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ABSTRACT OF THE THESIS

Learning Augmentation Policy Schedules for Unsuperivsed Depth Estimation

by

Aman Raj

Master of Science in Electrical and Computer Engineering (Machine Learning and Data Science)

University of California San Diego, 2020

Professor Dinesh Bharadia, Chair

This thesis represents a novel approach to augment data for unsupervised depth estimation.

Data augmentation is an effective method to improve the performance of neural network models.

However, such data augmentation strategies need to be hand-designed for the task for which the

network is trained. In this work, we focus on learning data augmentation strategies from data

itself using population-based training. We show the effectiveness of this approach in unsupervised

learning setting for depth estimation task in monocular videos on KITTI dataset.
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Chapter 1

Introduction

Sensors are the heart of an autonomous driving system. Such systems operate in a wide

variety of settings which offer it’s own set of challenges. For example an urban setting as shown

in Figure 1.1 has challenges like pedestrian, cyclist, slow moving traffic etc. Self-driving cars

perceive the environment using an array of sensors such as Radar, Lidar, and Camera. Cameras are

widely used as they offer very dense information of the scene at a very cheap price compared to

sensors like LIDAR. Depth estimation from camera feed is core of tasks such as 3D bounding box

detection. Therefore, generating high quality depth from monocular color videos is very attractive

as it can either complement or in some cases replace the expensive LIDAR. However, performance

of camera is highly dependent on ambient lighting conditions, and hence can perform poorly in

situations like shadow. Moreover, current state of the art depth estimation methods suffer badly

in challenging weather conditions such as fog, rain, snow and speed blur. Some examples are

shows in Figure 1.2. There are many opensource datasets to evaluate depth estimation methods

for autonomous driving application, out of which KITTI is most widely used.

Current state of the depth estimation methods on KITTI [14][21][7] are based on super-

vised learning and rely heavily on ground truth labels. But, obtaining high quality ground truth

is a formidable task as it requires expensive sensors and careful calibration procedures. Also,
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Figure 1.1: Example of two different settings for automated driving vehicles.

Figure 1.2: Examples of some real world bad weather conditions where depth estimation is
very challenging.

these learned strategies are not transferable to other datasets that lack ground truth annotations. In

order to overcome such limitations, there are many recent research works that use unsupervised

learning techniques on KITTI [17][2][9][33][32] [25] to solve depth estimation problem using

only RGB inputs. These methods take input monocular RGB video and estimate depth as a

primary task with ego-motion estimation as an auxiliary task and then a spatial constraint is ap-

plied to generate learning signal. Since, such methods focus on autonomous driving applications

our work is inspired from their setup. An Unsupervised learning setup doesn’t help in making

depth estimation robust to bad weather conditions. One way is to augment the color data input

to the depth estimation model with additional prior knowledge about the environment such as
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using semantic segmentation map to provide semantic consistency as guidance. This is very well

explored in our previous work [17]. The other way is learn to augment color data from itself,

generating wide variety of scenarios including weather conditions. In this work we explore this

direction and seek to understand the effectiveness of learning data augmentations strategies for

unsupervised depth estimation in self-driving scenario. We also devise novel data augmentations

that make our depth estimation robust to bad weather conditions and evaluate on real word scenes.

Our contributions are summarized in Section 1.1.

1.1 Contributions

Although our contributions are designed for depth estimation, we think it can be also used

for other tasks that requires the geometrical structures in images to remain intact after application

of data augmentation operations. In summary, our main contributions are listed below:

• Design and implement a search method that jointly optimizes network parameters with

hyperparamters of data augmentation policies for depth estimation task in unsupervised

setting.

• Demonstrate the benefit of learning data augmentation policy schedules over fixed augmen-

tation strategy or random augmentation policy schedule.

• Propose a set of novel data augmentation operations that imitate various challenging weather

conditions in an autonomous driving scenario. We also introduce a new version of KITTI

Eigen split with such augmentations that can be used for bench-marking unsupervised

depth estimation methods to measure their robustness towards weather conditions.
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1.2 Summary of Results

• Our proposed method is competitive and even beats current state of the art MonoDepth2

[9] with a small margin on KITTI depth estimation benchmark using the split by Eigen [6].

