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In this paper, a multiscale moving contact line
(MMCL) theory is presented and employed to
simulate liquid droplet spreading and capillary
motion. The proposed MMCL theory combines a
coarse-grained adhesive contact model with a fluid
interface membrane theory, so that it can couple
molecular scale adhesive interaction and surface
tension with hydrodynamics of microscale flow. By
doing so, the intermolecular force, the van der Waals
or double layer force, separates and levitates the liquid
droplet from the supporting solid substrate, which
avoids the shear stress singularity caused by the no-
slip condition in conventional hydrodynamics theory
of moving contact line. Thus, the MMCL allows the
difference of the surface energies and surface stresses
to drive droplet spreading naturally. To validate
the proposed MMCL theory, we have employed it
to simulate droplet spreading over various elastic
substrates. The numerical simulation results obtained
by using MMCL are in good agreement with the
molecular dynamics results reported in the literature.

1. Introduction
In fluid mechanics, the hydrodynamics theory of
moving contact line (MCL) has been studied for
more than four decades, and it is still a fascinating
subject that attracts many research interests. This is
because of its potential applications in solving a broad
range of scientific and engineering problems such
as droplet spreading, capillary motion, cell motility,
wetting and wet friction, surfactant assembly, and many
other colloidal physics and chemistry phenomena. The
standard macroscale hydrodynamics of MCL theory
usually employs the so-called no-slip condition as part
of the interface boundary condition. Even though this
approach has been very successful in solving many
fluid mechanics problems, when it comes to the MCL
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problem, the no-slip condition adopted at the liquid–solid boundary will lead to singularity in
shear stress distribution at the vicinity of the MCL front, which poses a serious challenge in
solving the MCL problem (e.g. [1–6]).

The no-slip boundary condition referred here is a boundary condition that imposes a zero
relative velocity condition at the fluid–solid interface, and it may lead to a non-integrable
singular shear stress at the MCL front of the triple interface. The unbounded shear stress implies
infinite dissipation, and hence it removes the ability of the MCL theory to solve any practical
problems. Because of its profound potential in applications and its intellectual appeal, this
challenge has attracted much attention from the field of applied mathematics and fluid mechanics,
bioengineering and chemical engineering, as well as computational materials and computational
physics.

In fact, the MCL problem is not a purely fluid mechanics or applied mathematical problem,
but a chemomechanical problem at multiscale near the interface. In recent years, many attempts
have been proposed to solve this problem by considering molecular interaction at the fluid–solid
interface (e.g. [7–10]). So far, the atomistic or molecular force-based continuum MCL formulation
is involved with complex multiscale boundary conditions, and it is still a work-in-progress in
solving actual dynamic wetting problems. Despite much research effort over so many years, we
are still looking for a simple, viable and predictive moving contact line solution at continuum
scale such that it can match and predict experimental measurement and solve engineering
problems. In a recent paper [11], the present authors proposed a multiscale dynamic wetting
model (MDWM) that uses a coarse-grained adhesive contact model (CGCM) developed by Sauer
& Li [12–14] to avoid the singularity problem resulting from the no-slip boundary condition.
However, the model proposed in [11] has several shortcomings. First, the computational cost of
the MDWM is very large for practical three-dimensional simulations, because it makes use of
a double volume integral to calculate the contact/interaction force between the droplet and the
substrate. Second, in the MDWM, the interface adhesion and the interface moving contact line
formulations are somewhat disjointed. Last, MDWM does not correctly account for the interface
dynamic or inertial effects. In this work, we systematically derive and formulate a rigorous
multiscale moving contact line (MMCL) theory that seamlessly couples the MCL theory with
the adhesive contact theory by using a fluid interface model, which is an analogue of the Gurtin–
Murdoch theory of elastic interface [15–18]. A key feature or component of MMCL is that we are
able to convert the double volume integral for interface adhesive traction into a double surface
integral that not only reduces the computational cost significantly, but also provide the solution
for calculating the interface traction jump across the interface of the triple phase system.

The paper is organized into five sections. In §2, we discussed the basic idea of MMCL and how
it works; in §3, the dynamic governing equations of MMCL and its finite-element formulation are
presented; in §4, several numerical examples are presented to demonstrate the capability of the
MMCL model, and finally we close the presentation in §5 with a few remarks.

2. The basic idea of multiscale moving contact line and how it works
To start with, we consider the following triple phase system of gaseous (G), liquid (L) and solid
(S) as shown in figure 1. Each interface consists of two surface layers, e.g.

ΓLS = ΓLS(L) ∪ ΓLS(S), ΓGL = ΓGL(G) ∪ ΓGL(L)

and ΓGS = ΓGS(G) ∪ ΓGS(S),

}
(2.1)

where ΓLS(L) denotes the liquid surface of the interface ΓLS while ΓLS(S) denotes the solid surface
of the interface ΓLS. Similarly, ΓGL(G) denotes the gaseous surface of the interface ΓGL while
ΓGL(L) denotes the liquid surface of the interface ΓLS; and ΓGS(G) denotes the gaseous surface of
the interface ΓGS while ΓGS(S) denotes the solid surface of the interface ΓGS. For the triple phase
system, the total boundary of each phase is denoted as ∂Ωα , α=G, L, S and ∂ΩG = ΓGL(G) ∪
ΓGS(G), ∂ΩL = ΓGL(L) ∪ ΓLS(L) and ∂ΩG = ΓLS(S) ∪ ΓGS(S).
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Figure 1. The triple phase system of gaseous (G), liquid (L) and solid (S). (Online version in colour.)

(a) Governing equations of the bulk continuum
The MMCL is a hybrid continuum model. The Lagrange description of continuum mechanics is
used to model the dynamic deformation of each phase,

∇ · σ k + ρkbk = ρkük, k=G, L and S, (2.2)

where k denotes the phase; σ k is the Cauchy stress; ρk is the mass density per unit volume; bk is
the body force per unit mass and uk is the displacement field.

