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Abstract
Background  Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential 
clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations 
of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations.

Methods  We examined these associations in a large community-dwelling sample of early old age men (N = 969, 
mean age = 67.57 years, range = 61–73 years), who are either cognitively unimpaired (CU) or with mild cognitive 
impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal 
fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter.

Results  After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only 
significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other 
cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it 
was not detected in CU individuals.

Conclusions  These results suggest that in early old age men without dementia, plasma NfL does not appear to be 
sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray 
and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing 
speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better 
inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed 
findings in the literature.
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Background
Neurofilament light chain (NfL) has been researched 
as a non-specific biomarker of neurodegeneration in a 
wide range of neurological and neurodegenerative dis-
eases such as Alzheimer’s disease (AD), frontotemporal 
dementia, and Parkinson disease [1–3]. As an axoskeletal 
protein that maintains myelinated large-caliber axons, 
NfL concentrations elevate in cerebrospinal fluid (CSF) 
and blood (i.e., plasma, serum) following neuroaxonal 
damages or degeneration [3, 4]. For instance, elevated 
CSF and blood-based NfL concentrations have been 
detected in individuals with AD and non-AD neurode-
generative diseases [1–5], as well as those undergoing 
normal aging process [6, 7]. Because blood-based NfL is 
less invasive and more cost-effective compared to neuro-
imaging and CSF measures of neurodegeneration, studies 
have evaluated blood-based NfL as a potential biomarker 
of neurodegeneration for monitoring and predicting neu-
rodegenerative disease progression [1, 2, 8]. Specifically, 
research has examined blood-based NfL’s associations 
with multiple domains of cognition and neuroimaging 
measures of gray and white matter to better understand 
whether or not blood-based NfL shows specificity to 
certain cognitive domains and aspects of neurodegener-
ation. However, findings on the cross-sectional associa-
tions of blood-based NfL concentrations with cognition 
and neuroimaging markers of neurodegeneration have 
been mixed in community-dwelling individuals without a 
clinical diagnosis of dementia.

Several community-based studies in dementia-free 
middle-aged and older adults have shown that plasma or 
serum NfL level is associated with performance on the 
Mini Mental State Exam (MMSE) [6, 9, 10], as well as 
one or more specific cognitive domains including mem-
ory, language, attention, and executive function [10–13]. 
However, other studies in community-dwelling individu-
als found no reliable associations between plasma NfL 
and these cognitive domains [14, 15]. The inconsistencies 
might be attributed to differences in age ranges across 
the study samples (e.g., 30–66 years old vs. 55–90 years 
old) [10, 15], as there is evidence suggesting a stronger 
association between NfL and cognition in those greater 
than 50 years old relative to those who are much younger 
[10]. Moreover, differences in cognitive status among 
community-dwelling individuals may also affect the 
strength of associations, such that some associations 
were only detected in those with MCI but not cognitively 
unimpaired (CU) individuals [9]. Finally, some of the 
prior work only utilized a single task to measure a cogni-
tive domain, which is not as reliable as those that used 

multiple tasks to tap a single domain [16, 17]. Nonethe-
less, there is still a lack of sufficiently large-scale studies 
to fully understand and resolve these inconsistent find-
ings regarding the associations of blood-based NfL with 
multiple cognitive domains that are assessed by more 
than one task.

Similarly, studies on the cross-sectional associations 
between blood-based NfL and neuroimaging measures of 
neurodegeneration have yielded mixed results. For mac-
rostructural measures of gray matter, there is evidence 
indicating that higher plasma NfL level is associated with 
lower cortical thickness and smaller hippocampal vol-
ume in community-based dementia-free individuals [11, 
12, 18]. Conversely, there are studies that either failed 
to detect any association between plasma NfL, cortical 
thickness, and hippocampal volume [13, 19]. Similarly, 
a study that focused on cortical thickness of AD signa-
ture regions (i.e., regions vulnerable to AD pathology and 
neurodegeneration), also did not detect any association 
[13]. White matter hyperintensities (WMH), a marker 
of white matter damage, and diffusion-based metrics of 
white matter integrity (e.g., fractional anisotropy, mean 
diffusivity), have also been examined in relation to blood-
based NfL. While one study found a cross-sectional asso-
ciation between higher plasma NfL level and lower white 
matter integrity in a large community-dwelling sample 
of individuals who are either CU or with MCI [13], two 
other studies in a large community-dwelling cohort 
with both CU individuals and those with MCI did not 
observe any association [11, 19]. Interestingly, another 
study examined these associations separately in CU and 
MCI groups, and found a significant association between 
plasma NfL and white matter integrity only in the MCI 
group [20]. These findings suggest that differences in 
sample composition with respect to cognitive status may 
explain the discrepant cross-sectional results. Finally, 
similar conflicting results have been reported for WMH, 
such that both no and moderate cross-sectional associa-
tions with blood-based NfL were found in community-
dwelling samples without dementia [7, 11–13, 21].

