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Abstract
The neuronal L-type voltage-gated  Ca2+ channel  (CaV1.2) interacts with  Ca2+ binding protein 1 (CaBP1), that promotes 
 Ca2+-induced channel activity. The binding of CaBP1 to the IQ-motif in  CaV1.2 (residues 1644–1665) blocks the binding of 
calmodulin and prevents  Ca2+-dependent inactivation of  CaV1.2. This  Ca2+-induced binding of CaBP1 to  CaV1.2 is important 
for modulating neuronal synaptic plasticity, which may serve a role in learning and memory. Here we report NMR assign-
ments of the C-terminal domain of CaBP1 (residues 99–167, called CaBP1C) that contains two  Ca2+ bound at the third and 
fourth EF-hands (EF3 and EF4) and is bound to the  CaV1.2 IQ-motif from  CaV1.2 (BMRB accession no. 51518).
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Biological context

CaV1.2 controls the excitability of the postsynaptic mem-
brane in hippocampal neurons, which is important for 
learning and memory (Hell et al. 1993; Moosmang et al. 
2005; Vogl et al. 2015). The cytosolic C-terminal region of 
 CaV1.2 (residues 1644–1665, called IQ-motif) is important 
for promoting  Ca2+-dependent inactivation (CDI) of  CaV1.2 
(Erickson et al. 2001; Zuhlke et al. 1999).  Ca2+-free CaM 
has been suggested to bind to the IQ-motif to increase the 
channel open probability under basal conditions (Adams 
et al. 2014; Erickson et al. 2001).  CaV1.2 channel open-
ing promotes a rise in intracellular  Ca2+ sensed by CaM 
that causes a  Ca2+-induced conformational change in the 
CaM/CaV1.2 complex leading to CDI (Ben Johny et al. 
2013; Peterson et al. 1999; Zuhlke et al. 1999). CaBP1 
competes with CaM for binding to the IQ-motif (Findeisen 
et al. 2013; Hardie and Lee 2016), which prevents channel 
pre-association of CaM and abolishes CDI (Hardie and Lee 
2016; Oz et al. 2011). Thus, CaBP1 serves as a competitive 
inhibitor of CDI and promotes constitutive channel activa-
tion at high  Ca2+ levels (Hardie and Lee 2016; Oz et al. 
2011), in contrast to CaM that causes  Ca2+-induced channel 

inactivation (Peterson et al. 1999; Zuhlke et al. 1999). In 
essence, CaBP1 and CaM oppositely regulate  CaV1.2 chan-
nel activity by serving as an accelerator and brake, respec-
tively (Ames 2021). We report NMR resonance assignments 
for the C-terminal domain of CaBP1 (CaBP1C) with two 
 Ca2+ bound that is bound to the IQ-motif of  CaV1.2 (called 
CaBP1C-IQ) as a first step toward elucidating the intermo-
lecular contacts between CaBP1 and  CaV1.2.

Methods and experiments

Preparation of CaBP1C bound to the CaV1.2 IQ‑motif

A cDNA of Homo sapiens CaBP1C was subcloned into pET-
11b vector (Novagen) that produced recombinant CaBP1C 
without any extra residues. Recombinant CaBP1C uniformly 
labeled with 13C and 15N was expressed in bacterial cells 
grown on M9 minimal media supplemented with 15N-labeled 
 NH4Cl (1 g per liter of cell culture) and 13C-labeled glu-
cose (3 g per liter). The isotopically labeled CaBP1C was 
purified as described previously (Li et al. 2009). A peptide 
representing the  CaV1.2 IQ-motif (residues 1642–1665) 
was purchased from GenScript, dissolved in DMSO-d6 and 
quantified using UV–Vis absorption. A 2.0-fold excess of IQ 
peptide was added to  Ca2+-bound CaBP1C and the complex 
was concentrated to 500 μM in the presence of 2 mM  CaCl2 
using a 3 K Amicon concentrator.
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Fig. 1  A Two-dimensional 15N-1H HSQC NMR spectrum of 
15N-labeled full-length CaBP1 (blue) and CaBP1C (red) both bound 
to unlabeled  CaV1.2 IQ peptide at pH 7.5 recorded at 600-MHz 1H 
frequency. B Constant-time 13C-1H HSQC spectrum of  13C-labeled 