• Proposed data augmentation operations to imitate weather conditions help to increase

robustness of depth estimation of our method in real world challenging bad weather

conditions.

• Learning augmentation policy schedules shows consistent superior performance over using

a fixed augmentation policy for depth estimation task.

Chapter 2 discusses related work of supervised and unsupervised depth estimation meth-

ods. We also describe a set of work that learns data augmentation strategies for classification

tasks on COCO.

Chapter 3 first explain our unsupervised depth estimation setup, then we introduce various

augmentation operations used in this work. Here, we introduce and describe in detail our

augmentation operations that simulate challenging weather conditions. We also ponder over the

necessity of learning augmentation policy schedules and the setting to learn the same and discuss

complexity issues associated with it.

Chapter 4 finally present our finding and comparison with state of the art, through various

experiments and ablation studies we establish the benefits of learning policy schedules over fixed

policy schedule. We also show robustness of our method on weather simulation as well as some

real world bad weather examples.

Chapter 5 discusses conclusion and some future directions of this work.
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Chapter 2

Related Work

Most of the recent supervised methods on KITTI for depth estimation use CNN model

and generate supervisory signal using ground truth depth from LIDAR. In the pioneering work

by Eigen in [6], a coars to fine network was introduced that utilizes a scale-invariant loss to

improve the accuracy of the estimated depth map. [7] introduces a deep ordinal regression

based network for depth estimation that reports the current state of the art on KITTI eigen

split. [29] use the skip-connection based CNN that fuses low-spatial resolution depth map in

deeper layers with high-spatial resolution depth map in lower layers. All these methods requires

ground truth depth information while training. In the absence of ground-truth depth, various

unsupervised learning methods use photo-metric image reconstruction loss as supervisory signal

to train deep learning models for depth estimation. [33] proposed a fully differential learning

approach that jointly predicts depth and ego-motion using separate networks. [25] additionally

handle object motion in the scene by predicting a motion mask, however their online version

achieves superior performance by disable this feature. [12] improved depth by training on stereo

pairs and extracts features from left-right images using a siamese network. [32] decompose

the motion in scene into rigid and non-rigid components, depth estimation branch of network

models rigid motion and optical flow estimation branch models non-rigid motions. However,
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they don’t report any performance gains when both branches are trained jointly. Works by the

authors of [31][30] enforce geometrical constraints on predicted depth as well as surface normals

and edge to encourage sharp depth discontinuities. [2] uses pre-computed instance segmentation

masks, to separately handle object motion from ego-motion of scene, they report very competitive

performance only after online-refinement. [17] achieves large improvement on depth and flow

prediction of dynamic objects in scene by using pixel-wise and instance segmentation of scene

as additional prior knowledge. Our unsupervised depth estimation backbone uses the novelties

introduced in GeoNet [32] and MonoDepth2 [9].

Almost all supervised and unsupervised depth estimation methods use some form of data

augmentations strategies. Commonly used augmentation operations are horizontal flip, translation,

random scale and crop. Augmentation puts a strong regularization effect on the model training

and has shown to improve the accuracy of modern classifiers by increasing its generalization

ability. On MNIST, augmentation strategies like elastic distortions across scale, position, and

orientation have been applied to achieve state of the art results [23] [3] [22][26]. GANs have

been also used to augment data on the fly [1][19][20][24][34]. Recent works aim to learn optimal

data augmentation strategies from data itself. AutoAugment [4], uses reinforcement learning to

determine a sequence of augmentation operations along with magnitude and probability associated

with each such operation. PBA [10] proposed a new algorithm to learn augmentation policy

schedules at significantly low computational cost that leverages population based training [11].

Similar to PBA, [15] proposed hyperparameter optimization to learn optimal policies using

Tree-structured Parzen Estimator (TPE). [35], finds optimal data augmentation policies for object

detection task. While all of the above methods have worked on either classification problems or

objection detection problem in supervised learning setting, in this work we seek to find optimal

data augmentation strategies and thoroughly investigate its potential for unsupervised depth

estimation in self-driving scenes. We also propose, a set of augmentation operations that aims at

making depth estimation robust in challenging situation such as various weather conditions.
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Chapter 3

Methodology

3.1 Unsupervised Depth Estimation

We would like to take a digression and introduce our unsupervised depth estimation

setup in this chapter. In nutshell, it takes input a short video sequence and predict 3D geometry

information such as depth and relative camera poses. This information is then utilized to project

2D frames to 3D space, followed by 3D alignment and re-projection back to 2D to reconstruct

one of the neighboring frames in the sequence. The frame reconstruction error is then used to

train the model.