These inconsistent cross-sectional findings of blood-
based NfL’s associations with cognition and brain in 
community-dwelling samples undermines its potential 
clinical utility in the diagnosis or monitoring of neu-
rodegeneration. As such, there is a need for additional 
large-scale community-based investigations before 
blood-based NfL is implemented in clinical settings. In 
the present study, we systematically examined the asso-
ciations of plasma NfL with both cognition and neuroim-
aging measures in 969 early old age community-dwelling 

Keywords  Neurofilament light chain, White matter hyperintensity, Processing speed, Neurodegeneration, Blood-
based biomarkers
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men (mean age = 67.57 years, range = 61–73 years) who 
were either CU or with MCI. Specifically, we investi-
gated the associations of plasma NfL with five cognitive 
domains: executive function, episodic memory, verbal 
fluency, processing speed, and visual-spatial ability. Each 
of these cognitive domains was assessed by at least two 
tasks. Next, we examined plasma NfL’s associations with 
neuroimaging measures of gray and white matter com-
monly included in prior work (e.g., cortical thickness, 
volume), as well as a less examined measure of gray mat-
ter microstructural integrity – cortical mean diffusivity 
(MD) –which has been shown to be a sensitive marker 
of microstructural neurodegeneration that precedes atro-
phy in cortical thickness and volume [22]. Finally, we 
divided the sample into CU and MCI groups to explore 
whether the associations of plasma NfL with cognition 
and neuroimaging measures differ as a function of cog-
nitive status, which may help resolve some of the mixed 
findings in community-dwelling samples and provide 
additional context to precisely characterize the nature of 
these associations.

Methods
Participants
A total of 969 community-dwelling men without demen-
tia (mean age = 67.57 years, SD = 2.52; range = 61–73) 
from wave 3 of the Vietnam Era Twin Study of Aging 
(VETSA) were included in the present study [23]. VETSA 
is a multisite longitudinal study of aging and risk for MCI 
and AD beginning in middle age [23, 24]. All participants 
served in the U.S. military sometime between 1965 and 
1975, with 80% reporting no combat exposure. They are 
similar to American men in their age cohort with respect 
to health, education, and lifestyle characteristics [25]. 
Participants traveled to the University of California, San 
Diego (UCSD) or Boston University (BU) to participate 
in the VETSA. However, MRI scans were only acquired at 
UCSD for wave 3. Informed consent was obtained from 
all participants and institutional review boards at both 
sites approved all protocols. Table 1 is a summary of the 
sample characteristics.

Plasma NfL collection and processing
Plasma specimens were collected under fasting condi-
tions. Fasting began by 9:00 PM the night before test-
ing, and specimens were acquired the following morning 
between 8:00 AM and 8:30 AM. Following the pro-
cedures of our prior work [26], NfL was assayed on a 
single-plex plate using the ultra-sensitive Simoa technol-
ogy platform HD-1 (Simoa NFL Advantage Kit; Quan-
terix Corporation) by the USC Alzheimer’s Therapeutic 
Research Institute Biomarker Core (PI: Dr. Robert Riss-
man) [14]. All assays were performed according to the 
manufacturer’s instructions. The standard exclusion cri-
teria included hemolysis and a coefficient of variation in 
plasma concentrations > 0.20.

Cognitive domains
Factor scores for all five cognitive domains were derived 
from scores of the neuropsychological tasks. All task 
scores were adjusted for practice effects for returning 
participants [27]. Higher scores represent better cogni-
tive performance. Below, we briefly described the tasks 
and conditions included in each cognitive domain.

Executive function
Measures from six well-established neuropsychologi-
cal tasks were used to compute the executive function 
factor score: (1) Stroop [28] – interference condition, 
(2) Delis-Kaplan Executive Function System (D-KEFS) 
Trail Making Test [29] – switching condition, (3) Cat-
egory Switching [29] – fluency switching condition, 
(4) Wechsler Memory Scale (WMS-III) Letter-Num-
ber Sequencing [30] – total number of correct trials, 
(5) Reading Span [31] – total number of correct words 
recalled, (6) Digit Span [30] – forward and backward 
conditions. For executive function, a confirmatory factor 
analysis was performed based on scores from six tasks to 
derive the factor score for each participant as described 
previously [32].