Since the stress in the gas phase is negligible, we only consider the equations of motion in
phase k= L and S. In this work, the liquid phase is modelled as a compressible Newtonian fluid,
with the constitutive relation given as

σ = κL(ln J)I+ μL(∇ ⊗ v+ (∇ ⊗ v)T), (2.3)

where κL and μL are, respectively, the bulk modulus and viscosity of the liquid phase; v is the
velocity of the liquid phase, J= ρ0/ρ, and ρ0, ρ are the density of the liquid in the reference and
current configuration, respectively.

The solid phase is modelled as a St. Venant-Kirchhoff material, and its constitutive equation is
given as follows:

S= λS tr(E)I+ 2μSE, (2.4)

where S is the second Piola–Kirchhoff stress; E= 1
2 (FTF− I) is the Green–Lagrangian strain; F is

the deformation gradient and λS, μS are the Lame constants of the solid substrate.

(b) Interaction between two different continuum phases
(i) Body–body interaction

The key of the MMCL theory is how it treats the interaction and interface condition between
two distinct continuum phases. To do so, we employ a general adhesive contact model that
stems initially from Bradley’s van der Waals force model [19] and DLVO (Derjaguin and Landau,
Verwey and Overbeek) theory [20–22], which supplements the microscale or mesoscale adhesive
force condition at the interface.

If we choose the interphase potential as an average between the Lennard-Jones potential
(the van der Waals force) and the zeta potential (the double layer electrokinetic potential), we
can quantify it when a given interface is specified.
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For simplicity, we denote this interatomic potential as φ(|xk
|), where xk
 = x
 − xk, k, 
=G, L, S,
k �= 
 and xk ∈Ωk, x
 ∈Ω
. Then the total interphase adhesive-contact potential energyΠac for two
interacting phase is

Πac =
∫
Ωk

∫
Ωl

βkβlφ(r) dΩl dΩk, r= | xk − x
|, (2.5)

where φ(r) is the interatomic potential, and in this work, the 12-6 type Lennard-Jones potential
is used as a model to demonstrate the effect of the van der Waals force and double-layer force
potentials

φ(r)= ε
[(σ0

r

)12 − 2
(σ0

r

)6
]

, (2.6)

where ε is the potential well (in the unit of energy) and σ0 is the atomic equilibrium distance.
By simply taking the first variation of the interaction potential energy, we can obtain

δΠac =
∫
Ωk

∫
Ωl

βkβ


(
∂φ(r)
∂xk
· δuk +

∂φ(r)
∂x

· δu


)
dΩ
 dΩk

=−
∫
Ωk

βkbk · δ uk dΩk −
∫
Ωl

βl b
 · δu
 dΩ
 , (2.7)

where we define the adhesive body force in each phase as

bk(xk) :=−∂Φ

∂xk

, Φ
 :=
∫
Ωl

β
φ(r) dΩl (2.8)

and

b
(xk) :=−∂Φk

∂x

, Φk :=

∫
Ωk

βkφ(r) dΩk, (2.9)

where Φk and Φ
 are the homogenized macro interphase interaction potentials between phases
k and l, k, 
=G, L, S. By doing so, we have expressed the interbody intermolecular forces in the
form of a time-dependent body force distribution. For detailed computation implementation of
CGCM, readers may consult [12–14].

One may note that the above adhesive contact formulation is essentially a body–body
interaction. As shown in equation (2.5), the body–body approach requires a double-layer integral
over the two deformable bodies, which needs extensive computation effort, especially for a
macroscale three-dimensional computational model. Fortunately, the main effect of molecular
adhesion is concentrated around the vicinity of the interface, and one can further convert the
double volume integral to a double surface integral.

(ii) Surface–surface interaction

As shown in figure 2, we first consider the interface Γk
 = Γk
(k) ∪ Γk
(
) between the phases k and
l and choose two arbitrary points xk ∈ ∂Ωk and x
 ∈ ∂Ω
 so that sk
 := x
 − xk =:−s
k. Following
the approach outlined by Jagota & Argento [23], we can convert the body–body interaction
forces directly to surface–surface interaction forces. The adhesive contact force applied on an
infinitesimal surface element dak ⊂ ∂Ωk due to the presence of an infinitesimal surface element
surface da
 ⊂ ∂Ω
 is expressed as

dFk = {βkβ
(nl ⊗ skl) · nkψ(s)}dak da
, (2.10)

where nk and n
 are the unit surface out-normal at points xk and x
, respectively, k, 
=G, L, S,
k �= 
, and

ψ(s)= 1
s3

∫∞
s
φ(r)r2 dr, with s= |sk
|, (2.11)

According to Jagota & Argento [23], the only requirement for such conversion is that the
interaction potential φ(r) decays faster than 1/r3, so that the integral of the above equation is
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Figure 2. Derjaguin approximation: a schematic to convert the body–body interaction to the surface-surface interaction.
(Online version in colour.)

finite when r approaches infinity. For the interatomic potential φ(r) given by equation (2.6), this
condition is satisfied, and in fact one can perform the analytical integration and obtain,

ψ(s)= 2
3
ε

[
1
6

(σ0

s

)12 −
(σ0

s

)6
]

. (2.12)

Similar to equation (2.10), the adhesive contact force applied on an infinitesimal surface
element da
 ⊂ ∂Ω
 due to the presence of an infinitesimal surface element surface dak ⊂ ∂Ωk is
expressed as

dF
 = {β
βk(nk ⊗ s
k) · n
ψ(s)}da
 dak. (2.13)

It may be noted that dFk �= −dF
, but the total force applied on phase k due to the presence of
phase 
 is equal to that of the force applied on phase 
 by the phase k, i.e.

∑Nk
i=1 dFk =

∑Nl
i=1 dF
.

