools for logic-failure

detection and location [ARMS66, ROTH66, ROTH67, SELL6S,
YAUT1, KOHAT1, KOHAT2], for hazard detection [YOEL64,
EICH65] and for many other problems. These tools have had a
strong impact at the design level. |

Today several recoverable systems have been built (for
example the DCS at University of California Irvine [FARBT2,
FARBT3, ROWET3]) and it is expected that in the near future
many other systems will be designed. But the désigner of
these recoverable systems have had no tools similar to the
mathematic tools that the designer of, for example, a logic
network tester has.

This work tries to supply the designer of recoverable
systems with a design <tool. The method is based on the
Petri net model of processes, but it is, in some sence,

influenced by the philosophy of the mathematical tools

developed for hardware.

13 Qutline of this dissertation

In chapter 2, the model of processes is defined and a
representation of failures is introduced. The concept of
recoverability is defined and some implications of these
definitions, for the case of single and multiple failure of
the same type, are studied.

Chapter 3 and 4 show a way of designing recovérable
processes, for a give kind of failures ("loss of token"

failures). Chapter 3 develobs a method of designing the

structure of a process when a state description is given.
Chapter 4 points out the conditions that a state description
of a process must satisfy in order to be implementable as a
recoverable process. Using the method of chapter 3, the
structure of this process can be derived. The theorems that
prove the statements made in chapter 3 and 4 are presented
in appendices A and B respectively.

Chapter 5 shows some practical 1limitations of the
recoverable processes modeled by Petri-nets. In order to
remove these limitations, chapter 6 defines a new model, the
Time-Petri-net (TPN). Chapter 6 also studies the TPN,
especially from the point of view of recoverability.

Chapter T examines a practical example, the
recoverability of a communication protocol between two

processes.

In chapter 8, a summary and suggestions for further

exploration are given.

Chapter 2

THE MODEL

In this chapter the process model is presented. The
proposed model is based on a variation of Petri nets and it
includes a way of representing a possible failure. This

chapter also presents my definition of “recoverability".

2.1 Petri Nets (PN)

Petri nets were developed by Carl Adam Petri and
further elaborated by Anatol Holt [HOLT68].
Petri nets model "conditions" represented by nodes and

"events" represented by transition bars. The holding of a

condition is represented by placing a token on that node.

Directed arcs connect nodes to bars and bars to nodes. A

transitica bar (event) can fire (occur) if all the nodes
(conditions) input to that transition bar (event) have
tokens (hold). When a transition bar fires, it removes one

token from each input node and places one token on each

output arc.
Figure 2.1 shows, as an example of Petri net use, the

model of a simple protocol, P3, connecting between processes

Figure 2.1: Petri-net fepresentation of processes

P1 and P2. Note that protocols are a special kind of
process [GOSTT74]. In this protocol, when P1 is ready to
send a message (A holds a token) f1 fires. Then a message
is sent (M holds a token) and the sender enters the state of
waiting for the acknowledge (P3 reéords this fact since W
holds a token). When P2 is ready to receive the message (B
holds a token) f2 wili be fired, at which point C gains a
token (the message is received). 1In this position f4 can
fire and causes a token to pass to E and to K. A token on E
is the notification to P2 that the message was received, and
the token in K represents the fact that the acknowledge
signal is sent to P1. Now f3 can fire, removing a token
from W and from K, and putting a token on D. The token on D
represents the notification to P1 that the transfer was
finished. P1 can remove the token from D, and again trigger
the process P3 by putting a token on‘A. On the other side,
P2 can remove the token from E and to start his part of the
protocol activity by putting a token in B.

. The state of the Petri net is defined by the collection
of names of the nodes holding tokens. The number of
instances of a node name in a state is equal to the number
of tokens the node holds in this state. All the possible
states in which a Petri net can stay and the possible
transitions between them define a state machine called Token
Machine (TM). The TM for the net of figure 2.1 is shown in

figure 2.2, assuming the initial condition AB.

Figure 2.2: Token Machine for the PN of figure 2.1

10

The description above is correct only if every
compohent of the protocol P3 functions properly. But, what
happens if the message M is lost? What is the behavior of
P1 and P2 under this failure? With the tools developed to
date we can not answer these questiéns in general. In the

next section we will develop new tools for a better

understanding of these Questions.

2.2 The Representation of Possible Failure

Suppose that a condition in a Petri net may fail. In
this case, a token held by this condition may disappear. It
is possible to represent this by adding a new branch to the
TM. This branch will represent the possible flow of the
execution when the ‘“problematic" token disappears. For
illustration, suppose thég the message M in figure 2.1 can
be lost. It means that when M holds a token, this token can
disappear. This situation can be represented by adding an
arc from state WMB (figure 2.2) to a new state WB. Since in
state WB no bars can fire, WB is a final state. This new TM
is shown in figure 2.3; thick lines represent the TM in the
case that no failures occur, and thin lines describe the
paths added since a faiiure. On the arc connecting these
two parts, we write the name of the failing condition (M in
the example). The same representation will be used in all
TM figures in this dissertation. This new machine,

including the TM and the added paths for possible errors,

11

will be called Error Token Machine (ETM).

In the ETM, we call those states that also exist in the
T™™M, "legal states¥. The other states are called "illegal
states". Note that a process may beyin an 1illegal state
only if a failure has occured. |

From figure 2.3, we conclude that the process

represented in figure 2.1 is not recoverable from a failure

in M, because under such failure the execution sequence
arrives to a state (WB) where there is no way to return to
normal execution (a legal state).

Note that in general, the ETM for a possible failure
includes all the possible paths in which the execution can
flow 1if this failure occurs. This means that it is
necessary to add to the TM new branches exiting from all the
states that include the possible faulting condition.

At this point we can state the conditions for recovery:

"A process P is recoverable from failure F if and
only if in the ETM of P for failure F, all the

directed paths through illegal states arrive to

legal states in a finite number of steps.™

Thus, after a failure, the execution sequence must return to
normal execution after a finite number of steps.

In this work, we will limit our study to processes that
have finite TM. From the properties of directed graphs, for

the case of finite TM we can derive an equivalent set of

conditions for recoverability:

12

Figure 2.3: ETM for figure 2.2 under a failure in M

13

"A process P is recoverable from failure F if and
only if in the ETM of P for failure F:

1. the number of illegal states is finite,

2. there are no final illegal states,

3. there are no directed' loops 1including only

illegal states."

These three conditions we will call the Conditions of

Recoverability (COR). 1In the following chapters we will use

this second definition of recoverability.

In the previous discussion we have dealt only with the
case that a token may disappear. But, in the same way,
because of a fault, a node in the Petri net may generate a
token. This situation may also be represented by adding new
branches to the correspondent nodes in the TM. The approach

is similar to the previous case.

2.3 Multiple Failures
In this section the previous approach is extended to
the case that several failures can occur. This extention is

introduced by the two following examples.

2.3.1 Example

Figure 2.4 describes a variation of the protocol shown
in figure 2.1. Assume (for simplicity) that arc T can be
activated only after "a long time". This assuption is not

mathematically represented in our model and we leave this

14

point to further discussion in chapters 6 and 7.

Figure 2.5 shows the ETM for this protocol (assuming
initial condition AB) for the case that M may fail. The ETM
of figure 2.5 shows that in spite of the failure in M the
execution sequence (in case of failﬁre) returns to a legal
state (DE). This shows that the protocol described in
figure 2.4 is recoverable from one failure in M.

Suppose now, that a second failure may occur in M. In
this case, a new branch will be added, but now to the node
LMB (figure 2.5). This procedure can be applied again for
any given number of possible failures. Note that this
procedure 1is suitable not only for the case of multiple
failures in one condition, it can be applied in general when
several conditions may fail.

Figure 2.6 shows the ETM for the process of figure 2.4
in the case that three failures in M may cccur. In this ETM
we can see that the process is recoverable from one or two
failures but not for the third. Paths 1 and 2 return to a

legal state, but not path 3.

2.3.2 Example

Figure 2.7 describes another variation of the Petri net
shown in figure 2.1. In this case, there is a protocol
process (P9) connecting the process P? and P8. Note the
appearance of the ill-defined function T that is described

in figure 2.4. Figure 2.8 shows the ETM (assuming initial

15

|MAY BE ‘l\

lACTlVATED X
ONLY AFTER
| " LONG TIME]
l .

Figure 2.4: Petri net of example 2.3.1

ST T Mt sttt e et G et G eedh em G v S G Gmme e e Gmm - — o omam o .

16

AFTER A "LONG TIME"
T WILL BE ACTIVATED

Figure 2.5: ETM of example 2.3.1

17

T WILL BE ACTIVATED

M 7D
LMB) .
/T WILL BE ACTIVATED

Figure 2.6: ETM of example 2.3.1

18

condition AB) for the protocol P9 in which a failure in M
may occur. In this case, the new branch for the failure
returns to a legal state (WMB->WB->AB). This demonstrates
that this failure is recoverable.

Suppose now, that two faults may occur in M. In this
case, the sequence in the. ETM of figure 2.8 will be:

AB->WMB->WB=>AB~->WMB->WB->AB

This means that for one or two failures, the machine
executes the same sequence around the loop:

r>WB->AB->WMB+
t

The result is similar for more than two errors in M.
The loop will be executed as many times as a failure in M
may occur. But always, the execution sequence will return
to a 1legal state. This shows that this protocol is

recoverable from any number of failures in M.

2.3.3 Test for Recovery Under Multiple Failures of the Same
Kind |

In the case of multiple failures of the same kind,
ETM(i) denotes the ETM showing all the possible paths for
the occurrence of up to i failures of the same kind. For
example, using this notation, figure 2.5 shows the ETM(1) of
the PN of figure 2.4 and figure 2.6 shows the ETM(3) for the
same PN. In a similar way, we denote IS(i) the set of

states of ETM(i) that do not exist in ETM(i-1). In other

19

® emem ® . . amee—

P7 | e T T
e e i T t====n

= AL @ l —(8)=

'\5/ , N/

¥
- Cw)
Y

* MAY BE ACTIVATED
| oNLY AFTER A
"LONG TIME"

<.

Figure 2.7:

Petri net of example 2.3.2

20

—

- T WILL BE ACTIVATED

Figure 2.8: ETM of example 2.3.2

21

words, IS(i) denotes the new illegal states added to the ETM
as a result of the occurrence of the i-th failure. Using
this notation, the TM can be denoted by ETM(0) and the legal

states by IS(0). For example, in figure 2.6:

IS(0) = [AB;WMB;WC;WKE;DE]
IS(1) = [WB;LMB;LC;LKE]
IS(2) = [LB;JMB;JC;JKE]
IS(3) = [JB]

AN

and in figure 2.8:

IS(0) = [AB;WMB;WC;WKE;DE]
IS(1) = [WB]
IS(2) = @

By definition, ETM(1i) includes all the states and
transitions of ETM(i-1), and ETM(i) depends only upon
ETM(i-1). This means that ETM(k) can be built iteratively.
Starting with the TM, and adding the new paths for the
occurrence of a failure , the ETM(1) is built. Then,
starting with the ETM(1), and adding the new paths for the
occurrence of a failure, the ETM(2) is built, and so on
until ETM(k) is built.

Applying a similar definition of recoverability as in
2.2, a PN is recoverable after the occurrence of k failures
in F if and only if in the ETM(k) for this failure the three
conditions COR (see section 2.2) are satisfied.

In the same way, a PN is recoverable after the

occurrence of any number of failures in F if and only if

22

there exists a k0 such that for any k>kO0,

ETM(k) = ETM(kO)

and ETM(kO) satisfies the conditions COR.

1.

In general, the ETM(i) has the following properties:

The ETM(i) is formed by the ETM(i-1) and the new paths
through IS(i). All. these new paths start at the nodes
of the set IS(i-1), because the occurrence of the i-th
failure implies that (i-1) failures occurred béfore.
Ir:

ETM(1i)

ETM(i-1)
then:

ETM(k) ETM(1)

for any k greater than i.
This property derives from the previous one and can be
easily proved by induction.
If:

ETM(i) = ETM(i-1)
and if the PN is recoverable from i-1 failurés in F
then it is recoverable from any number of failures in
F. This property derives from the previous one and
from the definition of recoverability.
If a PN is not recoverable from i failures in F it is

also not recoverable from k (k greater than i)

failures in F.

Using these four properties of ETM(i) we can design an

algorithm that tests for recoverability after the occurrence

23

of k failures in F.

ALGORITHM (to test for recoverability after k failures

F):

(Suppose P is a process and F a possible failure.
The data structure ETMI represents ETM(1i)
The vector ISI représents IS(1i)

The data structure TM represents the TM

in

COR(ETMI) is equal to true iff COR applied on ETM(i) are

satisfied.)

(1) ETMI := THM ; ISI := nodes of TH

(2) for I := 0 step 1 until K-1

do begin
(3) ETMI := ETMI + new paths for errors F in the
nodes ISI;
(4) | ISI := nodes of the new paths;
(5) if (ISI = @) then stop (P is recoverable from any
number of failures in F);
(6) if not COR(ETMI)
then stop (P is recoverable from up to I
failures in F)
(7) end

(8) stop (P is recoverable from at least K failures in F)

This algorithm has several interesting properties:

1. The trivial case is when after the first execution

24

of (3) there is a directed loop including legal and
illegal nodes,'and F is not included in the symbolic
description of any illegal state. In this case, in
the second execution of (3), there will be no change
in ETMI , so that ISI is null and the algorithm
terminates. Figures 2.7 and 2.8 (section 2.3.2)
show an example of this case.

2. At this point, we do not know if there exists a
procedure to compute the value of K for any given
PN, so that the algorithm can decide if P is
recoverable from any number of occurrences of F.

3. "Recoverability from any number of failures F"
properly includes the case that after the occurrence

~of certain number of failures F in which the control
continues executing a sequence of legal states which
never include the condition F. In this case, the

failure F cannot occur again. So that, "“recoverable

from any number of failures F“ actually means that
faults in F will not inhibit the process from

returning to "normal execution".

2.4 Discussion

In this chapter, a method has been developed for
checking if a process is recoverable from a given possible
failure. The fact that all the examples that introduce the

method are related to protocols does not restrict its

25

generality. All the methods presented and all the
characteristics described in this work apply to processes in
general.

In section 2.3 the method has been extended for the
case that several failures of the same kind can occur. 1In
section 2.3:3 an algorithm is presented. This algorithm
tests the behavior of'a process under any given number of
occurrences of a given failure, from the point of view of
recoverability. The same approach can be generalized to
study the case of any number of occurrences of several
distinct failures.

The presented method allows one not only to know if a
process is recoverable under failures, but also to know what
are the possible sequences of events under those failures.

In the following chapters, an approach to the broblem
of designing recoverable processes is developed. We will
assume that the structure of a process is described by a PN,
The PN will be designed in two steps. In the first step the
desired TM will be built, in the second, a PN that
implements the given TM is constructed. As shown in the
following chapters, if the TM is built according to certain

rules, and if the PN is constructed correctly, then the PN

will be guaranteed recoverable. The next chapter analyses

the problem of building a PN that executes a given TM.