Episodic memory
The following tasks and conditions were used: (1) WMS-
III Logical Memory (LM) subtest [30] with immediate 

Table 1  Characteristics of the study sample
Characteristics Mean (SD) Group Differences

Full Sample
(N = 969)

CU
(N = 815)

MCI
(N = 142)

P values

Age 67.57 (2.52) 67.56 (2.51) 67.76 (2.52) p > 0.05
Male (n) 969 (100%) - - -
Years of Education 13.98 (2.09) 14.09 (2.11) 13.41 (1.92) p < 0.001
Young Adult General Cognitive Ability (z-scores)* 0.31 (0.67) 0.31 (0.66) 0.32 (0.72) p > 0.05
Health Status 1.80 (1.36) 1.80 (1.36) 1.82 (1.38) p > 0.05
Plasma NfL (ng/L) 13.18 (6.88) 13.08 (6.84) 13.89 (7.18) p > 0.05
Note: CU = Cognitively unimpaired; MCI = Mild cognitive impairment; Health status = Charlson Comorbidity Index; Non-residualized scores reported for plasma NfL; 
*The mean score for the full sample is equivalent to an IQ of approximately 105



Page 4 of 11Tang et al. Alzheimer's Research & Therapy           (2024) 16:90 

and delayed recall conditions, (2) WMS-III Visual Repro-
duction (VR) subtest [30] with immediate and delayed 
recall conditions, and (3) the California Verbal Learning 
Test (CVLT-II) [33] with short- and long-delay free recall 
conditions. For the episodic memory factor score, a con-
firmatory factor analysis was performed using measures 
from three tasks to derive a factor for each participant as 
described previously [34].

Verbal fluency
The D-KEFS Verbal Fluency Test was used [29], which 
includes the phonemic fluency subtests (F, A, and S), two 
semantic fluency subtests (Animals and Boys’ Names), 
and a category switching subtest in which participants 
were instructed to alternate between naming fruits and 
items of furniture. For category switching subtest, the 
correct number of words generated aloud during the test 
was used as the score, rather than the correct number of 
switches. For the verbal fluency factor score, a confirma-
tory factor analysis was performed based on measures 
from two tests to derive the score for each participant as 
described previously [35].

Processing speed
For processing speed, there were three different tasks: 
(1) the D-KEFS Trails Making Test [29] with number 
sequencing and letter sequencing conditions, (2) Simple 
Reaction Time [36] with left hand and right hand con-
ditions, (3) Stroop [28] with the word reading condition 
and the color naming condition. For the processing speed 
factor score, measures from three tests were used to 
derive the score for each participant using confirmatory 
factor analyses as described previously [37].

Visual-spatial ability
The following three tasks were used to index visual-spa-
tial ability: (1) Card Rotations [38], (2) Hidden Fig.  [39], 
and (3) Armed Forces Qualification Test (AFQT) [40] 
Box Folding subtest. For the visual-spatial ability factor 
score, measures from three tasks were used to derive a 
factor score for each participant from standardized factor 
scoring coefficients using exploratory factor analyses.

MRI acquisition and processing
All acquisition parameters have been described in detail 
previously [41–43]. Briefly, T1-weighted images (sagit-
tal 3D fast spoiled gradient echo (FSPGR), TE = 3.164 
msec, TR = 8.084 msec), T2-weighted images (coronal 
2D FRFSE-XL, TE = 94 msec, TR = 4600 msec), proton-
density (PD)-weighted images (coronal, TE = min/full, 
TR = 3000 msec), and diffusion-weighted images (51 dif-
fusion directions, b value = 1,000 s/mm2, integrated with 
a pair of b = 0 images with opposite phase encode polar-
ity, TR = 9,700 ms, TE = 80–84 ms) were acquired on two 

General Electric (GE) Discovery MR750 3.0T scanners 
(GE Healthcare, Waukesha, WI, USA) at UCSD with an 
eight-channel phased array head coil.

For measures of cortical thickness and hippocampal 
volume, all MRI images were preprocessed at the UCSD 
Center for Multimodal Imaging Genetics as described 
previously [42, 44]. All raw and processed MRI images 
were visually inspected to exclude data with severe 
scanner artifacts or excessive head motion from subse-
quent analyses. T1-weighted images were processed as 
described previously [41, 42, 44]. Preprocessing steps 
included correction of distortion due to gradient nonlin-
earity, image intensity normalization, and rigid registra-
tion into standard orientation with 1 mm isotropic voxel 
size. Average cortical thickness, regional cortical thick-
ness (for the signature below), and hippocampal volume 
were derived using FreeSurfer 6.0 (surfer.nmr.mgh.har-
vard.edu) software package.

