
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Applications on multi-dimensional sphere packings : derivative-free optimization

Permalink
https://escholarship.org/uc/item/1pf0j9qb

Author
Belitz, Paul

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pf0j9qb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Applications on Multi-Dimensional Sphere Packings: Derivative-Free
Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences with Specialization in Computational Science

by

Paul Belitz

Committee in charge:

Professor Thomas R Bewley, Chair
Professor Philip Gill
Professor Alison Marsden
Professor Daniel Tartakovsky
Professor Kraig Winters

2011



Copyright

Paul Belitz, 2011

All rights reserved.



The dissertation of Paul Belitz is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2011

iii



EPIGRAPH

Practice, Practice. All is coming.

—Sri K. Pattabhi Jois

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Epigraph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita and Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 New Horizons in Sphere Packing Theory, Part I. . . . . . . . . . 8
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 An introduction to lattices. . . . . . . . . . . . . . . . . . 9

2.2.1 Finite packings: mystic marbles, stacked spheres. . 14
2.2.2 Infinite packings . . . . . . . . . . . . . . . . . . . 20

2.3 Dense lattice packings forn≤ 24 . . . . . . . . . . . . . . 22
2.3.1 Lattice terminology . . . . . . . . . . . . . . . . . 22
2.3.2 The cubic latticeZn . . . . . . . . . . . . . . . . . 24
2.3.3 The checkerboard latticeDn . . . . . . . . . . . . . 24
2.3.4 The zero-sum latticeAn, its dualA∗

n . . . . . . . . . 26
2.3.5 The Gosset latticeE8

∼= E∗
8, E7, E∗

7, E6, andE∗
6 . . . 29

2.3.6 The laminated latticesΛn andKn lattices . . . . . . 33
2.3.7 Some numerically-generated lattices for thin coverings 37
2.3.8 Discussion. . . . . . . . . . . . . . . . . . . . . . 37

2.4 Rare nonlattice packings and nets forn≤ 8 . . . . . . . . . 58
2.4.1 Net terminology. . . . . . . . . . . . . . . . . . . 59
2.4.2 2D nets. . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.3 A List of Twelve “highly regular” uninodal 3D nets 63
2.4.4 Uninodal extension of several regular 3D nets. . . . 66
2.4.5 Regularity and transitivity ofn-dimensional nets . . 73

2.5 Coding theory . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.1 Exemplary linear binary codes (LBCs). . . . . . . 82
2.5.2 Exemplary linear ternary codes (LTCs). . . . . . . 89
2.5.3 Exemplary linear quaternary codes (LQCs). . . . . 91

v



2.6 Quantization (that is, moving onto a Lattice). . . . . . . . 92
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.8 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . 95

Chapter 3 New Horizons in Sphere-Packing Theory, Part II. . . . . . . . . . 96
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Extending lattice theory for derivative-free optimization . . . 102

3.2.1 Testing for a positive basis. . . . . . . . . . . . . . 104
3.2.2 Selecting a positive basis. . . . . . . . . . . . . . . 105
3.2.3 Implementation of feasible domain boundaries. . . 108
3.2.4 Quantifying the skewness of positive bases. . . . . 110

3.3 A review of the Kriging interpolation strategy. . . . . . . . 111
3.3.1 Interpolation - basic concepts. . . . . . . . . . . . 111
3.3.2 Notation of statistical description. . . . . . . . . . 112
3.3.3 Statistical modeling assumptions of ordinary Kriging 113
3.3.4 Optimization of the coefficients of the model. . . . 114
3.3.5 Predicting function values. . . . . . . . . . . . . . 116

3.4 A review of global optimization strategies. . . . . . . . . . 118
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.5.1 SP applied to convex functions. . . . . . . . . . . . 124
3.5.2 LABDOGS applied to Rosenbrock functions. . . . 128
3.5.3 LABDOGS applied to Branin andT1 . . . . . . . . . 130

3.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.7 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . 133

Chapter 4 Lattice-based Mesh Adaptive Direct Search (Λ-MADS) . . . . . . 134
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2 Background. . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Successive polling (SP). . . . . . . . . . . . . . . . 138
4.2.2 SMF and LABDOGS. . . . . . . . . . . . . . . . . 139
4.2.3 LTMADS & OrthoMADS . . . . . . . . . . . . . . 139
4.2.4 Z-MADS . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.5 Λ-MADS . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Geometrical considerations. . . . . . . . . . . . . . . . . . 146
4.4 Issues affecting theΛ-MADS algorithm . . . . . . . . . . . 150

4.4.1 Quantizing to theΛn lattices . . . . . . . . . . . . . 151
4.4.2 Complete vs Incomplete Polling. . . . . . . . . . . 154
4.4.3 Refining the mesh. . . . . . . . . . . . . . . . . . 154
4.4.4 Generating new poll sets. . . . . . . . . . . . . . . 156
4.4.5 Poll orientation selection criteria. . . . . . . . . . . 160
4.4.6 Coarsening the mesh. . . . . . . . . . . . . . . . . 161

4.5 Numerical testing of components ofΛ-MADS . . . . . . . . 162
4.6 Further numerical testing of the completeΛ-MADS algorithm164

vi



4.7 A Numerical Example: Locating the Deep Hole of a Lattice167
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chapter 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

vii



LIST OF FIGURES

Figure 2.1: The triangular and square lattices, and the honeycomb packing. . . 12
Figure 2.2: Ten marbles placed in a triangle. . . . . . . . . . . . . . . . . . . 15
Figure 2.3: Pyramidal stacks of spheres. . . . . . . . . . . . . . . . . . . . . 16
Figure 2.4: Illustration of the 13 spheres problem. . . . . . . . . . . . . . . . 18
Figure 2.5: A octahedron, tetrakaidecahedron, and dodecahedron . . . . . . . . 21
Figure 2.6: A cloud of points on theA2 lattice . . . . . . . . . . . . . . . . . . 27
Figure 2.7: Construction of three rare packings. . . . . . . . . . . . . . . . . 69
Figure 2.8: Variation of the Voronoï volume of theY90

n & Y
60
n . . . . . . . . . . 70

Figure 2.9: Valid codewords. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 2.10: Valid codewords of the (SED) LTC. . . . . . . . . . . . . . . . . 78
Figure 2.11: The lattice corresponding to a LBC. . . . . . . . . . . . . . . . . 80
Figure 2.12: The family of[2m,k,d] Reed-Muller binary codes form= 0 to 5.. . 88

Figure 3.1: Prototypical nonsmooth optimization problem. . . . . . . . . . . . 100
Figure 3.2: Various minimal positive bases (shown in red) around the origin . . 106
Figure 3.3: Constraint handling:. . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 3.4: The Kriging predictor,̂f (x), and its associated uncertainty. . . . . 117
Figure 3.5: Convergence of a Search minimizingJ(x) = f̂ (x) . . . . . . . . . . 119
Figure 3.6: Convergence of a Search minimizingJ(x) = f̂ (x)−c·s2(x) . . . . 120
Figure 3.7: MLI search with a targetT = 10% . . . . . . . . . . . . . . . . . . 122
Figure 3.8: Typical paths taken by theA2-based SP algorithm. . . . . . . . . . 126
Figure 3.9: A sample SP minimization. . . . . . . . . . . . . . . . . . . . . . 127
Figure 3.10: Convergence of the LABDOGS code. . . . . . . . . . . . . . . . 129
Figure 3.11: The LABDOGS algorithm optimizing Branin. . . . . . . . . . . . 130
Figure 3.12: The LABDOGS algorithm optimizingT1 . . . . . . . . . . . . . . 131

Figure 4.1: Potential poll points onZ2 andΛ2 . . . . . . . . . . . . . . . . . . 140
Figure 4.2: Potential poll points inn = 3 . . . . . . . . . . . . . . . . . . . . . 140
Figure 4.3: Graphical representation of LTMADS. . . . . . . . . . . . . . . . 142
Figure 4.4: Graphical representation of OrthoMADS. . . . . . . . . . . . . . 142
Figure 4.5: Graphical representation ofZ-MADS . . . . . . . . . . . . . . . . 143
Figure 4.6: Graphical representation ofΛ-MADS . . . . . . . . . . . . . . . . 145
Figure 4.7: Λ-MADS and OrthoMADS optimizing the Rosenbrock function. . 166
Figure 4.8: Locating the deep holes of theA2 lattice . . . . . . . . . . . . . . . 168
Figure 4.9: Locating the deep holes utilizing coarsening. . . . . . . . . . . . . 169

viii



LIST OF TABLES

Table 2.1: Characteristics of selected lattices and packings . . . . . . . . . . . 13
Table 2.2: Characteristics of exemplary lattices inn = 1 ton = 8 . . . . . . . . 39
Table 2.3: Characteristics of exemplary lattices inn = 9 ton = 24 . . . . . . . 55

Table 3.1: Characteristics of select distinct lattices. . . . . . . . . . . . . . . . 101
Table 3.2: The densest, most uniform lattices available in several dimensions . 102
Table 3.3: Performance comparison of SP on a lattice vs grid. . . . . . . . . . 125
Table 3.4: E8-based SP compared toZ8-based SP. . . . . . . . . . . . . . . . 125
Table 3.5: An-based LABDOGS versusZn-based LABDOGS. . . . . . . . . . 129

Table 4.1: Characteristics up ton = 8 of Zn as compared toΛn . . . . . . . . . 137
Table 4.2: Radial nonuniformity of the shell. . . . . . . . . . . . . . . . . . . 149
Table 4.3: Convergence comparison of features ofΛ-MADS . . . . . . . . . . 163
Table 4.4: Performance ofΛ-MADS on Rosenbrock. . . . . . . . . . . . . . . 165
Table 4.5: Performance ofΛ-MADS with coarsening. . . . . . . . . . . . . . 166

ix



ACKNOWLEDGEMENTS

My father, Dietrich Belitz, for being the first in encouraging me to think.

My advisor, Prof. Thomas Bewley, for his amazing creativity, enthusiasm and

unwavering support throughout my tenure at UCSD, and enthusiastic support of canine

lab-mates.

Prof. Kristi Morgansen, for giving me that first opportunity. I would never be

writing these words if it were not for her.

David Coleman for his friendship and support, despite my remarkably undigni-

fied entry into our friendship.

Robert Krohn for shared philosophy, interests, and taste, many hours of com-

pany, and that longboard.

Ralf Brunner, for a timely ride to the ER and extensive generosity.

Joe Cessna for setting and keeping the bar high, as well as consistently making

lab meetings thoroughly entertaining.

My colleagues in the FCCR labs: Chris Colburn, David Zhang, Nick Moro-

zovsky, Andrew Cavender, Chris Schmidt-Wetekam, Saam Ostovari.

Jenny Barrett, Atsuro Chiba, Steve Thompson, Michelle Hackett, Marne Greene,

Kati Reszegi, Holly Gastil, Natasha Teran, and Tim Miller.

Monica Brown for more than can be written concisely.

PUBLICATIONS

x



Chapter 2 has been previously submitted for publication as Bewley, Belitz, &Cessna ,
“New Horizons in Sphere Packing Theory, Part I: FundamentalConcepts & Construc-
tions, From Dense to Rare”,SIAM Review, 2011, submitted.

Chapter 3 has been previously submitted for publication as Belitz & Bewley, “LAB-
DOGS: LAttice-Based Derivative-Free Optimization via Global Surrogates”,Journal of
Global Optimization,2011, submitted

Chapter 4 is currently under preparation for submission forpublication as Belitz & Be-
wley, “Λ-MADS: Mesh Adaptive Direct Search via Efficient Lattices”,SIAM Optimiza-
tion, 2011, submitted

xi



VITA

2011 Ph. D. in Engineering Sciences with Specialization in Computa-
tional Science, University of California, San Diego

2008 M.S. in Mechanical and Aeronautical Engineering, University of
California, San Diego

2006 B. S. in Aeronautics and Astronautics , University of Washington

PUBLICATIONS

Bewley, Belitz, &Cessna , “New Horizons in Sphere Packing Theory, Part I: Fundamen-
tal Concepts & Constructions, From Dense to Rare”,SIAM Review, 2011, submitted.

Belitz & Bewley, “LABDOGS: LAttice-Based Derivative-FreeOptimization via Global
Surrogates”,Journal of Global Optimization,2011, submitted

Belitz & Bewley, “Λ-MADS: Mesh Adaptive Direct Search via Efficient Lattices”,
SIAM Optimization, 2011, submitted

SELECT PROCEEDINGS

Belitz & Bewley, “’Checkers’ - Highly Efficient Derivative-Free Optimization.”,Pro-
ceedings of the 38th AIAA Fluid Dynamics Conference and Exhibit, AIAA-2008-4313,
2008.

Belitz & Bewley, “Efficient Derivative-Free Optimization.”, Proceedings of the 46th
IEEE Conference on Decision and Control, 5358-5363, 2007.

SELECT PRESENTATIONS

Invited Speaker and CoInstructor, Montestigliano Workshop 2011: Advanced Optimiza-
tion Techniques in Fluid Mechanics, April 2011, Montestigliano, Italy

Paul Belitz, “Incorporating Regular Lattices in Derivative-Free Optimization”,General
Electric, Albany NY, 2010.

Paul Belitz, “Incorporating Regular Lattices and Accounting for Approximate Function
Evaluations in Derivative-Free Optimization”,OPTIMA, University of Illinois, Urbana-
Champaign, 2009.

xii



ABSTRACT OF THE DISSERTATION

Applications on Multi-Dimensional Sphere Packings: Derivative-Free
Optimization

by

Paul Belitz

Doctor of Philosophy in Engineering Sciences with Specialization in Computational
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University of California, San Diego, 2011

Professor Thomas R Bewley, Chair

The field of n-dimensional sphere packings is elegant and mature in its mathe-

matic development and characterization. However, practical application of this powerful

body of work is lacking. The line of research presented in this work explores the applica-

tion of sphere packings to the field of derivative-free optimization. Chapter 2 reviews the

essential results available in this field, then extends these results by: (a) assembling a cat-

alog of key properties of the principle dense and rare spherepackings and nets available,

including hundreds of values not previously known; (b) introducing and characterizing

several new families of regular rare sphere packings and nets; and (c) developing a new

algorithm for efficient solution of discrete Thompson problems, restricted to nearest-
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neighbor points. These results are leveraged heavily in theapplications addressed in

Chapters 3 and 4. In particular, Chapter 3 builds from this presentation to develop a new

algorithm for Lattice-Based Derivative-free Optimization via Global Surrogates (LAB-

DOGS), leveraging dense sphere packings as an alternative to Cartesian grids to coor-

dinate derivative-free searches. The LABDOGS algorithm provides a highly efficient,

globally convergent optimization algorithm that requiresnothing more than a definition

of a feasible domain and a cost function handle. The LABDOGS algorithm demon-

strates superior performance and convergence rates to its Cartesian-based competitors.

Chapter 4 builds from the material of Chapter 2 and 3 to develop a highly efficient lo-

cally convergent derivative-free optimization algorithmcalledΛ-MADS, which builds

from and improves upon the Mesh Adaptive Direct Search (MADS) class of optimiza-

tion algorithms. TheΛ-MADS algorithm offers an alternative to the Successive Polling

substep of LABDOGS, providing a locally convergent patternsearch algorithm that, un-

like SP, offers good convergence behavior when challengingconstraints on the feasible

region are encountered.Λ-MADS inherits all the convergence characteristics of the best

available MADS algorithms, while significantly improving convergence rates.
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Chapter 1

Preface

The field of numerical optimization is utilized in a variety of applications in

modern society. From mathematical and scientific research,to structural analysis and

financial modeling, many fields have benefited from the widespread application of op-

timization theory. Generally speaking, numerical optimization is the process of locat-

ing the optimum of a cost function, which can be defined in virtually unlimited ways.

Most often, the cost function is generated via experiment, simulation, model, or similar

analysis. Some prototypical examples include the engineering of aircraft aerodynam-

ics, designing automobile components, determining flight schedules, research of heart

surgery simulation, jet engine development, gas laser tuning, and maximizing compiler

performance. The impact of numerical optimization on modern technology, science, and

engineering has been significant. In today’s age of computing, the numerical tools for

effective optimization have already had significant impact, and as computing resources

continue to increase in power and further decrease in cost, the application of numerical

optimization will have an increasing impact in a number of fields. It is a safe assumption

that traditionally human-based decision making processeswill further be phased out in

favor of the computational power of modern computers.

Numerical optimization is naturally divided into two distinct classes of algo-

rithms: those that utilize derivatives of the cost functionto determine an appropriate

direction of exploration, and derivative-free methods, which require nothing other than

evaluations of the cost function at various points in parameter space.

Derivative-based optimization methods have a long history. The first calculus-

1



2

based analysis of function optima were performed by Pierre de Fermat and Joseph Luis

Lagrange; iterative methods to numerically approach such optima were introduced by

Issac Newton and Carl Friedrich Gauss. These methods are still the basis for many

commonly used modern algorithms: Euler’s method, appropriately formulated, gives

the steepest descent method, often the first numerical algorithm presented in the field of

optimization. Natural augmentations of Steepest Descent lead to the widespread bench-

mark Conjugate Gradient method, in which the negative gradient is augmented with

previous derivative information to produce a more effective descent direction compared

to Steepest Descent. Similarly, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

is a modern adaptation of Newton’s method, utilizing an approximated Hessian captur-

ing the behavior of the cost function’s higher derivatives to determine an effective step

toward the function optimum at every step. The BFGS method isgenerally considered

the most sophisticated algorithm for modern convex optimization algorithms, however,

Conjugate Gradient methods and similar are often chosen forease of implementation.

Further work has generated modern derivative-based algorithm toolboxes, which include

linear programming, quadratic programming, and nonlinearprogramming, all of which

have found widespread use in industry and academia.

Methods not requiring the use of a function’s derivatives have, perhaps surpris-

ingly, a much shorter history. Not practically useful untilthe first computing devices

were invented, modern derivative-free optimization algorithms were (arguably) born

when George Danzig developed the Simplex algorithm in 1947,a method which gener-

ates a set of points in parameter space (a ‘simplex’), surrounding the current best point,

upon which the cost function is evaluated. The best point evaluated is located and a new

simplex generated, allowing the algorithm to ‘march’ toward a local optimum. Similar

derivative-free methods were soon developed, including those belonging to the Pattern

Search class of algorithms of Hooke and Jeeves, identified in1961. Like the original

Simplex method, Pattern Search methods sample the cost function on a specific pattern

of points surrounding the current best point, allowing the algorithm to converge to a

local optimum of an appropriately behaved cost function. The geometric restrictions on

patterns allowing algorithm convergence were identified byYu (1979), who proved that

on an appropriately smooth convex cost function, the use of apositive basis as the un-
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derlying pattern is necessary to allow convergence. Further analysis has been performed

by Torczon, Lagarias, Dolan, and others.

Outside the realm of the well-studied Pattern Search algorithms, less rigorous

analysis, inspired by specific research challenges, resulted in several popular optimiza-

tion schemes, including the classes of Genetic Algorithms and Simulated Annealing al-

gorithms. The former was inspired by biology and is commonlyused in computational

biology, the latter inspired by metallurgy, and commonly utilized in modern engineering

applications. Unlike traditional pattern search methods,both attempt to solve noncon-

vex problems via stochastic exploration steps. Due to the inherent difficulty of such

problems, few other effective algorithms have been established, making SA and Genetic

algorithms quite popular in certain fields.

Generally speaking, when applicable, derivative-based methods offer superior

performance to the sometimes unsophisticated derivative-free methods. By locating

an effective descent direction, modern derivative-based methods allow convergence to

optima of extremely high-dimensional cost functions whilenot incurring a prohibitive

computational expense. An excellent example is the application of Conjugate Gradient

optimizations to optimal control problems, where the derivative-based algorithm allows

optimization over a parameter space with a dimension greater than one million. By

comparison, deriative-free methods, no matter how efficient or sophisticated, are more

heavily penalized by the curse of dimensionality; that is, as the dimension of the cost

function becomes greater, the difficulty of the optimization problem becomes great very

quickly, relegating this class of methods to more moderate dimensions. Despite this

intrinsic limitation, there are many cost functions of great importance which cannot be

solved via derivative-based methods. These include, for example, any cost function that

is defined by physical experiment, where it is impossible to calculate the derivative of the

cost function. Many computational cost functions are similar plagued, by cost function

noise, numerical intractability, or similar. Thus, the development of effective derivative-

free optimization algorithms is of great importance to manyfields of significance.

Compared to the sophisticated and highly effective derivative-based methods

of optimization in widespread use today, the development ofderivative-free optimiza-

tion has generally been lacking. However, with increasing computing power comes a
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greater number of optimization problems, many of which are ill-suited to derivative-

based methods, making the study and implementation of derivative-free optimization

methods paramount.