26

Chapter 3

THE PETRI NET OF 4 GIVEN TOKEN MACHINE

Chapter 2 shows the importance of the ™™, and its
generalization, the ETM, in the algorithms that test if a
process 1is recoverable under a given failure. As a
consequence, for a better understanding of recoverability,
the properties of the TM have to be studied.

The TM is defined from the Petri net. In this chapter,
the properties of the TM are studied, and the problem of
constructing a Petri net corresponding to a given TM is

analysed. In this work, we restrict our study to finite

TM s only.

3.1 General Explanation

Figure 3.1 shows a TM. The problem is how to build a
Petri net so that its TM is the one shown in figure 3.1.

We can assume that the set of ‘“conditions" (or
"places") 1s given by the Boolean union of all the
characters of the states” names in the TM. 1In the example:

[S U (A U B)U(C U A)U(C U D)U(C U B)U(B U D)U(B U B) U C] =

= [S,A,B,C,D]

27

Figure 3.1: A Token Machine (THM)

28

Each state in the TM corresponds to a possible state in
the Petri net. Each arc in the TM corresponds to a firing
of some transition in the Petri net. Thus, for each arc in
the TM there is a bar in the PN that can cabry out this
transition. For example, arc 6 in figure 3;1 represents a
transition from state CD to state CB. That is:

CD->CB
Figure 3.2 shows the two possible ways of implementing this
transition in the PN.

Arc 5 fepresents the transition:

BD->BB
Figure 3.3 shows the possible bars corresponding to this
transition.

One of the bars of figure 3.2 and one of figure 3.3
must be in the PN. But, the same bar is in figure 3.2(b)
and in figure 3.3(b). In this case, a single bar is
sufficient to execute the arcs 6 and 5 of the TM. The other
possibilities are also legal, but, two bars are required.

The example above shows that a TH can be implemented by
different Petri nets, with different numbers of bars. The
PN with the minimal number of bars that implements a given

TM is called the Minimal Petri Net (MPN) of the THM.

Arc 2 (figure 3.1) represents the transition:
AB->AC
Figure 3.4 shows the possible bars corresponding to this

transition. Note that the bar in figure 3.4(b) can fire

29

(a)

(b}

Figure 3.2: The Possible Implementations of CD->CB

(a)

(b)

Figure 3.3: The Possible Implementations of BD->BB

31

each time that B has a token. The states BC, BD, BB are
legal states in the TM. In this case, the bar of figure
3.4(b) can fire also the following transitions:

BC~>CC

BD->CD

BB->CB
But, since in the TM, there are no arcs corresponding to
these transitions, they are not allowed in the Petri net.
This means that only the bar of figure 3.4(a) can be used to
implement the arc 2 of figure 3.1.

The example above shows that in the implementation of a

PN corresponding to a TM there exists two problems:

1. the PN may not be unique,

2. it 1is necessary to prevent unallowed transitions
that can appear as side effects of the
implementation of allowed arcs.

Arc 2 (figure 3.1) is an example of this last problem. The
only possible way of preventing unallowed transitions is to
add conditions to the input set of the bars that execute the
allowed transitions. In figure 3.4(a), the firing from B to
C is limited by the condition A. But, if this approach is
adopted for all the transitions, the number of bars will
increase unnecessarily, as shown in figures 3.2(a) and
3.3(a). In this case, two bars are needed instead of just

one.,

In the following sections the construction of the Petri

32

(a)

(b)

Figure 3.4: The Possible Implementation of AB->AC

33

net of any given Token Machine is formally studied.

3.2 Formal Definitions

The first nine definitions in this section are related

to the mathematical entity called bag ([CERF71], [KNUT69],

[RULIT1], and [GOST71]). ' Our notation differs a bit from

the previous publications on this subject. These changes

were motivated by the willingness to present a notation

suitable to the special needs of this work.

3.2.1

3.2.2

A bag is a collection of elements which may have
more than one instance of the same member. A bag is
denoted by angle brackets. As an example:
B = <¢,b,e>
denotes the bag B of two instances of ¢ and one
instance of b. Since a bag is unordered B can also
be denoted by:
B = <¢,e,b> = <b,c,c>
In this work, we also use the following alternative

notation:

B =2.c+ b
which means: "the bag B is composed of two times the
element ¢ and one time the element b".
Note that a set is also a bag, and all the
operations on bags are defined for sets.

The function #(b,A) gives the number of instances of

the element b in the bag A.

34

3.2.3
3.2.4

3-2-5

3.2.6

As an example:
#(a,<a,b,a,c,a,b>) = 3
b is a member of bag A (b<A) iff #(b,A)>1.
The domain of a bag A (Dom A) is the set of elements
used to form the bag. In formal notation:
a&Dom A <===> a<kAl
and:
¥a (a<Dom A) ===> #(a,Dom A) = 1
Example:
Dom <a,b,a> = [a,b]
Bag A is a subbag of bag B (A < B) if there is in B
an instance for each instance of the elements of A.
Formally:
A<B iff (¥a4(Dom A)) (#(a,A)<#(a,B))
Example:
<a,b,a,b,b,c> £ <a,a,a,b,c,c,b,b,d>
The following statements are proven in [CERFT71]:
1. A<KB & BKA <===> A=B

2. A<B & BLC <===> ALC

B.

The sum of two bags (A + B) is a bag composed by all
the instances in A and B. Formally, (C=A+B) if
(¥c4((Dom A)U(Dom B))) (#(e,C) = #(c,4) + #(c,B))

Example:

<a,b,a> + <a,b,c,b> = {a,a,a,b,c,b,b>

35

3.2.7

3.2.8

3.2.9

The subtraction of two bags (A - B) is the bag C,

if:

C+B =4
We do not deal with "negative elements", so that
this operation is defined only when B<A. Formally,
when B<A, (C=zA-B)-if

(¥c4((Dom A)U(Dom B))) (#(c,C) = #(c,A) - #(c,B))

A transition is an ordered pair of bags. Let A and
B Be bags, and:

t = A ->B
then t is a transition. Thé right and left part of
t are given by the functions RHS and LHS. That is:

1. LHS(t) = A

2. RHS(t) B

The Remainder of a transition (RE(A -> B)) is the

largest bag C such that:
1. €C £ A jand
C <B
i.e. RE(t) is all the instances of the elements

that are common to RHS(t) and LHS(t).

The Minimum of a transition (MIN(t1)) is a

transition t2, such that if:
t1 = A -> B
(A and B are bags) then:

1. LHS(t2) A - RE(t1)

2. RHS(t2)

B - RE(t1)

Note that LHS(t2) and RHS(t2) have no elements in
common. In other words, the minimum of a transition
is another transition whose 1left and right hand
sides have no elements in common.

By definition, any transition t is:

t = RE(t) + LHS(MIN(t)) -> RE(t) + RHS(MIN(t))

Example:
arc 5 of figure 3.1 can be denoted by:
t5 = <B,D> -> <B,B>
then:

1. LHS(t5) = <B,D>

2. RHS(t5) <B,B>.
3. RE(t5) =
4, MIN(t5) = <D> ->
3.2.10 A Petri net (PN) is a directed graph defined by the
4-tuple [B,C,A,SO0], where:

B

"

[b1,....,bm] is a finite (possible empty)
set of transition bars.

C = [el,....,cn] is a finite (non-empty) set

of conditions.

The elements of the sets B

and C are the nodes of the

PN.
A = [al,....,aq) is a finite set of directed
arcs. Fach arc connects

either a condition to a bar

37

or a bar to a condition. In
general, more than one arc
may connect, 1in the same
direction, the same two
nodes.

SO = non-empty bag. The elements of S0 are
members of C. This means
that:

Dom SO < C
SO ~denotes the initial
distribution of tokens in

the conditions C.

3.2.11 The Input Conditions of a bar (IC(bi)) is a bag A

that satisfies the following conditions:

1‘

2.

the elements of A belong to the set of
conditions in the PN (the set C of definition
3.2.10). In other words:

Dom A < C
bag A has exactly k instances of ¢

(j = 1,2,..,n) iff there are k arcs from cj to

bi.

3.2.12 The Qutput Conditions of a bar ((0C(bi)) is a bag A

that satisfies the following conditions:

1.

as in the definition of input conditions, A

satisfies:

Dom A £ C

38

2. bag A& has exactly k instances of «c¢j
(j = 1,2,..,n) iff there are k arcs from bi to

cj.

3.2.13 A Legal State (Si) of the PN is either the bag SO

3.2.14

3.2.15

(see definition 3.2.10) or a bag that is a possible
result of the firing algorithm (3.2.14).

The Firing Algorithm

A bar bi can fire if IC(bi)<Sj (Sj is a legal

state). If bi fires, a token is removed from each
condition in IC(bi), and a token is placed in each
condition of OC(bi). The new distribution of tokens
defines a new legal state Sk.
Following the definitions, thé new state is equal
to:

Sk = Sj - IC(bi) + 0C(bi)

A Token Machine (TM) of a PN is defined as a tuple

[S,T], where:
S =1[81,82,...]1 is a set of bags. Si
belongs to S if and only if
Si is a legal state of the
PN. The set S may be finite
or infinite.

T = [t1,t2,...] is a set of transitions of

the form ¢tk = Si -> Sj; tk
belongs to the set T if and

only if in state Si a bar

39

can fire bringing the PN to

state Sj.

3.2.16 A non-superfluous PN is a PN=[B,C,A4,S0] such that
for the corresponding TM=[S,T]:
1. for each c¢i in C there exists at least one
element in S in which c¢i is included and
2. for each bar bi in B there exists at least

one-state in S in which bi can fire.

3.3 Formal Analvsis

Suppose that a finite TM:[S,Ti is given. The problem
is to find a PN=[B,C,A,S0] so that its TM is the given one.
We 1limit our work to non-superfluous PH's (definition
3.2.16).

Since the PN is non—superfiuous, each of its conditions
is represented at least in one of the states of the TM. In
this case, the set of conditions of the PN is given by:

C = Dom (ST + S2 +......+ Sn)

Now, it is necessary to find the set of bars and the
set of arcs, such that:

1. All the transitions of T are implemented

2. Only the transitions of T are implemented.

Theorems A.1 to A.5 (Appendix A) give a formal proof of
relations existing between a TM and its corresponding fN.
We present here only the results necessary to continue our

discussion. The reader interested in a more detailed and

4o

formal study of these relations is refered to appendix A.

The important results of the theorems in the appendix are:

3.3.1

3.3.2

If there exists a TM transition tr = Si -> Sj so

that MIN(tr) = a «> b and there exist a bar bf such
that:

1. IC(bf)

a + X (x is a bag)

2. 0C(bf) b + x and:

3. x £ RE(tr)
then tr in TM is effected by bf in PN. In other
words, these are conditions such that if bar bf
satisfies them, bf will effect transition tr in the

TM. (This statement is proven in A.1)

If the TH transition tr = Si -> Sj with
MIN(tr) = a => b 1is effected by the bar bf then:

1. IC(bf) a + x (x is a bag)

2. 0C(bfr) b + x and:
3. x < RE(tr)

(this theorem is proven in A.4)

These two previous propositions state the necessary
and sufficient conditions that a bar must satisfy in
order to effect a TM transition. 1In other words, TM
transition tr = Si -=> Sj with MIN(tr) = a => b 1is
effected by the PN bar bf if and only if

1. IC(bf) = a + x

2. O0OC(bf) = b + x

41

3. x £ RE(tr)

3.3.3 If there is a TM transition exiting from a legal
state, then there 1is no other transition with the
same ‘“minimal transition' ‘exiting from the same

state. (Proven in A4.2)

3.3.4 TM transitions with different “ﬁinimal transition®

must be implemented by different PN bars.(Proven in

A.5)

The fact that transitions with different ‘“minimal
transition” must be implemented by different bars, has an
important practical implication. This fact means that the
set of transitions can be divided into different groups,
each group having the same miniﬁal transition, and each
group implemented independently of the others.

Suppose the members of a group are:

tk = 81 -> Sjp ; (p=1,2,.0...,r)

p p
and the minimal transition for all the members of the group

is:
MIN(tkp) =1 a -> b ; (p:1,2,00'c,r)
The statement in 3.3.1 (and alsoc in A.1) shows that each

member of this group can be implemented by a bar bp that

satisfies:
1. IC(bp) = a + xp (3.3.5)
and 2. 0C(bp) = b + xp (3.3.6)

where xp satisfies:

42

3. xp £ RE(tkp) (3.3.7)

The statement in 3.3.2 (also in A.4) shows thatithe only way
to implement them is by a bar that satisfies these three
requi;ements. As shown above, there is certain freedom in
the election of the xp. This means that the members of any
one group can be implemented in different ways, leading to
different PN's. The same xp can be chésen for different
transitions (in the same group). 1In this case, the same bar
effects several transitions. The number of different bars
that implement the group is equal to the number of different
xp s chosen for this group. The trivial case is:

Xp = 0@ ;s (p=1,2,....,r)
then, the entire group is implemented by only one bar.

At this point, we know how to implement all the
transitions corresponding to a certain group. The remaining
problem is to implement only the transitions existing in the
given TM. After an xp is chosen for equations (3.3.5),
(3.3.6) and (3.3.7), then by definition of the firing
algorithm (3.2.174), bar bp can fire in all states Si such
that:

IC(bp) < Si
By the statement 3.3.4 (and proven in A.5), all the
transitions executed by bp have the same minimum:
a ->b
and by the statement in 3.3.3 (and proven in A.2) for each

state S5i there can be only one transition with the minimal

43

transition:
a -> b
Thus, when the machine is in state Sip, fhen bp.will effect
only legal transitions that exist in the given TM, and when
the machine is in a state: |
Sk : (k # ip) : (P=152,0cee,r)

if bp fires, it will effect a transition that does not exist
in the given TH. So, in order to prevent the implementation
of transitions that do not exist in the given TM, xp has to
satisfy the condition:

IC(bp) = a + xp £ Sk ; for all Sk # Sip (3.3.8)

In order to implement all the transitions of the group,
and only all the transitions of this group, it is necessary

to find a set [xq], subset of the bag <xp>, so that:
¥p dg xq < RE(tk) (3.3.9)
and ¥q ¥k (k # ip) ==> a + xg £ Sk (3.3.10)

Note that it is enough to check (3.3.10) for the states Sk
that include a. If Sk does not include a, (3.3.10) is
satisfied independently of xq. |
In general, the following cases may exist:
1. only one set [xg] satisfies (3.3.9) and (3.3.10).
In this case, there exists only _one PN
implementation of the TM transition of the group

tkp.

2. Several sets [xq] satisfy (3.3.9) and (3.3.10). 1In

by

this case, there exist several PN implementations of
the TM transitions of the group tkp.