Additionally, we derived an AD thickness/volume sig-
nature based on work by McEvoy and colleagues [45, 
46]. This AD thickness/volume signature is a weighted 
average of cortical thickness in seven cortical regions 
(entorhinal cortex, middle temporal gyrus, bank of supe-
rior temporal sulcus, superior temporal gyrus, isthmus 
cingulate, medial orbitofrontal cortex, lateral orbito-
frontal cortex) plus hippocampal volume. We regressed 
out the effects of age and scanner for each ROI, as well 
as estimated intracranial volume for the hippocam-
pus. Standardized residuals of ROIs were then weighted 
accordingly and summed together to form the thickness/
volume AD signature score.

For global volume of WMH, a multi-channel segmen-
tation approach was used similar to our previous work 
[43]. This approach leverages complementary infor-
mation from three volumes with different contrasts to 
increase measurement sensitivity while reducing the 
impact of MR acquisition noise. The measure used was 
the proportion of total white matter that had WMH, a 
ratio of global WMH to total white matter. Processing 
steps included standard alignment of the T1 (6 degrees-
of-freedom, rigid transformation to an anterior/posterior 
commissure aligned space), registration of T2 and PD to 
T1 using a mutual information method [47] and intensity 
non-uniformity correction using N3 [48]. The tissue seg-
mentation was performed using the statistical classifica-
tion framework of the open source Insight Segmentation 
and Registration Toolkit (ITK) [49] leveraging Scott’s L2E 
method [50] to determine robust means and covariances, 
and in combination with anatomical considerations via 
ITK’s morphological operators [51]. This produced an 
automated segmentation including white matter, gray 
matter, CSF, and WMH. WMH included three categories 
within our T1-T2-PD feature space per Mahalanobis dis-
tance considerations [52], reflecting which primary tissue 
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type was most similar to the abnormalities measured: 
WMH-white (properties more similar to white mat-
ter tissue), WMH-gray (properties more similar to gray 
matter), or WMH-fluid (properties more similar to CSF). 
Due to the dramatic curvature and convolutions of the 
most anterior and posterior aspects of the brain, com-
mon partial voluming of cortical gyri results in numerous 
false positive WMH voxel assignments. Therefore, we 
did not allow automated WMH assignments in the most 
posterior and anterior 20 mm of the brain. Additionally, 
since partial voluming of CSF and white matter along the 
edges of ventricles results in voxels with WMH-like sig-
nal, even in healthy individuals [53], our segmentation 
did not allow any voxels that touched (i.e., shared a com-
mon face, edge, or vertex with) a ventricular fluid voxel 
to be classified as WMH. The automated segmentations 
were visually reviewed and manually edited when neces-
sary to correct misclassifications. To reduce human error, 
edits were restricted to only changing voxels between 
gray and WMH-gray (e.g., if a cortical voxel was misla-
beled as WMH) or between fluid and WMH-fluid (e.g., 
if the central voxels of an WMH cluster were mislabeled 
as CSF). The automatically classified WMH-white voxels 
were never edited.

For regional white matter tract measures of integrity, 
diffusion-weighted images (DWI) were processed as 
described previously [54, 55]. Briefly, DWIs were cor-
rected for eddy current distortion, head motion, B0 dis-
tortions, and gradient nonlinearity distortions. The b = 0 
images were registered to T1 images using mutual infor-
mation and then rigidly resampled into a standard ori-
entation relative to the atlas-registered T1, with 2  mm 
isotropic resolution. Conventional diffusion tensor imag-
ing (DTI) methods were used to model the diffusion ten-
sor as an ellipsoid where eigenvalues λ1, λ2 and λ3 define 
the three primary axes. We computed Fractional anisot-
ropy (FA) and mean diffusivity (MD) for 25 white matter 
fiber tracts using a probabilistic atlas (12 in each hemi-
sphere plus corpus callosum) [56] and created a compos-
ite score based on the union of all fiber tracts.