Nk and N
 are the total number of infinitesimal surface elements on ∂Ωk and ∂Ω
, respectively.
Furthermore, one can rewrite equation (2.10) as follows:

dFk

dak
= {βkβ
(n
 ⊗ sk
)ψ(s) da
} · nk, (2.14)

which indicates that the quantity in the curly bracket of the equation above can be viewed as
an infinitesimal surface stress contribution from da
 ⊂ ∂Ω
 at xk ∈ ∂Ωk. Thus, if we perform the
integration over the surface ∂Ω
, we may obtain the adhesive surface stress

σ adh
k =

∫
∂Ω


βkβ
(n
 ⊗ skl)ψ(s) da
, (2.15)

which represents the surface stress tensor at point xk ∈ ∂Ωk, due to the interaction from the phase

. The corresponding surface traction at point xk ∈ ∂Ωk can then be expressed as

tadh
k = σ adh

k · nk, (2.16)

Similarly, we can derive the surface stress tensor and traction at point x
 ∈ Γk
(
) as

σ adh

 =

∫
∂Ωk

β
βk(nk ⊗ s
k)ψ(s) dak, tadh

 = σ adh


 · n
. (2.17)

Note that if one of the two interacting phases is rigid, we may be able to analytically integrate
equation (2.15) to obtain the adhesive surface stress tensor for a given interatomic potential φ(r).
For instance, for the 12-6 Lennard-Jones potential given by equation (2.6), if the phase l is a rigid
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Figure 3. The surface–surface adhesion integrations: (a) a rigid half plane with an arbitrary body and (b) a rigid sphere with
an arbitrary body. (Online version in colour.)

infinite plate as shown in figure 3a, then one can obtain an explicit expression for surface stress
tensor as

σ adh
k =−

{
2πaβkβ


∫+∞
a

ψ(s)s ds
}

ez ⊗ ez

=−
{
πεβkβ
a3

45

[(σ0

a

)12 − 15
(σ0

a

)6
]}

ez ⊗ ez, (2.18)

where a is the shortest distance of the particle xk to the plate, ez is the unit vector along the z-axis.
Alternatively, if the phase 
 is a rigid sphere with radius R as shown in figure 3b, the surface stress
tensor can be found as a diagonal tensor

σ adh
k = σ adh

kxx ex ⊗ ex + σ adh
kyy ey ⊗ ey + σ adh

kzz ez ⊗ ez, (2.19)

where

σ adh
kxx = σ adh

kyy = πβkβlεσ
6
0

{
4(5a4 + 14a2R2 + 5R4)R3

135(a− R)8(a+ R)8 σ 6
0 +

(a2 + R2)R

3a2(a2 − R2)2 −
1

12a3 log

[(
a− R
a+ R

)2
]}

(2.20)

and

σ adh
kzz = πβkβlεσ

6
0

{
−4R3(55a6 + 207a4R2 + 117a2R4 + 5R6)

135(a− R)9(a+ R)9 σ 6
0

+ 2(a4 + 4a2R2 − R4)R

3a2(a− R)3(a+ R)3 +
1

6a3 log

[
(a− R)2

(a+ R)2

]}
. (2.21)

In the equations above, a is the shortest distance of the surface particle xk to the centre of the
rigid sphere. ex, ey and ez are defined to be the unit vectors along the axes shown in the figure.
In general, to calculate the adhesive surface traction, one needs to closely trace the positions of
points on the surface and evaluate the current surface unit out-normal for each surface element,
and then perform numerical integration.
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Figure4. Comparisonof shear stress (σ12) distributions of the front of theMCL: (a)MCL and (b)MMCL. (Online version in colour.)

(c) Comparison study between conventional moving contact line and the multiscale
moving contact line

To understand how the proposed MMCL method works, we have carried out a comparison
study by using the conventional MCL method and the MMCL method proposed in the work
to simulate the adhesive contact between two continuum objects (shown in figure 4). We would
like to mention that the numerical example in figure 4b is carried out by using the surface–
surface integral-based contact scheme, together with the interface effects. The main advantage to
combine the coarse-grained contact model with the MCL line theory is that the interface adhesive-
repulsive force can levitate the liquid droplet above the solid substrate (figure 4b). By doing so,
it completely eliminates singularity problem of the conventional MCL theory, while retaining the
surface energy description in dynamics wetting modelling. From a purely mechanics perspective,
in the conventional MCL theory hydrodynamics simulation, a singular shear stress arises due to
the fact that the initial contact line front between the liquid phase and solid phase forms a crack-
shaped cleavage (figure 4a), and the abrupt change of surface tangent direction will cause stress
concentration. On the other hand, if one can levitate the liquid droplet over the solid substrate,
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and it will separate the liquid phase and solid phase. This creates a gap between the solid surface
and liquid surface and makes the contact line front a traction-free surface. A direct consequence
of this approach is that the mathematical idealization induced pathology is eliminated, which is
why the proposed method works.

3. Dynamic interface moving contact line theory
In this section we discuss the dynamic interface moving contact line theory.

(a) Interface dynamic equations of the moving contact line
Inspired by the Gurtin–Murdoch theory of elastic interface (e.g. [15–18]), we consider the
following surface equations of motion for the surface of all three phases:

fD,k :=∇s · ςk + tk, ∀ x ∈ ∂Ωk, k=G, L, S, (3.1)

where fD,k is the surface D’Alembert force density, ςk is the surface stress, tk is the adhesive surface
traction vector and ∇S is the surface gradient operator that is defined as