With this motivation as background, we delve into the theoryof modern derivative-

free optimization. Broadly speaking, the field can be divided into two subfields: global

optimization, where the cost function is nonconvex and manylocal minima exists, and

local optimization, where only a single optimum exists. Pedagogical analysis often em-

phasises the latter; however, in many problems relevant to society at large, cost functions

tend to be nonconvex, constrained, nonsmooth, and otherwise challenging. When con-

strained appropriately, many nonconvex problems can be broken down into a series of

convex local minima, therefore, both subfields must be considered.

Many global, or at least nonlocal, optimization algorithmshave been proposed

and implemented, with varying degrees of success. Perhaps the best known is Simulated

Annealing, a process in which a stochastic search is allowedto converge according to an

‘annealing schedule’ varying the locality of the search, from coarse to fine. Motivated

by the metallurgical process of annealing, Simulated Annealing is a commonly used

nonlocal algorithm. Despite its popularity, SA algorithmstend to be only nonlocally,

rather than globally, convergent, and the class of algorithms is generally inefficient with

respect to function evaluations. That is, to reach a given level of convergence requires

significantly more function evaluations than competing algorithms. This limits the util-

ity of SA algorithms to the optimization of comparatively inexpensive cost functions or

cost functions ill suited to other algorithms (e.g. discrete optimization).

Another well-known nonlocal class of algorithms is known asGenetic Algo-

rithms, where each point in parameter space is named an ‘individual’, ‘member’, or

‘genome’. Via a process of heuristics, the ‘fittest’ of the individuals are allowed to

‘breed’. Via the introduction of a stochastic ‘mutation’, anumber of ‘offspring’ points

are generated, upon which the cost function is evaluated. Then the fittest individuals are

again selected and allowed to breed. This process generatesa sort of stochastic search.

Unfortunately, Genetic Algorithms have virtually no theoretical underpinnings, conver-

gence criteria are unknown, and their performance is generally very poorly understood.

Somewhat humorously, many have struggled to provide a theoretical explanation of why
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genetic algorithms perform as well as they do.

With these limitations in mind, Generalized Pattern Search(GPS) methods have

been generally accepted as the most rigorous global and local derivative-free optimiza-

tion methods yet devised. All GPS methods discretize the parameter space via a mesh

or a grid, upon which all function evaluations are made. The optimization starts with a

comparatively coarse mesh; as convergence is neared, the mesh is refined. This has the

effect of keeping function evaluations far apart before convergence is attained, avoid-

ing extensive exploration of a fruitless region. For nonlocal optimization problems, the

Surrogate Management Framework (SMF) family of algorithmsis an obvious choice.

By melding a pattern search step offering efficient local optimization with a globally

convergent Search step, SMF algorithms offer good local convergenceandgood global

convergence, rather than sacrificing one for the other as SA and Genetic algorithms

do. Both the pattern search step and the Search step of an SMF algorithm can be any

of a great number of choices. However, all subalgorithms of SMF lie on a grid - and

heretofore the only mesh choice examined has been the simpleCartesian grid.

In the examining of the efficiency of grid-based derivative free optimization al-

gorithms, the authors have turned their attention to the underlying grid, in addition to the

subalgorithms that SMF is built off of. Cartesian grids are only one, highly inefficient,

grids, or lattices, that discretize parameter space. The mathematically mature, deep,

and subtle field ofn-dimensional sphere packings offers a wide range of very efficient

lattices that compete directly with Cartesian grids.

Despite being elegant, mature, and extremely useful, engineering and science

applications of this mathematical field have been limited. As such, a careful review of

lattice theory, with emphasis on the tools necessary to apply this powerful body of lit-

erature to modern science and engineering challenges as well as a thorough review of

previous engineering applications, particularly coding theory, can be found in Chapter

2. Included in Chapter 2 are a large number of previously unknown uniformity metrics

calculated by the authors, as well as several new packings designed specifically for en-

gineering applications. Many pertinent algorithms are clearly and succinctly presented

to facilitate future application of this body of literature.

With the theoretical foundation of sphere packings presented in Chapter 2, Chap-
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ter 3 delves into a lattice-based, globally convergent optimization algorithm named

LABDOGS. Building the algorithm around a Successive Polling (SP) pattern search

based on any of a large number of highly efficient lattices introduced in Chapter 2, the

SP algorithm is introduced and thoroughly tested, demonstrating a significant increase

in convergence rates compared to the analogous algorithm implemented on the Carte-

sian grid. With the SP Poll step defined and tested, Chapter 3 then introduces the sub-

ject of Kriging interplating functions, exploring globally convergent Search algorithms

based on the Kriging structure, ending up with the most modern and efficient solution of

maximizing the likelyhood of improvement (MLI). Combiningthe lattice-based SP Poll

with the MLI Search step, the most efficient SMF-like algorithm to date, LABDOGS,

is fully defined. Testing on a variety of cost functions verifies LABDOGS’ superior

convergence rates to Cartesian grid-based alternatives.

The LABDOGS algorithm works very well for global optimization problems,

and allows for linear constraints on the cost function. The weakness of LABDOGS, as

well as any other SP-based algorithm, is that the Poll step algorithm fails to converge

under particular conditions. In particular, when hard constraints are encountered, the

SP algorithm generally fails to locate a feasible descent direction and fails to converge.

In LABDOGS, this does not prevent the overall algorithm convergence; however, it is

desirable to implement a superior Poll step selected from the Mesh Adaptive Direct

Search (MADS) class of algorithms.

MADS algorithms are a sophisticated subclass of pattern searches that allow for

the polling directions to become dense as the optimization progresses. By not reorient-

ing the poll step when a successful poll has been realized, a good MADS algorithm will

perform analogously to a line search when challenging cost function behaviors are en-

countered. The best algorithm of the MADS subclass is known as OrthoMADS. Defined

on a Cartesian grid, OrthoMADS demonstrates some shortcomings in convergence rates,

if not in convergence behaviors. In Chapter 3 OrthoMADS is discussed and analyzed.

By utilizing the n-dimensional lattices from Chapter 1 in a MADS framework, the Λ-

MADS algorithm is defined and each component of the algorithmis thoroughly tested.

Λ-MADS maintains all the desirable convergence characteristics of OrthoMADS, but

offers improved convergence rates; inn = 8 approximately half as many function eval-
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uations are required to converge compared to OrthoMADS. This improvement in con-

vergence is the result of the low quantization error of the lattice, the greater radius uni-

formity of the poll set, the minimal rather than maximal positive basis, and several other

distinguishing changes from OrthoMADS. The testing presented in Chapter 3 clearly

establishesΛ-MADS as the most efficient MADS algorithm yet devised.

The material covered in Chapter 1 is leveraged heavily throughout Chapters 2

and 3, to great effect, firmly establishing the benefits of utilizing efficient lattices to

discretize parameter space. Combined with the results in Bewley & Cessna (2011), this

sequence of work demonstrates the potential impact that widespread application ofn-

dimensional sphere packings may have in modern science and engineering applications.



Chapter 2

New Horizons in Sphere Packing

Theory, Part I: Fundamental Concepts

and Constructions, from Dense to Rare

2.1 Introduction

The field ofn-dimensional sphere packings is elegant and mature in its mathe-

matical development and characterization. However, it is still relatively limited in its

practical applications, especially forn > 3. The present line of research intends to open

up two broad new areas for profitable application of this powerful body of mathemati-

cal literature in science and engineering. Towards this end, the present work (Chapter

2) reviews the essential results available in this field (reconciling the theoretical liter-

ature for dense and rare sphere packings, which today are largely disjoint), catalogs

the key properties of the principle dense and rare sphere packings and corresponding

nets available (including hundreds of values not previously known), and extends the

study of regular rare sphere packings and nets ton > 3 dimensions (an area which up

to now has been largely unexplored). These results are leveraged heavily in the practi-

cal applications addressed in Chapers 3 and 4. In particular, Chapter 3 builds from this

presentation to develop a new algorithm for Lattice-Based Derivative-free Optimization

via Global Surrogates (LABDOGS), leveraging dense sphere packings as an alternative

8
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to Cartesian grids to coordinate derivative-free searches; Chapter 3 also develops and

uses a new algorithm for efficient solution of discrete Thompson problems restricted to

nearest-neighbor points of a lattice. Chapter 4 builds off the material in Chapters 2 and

3 to develop a new, highly efficient Mesh Adaptive Direct Search (MADS) optimization

algorithm namedΛ-MADS. The introduction of lattices allowsΛ-MADS to converge

more than twice as efficiently as the current best MADS algorithm. The present se-

quence of research projects establishes that significant performance improvements may

be realized by leveragingn-dimensional sphere packings appropriately in such practical

applications.

2.2 An introduction to lattices

An n-dimensional infinitesphere packingis an array of nodal points inRn ob-

tained via the packing of identicaln-dimensional spheres. Bypacking, we mean an equi-

librium configuration of spheres, each with at least 2 nearest neighbors, against which a

repellant force is applied. Many packings investigated in the literature arestablepack-

ings, meaning that there is a restoring force associated with any small movement of any

node of the packing; this requires each sphere in the (n-dimensional) packing to have at

leastn+1 neighbors. However, unstable packings with lower nearest-neighbor counts

are also of interest. Note also that, by replacing each sphere in ann-dimensional packing

with a nodal point (representing, e.g., a computer), and connecting those nodal points

which are nearest neighbors, anet(a.k.a.interconnector contact graph) is formed1.

An n-dimensional reallattice (a.k.a.lattice packing) is a sphere packing which

is shift invariant (that is, which looks identical upon shifting any nodal point to the

origin); this shift invariance generally makes lattice packings simpler to describe and

enumerate than their nonlattice alternatives. Note that there are many regular2 sphere

packings which arenot shift invariant [the nonlattice packings corresponding tothe

honeycomb net in 2D and the diamond and quartz nets in 3D are some well-known

examples]. We will focus our attention in this work on those packings and nets which

1As introduced in the second-to-last paragraph of §2.3.3, it is natural with certain sphere packings (for
example,D∗

n, Ar
n, and the packings associated with theT90

n andT60
n nets) to define nets which arenot

contact graphs of the corresponding sphere packings by connecting non-nearest-neighbor points.
2The regularity of a nonlattice packing is quantified precisely in §2.4.1.
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are at leastuninodal(that is, which look identical upon shifting any nodal pointto the

origin and rotating and reflecting appropriately). Fordensesphere packings, from a

practical perspective, lattice packings are essentially3 as good a choice as their more

cumbersome nonlattice alternatives forn≤ 24 in terms of the four metrics defined below

(that is, for maximizing packing density and kissing numberand minimizing covering

thickness and quantization error). However, the bestrare sphere packings (with small

kissing number) are all nonlattice packings.

As illustrated in Figure2.1 and Table2.1, we may introduce the subject ofn-

dimensional sphere packings by focusing our attention firston then = 2 case: specifi-

cally, on thetriangular4 lattice (A2), thesquarelattice (Z2), and thehoneycombnonlat-

tice packing (A+
2 ). The characteristics of such sphere packings may be quantified by the

following measures:

• The packing radiusof a packing,ρ , is the maximal radius of the spheres in a set of

identical nonoverlapping spheres centered at each nodal point.

• The packing densityof a packing,∆, is the fraction of the volume of the domain

included within a set of identical non-overlapping spheresof radiusρ centered at each

nodal point on the packing. Packings that maximize this metric are referred to asclose-

packed.

• Thecovering radiusof a packing,R, is the maximum distance between any point in

the domain and its nearest nodal point on the packing. Thedeep holesof a packing are

those points which are at a distanceR from all of their nearest neighbors. Typical vectors

from a nodal point to the nearest deep holes in a lattice packing are often denoted[1],

[2], etc.

• Thecovering thicknessof a packing,Θ, is the number of spheres of radiusRcentered at

each nodal point containing an arbitrary point in the domain, averaged over the domain.

• The Voronoï cellof a nodal point in a packing,Ω(Pi), consists of all points in the

3For n = 10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denotedP10c, P11a, P13a, B∗
18,

B∗
20, A ∗

22) that are 8.3%, 9.6%, 9.6%, 4.0%, 5.2%, and 15.2% denser thenthe corresponding best known
lattice packings (Conway & Sloane 1999, p. xix); to put this into perspective, the density ofΛ22 is over
106 timesthe density ofZ22 .

4Note that many in this field refer to theA2 lattice as “hexagonal”. We prefer the unambiguous name
“triangular” to avoid confusion with the honeycomb nonlattice packing (see Figure2.1).
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domain that are at least as close to the nodal pointPi as they are to any other nodal point

Pj .

• Themean squared quantization error per dimensionof a lattice or uninodal nonlattice

packing,G, is the average mean square distance of any point in the domain to its nearest

nodal point, normalized byn times the appropriate power of the volume,V, of the

Voronoï cell. Shifting the origin to be at the centroid of a Voronoï cellΩ(Pi), it is given

by

G =
S

nV
n+2

n

where S=
∫

Ω(Pi)
|x|2dx, V

∫

Ω(Pi)
dx. (2.1)

• The kissing numberof a lattice or uninodal nonlattice packing,τ, is the number of

nearest neighbors to any given nodal point in the packing. Inother words, it is the

number of spheres of radiusρ centered at the nodal points of the packing that touch, or

“kiss”, the sphere of radiusρ centered at the origin.

• Thecoordination numberof a net (derived from a sphere packing, as discussed previ-

ously) is the first number of the net’scoordination sequence, thek’th element of which

is given bytdk− tdk−1, wheretdk, which quantifies the net’slocal topological density,

is the total number of nodes reached viak hops or less from the origin in the net5.

Certain applications, such as that explored in Chapter 3 of this work (Belitz

& Bewley 2011), require dense lattices. There are two key drawbacks with cubic ap-

proaches for such applications. First, thediscretization of space is significantly less

uniformwhen using the cubic grid as opposed to the available alternatives, as measured

by the packing density∆, the covering thicknessΘ, and the mean-squared quantization

error per dimension,G (see Table2.1). Second, theconfiguration of nearest-neighbor

gridpoints is significantly more limitedwhen using the cubic grid, as measured by the

kissing numberτ, which is an indicator of the degree of flexibility availablewhen select-

ing from nearest-neighbor points. As seen by comparing then = 2, n = 8, andn = 24

5In most cases, the natural net to form from a sphere packing isthe contact graph; in such cases, the
kissing number,τ, and the coordination number are equal. As mentioned previously, it is natural with
certain sphere packings to define nets which arenot contact graphs by connecting non-nearest-neighbor
points; in such cases, the kissing number (a property of the sphere packing) and the coordination number
(as defined here, a property of a corresponding net) are, in general,notequal. We find this clear semantical
distinction to be useful to prevent confusion between thesetwo distinct concepts; note that some authors
(e.g., Conway & Sloane 1999) do not make this distinction.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: The triangular lattice (a,b), the square lattice (c,d), and the honeycomb

nonlattice packing (e,f). Indicated in the left three subfigures is thepackingwith spheres

of radiusρ , the correspondingnetor contact graph(solid lines), a typicalVoronoï cell

(dashed line), and thekissing number(that is, the spheres that contact a given sphere).

Indicated in the right three subfigures is thecoveringwith spheres of radiusR. Looking

at their respective packing densities∆ in Table2.1, as compared with the square lattice,

the triangular lattice is said to bedense, and the honeycomb nonlattice packing is said

to berare.

cases in Table2.1, these drawbacks become increasingly substantial as the dimensionn

is increased; by the dimensionn = 24, the cubic grid has

• a factor of 0.001930/1.1501e−10≈ 17,000,000 worse (lower) packing density,
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Table 2.1: Characteristics of selected lattice and uninodal nonlattice packings and nets.

n packing name ∆ Θ G τ

A2 triangular 0.9069 1.2092 0.08019 6

2 Z2 square 0.7854 1.5708 0.08333 4

A+
2 honeycomb 0.6046 2.4184 0.09623 3

E8 Gosset 0.2537 4.059 0.07168 240

8
Z8 cubic 0.01585 64.94 0.08333 16

V90
8 5.590e-4 49.89 0.09206 4

(unstable)
Y90

8 2.327e-4 87.31 0.09266 3

Λ24 Leech 0.001930 7.904 0.06577 196560
24

Z24 cubic 1.150e-10 4,200,263 0.08333 48

• a factor of 4,200,263/7.9035≈ 530,000 worse (higher) covering thickness,

• a factor of 0.08333/0.0658≈ 1.27 worse (higher) mean-squared quantization error,

and

• a factor of 196560/48≈ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus, the selection of the cubic grid, by

default, for applications requiring dense (that is, uniform) lattices withn > 3 is simply

untenable.

Other applications, such as that explored in Cessna & Bewley(2011), require

regular nets which, with low coordination number, connect to a large number of nodes

with each successive hop from the origin, as quantified by thenet’s coordination se-

quence. As mentioned previously, a useful measure of a net’stopological density is

given, e.g., bytd10, which is the number of distinct nodes within 10 hops of the origin.

Note that the coordination number of then-dimensional cubic grid is 2n; the coordi-

nation number of the alternativen-dimensional constructions introduced in §2.4 are as

small as 3 or 4, while the topological density increases rapidly asn is increased (com-

pare, e.g., the values oftd10 for A+
2 andZ2, with τ = 3 andτ = 4 respectively, to those

for Y
90
8 andV

90
8 in Table2.1); it is thus seen that, for applications requiring graphs with
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low coordination number and high topological density, the selection of the cubic grid,

by default, is also untenable.

We are thus motivated to make the fundamental results of bothdense and rare

n-dimensional sphere packing theory more broadly accessible to the science and engi-

neering community, and to illustrate how this powerful bodyof theory may be put to

use in two important new applications of practical relevance. Towards this end, the re-

mainder of Chapter 2 succinctly reviews and extends severalsignificant results in this

mature and sophisticated field, inter-relating the literature on dense and rare packings,

which is today largely disjoint. These results are leveraged heavily in the applications

described in Chapter 3 and 4. We note that, beyond providing an up-to-date and syn-

thetic review of this otherwise difficult subject in a (hopefully) accessible language, a

significant number of new computations, constructions, algorithms, and metrics are also

reported in Chapter 2 [the reader is referred specifically toTables 2.2-2.3, §2.4.4through

§2.4.4, and §2.4.5].

The mathematical characterization of sphere packings has along and rich his-

tory. Some recent articles and popular books recount this history in detail, including

Zong (1999), Szpiro (2003), Hales (2006), and Aste & Weaire (2008). The purpose of

the present article is not to repeat these historical retrospectives, which these sources do

quite adequately, but to characterize, catalog, and extendthe infinite packings available

today to facilitate their practical application in new fields. Nonetheless, we would re-

miss if we didn’t at least provide a brief historical contextto this field, which we attempt

in the following two subsections.

2.2.1 Finite packings: mystic marbles, stacked spheres, permuted

planets, cartoned cans, catastrophic sausages, and concealed

origins

We begin by defining, form≥ 1, a notation to build from:

T0,m , 1, T1,m ,
m

∑
k=1

T0,k = m (the positive integers).

In the sixth century BC, Pythagoras and his secret society ofnumerologists, the Pythagore-

ans, discovered geometrically (see Figure2.2, and pp. 43-50 of Heath 1931) the formula
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Figure 2.2: Ten marbles placed in a triangle (left) [referred to by the Pythagoreans as a

τετρακτυ′ ς , (tetractys), and upon which they placed a particular mystic significance],

and (right) the Pythagoreans’ placement of two triangular groups of marbles into an

“oblong” m× (m+1) rectangle, from which the formula forT2,m follows immediately.

for the number of marbles placed in a (2D) triangle (that is, the “triangular numbers”):

T2,m ,
m

∑
k=1

T1,k = m(m+1)/2.

The earliest known mathematical work to discuss the (3D) stacking of objects is

a Sanskrit documentThe Aryabhatiya of Aryabhata(499 AD; see Clark 1930, p. 37),

which states:

“In the case of anupaciti [lit., ‘pile’] which has ... the product of three terms,

having the number of terms for the first term and one as the common difference, divided

by six, is thecitighana[lit., ‘cubic contents of the pile’]. Or, the cube of the number of

terms plus one, minus the cube root of this cube, divided by six.”

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of

objects (“cubic contents”) in a (3D) triangular-based pyramid (“pile”) with mobjects on

each edge:

T3,m =
m(m+1)(m+2)

3!
=

(m+1)3− (m+1)

6
;

note also thatT3,m , ∑m
k=1T2,k.

Thomas Harriot was apparently the first to frame the problem of sphere packing

mathematically in modern times (see, e.g., the biography ofHarriot by Rukeyser 1972).

At the request of Sir Walter Raleigh, for whom Harriot served, among other capacities,

as an instructor of astronomical navigational and on various problems related to gun-

nery, Harriot (on December 12, 1591) computed, but did not publish, the number of
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Figure 2.3: Pyramidal stacks of spheres with triangular, square, and “oblong” (rectan-

gular) bases. All three stacks are subsets of the face-centered cubic lattice, discussed

further in §2.3.3.

cannonballs in a pile with a triangular, square [m×m], and rectangular [m× (m+ 1),

a.k.a. “oblong”] base, as illustrated in Figure2.3, obtainingT3,m, Sm, andRm respec-

tively, where

Sm=
m

∑
k=1

k2 =
m(m+1)(2m+1)

6
, Rm=

m

∑
k=1

k(k+1) = Sm+T2,m=
m(m+1)(2m+4)

6
.