Additionally, we computed MD for regional cortical 
gray matter (i.e., cortical MD) as described previously 
[55]. Briefly, white and gray matter voxels were labeled 
using the cortical surfaces and subcortical segmenta-
tions generated by FreeSurfer in processed T1-weighted 
image resolution (1  mm isotropic). Diffusion met-
rics were mapped to the cortical surface as previously 
described [55]. To minimize the effects of partial vol-
uming and regional variations in cortical thickness, we 
take a weighted average of multiple samples across the 
cortical ribbon based on the proportion of gray matter 
at each sampling location. Vertex-wise values were then 
averaged within each cortical parcellation. Similarly, 
weighted averages of diffusion metrics within subcortical 

structures were based on voxel-wise proportions of gray 
matter within each subcortical segmentation [57]. Like 
the AD signature, a MD signature based on cortical MD 
(i.e., MD signature) of the same eight ROIs was computed 
as described previously [58].

Young adult general cognitive ability
Participants were on average 20 years of age when they 
completed the Armed Forces Qualification Test (AFQT). 
The AFQT is a standardized, validated 100-item mul-
tiple-choice paper-and-pencil test of general cognitive 
ability [40]. It includes 4 components: vocabulary, arith-
metic, spatial processing, and knowledge and reasoning 
about tools. AFQT percentile scores were probit trans-
formed and z-scored for analysis. This test is highly cor-
related with other tests of general cognitive ability such 
as the Wechsler Adult Intelligence Scale (r = 0.84) [59].

Health status
A modification of the Charlson Comorbidity Index 
was used [60]. One point was assigned for the presence 
of each of 15 different chronic medical conditions as 
described previously [42]. Higher scores indicate poorer 
health.

Statistical analyses
All statistical analyses were performed using R version 
4.1.2. Plasma NfL was adjusted for testing site and sample 
storage time using the umx_residualize() function from 
the umx R package. Residualized scores of plasma NfL 
were then log transformed to improve their distribution 
properties. All neuroimaging measures were adjusted for 
scanner differences. Hippocampal volume was addition-
ally adjusted for intracranial volume (ICV). To examine 
the associations of plasma NfL with cognitive and brain 
measures, linear mixed models were performed using the 
lme4 package with plasma NfL as the independent vari-
able. Age, health status, and young adult general cognitive 
ability (GCA) were included as covariates in all models 
unless otherwise noted. The inclusion of young adult 
GCA aimed to account for the effect of longstanding 
individual differences in cognitive ability on late midlife 
cognition and brain structures. In supplemental analyses, 
years of education was included as a covariate rather than 
young adult GCA to make the analyses more compara-
ble to prior work, since most of the previous studies on 
plasma NfL do not have early adult GCA. Because there 
were twin pairs in our sample, we included twin pair ID 
as a random intercept in linear mixed models to account 
for correlated outcomes. P-values were calculated using 
Satterthwaite degrees of freedom approximation. Mul-
tiple comparison correction was applied using the Li and 
Ji approach for false discovery rate (FDR) control [61], 
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which accounts for the correlated relationships among 
our dependent variables.

Results
Associations of plasma NfL with covariates
Consistent with prior work, higher plasma NfL level 
was significantly correlated with age (r = 0.13, p < 0.0001) 
and poorer health (r = 0.08, p = 0.014). The correlations 
of plasma NfL level with young adult GCA (r = 0.06, 
p = 0.059) and years of education (r = 0.06, p = 0.050) were 
not statistically significant.

Plasma NfL and cognition
Among the five cognitive domains, plasma NfL was 
only associated with processing speed (β=-0.12, 
pFDR−corrected=0.0004), such that higher plasma NfL level 
was associated with slower processing speed (Table  2). 
Associations of plasma NfL with the other four cog-
nitive domains were not significant either before or 
after multiple comparisons correction. In our supple-
mentary analyses that covaried for years of educa-
tion instead of young adult GCA, we also observed the 
same significant association with processing speed (β=-
0.11, pFDR−corrected=0.004), but not with other cognitive 

domains either before or after multiple comparisons cor-
rection (ps > 0.05) (Table S1).

We repeated the aforementioned analyses with only 
cognitively unimpaired (CU) participants, but did not 
find any significant associations with cognitive domains 
after correcting for multiple comparisons (Table  3). 
Higher plasma NfL level was associated with poorer 
executive function, but this association did not sur-
vive correction for multiple comparisons (β=-0.06, 
puncorrected=0.024, pFDR-corrected=0.096). Models covary-
ing for years of education instead of GCA yielded simi-
lar results (Table S2). In the MCI group, plasma NfL 
level was only significantly associated with processing 
speed (β=-0.39, pFDR-corrected=0.0004) like it was in the full 
sample, but not with other cognitive domains (ps > 0.05). 
Covarying for years of education also did not change the 
results (β=-0.36, pFDR-corrected=0.0004) (Table S2).