3. There is no set [xg] that satisfy both (3.3.9) and
(3.3.10). In this case, there is no PN
corresponding to the given TM. This case holds if
and only if there is a state Sip which is a subbag
of a state Sk , (k # ip). Theorems A.6 and A.7 (in

appendix A) prove this statement.

3.4 Examples

The previous section (also A.6 and A.7) gives necessary
and sufficient conditions such that a group of transitions
can be ihplemented. Thus the TM can be implemented by a PN,
if and only if all of its groups can be implemented.

Depending on the properties wanted in the PN (minimal
number of bars, some special configuration, etc.), there
exist several algorithms for choosing the elements of thg
sets [xq] (when such set exist). One possibility is to
choose xq = Xp = RE(tkp). But this solution gives a large
number of bars. In the following examples, some
' possibilities are shown.

First, the implementation of the TM of figure 3.1 is
shown. The groups of transitions are shown in table 3.1
For group 1:

IC(b1) = <S> + x

since no states outside the group include S, x=0 is chosen.

45

TABLE 3.1: Groups of transitions of the TM of figure 3.1

group minimal transition RE(t)
transition

1 S => AB S -> AB. 4
2 B ->C AB -> AC A
3 A -> D | AB -> BD B

AC -> CD C
4 D ->B DB -> EB B

DC -> BC C
5 BB -> C BB -> C @

TABLE 3.2: Groups of transitions of the TM of figure 3.6

group minimal transition RE(t)
transition

1 A -> B A ->B 9]

2 A ->C A =->C @

3 B -> CD B -> CD 4]

y C -> BE C -> BE @

5 C ->E CD -> ED D

6 B->D BE -> DE E

7 DE ~> F DE -> F 4]

46

Then:

IC(b1) = <S>

OC(b1) = <A,B>
For group 2:

IC(b2) = + x

The states outside the group that include B are: <B,D>,
<B,B>, <B,C>. If x = <A> , conditions (3.3.9) and (3.3.10)

are satisfied. Thus:

IC(b2) = <A,B>

0C(b2) = <A,C>
For group 3:

IC(b3) = <A> + x

Since no states outside the group include A, then x=0 is

chosen. Then:

IC(b3)

<A>

H

0C(b3) <D>

Also for groups 4 and 5, x=@ is chosen in the same way. The

corresponding PN is shown in figure 3.5.

In the following example we will try implementing a PN
that has the TM shown in figure 3.6. The groups of

transitions are given in table 3.2.

For group 3:

The only transition of this group is

b7

Figure 3.5: A PN that implements the TM of figure 3.1

48

Figure 3.6: A Token Machine (TM)

b9

B -> CD
But, BE is also a legal state, and there is no transition of
group 3 exiting it. Since there exists:
B £ BE
then, as discussed in the previous section (and proved in
A.7) group 3 can not be implemented by a PN. Thus, there is
not a PN corresponding to the TM of figure 3.6.
If we try to implement the transition:
B -> CD
then:
IC(b3) =
but in this case, a transition:
BE -> CDE

is also implemented, and this transition does not exist in

the given TM.

50

Chapter 4

THE TM AND THE LOSS OF A TOKEN

In this chapter, we will study the structure of the
TM“s which are recoverable from a failure of type "“loss of
token'. The results of this chapter vield a better
understanding of the concept of Yrecoverable, and the
design of recoverable processes. Note that if the TM of a
recoverable process 1is designed, then the structure of the
process can be found (in terms of a PN), wusing the tools
developed in chapter 3.

This chapter deals only with single failures of type
"loss of token", as defined in 2.2. The same ideas are
applicable to other kinds*of failures, but we do not study
this generalization in this manuseript.

In section 2.2, it was pointed out that a PN is
recoverable from a single failure if and only if the
corresponding ETM satisfies the three conditions COR. TI.e:

1. the number of illegal states is finite,

2. there are no terminal illegal states, and
3. there are no directed 1loops including only illegal

states.

51

The following sections of this chapter examine how
these conditions are reflected in the TM, and what is the

general structure of the TM such that the conditions are

satisfied.

4,1 Definitions and Properties

The definitions of this section are introduced in order
fto simplify the discussions in the following sections.
These definitions divide the states and transitions of the
M, and the bars of the PN, into different subsets. Each
subset is defined by certain properties of its elements.

In this chapter (and also in the subsequent ones) we

will suppose that F is the name of the failing condition.

This means that a token in F may disappear.

4,1.1 The set of all the states in the TM is divided into

two subsets:
1. S" = [Si | F £ si]

2. S = [8i { F £ 8i]

S1 is the subset of all the states that do not

include the failing condition F. On the other hand,

2

S”™ is the subset of all the states that include F.

Properties:

By definition, the following properties hold:

1. S1 and 82 have no common elements.

1 2

2. Any legal state belongs to S' or S°. I.e:

52

s =58 .8°

3. A failure can occur only when the TM is in one

of the states of set SZ. In the states of S1

b

F does not exist (does not hold tokens), so

that it can not lose oné.

Notation:

The following notation will be used:

1. S; denotes a state Si such that Si < S1.

2. Si denotes a state Si sueh that Si ¢ 82.

3. Al is defined as:

pi = S2 - F
i
Thus, the states of the set 32 can be denoted

as:

S, = AL + F

are

The Ziransition exiting from the states of

107]

divided into three subsets:

1.t = [tk | tk = S2 -> s; for some jJ

this kind of transition takes place from a
state that includes F to a state that does not
include F. By definition, when a bar that
effects a transition of king t1 fires, it

removes all the tokens from condition F.

53

2

2. t% = [tk ! (tk=s?

i->S§)&(if bar bf effects

tk then #(F,Si):#(F,IC(bf)))]
this kind of transition takes place between two
statés that include F. By definition, when a

bar that effects a transition of kind t2 fires,

it removes &l]l the tokens from condition F.

But, since S§ includes F, a bar that implement

a transition of kind t2 must also place some

tokens back on condition F.

2

3. t3 = [tk | (tk=s®-

>S§)&(there exists a bar bf
that effects tk and #(F,52)>#(F,IC(bf)))]
this kind of transition takes place between two
states that include F. By definition, for each
transition of kind t3 there exists at léast one

bar that executes it without removing all the

fokens from condition F.

Note that if more than one bar effects the transition
tk = s§->s§ then it is enough that one of these
bars satisfies #(F,SZ)>#(F,IC(bf)) to make
transition tk a transition of type t3. Transition tk

is of type t2 only if all the bars that effect tk
satisfy #(F,Si):#(F,IC(bf)).

Notation:

The following notaticn will be used:

54

4,1.3

1.

2.

3.

t; denotes a transition tk such that tk<-t1

2

~ O

£t~ denotes a transition tk such that tk<t

tg denotes a transition tk such that tk4t3

Properties:

1.

if:

£l - 52 oy g
k i J

and t; is effected by bar bf then:
#(F,S5) = #(F,IC(bf))
This statement is proved in B.1 (appendix B).

By definition of the sets t1, t2 and t3

, each
TM transition exiting from state Si belongs to

one and only one of these sets.

When a PN (or its corresponding TM) is in a legal

2

state Si the set B of all the bars is divided into

four subsets:

[bj | in state SZ bj effects a transition t)]

n

[bj | in state ST bj effects a transition ti]

=

= [bj | in state Sf bj effects a transition tg]
= [bj | in state S?, bj can not fire]

55

Notation:

1

1. b. denotes a bar bj such that bj4b

N o

2. b, denotes a bar bj such that bj<b2

3. denotes a bar bj such that bj4b3

o
=~ T UV R

4

g
.

b. denotes a bar bj such that bj4b

(o)

Properties:

1. When a PN (or its corresponding TM) is in state

Si each bar belongs to one and only one of the
sets b', b2, b3 or b-.

2. In each state S? there can be a different
distribution of the bars among the sets b?, b2,
b3 and b".

4.2 The Possible States After a “loss of token" Failure

In this section, the possible illegal states are
examined. The set of all the possible illegal states after

the occurrence of a failure (of type *“loss of token%) is

found.

Suppose that the TM is in state Sf = AL + F. I1r
while in this state a failure occurs, then TM will go to
state Ai. In the following steps, we assume that the PN is
in state Ai, and the bars that can fire in this situation

will be studied.

Theorems B.2 to B.7 (appendix B) show a formal proof of

56

the statements presented next:

4.2.1 Bars of type b1 in state Ai+F can not fire in state

Ai. (Proved in theorem B.2)

4,2.2 Bars of type b2 in state Ai+F can not fire in state

Ai. (Proved in theorem B.3)

4.2.3 Bars of type b3 in state Ai+F can fire in state Ai.

(Proved in theorem B.l4)

4.2.4 Bars of type bu in state Ai+F can not fire in state

Ai. (Proved in theorem B.5)

In other words, only those bars that effect a

3 from state Ai + F (bars of kind b3)

transition of type t
can fire in state Ai. Next, we will consider some
properties of transitions effected by bars b3. These

properties are also formally proven in appendix B.

4,2.5 If bar b?'of type b3 in state Ai + F implements the
transition from class t3:
t3 =21+ F > A2 + F
then, bg also implements the transition:
t2 = AT > A2

(this statement is proved in B.6)

4.2.6 If A1 + F is a legal state in a TM, and if there

exists a transition:

57

ti = A1 -> A2
then there also exists a transition of type t3:
63 = A1« F > A2 + F

(this statement is proved in theorem B.7)

These two previous statements give one of the most
important and interesting properties. In 4.2.5 it is
claimed that for each transition of group t3 from state

A1 + F , there exists a corresponding transition from A1.
Cn the other hand, 4.5.6 claims that for each transition
from A1 there exists a corresponding t3 transition from

Al + F . Thus:

there is a one-to-one correspondence between all the

transitions from a state A1 and all the transitions of

tvpe t3 from a state Si = A1 + F.

The same property holds for all the states Ai. The
one-to-one correspondence is beween a transition:
A1 -> A2
and a transition:
Al + F -> A2 + F
and, furthermore, the latter is of type t3.
After the transition from A1, the PN is in state A2.

But also, A2 belongs to the set:

[4i] = S2 - F
since A2 + F is a 1legal state. This means that the

previcus statements are applicable when the PN is in state

58

A2, In other words, there exists a one-to-one
correspondence between the transitions from A2 and the
transitions of type t3 from A2 + F.

Thus, if the PN arrives to a state that belongs to the

set:

[Ai] = S% - F

(this happens if a *“loss of token" in F occurs) it will
hever leave the states of that set (recall that TIM is
finite). In this case, the PN will only execute transitions
that correspond to the transitions of type t3.

Note that a failure can occur in any of the states of

SZ. Thus, because of a failure the PN can be in any of the

states of 82 - F,

4.3 The Structure of Recoverable THM's (for loss of token)

The conditions for recoverability are:
1. the number of illegal states is finite,
2. there are no terminal illegal states and
3. there are no directed loops including only illegal

states.

Since this work deals only with finite TM s, the number

of legal states is finite. s? = [Ai + F] is a subset from

the legal states, thus the number of states Ai + F is also

finite. This implies that the numberv_gi states Ai is
finite. The previous section showed that after the

occurrence of a failure the' PN will move only among the

59

states Ai. In this case, the “illegal states" are a subset
of [Ai]. This implies that the number of illegal staies is
also finite. Condition (1) of recoverability is always
satisfied for the case of "loss of a token".

In order to satisfy condition (2), all the terminal
states in ETM have to be legal. In other words, if Ai + F
is a legai state and there are no transitions of type t3
exiting from Ai + F, then Ai has to be a legal state. Note
that statement 4.2.6 implies (by modus tollens) that this Ai
will be terminal. ‘

Condition (3) for recoverability points out that loops
comprised only of illegal states are not allowed. If, in
the TM, there exist directed 1loops of states Ai «+ F,
connected by transitions of type t3, then, after a failure,
there exist corresponding loops of the states Ai. In order
to satisfy condition (3), at least one of the Ai states of
each loop has to be a legal state. But, if a state is
legal, all the successors of this state are legal
(definitions 3.2.13 and 3.2.14). Thus, all the loops of
states Ai, corresponding tc loops of states Ai + F connected
by transitions of type t3, have to be legal.

At this point, we can summarize the previous discussion

as follows:

4.3.1 A PN with finite TM is recoverable from a single

failure of kind “loss of token" in F if and only if:

60

1. all the states Ai, corresponding to legal states

Al + F without exiting transitions of type t>,
~are legal (and terminal);

2. Aij + F (j=1,2,..,r) are legal states

connected in a directed loop by transitions of

type t3 implies that one of the states Aij is
legal.

By definition, the difference between t2 and t3 is

k k
given by the implementation, that is, by the number of
instances of F in IC(b). This means that there may exist
certain THM s that can be implemented by either a recoverable
PN or a non-recoverable PN, depending if certain transitiohs

2 or t3. Subsections 4.3.2, 4.3.3 and

are implemented as t
h.3.4 show a way to distinguish, directly from the TM, three
kinds of TM transitions between the 82 states:

1. implementable onlvy as a t3 transition

2. implementablekgg;x as a t2 transition

3. implementable as either a t2 or a t3 transition.

The following properties are derived from the theorems and

definitions in the previous sections:

4,3.2 A1l the possible implementations of a TM transition:
tj = A1 + F «> A2 + F
are only of type t3 iff in the TM there exists another

legal transition tk = S3 -> S} , such that:

61

1. MIN(tk) = MIN(tj)
2. S3 < A1

(This statement is proven by theorems B.8 and B.9)

4.3.3 All the possible implementations of a TM transition:
tj = Al + F => A2 + F
- are ég;x of" type t2 iff in the TM there exists a legal
state S3, such that:
1. S3 # A1 + F
2. A1 £ S3
3. if transition tk exits S3 then MIN(tk) # MIN(tj)

(This statement is proven by theorems B.10 and B.11)

4,3.4 A TM transition:
tj = Al + F => A2 + F

can be implemented, by choise, as of either type t3 or

t2 iff the conditions of 4.,3.2 and 4,3.3 are not
satisfied.

(This statement is deduced from 4.3.2 and %.3.3)

Using these three properties, each TM transition
between states of the s;t 52 can be ‘“marked" as
implementable only as a t2 transition, only as a t3
transition, or as either one of them. In the case that in a
TM each transition between states 52 can be implemented only

by one type of transition, the question of recoverability of

its correspondent PN is very easy to answer. We have only

62

to check if the TM transitions, marked as transitions of
type t3, satisfy the conditions 4.3.1. If the conditions
are satisfied then any PN corresponding to the TM will be
recoverable. But, if the conditions are not satisfied all

the possible PN-implementations will be not recoverable from

"loss of token" in F. In this case, in order to achieve
recoverability, the structure of the TM has to be changed.
Since this change affects the other properties of the THM (or
the processes represented by the THM) we do not discuss the
problem of which changes are ‘convenient" to make. The
convenience of the changes is dependent on the importance of
the other properties, rather than recoverability, that we
may like to keep. In general, the possible changes are: to
add or delete states, or to add or delete transitions. In
the next section, an example of this case is shown.