In 1614, Harriot wroteDe Numeris Triangularibus Et inde De Progressionibus Artith-

meticis: Magisteria magna(On triangular numbers and thence on arithmetic progres-

sions: the great doctrine)6. Looking closely at the triangular table of binomial coeffi-

cients7 on pp. 1-3 (folios 108-110) of this remarkable document, it is seen that Harriot

understood thegeometricrelationship between the positive integersT1,m, the “triangular

numbers”T2,m [that is, the number of spheres in a (2D) triangle withm spheres on each

edge], the “pyramidal numbers”T3,m [that is, the number of spheres in a (3D) trianglar-

based pyramid withmspheres on each edge], and the next logical steps in this arithmetic

progression, given by:

T4,m ,

m

∑
k=1

T3,k =
m(m+1)(m+2)(m+3)

4!

T5,m ,

m

∑
k=1

T4,k =
m(m+1)(m+2)(m+3)(m+4)

5!
,

6Harriot (1614) passed through several hands before finally being published in 2009, almost 4 cen-
turies later.

7This now famous triangular table of binomial coefficients isincorrectly attributed by many in the
west to Blaise Pascal (b. 1623), though it dates back to several earlier sources, the earliest being Pingala’s
Sanskrit workChandas Shastra, written in the fifth century BC.
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etc. In particular, Harriot noticed that the(n+1)’th element of the(n+m)’th row of this

triangular table isTn,m. Accordingly, we may think ofTn,m as the number of spheres in

an “n-dimensional pyramid” withm spheres on each edge, withTn,2 representingn+1

spheres configured at the corners of ann-dimensional simplex. It is thus natural to credit

Harriot (1614) with the first important steps towards the discovery of laminated lattices,

discussed further in §2.3.4and §2.3.6.

Harriot also introduced the packing problem to Johannes Kepler, ultimately lead-

ing Kepler (1611), in another remarkable documentStrena seu de nive sexangula(The

six-cornered snowflake), which also hypothesized about a related atomistic physical ba-

sis for hexagonal symmetry in crystal structures of water, to conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no

other arrangement can more spheres be packed into the same container.”

Kepler’s conjecture is, of course, patently false if considered in a finite container of

a specified shape. For instance, a 2d× 2d× 2d cubic container can fit 8 spheres of

diameterd if arranged in Cartesian configuration, but can only fit 5 spheres if arranged in

a “close-packed” configuration8. It is presumed that Kepler in fact recognized this, and

thus Kepler’s conjecture is commonly understood as a conjecture regarding the densest

packing possible in the limit that the size of the container is taken to infinity (for further

discusssion, see §2.2.2).

Note in Figure2.3 that any sphere (referred to as a “sun”) on the interior of

the piles has 12 nearest neighbors (referred to as its “planets”). Considering this sun

and its 12 planets in isolation, there is in fact adequate room to permute the planets

to different positions while keeping them in contact with the sun, something like a 12-

cornered Rubik’s cube with spherical pieces (see Figure2.4). Due to the extra space

available in this configuration, it is unclear upon first inspection whether or not there is

sufficient room to fit a 13’th planet in to touch the sun while keeping all of the other 12

planets in contact with it. In 1694, Isaac Newton conjectured this could not be done, in

a famous disagreement with David Gregory, who thought it could. Newton turned out

to be right, with a complete proof first given in Schütte & van der Waerden (1953), and

a substantially simplified proof given in Leech (1956).

Moving from 16th-century stacks of cannonballs to 21st-century commerce, the

8For larger containers, the arrangements which pack in the greatest number of spheres (or other ob-
jects) must in general be found numerically (see Gensane 2004, Schürmann 2006, and Friedman 2009).
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⇒ ⇒

Figure 2.4: Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and plane-

tary permutations. Configuration (a) is 13 of the spheres taken from the second, third,

and fourth layers of the stack in the orientation shown in Figure2.3b, whereas configu-

ration (c) is 13 of the spheres taken from the third, fourth, and fifth layers of the stack

in the orientation shown in Figure2.3a [extended by one additional layer]. In both con-

figurations, the 12 “planets” (positioned around the central “sun”) are centered at the

vertices of a cuboctahedron. The planets can be permuted by “pinching” together two

of the four planets on the corners of each square face, in an alternating fashion, to form a

symmetric icosahedral configuration with significant spacebetween each pair of planets

[configuration (b)], then “pushing” apart pairs of planets in an analogous fashion to form

a different cuboctahedron. Alternatively, starting from configuration (b), identifying any

pair of opposite planets as “poles”, and slightly shifting the five planets in each of the

“tropics” as close as possible to their nearest respective poles, the resulting northern and

southern groupings of planets can be rotated in relation to each other along the equa-

tor. Repeated application of these two fundamental motionscan be used to permute the

planets arbitrarily.

question of dense finite packings of circles and spheres findspractical relevance in a

variety of packaging problems. For example, to form a rectangular cardboard carton for

12 fl oz soda cans, 164 cm2 of cardboard per can is needed if 18 cans are placed in a

cartesian configuration with 3 rows of 6 cans per row, whereas3.3% less cardboard per

can is needed if 18 cans are placed in a triangular configuration (within a rectangular

box) with 5 rows of {4,3,4,3,4} cans per row. If an eye-catching (stackable, strong,

“green”...) hexagonal cardboard carton for the soda cans isused, with 19 cans (described

in marketing terms as “18 plus 1 free”) again placed in a triangular configuration, 17.7%

less cardboard per can is required.
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Two new questions arise when one “shrink-wraps” a number (m) of n-dimensional

spheres (resulting in a convex, fitted container), namely: what configuration of the

spheres minimizes the surface area of the resulting container, and what configuration

minimizes the volume of the resulting container? Both questions remain open, and are

reviewed in Zong (1999). Regarding the minimim surface areaquestion, it was conjec-

tured by Croft, Falconer, & Guy (1991) that the minimum surface area, forn ≥ 2 and

largem, is achieved with a roughly spherical arrangement. In contrast, regarding the

minimim volume question, it was conjectured by L. Fejes Tóth(1975) that the mini-

mum volume, forn≥ 5 and anym, is achieved by placing the spheres in a line, leading

to a shrink-wrapped container in the shape of a “sausage”. For n = 3, it has been shown

that a roughly spherical arrangement minimizes the volume for m= 56, m= 59 to 62,

andm≥ 65, and it is conjectured that a sausage configuration minimizes the volume for

all otherm (see Gandini & Willis 1992); forn = 4, there appears to be a similar “catas-

trophe” in the volume-minimizing solution, from a sausage configuration to a roughly

spherical configuration, asm is increased beyond a critical value (Willis 1983 conjec-

tures this critical value to bem≈ 75000, whereas Gandini & Zucco 1992 conjectures it

to bem= 375769).

Finally, L. Fejes Tóth (1959) presents a curious set of questions that arise when

considering the blocking of light with a finite number of opaque unit spheres packed

around the origin. The first such question, known as Hornich’s Problem, seeks the small-

est number of opaque unit spheres that completely conceal light rays emanating from a

point source at the center of a transparent unit sphere at theorigin. A related question,

known as L. Fejes Tóth’s Problem, seeks the smallest number of opaque spheres that

completely conceal light rays emanating from the surface ofa unit sphere at the origin

(e.g., in Figure2.4, adding additional outer planets to completely conceal theview of the

sun from all angles). In 2D, the (trivial) answer to both problems is 6, via the triangular

packing indicated in Figure2.1a. In higher dimensions, both questions remain open,

and the answer differs depending on whether or not the spherecenters are restricted to

the nodal points of a lattice. For the L. Fejes Tóth’s Problem, for n≥ 3, the answer is

unbounded if restricted to lattice points, and bounded if not. For Hornich’s Problem, the

answer is bounded in both cases, with the number of spheres,h, required in the 3D case,
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when not restricted to lattice points, being somewhere in the range 30≤ h≤ 42. Zong

(1999) derives several of the known bounds available in bothproblems.

2.2.2 Infinite packings

In the last 300 years,manydifferent constructions of infinite lattice and nonlat-

tice packings have been proposed in each dimension. These packings each have different

packing density, covering thickness, mean-squared quantization error, and kissing num-

ber, and their corresponding nets each have different topological density; knowledge of

these properties is essential when selecting a packing or net for any given application.

We have thus attempted to catalog these constructions and their properties thoroughly

in the remainder of this review.

In the characterization of density, amongst alllattice packings of a given di-

mension, theA2, A3, D4, D5, E6, E7, E8, andΛ24 constructions given in §2.3have been

proven to be of maximum density, in Lagrange (1773) forn= 2, Gauss (1831) forn= 3,

Korkine & Zolotareff (1873, 1877) forn = 4 and 5, Blichfeldt (1935) forn = 6 through

8, and Cohn & Kumar (2009) forn = 24. There are no such proofs of optimality for

other values ofn, though the latticesΛn andKn introduced in §2.3.6are likely candidates

in the range 9≤ n≤ 23.

Remarkably, if one considers both latticeandnonlattice packings, proof of which

packing is of maximum density in a given dimension is still open forn> 3. It was estab-

lished in Thue (1892) thatA2 has the maximum density amongst all lattice and nonlattice

packings forn = 2. Considerable attention has been focused over the centuries on the

corresponding question forA3 in dimensionn= 3, that is, on Kepler’s conjecture (posed

in 1611) in the limit that the container size is taken to infinity. Indeed, David Hilbert,

in his celebrated list of 23 significant open problems in mathematics in 1900, included

a generalization of Kepler’s conjecture as part of his 18th problem (see, e.g., Milnor

1976).

Note that it is not at all obvious that an infinite packing as regular asA3 would

necessarily be the packing that maximizes density. Indeed,as mentioned in footnote3

on page10, nonlattice packings are known in dimensionsn = 10, 11, 13, 18, 20, and 22

that are each slightly denser than the densest known latticepackings in these dimensions.
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Figure 2.5: A regular truncated octahedron (a), used to tileR3 in Kelvin’s conjecture;

(b) an irregular tetrakaidecahedron and dodecahedron, used to tile R3 in the Weaire-

Phelan structure.

In three dimensions, physiologist Stephen Hales (1727), inhis groundbreaking

work Vegetable Staticks, reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot,. . . by the great

incumbent of weight, pressed into the interstices of the Pease, which they adequately

filled up, being therefore formed into pretty regular dodecahedrons.”

This report implied that many of the dilated peas in this experiment had 12 nearest neigh-

bors and/or pentagonal faces. However, the “pretty regular” qualification left a certain

ambiguity, and this experiment left mathematicians puzzled, as it is patently impossible

to tile R3 with regular dodecahedra. Kelvin (1887) formalized the question inherent in

Hales’ dilated pea experiment by asking howR3 could be divided into regions of equal

volume while minimizing the partitional area. He conjectured the answer to be a regular

tiling of R3 with truncated octahedra, which are in fact the Voronoï cells of theA∗
3 lattice

(see §2.4.4). [Note that the Voronoï cell of theA3 lattice is the (face-transitive)rhombic

dodecahedron, which is dual to the cuboctahedron illustrated in Figures2.4a,c and tiles

R3 with slightly greater partitional area than does the tilingwith truncated octahedra.]

Kelvin’s conjecture stood for over 100 years, until Weaire &Phelan (1994) discovered a

tiling of R3 based on irregular tetrakaidecahedra (with 2 hexagonal faces and 12 pentag-

onal faces) and irregular dodecahedra (with 12 pentagonal faces); this tiling has 0.3%

less partitional area than the much more regular tiling withtruncated octahedra consid-

ered by Kelvin (see Figure2.5). In hindsight, it is quite possible that Hales might have

in fact stumbled upon the Weaire-Phelan structure in his cooking pot (in 1727!) and,

seeing all of those pentagonal faces and 12-sided (as well as14-sided) dilated peas, as-
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serted that what he was looking at was a culinary approximation to a tiling ofR3 with

regular dodecahedra, even though such a tiling is impossible.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (norelation to Stephen)

announced a long-sought-after proof, in a remarkably difficult analysis making extensive

use of computer calculations. This proof was spread over a sequence of papers published

in the years that followed (see Hales 2005). An extensive discussion of this proof, which

is still under mathematical scrutiny, is given in Szpiro (2003). Inspiration for this proof

was based, in part, on a strategy to prove Kepler’s conjecture proposed by L. Fejes Tóth

(1953), the first step of which is a quantitative version of the Newton-Gregory problem

discussed in §2.2.1.

2.3 Dense lattice packings forn≤ 24

There are many dense lattices more complex than the cubic lattice that offer

superior uniformity and nearest-neighbor configuration, as quantified by the standard

metrics introduced in §2.2 (namely, packing density, covering thickness, mean-square

quantization error, and kissing number). This section provides an overview of many

of these lattices;the definitive comprehensive reference for this subject is Conway &

Sloane (1999), to which the reader is referred for much more detailed discussion and

further references on most of the topics discussed in §2.3. Note that the subject of coding

theory, reviewed in §2.5, is very closely related to the subject of dense lattice packings.

As mentioned in the abstract, the practical application explored in Chapters 3 and 4 of

this work also leverages these constructions heavily.

2.3.1 Lattice terminology

The notationLn
∼= Mn means that the latticesLn andMn areequivalent(when

appropriately rotated and scaled) at the specified dimension n. Also note that the four

most basic families of lattices introduced in §2.3, denotedZn, An, Dn, andEn, are often

referred to asroot latticesdue to their relation to the root systems of Lie algebra.

There are three primary methods9 to define any givenn-dimensional real lattice:

9A convenient alternative method for building a cloud of lattice points near the origin is based on the
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• As anexplicit descriptionof the points included in the lattice.

• As an integer linear combination(that is, a linear combination with integer coeffi-

cients) of a set ofn basis vectorsbi defined inRn+m for m≥ 0; for convenience, we

arrange these basis vectors as the columns10 of a basis matrix11 B.

• As a union of cosets, or sets of nodal points, which themselves may or may not be

lattices.

The standard form of these definitions, as used in §2.3, makes it straightforward to

generalize application codes that can build easily upon anyof the lattices so described.

Note that any real (or complex) latticeLn also has associated with it adual

lattice, denotedL∗
n, which is defined such that

L∗
n =

{
x ∈ Rn (or Cn) : x · ū ∈ Z for all u ∈ Ln

}
, (2.2)

whereZ denotes the set of all integers, dot denotes the usual scalarproduct, and overbar

denotes the usual complex conjugate. IfB is a square basis matrix forLn, thenB−T is a

square basis matrix forL∗
n.

Unless specified otherwise, the word lattice in this work implies a real lattice,

defined inRn. However, note that it is straightforward to extend this work to com-

plex lattices, defined inCn. To accomplish this extension, it is necessary to extend the

concept of the integers, which are used to construct a lattice via the “integer” linear

combination of the basis vectors in a basis matrixB, as described above. There are two

primary such extensions:

• TheGaussian integers, defined asG = {a+bı : a,b∈ Z} whereı =
√
−1, which lie

on a square array in the complex planeC.

stencil of nearest-neighbor points to the origin in the lattice, repeatedly shifting this stencil to each of the
lattice points near the origin determined thus far in order to create additional lattice points in the cloud.
Unfortunately, this simple alternative method does not work for all lattices, such asD∗

n andAr
n (see §2.3.3

and2.3.4).
10In the literature on this subject, it is more common to use agenerator matrix Mto describe the

construction of lattices. The basis matrix conventionB used here is related simply to the corresponding
generator matrix such thatB = MT ; we find the basis matrix convention to be more natural in terms of its
linear algebraic interpretation.

11Note that integer linear combinations of the columns of mostmatrices donot produce lattices (as
defined in the second paragraph of §2.2). The matrices listed in §2.3as basis matrices are special in this
regard. Note also that basis matrices are not at all unique, but the lattices constructed from alternative
forms of them are equivalent; the forms of the basis matriceslisted in §2.3were selected based on their
simplicity.
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• TheEisenstein integers, defined asE = {a+bω : a,b∈Z} whereω = (−1+ ı
√

3)/2

[note thatω3 = 1], which lie on a triangular array in the complex planeC.

We may thus define three types of lattices from a basis matrixB:

• a real lattice, defined as a linear combination of the columnsof B with integers as

weights;

• a (complex)G lattice, defined as a linear combination of the columns ofB with Gaus-

sian integers as weights; and

• a (complex)E lattice, defined as a linear combination of the columns ofB with Eisen-

stein integers as weights.

The specialn-dimensional real,G , andE lattices formed by takingB= In×n are denoted

Zn, Z[ı]n, andZ[ω]n respectively. Note also that, for any complex lattice with elements

z̃∈ Cn, there is a corresponding real lattice with elementsx̃ ∈ R2n such that

x̃ =
(

ℜ{z̃1} ℑ{z̃1} . . . ℜ{z̃n} ℑ{z̃n}
)T

. (2.3)

The present work focuses on the practical use of real latticeand nonlattice packings with

n> 3. Thus, in the present work, we only make brief use of complexlattices to simplify

certain constructions.

2.3.2 The cubic latticeZn

Thecubic lattice, Zn, is definedZn =
{
(x1, . . . ,xn) : xi ∈ Z

}
, and may be con-

structed via integer linear combination of the columns of the basis matrixB= In×n. The

cubic lattice is self dual [that is,(Zn)∗ ∼= Zn] for all n.

2.3.3 The checkerboard latticeDn, its dual D∗
n, and the offset checker-

board packing D+
n

Thecheckerboard lattice, Dn, is ann-dimensional extension of the 3-dimensional

face-centered cubic(FCC, a.k.a.cubic close packed) lattice. It is defined

Dn =
{
(x1, . . . ,xn) ∈ Zn : x1 + . . .+xn = even

}
, (2.4a)
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and may be constructed via integer linear combination of thecolumns of then×n basis

matrix

BDn =




−1 1 0

−1 −1 1
...

.. .

−1 1

0 −1




. (2.4b)

The dual of the checkerboard lattice, denotedD∗
n and reasonably identified as the

offset cubic lattice, is ann-dimensional extension of the 3-dimensionalbody-centered

cubic(BCC) lattice. It may be written as

D∗
n = Dn∪ ([1]+Dn)∪ ([2]+Dn)∪ ([3]+Dn) ∼= Zn∪ ([1]+Zn), (2.5a)

where thecoset representatives[1], [2], and[3] are defined in this case such that

[1] =




1/2
...

1/2

1/2




, [2] =




0
...

0

1




, [3] =




1/2
...

1/2

−1/2




.

TheD∗
n lattice may also be constructed via integer linear combination of the columns of

then×n basis matrix

BD∗
n
=




1 0 0.5

1 0.5
...

...

1 0.5

0 0.5




. (2.5b)

It is important to recognize that, forn ≥ 5, the contact graph of theD∗
n lattice

is simply two disjoint nets given by the contact graphs of theZn and shiftedZn sets of

lattice points upon whichD∗
n may be built [see (2.5a)]. Thus, as suggested by Conway
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& Sloane (1997), we introduce, forn≥ 4, ageneralized netformed by connecting each

node of the unshiftedZn set to the 2n nearest nodes on the shiftedZn set, and each node

on the shiftedZn set to the 2n nearest nodes on the unshiftedZn set. The resulting net,

of coordination number 2n, is uninodal, but isnot a contact graph of the corresponding

sphere packing.

The packingD+
n , reasonably identified as theoffset checkerboard packing, is an

n-dimensional extension of the 3-dimensionaldiamondpacking, and is defined simply

as

D+
n = Dn∪ ([1]+Dn); (2.6)

note thatD+
n is a lattice packing only for evenn, and thatD+

3 is thediamond packing

(for further discussion, see §2.4.4).

2.3.4 The zero-sum latticeAn, its dual A∗
n, and the glued zero-sum

latticesAr
n

The zero-sum lattice, An, may be thought of as ann-dimensional extension of

the 2-dimensionaltriangular lattice; in 3 dimensions,A3
∼= D3. It is defined

An =
{
(x0, . . . ,xn) ∈ Zn+1 : x0 + . . .+xn = 0

}
, (2.7a)

and may be constructed via integer linear combination of thecolumns of the(n+1)×n

basis matrix

BAn =




−1 0

1 −1
...

.. .

1 −1

0 1




, with nAn =




1

1
...

1

1




. (2.7b)
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Figure 2.6: A cloud of points on theA2 lattice, defined on a plane inR3. Note that the

normal vectornA2 =
(

1 1 1
)T

points directly out of the page in this view.

Notice thatAn is constructed here vian basis vectors inn+1 dimensions. The resulting

lattice lies in ann-dimensional subspace inRn+1; this subspace is normal to the vector

nAn. An illustrative example isA2, the triangular 2D lattice, which may conveniently be

constructed on a plane inR3 (see Figure2.6).