To determine if the association of plasma NfL with 
processing speed in the full sample was driven by MCI 
status, we tested for an interaction between MCI status 
and plasma NfL. Indeed, we found a significant interac-
tion effect (β = -0.29, p < 0.0001, 95% CI [-0.44, -0.14]), 
indicating that the association was significantly stronger 
in the MCI group compared to the CU group.

Table 2  Plasma NfL’s associations with cognition in the full sample
Model: Cognitive Domain ∼ Age + Health Status + Young Adult GCA + Plasma NfL
Outcomes Beta Estimate 95% CI

[upper, lower]
Uncorrected
P value

FDR-corrected P value

Executive Function -0.05 [-0.11, 0.01] 0.073 0.073
Episodic Memory -0.06 [-0.12, 0.01] 0.094 0.075
Verbal Fluency -0.06 [-0.12, 0.00] 0.066 0.073
Processing Speed -0.12 [-0.18, -0.05] < 0.0001 0.0004
Visual-spatial Ability -0.05 [-0.10, 0.00] 0.051 0.073
Note: N = 956, except visual-spatial ability (N = 955). Plasma NfL’s beta estimates, 95% CI, and p values are shown. Significant associations with cognitive domains are 
shown in bold

Table 3  Plasma NfL’s associations with cognition in CU and MCI groups
Model: Cognitive Domain ∼ Age + Health Status + Young Adult GCA + Plasma NfL
Outcomes Beta Estimate 95% CI

[upper, lower]
Uncorrected
P value

FDR-corrected P value

CU
Executive Function -0.06 [-0.12, -0.01] 0.024 0.096
Episodic Memory -0.03 [-0.09, 0.04] 0.425 0.340
Verbal Fluency -0.05 [-0.12, 0.01] 0.123 0.123
Processing Speed -0.05 [-0.12, 0.01] 0.111 0.123
Visual-spatial Ability -0.05 [-0.10, 0.01] 0.085 0.123
MCI
Executive Function 0.10 [-0.05, 0.24] 0.186 0.248
Episodic Memory -0.15 [-0.31, 0.01] 0.066 0.132
Verbal Fluency -0.01 [-0.16, 0.15] 0.913 0.730
Processing Speed -0.39 [-0.58, -0.19] < 0.0001 0.0004
Visual-spatial Ability -0.01 [-0.14, 0.11] 0.836 0.730
Note: For CU, N = 814, except processing speed N = 813 and visual-spatial ability N = 812. For MCI, N = 142. Plasma NfL’s beta estimates, 95% CI, and p values are shown. 
Significant associations with cognitive domains are shown in bold
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Plasma NfL and neuroimaging measures
Among all the neuroimaging measures, higher plasma 
NfL level was only significantly associated with greater 
WMH in the full sample both before and after FDR cor-
rection (β = 0.005, pFDR−corrected=0.035). As shown in 
Table  4, mean cortical thickness, hippocampal volume, 
cortical MD, FA and MD of white matter tracts, and AD 
and MD signatures were not associated with plasma NfL 
level (ps > 0.05, before and after FDR correction). Simi-
lar results were observed when covarying for years of 
education, such that plasma NfL level was only associ-
ated with the proportion of abnormal white matter vol-
ume both before and after FDR correction (β = 0.006, 
pFDR−corrected=0.015) (Table S3). When we repeated the 
analyses in CU and MCI groups separately, no significant 
associations between plasma NfL level and neuroimaging 
measures were detected (ps > 0.05, before and after FDR 
correction) (Tables S4-S5).

Discussion
Establishing reliable associations of plasma NfL with cog-
nition and neuroimaging measures of neurodegeneration 
in community-based settings is important for under-
standing its utility in predicting risk and monitoring 
progress of neurodegenerative diseases. Existing cross-
sectional associations have been largely inconsistent in 
community-dwelling dementia-free individuals. Lever-
aging a large-scale aging dataset with well-established 
neuropsychological tests encompassing five cognitive 
domains, we found that plasma NfL level was only sig-
nificantly associated with processing speed in early old 
age men with MCI, but not in CU individuals. Similarly, 
there was no cross-sectional association between plasma 
NfL level with any of the neuroimaging measures of neu-
rodegeneration, with the exception of an association with 
white matter pathology in the full sample. Together, our 
results suggest that plasma NfL may not be sensitive to 
cross-sectional differences in cognition or measures of 
gray matter neurodegeneration, but may capture some 
cross-sectional differences in white matter pathology 

among early old age dementia-free men at ages 61–73 
years.