As shown in Figure 3.1 input to the method is a sequence of n RGB frames where n≥ 3,

and from neighboring source images a target image is reconstructed. If It denotes target image,

and Is each source image, the model predicts depth for target image Dt and relative camera pose

between target and source image T̂t→s and minimizes the photo-metric re-projection error Lp

given by:

Lp = ∑
s

pe(It , Îs)

where Îs = Is〈pro j(Dt ,Tt→s,K)〉 and s ∈ {t−1, t +1}

7



Figure 3.1: Overview of setup for learning unsupervised depth

Here, pe is called photo-metric reconstruction error, K is camera intrinsic matrix, pro j() is

resulting 2D coordinates of projected depth Dt in source frame Is, and 〈〉 denotes differential

bilinear sampling operation. Final pe computation contains a weighted sum of L1 error between

pixels and SSIM (structural similarity index) [28] given by:

pe(It , Îs) =
α

2
(1−SSIM(It , Îs)+(1−α)‖It− Îs‖1

where α = 0.85. In order to encourage sharp depth discontinuities based on image gradients,

standard practice is to include edge-aware depth smoothness loss Ls given by:

Ls = ∑
pt

|∇Dt(pt)|.(e−|∇I(pt)|)T
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where |.| elementwise absolute operation, ∇ is vector differential operator and T denotes transpose

of gradients. Pixels that are visible in target image but occluded in source images, can contaminate

the loss by giving large L1 errors, MonoDepth2 [9] handles this problem by taking minimum

photo-metric error at each pixel over all source images.

Lp = min
s

pe(It , Îs)

Unsupervised monocular training for depth assumes a static scene and moving camera, when

theses assumptions are violated, the performance suffers greatly. MonoDepth2 [9] introduces

automasking term that keeps loss from only those pixels where re-projection error between

warped image Îs and target image It is lower than that between source image Is and target image

It . This is achieved by a masking terming µ:

µ = [min
s

pe(It , Îs)< min
s

pe(It , Is)]

where [ ] is inversion bracket. All losses are computed at multiple scales, with number of scales

set to 4. Liked [9], we upsample the predicted depth at lower scales to original input resolution

before applying bilinear image warping operation. The final loss is given by : L = Lp +λLs,

where λ = 0.5. Our DepthCNN is uses a ResNet50 based encoder and PoseCNN implementation

is taken from GeoNet [32].

3.2 Data Augmentation

We give a review of augmentation operations that we have identified for our unsupervised

depth estimation task. Since, our depth estimation require that geometrical structures in image

should remain intact after augmentation, so we discard operations such as Shear, Translation, or

Rotation that changes geometry of image and mostly focus on color operations. We also introduce
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new augmentation operations that we discuss in Section 3.2.2. While augmenting a training

sample we make sure to use same operation for all images in the sequence. For operations that

scales or crop the image, we accordingly change the camera intrinsic matrix K for the frames in

given sequence.

3.2.1 Traditional Data Augmentation

From PBA work [10], we adapt following color operations: Brightness, Color, Invert,

Sharpness, Posterize, Solarize, Equalize, AutoContrast, Cutout, Contrast and call

this set as Trad-10. We also introduce some additional new operations such as: Blur, Smooth,

EdgeEnhance, FlirLR, ScaleCrop and call this set as Trad-5. All these operations are largely

derived from transformations in Python Image Library (PIL).