Note that, starting from a (2D) triangular configuration of oranges or cannonballs

(see Figure2.3a), one can stack additional layers of oranges in a trangularconfiguration

on top, appropriately offset from the base layer, to build upthe (3D) FCC configuration

mentioned previously (see Figure2.3a). This idea is referred to as lamination, and will

be extended further in §2.3.6when considering theΛn family of lattices.

Also note that, in the special case ofn = 2, theA2 lattice may also be written as

A2
∼= R2∪ (a+R2), where a =


 1/2
√

3/2


 (2.7c)

andR2 is therectangular grid(not a lattice, nor even a nonlattice packing) obtained by

stretching theZ2 lattice in the second element by a factor of
√

3.

The dual of the zero-sum lattice, denotedA∗
n, may be written as

A∗
n =

n⋃

s=0

([s]+An), (2.8a)
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where then+1 coset representatives[s], for s= 0, . . . ,n, are defined such that thek’th

component of the vector[s] is

[s]k =





s
n+1 k≤ n+1−s,

s−n−1
n+1 otherwise.

(2.8b)

TheA∗
n lattice may be constructed via integer linear combination of the columns of the

(n+1)×n basis matrix

BA∗
n
=




1 1 · · · 1 −n
n+1

−1 0 1
n+1

−1 1
n+1

. . .
...

−1 1
n+1

0 1
n+1




, with nA∗
n
= nAn. (2.8c)

A related family of lattice packings, developed in §12 of Coxeter (1951) and

reasonably identified as theglued zero-sum lattices Ar
n, is a family of lattices somewhere

betweenAn andA∗
n [as given in (2.8a)] defined via the union ofr translates ofAn for

n≥ 5:

Ar
n = An∪ ([s]+An)∪ ([2s]+An)∪ ...∪ ([(r −1)s]+An), where r ·s= n+1, (2.9)

where the components of the “glue” vectors[s] are specified in (2.8b), and wherer

ands are integer divisors of(n+ 1) with 1 < s< n+ 1 and 1< r < n+ 1, excluding

the case{r = 2,s= 3} for n = 5. The latticesA5
9, A4

11, A7
13, A5

14, A8
15, A9

17, A10
19, A7

20, and

A11
21 are found to have especially good covering thickness, with the last four currently the

thinnest coverings available in their respective dimensions (see Baranovskii 1994, Anzin

2002, and Sikiríc, Schürmann, & Vallentin 2008). Note also thatA2
7
∼= E7, A4

7
∼= E∗

7, and

A3
8
∼= E8, each of which is discussed further below.

Note finally that the contact graphs of some of theAr
n lattices, such asA5

9 and

A4
11, are disjoint nets given by the contact graphs of theAn and shiftedAn sets of lattice

points upon which these glued zero-sum lattices are built [see (2.9)]. Thus, as in the case

of D∗
n for n > 4 as discussed in §2.3.3, ageneralized netmay be formed by connecting
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each node of the unshiftedAn set to the nearest nodes on the shiftedAn set. Again, the

resulting net is uninodal, but is not a contact graph of the corresponding sphere packing.

2.3.5 The Gosset latticeE8
∼= E∗

8, E7, E∗
7, E6, and E∗

6

TheGosset lattice E8∼= E∗
8, which has a (remarkable) kissing number ofτ = 240,

may be defined simply as

E8 = D+
8 , (2.10a)

and may be constructed via integer linear combination of thecolumns of the 8×8 basis

matrix

BE8 =




2 −1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2




. (2.10b)

The latticeE7 is defined by restrictingE8, as constructed above, to a 7-dimensional

subspace,

E7 = {(x1, . . . ,x8) ∈ E8 : x1 + . . .+x8 = 0}, (2.11a)

and may be constructed directly via integer linear combination of the columns of the

8×7 basis matrix
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BE7 =




−1 0 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2




, with nE7 =




1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2




. (2.11b)

The dual of theE7 lattice may be written as

E∗
7 = E7∪ ([1]+E7), where [1] =




1/4
...

1/4

−3/4

−3/4




, (2.12a)

and may be constructed directly via integer linear combination of the columns of the

8×7 basis matrix

BE∗
7
=




−1 0 −3/4

1 −1 −3/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 −1 1/4

1 1/4

0 1/4




, with nE∗
7
= nE7. (2.12b)

The latticeE6 is defined by further restrictingE7, as defined in (2.11), to a 6-

dimensional subspace,

E6 = {(x1, . . . ,x8) ∈ E7 : x1 +x8 = 0}, (2.13a)
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and may be constructed directly via integer linear combination of the columns of the

8×6 basis matrix

BE6 =




0 1/2

−1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

0 −1/2




, with NE =




1 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

0 1/2

1 1/2




=




| |
nE6 nE7

| |


 .

(2.13b)

The dual of theE6 lattice may be written as

E∗
6 = E6∪ ([1]+E6)∪ ([2]+E6), where [1] =




0

−2/3

−2/3

1/4
...

1/4

0




, [2] = −[1], (2.14a)

and may be constructed directly via integer linear combination of the columns of the

8×6 basis matrix
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BE∗
6
=




0 0 1/2

−1 2/3 1/2

1 −1 2/3 1/2

1 −1 −1/3 1/2

1 −1 −1/3 −1/2

1 −1/3 −1/2

−1/3 −1/2

0 0 −1/2




, with NE∗ = NE. (2.14b)
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2.3.6 The laminated latticesΛn and Kn lattices

The lattices in theΛn andKn families can be built up one dimension, or “lami-

nate”, at a time, starting from the integer lattice (Z∼= Λ1
∼= K1), to triangular (A2

∼= Λ2
∼=

K2), to FCC (A3
∼= D3

∼= Λ3
∼= K3), all the way up (one layer at a time) to the remarkable

Leech lattice (Λ24
∼= K24). Both families of lattices may in fact be extended (but not

uniquely) to at leastn = 48.

The Leech lattice,Λ24, is the unique lattice inn = 24 dimensions with a (re-

markable) kissing number ofτ = 196,560. It may be constructed via integer linear

combination of the columns of the 24× 24 basis matrixBΛ24, which is depicted here

in the celebrated Miracle Octad Generator (MOG) coordinates (see Curtis 1976 and

Conway & Sloane 1999):
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BΛ24 =
1√
8




8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 −3

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 2 2 2 1

4 2 2 2 1

4 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 2 2 2 2 1

4 2 2 2 2 1

4 2 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

2 2 2 1

2 1

2 1

1




.

As in theE8→E7→E6 progression described in §2.3.5, theΛn lattices forn= 23,22, . . . ,1

may all be constructed by restricting theΛ24 lattice to smaller and smaller subspaces via

the normal vectors assembled in the matrix12

12There are, of course,manyequivalent constructions ofΛ1 throughΛ23 via restriction ofΛ24, and
the available literature on the subject considers these symmetries at length. The convenient form ofNΛ
depicted here was deduced, with some effort, from Figure 6.2of Conway & Sloane (1999).
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NΛ =




1

1

1 1

1 1 1

1

1 −1

1 −1

1

1

1 −1

1 −1

1

1 1

1 1

1

1 1

1

1 1

1 1

1 1

1

1 −1

1 −1

1




=
(

nΛ0 . . . nΛ23

)
.

Thus, theΛ23 lattice is obtained from the points of theΛ24 lattice inR24(which

themselves are generated via integer linear combination ofthe columns ofBΛ24) which

lie in the 23-dimensional subspace orthogonal tonΛ23. Similarly, theΛ22 lattice is ob-

tained from the points of theΛ24 lattice which lie in the 22-dimensional subspace or-

thogonal to bothnΛ23 andnΛ22, etc. Noting the block diagonal structure ofNΛ, it follows
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thatΛn may be constructed using the basis matrix, denotedBΛn, given by then×n sub-

matrix in the upper-left corner ofBΛ24 for anyn ∈ N1 = {21,20,16,9,8,5,4}. For the

remaining dimensions,n ∈ N2 = {19,18,17,15,14,13,12,11,10,7,6,3,2,1}, Λn may

be constructed via the appropriate restriction of the lattice generated by the next larger

basis matrix in the setN1; for example,Λ14 may be constructed inR16 via restriction of

the lattice generated by the basis matrixBΛ16 to the subspace normal to the vectors (in

R16) given by the first 16 elements ofnΛ15 andnΛ14.

A similar sequence of lattices, denotedKn, may be constructed via restriction

of the Leech lattice (generated viaBΛ24) in a similar fashion (for details, see Figure 6.3

of Conway & Sloane 1999). Lattices from theΛn and/orKn families have the maximal

packing densities and kissing numbers amongst all latticesfor the entire range consid-

ered here, 1≤ n≤ 24. Note that theΛn andKn families are not equivalent in the range

7≤ n≤ 17, withΛn being superior toKn by all four metrics introduced in §2.2at most

values ofn in this range, except for the narrow range 11≤ n≤ 13, where in factKn has

a slight advantage. Note also that there is some flexibility in the definition of the lattices

Λ11, Λ12, andΛ13; the branch of theΛn family considered here is that which maximizes

the kissing numberτ in this range ofn, and thus the corresponding lattices are denoted

Λmax
11 , Λmax

12 , andΛmax
13 . Note thatK12 is referred to as the Coxeter-Todd lattice andΛ16

is referred to as the Barnes-Wall lattice.
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2.3.7 Some numerically-generated lattices for thin coverings in di-

mensions 6-15

Recall from §2.3.1that ann-dimensional real lattice may be defined as an integer

linear combination of a set ofn basis vectorsbi defined inRn+m for m≥ 0; that is, any

lattice point may be written as

x = ξ1b1+ξ2b2 + . . .+ξnbn = Bξξξ ,

where the elements{ξ1, . . . ,ξn} of the vectorξξξ are taken as integers. The square of

the distance of any lattice point from the origin is thus given by f (ξξξ ) = ξξξ TAξξξ , where

A , BTB is known as theGram matrixassociated with the lattice in question, and the

function f (ξξξ ) is referred to as the correspondingquadratic form[note that each term of

f (ξξξ ) is quadratic in the elements ofξξξ ]. All of the lattices studied thus far, when scaled

appropriately, are characterized by Gram matrices withinteger elements, and thus their

corresponding quadratic formsf (ξξξ ) have integer coefficients (and are thus referred to

asintegral quadratic forms).

There is particular mathematical interest in discovering (or generating numeri-

cally) both lattice and non-lattice packings which minimize covering thickness and/or

packing density. The numerical approach to this problem studied in Schürmann &

Vallentin (2006) and Sikiríc, Schürmann, & Vallentin (2008) has generated new lat-

tices in dimensions 6-15 with the thinnest covering thicknesses known amongst all lat-

tices. The lattice so generated in dimension 7 happens to correspond to an integral

quadratic form, but the others, apparently, do not. Gram matricesA corresponding to

these 10 lattices (denotedLc1
6 , Lc

7, Lc
8, . . . , Lc

15) are available athttp://fma2.math.uni-

magdeburg.de/~latgeo/covering_table.html;

(nonunique) basis matricesB corresponding to each of these lattices may be generated

simply by taking the Cholesky decomposition of the corresponding Gram matrix, as

A = BTB.

2.3.8 Discussion

For all of the dense lattices described thus far, as well as for the rare packings and

nets described in §2.4, Tables2.2 and2.3 list the known values of the packing density
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∆, the covering thicknessΘ, and the mean squared quantization error per dimension,G.

Table2.2also lists the coordination sequence throughk = 10 of the corresponding net,

as well as its local topological densitytd10. If this net is a contact graph, the coordination

number (that is, the first element of the coordination sequence) is equal to the kissing

number of the corresponding packing; if this net isnot a contact graph, it is marked

with a G, and the kissing numberτ of the corresponding sphere packing is listed in

parentheses.

The other information appearing in Table2.2 is described further in §2.4. Note

that Table2.2 alone has 8 columns and over 100 rows, with those results which we

believe to be new denoted in italics. The original source of each of the several hun-

dred existing results reported can not feasibly be spelled out here. Suffice it to say that

the vast majority of those existing results related to lattices are discussed in Conway &

Sloane (1999) and in the On-Line Encyclopedia of Integer Sequences (on the web at

http://www.research.att.com/~njas/sequences/), where a large number of the

original references are listed in detail. The vast majorityof those existing results related

to 3D nets (see §2.4), including clear drawings of eachas well as detailed lists of origi-

nal references, are given in the Reticular Chemistry Structure Resource, available online

at, e.g.,http://rcsr.anu.edu.au/nets/fcu, where “fcu” may be replaced by any

of the lowercase boldface three-letter identifiers given inTable2.2and §2.4; for further

discussion of this database and others, see O’Keeffe et al. (2008), Treacy et al. (2004),

Blatov (2006), and Hyde et al. (2006). Note also that there are hundreds of new results

reported in Tables 2 and 3, as denoted in italics; most of these are the result of painstak-

ing numerical simulation, some of which tooks weeks of CPU time (on a quad-core

3GHz Intel Xeon server) to complete.

Note finally that there are a variety of simple ways to quantize to the nearest

lattice point; for an introduction, see Appendix A.
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Table 2.2: Known characteristics of selected lattices in dimension 1≤ n≤ 9. Boldface denotes values known, or believed, to be

optimal among all lattices at that dimensionn. Note thatZn is referred to as the cubic lattice,K12 is referred to as the Coxeter-Todd

lattice,Λ16 is referred to as the Barnes-Wall lattice, andΛ24 is referred to as the Leech lattice. The symbol≈ denotes approximate

values estimated via Monte Carlo integration; all other results reported have been determined in the literature analytically (see

Conway & Sloane 1998). The symbol≤ denotes a bound, not an exact value. Blank entries appear to be unavailable in the

published literature on this subject.

n packing net ∆ Θ G coordination sequence td10

point
symbol
vertex
symbol

1 Z,Λ1 integer 1 1 0.083333 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 21 ∗

A2,A∗
2,Λ2 triangular 0.90690 1.2092 0.080188

6, 12, 18, 24, 30, 36, 42,
48, 54, 60

331 36.46.53

Z2,D2,D∗
2,D

+
2 square 0.78540 1.5708 0.083333

4, 8, 12, 16, 20, 24, 28,
32, 36, 40

221 4.4.4.4.∗ .∗
2

A+
2 ,TA∗

2 honeycomb 0.60460 2.4184 0.09623
3, 6, 9, 12, 15, 18, 21,
24, 27, 30

166 6.6.6

Â+
2 ,TÂ

∗
2

augmented
honeycomb

0.39067 5.832 0.1652
3, 4, 6, 8, 12, 14, 15, 18,
21, 22

124 3.12.12



4
0

Table 2.2 continued

n packing net ∆ Θ G coordination sequence td10

point
symbol
vertex
symbol

D3,A3,Λ3 fcu 0.74048 2.0944 0.078745
12, 42, 92, 162, 252,
362, 492, 642, 812,
1002

3871 324.436.56

hcp 0.74048 2.0944 0.078745
12, 44, 96, 170, 264,
380, 516, 674, 852,
1052

4061 324.433.59

3 D∗
3,A

∗
3 bcu 0.68017 1.4635 0.078543

8, 26, 56, 98, 152, 218,
296, 386, 488, 602

2331 424.64

Z3 pcu 0.52360 2.7207 0.083333
6, 18, 38, 66, 102, 146,
198, 258, 326, 402

1561 412.63

qtz, V60
3 0.39270 2.0405 0.08534

4, 12, 30, 52, 80, 116,
156, 204, 258, 318

1231 6.6.62.62.87.87

A+
3 ,D+

3 dia, V
90
3 0.34009 2.7207 0.09114

4, 12, 24, 42, 64, 92,
124, 162, 204, 252

981 62.62.62.62.62.62
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Table 2.2 continued

n packing net ∆ Θ G coordination sequence td10

point
symbol
vertex
symbol

lon 0.34009 3.3068 0.09139
4, 12, 25, 44, 67, 96,
130, 170, 214, 264

1027 62.62.62.62.62.62

TA∗
3 sod 0.2777 8.781 0.1092

4, 10, 20, 34, 52, 74,
100, 130, 164, 202

791 4.4.6.6.6.6

3

Â+
3 dia-a 0.12354 9.1723 0.1511

4, 6, 12, 18, 36, 48, 60,
78, 108, 126

497 3.122.3.122.3.122

TÂ
∗
3 sod-a 0.1033 28.26 0.1943

4, 6, 12, 17, 28, 38, 52,
64, 84, 104

410 3.8.3.12.3.12

qzd, T
60
3 0.6046 2.1549 0.08151

G: 4, 12, 36, 72, 122,
188, 264, 354, 456, 570
(τ = 8)

2079 72.∗ .73.73.73.73

cds, T
90
3 0.52360 2.7207 0.08333

G: 4, 12, 30, 58, 94,
138, 190, 250, 318, 394
(τ = 6)

1489 6.6.6.6.62.∗

nbo, S3 0.39270 3.1416 0.08602
4, 12, 28, 50, 76, 110,
148, 194, 244, 302

1169 62.62.62.62.82.82

bto (α = 60◦), 0.2687 3.0042 0.09129 3, 6, 12, 24, 43, 64, 91,
124, 160, 202

730 10.102.102
Y

60
3 (α ≈ 70.5◦) 0.2551 2.7251 0.09217

ths (α = 60◦), 0.2327 4.3099 0.09706 3, 6, 12, 24, 38, 56, 77,
102, 129, 160

608 102.104.104
Y90

3 (α ≈ 70.5◦) 0.2207 3.518 0.09817
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

srs 0.1851 3.4281 0.1072
3, 6, 12, 24, 35, 48, 69,
86, 108, 138

530 105.105.105

srs-a 0.0555 9.739 0.1882
3, 4, 6, 8, 12, 16, 24, 32,
48, 54

208 3.205.205

4

D4,D∗
4,Λ4 0.61685 2.4674 0.076603

24, 144, 456, 1056,
2040, 3504, 5544, 8256,
11736, 16080

48,841 396.4168.512

G: 16, 80, 240, 544,
1040, 1776, 2800, 4160,
5904, 8080 (τ = 24)

24,641 4112.68

A4 0.55173 3.1780 0.078020
20, 110, 340, 780, 1500,
2570, 4060, 6040, 8580,
11750

35,751 360.4120.510

A∗
4 0.44138 1.7655 0.077559

10, 50, 150, 340, 650,
1110, 1750, 2600, 3690,
5050

15,401 440.65
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

Z4,D+
4 0.30843 4.9348 0.08333

8, 32, 88, 192, 360, 608,
952, 1408, 1992, 2720

8361 424.64

4

A+
4 0.17655 6.3558 0.08827

5, 20, 50, 110, 200, 340,
525, 780, 1095, 1500

4626 610

TA∗
4 0.10593 42.4 0.1221

5, 15, 35, 70, 125, 205,
315, 460, 645, 875

2751 45.65

Â+
4 0.03354 23.82 0.1398

5, 8, 20, 32, 80, 116,
170, 236, 380, 482

1530 36.124

T90
4 0.3084 4.935 0.08333

G:4,12,36,92,200,384,
664,1056,1576,2240
(τ = 8)

6265 83.83.83.83.84.∗

S4 0.1542 3.855 0.08692
4, 12, 36, 84, 172, 292,
468, 692, 988, 1348

4097 82.82.85.85.85.85

V90
4 0.1187 5.814 0.09333

4, 12, 36, 74, 136, 228,
352, 518, 732, 994

3087 86.86.87.87.87.87

Y90
4 0.06793 6.458 0.09736

3, 6, 12, 24, 48, 90, 146,
230, 336, 478

1374 122.122.122
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

D5,Λ5 0.46526 4.5977 0.075786
40, 370, 1640, 4930,
11752, 24050, 44200,
75010, 119720, 182002

463,715 3240.4520.520

A5 0.37988 5.9218 0.077647
30, 240, 1010, 2970,
7002, 14240, 26070,
44130, 70310, 106752

272,755 3120.4300.515

D∗
5 0.32899 2.4982 0.075625

G: 32, 242, 992, 2882,
6752, 13682, 24992,
42242, 67232, 102002
(τ = 10)

261,051 4480.616

5

D+
5 0.28736 5.2638 0.07784

16, 120, 480, 1410,
3296, 6712, 12256,
20770, 33056, 50232

128,349 480.640

A∗
5 0.25543 2.1243 0.076922

12, 72, 272, 762, 1752,
3512, 6372, 10722,
17012, 25752

66,241 460.66

Z5 0.16449 9.1955 0.083333
10, 50, 170, 450, 1002,
1970, 3530, 5890, 9290,
14002

36,365 440.65



4
5

Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

A+
5 0.08514 8.8223 0.08646

6, 30, 90, 240, 510,
1010, 1770, 2970, 4626,
7002

18,255 615

TA∗
5 0.035174 254.9 0.1349

6, 21, 56, 126, 252, 461,
786, 1266, 1946, 2877

7798 49.66

Â+
5 0.008055 35.81 0.1313

6, 10, 30, 50, 150, 230,
390, 570, 1050, 1420

3907 310.125

T90
5 0.16449 9.1955 0.08333

G: 4, 12, 36, 100, 258,
610, ? (τ = 10)

? 82.82.82.82.106.∗

S5 0.05140 9.310 0.08666
4, 12, 36, 100, 244, 514,
980, 1682, 2724, 4162

10,459 8.8.8.8.82.825

V60
5 0.04786 8.4884 0.08753

4, 12, 36, 100, 248, 522,
988, 1724, 2800, 4324

10,759 8.8.8.8.82.82

Y
60
5 0.03516 254.8 0.1350

3, 6, 12, 24, 48, 90, 168,
312, 556, 914

2134 122.122.122

T60
5 0.02478 6.2578 0.09038

G: 4, 12, 36, 100, 268,
? (τ = 14)

? 82.82.82.82.1110.∗

V90
5 0.02478 6.016 0.09037

4, 12, 36, 100, 220, 428,
752, 1254, 1944, 2924

7675 8.8.8.8.82.82

Y90
5 0.01858 11.19 0.09605

3, 6, 12, 24, 48, 90, 168,
312, 532, 872

2068 122.122.122
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

E6,Λ6 0.37295 7.0722 0.074347
72, 1062, 6696, 26316,
77688, 189810, 405720,
785304, 1408104

2,900,773 3720.41800.536

E∗
6 0.33151 2.6521 0.074244

54, 828, 5202, 20376,
60030, 146484, 312858,
605232, 1084806,
1830060

4,065,931 3270.41134.527

6

D6 0.32298 8.7205 0.075591
60, 792, 4724, 18096,
52716, 127816, 271908,
524640, 938652, 1581432

3,520,837 3480.41260.530

D+
6 0.27252 5.1677 0.07459

32, 332, 1824, 6776,
19488, 46980, 99680,
192112, 343584, 578876

1,289,685 4480.616



4
7

Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

A6 0.24415 9.8401 0.077466
42, 462, 2562, 9492,
27174, 65226, 137886,
264936, 472626, 794598

1,775,005 3210.4630.521

D∗
6 0.16149 4.3603 0.075120

G: 64, 728, 4032, 14896,
42560, 102024, 215488,
413792, 737856, 1240120
(τ = 12)

244,069 41984.632

6

A∗
6 0.13453 2.5511 0.076490

14, 98, 462, 1596, 4410,
10374, 21658, 41272,
73206, 122570

275,661 484.67

Lc1
6 0.31853 2.4648 ? 32, ? ? ?