In case that, in the TM, there exist transitions that
can be implemented as tz or t3, the PN c¢an be either
recoverable or not, depending on how these transitions are
implemented. In principle, it is possible to check the
satisfaction of 4.3.1 for all the possible combinations in

the election of those bars implemented as tz and those

implemented as t3. There exist several algorithms to reduce
the number of combinations, but we consider them outside the
area 6f this work and they are not discussed here.

Note that in general, for the same TM there may exist

different choices (in the transitions implementable as t2 or

63

t3) that lead to recoverable PN's. On the other hand, there
may be no choice that leads to a recoverable implementation.
In this case, the handling is the same as in the previous
case of no recoverable TM, that is, the structure of the TM
must be changed.

In the following sections, several examples demonstrate

the use of the tools developed.

L.4 Examples
Example 1:
Figure 4.1 shows an example of a TM. In this example

the set 82 is:

S = [<F,B> , <F,C>]

the only transition between states of the set 82

is the
transition:

td = <F,B> -> <F,C>
Since B is not a legal state, the conditions of 4,3.2 are
not satisfied. The conditions of 4.3.3 are also not
satisfied since the only state, different from <B,F>,'that
includes is <4,B>, but t3 exits <A,B> and:

MIN(t3) = MIN(tY)
Since U4.3.2 and 4.3.3 are not satisfied then there exist the
conditions of statement 4.3.4. Then t4 can be of type t2 or

t3. If t4 is implemented as a t2 then the conditions 4.3.1

are not satisfied since state <F,B><S2 has no exiting

transitions of type t3 and 1is not a legal state. In

64

this case, the corresponding PN will be not recoverable.

The PN is built using the method developed in chapter 3 and
taking care to implement transition t4 as a t2 transition.
This PN is shown in figure 4.2, The corresponding ETM in
figure 4.3 confirms that the PH is net recoverable since the
illegal state B is terminal.

If t4 is implemented as a pransition of type t3 then
the conditions of 4.3.1 are satisfied. State <F,C> is the

only state from the set 82 that has no exiting transitions

of type t3, but <C> is a legal state (condition 4.3.1(1)).
There are no directed loops of transitions t3, so that,

4.3.1(2) is obviously satisfied. In this case, the

corresponding PN is recoverable. The PN is shown in figure

4.4 and the corresponding ETM in figure 4.5,
Example 2:
In this example, a recoverable PN corresponding to the

TM of figure 4.6 is to be designed. In this TM, the states

of the set 82 are:

s = [<F,F,A> , <F,F,B> , <F,F,C> , <F,A> , <F,B> , <F,C>]

The transitions between the states of the set 82 are:

t6, t7, t8, t10, t11, t12.
The transition t6 can be implemented only as a transition of
kind t3 since:

t6 = <F,F,A> -> <F,F,B§

or:

t6 = <F,A> + <F> -> <F,B> + <F>

65

Figure 4.1: A Token Machine (THM)

66

Figure 4.2: A PN for the TM of figure 4.1

67

Figure 4.3: The ETM for the PN of figure 4.2

68

Figure 4.4: A PN for the TM of figure 4.1

69

Figure 4.5: The ETM for the PN of figure 4.4

70

and there exists a legal transition:
t10 = <F,A> ~> <F,B>

and this satisfies the conditions of statement 4.3.2. 1In
the same way as t6, also t7, t8, t10, t11 and t12 can be
implemented only as a transition of .kind t3. In this
example, all the transitions between states of 82 can be
implemented only as transitions of kind t3. Figure 4.7
shows the t3 transitions of the TM of figure 4.6. In this
case, there exist two loops of states of the set Sz, and
there is no states of 82 without exiting transitions t3.

For the loop:

FFA -> FFB -> FFC

there exist corresponding legal states FA, FB, FC.

For the loop:

FA -> FB -> FC

there exist corresponding legal states A4, B, C. Thus
conditions 4.3.1 are satisfied for any implementation of the
TM. An implementation for this TM is shown in figure 4.8.
Example 3:

in this exémple, the TM of figure 4.9 is implemented.
The states of the set 82 are:

s = [<F,F,A> , <F,F,B> , <F,F,C>]
and the transitions between these states are:
td, t5, t6

Transition t4 can be implemented as either t2 or t3, since:

71

Figure 4.6: A Token Machine (TM)

72

0 O 0

Figure 4.7: Transitions of kind t3 for the TM of figure 4.6

73

Figure 4.8: A PN for the TM of figure 4.6

Th

t4 = <F,F,A> -> <F,F,B>

and there 1is no state included in <F,A> (4.3.2 is not
satisfied) or state that includes <F,A> (4.3.3 is not
satisfied). In the same way, t5, and t6 can also be
implemented as t2 or t3®

Figure 4,10 shows the transitions t4, t5 and t6. If
these three transitions are implemented as transitions t3,
there is a loop of states of kind t3. But, since there is
not a legal state <F,A>, <F,B> or <F,C> then condition
4.3.1(2) is not satisfied. On the other hand, if one of the
transitions td4, t5, or t6 is implemented as a transition of

type t2 then there will exists a state 82 without exiting

k’
transitions of type t3, and without a corresponding state
Si - F + This situation contradicts condition 4.3,1(1),

and ﬁhen there is no way of implementing the TM of figure
'4s9 s0 that it is recoverable from single failures of kind
*loss of token."

If we still desire to implement a recoverable process,
the TM have to be changed. Several different modifications
can be made in order to get a ‘“similar" ™, but a
recoverable one. These modifications changes not only the
recoverability properties of the process, but also other
properties. One possible modification is the previous
example with the TM shown in figure 4.6. Another possible
modification is described by the TM of figure U4.11s The

corresponding recoverable PN is shown in figure 4,12. The

15

Figure 4.9: A Token Machine (TM)

76

© 3 2
teet or t

etPor 12

Figure 4.10: Transitions between states 82 in the TM of

figure 4.9

77

ETM of figure 4.13 confirm the recoverability of the PN.

This chapter described the structure that a TM must
have in order to be implementable as a recoverable PN
(4.3.1). In 4.3, we showed a way of designing a recoverable
PN for any given TM that can be implemented in this way. If
the TM is not impleﬁéntable as a recoverable PN, the

presented method points out the reasons that prevent such an

implementation.

The next chapter analyzes the practical limitations of
recoverable processes under the %“loss of token". Since in
the Petri-net model these 1limitations are . found to be
pragmatically unacceptable, a new model (the Time-Petri-net)
is defined and studied in the next chapters. This new model

appears to be very useful in the study of recoverability in

real processes.

78

Figure 4.11: A recoverable THM

79

Figure 4.12: A PN for the TM of figure 4.11

80

Figure 4.13: The ETM of the PN of figure 4.12

81

Chapter 5

PRACTICAL LIMITATIONS OF RECOVERABLE TM'S

In chapter 4 the structure of the TMs that can be
implemented as recoverable processes (under loss of tokens)
were studied. In general, the processes examined in the
previous chapters were characterized by a lack of knowledge
about the execution times of its parts. No assumption was
made about the times expended by the events when they oceur,
or the relation between these times. In this chapter, it is
shown that in the PN model, the recoverable TMs (under *"“loss
of token") have certain properties, usually unacceptable in
practical systems. These processes will be divided into

different groups and each group will be studied separately}

Processes of Kind 1:

This kind of process is characterized by the following

property: If Ai + F is a legal state then Ai is not a legal

terminal state.

Processes of Kind 2:

To this group belong all the processes which do not

belong to kind 1.

Note that, as in the previous chapters, we will deal

82

only with processes that have finite TMs.

5.1 Properties of Processes of Kind 1.

The recoverable processes of this kind have the

following properties:

5.1.1 _Theorem

Let a process be of kind 1 and recoverable. If
Al + F is a legal state, then there exists another state
of type 52, say state A2 + F , and a transition:

tk = A1 + F => A2 + F

Proof

Suppose that such a transition does not exist. 1In
this case all the transitions exiting from A1 + F are of
type t1. In 4.3 it is shown that, in this case, the
process 1s recoverable only if A1 is a legal and
terminal state. Since this contradicts the definition
of process of "kind 1" then the transition t exists,

k
and therefore the state A2 + F is legal.

Q.E.D.

5.1.2 Theorem

Let a process be of kind 1 and recoverable; then
there exists at least one loop in the TM, so that all

the members in the loop include the condition F.

83

Proof :

From theorem 5.1.1, each‘state that includes F has
a successor that also includes F. It means that there‘
are transitions:

AT + F => A2 + F =>....... —>Ai + F=>......

" If there is not a loop, then for each i (i as big
as we want) there is not a k smaller than i such that:
Ai = Ak

But, this means that in the TM there is an infinite

number of different states. Since in this work we deal

only with finite TM then a loop exists.

5.1.3 Theorenm
Let a process be of kind 1 and recoverable. Then

there exists at least one loop, such that all the states
that are members of the loop have the same number of
instances of F.
Proof :
We define the following notation:
1. [Pi} is the set of all the states in the PN that
include at least one instance of F,
2. [Mi] is the set of the states in the PN that
belong to directed loops of states of [Pi],
3. [Qi] is the set of all the states in the PN that
satisfy:

(a) Qi is a2 member of [Mi],

84

(b) if S1 is a member of [Mi], and exists a
path of states of [Pi] from Qi to S1, then
Qi has equal or more instances of F than
Si has.
Theorem 5.1.2 shows that the set [Mi] is not empty. The
set [Qi] is alsoAnbt'empty because the element of [Mi]
Wwith maximal number of instances of F always belongs to
[Qi].

Suppose that from the set [Qi] we choose an element
with minimal instances of F. If this element is denoted
as Q1, and if it has k instances of F, then there exist:

Q1 = k.F + A
(A is a bag that not includes F).

If there occurs a failure in Q1, the PN goes to a

state, say S1, given by:

S1 = (k - 1).F + A
In chapter 4 it was shown that if there exists a path
from S1 to any state, say S2, then also exists a path
from Q1 to S2 + F. This means that after a failure the
PN can only go to states that have less than k instances
of F. |

Since the TM is finite, and the TM is of kind 1 and
recoverable, then after the failure the PN can not reach
any terminal state. This means that the states after
the failure include loops of legal states. These loops

do not include loops that all of its states belong to

85

[Pi], otherwise the definition of Q1 is contradicted.
On the other hand, if there are not loops of elements of
[Pi] then theorem 5.1.1 implies that the loops include
only states that not include F. But, in chapter 4
(section 4.2) it was shown that if after a failure there
exists a path of transitions then there also exists a
correspondent path of legal transitions. Each state in
this second path has one more instance of F than the
correspondent state in the first path. This means that
there exists a loop with just one instance of F in its
states. This 1loop corresponds to the loop of states
that not include F which exist after the occurrence of

the failure in state Q1.

Q.E.D.

5.2 Propérties of Processes of Kind 2

By definition, processes of kind 2 are characterized by
the existence of a legal terminal state A1 corresponding to
a legal state A1 + F.

Usually, part of the conditions of the terminal states
of a process are used to notify the external world that the
process has finished its execution, and the status in which
the process ended. Suppose first that A1 + F is not a
terminal state. Then when the process is in A1 + F , the

external world will sense the same conditions as in A1.

This means that the external world might assume that the

86

process 1is ended in A1.

On the other hand, if A1 + F is also a terminal state

there exist two cases:

1'

5.3

F is not sensed by the external world.

In this case F is not necéssary in the terminal
state,and there is no reason to implement this state.
F is sensed by thé external world.

In this case, after a failure in A1 + F, the process
is recoverable since it stays in a legal state (A1).
But the error is spread to the external world because
the external world senses F in the terminal state, and

F has lost the token.

The following properties exist in all processes with

finite TM.

Theorem :

In a finite TM, if the states A1 = i.F + Q and
A2 = j.F + Q are legal states, and if i<j then there
is no path directed from A1 to A2.
Proof :

There exists a k:
so that:

j:k+i

Suppose that the path from A1 to A2 is implemented by

87

the successive firing of the bars:
b1,b2,¢ce0eee ...,bm
In this case, bl fires in A1 bringing the system to a
legal state, say S1. But since
IC(b1) < A1 < A2

then bl can fire also in A2 bringing the machine to a
legal state S2. S2 is given by:

S2 = k.F + S1
Now, b2 can fire in S1, but in the same way it can
fire in S2.' This procedure can be applied again, so
that when bm fires it brings the system to state: |

A2 = j.F + Q
thus it can bring the system to a legal state:

A3 = (j + K).F + Q = (i + 2.k).F + Q
Now, the entire procedure can be applied again to the
states A2 and A3. In this case there exists the legal
state:
A} = (i + 3.k).F + Q
Continuing in the same way, for any positive integer p
we can arrive to a legal state:
Ap = (i + (p - 1).k).F + Q

Since all the Ap are different (they have increasing
number of instances of F), the series of states Ap is
infinite. In this case the TM is infinite.

Q.E.D.

88

5.4 Discussion

Theorem 5.3 shows that in finite TMs, if A1 + F and A1
are legal states, then there is no path from A1 to A1 + F.

A path in the reverse direction may exist. This means that

there exists an irreversible degradation in the process.

Since all the récoverable processes are characterigzed
by the existence of correspondent legal states Ai and
Ai + F, then all recoverable processes have the property of
irreversible degradation. This limitation is unacceptable
especially in the case of processes withOQt terminal states,
This 1is because the process never terminates, but simply
degrades in the number of possible states in which it can
stay. An example of this case of recoverable process is
shown in figure 5.1. In this example, there are paths from
the states FFA, FFB, or FFC to the states FA, FB, FC, A, B,
and C, but not in the reverse direction. This process will
never terminate. And, after a degradation, it will never
return to any of the states b, S, FFA, FFB, or FFC.

Theorem 5.1.3 shows that in recoverable processes of
kind 1 there exists a loop of states always having the same
number of instances of F. Section 5.2 describes the
limitations of the processes of kind 2. The two kinds of
processes (kind 1 and kind 2) include all the processes with
finite TM. This means that each recoverable process has at
least the limitations of one of the kinds.

From the analysis just above, we can conclude that the

Figure 5.1: A Recoverable TM

90

recoverable processes represented by the model described in
the previous chapters have a very constrained structure.
These limitations to the structure are usually unacceptable
in real systems. For example, most of the real recoverable
processes do not degradate with each' failure. After a
failure, these processes- try to recuperate automatically,
and to regain the power that they had before the failure.
Also the other 1limitations described 1in the previous
sections usually do not exist in real systems.

But in the examples presented in chapter 2 these
limitations were removed by postulating the existence of the
function T ("can fire after a long time"). The function T
is, in certain ways, related to the knowledge of some
restrictions in the execution times of the different parts
of the systen. This fact indicates that some knowledge
about the times in the system «can remove the Vbad
properties® or "strong limitations® that exist in
recoverable processes in the PN model.