3.2.2 Weather based Data Augmentation

In order to make our depth estimation for self-driving cars robust to various kinds of

weather conditions, we introduce new augmentation operations which imitates weather conditions

like rain, snow, fog and blur caused by high speed. Examples of such operations applied on an

input image is shown in Figure 3.2. We call this set as Weather. These operations are implemented

using Opencv and PIL. We define the algorithmic implementation of these operations below:

• Rain : We know since rainy weather is dark in general, so we first darken the image by

reducing its brightness to 80% of it original value. Then we generate some random lines

having width 1 pixel, length 15 pixels and slant α∈ [−20,20] and set its color to RGB value

(200,200,200). Next, we overlay these lines on darken image and apply a normalized

box filter of kernal size 4× 4. During search the parameter α is treated as magnitude

hyperparamter.

• Snow : We set a threshold τ = 255(α

2 + 1
3), where 0 < α <= 0.5. For all the pixels in
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image where its value is less than τ, increase lightness by a factor of 2. During search, the

parameter α is treated as magnitude hyperparamter. The equation is obtained empirically

on KITTI with the aim to allow only a certain percentage of pixels to be changed.

• Fog : Generate some random points with coordinates (x,y), treat these points as center

and draw circles with varying radius and the apply blur. During search the width of

circumference parameter α is treated as magnitude hyperparamter.

• SpeedBlur : We apply a custom 2D filter of size 5×5 on right and left side of image where

top half of filter is set to zero and bottom half is set to one. We only learn probability

hyperparameter for this operation. Filter is obtain empirically on KITTI.

Figure 3.2: Examples of augmentation operations applied to imitate weather conditions.
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3.3 Learning Data Augmentation Policy Schedules

3.3.1 What are Augmentation Policy Schedules?

Data augmentation policy is basically a list of (op, prob, mag) where op: augmentation

operation, prob : probability of applying operation and mag : magnitude with which operation is

applied. During training at any epoch X number of operations are chosen and applied to a training

sample.

eg.[(Brightness,0.5,8),(Rotate,0.2,8),(Translate,0.7,10), . . . ]

Data augmentation policy schedule is a list of data augmentation policies, where policy at index i

specifies augmentation policy to be used for ith epoch of training.

3.3.2 Why Augmentation Schedules?

A classical approach of data augmentation is to select a set of operations and apply all of

them on an example during training with some probability. However, as the number of operations

increases, it becomes computationally expensive to apply all of them on a training example. Most

recent works [15][4][35] tries to learn a fixed augmentation policy which aims to maximize a

reward attribute eg. validation accuracy, chosen for the selected task. However, augmentation

operations that can reduce generalization error of classifier during later epochs of training is not

necessarily a good function during initial epochs. This intuition leads to the idea of learning a

schedule of augmentation policies rather than a fixed policy.

3.3.3 Learning Schedules

In order to learn augmentation policy schedules we use Population Based Augmentation

(PBA) introduced in [10]. It leverages Population Based Training [11] to learn the best augmen-

tation policy for each epoch of training. PBT [11], jointly optimise a population of models and
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their hyperparameters to maximise performance on a given task. In order to learn a schedule

we choose a subset of training set from KITTI Eigen split[5] that has 5,000 samples where each

sample is a sequence of 3 frames. During search we jointly optimize model parameters and

their hyperparametrs in an asynchronous fashion and outputs augmentation policy schedules.

Similar to [10], our algorithmic implementation of PBA uses PBT scheduler in Ray[18] and

uses a population of 8 child models, where the probability prob and magnitude mag values of

augmentation operations are treated as a set of hyperparameters. We discard the trained child

models after PBA search and use the learned policy schedule of child model that gave lowest

error for full scale training. Full scale training means training on original size of train set with

augmentation policy schedule. Our choice of using PBA to learn augmentation policy schedules

over other algorithms is solely based on its efficiency as it offers the lowest computational cost

compared to other methods.

3.3.4 Search Space Complexity

Algorithm 1 discusses the modified version of augmentation template from PBA, that our

work uses, where we tune the hyperparameter count for different experiments on KITTI. This

algorithm takes an augmentation policy as input and apply upto 3 augmentations in sequence. Our

augmentation policy is a set of operations where each operation is associated with two probability

and magnitude values. If we choose N number of operations, this give us 2N operation-probability-

magnitude tuples, and in total 4N hyperparameters. Each hyperparameter is either probability

having 11 possible discrete values (0 to 10) or magnitude having 10 possible discrete values (0 to

9). Therefore each policy is sampled from a search space that has (10×11)2N possibilities. We

experiment with different values of N, and discuss our finding in Chapter 4. We now present the

steps involved in policy search in PBA to complete our discussion about it.