Z6 0.08075 17.441 0.08333
12, 72, 292, 912, 2364,
5336, 10836, 20256,
35436, 58728

134,245 460.66
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

A+
6 0.03844 19.681 0.08525

7, 42, 147, 462, 1127,
2562, 5047, 9492, 16317,
27174

62,378 621

TA∗
6 0.010459 1836.5 0.14712

7, 28, 84, 210, 462, 924,
1715, 2996, 4977, 7924

19,328 414.67

6
Â+

6 0.001774 99.91 0.1259
7, 12, 42, 72, 252, 402,
777, 1182, 2457, 3492

6,496 315.126

T90
6 0.08075 17.441 0.08333

G: 4, 12, 36, 100, ?
(τ = 12)

? ?

S6 0.01514 9.78 0.08601
4, 12, 36, 100, 276, 660,
1484, 2920, ?

? 8.8.8.8.82.82

V90
6 9.740e-3 19.79 0.09322

4, 12, 36, 100, 276, 610,
1284, 2346, 4152, 6792

15,613 8.8.8.8.82.82

Y90
6 4.640e-3 24.15 0.09479

3, 6, 12, 24, 48, 90, 168,
312, 580, 1046

2290 122.122.122
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

E7,Λ7 0.29530 13.810 0.073231

126, 2898, 25886,
133506, 490014,
1433810, 3573054,
7902594, 15942206,
29896146

59,400,241 32016.45796.563

D+
7 0.26170 4.7248 0.07273

64, 1092, 8064, 37842,
131328, 371940,
906816, 1976898,
3946048, 7344164

14,724,257 41792.6224

E∗
7 0.21578 4.1872 0.073116

˜

56, 938, 7688, 39746,
150248, 455114,
1171928, 2668610,
5521880, 10585514

20,601,723 41512.6287

D7 0.20881 16.749 0.075686

84, 1498, 11620, 55650,
195972, 559258,
1371316, 2999682,
6003956, 11193882

22,392,919 3840.42604.542

A7 0.14765 18.899 0.077396

56, 812, 5768, 26474,
91112, 256508,
623576, 1356194,
2703512, 5025692

10,089,705 3336.41176.528
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

D∗
7 0.07382 4.5687 0.07493

G: 128, 2186, 16256,
75938, 263552,
745418, 1817216,
3959426, 7902848,
14704202 (τ = 14)

29,487,171 48064.664

7

A∗
7 0.06542 3.0596 0.076187

16, 128, 688, 2746,
8752, 23536, 55568,
118498, 232976,
428752

871,661 4112.68

Lc
7 0.11738 2.9000 ? ? ? ?

Z7 0.03691 33.498 0.083333
14, 98, 462, 1666, 4942,
12642, 28814, 59906,
115598, 209762

433,905 484.67

A+
7 0.01636 30.163 0.08442

8, 56, 224, 812, 2240,
5768, 12656, 26474,
49952, 91112

189,303 628

TA∗
7 2.839e-3 ? ?

8, 36, 120, 330, 792,
1716, 3432, 6434,
11432, 19412

43,713 420.68
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

Â+
7 3.586e-4 137.9 0.1214

8, 14, 56, 98, 392, 644,
1400, 2198, 5096, 7532

17,439 321.127

T60
7 0.05673 15.87 0.08076

G: 4, 12, 36, 100, 276,
? (τ = 20)

? ?

S7 4.035e-3 24.15 0.08525 4, 12, 36, 100, 276, ? ? ?

7
V60

7 3.730e-3 15.00 0.08702 4, 12, 36, 100, 276, ? ? ?

V90
7 2.424e-3 32.39 0.09267

4, 12, 36, 100, 276,
724, 1676, 3592, 7012,
12868

26,301 8.8.8.8.82.82

Y60
7 1.652e-3 18.95 0.08854 3, 6, 12, 24, 48, ? ? ?

Y90
7 1.074e-3 36.73 0.09365

3, 6, 12, 24, 48, 90, 168,
312, 580, 1046

2290 122.122.122
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

E8,E∗
8,

D+
8 ,Λ8

0.25367 4.0587 0.071682

240, 9120, 121680,
864960, 4113840,
14905440, 44480400,
114879360,
265422960, 561403680

1,006,201,681 36720.421840.5120

D8 0.12683 32.470 0.075914

112, 2592, 25424,
149568, 629808,
2100832, 5910288,
14610560, 32641008,
67232416

123,302,609 31344.44816.556

8

A8 0.08456 32.993 0.077391

72, 1332, 11832, 66222,
271224, 889716,
2476296, 6077196,
13507416, 27717948

51,019,255 3504.42016.536

D∗
8 0.03171 8.1174 0.074735

G: 256, 6560, 65280,
384064, 1614080,
5374176, 15097600,
37281920, 83222784,
171312160 (τ = 16)

314,358,881 432512.6128
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

A∗
8 0.02969 3.6658 0.075972

18, 162, 978, 4482,
16722, 53154, 148626,
374274, 864146,
1854882

3,317,445 4144.69

Lc
8 0.08253 3.1422 ? ? ? ?

Z8 0.01585 64.939 0.083333

16, 128, 688, 2816,
9424, 27008, 68464,
157184, 332688,
658048

1,256,465 4112.68

8

A+
8 6.599e-3 65.99 0.0838

9, 72, 324, 1332, 4104,
11832, 28674, 66222,
136404, 271224

520,198 636

TA∗
8 7.128e-4 ? ?

9, 45, 165, 495, 1287,
3003, 6435, 12870,
24309, 43749

92,368 427.69

Â+
8 6.759e-5 301.1 0.1178

9, 16, 72, 128, 576,
968, 2340, 3768, 9648,
14716

32,242 328.128
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Table 2.2 continued

n packing ∆ Θ G coordination sequence
(throughk = 10)

td10

point
symbol
vertex
symbol

T90
8 0.01585 64.94 0.08333

G: 4, 12, 36, 100, 276,
724, ? (τ = 16)

? ?

S8 9.903e-4 28.28 0.08452 4, 12, 36, 100, 276, 724,
?

? ?

8

V90
8 5.590e-4 49.89 0.09206

4, 12, 36, 100, 276,
724, 1908, 4390, 9876,
19682

37,009 8.8.8.8.82.82

Y90
8 2.327e-4 87.31 0.09266

3, 6, 12, 24, 48, 90, 168,
312, 580, 1046

2290 122.122.122
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Table 2.3: Known characteristics of selected lattices in dimension 9≤ n≤ 24.

n packing ∆ Θ G τ

Λ9 0.14577 9.0035 0.07206 272
˜

D+
9 0.14577 4.3331 0.07110 144

D∗
9 0.01288 8.6662 0.07469 18

9 A∗
9 0.01268 4.3889 0.07582 20

A5
9 0.08447 4.3402 0.07207 90

Lc
9 0.08149 4.2686 ? ?

Z9 0.006442 126.81 0.08333 18

Λ10 0.09202
˜

12.409 0.07150 336
˜

D+
10 0.07969 7.7825 0.07081 180

10 A∗
10 0.005128 5.2517 0.07570 22

Lc
10 0.02995 5.1545 ? ?

Z10 0.002490 249.04 0.08333 20

K11 0.06043
˜

? ? 432

Λmax
11 0.05888 24.781 0.07116 438

˜
D+

11 0.04163 8.4072 ? 220

11 A∗
11 0.001974 6.2813 0.07562 24

A4
11 0.04740 5.5983 0.07025 132

Lc
11 0.04124 5.5056 ? ?

Z11 9.200e-4 491.40 0.08333 22

K12,K∗
12 0.04945 17.783 0.07010 756

˜
Λmax

12 0.04173 30.419 0.07058 648

D+
12 0.02086 15.209 ? 264

12 A∗
12 7.271e-4 7.5101 0.07557 26

Lc
12 0.004306 7.4655 ? ?

Z12 3.260e-4 973.41 0.08333 24
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Table 2.3 continued.
n packing ∆ Θ G τ

K13 0.02921
˜

? ? 918
˜

Λmax
13 0.02846 60.455 0.07009 906

A∗
13 2.569e-4 8.9768 0.07553 28

13 A7
13 ? 7.8641 ? 368

Lc
13 0.002255 7.7621 ? ?

Z13 1.112e-4 1934.6 0.08333 26

Λ14 0.02162 98.876 0.06946 1422
˜

A∗
14 8.740e-5 10.727 0.07551 30

14 A5
14 ? 9.0066 ? ?

Lc
14 0.005221 8.8252 ? ?

Z14 3.658e-5 3855.6 0.08333 28

Λ15 0.01686 202.91 0.06892 2340

A∗
15 2.870e-5 12.817 0.07549 32

15 A8
15 ? 11.602 ? ?

Lc
15 6.206e-5 11.005 ? ?

Z15 1.164e-5 7703.1 0.08333 30

Λ16,Λ∗
16 0.01471 96.500 0.06830 4320

16 A∗
16 9.116e-6 15.311 0.07549 34

Z16 3.591e-6 15,422 0.08333 32

Λ17 0.008811 197.72 0.06822 5346

A∗
17 2.807e-6 18.288 0.07549 36

17 A9
17 ? 12.357 ? ?

Z17 1.076e-6 30,936 0.08333 34

Λ18 0.005928
˜

301.19 0.06792 7398

18 A∗
18 8.396e-7 21.841 0.07550 38

Z18 3.134e-7 62,158 0.08333 36
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Table 2.3 continued.
n packing ∆ Θ G τ

Λ19 0.004121 607.62 0.06767 10668

A∗
19 2.443e-7 26.082 0.07552 40

19 A10
19 ? 21.229 ? ?

Z19 8.892e-8 125,077 0.08333 38

Λ20 0.003226
˜

889.86 0.06731 17400

A∗
20 6.924e-8 31.143 0.07553 42

20 A7
20 ? 20.367 ? ?

Z20 2.461e-8 252,020 0.08333 40

Λ21 0.002466 1839.5 0.06701 27720

A∗
21 1.914e-9 37.185 0.07555 44

21 A11
21 ? 27.773 ? ?

Z21 6.651e-9 508,417 0.08333 42

Λ22 0.002128
˜

≤ 3426.8 ? 49896

Λ∗
22 2.952e-4 ≤ 27.884 ? 1782

22 A∗
22 5.168e-10 44.395 0.07558 46

Z22 1.757e-9 1,026,792 0.08333 44

Λ23 0.001905 ≤ 7609.0 ? 93150

Λ∗
23 2.788e-4 ≤ 15.322 ? 4600

23 A∗
23 1.364e-10 53.000 0.07560 48

Z23 4.543e-10 2,075,774 0.08333 46

Λ24,Λ∗
24 0.001930 7.9035 0.06577 196560

24 A∗
24 3.523e-11 63.269 0.07563 50

Z24 1.150e-10 4,200,263 0.08333 48



58

2.4 Rare nonlattice packings and nets forn≤ 8

We now turn our attention to the problem of infiniterare sphere packings, with

packing densitylower than that of the corresponding cubic packing, and the closely re-

lated problem of infinite nets. Forn = 2, this problem is essentially trivial. Forn = 3,

the richness of solutions to this problem is fascinating and, due to the intense interest in

crystallographic structures with various desirable chemical properties, has been exhaus-

tively studied and catalogued. Forn> 3, relatively few regular constructions are known,

and it appears as if what academic interest there has been hasnot yet led to any appli-

cations of significance in science and engineering; Bewley &Cessna (2011) intends to

change this, thus motivating the present study.

Interest inn-dimensional space groups and symmetries dates back to the nine-

teenth century, with the work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Ro-

drigues, Möbius, Jordan, Sohncke, Fedorov, Schönflies, Fricke, and Klein. Histori-

cal accounts of this early work, as well as several follow-onmathematical develop-

ments related to space groups and symmetries, are availablein Brown et al. (1978) and

Schwarzenberger (1980). Much of the related work in the fieldof geometry was devel-

oped by Coxeter (1970, 1973, 1974, 1987, 1989). Despite thisintense interest, there are

very few explicit constructions of regular rare sphere packings forn> 3 available today,

outside of very short treatments of the subject by O’Keeffe (1991b) and Beukemann &

Klee (1992), discussed below.

As mentioned in the abstract and explored in depth in Bewley &Cessna (2011),

certain emerging engineering applications now motivate the further development and

deployment of quasi-infiniten-dimensional nets, with a particular focus on structured

nets with low coordination number and high topological density. Such nets are well

suited for the rapid spread of information in switchless computational interconnect sys-

tems with a reduced number of wires and, thus, reduced cost. In such systems, a logical

network withn > 3 may easily be designed and built13 and, as we will see, there are

significant potential benefits for so doing. We are thus motivated to revisit the problem

13Recall, e.g., the “hypercube” computational interconnectsystem introduced several years ago; though
designed with a logical network withn> 3, the hypercube, like most computational interconnect strategies
deployed today, is significantly hampered by its inherent dependence on a Cartesian topology.
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of the design of structured nets with low coordination number. Note that none of the lat-

tice alternatives to the cubic lattice discussed in §2.3have a coordination number lower

than that of the corresponding cubic lattice,τ = 2n. However, forn = 3, there is a wide

range of stable and unstable nonlattice packings that lead to such nets; as shown below,

many of these packings and nets generalize naturally to higher dimensions.

2.4.1 Net terminology

The terminology used to discuss 3D nets, most of which generalizes readily to

the discussion ofn-dimensional nets, has been clarified significantly over thelast decade,

and is now quite precise.

Recall first the measures defined in §2.2, including thecoordination number, the

coordination sequence, and ak-hop measure oflocal topological densitygiven by the

cumulative sum of all nodes reached withink hops from origin, denotedtdk (Tables 2.1

and 2.2 list this quantity fork = 10). O’Keeffe (1991a) defines another, sometimes pre-

ferred (see, e.g., Grosse-Kunstleve et al. 1996) measure ofglobal topological density,

td = limk→∞ tdk/kn, which reveals the rate of growth oftdk with k in the limit of largek.

[For a uninodaln-dimensional net,td may be found by representing14 the coordination

sequence as an(n− 1)’th-order polynomial in the number of hopsk, then taking the

leading coefficient of this polynomial and dividing byn.] Despite some impressive ef-

forts in representing coordination sequences with such polynomials (see, e.g., Conway

& Sloane 1997, and the references contained therein), the measuretd is currently un-

known for most of the nets discussed here. As a matter of computational tractability, we

thus resort in the present work to the tabulation of the localtopological density measure,

td10, as this measure is much easier to compute.

Our attention in this work is focused almost exclusively onequilibrium packings

(that is, on sphere packings which, if unperturbed, can bearcompressive loads applied

at the edges of a packing that is built out to fill a finite convexdomain) and their cor-

respondingequilibrium nets(which are constructed with tensile members connecting

nearest-neighbor nodes, and can bear tensile loads appliedat the edges of a finite con-

14Or byapproximatingthis coordination sequence as an(n−1)’th-order polynomial for largek, if such
a polynomial does not fit exactly.
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vex domain)15,16. Equilibrium packings fall into two catagories: stable (that is, sphere

packings which, if perturbed, oscillate about their equilibrium configurations, and return

to these configurations if there is damping present in the system) and unstable (that is,

sphere packings which depart from equilibrium if perturbed); we consider both.

After years of conflicting terminology in the literature on nets, the concepts of

cycles, rings, strong rings, tilings, natural tilings, point symbols, andvertex symbols

have, in 3D, finally crystallized. The reader is referred to Blatov et al. (2009) and

the references contained therein for description of this modern terminology, as well as

numerous cautions concerning the conflicting nomenclatures adopted elsewhere in the

published literature. In short:

• A cycleis a sequence of nodes in a net, connected by edges, such that the first and last

nodes of the sequence coincide, while none of the other nodesin the sequence appears

more than once.

• A cycle sum, of cycles A and B, is the union of those edges in either A or B but not

both.

• A ring is a cycle that is not the sum of two smaller cycles.

• A strong ringis a cycle that is not the sum of any number of smaller cycles.

• A tiling of R3 by a 3D net is simply the dissection of 3D space into volumes whose

faces, which in general may be curved (asminimal surfaces, like soap bubbles; see,

e.g., Sadoc & Rivier 1999), are bounded by cycles of the net. A3D net generally

admits many tilings.

• Thedual of a tiling is the unique new tiling obtained by placing a new vertex inside

each original tile and connecting the vertices of adjacent tiles (that is, with shared

faces) in the original tiling with edges. If a tiling and its dual are identical, the tiling

is said to beself-dual. The dual of a dual is the original tiling.

15A family of structures with both tensile and compressive members, known astensegrity, might be said
to cover the gap between purely compressive sphere packingsand purely tensile nets. The mathematical
characterization of tensegrity systems in 3D is now precise, due largely to the work of Skelton & de
Oliveira (2009). An interesting extension of the present study would be to generalize such tensegrity
systems ton > 3 dimensions.

16For the purpose of the applications studied in Chapters 3 and4, we do not actually use the property
of mechanical equilibrium of the corresponding structure;this property may rather be considered as a
convenient means to an end when designing a regular packing or net. Several nets discussed in the
literature (see, e.g., Wells 1977, page 80) are not equilibrium sphere packings, and might be interesting to
consider further.
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• A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles such that

the tiles have the maximum combinatorial symmetry and all the faces of the tiles are

strong rings. A 3D net often17 admits a unique natural tiling. If a tiling and its dual

are both natural, the pair is referred to asnatural duals. If a natural tiling is self-dual,

it is said to benaturally self-dual.

• Thepoint symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that there area

pairs of edges touching the node at the origin with shortest cycles of lengthA, b pairs

of edges touching the node at the origin with shortest cyclesof lengthB (with B > A),

etc. Note that the sum of the superscripts in a point symbol totalsτ(τ −1)/2.

• Thevertex symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that the first

pair of edges touching the node at the origin hasa shortest rings of lengthA, the

second pair of edges touching the node at the origin hasb shortest rings of lengthB,

etc. If for any entry there is only 1 such shortest ring, the subscript is suppressed; if for

any entry there is no ring, a subscript∗ is used. The entries are sorted such that smaller

rings are listed first, and when two rings of the same size appear, the entry with the

smaller subscript is listed first. In the special case ofτ = 4, the six entries of the vertex

symbol are listed as three pairs of entries, with each pair ofentries corresponding to

opposite pairs of edges, and are otherwise again sorted fromsmallest to largest. Note

that the number of entries in a vertex symbol isτ(τ −1)/2.