∇s :=∇ − n(n · ∇), (3.2)

in which n is the unit out-normal of the surface.
In order to couple the surface equations of motion with small-scale adhesive force, we must

link the adhesive traction tk with the coarse-grain adhesive molecular force. In fact, the adhesive
traction force is not the only contribution to the surface traction tk, k=G, L, S. Many other
factors are to be considered for the total surface traction, i.e. surface tension, friction, surface
strain gradient, surface elasticity gradient, diffusive and other dissipative forces such as surface
viscosity and velocity gradients. In the following, an interface MCL theory is proposed to calculate
the interface traction at the boundary of each phase. To start with, we first consider the surface
D’Alembert force density, and according to equation (3.1), we have

fD,G =∇s · ςG + tG, ∀ x ∈ ∂ΩG,

fD,L =∇s · ςL + tL, ∀ x ∈ ∂ΩL

and fD,S =∇s · ςS + tS, ∀ x ∈ ∂ΩS,

which allows us to introduce the following interface D’Alembert force densities:

fD
GL := fD,G + fG,L =∇s · ςGL + (tG + tL), ∀ x ∈ ΓGL, (3.3)

fD
LS := fD,L + fD,S =∇s · ςLS + (tL + tS), ∀ x ∈ ΓLS (3.4)

and fD
GS := fD,G + fD,S =∇s · ςGS + (tG + tS), ∀ x ∈ ΓGS, (3.5)

where
ςGL := ςG + ςL; ςLS := ςL + ςS and ςGS := ςG + ςS. (3.6)

In general, on a specific interface Γk
, k, 
=G, L, S, and k �= 
, we have nk =−n
. Subsequently, we
may denote

tk + t
 = (σ k − σ l) · nk := [tk], ∀ x ∈ Γk
 or (3.7)

tk + t
 = (σ 
 − σ k) · n
 := [t
], ∀ x ∈ Γk
. (3.8)

Moreover, Gurtin et al. [16,17] have shown that the interface D’Alembert force can be written as

fD
k
 = ρ̄k
v

intf
k ( v
 − vk) or fD

k
 = ρ̄k
v
intf

 (vk − v
), (3.9)

where vintf

 is the magnitude of the interface normal velocity (the superscript ‘intf’ means

interface), and ρ̄k
 is the average mass density on the interface (k
).
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Therefore, the dynamic equations of interface MCL read as

∇s · ςk
 + [tk]= ρ̄k
v
intf
k (v
 − vk). (3.10)

Without considering surface diffusion and friction, the following surface constitutive relations
are chosen

ςG = γGI(2)
s , (3.11)

ςL = γLI(2)
s + ∇sγLI(2)

s + μSds (3.12)

and ςS = γSI(2)
s +

∂ΓS

∂εs
+ γS∇s ⊗ u, (3.13)

where u is the three-dimensional surface displacement field; μL is the surface viscosity. Note that
I(2)

s denotes the unit tensor on a smooth surface or two-dimensional manifold, which is defined as

I(2)
s := PI= P, (3.14)

where I is the unit second-order tensor in a three-dimensional Euclidean space, and P is the
projection tensor defined as

P := I− n⊗ n,

where n is the unit out-normal of the surface at the point of interest. It may be noted that P is a
symmetric tensor. ds is the surface or interface rate of deformation that is defined as

ds := PSym(∇ ⊗ v) PT = PSym(∇ ⊗ v)P, (3.15)

where v is the three-dimensional velocity field. The last equality holds because the projection
tensor P is a symmetric tensor.

In some part of the text, in order to emphasize the material properties of the manifold, we write
it as I(k)

s , k=G, L, S or LS, GS and GL, etc., in a manner that is self-evident. One may note that

∇s · I(2)
s =∇s · P= 2κn,

where κ is the average curvature of the surface.
In equations (3.11)–(3.13), γG, γL and γS are the surface tensions in different phases, ΓS is the

solid surface strain energy, εs is the surface strain tensor; ∇s is the surface gradient operator
defined in equation (3.2); and the operator⊗ is the standard notation for tensor product in tensor
algebra. For the case of infinitesimal deformation, Gurtin & Murdoch [15] proposed the following
quadratic form of the surface strain energy:

ΓS = 1
2 ε

s
ijC

S
ijk
ε

s
k
, i, j, k, 
= 1, 2, (3.16)

in which the surface elastic tensor is related to surface tension γS as well,

CS
ijk
 = (λS + γS)δijδk
 + μS(δikδj
 + δi
δjk), i, j, k, 
= 1, 2, (3.17)

where λS and μS are the surface Lame constants. Hence, the surface constitutive equation for the
solid phase becomes

ςS = γSI(2)
s + 2(μS − γS)εs + (λS + γS) tr(εs)I(2)

s + γS∇s ⊗ u. (3.18)

Subsequently, one can readily derive the interface constitutive relation, for instance,

ςLS = γLSI(2)
s + ∇sγLI(2)

s + 2(μS − γS)εs + (λS + γS) tr(εs)I(2)
s + γS∇s ⊗ u+ μLds, (3.19)

where the surface strain εs is determined by projecting the bulk strain onto the surface, i.e.

εs := P · ε · P, (3.20)
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where ε is the Eulerian–Almansi strain in the bulk, which is defined as

ε = 1
2 (I− c) and c := F−T · F−1,

where F is the deformation gradient of the bulk continuum.

Remark 3.1. In general, the surface adhesive stress tensor

σ adh
k =

(
βkβ


∫
∂Ω


n
 ⊗ skellψ(s) da


)
�= σ adh


 =
(
βkβ


∫
∂Ωk

nk ⊗ s
kψ(s) dak

)
,

thus [tk] �= 0. Consider a simple case of gaseous and liquid interface. Let

σG =−pGnG ⊗ nG, σL =−pLnL ⊗ nL→ [tL]= (pG − pL)nL← nG =−nL.