Working of PBA algorithm can described as follows:

Step: An epoch of gradient descent on training set.

13



Eval: Evaluation of each trial on validation set.

Ready: A trial is deemed ready to go through exploit-and explore process after every step.

Exploit: The process in which a trial in bottom 50% of population clones the weights and

hyperparameters of a trial in the top 50% of population. We use Abs Rel (absolute relative

error) value on test set to divide the population in top and bottom halves.

Explore: Algorithm 2 explains the exploration function where for each hyperparameter we

either uniformly re-sample from all possible values or perturb the original value.

Algorithm 1: Our modified version of PBA augmentation policy template [10].

Input: data x, policy p, [list of parameters (op, prob, mag)];
Shuffle parameters ;
Set count = [0, 1, 2, 3] with probability [p1, p2, p3, p4] where ∑i pi = 1;
for (op, prob, mag) in p do

if count = 0 then
break;

end
if random(0,1) < prob then

count = count - 1 ;
x = op(x, mag) ;

end
end
return x

14



Algorithm 2: The PBA explore function from [10].

Input: Params p, list of augmentation hyperparameters ;

for param in p do

if random(0,1) < 0.2 then

Resample param uniformly from domain;

else

amt = [0,1,2,3] uniformly at random ;

if random(0, 1) < 0.5 then
param = param + amt

else
param = param - amt

end

Clip param to stay in domain

end

end
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Chapter 4

Experiment and Analysis

To highlight the benefits that learning data augmentation policy schedule brings to un-

supervised depth estimation, we designed the experiments similar to MonoDepth2 [9]. First,

we show our best model’s performance on test set of KITTI dataset [8] in Table 4.2 comparing

it with previous works in similar setting. Next, through ablation studies in Table 4.3 we show

contribution of augmentation operations introduced in Section 3.2. We also introduced a new

version of KITTI eigen test set with simulated weather conditions, and evaluate and compare our

models in Table 4.4 and Table 4.5. We also do a study to reduce complexity of search space in

the hope of finding better solution for policy schedules and report our findings in Table 4.6.

4.1 Implementation Details

KITTI dataset is divided into train set having 40238 samples (3 frame sequences) and

test set (single image) having 697 samples as per Eigen split [6]. For PBA search our population

contains 8 child models and we randomly sample 5000 sequences from train set and use Abs Rel

error as metric to minimize. Search is performed for 35 epochs and requires 8 Nvidia 1080Ti

GPUs. During full scale training, we load best policy and training needs only one GPU. We use

Adam optimizer [13], with initial learning rate of 2e-4 and learning rate decay multiplier 0.1 after
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every 15 epochs, we train our models for 35 epochs.

4.2 Monocular Depth Evaluation on KITTI

We use the learned data augmentation policy schedule to augment the image sequences

during training and adopt scale normalization as suggested in [27]. The normalized plot of

probability of different augmentation operations learned in policy schedule is shown in the

Figure 4.1, and their corresponding magnitudes are shown in Figure 4.2. This policy schedule

is optimized to improve generalization error on KITTI, for example applying color operation

with higher probability and magnitude is beneficial in epoch range 15-20 than compared to epoch

range 30-35. We also visualize some examples of augmented image from learned policy schedule

during different epochs of training in Figure 4.3.

Figure 4.1: Normalized plot of probability parameters of different augmentation operations
over epochs. The distribution flattens out towards the end of training.

In the evaluation phase, ground truth depth maps were generated by projecting LIDAR

points to image plane. As per [32], we clip our depth estimation in range 0.001m and 80m

and calibrate the scale by medium number of ground truth. Table 4.1 shows the definition of
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Figure 4.2: Plot of magnitude parameters of augmentation operations, it increases rapidly in the
initial phase of training, and later becomes stable. Since we have two magnitude values for each
operation, we take their average for visualization.

evaluation metrics that we use. We compare our best method Ours with current state of the art

unsupervised depth estimation methods in Table 4.2 where our method beats the current state of

the art MonoDepth2 [9] by a small margin. We also trained a model with randomly generated

fixed policy called Ours(random policy) and compare it with our method Ours that uses learned

policy schedule in Table 4.2. Results show learning policy schedules achieves higher performance

than a fixed random policy over all metrics. For random method we do four trials and report

average values.