The overall lack of cross-sectional association between 
plasma NfL and various domains of cognition is in sup-
port of prior conflicting findings. The Mayo Clinic Study 
of Aging (MCSA) had a comparable sample size (N = 995) 
and a similar percentage of participants who were CU 
or with MCI as our sample [11]. That study showed sig-
nificant plasma NfL associations with memory, attention, 
and language, which roughly corresponds to episodic 
memory, executive function, and verbal fluency in our 
study. In contrast, we only found a modest association 
with executive function in the CU group before FDR-
correction. The inconsistency may be due to the age dif-
ference between the two samples. The median age of the 
MCSA sample is about 7 years older than VETSA, and 
the maximum age is about 10 years older: MCSA (median 
age [interquartile range, IQR]: 75.6 [67.0, 80.9]); VETSA 
(median age [IQR]: 68.3 [65.5, 69.8]). Because older age 
is consistently associated with higher plasma NfL level 
(i.e., neurodegeneration), it is possible that the amount 
of neurodegeneration in the relatively younger VETSA 
participants is not sufficient to exert any detectable effect 
on cognitive function. Indeed, the median level and IQR 
of plasma NfL in MCSA (median [IQR] 17.0 [11.8, 23.9]) 
is much higher than that of VETSA (median [IQR] 13.2 
[9.0, 15.1]), suggesting a greater degree of neurodegen-
eration. This explanation is further corroborated by 
another study (N > 600) that included non-Hispanic white 
CU participants who are similar to VETSA participants 
in demographics, and found no reliable association with 
tasks of memory or language, but with tasks of executive 
function [14].

It is also worth highlighting that the modest effect sizes 
of these cross-sectional associations between plasma NfL 
and cognition might explain some of the observed incon-
sistencies in previous findings. A large population-based 
study (N ∼ 4500) found that plasma NfL was associated 
with memory, fluency, and executive function [13]. How-
ever, not only was the age range of the study much wider 

Table 4  Plasma NfL’s associations with brain structures in the full sample
Model: Brain Structures ∼ Age + Health Status + Young Adult GCA + Plasma NfL
Outcomes (Sample Size) Beta Estimate 95% CI

[upper, lower]
Uncorrected
P value

FDR-corrected P value

Mean Cortical Thickness (N = 451) -0.001 [-0.01, 0.01] 0.841 0.565
Hippocampal Volume (N = 398) -23.68 [-82.75, 35.38] 0.432 0.406
Cortical MD (N = 330) 0.000 [-0.005, 0.005] 0.904 0.565
FA of White Matter Tracts (N = 330) -0.001 [-0.003, 0.001] 0.387 0.406
MD of White Matter Tracts (N = 330) 0.002 [-0.001, 0.005] 0.206 0.406
WMH (N = 414) 0.005 [0.001, 0.009] 0.007 0.035
AD thickness/volume signature (N = 382) -0.125 [-0.477, 0.227] 0.487 0.406
MD signature (N = 278) 0.258 [-0.267, 0.783] 0.336 0.406
Note: N = Plasma NfL’s beta estimates, 95% CI, and p values are shown. Significant associations with cognitive domains are shown in bold. WMH = White Matter 
Hyperintensity, MD = Mean Diffusivity, FA = Fractional Anisotropy
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and older than our sample (71.9 ± 7.3 vs. 67.6 ± 2.5), but 
also the effect sizes of the observed associations in the 
two studies were small (β< ±0.13) and not significantly 
different from one another (i.e., overlapping confidence 
intervals of beta estimates). Thus, it is important to con-
sider effect sizes rather than significance when evaluat-
ing the robustness of these associations and comparing 
the results across studies. Relatedly, although our CU 
and MCI groups were not significantly different in mean 
plasma NfL levels, we found a significant plasma NfL x 
MCI Status interaction effect for processing speed, such 
that the association was significantly in the MCI group. 
Moreover, the effect size of the MCI group was signifi-
cantly stronger than those of the CU group and the full 
sample (i.e., medium vs. small effect). These findings sug-
gest the need to first identify the cognitive status of each 
individual and then examine each cognitive group sepa-
rately for a more precise characterization of the associa-
tions in community-dwelling populations.