The interface MCL equation yields

∇s · (γGLI(2)
S )+ (pG − pL)nL = ρ̄vintf

L (vL − vG). (3.21)

If we assume that the no-slip boundary condition may hold in this case, and it then leads to

pL − pG = 2γGLκGL,

which is the classical Young–Laplace equation of gas–liquid interface, and κLS is the mean
curvature of the gas–liquid interface. This example shows that the Young–Laplace equation is
consistent with the no-slip condition. Moreover, it reveals that there are two factors that contribute
to the elimination of shear stress singularity: the Pauli-repulsion gap and the fluid membrane
formulation. The Pauli-repulsion gap will allow general slip condition, and the Gurtin-type fluid
membrane formulation may be viewed as a sharp interface model as the limit of phase-field
approach to the MCL (e.g. [24–26]). The Cahn–Hilliard-type phase field model of MCLs is effective
in removing singularity of shear stress distribution, but requiring the solution of an interphase
diffusion zone. Comparing with the other phase field model of MCL, the MMCL liquid surface
membrane theory may be more elegant in mathematics and more relevant in colloidal surface
physics and chemistry.

Remark 3.2. By using the Lagrangian description, we can obtain the relationship between the
unit out-normal vector in the current and reference configurations as

n= F−TN√
N · C−1N

, (3.22)

where C is the right Cauchy–Green tensor

C= FTF. (3.23)

The mean curvature is related to the divergence of the surface unit out-normal (e.g. [27]) as

2κ =−∇ · n. (3.24)

By substituting equation (3.22) into equation (3.24), the following equation can be obtained:

2κ = FTG
...(C−1N⊗ C−1N⊗ C−1N)− ∇XN : (C−1N⊗ C−1N)

(N · C−1N)3/2

− (nTG) : C−1 + 1√
N · C−1N

C−1 :∇XN, (3.25)

where G is the derivative of the deformation gradient tensor, and it is defined as

G := ∂2x
∂X⊗ ∂X

. (3.26)
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(b) The solution of the interface fluid membrane problem
We are now considering the general solution of the proposed MMCL theory. The MCL
hydrodynamics is in fact a fluid–structure interaction problem. It has two standard solutions:
(i) monolithic solution and (ii) iterative solution.

(i) Monolithic solution

For a monolithic solution, we must solve the following coupled different equations
simultaneously:

∇ · σ k + ρkbk = ρkük and tk = σ knk, ∀ x ∈ ∂Ωtk; (3.27)

∇s · ςk
 + (tk − t
)= ρ̄vinft
k (v
 − vk); ∀ x ∈ Γk
 (3.28)

and ∇ · σ 
 + ρ
b
 = ρ
ü
 and t
 = σ 
n
, ∀ x ∈ ∂Ωt
, (3.29)

in which k and 
 are two adjacent phases, and Γk
 is the interface.
In (3.27), the interface traction jump [t]= (tk − t
) across the interface Γk
 is solely dependent

on the intermolecular adhesion force of two bulk phases derived in the previous section.

(ii) Iterative solution

Alternatively, we can use the iterative solution approach, which is often used in the solution
of fluid–structure interaction problems (e.g. [28]). That is, we solve equations (3.27) and (3.29)
alternately or iteratively. In this case, in addition to intermolecular adhesion, the surface traction
tk and t
 will depend on other factors as well. For instance, when we solve the displacement
and velocity fields in the k phase, we need the traction tk on traction boundary. Based on
equation (3.28), we can find tk as

tk = ρ̄vintf
k (v
 − vk)−∇s · ςk
 − t
. (3.30)

In the above equation, both traction forces tk and t
 are unknown. In order to solve tk by using an
iterative solver, we employ the following interface traction approximation to evaluate t
, so that
it only depends on the interface adhesive force, i.e.

t
 ≈ tadh

 = σ adh


 · n
 =−σ adh

 · nk.

We call this procedure the unilateral interface traction approximation.
If we adopt the no-slip boundary condition, the relative slip velocity vanishes, i.e. vk − v
 =

0. Then from equation (3.28), we find that the surface traction on the boundary of the k-phase
becomes

tk =−∇s · ςk
 + σ adh

 · nk, ∀ x ∈ ∂Ωtk. (3.31)

Similarly, when we are solving the displacement and velocity fields for the bulk phase 
, we
can obtain the traction on the boundary of the 
-phase by first applying the unilateral adhesive
traction approximation on the traction on the kth phase boundary so that

tk ≈ tadh
k = σ adh

k · nk =−σ adh
k · n
,

and with the help of the no-slip boundary condition, we can obtain

t
 =−∇s · ςk
 + σ adh
k · n
, ∀ x ∈ ∂Ωt
. (3.32)

Remark 3.3. It is both interesting and surprising that we have found from equations (3.30)–
(3.32) that the no-slip condition may not be the ‘culprit’ of the shear stress singularity problem
after all. In fact, it is the multiscale character of the moving contact interface that prevents the
macroscale MCL theory from yielding the correct solution.

In the following, we shall show how to incorporate the effects of the interface equations of
motion (3.28) and use them to calculate the surface traction forces. For illustration purpose, we
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consider a simple surface stress expression that only contains the surface tension contribution
while neglecting all other contributions such as surface elasticity, viscosity, friction, etc. In this
simplified case, we have

∇s · ςk
 + [tk]= ρ̄k
v
inf
k (vk − v
), where ςkl = γk
Is, ∀ x ∈ Γk
, k
=GL, LS, GS,

Then, based on the no-slip condition and the unilateral adhesive approximation, we can find the
traction force on the liquid surface ∂ΩL = ΓLS(L) ∪ ΓGL(L),

tL =−∇s · ςGL + σ adh
G · nL, ∀ x ∈ ΓGL(L) (3.33)

and
tL =−∇s · ςLS + σ adh

S · nL, ∀ x ∈ ΓLS(L). (3.34)

One may note that at the MCL front, three interphases merge together, and the traction on the
gaseous phase should be added to the MCL as well. Therefore, we also consider

tG =−∇s · ςGS + σ adh
S · nG, ∀ x ∈ ΓGS(G), (3.35)

where σ adh
S · nG is the solid surface traction force due to gaseous phase interaction.