The concepts ofcycles, rings, strong rings, point symbols, andvertex symbolsextend im-

mediately tondimensions; for practical considerations (specifically, because the number

of entries in a vertex symbol gets unmanageable for largeτ), we list the point symbol

in Table2.2whereverτ ≥ 5, and the vertex symbol whereτ ≤ 4. The extension of the

tiling concept ton dimensions is more delicate, and is discussed further in §2.4.5.

Following Delgado-Friedrichs et al. (2003a,b), theregularity of a 3D net may

now be characterized precisely. In short, consider a 3D net with p kinds of vertex

andq kinds of edge and whose natural tiling is characterized byr kinds of face ands

kinds of tile. Delgado-Friedrichs & Huson (2000) introduced a clear and self-consistent

method for characterizing the regularity of such a net simply by forming the arraypqrs:

17Unfortunately, not all 3D nets have natural tilings, and some have multiple natural tilings; §3 of
Blatov et al. (2007) discusses this issue further.
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examining the 4-digit number so formed, referred to as thetransitivity of the net, the

most “regular” 3D nets are generally those with the smallesttransitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and

edges in its primitive cell18; that is, upon deletion of any further edges in the primitive

cell, the resulting net breaks into multiple disconnected structures. Beukemann & Klee

(1992) establish that there are only 15 such minimal nets in 3D. Delgado-Friedrichs &

O’Keeffe (2003) define a 3D net asbarycentricif every vertex is placed in the center

of gravity of its neighbors (to which it is connected by edges). Bonneau et al. (2004),

in turn, establish that 7 of the 15 such minimal nets in 3D havecollisions; that is, when

arranged in barycentric fashion, the location of two or morevertices coincide (and, thus,

the net is in a sense degenerate). Of the 8 remaining minimal nets without collision, five

are uninodal.

2.4.2 2D nets

Consider first the development of uninodal 2D nets with low coordination num-

ber. Start from the triangular (A∗
2
∼= A2) lattice (see §2.2) and perform a red/black/blue

coloring of the nodes such that no two nearest-neighbor nodes are the same color. If we

retain only the red and black nodes, we are left with thehoneycomb packing(see Fig-

ure2.1e), and the corresponding net is an array of hexagons. The coordination number

of this stable sphere packing isτ = 3, which is less than that of the 2D square packing

(τ = 4); this implies fewer wires in the corresponding computational interconnect appli-

cation. Unfortunately, the topological density of this netis quite poor, withtd10 = 166

(that is, with information spreading from one node to only 165 others after a message

progresses 10 hops in the network application). We are thus motivated to explore other

ways of constructing structured (that is, easy-to-build and easy-to-navigate) nets with

low coordination number (that is, with low cost) but high topological density (that is,

with a fast spread of information).

Note that the honeycomb packing has a packing density which is less than that

of the corresponding triangular and square lattices discussed previously (see Table2.2).

18A primitive cellof a net is the smallest fundamental volume (e.g., hypercube) that, when repeated as
an infinite array in all directions with zero spacing, generates the net.
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If minimization of packing density is the goal19, then the honeycomb packing may be

augmentedby replacing every sphere with a set of three spheres in contact, each such

set forming an equilateral triangle which touches the neighbors in exactly the same

locations as the single sphere which it replaces in the original (unaugmented) packing

(see, e.g., Heesch & Laves 1933, Figure 13). The packing density of the resulting stable

augmented honeycombpacking is less than 2/3 that of the original honeycomb packing

(see Table2.2), and is the rarest uninodal sphere packing available in 2D.

2.4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We thus identify a

List of Twelve highly “regular” (as defined in §2.4.1, via their transitivity) uninodal 3D

nets upon which we will focus our attention and which, following Delgado-Friedrichs

et al. (2003a,b), we denote (listing from dense to rare):

1. fcu: face-centered cubic (FCC),

2. bcu: body-centered cubic (BCC),

3. pcu: cubic,

4. qtz: quartz,

5. nbo: NbO,

6. dia: diamond,

7. sod: sodalite,

8. qzd: quartz dual,

9. cds: CdSO4,

10. bto: B2O3,

11. ths: ThSi2,

12. srs: SrSi2.

See Table2.2 for the common names, associated packings, and key characteristics of

each20. These twelve nets have been studied thoroughly in the literature, including the

landmark work of Wells (1977, 1979, 1983, 1984) and scores ofimportant publications

since, including Koch & Fischer (1995, 2006) and the numerous references contained

therein; space does not allow a comprehensive review of thisbroad body of literature

here, nor even a comprehensive analysis of these twelve well-studied nets. Suffice it to

say here that included in our List of Twelve are the 5regularnets (that is, of transitivity

1111),bcu, pcu, nbo, dia, andsrs, and the 1quasiregularnet (of transitivity 1112),

fcu, as well as 2 of the 14semiregularnets (of transitivity 11rs), qtz andsod (both of

which have transitivity 1121), as discussed in Delgado-Friedrichs et al. (2003a,b). Also

included in this list are the 5 uninodal minimal nets withoutcollision,pcu, dia, cds, srs,

andths, the first 4 of which are naturally self-dual, as discussed inBonneau et al. (2004,

19Note that, forn > 3, the authors are actually unaware of any practical application, other than mathe-
matical curiosity, for which minimization of packing density is a significant goal.

20Again, clear drawings of each of these nets are available athttp://rcsr.anu.edu.au/nets/fcu,
where “fcu” may be replaced by any of the lowercase boldface three-letter identifiers given here.

http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/bcu
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/bcu
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/fcu
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Table 1); note thatcds is of transitivity 1221, andths is of transitivity 121121. The

remaining 2 nets on our List of Twelve,qzd (transitivity 1211; see Delgado-Friedrichs

et al. 2003c) andbto (transitivity 1221; see Blatov 2007), are included becauseof their

close structural relationship to the others, as discussed further in §2.4.4. We also note

that four on our List of Twelve,qtz, qzd, bto, andsrs, arechiral (that is, these nets twist

in such a way that the nets and their reflections are not superposable).

The 12 remaining semiregular nets (of transitivity 11rs) of Delgado-Friedrichs et

al. (2003b, Table 1) are the next natural candidates in this taxonomy (hxg, crs, reo, and

rhr might be of particular interest), perhaps followed by the 28binodal edge-transitive

nets (of transitivity 21rs) of Delgado-Friedrichs et al. (2006, Table 1) and the 3 bin-

odal minimal nets without collision (of transitivity 2222,2211, and 2321) of Bonneau

et al. (2004, Table 1). Note that just half of the List of Twelve considered here (specif-

ically, in order of frequency,dia, pcu, srs, ths, nbo, andcds) account for 66% of the

774 uninodal metal-organic frameworks (MOFs) tabulated inthe Cambridge Structural

Database (CSD), as reviewed by Ockwig et al. (2005), thus indicating the prevalence in

nature of several of the structures considered here.

The idea of augmentation, introduced in §2.4.2, extends directly to many 3D

nets in order to reduce packing density. For example, in the (stable) packings related to

thedia andsodnets (discussed further in §2.4.4and §2.4.4respectively), both of which

have coordination number 4, we may replace each sphere with aset of four spheres in

contact, each such set of spheres forming a tetrahedron, creating what is referred to as

the augmented diamond(dia-a) andaugmented sodalite(sod-a) nets. In the case of

the augmentation of the packing related to thedia net, each tetrahedral set touches the

neighbors in exactly the same locations as the single spherewhich it replaces in the orig-

inal (unaugmented) packing (see Heesch & Laves 1933, Figure12). In the case of the

augmentation of the packing related to thesodnet, as the angles between the 4 nearest

neighbors of any node are not uniform in thesod net, each tetrahedral set is slightly

larger than the single sphere which they replace in the original (unaugmented) packing,

and the contact points are slightly shifted (O’Keeffe 1991b); note that the packing asso-

ciated with thesod-anet is the rarest uninodal stable 3D packing currently known. On

21As illustrated in Bonneau et al. (2004, Figure 3), a self-dual tiling of ths may in fact be constructed;
this tiling has transitivity 1221.
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the other hand, in the augmentation of the (unstable) packing related to thesrsnet, which

has coordination number 3, we may replace each sphere with a set of three spheres in

contact, each such set of spheres, as in the augmentation of the honeycomb packing,

forming an equilateral triangle and touching the neighborsin exactly the same locations

as the single sphere which it replaces in the original (unaugmented) packing (see Heesch

& Laves 1933, Figure 10); note that the packing associated with the resultingsrs-anet

is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycomb,dia-a (transitivity 1222) to

dia, sod-a(transitivity 1332) tosod, andsrs-a (transitivity 1221) tosrs, it is seen that

augmentation, while reducing the packing density∆ (see Table2.2), also significantly

reduces both the topological density,td10, and the regularity of the resulting net. Thus,

the process of augmentation appears to be of little interestfor the purpose of developing

efficient computational interconnects. Note that Fischer (2005) and Dorozinski & Fis-

cher (2006) show that the process of augmentation can be repeated indefinitely in order

to obtain (non-uninodal) sphere packings of arbitrarily low packing density.

Finally, there are two other 3D nets which, though less regular than our List of

Twelve, are worthy of “honorable mention”:hexagonal close packing(hcp, transitivity

1232) andlonsdaleite(lon, transitivity 1222). As hinted by their identical packing den-

sities (see Table2.2a),hcp is closely related tofcu, andlon is closely related todia; cu-

riously, both have slightlyhighervalues oftd10 than do their more regular cousins. The

relations between these two pairs of packings is readily evident when they are consid-

ered as built up in layers, as introduced in the second paragraph of §2.3.4and discussed

further below.

TheA3 lattice (a.k.a. FCC, corresponding to thefcu net) may be built up as an

alternating series of three 2D triangular (A2) layers, offset from each other in the form

abcabc. . ., with the nodes in one layer over the holes in the layer below;hcp is built up

similarly, but with two alternating layers, offset from each other in the formabab. . .

Similarly, the sphere packings corresponding to thedia andlon nets may be built

up as alternating series of approximately 2D honeycomb layers offset from each other.

These honeycomb “layers” are in fact not quite 2D; if the nodes in a single layer are

marked with an alternate red/black coloring, the red nodes are raised a bit and the black
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nodes lowered a bit. In both packings, the layers are offset from each other, with the

lowered nodes in one layer directly over the raised nodes in the other. In the packing

corresponding to thedia net, there are three such alternating layers stacked in the form

abcabc. . .; in the packing corresponding to thelon net, there are two such alternating

layers stacked in the formabab. . .

2.4.4 Uninodal extension of several regular 3D nets to higher di-

mensions

The fcu net is based on theD3
∼= A3 lattice, and thus may be extended ton

dimensions in two obvious ways (that is, viaAn or Dn). Thebcu net is based on the

D∗
3
∼= A∗

3 lattice, and thus may also be extended ton dimensions in two obvious ways

(via A∗
n or D∗

n). Thepcu net is based on theZ3 lattice, and thus extends ton dimension

via Zn. This section explores how most of the other nets on the List of Twelve described

above extend naturally to higher dimensions.

It is important to recall that the nets in theD∗
n case forn > 4 turn out to be a bit

peculiar, as discussed further in §2.3.3; theT90
n andT60

n nets encountered in §2.4.4are

similar.

Extending dia: the A+
n and D+

n packings

Thedia net may be obtained from the well-knownD+
3 packing defined in (2.6)

(see also Sloane 1987), and thus extends naturally ton dimensions asD+
n . However,

there is an alternative construction of thedia net, described below and denotedA+
n ,

which is equivalent toD+
n for n = 3 but extends ton dimensions differently. In fact,

a third extension of thedia net ton dimensions, theV90
n construction, is introduced in

§2.4.4. These alternative extensions of thedia net ton dimensions, with low coordina-

tion number, are perhaps better suited thanD+
n for many practical applications. We thus

stress that names such as “n-dimensional diamond” are parochial, as there are sometimes

multiple “natural”n-dimensional extensions of a net related to a given three-dimensional

crystalline structure (e.g.,D+
n , A+

n , andV90
n ). Forn-dimensional nets in general, we thus

strongly prefer names derived from a corresponding well-definedn-dimensional lattice
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or, when such a name is not available, names evocative of their n-dimensional construc-

tion; this preference is in sharp contrast with the names suggested by O’Keeffe (1991b).

Recall the first paragraph of §2.4.2. Now start from a BCC (A∗
3
∼= D∗

3) lattice and

perform a red/black/blue/yellow coloring of the points such that no two nearest-neighbor

points are the same color. If we retain only the red and black points, we are left with

the diamond packing. The coordination number of this packing is τ = 4, which is less

than that of the 3D cubic packing (τ = 6), but also has a reduced topological density,

as quantified bytd10 (see Table2.2). The diamond packing also has a packing density

which is less than that of the corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.8a)] that A∗
n may be defined as the union ofn+1 shifted

An lattices, which is analogous to the property [see (2.5a)] that D∗
n may be defined as

the union of 4 shiftedDn lattices. Recall from (2.6) that D+
n , which we referred to

theoffset checkerboard packing, was defined as the union of just 2 shiftedDn lattices,

and generates the diamond packing in 3D (whereD3
∼= A3). Motivated by the previous

paragraph and the first paragraph of §2.4.2, we are thus also keenly interested in the

nonlattice packing considered in Table 1 of O’Keeffe (1991b), denoted hereA+
n and

referred to as theoffset zero-sum packing, and which is defined as the union of just 2

shiftedAn lattices [cf. (2.6), (2.8)]:

A+
n = An∪ ([1]+An), where [1]k =





1
n+1 k≤ n,

−n
n+1 k = n+1.

(2.15)

The coordination number of the regular uninodal nonlatticepackingA+
n is n+ 1, with

thesen+ 1 nearest neighbors forming ann-dimensionalsimplex[that is, in n dimen-

sions, a polytope withn+1 vertices—e.g., inn = 3 dimensions, a tetrahedron (with 4

vertices)]. The generalization of the honeycomb and diamond packings to higher dimen-

sions given byA+
n is significant, as it illustrates how a highly regular stablepacking with

coordination number lower than that of the cubic lattice maybe extended to dimension

n > 3. Note also that the nonlattice packingsA+
n are distinct from the lattice packings

Ar
n defined in (2.9), which are generated in a similar manner.
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Augmenting theA+
n packing: Â+

n

The third paragraph of §2.4.3 discusses the augmentation of theA+
3 packing,

replacing each sphere with a tetrahedral set of 4 smaller spheres. This idea extends

immediately to the augmentation, inn dimensions, of theA+
n packing discussed above,

replacing each (n-dimensional) sphere with ann-dimensional simplex ofn+1 smaller

spheres.

Extending sod: the TA∗
n packing

The familiarsodnet is formed by the edges of the Voronoï tesselation of space

formed by theA∗
3 (that is, BCC) packing, with the nodes of the net located at the

holesof the packing rather than at the centers of the spheres of thepacking. As noted

by O’Keeffe (1991b), this construction extends immediately to then-dimensional net

formed by the Voronoï tesselation of space via theA∗
n packing. Constructing theA∗

n

packing as defined in §2.3.4, the holes of this packing that are nearest to the origin (that

is, in its Voronoï tesselation, the corners of the Voronoï cell which contains the origin)

are given by the(n+1)! permutations of the vector (see Conway & Sloane, 1999, page

474):
1

2(n+1)

(
−n −n+2 −n+4 . . . n

)T
.

These nodal points [which, like the lattice points ofA∗
n itself, are defined in an(n+1)-

dimensional space, but all lie in then-dimensional subspace orthogonal to the vector

nAn defined in (2.7b)] are equidistant from theirn+ 1 nearest neighbors, and form

permutohedra(in 3D, truncated octahedra) which tile n-dimensional space. Note that

these nodal points themselves form a uninodal sphere packing with coordination num-

berτ = n+1; due to its relationship to thetesselationof space via the points of theA∗
n

packing, we thus introduce the notationTA∗
n for this packing.

Extending nbo: the Sn construction

The nbo net, a subset of thepcu net, has an obvious uninodal extension ton

dimensions withτ = 4, which may be visualized as the contact graph formed by re-

peating a unit hypercube pattern as an infinite array with unit spacing (see Figure2.11),
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Figure 2.7: Construction of three rare packings: (left) theY2 (honeycomb) net, (center)

theY90
3 (ths) net, and (right) theV90

3 (dia) net. All three constructions build from left to

right in the above figures from a basic “Y” or “ V” stencil, and have obvious extensions

to higher dimensions.

where each hypercube itself has two paths which “snake” along the edges from the

(0,0, · · · ,0,0) node to the(1,1, · · · ,1,1) node, one coordinate direction at a time; we

thus suggest the symbolSn to denote this construction. These two paths touch at the

opposite corners of the unit hypercube.

Extending ths and bto: the Y90
n and Y60

n constructions

The honeycomb packingA+
2 , of coordination numberτ = 3, contains a funda-

mentalY-shaped stencil. As illustrated in Figure2.7a, starting with thisY stencil and

adjoining translates of itself, tip to tip, builds up the honeycomb packing in 2D. Extend-

ing this idea to 3D, as illustrated in Figure2.7b, we may “twist” theY stencil by 90◦ at

each level: starting with the basicY stencil in, say, thee1-e2 plane, we can shift to the

right (in e1) and adjoinY stencils twisted by 90◦ (that is, aligned in thee1-e3 plane), then

shift to the right again and adjoinY stencils twisted again (aligned in thee1-e2 plane),

etc. This construction forms theths net in 3D, and extends immediately to dimension

n > 3; we thus denote this constructionY90
n .

Instead of twisting theY stencil by 90◦ at each step, we may instead twist it

by 60◦. This forms thebto net in 3D. As with thehcp versusfcu and lon versusdia

nets in 3D, as described at the end of §2.4.3, there is a bit of flexibility in terms of the

ordering of the the successive twists forn > 3. A highly regular net for oddn, which

we denoteY60
n , is formed by pairing off the dimensions after the first and alternating the
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Figure 2.8: Variation of the Voronoï volume of theY90
n & Y60

n and (right)V90
n & V60

n

packings as a function ofα for n = 2 to n = 8.

twists as follows: starting with the basicY stencil in, say, thee1-e2 plane, we continue

by adjoiningY stencils in thee1-e4 plane, then in thee1-e6 plane, etc. We then adjoinY

stencils in thee1-z60
23 plane, wherez60

23 is the vector formed by rotating thee2 unit vector

60◦ in the direction towardse3; we continue by adjoiningY stencils in thee1-z60
45 plane,

then in thee1-z60
67 plane, etc. Next, we adjoinY stencils in thee1-z120

23 plane, wherez120
23

is the vector formed by rotating thez60
23 vector 60◦ further in thee2-e3 plane; we continue

by adjoiningY stencils in thee1-z120
45 plane, then in thee1-z120

67 plane, etc., and repeat

(that is, with stencils again aligned in thee1-e2 plane).

TheY
90
n andY

60
n constructions have a parameter, denotedα and defined as half

of the angle between the two top branches of theY stencil (thus,α → 0◦ closes down

theY to anI, whereasα → 90◦ opens up theY to aT). The Voronoï volume of theY90
n

andY60
n constructions may be written as simple functions ofα as follows:

VY90
n

(α) = fYn(α)VY90
n

(ᾱ)

VY60
n

(α) = fYn(α)VY60
n

(ᾱ)



 with ᾱ = 45◦.

Where fYn(α) = (2−
√

2)(1+cosα)(
√

2 sinα)n−1. This relation is plotted in Figure

2.8a. The characteristics ofY90
n andY

60
n reported in Table2.2 are computed forα =

cos−1(1/n), as marked with circles in Figure2.8a, which maximizes the Voronoï volume

and, thus, minimizes the packing density. An alternative natural choice isα = 60, which

results in barycentric constructions ofY90
n andY60

n .
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Extending dia and qtz: the V90
n and V60

n constructions

TheV90
n andV60

n constructions are defined in an identical manner as theirY90
n and

Y60
n counterparts, with aV stencil replacing theY stencil (see, e.g., Figure2.7c), thus

resulting in nets with coordination numberτ = 4 instead ofτ = 3. These constructions

lead to thedia andqtz nets in 3D.

As with the Y90
n and Y60

n construction, theV90
n and V60

n constructions have a

parameter, denotedα and defined as half of the angle between the two top branches of

theV stencil. The Voronoï volume of theV90
n andV

60
n constructions may be written as

simple functions ofα as follows:

VV90
n

(α) = fVn(α)VV90
n

(ᾱ)

VV60
n

(α) = fVn(α)VV60
n

(ᾱ)



 with ᾱ = 45◦, fVn(α) = 2n/2 cosα (sinα)n−1.

This relation is plotted in Figure2.8b. The characteristics ofV90
n andV60

n reported in

Table2.2 are computed forα = cos−1(1/
√

n), as marked with circles in Figure2.8a,

which maximize the Voronoï volumes and, thus, minimize the packing density. Note

that theV90
n andV60

n constructions are barycentric for anyα in the range 0< α < 90◦.