For neuroimaging measures of gray and white mat-
ter, the lack of any associations with plasma NfL except 
WMH volume, was somewhat unexpected, since NfL 
has primarily been used as a biomarker of neurodegen-
eration. Nonetheless, our findings suggest no reliable 
associations between plasma NfL and macro- or micro-
structural measures of neurodegeneration in gray matter 
or in regions vulnerable to AD. These findings are consis-
tent with prior large-scale studies in community-dwell-
ing samples (N > 400) that failed to detect an association 
with hippocampal volume [11, 13], mean cortical thick-
ness [13, 18] or AD signature [13]. We additionally tested 
for an association with cortical MD, an earlier index of 
microstructural neurodegeneration of gray matter that 
precedes macrostructural neurodegeneration in thick-
ness and volume [22]. However, plasma NfL was also 
not associated with this early marker of cortical micro-
structural neurodegeneration or our MD signature that 
focused on AD-vulnerable regions.

Considering the fact that NfL is most abundant in 
myelinated large-caliber axons found in white matter, it 
is possible, though speculative, that plasma NfL is not as 
sensitive to neurodegeneration in gray matter as it is to 
neurodegeneration in white matter. Alternatively, white 
matter degeneration might appear much earlier than gray 
matter atrophy in an early old age population and may 
thus be reflected earlier in plasma NfL levels [13]. A few 
studies have examined the associations between plasma 
NfL and white matter integrity (i.e., FA, MD). Although 
a large community-based study (N > 900, 67.7 ± 6.4 years 
old) found an association with MD but not FA [13], we 
did not detect an association with either measure in our 
relatively younger sample (N ∼ 430, 67.6 ± 2.5 years old). It 
is possible that this conflicting result may be due to age 
differences, as well as sex differences, as the other study 

did show that the associations were somewhat stron-
ger in women than in men. However, additional work is 
needed to examine this possibility. Our only significant 
finding for white matter was the modest association of 
plasma NfL with WMH volume, a macrostructural mea-
sure of white matter damage or pathology. Previous stud-
ies have mostly detected a cross-sectional association 
between WMH volume and plasma NfL in large com-
munity-based samples (N ∼ 335 to 742) [7, 13, 62], with 
two other smaller sample size studies finding no associa-
tion (N ∼ 192 to 341) [11, 12]. Although a direct compari-
son of effect sizes across the studies is impossible due to 
insufficient information, the inconsistent result regarding 
WMH volume is likely due to sample size differences.

Finally, our findings provide unique insights into the 
associations of plasma NfL with cognition and neuro-
imaging measures, in that we controlled for the effect 
of young adult general cognitive ability (GCA) in our 
models. This variable may be considered an index of an 
individual’s cognitive reserve prior to age-related cogni-
tive decline [63]. Prior work from our group has shown 
that young adult GCA or cognitive reserve accounts 
for roughly 10% of variance in each of the five cognitive 
domains in later life, whereas years of education only 
accounts for less than 1% of variance [42]. Therefore, 
by accounting for the effect of young adult GCA we are 
able to more precisely examine associations of NfL with 
later life cognition and neuroimaging measures that are 
independent of longstanding individual differences in 
cognitive ability. In addition, it is possible that significant 
associations in other studies may have been driven largely 
by the older participants. In contrast, our study avoids 
this possibility on account of our narrow age range. Not-
withstanding the strengths of our study, there are three 
limitations. First, because our sample only had male par-
ticipants, we were not able to determine whether there 
are sex differences in the associations of plasma NfL 
with cognition and brain. However, our work provides 
valuable information on the strengths of these associa-
tions in male participants, which paves the way for future 
large-scale work focusing on sex differences. Second, 
most of our participants are largely non-Hispanic white, 
which means our results may not be generalizable to 
other racial/ethnic groups. Third, there may be poten-
tial selection bias in our longitudinal study sample, as 
participants with poor health are likely to drop out over 
the course of the study. However, this limitation is com-
mon to all research studies of aging, including those that 
begin enrolling at older ages (e.g., > 70 years old), which 
are subject to similar selection bias.
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Conclusions
The present study suggests that higher plasma NfL level 
is modestly associated with greater volume of macro-
structural white matter pathology, but does not reliably 
associate with cognition, neuroimaging measures of gray 
matter (thickness, volume, MD), or DTI-based measures 
of white matter integrity in community-dwelling early 
old age men. The differential strength of associations 
between plasma NfL and domains of cognition in those 
with and without MCI, as this study found for processing 
speed, indicates that sample composition with respect 
to cognitive status may explain discrepant findings in 
the literature. Future studies assessing the utility of NfL 
for predicting and monitoring brain or cognitive decline 
will benefit from characterizing how these associations 
evolve with age or disease progression.
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