We now consider the following surface finite-element interpolation displacement and virtual
displacement fields:

us(x, t)=
NSnode∑
Is=1

NIs (x)dIs (t) and ws(x, t)=
NSnode∑
Is=1

NIs (x)wIs (t), (3.36)

where NSnode is the total number of surface element nodes, and it may be different in each
surface Γkl; NIs (x) are the surface finite-element shape functions, dIs and wIs are surface nodal
displacement and the surface virtual displacement at surface node Is, Is = 1, 2, . . . , Nnode. Note
that the surface FEM nodes are a subset of the bulk FEM nodes, and the virtual displacements of
the surface nodes are not independent from the virtual displacements of the bulk nodes. There is
a connectivity map, say Mapc(Is), to connect the two, i.e. Mapc(Is)= I or vice versa.

The weak form of the surface traction can be written as

NGL∑
Is=1

wIs

{
−

∫
ΓGL(L)

NIs (x)∇s · ςGL ds+
∫
ΓGL(L)

NIs (x)σ adh
G · nL ds

}
, (3.37)

NLS∑
Is=1

wIs ·
{
−

∫
ΓLS(L)

NIs (x)∇s · ςLS ds+
∫
ΓLS(L)

NIs (x)σ adh
S · nL ds

}
(3.38)

and
NGS∑
Is=1

wIs ·
{
−

∫
ΓGS(G)

NIs (x)∇s · ςGS ds+
∫
ΓGS(G)

NIs (x)σ adh
S · nG ds

}
. (3.39)

Integration by parts yields

NGL∑
Is=1

{
−NIs (x)ςGL · qt|∂ΓLS(L) +

∫
ΓGL(L)

∂NIs

∂x
: ςGL ds+

∫
ΓGL(L)

NIs (x)σ adh
G · nL ds

}
,

NLS∑
Is=1

{
−NIs (x)ςLS · q1|∂ΓLS(L) +

∫
ΓLS(L)

∂NIs

∂x
: ςLS ds+

∫
ΓLS(L)

NIs (x)σ adh
S · nL ds

}

and
NGS∑
Is=1

{
−NIs (x)ςLS · (−q1)|∂ΓGS(G) +

∫
ΓGS(G)

∂NIs

∂x
: ςLS ds+

∫
ΓLS(L)

NIs (x)σ adh
S · nL ds

}
,

where vectors q1 and qt are defined in figure 5. The first terms of three surface forces are the
external force acting on the MCL. If we use the Lagrangian-type finite-element method, the MCL
can always be treated as part of the element boundary [11,29]. Therefore, for a given material
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Figure 5. MCL front. (Online version in colour.)

point at the MCL, i.e. ∀ x ∈Lmcl = ΓGL ∩ ΓLS ∩ ΓGS, we have NIs (x)= 1, and the external resultant
acting on the MCL is

Fmcl
L =−ςGL · tGL − ςGS · tGS − ςLS · tLS

where
tGL = qt = q1 cos θ − q2 sin θ and tGS =−q1, tLS = q1,

as shown in figure 5. If we only consider the surface tension contribution to surface stress, we
then have

ςGL = γGLIS
GL = γGL(q3 ⊗ q3 + qt ⊗ qt),

ςGS = γGSIS
GS = γGS(q3 ⊗ q3 + q1 ⊗ q1)

and ςLS = γLSIS
LS = γLS(q3 ⊗ q3 + q1 ⊗ q1),

Thus for the MCL shown in figure 5, the external force acting on the MCL is

Fmcl
L = γGSq1 − γLSq1 − γGL(q1 cos θ − q2 sin θ ) (3.40)

=
[
γGS − γLS − γGL cos θ

γGL sin θ

][
q1
q2

]
. (3.41)

Under the equilibrium condition, which is implied in the no-slip condition, the right-hand side of
first equation of (3.41) vanishes, and one can obtain,

γGS = γLS + γGL cos θ , (3.42)

which is exactly the classical Young’s equation [30].

4. Numerical examples
In this section, a few numerical examples that were conducted by using the MMCL method are
reported to validate the proposed theory.

(a) Validation of the surface tension effect
In the first example, we consider an ellipsoidal liquid droplet suspended in the air. In this case,
the only driving force for the evolution of the system is the surface tension on the interface of the
liquid and the atmosphere.
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Figure 6. Time history of the simulation of a three-dimensional ellipsoidal droplet embedded in atmosphere, driven by the
surface tension effect. (a) t= 0.004 ns, (b) t= 0.04 ns, (c) t= 0.08 ns, (d) t= 0.2 ns, (e) t= 0.28 ns and (f ) t= 0.4 ns.
(Online version in colour.)

In the simulation, the surface tensions are applied based on equation (3.37). Constitutive
equation of the droplet is given by equation (2.3). The material parameters used in the simulation
are κ = 2.2× 109 Pa, μ= 0.6× 10−3 Pa s, and the surface tension between the droplet and the
atmosphere γGL = 7.28× 10−2 N m−1. A total of 4341 particles is used in the discretization of the
droplet of ellipsoidal shape. The radius of the first semi-axis of the ellipsoidal is a= 5 nm, and
the initial aspect ratio of three semi-principal axes are a : b : c= 1 : 1.5 : 1. The simulation time step
is chosen as dt= 2.0× 10−14 s. Time history of the ellipse changing to perfect sphere process are
shown in figure 6. We plot the evolution of the lengths of longest and shortest semi-principal axes
of the ellipsoidal droplet and the pressure change at the centre of the droplet in figure 7.
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Figure 7. Evolution history of the ellipsoidal droplet: (a) length of principal axes and (b) pressure at the centre of the droplet.
(Online version in colour.)