In the following section, the concept of time is
introduced into the Petri-net model of processes.

Recoverability of processes is studied using this new model.

91

Chapter 6

'THE TIME-PETRI-NET (TPN)

In this chapter a new model, the Time-Petri-Net (TPN),
is defined and examined. This model contains the PN as a
special case, and allows expression of the execution times
of its parts.

The TPN is defined by a PN where each bar has two times
specified. The first denotes the minimal time that must

elapse from the time that all the input conditions of a bar

are enabled until this bar can fire. The other time denotes

the maximum time that the input conditions can be enabled
and the bar does not fire. After this time, the bar mnust
fire. In general, these two times give some measure of
minimal and maximal execution times of the bars.

In the next section, the TPN is formally defined.
Section 6.2 shéws some properties of the TPN, and 6.3

describes a study of recoverability after a "“loss of token®

in this new model.

6.1 Definitions

6.1.1a TPN is defined by a Petri-net (as defined in

92

6.1.4

6.1.8

section 3.2.10) in which for eachdbar bi there is
given a tuple [t¥i ; t®*#¥i], For all i: |

1. t¥i, t%#i real numbers

2. t¥i, t¥#%j > 0

3. t#i < tE#Fj

the firing algorithm in a TPN 1is defined as
following:

1. If the conditions IC(bi) hold for a period
of time equal to or greater than t=#i then bi
can fire (with the firing algorithm defined
in 3.2.14).

2. If the conditions IC(bi) hold for a period
of time equal to t*#i then bi fires.

T*A is defined as the minimal time that the
conditions of the bag A hold tokens.

T**A is defined as the maximal time that the
conditions of the bag A hold tokens.

T*b(S) is defined as the minimal time that the TPN
has to stay at state S so that bar b can fire.
T**b(s) is defined as the maximal time that the
system can stay in state S before b fires.

T#(8) is defined as the minimal time that the TPN
will stay in state S when it arrives at this state
before a transition fires.

T#%*(8) is defined as the maximal time that the TPN

may stay in state S before a transition fires.

93

6.2 Properties of the TPN

6.2.2

6.2:3

6.2.4

A TPN is a PN if for all bars i:

t¥i = 0
and t**i = infinite
In this case, a bar can firé at any time that its
input conditions hold. This is the definition of
the firing algorithm for a PN (section 3.2.14).
If St is a 1legal state in a TPN and in its
corresponding PN, and if b1 can fire from S1 in the
TPN, it also can fire from S1 in the PN.
This property exists because the firing algorithm in
a TPN satisfies the conditions of the firing

algorithm in the PN,

The converse of 6.2.2 is not always true, Figure
6.1(a) shows an example of a PN. If A is a legal
state then bl or b2 can fire. Figure 6.1(b) shows a
TPN built on this PNs In this case, if A holds a
token then bl has to fire before 5. But b2 can fire
only after 6. Thus in this case, bl will always

fire before b2. In this case, b2 never fires.

Applying successively the property 6:2+2, each
sequence of legal states that exists in the TPN also

exists in the corresponding PN.

6.2.5 Suppose that IC(b1) < Si and IC(b2) < Si, and Si is

a legal state. In a PN, bl or b2 can fire in Si.

94

(a) PN

(b) TPN

Figure 6.1: (a) a PN; (b) a TPN of the previous PN

95

6.2.6

6.2.7

6.2.8

But if:
% . _— .
T b1(Sl) > T *bZ(Sl)
then b1 never fires in Si. In state Si, b2 will
always fire before b1, and the TPN will leave state
Si before bl can fire. (The example of figure

6.1(b) shows this situation).

From definitions 6.1.1 and 6.1.5:

T#, 5 (83) < t¥bi

for any i and j.

From definitions 6.1.1 and 6.1.6:
%% ; Y
T bi(SJ) < t#%bi

for any i-and j.

Suppose that b1,b2,.......,bp is the set of all bars
that satisfy:

IC(bi) < Sj
then T#%(Sj) is given by:
T#%(Sj) = min(T**b1(Sj); T**bZ(Sj);.....T**bp(Sj))
(6.2-811)

because the first bar that arrives at its maximal
waiting time (t*%*) must fire.
Replacing 6.2.7 in 6.2.8.1:

T##(S3) < min(t%%b1; £L**b23ueuees.. t®¥bp)

(6.2.8.2)

(6.2.8.2) gives'an upper bound to the value of the

96

6.2.9

maximal time that the TPN can be in state Sj. This
upper bound is not the minimal, but it is easy to
compute since the values t*#%¥bi are given in the
definition of the TPN. The exact value of T##*(Sj)
is given by (6.2.8.1), but tﬁere are practical cases

in which the values T**bi(Sj) are dificult to

compute.

Q(B) is defined as the set:
Q(B) = [Q1; Q25;Qp]
each element of the set is an ordered, finite or
infinite,sequence of bags.
Qi is given by:
Qi = [0i'; 0i%5.......z0id;.]
Each element of Qi is a legal state in the TPN that
satisfies:
B < 0id
Each Qi represents a possible sequence in the TPN.
In Qi the bag B holds tokens, and there are no
transitions in the sequence such that if bar bk
fires in QiJ then:

B £ QiJ - IC(bk) (6.2.9.1)

This means that in Qi, there is no transition such
that during its execution, B does not hold tokens.
The sequences Qi are chosen so that they are of

maximal length. Thus if Qi and Qj are members of

97

Q(B) then:
Qi £ QJ
The set Q(B) includes all the possible sequences

that satisfy the previous constraints.

’ Using this definition, the maximal time that B

can hold tokens_satisfies:
T*¥. < max(T##(Q1 !)+T**(Q12)+. 3 TE%(Q2 "). L3 THE(Qp L)

(6.2.9.2)

Note that T**B may be infinite if one of the Qi have
an infinite number of elements. This happens if
there exists a loop of states such that all of them
include B and in the loop there are no transitions

that satisfy (6.2.9.1).

6.3 Recoverability of TPN After a Loss of Token

In this section we show how processes that are not
recoverable in the PN model can be transformed into
recoverable processes using the TPN model.

Suppose that a process, that is not recoverable after
the loss of a token in F, is given by its TM. Our goal is
to build a TPN so that its possible states and transitions
are equal to those in the given TM. If the TM is
implemented by a PN, then 4.3 shows that the process is not
recoverable after a “loss of token" only if either:

1. there exist directed 1loops of states A1 + F

98

connected by transitions of type t3, and there is

not a corresponding legal state Ai, or
2. there are states Al + F without exiting
transitions of type t3, and Ai is not a legal state.

Suppose that in the TM, if there exist léops of states

Ai + F and there are no corresponding legal states Ai,
thenA hot all of the transitions of the 1loop are only
implementable as of type £3 (see 4.3.2). 1In this case, at
least one of the transitions in the loop can be effected as
of type t2. This means that the TM can be implemented by a
PN with an ETM that has no loops of illegal states. If the
TM is implemented in this way then the PN is not recoverable
only if:

there are states AL + F without exiting

transitions of type t3, and A1 is not a leg;l state.
In this'structuré, after the occurrence of a failure, the
process will terminate in an illegal state.

In order to transform the process to a recoverable one,
for each illegal terminal node Ai we have to implement a bar
bi that fires in Ai. This bar must execute a transition
from Ai to a legal state in the TM, say Si. This means
that:

1. IC(bi) < Ai, and
2. IC(bi) includes‘all the instances.in Ai that are not
in Si.

On the other hand, bi is not allowed to fire in any

99

legal state. This means that bi does not affect the
execution when there 'is no failure, so that the TM is
normally executed. In order to disable the firing of bi
during normal execution, t¥i has to satisfy:

t¥i > T%*Ic(bi) (6.3.1)

Note that if there exist loops such that all the states
in the loop contain IC(bi), then the implementation of the
recoverable TPN must be such that T*ﬁIC(bi) is not infinite.
The example in section 6.4 shows this situation.

The method described in this chapter allows one to
build a recoverable TPN for certain TMs that are not
implementable by any recoverable PN. The method does not

solve this problem in general, but it gives an acceptable

solution in many practical cases, as shown in chapter 7.

6.4 Example
Figure 6.2 shows a TM that has to be implemented such
that it is recoverable in the case that a loss of token
occurs in the condition 5. One possible implementation is
the PN shown in figure 6.3. Figure 6.4 shows the ETM
corresponding to this implementation. The number on each
arc denotes the bar that implements the corresponding
transition. In this implementation there are two problems:
1. a loop of the illegal states 24 and 25. This loop
can be broken if bar 4 is not allowed to fire in 24.

But bar 4 has to fire in 245, 234, 244, and 246.

100

Figure 6.2: A Token Machine (TM)

101

Figure 6.3: A PN for the TM of figure 6.2

102

Figure 6.4: The ETM for the PN of figure 6.3

103

Instead of bar 4 we will implement four different

bars:

1. IC(b4') = 15

2. IC(b4%) = 43
3. IC(b43) = uu
.y, IC(buu) = Lf

These four bars implement the same transitions
that bar 4 implements, but they can not fire in
state 24,

2. The state 26 is illegal and terminal. But, T**26 is
infinite because of the loop between the states 246
and 256 connected by the transitions executed by the
bars 4 and 5.

But with the new bars in place of 4, the
transition from 246 to 256 is executed by Hu instead
of bar 4, and this problem is also solved. 1In tﬁis
case, bar u“ removes the token from 6 and places a
new token. This means that the maximal existence

time of 26 (T**26) is broken when bar 4“ fires.

Figure 6.5 shows the new implementation of the TM,
after bar 4 was split into four different bars. Figure 6.6
shows the ETM for the PN of figure 6.5. This ETM shows that
there is only one illegal terminal state, the state 26.
This means that we have to implement a bar that fires in 26.

The input conditions of this bar are one of the three

104

following possibilities:

1. IC(7) = 2

2. IC(T7) = 6

3. IC(7) = 26
In our example we

choose'1

that IC(7) 26.

As shown in (6.3.1),

t%
The next step is to comp
bound of TWW26. In the

procedure described in 6.2.

The possible sequences of states that include 26,

that satisfy the constrain

Q1 [236; 2u46; 26

H

Q2
From 6.2.8:

[256; 2u46; 26

1. T*#(236) ¢ t¥#
2. T#%(246) < min
3. T#%(266) ¢ t¥w
Y, T##(256) < tE

and using (6.2.9.2):

T**26 £ max(t*#2+min(t#*#3;

Thus, if:

t¥7 > max(t¥*¥2+min(t#=3;¢#%

the last possibility. This means

t*7 has to satisfy:

7 > TEw

26
ute T**26, or at least an upper
next steps we will follow the
g.
and

ts explained in 6.2.9 are:
6]
6]

2
6
5
txeh)spae6 - teesmin(trr3;erlY)atin)

syt w6 5 te*Samin(tE%3;eEEa)sprep)

(6.4.1)

105

Figure 6.5: A PN for the TM of figure 6.2

106

Figure 6.6: The ETM for the PN of figure 6.5

107

then:

ER7 > Tk

And if:
0C(7) = si
where Si 1s one of the legal states, then the process 1is
recoverable. In our example we choose:
Coc(r) = 1

Figure 6.7 shows the TPH that implements the
recoverable process of the given TM. We assume that the
values of t¥%2, t#%%6, t%%¥5 and either t#%3 or t*%u“ are
finite, and that t¥7 is chosen so that (6.4.1) is satisfied.
The TPN of figure 6.7 implements the TH of figure 6.2 and is
recoverable in case of loss of token in condition 5. After
a failure, the system will arrive in state 26. After the
process is in state 26 for a time equal to t#7, then bar 7

may fire and the TPN will return to 1legal state 1. The

return to a legal state in finite time can be insured by

setting a finite t#%7,

108

Figure 6.7: A recoverable TPN for the TM of figure 6.2

109

Chapter 7

A PRACTICAL EXAMPLE -

Recoverability of a Communication Protocol

The study of the communication protocols kin this
dissertation is motivated by practical reasons. During the
last few years, many computer networks have been designed
and implemented. Since the probability of failures in the
communication links is relatively high, the implementation
of recoverable protocol processes is of considerable
importance.

The presentation in this section is based, in part, on
the study presented in [POST74] and on the examples given in
chapter 2. The new model, the TPN, is used. The examples
given here are a simplified model of the IMP-IMP protocols

used in the ARPANET.

7.1 Example 1

In this section the protocol of figure 7.1 is studied.
This protocol was presented in chapter 2. We suppose that a
possible failure is the loss of the message M. That is, a

token in M can disappear. ‘The dotted 1line from E to A

110

represents the preparation of a new message by the sender.
The dotted 1line from D to B represents the receiving
process.

The ETM of the PN of figure 7.1, assuming initial state
AB, is given in figure 7.2. The ETM shows that there exist
two illegal states, WB and WD. In this ETM, there is no
loop bof illegal states, but there exists an illegal and
terminal state, WB. Chapter 6 shows that in order to
_transform such a process to a recoverable process, there has
to be a bar that fires in state WB. If this bar is called

7, then there exists the following possibilities:

1. IC(7) = WB
2. IC(7) =B
3. IC(7) = W

In the first possibility, bar 7 is dependent on both
the sender and the receiver. 1In real systems this structure
is difficult to implement because of the physical distance
between sender and receiver. In our example, we choose the
third possibility. 1In this case bar 7 is dependent only on
the state of the sender. In case of a failure, the sender
will again send a transmition of the lost message. This

means that:

IC(T)

n
=

and:
oc(7) MW

50 that in case of a failure the system will return to state

©
®

@
®

Figure 7.1: A PN -of a protocol process

112

DW

Figure 7.2: ETM for the PN of figure 7.1

113

WHMB.
On the other hand, bar 7 is to fire only if a failure
has occurred. 1In other words:
t=7 > TWw (7.1.1)

From figures 7.1 and 7.2 it is possible to show that if:

1. Tﬁu(WKD) < T**S(WKD) (bar 4 can fire in WKD)
2. T*6(DE) < T*ﬁS(DE) (bar 6 can fire in DE)
and 3. T*1(AD) < T%*S(AD) (bar 1 can fire in AD)
(7.1.2)

then the PN can arrive at state WHMD, and then:

T**S(WMD) = LFE5 o (EFY 4+ tEH 4+ t%®1)
and:
T**w = LERS - (¥4 4 t#6 4+ t¥E1) 4+ tuE2 4 t#%3 4 twel (7,1.3)
Note that after the PN arrives at state WKD, the maximal
time that W can hold is the same if first bar 4 fires, or
that first bar 5 fires and then 4 fires. This time is egual
to the maximal time until bar 4 fires, in this case, t#¥ly,

If t#*7 is set such that:

EFT > t#55 o (L%4 + t%6 + t#1) 4+ t¥#2 4 t#%3 4 tex)
then the PN is recoverable (t*7 satisfies (7.1.1) in which
T#%, is replaced with (7.1.3)). If one of the conditions

(7.1.2) is not satisfied, the PN will never arrive at state

WMD. Then the case is that:
TMw = LEED 4 p®E#3 4 tE¥Y
and t*7 is to satisfy:

LT > LERD 4 tEE3 4 gEEy

114

The recoverable TPN and its corresponding ETM are shown
in figures 7.3 and 7.4 vrespectively. This TPN is
recoverable from failures of type "“loss of token" in M,
Note that if (7.1.1) is not satisfied then the ETM is
infinite and the process is not Arecoverable. In many
practical systems, the t*7 that satisfies (7.1.1) can be

very large. In these cases, the protocol of the next

example can be used.