Table 4.1: Definition of evaluation metrics as per [6] which is commonly used to evaluate depth
estimation on KITTI. Here y∗ is ground truth depth and y is predicted depth.

Threshold: %o f yi,s.t.max( yi
y∗i
,

y∗i
yi
) = δ < thr RMSE(linear):

√
1
|T |∑y∈T ||yi− y∗i ||2

Abs Relative difference: 1
|T |∑y∈T |y− y∗|/y∗ RMSE(log):

√
1
|T |∑y∈T ||logyi− logy∗i ||2

Squared Relative difference: 1
|T |∑y∈T ||y− y∗||2/y∗

4.3 Ablation Studies

How many augmentation operations are necessary ? Search space complexity in-

creases exponentially with number of operations as discussed in Chapter ??. We performed an
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Figure 4.3: Examples of images showing which augmentation operations were applied during
training with what probability and magnitude. These parameters vary at different epochs of
training learned as policy schedule.

ablation study to tune the number of augmentation operations for KITTI, results in Table 4.3

shows our method Ours-10AugW can achieve performance close to our best model with less

operations and still beats state of the art MonoDepth2. This effectively reduces the expanse of

search space and can help us to find better solutions.

How to measure robustness of our method in bad weather conditions ? We generate

a version of KITTI test set that simulates weather conditions and evaluate our methods on it.

SSIM (structural similarity index) between original and augmented version is used to measure the
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Table 4.2: Monocular depth estimation results on KITTI 2015 [8] by the split of Eigen [6].
D stand for supervised depth estimation methods and M stands for monocular unsupervised
depth estimation methods. For fair comparison, we use MonoDepth2 model checkpoint from
github(mono no pt 640x192) and evaluate using per image median scaling.

Method Train
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [6] D 0.203 1.548 6.307 0.282 0.702 0.890 0.957
Liu [16] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967

DORN [7] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Zhou [33] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [31] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

GoeNet [32] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net [36] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
DDVO [27] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Struct2depth ‘(M)’ [2] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
MonoDepth2 [9] M 0.132 1.057 5.150 0.210 0.844 0.947 0.977

Ours(random policy) M 0.134 0.951 5.210 0.210 0.828 0.944 0.978
Ours M 0.129 0.920 5.089 0.205 0.840 0.947 0.978

Table 4.3: Ablation study of depth estimation performance gains on KITTI Eigen split due to
different augmentation operations used in learning policy schedule.

Method Trad-10 Trad-5 Weather
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth2 [9] 0.132 1.057 5.150 0.210 0.844 0.947 0.977
Ours-10Aug X 0.131 0.926 5.202 0.208 0.834 0.945 0.978
Ours-15Aug X X 0.133 0.962 5.299 0.212 0.828 0.943 0.977

Ours-10AugW X X 0.130 0.937 5.193 0.208 0.837 0.945 0.978
Ours X X X 0.129 0.920 5.089 0.205 0.840 0.947 0.978

loss of information after augmentation, we keep only those samples where SSIM ≥ 0.40. This

gives us 694/697 images from original test set in case of applying single weather operation and

641/797 in case of applying double weather operation. For both cases, we apply augmentation

with probability 90%, this helps us to create a test set that has mix of original images also. Results

show in Table 4.4 and Table 4.5 shows learning policy schedule shows consistent gain over a

fixed policy. We also generate some qualitative results using our best method and show them in

Figure 4.4 where we are able to recover depth discontinuities blurred regions.

Can we reduce complexity of search space ? As we discussed previously reducing

search space complexity can help to find better solution for policy schedules, leading to better

generalization error. We explore following ways to reduce search space complexity and show the
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Table 4.4: Comparison on weather simulated version of KITTI Eigen test set when a single
weather operation is applied. After augmentation we keep only those samples where SSIM ≥
0.40 between original and augmented version.