Since the relaxation process is a dynamic process, so it is expected that there are some
oscillations in the length of the semi-principal axes at the beginning of the simulation. But
eventually, both the principal axes and the pressure at the centre of the droplet will reach to
the stable values, owing to the damping effect of the droplet viscosity. To check the validity of
the final state, we would like to confirm whether the following Young–Laplace equation for a
spherical droplet is satisfied or not:

�P= 2γ
R

, (4.1)

where �P is the pressure change, γ is the surface tension of the liquid and R is the final radius
of the droplet. For the final configuration of the droplet, the pressure change �P= 25.62 MPa, the
final radius of the spherical droplet R= 5.71 nm. The surface tension γ = γLG = 72.75×mN m−1.
Note that

2γ
R
= 2× 72.75× 10−3

5.71× 10−9 Pa= 25.48× 106 Pa= 25.48 MPa, (4.2)

and we end up with an error percentage of 0.54% for the pressure change compared to the value
�P= 25.62 MPa, which implies that the Young–Laplace equation is satisfied.

In fact, based on the energetic argument, the droplet tends to stay with the shape that has the
lowest energy state. Thus, minimizing the surface area of an ellipsoidal shall make the ellipsoidal
become a sphere. The simulation result confirms that the implementation of surface tension force
agrees with the physics.
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Figure 8. Computational model of the droplet wetting. (a) The MMCL computational model and (b) FEM mesh of the MMCL
model. (Online version in colour.)

(b) Liquid droplet spreading
In this example, simulations of the droplet spreading by using the MMCL are presented. The
droplet is modelled as a perfect sphere with a radius r= 5 nm, and the substrate is a short
cylinder shape platform with the dimension H × R= 4.5× 20 nm, as shown in figure 8a. The
liquid phase is the water droplet, and the solid substrate is treated as a single crystal copper.
Constitutive equations of the liquid droplet and solid substrate are provided by equations (2.3)
and (2.4). Initially, the droplet is placed at 5 nm above the top of the substrate. In finite-element
discretization, 4341 nodes and 4000 elements are used to discretize the droplet, and 4036 nodes
and 2916 elements are used to discretize the substrate, as shown in figure 8b. The material
properties are given as follows. For the droplet (water): we choose the density ρd = 1.0×
103 kg m−3, viscosity μ= 0.6× 10−3 Pa s and bulk modulus κ = 2.2× 109 Pa; for the substrate
(copper): we have the density ρs = 8.94× 103 kg m−3, Young’s modulus E= 1.2× 1011 Pa, and
Poisson’s ratio ν = 0.34.

The parameters for the coarse-grained contact model are provided as the droplet atomic
density βd = 3.33× 1028/m3, the substrate atomic density βs = 8.47× 1028/m3. The parameters
for the Lennard-Jones potential for the intermolecular interaction between the droplet and the
substrate are chosen as σds = 3.05× 10−10 m, εds = 8.4725× 10−21 J, which are obtained based on
the Lorentz-Berthelot rule: σds = 0.5(σ d + σ s), εds =

√
εdεs

In this simulation, the time step is �t= 5× 10−15 s and the total steps is nsteps= 200 000.
Reduced units are used throughout the simulation, with the unit of time t0 = 1.0× 10−12 s, length
l0 = 1.0× 10−10 m and mass m0 = 1.0× 10−27 kg.

A time sequence of a dynamic droplet spreading is shown in figure 9. One can see that the
droplet first adheres to the substrate (figure 9a–b) and then gradually spreads over it (figure 9c–h).

To validate the MMCL model, a comparison study of the dynamic contact angle evolutions of
during droplet spreadings with MD simulations is performed. The surface tension between water
and the atmosphere is chosen as γGL = 7.28× 10−2 N m−1. The surface material parameters of
the substrate are γS = 1.0398 N m−1, surface Lame parameters λS = 15.6 N m−1, μS =−8.6 N m−1,
which are obtained from Choi et al. [31]. The only unknown parameter for the interface layer
is γL, which can be obtained based on the target contact angle [11]. In this simulation, three
sets of target contact angle are chosen, to illustrate the capability of the MMCL in modelling
hydrophobic and hydrophilic behaviours in wetting phenomena. The dynamic contact angle is
defined as the average of all tilted angles of the elements on the MCL. The time history of the
dynamic angles obtained by using MMCL on different elastic substrates is displayed in figure 10,
in which the molecular dynamics simulation results are taken from Blake et al. [32]. One can see
that the dynamic contact angle of the MMCL are in general agreement with the result obtained
by molecular dynamics simulations [32]. Meanwhile, the time dependence of the droplet contact
radius r for the three different cases is shown in figure 11. One can see that the data fall into three
different curves, corresponding to the three different contact angles. The curves separate after
t= 15 ps, which indicates that the early-time dynamics are independent of the wettability.
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Figure 9. Time sequence of the droplet spreading on an elastic substrate. The dots (yellow online) at the fringe denote the
current positions of the MCLs. (a) t= 0.010 ns, (b) t= 0.020 ns, (c) t= 0.030 ns, (d) t= 0.040 ns, (e) t= 0.070 ns, (f ) t=
0.100 ns, (g) t= 0.130 ns and (h) t= 0.150 ns. (Online version in colour.)

To test convergence of the method, three different meshes of the droplet model are considered:
mesh 1 (4341 nodes, 4000 elements), mesh 2 (15 657 nodes, 13 892 elements) and mesh 3 (21 253
nodes, 19 300 elements). To reduce the computational cost, the mesh size of the substrate is fixed.
In the convergence study, we set the equilibrium contact angle to be θ = 50◦. Figure 12 shows
the droplet configurations for the three different meshes at time t= 52 ps. It can be seen that the
three configurations are almost the same. To provide a qualitative comparison during the entire
spreading process, the evolution of the droplet contact radius for the droplet with respect to three
different meshes versus time is plotted in figure 13. It can be seen that the three curves are almost
overlapped, showing the convergence of the proposed model to some extent. We would like to
mention that the detection for the locations of the MCLs is very important for the application of
the surface tensions. To limit the length of the paper, the numerical detection algorithm is not
included in this paper.
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Figure 11. Time evolution of the droplet contact radius for the three different contact angles. (Online version in colour.)