7.2 Example 2
Suppose that each message carries a sequence number.
If these numbers are from the set of integers [1,2,...,n]
then the messages are sent sequentially in the order:
1525¢0.n31325.0.n313204..
In the PN that represents éhis protocol, there exist
different conditions Mi ; (i = 1,2,...n). Each Mi

corresponds to the message carrying the sequence number i.
In the same way, for each i (i = 1,2,...n) there exist
the conditions:

Ai ready to send message i

Bi = ready to receive message i

Ki = acknowledge to message i is sent

Wi = waiting for acknowledge to message i
Ei = acknowledge to message i was received
Ci = message 1 was received

Di = prepare for receiving next message

115

Figure 7.3: Recoverable TPN for the TM of figure 7.1

116

Figure 7.4: ETM for the TPN of figure 7.3

117

These correspond to the conditions A, B, K, W, E, C, and D
in the PN of the previous example.

For simplicity, in the present example, we assume that
n=2 (theAsame approach is applicable for any n). Figure 7.5
shows the PN for this case. This PN is similar to two
instances of the PN shown in figure 7.1. The only
difference is the dotted lines which represent the sender
and receiver processes. In the present case, these
processes are responsible for the correct sequencing of the
messages.

Figure 7.6 shows the corresponding ETM for the case
that a failure can occur in M1 or M2, assuming initial state
A1B1.

This ETM is similar to two instances of the ETM shown in
figure 7.2. In order to convert the PN of figure 7.5 to a
recoverable PN, we use an approach similar to that desecribed
in the previous example. In this case, two bars are added,

bars 17 and 27. In the same way as in the previous example,

there exist:

1. IC(17) = W1

2. 0OC(17) = W1M1

3. t®¥17 > T**w1 (7.2.1)
and if:

1. T*TM(W1K1D1) < T**15(W1K1D1)
2. T*16(E1D1) < T*%15(E1D1)

3. T*21(A2D1) <.Tﬁ*15(A2D1)

118

14

23

W2

24

PN of a protocol process

Figure 7.5:

119

Figure 7.6: ETM for the PN of figure 7.5

120

25

then:
T**w1 = LEF 15 (¥ TU4L# 164+L%¥2 7)+ ¥ F 124t %% 134t ww 1Y
but if one of the conditions above is not satisfied

then:

T#E = LEE12 4 £ERI3 4 tEE1Y

4, IC(27) = W2

5. 0C(27) = wW2mM2

6. t#27 > T**wz (7.2.2)
and if:

1. T*ZQ(WZKZDZ) < T**25(WZK2D2)

2. T%26(E2D2) < T**ZS(E2D2)

3. T*11(A1D2) < T**ZB(A1D2)

then:

T**w2 = PHRER25-(L¥2U4t% 2040711)+ L= #2244 % #2344 %% 2]
but if one of the conditions above is not satisfied

then:

THE S = LHEQD 4 £EEQ23 4 gEE2Y

This TPN is shown in figure 7.7 and it is recoverable.

But, what happens if (7.2.1) or (7.2.2) are not
satisfied?. In this case, bar 17 or bar 27 can fire before
it is certain that the TPN is in an illegal state. Then the
bars 17 or 27 might also fire in legal states. In order to
simplify the following explanations for the case that

(7.2.1) or (7.2.2) are not satisfied, we assume that:

1. T*16(E1D1) > T**15(E1D1)

121

Recoverable TPN for the PN of figure 7.5

Figure 7.7:

122

this means that bar 16 can not fire in E1D1 and, in
the TM, the branch that includes the states A2D1 and
M2W2D1 is canceled (see figure 7.6). In this case:

TH¥ o= LERI2 4 tEE134 RNy

2. T*26(E2D2) > T**ZS(EZDZ)
in the same way as in the previous case, bar 26 can
not fire in state E2D2 and, in the TM, the branch that
include the states A1D2 and M1W1D2 is canceled (see
figure 7.6). In this case:

T#E = L¥FE22 4+ t¥¥23 4 t#x2l

(Note that the two previous assumptions imply that the
receiver is ready to receive before the sender is ready to

send. In other words, bar 15 fires before 16 and 25 before

26.)

3. t*17 does not satisfy (7.2.1), but it is big enough to

prevent the firing of bar 17 in legal states WIM1B1
and WiC1. In other words, bar 17 can fire only in
illegal states or in legal states W1K1D1 and WI1K1B2.
In this case:

LE#I124LF % 134w k1Y > £RT > EE124L¥# 13 (7.2.3)

4, t*27 does not satisfy (7.2.2), but it is big enough to

prevent the firing of bar 27 in legal states W2M2B2
and WaC2. In other words, bar 27 can fire only in

illegal states or in legal states W2K2D2 and W2K2B1.

123

This means that:

LRE224L%8 2344552 > %27 > ¢#E#2244®%23 (7.2.4)

These assumptions simplify the presentation of the
example, but they do not reduce its generality. The same
approaéh is applicable when the assumptions are rot made,
and only the results will be different, but not in
principle.

The T (not the ETM) for the TPN described in figure
7.7, for the case that the assumptions above are satisfied,
is shown in figure 7.8. This TM 1is infinite since the
number of instances of M1 and M2 grows infinitely. 1In this
situation it can occur that the execution never returns to
"normal executionﬁ. By "normal execution' we mean the legal
states of figure 7.6. At this point, we can look at the

problem in the following way:

"when bar 17 fires in states W1K1D1 or W1K1B1, or when
bar 27 fires in states W2K2D2 or W2K2B2, ~ they

introduce a pseudo failure of type generation of extra

tokenV.

When bar 17 fires, an extra token is added to M1, and when
bar 27 fires, an extra token is added to M2. The states
after the occurrence of the '"pseudo failure" are called

pseudo illegal states. The transitions between these states

are called pseudo illegal transitions.

At this point, we want to insure that, after the

124

e

26 T CONTINUES TO
fie A2B2 K INFINITE

b

[

CbNTlNUES TO
INFINITE

K 3 (3
={\W/1KIDI 2

Figure 7.8: TM for the case that (7.2.3) and (7.2.4) are
satisfied - pseudo-failures (tokens added before

time)

125

occurrence of a pseudo failure, execution will always return
to the legal states. The solution of this problem is the
same as in the case that a real failure of type “generation
of an illegal token" has occurred.

In order to solve in general this kind of problem, it
is necessary to exhaustively analyze the problem of
"recoverability under the generation of an illegal token,"
in a way similar to that done in chapter 4 for the case of
“loss of tokens" But, several particular cases can be easily
solved without such an extensive analysis.

Now the solution of our example’will be given. At this
point, we can not formally determine if our solution is the
only possible solution. But, the solution presented here
appears to be applicable in many practical cases.

Suppose that a “cut-set" of pseudo 1illegal arcs is
chosen in the TM of figure 7.8. Since, in this case, the
cut-set includes only pseudo illegal states, it divides the
TM into two parts:
| 1¢ part 1 includes all the legal states and some (or

none) of the pseudo illegal states,
2« part 2 includes only the pseudo illegal states not

included in part 1.

In our example the cut-set of arcs [al , a2] as shown
in figure 7.8 is chosen.
If bars are added to the PN such that:

1« there exists a path from each pseudo illegal state in

126

part 1, to a legal state,
2. the additional bars can not fire in legal states,
3. the ares of the cut-set (al and a2 in the example)
will never be executed,
then the process is recoverable under the occurrence of a
pseudo failure. If the conditions above are satisfied after
the occurrence of a pseudo failure, the execution will
always return to a legal state.
In order to satisfy these conditions, the bars 18 and

28 are added to the TPN of figure 7.7, such that:

IC(18) = B1IM2
0C(18) = B1
IC(28) = B2M1
0C(28) = B2

The new TPN is shown in figure 7.9 and the
correspondent TM in figure 7.10. Figure 7.10 shows that
conditions 1 and 2 are satisfied. Condition 2 is satisfied
because neither IC(18) nor IC(28) (BIM2 or B2Mi1) are
included in any of the legal states. In order to satisfy
condition 3, we have to insure that ares a1l and a2 (figure
18) will never be executed. This means that in state
W2M2B2M1 bar 28 will fire before bar 22 can fire, and that
in state WIM1B1M2 bar 18 will fire before bar 12 can fire.
In other words, using property 6.2.5:

T#% g (WIMIBIM2) < T ,(WIMIB1M2) (7.2.5)

T%*28(W2M2B2M1) < T%22(W2M2B2M1) (7.2.6)

127

Figure 7.9: A new TPN

128

CONTINUES TO
INFINITE
b A 4

CONTINUES TO
INFINITE

Figure 7.10: TM for the TPN of figure 7.9

129

But since M1 < IC(12), and the token in M1 is placed

when the process enters the state WIM1B1M2 then:

T%12(W1M1B1M2) = t%12 (7.2.7)

Note that in this case t#12 is the minimal time that can
elapse between a token being placed on M1 until this token
is removed. This time can be interpreted as the minimal

propagation time of the message M1 1!

In the same way there exists:

T*22(W2MZB2M1) = t#22 (7.2.8)

and t*22 can be interpreted as the minimal propagation time

of the message M2.

From figures 7.9 and 7.170 it is possible to show that:

T*%18(W1M1B1M2) = t#%18 - t#11 - t%26 (7.2.9)
and T**28(WZM2BZM1) = LHE28 - t¥21 - t#16 (7.2.10)

Replacing (7.2.7) and (7.2.9) in (7.2.5) the result is:

LE*18 - £%11 - t%26 < t#12 (7.2.11)

and replacing (7.2.8) and (7.2.10) in (7.2.6) the result is:

t##28 - t¥21 - t#16 < t¥22 (7.2.12)

The THM of the TPN of figure 7.9, with the constraints
given by (7.2.3), (7.2.4), (7.2.11), and (7.2.12) is shown
in figure 7.11. This TM includes all (and only) the states,
1egél and pseudo illegal, that are included in what we

called "“part 1" of the TM of'figure 7.8. But, this is not

130

the only way to look at the problem. The pseudo illegal
states of part 1 are allowed to hold tokens, just as the
legal states. This means that these pseudo illegal states
might Jjust as well be considered legal states. Thus, all
the states of figure 7.11 can be considered legal. These
two ways of interpretation are equally convenient.

‘The TPN of figure 7.9, with the constraints (1.2.3),
(7.2.4), (7.2.11) and (7.2.12) was designed so that it is
recoverable under failures of kind "loss of tokens" in M1 or
M2. The ETM of figure 7.12 shows this property.

The process, as given Sy the TM of figure 7.11 or the
TPN of figure 7.9 (and the constraints in the execution
times), has the following interesting properties:

i. The messages are received in the same order that
they are sent. This property is shown directly from
figure 7.11. States W2M2B2M1 and WIM1B1M2 are the
only states in which two messages are simultaneously
in the 1link. But, in W2M2B2M1 the message M1 was
sent first (note that the only predecessor of
W2M2B2M1 1s A2B2M1), and in this case M1 is received
first (the only successor of W2M2B2M1 is W2M2B2).
In the same way, when the process is in WIM1B1M2 the
message M2 was sent first and it will be received
first. This limitation on the order of the messages
can be removed, in part, if the sequence number of

each message is chosen from more than two

131

i
AIBIM2 ‘

|
WIMIBIM2 g

Figure 7.11: TM for the TPN of figure 7.9

132

2

M2

r-r—-—-——-—-— " "=-">"=-"=" """ ="=""/"~¥7¥7//7/=-— ===

M2

Figure 7.12: ETM for the TPN of figure 7.9

133

possibilities [POSTT4].
Inequalities (7.2.11) and (7.2.12) can be rewritten

as:

E*®18 < £%12 4+ t¥11 4+ t%26 (7.2.11a)
L#%28 < £%¥22 + £®21 4+ t#16 (7.2.122a)

(7.2.1%a) shows that the maximal time that it takes
to receive an illegal message (t#%*18) has to be
smaller than the minimal time it takes to prepare a
new message (t*26), to send it (t¥11) and to receive
it (t*12), (see figure. 7.9). The same relation
exists in (7.2.12a).

As shqwn before, t*12 represents the minimal
propagation time of the message M1. In a certain
way, t¥*%#18 represents the maximal propagation time
of M2. But since in practice M1 and M2 propagate in
the same channel then (t*¥18 -~ t%12) denotes the
variance in the propagation time of the messages.
But, from (7.2.11a):

LEEI8 — t¥12 < t¥11 4+ t#26 (7.2.11b)

Thus, the minimal preparation time of a message
(t¥26) plus the minimal sending time (t®*11) has to
be greater than the variance of the propagation
time. This means that in a recoverable process of
this kind a higher uncertainty in the propagation

time leads to the reduction of the freguency of the

134

messages. The same conclusion can be derived from

(7.2.12a).

135

Chapter 8

CONCLUSIONS

8.1 Summary ,
In this dissertation, the problem of recoverability of
processes has been modeled and formally defined using
Petri-nets. The particular case of failures of type "“loss
of tokens" has been exhaustively explored. A way of
designing processes that are recoverable from this kind of
failure was given. This method of design is based on the
properties of recoverable TMs and on a procedure for
designing a PN that implements a given TM. This last
procedure can be useful not only for the design of
recoverable processes, but in general for designing PN's
with properties which are, sometimes, better reflected in
the TM than in the PN itself.
In the case that no assuptions have been made about the
execution times of the different parts of the PN, the
| recoverable processes under a failure of type "loss of
token" are very limited in their possiblé structure. These

limitations are wusually unacceptable in practical (real)

processes. Because of these 1limitations, some knowledge

136

about the execution times was introduced in the Pi’s, and a
new model, the TPN, was defined. For any given TM, that has
a correspondent PN with an ETM in which there are no loops
of illegal states, a TPN can be designed so that it executes
the given TM and is recoverable from a given failure of type
“"loss of token."

But, in this recoverable TPN it is necessary to accept
constraints on the execution times of its partss If these
constraints can not be accepted, they can be partially
relaxed by introducing a "pseudo failure® of type
"generation of token." In this case, the recovery from the
"pseudo failure" has to be insured.

The approach wused in this work for the study of
failures of type "loss of tokens" can be applied in order to
explore other types of failures.