Method
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Ours-10Aug 0.149 1.097 5.540 0.227 0.798 0.930 0.972
Ours-15Aug 0.148 1.091 5.548 0.227 0.799 0.933 0.973

Ours-10AugW 0.137 0.993 5.341 0.215 0.823 0.941 0.976
Ours 0.138 0.991 5.262 0.214 0.821 0.942 0.977

Ours(random policy) 0.141 1.011 5.354 0.216 0.816 0.940 0.977

Table 4.5: Comparison on weather simulated version of KITTI Eigen test set dataset when
double weather operations are applied in sequence. After augmentation we keep only those
samples where SSIM ≥ 0.40 between original and augmented version.

Method
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Ours-10Aug 0.161 1.122 5.789 0.240 0.768 0.921 0.968
Ours-15Aug 0.157 1.178 5.702 0.235 0.779 0.928 0.972

Ours-10AugW 0.141 1.030 5.433 0.219 0.812 0.937 0.976
Ours 0.144 1.043 5.368 0.219 0.811 0.938 0.976

Ours(random policy) 0.145 1.068 5.454 0.220 0.808 0.937 0.976

results in Table 4.6:

1. Modify the search and learn only magnitude parameter for operations. (Ours-mag-only)

2. Despite of learning two different sets of parameters for an operation, learn only one set of

parameters. (Ours-one-ops)

3. Choose top 10 operations from our best method in Table 4.2 based on their probability

contribution in the normalized plot. (Ours-reduce)

Our method (Ours-one-ops) can achieve performance close to our best method with lesser

complexity.

How does our method perform in real world settings ? First we show some qualitative

results on challenging images from KITTI test set in Figure 4.5 that has problems like occlusion

due to shadow which is a common in driving scene. We go a step ahead, and evaluate robustness
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Figure 4.4: Examples of disparity estimation on samples from weather simulated version of
KITTI Eigen test set using our best method Ours from Table 4.2

of our method on some challenging real world weather conditions. We samples some images

from google images, and predict on those, results shown in Figure 4.6. As we can see we are able

to achieve better depth estimation of vehicles compared to methods that doesn’t use any weather

based augmentations. It also suggest, by using operations that simulate weather conditions, we

are able to better performance in good weather (KITTI test set) as well as bad weather (Figure

4.6).

Table 4.6: Comparison on test set of KITTI Eigen split of various methods with complexity
variations in search space where N = 19 and n≈ N/2.

Method Complexity
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth2 [9] - 0.132 1.057 5.150 0.210 0.844 0.947 0.977
Ours-mag-only (10)2N 0.134 0.957 5.182 0.209 0.832 0.945 0.978
Ours-one-ops (10×11)N 0.130 0.931 5.194 0.207 0.836 0.947 0.978
Ours-reduce (10×11)2n 0.131 0.944 5.159 0.208 0.835 0.946 0.978

Ours (10×11)2N 0.129 0.920 5.089 0.205 0.840 0.947 0.978
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Figure 4.5: Examples of disparity estimation on samples from KITTI Eigen test set using our
best method Ours from Table 4.2
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Figure 4.6: Examples of disparity estimation on samples taken from google images that show
real world weather conditions using our best method Ours from Table 4.2. Ours-15 Aug doesn’t
use any weather based augmentation operations. We are able to recover depth of vehicles as
well as detect crisp depth discontinuities.

24



Chapter 5

Conclusion and Future Directions

In this work, we investigated the idea of learning data augmentation strategies from data

itself to make depth estimation from camera sensor robust for autonomous driving application.

We used the setup of depth estimation in monocular videos in unsupervised setting to investigate

this idea. We also proposed data augmentations to imitate weather conditions that increases

robustness of our depth estimation network. Our method is competitive and even beats current

state of the art with a small margin on KITTI benchmark. In future work we would like to

investigate similar data augmentation strategies for semantic segmentation, where getting pixel

wise annotation is very expensive and such methods can aid to provide free training examples

at no extra human cost. Also, we think data augmentation strategies can be learned at object

level too. For instance, we can design augmentation operations that can add virtual objects like

introducing different models of cars in the scene to make classifier aware of new class of objects

present in real world scenarios.
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