CaBP1C bound to unlabeled IQ peptide. C Expanded view of the 
spectrally crowded region from panel A. Representative assignments 
are indicated by the labeled peaks; complete assignments are avail-
able as BMRB accession no. 51518
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NMR spectroscopy

Samples of CaBP1C-IQ for NMR were prepared by 
exchanging the complex into a buffer containing 20 mM 
Tris-d11 (pH 7.5) with 2 mM  CaCl2, and 92%  H2O/8% 
 D2O. All NMR experiments were performed at 308 K on 
a Bruker Avance 600 MHz spectrometer equipped with 
a four-channel interface and triple resonance cryogenic 
(TCI) probe. The 15N-1H HSQC spectrum (Fig. 1) con-
tained 256 × 2048 complex points for 15N(F1) and 1H(F2), 
respectively. Backbone resonances were assigned by ana-
lyzing HNCA, HNCACB, CBCA(CO)NH, HNCO (Ikura 
et al. 1990). Side chain resonances were assigned by ana-
lyzing HCCCONH-TOCSY, HCCH-TOCSY as described 
previously (Ikura et al. 1991). The NMR data were pro-
cessed using NMRFx Analyst (Norris et al. 2016) and ana-
lyzed using Sparky NMRFAM (Lee et al. 2015).

Extent of assignments and data deposition

Ideally, we would want to perform NMR structural analysis 
of the full-length CaBP1 bound to the  CaV1.2 IQ. Unfortu-
nately, the full-length CaBP1 forms a dimer and other oli-
gomeric species at the protein concentrations required for 
3D NMR, and the relatively large size of the protein dimer 
reduces the sensitivity of the triple resonance 3D NMR 
experiments. Instead, we chose to perform NMR structural 
analysis of the C-terminal domain of CaBP1 (residues 

99–167, called CaBP1C) that is monomeric in solution 
(Li et al. 2009) and exhibits functional binding to the IQ 
peptide (Fig. 1A). A two-dimensional 15N-1H HSQC NMR 
spectrum of full-length CaBP1 bound to the IQ peptide 
(at 0.05 mM protein concentration where CaBP1-IQ is 
monomeric) demonstrates that the chemical shifts of the 
CaBP1 C-terminal domain are similar to those of CaBP1C 
bound to the IQ (Fig. 1A, C). The chemical shifts of the 
C-terminal domain residues of CaBP1 bound to the IQ 
are quite different from those of CaBP1 in the absence 
of the IQ, demonstrating that the IQ peptide binds to the 
CaBP1 C-terminal domain (Wingard et al. 2005). Also, 
the chemical shifts of the N-terminal domain residues of 
CaBP1 bound to the IQ (Fig. 1A) are the same (within 
experimental error) as those of CaBP1 in the absence of 
the IQ (Wingard et al. 2005). These results demonstrate 
that the IQ peptide binds solely to the C-terminal domain 
of CaBP1 (without contacting the N-terminal domain), 
and IQ binding to CaBP1C is structurally similar to that 
of full-length CaBP1.

The two-dimensional 15N-1H HSQC NMR spectrum of 
15N-labeled CaBP1C bound to unlabeled  CaV1.2 IQ pep-
tide (called CaBP1C-IQ) illustrates representative NMR 
assignments (labeled red peaks in Fig. 1A). NMR assign-
ments were derived from triple resonance NMR experi-
ments performed on 13C/15N-labeled CaBP1C bound to 
unlabeled IQ peptide. The high level of chemical shift 
dispersion indicates that CaBP1C-IQ complex is stably 
folded. The large downfield chemical shifts of the amide 
resonances assigned to G117 and G154 confirm that  Ca2+ 