Other authors ([LARST4]) have written about the
importance of “the problem of including some measure of
service times at the modules:" Since the TPN includes this
measure of service time, this model can be useful not only
in the exploration of recoverability, but in order to model
and explore other properties of processess

The approach presented in this work does not
differentiate Dbetween the hardware components and vthe
software parts of the processes. The approach is uniform

and in practice each part can be implemented by any kind of

elements.

137

8.2 Limitations of the Described Methodology

This methodology of recoverable system design has the

following limitations:

1« TM is not always the best design tool. For some
relatively simple PN the cobresponding TM is, some
times, very larges

2, I have not developed a way of evaluating and
comparing the possible results.

3. The methodology presented in this dissertation
carries all the limitations of Pe;ri netss Among
these limitations are the difficultf of representing

data and the difficulty of modeling large systems.

8¢3 Suggestions for Further Exploration

This work points out several areas needing further
researchs. Among these areas are:
1+ The formal analysis of recoverability wunder the
occurrence of other kinds of failures. Among these,
“"generation of illegal tokens," etc.,
2+ Further general research on the TPN model.
3+ The formal analysis of other properties of
processes,such as:
(a) ™“fail-soft,™
(b) “fault-tolerant,"
(c) ‘"best-effort"

4. Research on the propagation of failures among

138

processes in an hierarchical structure.

ARMS66

BAER6S

BOVE68

CERFT1

CERFT2

DENNT1

DENNT1

EICH65

REFERENCES

Armstrong D.B., “On Finding a Nearly Minimal Set
of Fault Detection Tests for Combinational Logiec
Nets'; IEEE Transactions on Electronic

Computers, vol. EC.15, No. 1; February, 1966.

Baer J.l1., Graph Models of Computation in
Computer Systems, Ph.D Dissertation, Report No.
68.46. Department of Engineering, University of
California, Los Angeles, 1968

(UCLA-10P14-51),

Bovet D, Memory Allocation in Computer Svstems,
Ph.D. Dissertation, Report No. 68-17, School
of Engineering and Applied Science, University
of California, Los Angeles, 1968.

Cerf V., E.B. Fernandez, K.P. Gostelow, and
S.A. Volansky, “formal Control-Flow Properties
of a Graph lModel of Computation", UCLA Technical
Report, No. ENG-7178, University of California,
Los Angeles, December 1971

(UCLA-10P14-105).

Cerf V.G. Multiprocessors, Semaphores, and a
Graph Model of Computation, Ph.D. Dissertation,
ENG-7223, Computer Science Department,

University of California, Los Angeles, April
1972 _
(UCLA-10P14~110).

Dennis J.B. and E.C Van Horn, "“Programming
Semantic of Multiprogrammed Computations",
Communications of the ACM 6-3, March 1966.

Denning P.G., "Third Generation Computer
Systems", Computer Surveys, Vol 3, No. b,
December 1971.

Eichelberger E.B., “Hazard Detection in
Combinational and Sequential Switching

Circuits', IBM Journal, March 1965.

140

ESTR63

FALKT74H

FARBT2

FARBT3

FERNT2

GOSTT1

GOSTT4

HOLT68

Estrin G. and R. Turn, YAutomatic Assignment
of Computations in a Variable Structure Computer
System", IEEE Transactions on Computers, EC-12,
December 1963.

Falk H., "“data Communications", IEEE Spectrum,
January 1974.

Farber D.J, and F.R. Heinrich, "The Structure
of a Distributed Computer System - The
Distributed File System", Proc. International

Conference on Computer Communications, October

1972

Farber D.J, J. Feldman, F.R. Heinrich, H.D.
Hopwood, K.C. Larson, D.C,. Loomis, and L.A.
Rowe, "The Distributed Computing System", Proc.
Seventh Annual IEEE Computer Society

International Conference, February 1973

Fernandez E.B., Activity Transformation on Graph

Models of Parallel Computations, Ph.D.
Dissertation, ENG~-T287, Computer Science
Department, University of California, Los

Angeles, October 1972
(UCLA-10P-14-116).

Gostelow K.P., Flow of Control, Resource
Allocation, and the Proper Termination of
Programs, Pn.D. Dissertation, ENG-T179,
Computer Science Department, University of

California, Los Angeles, December 1971
(UCLA-10P-14-106).

Gostelow K.P. and T.d. van Weert, "Processes
and Networks", Stichting Academisch Rekencentrum

Amsterdam, Postbus 7161, Amsterdam, The
Netherlands, January 14, 1974, (Author’s
present address: University of California,

Irvine 92664)

Holt A.W., H. Saint, R.M. Shapiro and S.
Warshall, "“Final Report for the Information
System Theory Project®, Rome Air Development

Center (Appied Data Research Inc.) Contract

#AF30(602)-4211, 450 Seventh Ave., New York, New
York 10001, 1968.

141

HOLT69

HORNG6

KARP69

KNUT69

KOHAT1

KOHAT2

LARSTA

MART66

METCT3

PATITO

PETR62

Holt A.W. and F. Commoner, "Events and
Conditions", Applied Data Research Inc., 450
Seventh Ave., New York, New york 10001, 1969.

Van Hern E.C., "Computer Design of
Asynchronously Reproducible Multiprocessing",
Project MAC, Report MAC-TR-39, MIT, 1966.

Karp R.M. and R.E. Miller, “Parallel Program
Schemata', Journal of Computer and Systenm
Science, 3(4), May 1969.

Knuth D.E., The Art of Computer Programming,
Vol. 2, Addison-Wesley, Melo Park, California,
19690

Kohavi Z. and D.A. Spires, "Designing Sets of
Fault-Detection Tests for Combinational Logic
Circuits", IEEE Transactions on Computers , Vol.
C-20, No. 12, December 1971.

Kohavi 1I. and Z. Kohavi, "Detection of
Multiple Faults in Combinational Logic
Networks", IEEE Transactions on Computers, Vol.

C-21, No. 6, June 1972.

Larson K.C. Computation Graphs, Ph.D.
Dissertation, Department of Information and
Computer Science, University of California,

Irvine, (in preparation).

Martin D.F., The Automatic Assignment and
Sequencing of Computations on Parallel Processor

Systems, Ph.D Dissertation, Report No.66-4,
Department of Engineering, University of
California, Los Angeles, 1966.

Metcalfe R.M., Packet Communication, Project
MAC, Report MAC-TR~114, MIT, December 1973.

Patil S5.S. Coordination of Asynchronous events,
Sc.D. Thesis, Project MAC, Report HMAC-TR-T72,
MIT, 1970.

Petri C.A. Comnmunication with Automata, Thesis,
Dermstadt Institute of Technology, Bonn,
Germany, - 1962.

142

POSTT4

RODR69

ROTH66

ROTHO6T

ROWET3

RULIT1

RUSS69

SALT66

SELL68

SLUT68

Postel J.C., A Graph Model Analvsis of Computer
Communications Protoccols, Ph.D. Dissertation,
Computer Science Department, University of
California, Los Angeles, 19T74.

Rodriguez J. A Graph Model for Parallel
Computation, Se.D. Thesis, Department of
Electrical Engineering, MIT, September 1967.

(Also MAC-TR-56, September 1969).

Roth J.P., "“Diagnosis of Automata Failures: A
Calculus and a Method", IBM Journal, July 1966.

Roth J.P., W.G. Bouricius and P.R. Schneider,
"Programmed Algorithms to Compute Tests to
Detect and Distinguish Between Failures in Logic
Circuitsy, IEEE Transactions on Electronic
Computers, Vol. EC-16, No. 5, October 1967.

Rowe L.A., Hopwood M.D. and Farber D.J.,
“Software Methods for Achieving Fail-Soft
Behavior in the Distributed Computing System®,
Record 1973 IEEE Symposium on Computer Software
Religbility, New York City, May 1973.

Rulifson J.F., "QAU Programming Conceptsy,
Artifitial Intelligence Group TN-60, Stanford
Research Institute, Menlo Park, California,
August 1971.

Russell E.C.- Automatic Program Analysis, Ph.D.
Dissertation, Report No. 69-12, School of
Engineering and Applied Science, University of
California, Los Angeles, March 1969
(UCLA-10P14-72)

Saltzer J.H. “"Trafic Control in a Multiplexed
Computer System", Project MAC, Report MAC-tr-30,
1966.

Sellers F.F. Jr., M.Y. Hsiao and L.W.
Bearnson, YAnalyzing Errors With the Boolean
Difference", IEEE Iransactions on Computers,

Vol. C-17, No.T7, July 1968.

Slutz D.R. The Flow-Graph Schemata Model of
Parallel Computation, Ph.D. Dissertation,
MAC-TR-53, MIT, Sept. 1968.

143

VOLATO

YAVTY

YOELO6Y

Volansky S.A., Graph Model Analvysis and

Implementation of Computational Sequences, Ph.D.
Dissertation, 70-48, Computer Science
Department, University of California, Los
Angeles, 1970

(UCLA-10P14-93)

Yav S.S. and Y.S. Tang, "An Efficient
Algorithm for Generating Complete Test Sets For
Combinational Logic Circuits", IEEE Transactions
on Computers,; Vol. C-20, No. 11, November
1971.

Yoeli M. and S. Rinon, “Application of Ternary
Algebra to the Study of Static HazardsY, Journal
of the Association for Computer Machinery, Vol.
11, No. 1, January 1964.

144

Appendix A

THEOREMS OF CHAPTER 3

In this appendix, the statements of chapter 3 are
formally proved. The five first theorems show properties of
the TM and especially its relation to the corresponding PN,
Theorem A.6 and AT gives necessary and sufficient
conditions such that, given the states of a TM and a group
of all the TM transitions with the sane "minimal
transition," this group can be implemented by a PN. Note
that a TM can be effected by a PN if and only if each of its

groups with common "minimal transition" can be implementeds

A.1 Theorem
If there exists a TM transition tr = Si -> Sj
such that:
MIN(tr) = a => b

and a bar bf such that:

1« IC(bf) a+ x (x is a bag)

2. 0C(br)

b + x and:

3. x < RE(tr)

then, the TM transition tr is effected by bf in PN.

145

Proof:
By definition 3.2.9:

Si

a + RE(tr) (A.1.1)
SJ

b + RE(tr) (A.1.2)
Since it is given that x < RE(tr) , from (A.1.1)

a + x £ Si.
and: IC(bf) < Si
By definition of the firing algorithm (3.2.14), in state Si
the bar bf can fire and the new state is:

Sk = 81 - IC(bf) + OC(bf)
and after replacement of IC(bf) and OC(bf) from the
conditions of the theorem, and Si from (A.1.1):

Sk = [a+RE(tr)l-[a+x]+[b+x] = b+RE(tr) (A.1.3)
Comparing (A.1.2) and (A.1.3):
Sj = Sk

and thus the transition tr in TH is effected by the firing

of bar bf in PN. Q.E.D

A.2 Theoren
If there is a TM transition t1 = Si => Sj
such that:
MIN(t1) = a => b,
then, there is not another TM transition t2 such that:
| MIN(t1) = MIN(t2)
and

LHS(t2) = Si

146

In other words, if there is a TM transition exiting from a
legal state, there is not another transition with the same

"minimal transition" exiting from the same state.

Proof:
If transition t1 = Si -> S§j
exist in the TM, and: |
MIN(t1) = a -> b
then by definition (3.2.9):
RE(t1) = Si -~ a
and: Sj = b+ RE(t1) = Si + b - a (A.2.1)
Suppose that there exist:
t2 = 31 -> Sk
and: MIN(t2) ; a ->b>b
then, by definition (3.2.9):
RE(t2) = Si ~ a
and: Sk = b + RE(t2) = Si + b - a (A.2.2)
Comparing (A.2.1) and (A.2.2):
Sj = Sk
thus: £t1 = t2
Since the collection T of all the transitions in the TM (see
3.2.15) is a set (no multiple instances of the same
element),and t1 is equal to t2, then t1 and t2 are the same

transition.

Q.E.D.

147

A.3 Theorenm

If the TM transition tk = Si -> Sj is effected by the
firing of bar bf then:
(1) IC(bf) < Si

(2) Sj = Si = IC(bf) + OC(bf)

Proof:

(1) If tk is effected by bf, then the firing algorithm
(3.2.14) must be applied to Si for the bar bf. I.e.
IC(bf) < Si 7
(2) After bf fires in state Si, the next state, Sj, has to
be the new state @roduced by‘the firing algorithm:

Sj = Si - IC(bf) + 0OC(bf)

Q.E.D.

A.4 Theoren

If the transition tr = Si -> §j
with: MIN(tr) = a => b
is effected by the bar bf then:

1. IC(bf) = a + x (x is a bag)

2. 0OC(bf) = b + x and:

3. x < RE(tr)
Proof:
From theorem A.3:

Sj = Si - IC(bf) + OC(brf)

or: Sj + IC(bf) = Si + 0C(br) (A.b.1)

148

If we denote LHS(MIN(tk)) = a and RHS(MIN(tk)) = b, then
by definition (3.2.9):
Si = a + RE(tr) (A.4.2)
and: Sj = b + RE(tr) (A.4.3)
replacing (A.4.2) and (A.4.3) in (A.4.1) yields:
b + RE(tr) + IC(bf) = a + RE(tr) + 0C(bf)
This means that:
b + IC(bf) = a + 0OC(bf) (A.4.4)
But, by definition 3.2.9, a and b have no common elements.
So, all the elements of "a“ have to be included in IC(bf),
and all the elements of b must be included in 0C(bf). I.E.,
a < IC(bf) (A.4.5)
and: b < 0C(bf)
From (A.4.5) there exists a bag x such that:
IC(bf) = a + x (A.b4.6)
and part (1) of the theorem is proved.
Replacing (A.4.6) in (A.4.4) yields:
b+ a+ x = a+ 0C(bf)
or: OC(bf) = b + x
and part (2) of the theorem is proved.
From theorem A.3(1):
IC(bf) < Si
Replacing (A.4.6) and (A.4.2) yields:
a + x < a + RE(tr) |
or: x £ RE(tr)

and part (3) of the theorem is proved.

149

Note that theorems A.71 and A.4 point out a set of
necessary and sufficient conditions that a bar must satisfy

in order to carry out a given TM transition.