Extending cdsand qzd: the T90
n and T60

n constructions

TheT90
n andT60

n constructions are defined in an analogous manner as theirY90
n ,

V90
n , Y60

n , andV60
n counterparts, and lead to thecds andqzd nets in 3D. The only dif-

ference now is that, instead of adjoining two newY or V symbols on the tips of eachY

or V symbol in the previous layer, we now adjoin a single newT symbol centered atop

eachT symbol in the previous layer, appropriately twisted; theseconstructions thus re-

sult in nets with coordination numberτ = 4. Note that the “horizontal” and “vertical”

distances between nodes in these constructions are equal, and that these constructions

are parameter free and barycentric.

Note that thex1 direction is special in theY90
n , Y60

n , V90
n , V60

n , T90
n , andT60

n

constructions. These constructions are configured in this way intentionally, in order to

construct equilibrium packings; however, other variations are certainly possible. Note

also that theY60
n , V

60
n , andT

60
n constructions involve pairing off the dimensions after the

first and rotating in each pair of dimensions 60◦ at a time, in the manner described in

http://rcsr.anu.edu.au/nets/dia
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§2.4.4. If we follow the same procedure but rotate 90◦ at a time, we recover nets equiv-

alent to the correspondingY90
n , V90

n , andT90
n nets, respectively, as defined previously.

Note also that theY90
n , V90

n , andT
90
n constructions form square layers in thee2-e3

plane, thee4-e5 plane, thee6-e7 plane, etc., whereas theY60
n , V

60
n , andT

60
n constructions

form triangular layers in these planes. In the resultingY
90
n , Y

60
n , V

90
n , andV

60
n nets, there

are, in fact, no edges of the net within these layers (that is,all of the edges connect nodes

in different layers). On the other hand, in the resultingT90
n andT60

n nets, each node is

connected via edges of the net to exactly two others (note:not four or six) within these

layers. As with the peculiarD∗
n net discussed previously, theT90

n andT60
n constructions

are, in fact,notcontact graphs of the corresponding sphere packings22; some bonds must

be cut in the corresponding contact graphs (which, in the case of T90
n , is simplyZn) in

order to form theT90
n andT60

n nets.

Other extensions

Sections2.4.4through2.4.4summarize several uninodal families ofn-dimensional

extrapolations of some common 3D nets; most of these (unlessindicated otherwise, via

references to existing literature) are new. Note that O’Keeffe (1991b) mentions two

other such extensions, one corresponding to thelon net and one corresponding to the

sod-a, the latter of which is currently the rarest uninodal stablepacking known forn> 3

(and which, consistent with the above developed naming conventions, we might suggest

to identify asTÂ∗
n). Beukemann & Klee (1992, page 50) mentions two extensions of their

own (at least, ton = 4), both related to thedia net. Judging from the vast assortment of

distinct rare sphere packings and related nets available in3D, there are certainlymany

more uninodal extensions to higher dimensions of regular rare 3D packings that are still

awaiting discovery; we have focused our attention here on what appear to be several

of the most regular. The regularity ofn-dimensional nets forn > 3 is discussed further

below.
22Note that there is a lower-symmetry form ofcds in 3D with four nearest neighbors per node whose

contact graph does generate thecdsnet; see Delgado-Friedrichs (2005, Figure 1). Lower symmetry forms
of otherT90

n andT
60
n constructions, whose nets are contact graphs, might also exist.
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2.4.5 Regularity and transitivity of n-dimensional nets forn > 3

As reviewed in §2.4.1, the regularity of a 3D net is defined based on its transitiv-

ity, which in turn is based on the so-called natural tiling ofthe 3D net. The natural tiles

of 3D nets have been thoroughly characterized in the literature for all of the most regu-

lar 3D nets available. In §2.4.4, we described uninodal extensions of several regular 3D

nets to higher dimensions, and mentioned that many more suchuninodal nets withn> 3

most certainly exist. The natural question to ask, then, is how the concepts of regular-

ity and transitivity can be extended to higher dimensions, so that we may differentiate

between these nets and identify those which are the most regular.

This question is difficult to visualize in dimensions higherthan three, and re-

quires a symbolic/numerical description of the net to proceed. The net arising from the

Zn lattice forn= 4,5, . . ., which is naturally tiled byn-dimensional hypercubes, is by far

the easiest starting point. Denote first the symbols{v,w,x,y,z} as variables that range

from 0 to 1. The 3D unit cube, denoted{xyz}, has six faces,{xy0,xy1,x0z,x1z,0yz,1yz}.

Each face, in turn, has four edges; e.g.,{0yz} has edges{0y0,0y1,00z,01z}. Finally,

each edge connects two nodes; e.g.,{00z} connects nodes{000,001}. The 4D unit

hypercube,{wxyz}, has eight 3-faces,{wxy0,wxy1,wx0z,wx1z,w0yz,w1yz,0xyz,1xyz},

each 3-face has six 2-faces, each 2-face has four edges, and each edge connects two

nodes. The 5D unit hypercube,{vwxyz}, has ten 4-faces, each 4-face has eight 3-faces,

each 3-face has six 2-faces, each 2-face has four edges, and each edge connects two

nodes; etc.

In 3D, as reviewed in §2.4.1, the transitivity is based on the number of distinct

nodes, edges, (two-dimensional) faces, and (three-dimensional) tiles. By analogy, then,

in 4D we may define the transitivity of a net based on the numberof distinct nodes,

edges, 2-faces, 3-faces, and (4-dimensional) tiles in the natural tiling. Similarly, in 5D,

we may define the transitivity based on the number of distinctnodes, edges, 2-faces,

3-faces, 4-faces and (5-dimensional) tiles in the natural tiling; etc. Via this definition,

the net derived from theZ4 lattice has transitivity 11111, the net derived from theZ5

lattice has transitivity 111111, etc.

For all of the other nets withn > 3 listed in Table2.2, the computation of the

transitivity remains an important unsolved problem. Note that, in a tiling corresponding
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to a 3D net, the (two-dimensional) faces of the (three-dimensional) tiles are, in gen-

eral, minimal surfaces stretched over non-planar frames built from (one-dimensional)

edges between several nodal points defined in 3D. In a tiling corresponding to ann-

dimensional net forn > 3, the 2-faces of the tiles are, in general, minimal surfaces

stretched over nonplanar frames between several nodes defined inn dimensions. [Note

that the computation of such minimal surfaces inn dimensions is straightforward using

standard level set methods; see, e.g., Cecil (2005).] Several of these nonplanar 2-faces

combine to form the boundaries of each 3-face, which itself is not confined to lie within

a 3D subspace of then-dimensional domain. Several of these 3-faces then combineto

form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilings isapparently a task that

could be readily accomplished numerically, but is, in general, expected to be difficult to

visualize.

2.5 Coding theory

Though the lattices that arise fromn-dimensional sphere packings have connec-

tions that permeate many foundational concepts in number theory and pure geometry,

the list of successful direct applications in science and engineering ofn-dimensional

sphere packings withn > 3 is currently surprisingly short23; this list includes

• the numerical evaluation of integrals (Sloan & Kachoyan 1987),

• the solution of the linear Diophantine inequalities that arise in integer linear program-

ming (Schrijver 1986),

• the characterization of crystals with curious five-fold symmetries (Janssen 1986),

• attempts at unifying the 4 fundamental forces (in 10, 11, or 26 dimensions) via super-

string theory (Kaku 1999), and

• the development of maximally effective numerical schemes to address an information-

theoretic interference suppression problem known as the Witsenhausen counterexam-

ple (Grover, Sahai, & Park 2010).

23Notably, Conway & Sloane (1999, page 12) state: “A related application that has not yet received
much attention is the use of these packings for solvingn-dimensionalsearchor approximationproblems”;
this is exactly the problem focused on in Chapter 3.
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Far and away the most elegant and practical application ofn-dimensional sphere pack-

ings, however, is in the framing and understanding oferror correcting codes(ECCs).

The reader is referred to Leech & Sloane (1971), Thompson (1983), Pless (1998), and

Conway & Sloane (1999) for comprehensive reviews of this fascinating subject. A brief

overview of this field, drawn primarily from these four references, is given here to em-

phasize the existing practical relevance ofn-dimensional sphere packings withn > 3;

we aim to augment this list of practical applications significantly in Chapters 3 and 4

of the present work, based heavily on the various extensionsof n-dimensional sphere

packing theory developed in this work.

To proceed, defineFq as the set of symbols in afinite field(a.k.a.Galois field)

of orderq, whereq = pa with p prime, and defineFn
q as the set of all vectors of order

n with elements selected fromFq. The cases of particular interest in this work are

the binary fieldF2 = {0,1}, the ternary fieldF3 = {0,1,2}, and thequaternary field

F4 = {0,1,ω, ω̄}, where, as in §2.3.1, ω = (−1+ ı
√

3)/2 [note thatω2 = ω̄, ω̄2 = ω,

andω̄ ·ω = 1]. In a finite fieldFq, addition (+) and multiplication (·) are closed (that is,

they map to elements within the field) and satisfy the usual rules: they are associative,

commutative, and distributive, there is a 0 element such that a+ 0 = a, there is a 1

element such thata ·1 = a, for eacha there is an element(−a) such thata+(−a) = 0,

and for eacha 6= 0 there is an elementa−1 such thata·a−1 = 1. If q is itself prime (e.g.,

if q= 2 orq= 3), then standard integer addition and multiplication modq forms a finite

field. If not (e.g., ifq= 4), a bit more care is required in order to obtain closure within the

finite field while respecting these necessary rules on addition and multiplication. For the

cases considered in this section (specifically,F2, F3, andF4), addition and multiplication

on Fq are thus defined as follows:

F2:
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

F3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

F4:

+ 0 1 ω ω̄
0 0 1 ω ω̄
1 1 0 ω̄ ω
ω ω ω̄ 0 1
ω̄ ω̄ ω 1 0

· 0 1 ω ω̄
0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω ω̄ 1
ω̄ 0 ω̄ 1 ω
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An [n,k]q (or, whend is explicitly specified,[n,k,d]q) linear24 q-ary25 code(LC)

may now be defined as aq-ary linear combination(that is, a linear combination with

coefficients selected fromFq, with addition and multiplication defined elementwise on

Fq, as discussed above) of a set ofk < n independentbasis vectorsvi
[n,k]q

∈ Fn
q,

where the basis vectors are selected such that each of theqk resultingcodewords

wi
[n,k]q

∈ Fn
q (that is, eachq-ary linear combination of the basis vectors) differs from each

of the other codewords in at leastd elements (referred to in this setting as theHamming

distance). We denote byV[n,k]q (orV[n,k,d]q) then×k basis matrixwith thek basis vectors

vi
[n,k]q

as its columns, and byW[n,k]q (or W[n,k,d]q) then×qk codeword matrixwith theqk

codewordswi
[n,k]q

as its columns. Further, without loss of generality, we constructV[n,k]q

and a companion(n−k)×n parity checkmatrixH[n,k]q in the standard (a.k.a.systematic)

form26

V[n,k]q =

[
Ik×k

P(n−k)×k

]
and H[n,k]q =

[
−P(n−k)×k I(n−k)×(n−k)

]
. (2.16)

Note thatH[n,k]qV[n,k]q = 0 (on Fq)27, which establishes that the basis vectorsvi
[n,k]q

so

constructed [and, thus, all of the valid codewordsw given byq-ary linear combination of

these basis vectors] each satisfy the parity check equations,H[n,k]qw = 0 (onFq), implied

by the rows ofH[n,k]q, as illustrated by the several examples given in this standard form

in §2.5.1, §2.5.2, and §2.5.3. The firstk symbols of an[n,k]q LC so defined are referred

to as thedata symbols28, and the lastn−k symbols are referred to as theparity symbols.

24Nonlinearq-ary codes also appear in the literature, in which the valid codewords arenotsimply linear
combinations of a set of basis vectors, but rather must be enumerated individually. Such codes, which are
related to nonlattice packings, are in general more difficult to decode than LCs, and are not considered
further here.

25This work focuses on the cases withq = 2 [termed alinear binary code(LBC)], q = 3 [termed a
linear ternary code(LTC)], andq = 4 [termed alinear quaternary code(LQC)], in §2.5.1, §2.5.2, and
§2.5.3respectively. In cases withq = 2, which are the most common, we frequently write simply[n,k] or
[n,k,d], dropping theq subscript.

26In the literature on this subject, it is more common to use a “generator matrix”G to describe the
construction of linear codes. The “basis matrix” convention V used here is related simply to the corre-
sponding generator matrix such thatV = GT ; we find the basis matrix convention to be more natural in
terms of its linear algebraic interpretation.

27The qualifiers “(onFq)” and “(modq)” are used, as appropriate, to remind the reader that multiplica-
tion and addition in the equation indicated are performed elementwise on the finite fieldFq, as discussed
above.

28The word “bit”, a portmanteau word for “binary digit”, is generally reserved for the case withq = 2;
in the general case, we use the word “symbol” in its place.
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The key to designing a “good”[n,k]q LC is to construct theparity submatrix P(n−k)×k

in (2.16) in such a way that the value ofd in the resulting code (that is, the minimum

Hamming distance between valid codewords) is maximized forgiven values ofn, k, and

q; significant effort was required for this construction during the development of some

of the codes reviewed in §2.5.1, §2.5.2, and §2.5.3. Indeed, the problem of designing

a good binary error correcting code is essentially a finite sphere packing problem on

F2; thus the very close relationship between the design of error-correcting codes and the

design of infinite sphere packings inRn, as discussed in §2.3.

Forq= pa with p prime,conjugation inFq (that is, for scalarsv∈ Fq) is defined

such that ¯v = vp; conjugation inFn
q (that is, for vectorsv ∈ Fn

q), as well as for matrices

formed with a number of such vectors as columns, is performedelementwise. Thedual

codeof any [n,k]q LC is then the[n,n− k]q LC given by the union of all codewords

w ∈ Fn
q for which w · v̄ = 0 (on Fq) for all v ∈ {vi

[n,k]q
for i = 1, . . . ,k} [cf. (2.2)].

The codeword and parity check matrices for this dual code maythus, when arranged in

standard form, be written as

V[n,n−k]q =

[
I(n−k)×(n−k)

−P̄T

]
and H[n,n−k]q =

[
P̄T I(n−k)×(n−k)

]
, (2.17)

whereP̄ denotes conjugation inFq of each element of the parity submatrixP of the origi-

nal [n,k]q LC. Note thatP̄T is of orderk×(n−k), and, of course, thatH[n,n−k]qV[n,n−k]q =

0 (onFq). Note also that, for LBCs and LTCs,̄P = P.

Graphically, the codewords of an[n,k,d]2 LBC may be thought of as a carefully

chosen subset of 2k of the 2n corners on a singlen-dimensional unit hypercube,as illus-

trated forn = 3 in Figure2.9, whereas an[n,k,d]3 LTC may be thought of as a subset of

3k of the 3n gridpoints in a cluster of 2n unit hypercubes inn-dimensions, as illustrated

for n= 3 in Figure2.10. For anyq, d quantifies the minimum number of symbols which

differ between any two codewords. It follows that:

• An LC with d = 2 is single error detecting(SED) [see, e.g., Figures2.9a and2.10a].

In this case, the sum (onFq) of the symbols in each valid transmitted codeword is zero,

so if it is assumed that at most one symbol error occured and this sum is nonzero, then

a symbol error in transmission occurred, whereas if it is zero, then a symbol error did

not occur. However, if a symbol error in transmission occured, the received (invalid)
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Figure 2.9: Valid codewords of (left) the (SED)[3,2,2]2 LBC, and (right) its dual, the

(perfect, SEC)[3,1,3]2 LBC. In this case,d specifies the number of edges that separate

any two valid codewords. The blue spheres denote the origin.

Figure 2.10: Valid codewords of (left) the (SED)[3,2,2]3 LTC, and (right) its dual, the

(SEC)[3,1,3]3 LTC (cf. Figure2.9).

codeword is generally equidistant from multiple valid codewords, so it is not possible

to correct the symbol error. Two or more symbol errors generally cause the codeword

to be misinterpreted.

• An LC with d = 3 issingle error correcting(SEC) [see, e.g., Figures2.9b and2.10b].

In this case, if it is again assumed that at most one symbol error in transmission oc-

cured, then if the received codeword is not a valid codeword,there is only one valid

codeword that is unit Hamming distance away, so the single symbol error may in fact

be corrected. Again, 2 or more symbol errors generally cause the codewordto be

misinterpreted.

• An LC with d = 4 issingle error correcting and double error detecting(SECDED). In

this case, if a single symbol error occurs, the received codeword will be unit Hamming

distance away from a single valid codeword, and thus single symbol errors can be

corrected. However, if two symbol errors occur, the received codeword is generally

Hamming distance 2 away from multiple valid codewords, so double symbol errors
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can be detected butnot corrected. Now, 3 or more symbol errors generally cause the

codewords to be misinterpreted.

• An LC with d = 5 is double error correcting(DEC), with 3 or more symbol errors

generally causing misinterpretation.

• An LC with d = 6 is double error correcting and triple error detecting(DECTED),

with 4 or more symbol errors generally causing misinterpretation.

• An LC with d = 7 is triple error correcting (TEC), with 4 or more symbol errors

generally causing misinterpretation.

• An LC with d = 8 is triple error correcting and quadruple error detecting(TECQED),

with 5 or symbol errors generally causing misinterpretation.

• An LC with d = 9 isquadruple error correcting(QEC), with 5 or more symbol errors

generally causing misinterpretation.

The labels defined above are frequently used to quantify the error correction capability

of an LC. Alternatively, if error correction isnot attempted, then:

• An LC with d = 2 is single error detecting, with 2 or more symbol errors generally

causing misinterpretation.

• An LC with d = 3 is double error detecting, with 3 or more symbol errors generally

causing misinterpretation.

• An LC with d = 4 is triple error detecting, with 4 or more symbol errors generally

causing misinterpretation.

• An LC with d = 5 is quadruple error detecting, with 5 or more symbol errors generally

causing misinterpretation.

Error correcting algorithms are useful for a broad range of data transmission or data

storage applications in which it is difficult or impossible to request that a corrupted

codeword be retransmitted; algorithms which use such LCs for error detection only, on

the other hand, may be used only when efficient handshaking isincorporated in a manner

which makes it easy to request and resend any messages that might be corrupted during

transmission.

An [n,k,d]q LC is calledperfect if, for some integert > 0, each possiblen-

dimensionalq-ary codeword is of Hamming distancet or less from a single valid code-

word (that is, if there are no “wasted” codewords which are Hamming distancet +1 or
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Figure 2.11: The lattice corresponding to a[n,k,d] LBC is formed by repeating the

unit hypercube pattern given by the LBC (see, e.g., Figure2.9) as an infinite array

with unit spacing. In the above example, we illustrate this extension for (left) the face-

centered cubic (FCC) lattice generated by the[3,2,2] LBC, D3 =
⋃4

i=1 (wi
[3,2,2] +2Z3),

and (right) the body-centered cubic (BCC) lattice generated by the[3,1,3] LBC, D∗
3 =

⋃2
i=1 (wi

[3,1,3] + 2Z3). The blue spheres, taken together, form aprimitive cell that, re-

peated as an infinite array withzerospacing, tile (that is, fill) the domain.

more from the valid codewords, and thus may not be corrected under the assumption that

at mostt symbol errors have occured); note that a perfect code has oddd = 2t +1> 1. A

remarkable proof by Tietäväinen (1973), which was based on related work by Van Lint,

establishes that theonly nontrivial perfect LCs are the[(qr −1)/(q−1),(qr −1)/(q−
1)− r,3]q perfectq-ary Hamming codes and the[23,12,7]2 and [11,6,5]3 binary and

ternary Golay codes, described further in §2.5.1and §2.5.2.

An [n,k,d] LC is calledquasi-perfectif, for some integert > 1, each possiblen-

dimensionalq-ary codeword is either (a) of Hamming distancet−1 or less from a single

valid codeword, and thus up tot−1 symbol errors may be corrected, or (b) of Hamming

distancet from at least one valid codeword, and thus codewords witht symbol errors

may be detected but not necessarily corrected (that is, again, if there are no “wasted”

codewords which are Hamming distancet +1 or more from a valid codeword, and thus

may not be reconciled under the assumption that at mostt symbol errors have occured);

note that a quasi-perfect code has evend = 2t > 2.
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Note finally, as illustrated forn = 3 in Figure2.11, that a real lattice correspond-

ing to an[n,k,d]2 LBC may often be constructed by forming a union of 2k cosets:

Construction A:
2k⋃

i=1

(wi
[n,k,d]2

+2Zn), (2.18a)

where thecoset representativesin this construction,wi
[n,k,d]2

for i = 1, . . . ,2k, are the

codewords of the[n,k,d]2 LBC under consideration and(w+2Zn) denotes aZn lattice

scaled by a factor of 2 with all nodal points shifted by the vector w; thus, Construction

A denotes the union of the nodal points in several such scaledand shiftedZn lattices.