Fig. 2  Secondary structure 
of CaBP1C bound to  CaV1.2 
IQ. TALOS ANN-secondary 
structure probability plotted as 
a function of residue number. 
Secondary structure elements 
are represented as green cyl-
inders (helix) and blue arrows 
(β-strand)
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is bound to EF3 and EF4 in CaBP1C (Fig. 1A). Other 
noteworthy downfield shifts were assigned to I119, S120 
and V156 that are located in the EF-hand β-strands and are 
predicted to form antiparallel β-sheets with strong back-
bone amide hydrogen bonds. The upfield-shifted chemical 
shifts of methyl resonances assigned to residues I119, I141 
and V162 (Fig. 1B) suggest that these residues may be 
located in the hydrophobic core near aromatic residues. 
More than 87% of the main chain 13C resonances (13Cα, 

13Cβ, and 13CO), 85% of backbone amide resonances 
(1HN, 15N), and 74% of methyl side chain resonances 
were assigned. Side chain aromatic resonances from F108, 
F111, F158, and F161 appear exchange broadened in the 
NMR spectra and could not be assigned. The unassigned 
amide resonances from non-proline residues (110, 122, 
125, 132, 134, 138, 139, 140, 141, 142, 143, 159, 164) 
had weak or missing NMR intensities that prevented their 
assignment. In particular, a stretch of residues between 

Fig. 3  A Amide chemical shift 
perturbation for CaBP1C caused 
by the binding of IQ peptide. 
Chemical shift perturba-
tion (CSP) was calculated as 
CSP = {(HNA–HNB)2 + (15NA–
15NB)2}1/2.  HNA and  HNB are 
HN chemical shift of CaBP1C 
in the presence versus absence 
of IQ peptide, and 15NA and 
15NB are 15N chemical shift of 
CaBP1C in the presence versus 
absence of IQ peptide. Chemi-
cal shifts of CaBP1C (in the 
absence of IQ) were obtained 
from BMRB 15623. B Crystal 
structure of the C-terminal 
domain of CaBP1 (Findeisen 
and Minor 2010). Exposed 
hydrophobic residues with the 
largest chemical shift perturba-
tion are highlighted in red
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EF3 and EF4 (residues 138–143) could not be assigned 
due to weak NMR intensities, perhaps because this 
linker region is conformationally disordered or otherwise 
unstructured. A complete list of the chemical shift assign-
ments (1H, 15N, 13C) of CaBP1C-IQ have been deposited 
in the BioMagResBank under accession number 51518.

The secondary structure of CaBP1C bound to the IQ 
peptide was calculated on the basis of chemical shift index 
(Wishart et al. 1992) and ANN-secondary structure predic-
tion using TALOS (Shen et al. 2009) (Fig. 2). As expected, 
CaBP1C-IQ contains two EF-hands with four α-helices: 
α1 (residues 101–110), α2 (residues 121–132), α3 (resi-
dues 140–148) and α4 (residues 158–165) shown as green 
cylinders in Fig. 2. Conserved β-strands were observed in 
EF3 (residues 118–120, β1) and EF4 (residues 155–157, 
β2) shown as blue arrows in Fig. 2. The overall secondary 
structure of CaBP1C-IQ is similar to that of the crystal 
structure of CaBP1 (Findeisen and Minor 2010). A plot of 
the amide chemical shift perturbation caused by the bind-
ing of the IQ peptide reveals that CaBP1C residues F111, 
E126, V136, R146, V148, E160 and M165 exhibit the 
largest CSP values (Fig. 3A). Hydrophobic residues F111, 
V136, V148 and M165 are located in an exposed cleft in 
the crystal structure that are likely making intermolecular 
hydrophobic contacts with the IQ peptide (Fig. 3B). The 
NMR assignments of CaBP1C bound to the  CaV1.2 IQ-
motif are a first step toward determining the three-dimen-
sional structure of CaBP1 bound to  CaV1.2.
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