A.5 Thecorem
If transitions:

t1

H

Sl1 -> Sj1

812 -> 832

are effected by the same bar (say bf),

and: £t2

then: MIN(t1) = MIN(t2)
Proof:
Suppose that:

MIN(t1) = al => b1
and: MIN(t2) = a2 -> b2

If transition t1 is effected by the bar bf, then by theorenm
A.L:

IC(bf) al + x1

and: 0C(bf)

"

b1 + x1
In the same way, for transition t2:

IC(bf)

al + x1 a2 + x2 (4.5.1)

and: OC(br) b1 + x1

b2 + x2 (A.5.2)

By the definition of equality (see 3.2.5):
al + x1 £ a2 + x2
and: b1 + x1 < b2 + x2

150

This means that:

x1 £ a2 + x2
and: x1 £ b2 + %2
But, by the definition of MIN(t2) (definition 3.2.9), a2 and
b2 have no common elements. Therefore,~no elements of x1
are included in both a2 and b2. Thus, x1 is included in x2,

or in other words:

x1 < x2 | (A.5.3)

But, from equations (A.5.1) and (A.5.2) in the same way:
x2 < x1 (£.5.4)

so that, as shown in 3.2.5, from (A.S.B) and (A.5.4) there

exist:

x2 = x1

“and from (A.5.1) and (A.5.2) then:

al = a2
and b1 = b2
Q.EoD
A.6 Theoren
Let: tkp = Sip -> Sjp 7 (p=1,2,....,n)

be a group of all the TM transitions having the same
“minimal transition“:

MIN(tkp) = a -> b.
If: ¥p ¥k (k # ip) ==> Sip £ Sk (A.6.1)

then there exists at least one set [xqg] that satisfies:

¥p dg xg £ RE(tkp) (A.6.2)

151

and: ¥q ¥k (k # ip) ==> a + xq £ Sk (A.6.3)

Note that (A.6.2) is (3.3.9) and (A.6.3) is (3.3.10).

Proof:

Suppose that the elements of [xq] are chosen such that:
Xq = Xp = RE(tkp) (A.6.I4)

then:

(1) by definition, the elements of xq satisfy (A.6.2)
(2) but, by (A.6.4)

and:
a+ %Xq = a4+ Xp = a+ RE(tk) = 81

and replacing Sip in (A.6.1) then the result is (A.6.3)

Q.E.D
A.7 Theorenm
Let: tk = Si_ ~> Sj ;7 (p=1,2,....,n)

P p p
be a group of all the TM transitions having the same

“minimal transition®:
MIN(tkp) = a=->b>
If there exist at least one k , (k # ip), such that for some

i
p

Si_ < Sk
p
then, there does not exist a set [xg] such that the
conditions:
¥p dg xq < RE(tk) (A.7.1)

and ¥g ¥k (k £ ip) ==> a + xq £ Sk (A.7.2)

152

are satisfied.

Note that (A.7.1) is (3.3.9) and (A.7.2) is (3.3.10).

Proof':

Suppose that exist an element of k, say k1, such that:

S < Sk, (A.7.3)

i
p1 .
Suppose that there exist a set [xg] such that (A.7.1) and

(A.7.2) are satisfied. Applying (A.7.2) for k. and for pi

1
the result is:

¥q (k1 £ ip1) ==> a + xq £ Sk1

But, since k., # i

1 1 is "TrueY, then it is also true that

¥ a + xq £ Sk1

If, for all q, Sk1 does not include a + xq , then since

Sip1 is included in Sk] (A.7.3):

¥g a + xq £ Si

pi
Therefore:
¥qg xq £ Sip1 - a (A.7.4)
Since by definition 3.2.9:
Sip1 - a = RE(tkp1) (A.7.5)
Replacing (A.7.5) in (A.T7.4):
¥q xq £ RE(tkp1) (A.7.6)

But (A.7.6) contradiets (A.7.1). Therefore, set [xqg] does

not exist.

Q.E.D.

153

Appendix B

THEOREMS OF CHAPTER 4

In this appendix, the statements of chapter 4 are
proven formally. Theorem B.1 shows a property of the
transitions of type t1 (see 4.1.2) in TM. Theorems B.2,
B.3, B.4, and B.5 prove that only bafs that fire transitions
of type t3 (t3 is defined in 4.1.2) in Ai + F can fire in
Ai, Theorems B.6 and B.7 prove properties of the
transitions of kind t3 in the TM. Theorems B.8 and B.9
state necessary and sufficient conditions such that a given
TM transition can be implemented only as of type t3.
Theorems B.10 and B.11 state necessary and sufficient
conditions such that a given TM transition can be
implemented only as of type t2. This appendix wuses the
notation defined in 3.2 and in 4.1, and the properties of

TM's proved in appendix A.

B.1 Theorem

If the transition of type t1:

1 2 1
tk = Si -> Sj

is implemented by the bar bf then:

154

#(F,S?) = #(F,IC(bf))

Proof:
There exists:

t' =8
Since by definition (4.1.1) S; does not include the
condition F, then by definition of MIN(t) (3.2.9) there
exists:

#(F,85) = #(F,LES(MIN(t)))) (B.1.1)

If t; is implemented by bar bf, from theorem A.4(1) and

definition 3.2.14:

LHS(MIN(t;)) < IC(bE)) < sf
then: #(F,LHS(MIN(t))) < #(F,IC(b)) < #(F,s%)
| (B.1.2)
Comparing (B.1.1) with (B.1.2), yields:
#(F,55) = #(F,IC(bf))
Q.E.D.

B.2 Theoren

Bars that, in state Ai + F are of type b1, can not

fire in state Ai.

Proof:

Suppose that b; is a bar of type b1. Theorem B.1 shows
that:

#(F,Ai+F) = #(F,IC(b}))

This means that in Ai there are less instances of F than in

155

IC(b;). In other words:

IC(bl) < Ai
and this contradict the firing algorithm in 3.2.14, so that
b; can not fire in Ai and thus not for any b1.

Q- Eo Do

B.3 Theoren

Bars that, in state Ai + F are of type b2

(vl

, can no

fire in state Ai.

Proof:

Suppose that b? is a bar of typebbz. Bars of type b2 fire

transitions of type t2. Following the definition of

2

transitions of type t© (section 4.1.2):

#(F,Ai+F) = #(F,IC(b?))

and then the proof continues as in the previous theorem.

B.4 Theoren

2
Bars that, in state Ai + F are of type b”, can fire in

state Ai.
Proof':
Suppose that bg is a bar of type b3. Ir bg can fire in AL +
F then:
IC(b3) < AL + F (B.b4.1)

But by definition of transitions of type t3 (4.1.2) the

number of instances of F in Ai + F is greater than those

156

instances in IC(bg). This means that the number of

instances of F in Ai is ecual or greater than those

instances in IC(bg)° But, by (B.4.1), the instances of the
other elements of Ai are also included in IC(b?), thus:
3 -)
IC(bZ) < Ad
and the firing algorithm can be applied.

Q.E.D.

B.5 Thecrem

Bars that, in state Ai + F are of type bu, can not

fire in state Ai.

Proof:

_ L v 4 s 4
Suppose that bf is a bar of type b . By definition, bf
not fire in Ai + F (4.1.2 and 4.1.3). This means that the

can

firing algorithm can not be applied. The firing algorithm
can not be applied only if:

IC(bg) £ A1 + F
but: Ai < A1 + F
then: IC(b?) £ Al
and the firing algorithm also can not be applied for b? in
state Ai and thﬁs not for any bn.

Q.E.D.
Since b3 has been shown to be the only type of bar that

can fire in Ai, we will now consider some properties of

transitions executed by bars b3.

157

B.6 Theorem

If bar bg, of type b3, implements the transition:
3 =21+ F o> 82 4 F
then, bg also implements the transition:

t2 = A1 => A2

Proof:

f 1
A2 + F = A1 + F - IC(bg) + OC(b?)

By theorem A.3(2), if b3 implements the transition t3 then:

or: A2 = AT - IC(b?) + OC(bg) (B.6.1)
But by theorem B.4, b? can also fire in state A1. Suppose
that in state A1, bg executes the transition:

A1 => 3j
Then, by theorem A.3(2):

Sj = A1 = IC(b2) + 0C(b3) (B.6.2)
Comparing (B.6.1) and (B.6.2):

Sj = A2
thus bar b? executes the transition:

t2 = A1 -> A2

B.7 Theorem

If A1 + F 1is a legal state in a TM, and if in the TM

there exist a transition ti:
ti = A1 -> A2
then there also exist a transition of type t3:

tg = A1 + F => A2 4+ F

158

Proof:
If: ti = A1 -> A2
then there exists a bar bf that effects ti, and by theorem
A.3:

IC(bf) < A1 ' (B.7.1)
and: A2 = A1 - IC(bf) + OC(br) (B.7.2)
Since (B.7.1) there also exists:

IC(bf) < A1 + F
This means that the firing algorithm can be applied for bar
bf in state A1 + F:

tj = A1 + F => S
but, by the firing algorithm:

Sj = A1 + F - IC(bf) + OC(bf) (B.7.3)
Comparing (B.7.3) and (B.7.2):

Sj = A2 + F
thus there exist the transition:

ti = A1 + F => A2 + F
From (B.7.1):

#(F,IC(bf)) < #(F,A1)
or: #(F,IC(bf)) < #(F,A1+F)
and by definitidn, the transition tj:

tj = A1 + F => A2 + F

3

is of type tk.

159

B.8 Theorem
Let there be a TM with a legal transition:
tj = A1 + F => A2 + F
If there exists another legal transition tk = S3 -> sS4,
such that: '
1. MIN(tk) = MIN(tj) (B.8.1)
2. S3 < A1 / (B.8.2)

then all the possible implementations of tj are of type t3.

Proof:
(Note that in principle, theorem B.T7 is a special case of
B.8)
If: tk = S3 => S4
‘then by theorem A3, any bar bf that effects tk satisfies:
IC(bf) < S3 (B.8.3)
and: S4 = S3 - IC(bf) + 0OC(bF) (B.8.4)
Since (B.8.2), also exist that:
IC(bf) < A1 (B.8.5)
and also: IC(bf) < A1 4F
This means that the firing algorithm can be applied for bar
bf in state A1 + F . Since (B.8.1) and theorems A.2 and
A.5, bf also effects transition tj. In other words, for any
implementation, the bars that effect tk also effect tj. But
from (B.8.5):
#(F,IC(bf)) < #(F,A1)
or: #(F,IC(bf)) < #(F,A1+F)

and by definition, tj is of type t3, for any implementation.

160

B.9 Theoren
Let there be a TM with a legal transition:
tj = A1 « F => A2 + F

If there is not another legal transition tk = S3 => si

?

such that: v
1. MIN(tk) = MIN(tj) " (B.9.1)
2. S3 < A1 (B.9.2)
then there exists an implementation in which tj is of type
t2.
Proof:

Suppose that there is no transition tk # tj that satisfies
(B.9.1). Then by theorem A.5 (and as discussed in 3.3)
there is no intehaction between the implementation of tj and
the implementation of other transitions in the TM. In other
words, bars that effect other transitions will not effect
tj. In this case, if tj is effected by a bar bf such that:
IC(bf)

A1 + F (B.9.3)
0C(bf)

A2 + F

then bf is the only bar that effects tj, and since (B.9.3)
tj is of type t2.

Suppose now that exists a group of transitions having the
same minimal transition that tj has. This group can be

denoted by the set [tq]. There exists:

¥p (tp<ltql) <==> (MIN(tp) = MIN(tj))

161

Suppose that (B.9.2) is never satisfied. This means that:
¥p (tp4[tql) ==> LHS(tk) £ A1 (B.9.4)

The group [tq] can be implemented by a set of bars [bg] such
that:

1. IC(bqg)

LHS(tqg) (B.9.5)

2. 0C(bq) = RHS(tq)

If bf denotes any bar (of the group [bqg]) that fires in
A1 + F then: |
IC(bf) < A1 + F (B.9.6)
But from (B.9.4) and (B.9.5):
IC(bf) £ A1 (B.9.7)
Comparing (B.9.6) and (B.9.7) there exist that:
#(F,IC(bf)) = #(F,A1+F) (B.9.8)
Since (B.9.8) exists for any bar (of group [bgl) that fire
in A1 + F thepn tj is effected as of type t2.

Q.E.D.

B.10 Theorem
Let be a TM with a legal transition:
tj = AT + F => A2 + F
If there exists a legal state, say S3, such that:
1. S3 # A1 + F (B.10.1)
2. A1 £ 83 (B.10.2)
3. if transition tk exits S3 then MIN(tk)#£MIN(tJl).

In other words:

¥q (LHS(tqg)=S3) ==> (MIN(tq)#MIN(tj)) (B.10.3)

162

2

then all the possible implementations of tj are of type t

Proof:

Suppose that there exists a state S3 that satisfies
(B.10.1), (B.10.2) and (B.10.3), but transition tj is of
type t3. In this case, there exlists a bar bf such that:

IC(bf) < A1 + F (B.10.4)
" and: #(F,IC(bf)) < #(F,A1+F) (B.10.5)
From (B.10.4) and (B.10.5):

IC(bf) < A1 ' (B.10.6)
From (B.10.6) and (B.TC.Z):

IC(bf) < S3
this means that bf can fire also in state S3. If when bf
fires in S3 effects a fransition, say t3 = S3 ~> S4 , then
by theorem A.5:

MIN(t3) = MIN(tj)
and this contradict (B.10.3). In other words, if (B.10.1),
(B.10.2) and (B.10.3) are satisfied, there is no
implementation such that tj is of type t3. Since tj is a
transition between two states that include F, then all the

implementations of tj are of type t2.

B.11 Theorem
Let be a TM with a legal transition:
tj = A1 + F => A2 + F

If there is not a legal state, say S3, such that:

163

1. S3 # A1 + F (B.11.1)

2. A1 < 83 (B.11.2)
3. ¥q (LHS(tq)=S3) ==> (MIN(tq)#MIN(tj)) (B.11.3)
then there exists an implementation in which tj is of type

£3,
Proof:

We assume that (B.11.1) is always satisfied. This means

that in any TM there is at least two different states.

Suppose that there is no legal state, different from A1 + F,
that includes A1. 1In other words:

¥g (Sq#L1+F) ==> (A1 £ Sq) (B.11.4)
If tJ is implemented by bar bf such that:

IC(bf)

A1 (B.11.5)
and: 0C(bf)

i

A2 (B.11.6)
then replacing (B.11.5) in (B.11.4):

¥g (Sq # A1+F) ==> (IC(bf) £ Sq)
In this case bf can fire only in state A1 + F . This means
that the implementation described by (B.11.5) and (B.11.6)
is possible.
But from (B.11.5):

#(F,IC(bf)) = #(f,A1)

or: #(F,IC(bf)) < #(F,A1+F)

and bf effects tj as transition of type t3.

Suppose now that there exist legal states that include AT,

but they have exiting transitions with the same minimal

164

transition that tj has. In other words:
¥g [(Sg#A1+F) and (A1<Sg)] ==>
==> [Jp (LHS(tp)=Sq) ==> (MIN(tp)=MIN(tj))]
(B.11.7)
Suppose again that tj is implemented by bf such that:
IC(bf)

i

A1 : (B.11.8)
and: 0C(bf)

A2 (B.11.9)
From (B.11.8) bf can fire in the states that satisfy:

A1 < Sqg
But from (B.11.7), each state in which bf can fire has an
exiting transition with the same minimal transition that tj
has. Then, from theorems A.2 and A.5, when bf fires it
executes legal transitions. This means that the
implementation of (B.11.8) and (B.11.9) is legal. But as

was shown before, bf implements tj as a transition of type

£3,

165

	Z699.C3_58
	Z699.C3_581
	Z699.C3_582
	Z699.C3_583
	Z699.C3_584

