

DC Research in North America: A Status Report

Chris Marnay & Daniel Gerber

Lawrence Berkeley National Laboratory

NEDO, Kawasaki, Japan 24 May 2019

Outline

- ^{2 slides} changing paradigms (Chris)
- North American demos (Chris)
 - US academic research (Daniel)
- DOE/CEC/other programs (Daniel)
- LBNL-NREL work (Daniel)
- Fort Collins Symposium (Chris)

Heterogeneous PQR

Sendai Microgrid Schematic

Sinclair Hotel, Dallas TX 1

- 16-storys, 165 rooms
- roof-top bar, no PV, 3-p 208V
- o.8 mm² wiring (no conduit) 48 V POE over all building
- AC exceptions: elevators, TVs,...
 - cordless hair dryer, iron, ...
 - workout energy collection
 - 332 kWh, 1 MW battery
 - 25% less lighting install cost
 - energy savings? shedding?

Sinclair Hotel, Dallas TX 2

<u>CISCO</u>

Bosch, Chino CA (Los Angeles) 1

DC Microgrid Design: Largest DC Microgrid in the World

Larger microgrid split equally into 3 independent sub-microgrids

- 380 DC only, warehouse loads
- 21% less energy, lower variability, resiliency

Bosch, Chino CA (Los Angeles) 2

Keating Gym Nanogrid, IIT Chicago 1

- a local network able to island
- 180 kW PV, building peak 90 kW
- sodium-ion batteries
- advanced controls
- hybrid circuits
- energy savings?

Keating Gym Nanogrid, IIT Chicago 2

Silver Cloud, Sonoma Co, California 1

Silver Cloud, Sonoma Co, California 2

Silver Cloud single line diagram

March 15th 2019

Jorge Elizondo Building 1 Building 2 Building 3 (Winery) (Kitchen) (House) 240 V_{AC} > 2 Battery 560 V_{DC} ±380 V_{DC} Charging pad Building 4 (Shop) Solar 1 Pump shed Building 5 Working Area Gasifier

- 1 Solar Edge or Pika or SMA + EPIC
- (2) Siemens SINAMICS
- (3) Nanogrid Box
- (4) eIQ vBoost
- (5) Ideal Power Inverter
- (6) Control Concepts Power Supply
- (7) Alencon SPOT

600 V_{DC}

Solar 4

Solar 2

Solar 3

Electrolyzer

Silver Cloud, Sonoma Co, California 3

US Academic DC Research Centers

National Labs (NREL, LBNL)

Powerhouse, Colorado State U

FREEDM Center, North Carolina State U

CAPS Center, Florida State U

US Department of Energy Clean Energy Research Center (CERC) Program

Description	Network	Average LCC Savings (US\$)
Total First Cost (\$)	AC	252,000
	DC	301,000
Net Annual Electricity	AC	177,000
Consumption (kWh/yr)	DC	101,000
Average LCC Savings (\$)	AC vs. DC	61,000
% Cases with Net Benefit	AC vs. DC	>90%
Average Payback Period (yr)	AC vs. DC	~1

$$Payback = \frac{First Cost_{DC System} - First Cost_{AC System}}{Operating Cost_{AC System} - Operating Cost_{DC System}}$$

$$LCC = First Cost + \sum_{\text{Lifetime}} \frac{Operating Cost(y)}{(1 + Discount Rate)^y}$$

Research Goals

- Compare AC and DC buildings
- Simulations to determine efficiency savings
- Conduct techno-economic analysis
- Experimental validation (next slide)

Efficiency Results

- 12% baseline efficiency savings with DC
- Most savings with large solar and battery
- Dominant AC loss: wall adapters
- Dominant DC loss: grid-tie inverter

Techno-Economic Analysis

- Results determined from market cost data, grid tariffs, and Monte-Carlo analysis
- First cost is higher for DC
- With significant efficiency savings, the payback period is less than a year

California Energy Commission Direct DC Plug Loads for ZNE Buildings

Research Goals

- Modify AC plug loads for direct-DC input
- Demonstrate savings in consumption and cost

Task Lamp 15 V USB-C ~5% W saved

Bath Fan 48 V PoE 8-15% W saved

Refrigerator, 380 V DC, 1% W saved (since original doesn't have PFC)

Zone Light, 380 V DC, 6% W saved

Team

Michael Deru Mechanical engineer with expertise in integration and validation of high efficiency building systems

Richard Brown
Systems engineer with expertise in integration and validation of networked controls and power systems in buildings

Willy Bernal
Electrical engineer with expertise on
benchmarking emerging green
technologies and microgrids
configuration and operation

Bruce Nordman
Architect focused on networked
controls and local power distribution
in buildings

Stephen Frank
Electrical engineer focused on
controls and optimized electricity
distribution systems for buildings

Vagelis Vossos
Physicist focusing on efficiency
versus cost-effectiveness in building
systems and equipment, with several
publications on DC systems.

Omkar Ghatpande
Electrical engineer with expertise in
design and manufacturing of
renewable power distribution
systems

Daniel Gerber
Electrical engineer with expertise
modeling and prototyping efficient
power electronics for DC power

NREL/LBNL DC Design Tool

Research Goals

- Develop an Energy Design and Scoping Tool for DC systems
- Target audience: building planners, designers, and engineers who are considering deployment of DC distribution systems
- Extends DOE's tools: EnergyPlus and the OpenStudio
- Enable user to assess and compare the energy efficiency and life-cycle cost of a design
- Validate the DC Design Tool using collected experimental and field data

NREL/LBL DC Field Testing

Research Goals

- Establish evaluation methods and metrics for DC-systems
- Measure and evaluate the performance of several buildings with new DC distribution installations
- Assess technical barriers inhibiting robust adoption of DC systems
- Identify opportunities to optimize DC-system performance

Xingye Solar Shenzhen

IBEW Building
San Leandro

Marriott Sinclair Fort Worth

IBR Building Shenzhen

Fort Collins 2019 Symposium on Microgrids

• 9-12 August 2019 on Colorado State University campus

by invitation only

• limited to 120-140 experts

Arigatou gozaimasu! ありがとうございます。 Chris Marnay & Daniel Gerber

Microgrid Design of Mendocino & Berkeley Lab chris@mgdom.com -+- ChrisMarnay@LBL.gov Daniel Gerber -+- DGerb@LBL.gov

other Berkeley Lab collaborators: Vagelis Vossos, Wei Feng, Aditya Khandeckar, Rich Brown, & Bruce Nordman