Moreover, in this section, a preliminary study of the droplet spreading by using the coarse-
grained Lennard-Jones potential is reported, to demonstrate the capability of the proposed
MMCL theory. Details of the coarse-graining techniques can be found in [14]. In this case, the
coarse-graining parameter is set to be η= 2.215, which indicates that the radius of the droplet
studied here is R= 1000r= 5 µm. The material parameters of the droplet and the substrate are the
same as the previous case, except that the equilibrium contact angle is set to be 0◦. The contact
radius of the droplet as a function of time and the log–log scale of the function are plotted in
figure 14. One can see that at early stage the contact radius approximately grows proportionally
to t1/2, due to the capillary wave generation [33]. The linear fitting of the early stage contact
radius shows the validity of the model to some degree. In the final stage, the contact radius is
believed to be related with time as r∼ t1/10 (not fitted in the figure), resulting from a balance
between the surface tension and the viscous force close to the MCL [34,35]. Figure 15 shows the
final configuration of the droplet. Detailed analysis of the large droplet spreading will be reported
in a separate paper, in order to keep the presentation to an appropriate length.

(c) Capillary motion on a spherical tip
In this example, in an attempt to capture the capillary motion of liquid climbing along solid
surface, a rigid solid sphere is first slowly pushed into an infinite large water film, and then it
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Figure 12. Droplet configurations for the three different meshes at t= 52 ps. (a) mesh 1, (b) mesh 2 and (c) mesh 3. (Online
version in colour.)

is gently pulled back to the original position. In the end, the rigid sphere is held still at that
position. The numerical model is shown in figure 16. The radius of the spherical tip is r= 5 nm.
The thickness of the water film is H= 4.5 nm. Notice that the water film is rested on an infinite
large substrate underneath. A total of 5812 nodes and 2904 elements are used to discretize the
water film. For the computation, no mesh is needed for the spherical tip and the solid substrate,
given the fact that they are both treated as rigid solids, i.e. the elastic deformation is neglected.
For visualization purposes, a mesh for the spherical tip is included in the postprocess.

The interaction between the rigid sphere and the water film and the interplay between the
water film and the infinite substrate are described by using the 12-6 Lennard-Jones potential. The
corresponding surface stress tensors for the interaction of the water film with the rigid sphere and
the infinite plate are given in equations (2.20), (2.21) and (2.18).

The constitutive equation and material properties of the water film are the same as the previous
example. The simulation time step is �t= 1.0× 10−16 s, and the total simulation time steps is
n steps= 1 000 000. From t= 0 to 0.025 ns, the rigid sphere is gradually pushed down at the speed
of �z= 2.0× 10−14 m per time step (figure 17a–c). In time duration of t= 0.025 ns to t= 0.05 s,
the sphere tip is pulled up with the same speed (figure 17d–f ). One can find that during the
push and pull process the water film motion follows the outer front surface of the rigid sphere
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Figure 13. Time evolution of the droplet contact radius for three different meshes. (Online version in colour.)
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Figure 14. Evolution of the contact radius for the large droplet with radius R= 5µm. (a) Contact radius versus the simulation
time (b) log–log plot of the contact radius evolution curve. t0 = 1µs; R0 = 1µm. (Online version in colour.)

tip and the substrate below the water film acts as a glue that fix the vertical displacement of
the water film. After t= 0.05 ns, the sphere is held still at that position until the end of the
simulation (figure 17g–j). It can be observed that even after the sphere tip position is fixed, water
still keeps climbing up along the sphere surface until an equilibrium state is reached, and this is
the capillary motion.
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Figure 15. Final configuration of the large droplet spreading. (Online version in colour.)
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Figure 16. The model for capillary motion on a spherical tip. (Online version in colour.)

5. Conclusion
In this work, we have developed an MMCL theory that couples a molecular adhesive contact
theory with an interface hydrodynamics theory of MCLs, which is an extension of the Gurtin–
Murdoch theory of elastic solid interface membrane to fluid interface membrane, to solve MCL
problems. The MMCL theory has three novel technical features: (i) the MCL is established on an
interface fluid membrane; (ii) an adoption of the Derjaguin approximation to calculate interface
adhesive traction jump; and (iii) the proposal of unilateral adhesive traction approximation in the
iterative solution of interface traction.

The reported validation and simulation results clearly show that the proposed method can
be used to calculate general MCL problems by using continuum finite-element computation
with adequate accuracy and minimum computational resources. So far we have used MMCL
method to compute several scientific and engineering problems [36,37]. The largest computation
is involved with a liquid crystal elastomer droplet with the radius of 5 µm and with 20 µs
spreading time [36]. This computation had been performed on a desktop computer with a series
computation code. This indicates that indeed MMCL method has potential to be applied in
solving macroscale problems of colloidal mechanics and physics.
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Figure 17. Time sequence of the capillarymotion on a spherical tip. (a) t= 0.005 ns, (b) t= 0.015 ns, (c) t= 0.025 ns, (d) t=
0.030 ns, (e) t= 0.040 ns, (f ) t= 0.050 ns, (g) t= 0.055 ns, (h) t= 0.060 ns, (i) t= 0.065 ns and (j): t= 0.100 ns. (Online
version in colour.)
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The most surprising finding of this work is that we have found that the no-slip boundary
condition is not necessarily always causing singularity problem in shear stress distribution at
the MCL front. If we view the fluid membrane model proposed here as a limit of a phase-field
formulation, the no-slip condition may not cause shear stress singularity while simplifying the
calculations. The real problem is that the conventional MCL theory stems from a macroscale
phenomenological mechanics modelling, and it lacks the length scale to differentiate the coupling
and interplay between the macroscale flow and the molecular adhesion in order to provide viable
solution to describe the MCL motion.

On the other hand, the essence of the MMCL theory is to couple the molecular scale adhesive
theory and surface tension formulation with the macroscale hydrodynamics theory to form an
integrated multiscale description that is able to predict MCL evolution.
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