An alternative real lattice may sometimes be constructed via:

Construction B:
2k⋃

i=1

(wi
[n,k,d]2

+2J) where J =

{
x ∈ Zn

∣∣∣∣
[ n

∑
i=1

xi

]
∈ 2Z

}
, (2.18b)

where(2Z) denotes the even integers, and thus the last condition is sometimes written

∑n
i=1xi = 0 (mod 2).

In an analogous fashion, a complex lattice corresponding toan[n,k,d]q LC may

often be constructed by forming a union ofqk shifted and scaledn-dimensionalE lattices

Z[ω]n (see §2.3.1) such that

Construction Aπ
E

:
qk⋃

i=1

(wi
[n,k,d]q

+π Z[ω]n), (2.19a)

where, in the sequel, the multiplicative factorπ takes two possible values (2 andθ =

ω−ω̄ = ı
√

3) and the coset representatives in this construction,wi
[n,k,d]q

for i = 1, . . . ,qk,

are the codewords of the[n,k,d]q LC under consideration. An alternative complex lattice

may sometimes be constructed via:

Construction Bπ
E

:
qk⋃

i=1

(wi
[n,k,d]q

+π J) where J =

{
x ∈ Z[ω]n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ π E

}
,

(2.19b)

where(π E ) denotes the lattice of Eisenstein integers in the complex plane multiplied

(that is, rotated and scaled) by the (possibly complex) factor π . Note the remarkable

similarity in structure between the real constructions in (2.18a)-(2.18b) and the complex

constructions in (2.19a)-(2.19b). Note also that real lattices corresponding to any of the

complex lattices so constructed may easily be generated via(2.3).



82

2.5.1 Exemplary linear binary codes (LBCs)

We now summarize some of the families of LBCs available, describing each in

the standard form (2.16):

• The simple29 [n,n−1,2] binary single parity check codesare SED, and include[2,1,2],

[3,2,2], [4,3,2], [5,4,2], etc. Using such a code, for each(n−1) data bits to be trans-

mitted, a parity bit is generated such that the sum (mod 2) of the data bits plus the

parity bit is 0; when decoding, an error is flagged if this sum (mod 2) is 1. The[3,2,2]

code illustrated in Figure2.9a is given by

V[3,2,2] =




1 0

0 1

1 1


 , H[3,2,2] =

(
1 1 1

)
, W[3,2,2] =




0 1 0 1

0 0 1 1

0 1 1 0


 . (2.20)

As seen forn = 3 in Figure2.11a, via Construction A, the[n,n−1,2] binary single

parity check code generates theDn lattice (see §2.3.3), which forn = 3 is FCC.

• The dual of the binary single parity check codes are the simple [n,1,n] binary repeti-

tion codes, which include[2,1,2] (SED), [3,1,3] (SEC),[4,1,4] (SECDED),[5,1,5]

(DEC), etc. (note that the[2,1,2] code is self dual, and that the[3,1,3] code is per-

fect). This family of codes just repeats any given data bitn times; when decoding, one

simply needs to determine which of the two valid codewords that the received code is

nearest to. The[3,1,3] code illustrated in Figure2.9b is given by

V[3,1,3] =




1

1

1


 , H[3,1,3] =

(
1 1 0

1 0 1

)
, W[3,1,3] =




0 1

0 1

0 1


 . (2.21)

As seen forn = 3 in Figure2.11b, via Construction A, the[n,1,n] binary repetition

code generates theD∗
n lattice (see §2.3.3), which forn = 3 is BCC. Via Construction

B, on the other hand, the[8,1,8] binary repetition code generates theE8 lattice (see

29As suggested in Footnote25on page76, whenq = 2, we may suppress theq subscript for notational
clarity; we thus do this throughout §2.5.1.
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§2.3.5). Note also that the[3,2,2] binary single parity check code with each bit re-

peatedm times leads to a[3m,2,2m] code that may be rearranged into standard form

and written as

V[3m,2,2m] =

[
I2×2

P(3m−2)×2

]
, H[3m,2,2m] =

[
P(3m−2)×2 I(3m−2)×(3m−2)

]

P(3m−2)×2 =




1(m−1)×1 0(m−1)×1

0(m−1)×1 1(m−1)×1

1m×1 1m×1


 .

In particular, takingm= 4 and applying Construction B, the resulting[12,2,8] code,

which is TECQED, generates theΛmax
12 lattice (see §2.3.6).

• The [2m−1,2m−1−m,3] binary Hamming codesare perfect and SEC, and include

[3,1,3], [7,4,3], [15,11,3], etc. For a given(2m−1−m) data bits to be transmitted,

each parity bit is generated such that the sum (mod 2) of a particular subset of the

data bits plus that parity bit is 0; when decoding, them parity bits may be used to

determine not only whether or not a single bit error occured (which is true if one or

more of these parity bits is nonzero), but if it did,which bit contains the error. To

illustrate, the venerable[7,4,3] code is given by
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V[7,4,3] =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1




, H[7,4,3] =




0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


 ,

W[7,4,3] =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1




.

(2.22)

Taking the matrixH[7,4,3] times any of the valid codewordswi
[7,4,3] (listed in the

columns ofW[7,4,3]) gives (mod 2) the zero vector, whereas taking the matrixH[7,4,3]

times any invalid codeword gives (mod 2) a nonzero vector of ordern−k = 3, which

may be interpreted as a nonzero 3-bit binary number, the integer corresponding to

which we call thesyndromeof the invalid codeword, denoteds. Conveniently, assum-

ing no more than one bit error occurred, this numbers may be used in a simple way

in this particular class of codes to determine which bit mustbe flipped in the (invalid)

codeword received to find the nearest valid codeword, thereby performing single error

correction. To accomplish this, as easily verified by hand, denoting thek data bits of

the codeword asdi and then−k parity bits aspi and reordering these bits as the vec-

tor {p1, p2,d1, p3,d2,d3,d4}, it is thes’th element of this vector that must be flipped.

Note also that, via Construction A, the[7,4,3] binary Hamming code generates the

E∗
7 lattice (see §2.3.5).

• The dual of the binary Hamming codes are the[2k−1,k,2k−1] binary simplex codes,

which include[3,2,2] (SED), [7,3,4] (SECDED),[15,4,8] (TECQED), etc. These

codes are remarkable geometrically, as their codewords form a simplex. We have
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already illustrated the[3,2,2] code in Figure2.9a; the[7,3,4] code is given by

V[7,3,4] =




1 0 0

0 1 0

0 0 1

0 1 1

1 0 1

1 1 0

1 1 1




, W[7,3,4] =




0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0

0 1 1 0 0 1 1 0

0 1 1 0 1 0 0 1




,

H[7,3,4] =




0 1 1 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1




.

(2.23)

Via Construction A, the[7,3,4] binary simplex code generates theE7 lattice (see

§2.3.5). Via Construction B, on the other hand, the[15,4,8] binary simplex code

generates theΛ15 lattice (see §2.3.6).

• The[2m,2m−1−m,4] extended binary Hamming codesare quasi-perfect and SECDED,

and include[4,1,4], [8,4,4], [16,11,4], etc. These codes are just binary Hamming

codes with an additional overall parity bit, and thus, assuming no more than 2 bit er-

rors have occured, may be decoded similarly. Defining the syndromesas in the binary

Hamming code (neglecting the overall parity bit), and defining p as the sum over all

the bits (including the overall parity bit), there are zero bit errors if s= p = 0, there

two bit errors (which may be detected but not uniquely corrected) if s 6= 0 andp = 0,

and there is a single bit error ifp 6= 0 (in which case, ifs= 0, this error is in the overall

parity bit, and, ifs 6= 0, this error is in one of the other bits and may be corrected based

ons just as in the binary Hamming code). To illustrate in standard form, the venerable

[8,4,4] code is given by30

30The standard form of the[8,4,4] code shown here may be related to the perhaps more intuitive form
of this code described previously in this paragraph by replacing the last row of the concomitant parity
check matrixP4×4 [see (2.16)] by the sum (mod 2) of all of the rows ofP in the form given in (2.24). This
results in a row with 1 in each of its elements, implying simply an overall parity check on the[7,4,3] code
in (2.22). These two forms are, of course, equivalent.
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V[8,4,4] =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0




, H[8,4,4] =




0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1




,

W[8,4,4] =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1




.

(2.24)

Via Construction A, the[8,4,4] extended binary Hamming code again generates the

E8 lattice (see §2.3.5).

• The dual of the extended binary Hamming codes are the[2m,m+ 1,2m−1] binary

biorthogonal codes(a.k.a.Hadamard codes), and include the[4,3,2] (SED), [8,4,4]

(SECDED),[16,5,8] (TECQED), [32,6,16], etc. (note that the[8,4,4] code is self

dual). The[32,6,16] code was used on the Mariner 9 spacecraft. These codes are

distinguished by the characteristic that their codewords are mutually orthogonal [that

is, wi ·w j = 0 (mod 2) fori 6= j]. Note that the[4,3,2] and [8,4,4] codes have al-

ready been discussed above. Via Construction B, the[16,5,8] binary biorthogonal

code generates theΛ16 lattice (see §2.3.6).

• The [n,(n+ 1)/2,d] binary quadratic residue codesare defined for all primen for

which there exists an integer 1< x < n such thatx2 = 2 (modn) [equivalently, for

all primen of the formn = 8m±1 wherem is an integer], and include[7,4,3] (SEC,
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perfect, a.k.a. a binary Hamming code),[17,9,5] (DEC), [23,12,7] (TEC, perfect,

a.k.a. thebinary Golay code), [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc.

Adding an overall parity bit to these codes, the[n+ 1,(n+ 1)/2,d + 1] extended

binary quadratic residue codesinclude [8,4,4] (SECDED, quasi-perfect, self-dual,

a.k.a. an extended binary Hamming code),[18,9,6] (DECTED),[24,12,8] (TECQED,

quasi-perfect, self-dual, a.k.a. theextended binary Golay code), [32,16,8] (TECQED),

[42,21,10], [48,24,12], etc. The venerable[24,12,8] extended binary Golay code,

which was used by the Voyager 1 & 2 spacecraft, is given by

V[24,12,8] =

[
I12×12

P12×12

]
, H[24,12,8] =

[
P12×12 I12×12

]
,

P12×12 =




0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1




;

(2.25)

the [23,12,7] binary Golay code may be obtained from the matrix of basis vectors

V[23,12,7] constructed as in (2.16) with P11×12 given by any 11 rows of the matrixP12×12

defined above. Via Construction B, the[24,12,8] extended binary Golay code gener-

ates an intermediate lattice which may be joined with a translate of itself to construct

theΛ24 lattice (see §2.3.6).

As illustrated above in the case of the binary Hamming code and the binary Go-

lay code, a perfect code may beextendedto a quasi-perfect code by adding an overall

parity bit. A code obtained by the reverse of this process (that is, by removing a parity
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bit to reduce the length of a code by one) is sometimes said to bepunctured. In contrast,

a code obtained by removing one or more data bits (in essence,simply setting the un-

needed data bits to zero) is said to beshortened. A typical and common application is

in error-correcting memory systems for computers, in whichthe data often comes natu-

rally in blocks of 64 bits. Starting from the[127,120,3] binary Hamming code, one may

eliminate 56 data bits to create a shortened[71,64,3] SEC code; alternatively, starting

from the[128,120,4] extended binary Hamming code, one may eliminate 56 data bits

to create a shortened[72,64,4] SECDED code. Many so-called ECC Memory chips are

based on variants of such binary Hamming codes, which are extremely simple and fast

to decode. Note also that, via Construction B, the[21,9,8], [20,8,8], and[19,7,8] codes

obtained by shortening the[24,12,8] extended binary Golay code by 3, 4, or 5 data bits

generate, respectively, theΛ21, Λ20, andΛ19 lattices (see §2.3.6).

Many of the binary codes introduced thus far fall within a larger family of codes

collectively referred to asReed-Mullercodes, illustrated in Figure2.12.

[1,1,1]

[2,1,2]

[2,2,1]

[4,1,4]

[4,3,2]

[4,4,1]

[8,1,8]

[8,4,4]

[8,7,2]

[8,8,1]

[16,1,16]

[16,5,8]

[16,11,4]

[16,15,2]

[16,16,1]

[32,1,32]

[32,6,16]

[32,16,8]

[32,26,4]

[32,31,2]

[32,32,1]

k = 1, d = 2m

repetition codes

k = m+1, d = 2m−1

biorthogonal codes

k = 2m−1, d = 2(m+1)/2

self-dual codes

k = 2m−1−m, d = 4

extended Hamming

codes

k = 2m−1, d = 2

single parity check codes

k = 2m, d = 1

universe codes

Figure 2.12: The family of[2m,k,d] Reed-Muller binary codes form= 0 to 5.
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2.5.2 Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available, describing each in

the standard form (2.16), noting that all have analogs in the binary setting:

• The [n,n− 1,2]3 ternary single parity check codesare SED, and include[2,1,2]3,

[3,2,2]3, [4,3,2]3, etc. As illustrated forn = 3 in Figure2.10a, the[3,2,2]3 code is

given by

V[3,2,2]3 =




1 0

0 1

2 2


 , H[3,2,2]3 =

(
1 1 1

)
, W[3,2,2]3 =




0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2

0 2 1 2 1 0 1 0 2


 .

(2.26)

Via ConstructionAθ
E

, the [3,2,2]3 ternary single parity check code generates theE∗
6

lattice (see §2.3.5).

• The dual of the ternary single parity check codes are the[n,1,n]3 ternary repetition

codes, which include[2,1,2]3 (SED),[3,1,3]3 (SEC),[4,1,4]3 (SECDED), etc. (note

that the[2,1,2]3 code is self dual). As illustrated forn= 3 in Figure2.10b, the[3,1,3]3

code is given by

V[3,1,3]3 =




1

1

1


 , H[3,1,3]3 =

(
2 1 0

2 0 1

)
, W[3,1,3]3 =




0 1 2

0 1 2

0 1 2


 . (2.27)

Via ConstructionAθ
E

, the[3,1,3]3 ternary repetition code generates theE6 lattice (see

§2.3.5). Via ConstructionBθ
E

, on the other hand, the[6,1,6]3 ternary repetition code

generates theK12 lattice (see §2.3.6).

• The [(3m− 1)/2,(3m− 1)/2−m,3]3 ternary Hamming codesare perfect and SEC,

and include[4,2,3]3 (a.k.a. thetetracode), [13,10,3]3, [40,36,3]3, etc. To illustrate,

the venerable[4,2,3]3 tetracode is given by
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V[4,2,3]3 =




1 0

0 1

2 2

1 2




, W[4,2,3]3 =




0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2

0 2 1 2 1 0 1 0 2

0 1 2 2 0 1 1 2 0




,

H[4,2,3]3 =

(
1 1 1 0

2 1 0 1

)
.

(2.28)

Via ConstructionAθ
E

, the[4,2,3]3 tetracode again generates theE8 lattice (see §2.3.5).

• The dual of the ternary Hamming codes are the[(3k−1)/2,k,3k−1]3 ternary simplex

codes, which include[4,2,3]3 (SEC), [13,3,9]3 (QEC), [40,4,27]3, etc. (note that

the [4,2,3]3 code is self dual). These codes are remarkable geometrically, as their

codewords are all equidistant from one another.

• The [n,(n+ 1)/2,d]3 ternary quadratic residue codesare defined for all primen

for which there exists an integer 1< x < n such thatx2 = 3 (mod n), and include

[11,6,5]3 (DEC, perfect, a.k.a. theternary Golay code), [13,7,5]3 (DEC), [23,12,8]3

(TECQED), [37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these

codes, the[n+1,(n+1)/2,d+1]3 extended ternary quadratic residue codesinclude

[12,6,6]3 (DECTED, quasi-perfect, self-dual, a.k.a.the extended ternary Golay code),

[14,7,6]3 (DECTED), [24,12,9]3 (QEC), [38,19,11]3, [48,24,15]3, etc. The venera-

ble [12,6,6]3 extended ternary Golay code is given by

V[12,6,6]3 =

[
I6×6

P6×6

]
, H[12,6,6]3 =

[
−P6×6 I6×6

]
, P6×6 =




0 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0




;

(2.29)

the (punctured)[11,6,5]3 code may be obtained from the matrix of basis vectors

V[11,6,5] constructed as in (2.16) with P5×6 given by any 5 rows of the matrixP6×6



91

defined above. Via ConstructionBθ
E

, the[12,6,6]3 extended ternary Golay code gen-

erates an intermediate lattice which may be joined with two translates of itself to

generate theΛ24 lattice (see §2.3.6).

2.5.3 Exemplary linear quaternary codes (LQCs)

We now summarize some of the families of LQCs available, describing each in

the standard form (2.16):

• The[n,n−1,2]4 quaternary single parity check codesare SED, and include[2,1,2]4,

[3,2,2]4, [4,3,2]4, etc. The[3,2,2]4 code is given by

V[3,2,2]4 =




1 0

0 1

1 1


 , H[3,2,2]4 =

(
1 1 1

)
,

W[3,2,2]4 =




0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄

0 0 0 0 1 1 1 1 ω ω ω ω ω̄ ω̄ ω̄ ω̄

0 1 ω ω̄ 1 0 ω̄ ω ω ω̄ 0 1 ω̄ ω 1 0


 .

(2.30)

• The dual of the quaternary single parity check codes are the[n,1,n]4 quaternary rep-

etition codes, which include[2,1,2]4 (SED), [3,1,3]4 (SEC), [4,1,4]4 (SECDED),

etc. (note that the[2,1,2]4 code is self dual). The[3,1,3]4 code is given by

V[3,1,3]4 =




1

1

1


 , H[3,1,3]4 =

(
1 1 0

1 0 1

)
, W[3,1,3]4 =




0 1 ω ω̄

0 1 ω ω̄

0 1 ω ω̄


 . (2.31)

• The[(4m−1)/3,(4m−1)/3−m,3]4 quaternary Hamming codesare perfect and SEC,

and include[5,3,3]4, [21,18,3]4, [85,81,3]4, etc. The[(4m−1)/3+1,(4m−1)/3−
m,4]4 extended quaternary Hamming codesare quasi-perfect and SECDED, and in-

clude [6,3,4]4 (a.k.a. thehexacode), [22,18,4]4, [86,81,4]4, etc. To illustrate, the

venerable[6,3,4]4 hexacode, which has 43 = 64 valid codewords, is given by
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V[6,3,4]4 =




1 0 0

0 1 0

0 0 1

1 ω ω

ω 1 ω

ω ω 1




, H[6,3,4]4 =




1 ω ω 1 0 0

ω 1 ω 0 1 0

ω ω 1 0 0 1


 , (2.32)

Via ConstructionA2
E

, the [6,3,4]4 hexacode generates theK12 lattice. The[6,3,4]4

hexacode also forms the basis for the Miracle Octad Generator (MOG) construction

of theΛ24 lattice, as discussed in Chapter 11 of Conway & Sloane (1999).

• The dual of the quaternary Hamming codes are the[(4k−1)/3,k,4k−1]4 quaternary

simplex codes, which include[5,2,4]4 (SECDED),[21,3,16]4, [85,4,64]4, etc. These

codes are remarkable geometrically, as their codewords areall equidistant from one

another.

We note finally that the simple low-dimensional LBC, LTC, andLQC construc-

tions given above are now supplanted by the more complexlow-density parity-check

(LDPC, a.k.a.Gallager) codes andturbo codes for high performance coding applica-

tions such as 10GBase-T ethernet and deep space communication. For more informa-

tion on these codes, the reader is referred to Gallager (1963), Berrouet al. (1993), and

Moon (2005).

2.6 Quantization (that is, moving onto a Lattice)

For convenience, we now review briefly some methods (adaptedfrom Chapter 20

of Conway & Sloane 1999) for quantization from an arbitrary point x in Rn onto a point

x̃ on the discrete lattice, which is defined via integer linear combination of the columns

of the corresponding basis matrixB. The solution to this problem is lattice specific,

and thus is treated lattice by lattice in the subsections below. Note that we neglect

the problem of scaling of the lattices in this discussion, which is trivial to implement

in code. For brevity, our review below focuses on quantization to the root lattices up
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to dimensionn = 8. Quantization to the latticesΛn andKn in dimension 9≤ n ≤ 24

is a more difficult problem, and is the subject of numerous papers in the area of coding

theory (see §2.5) in the last 20 years, where many efficient algorithms for such problems

have been proposed and tuned.

Quantization to Zn

Quantize toZn simply by rounding each element ofx to the nearest integer.

Quantization to Dn

Quantize toDn by roundingx two different ways:

• Round each element ofx to the nearest integer, and call the resultx̂.

• Round each element ofx to the nearest integerexceptthat element ofx which is

furthest from an integer, and round that element the wrong way (that is, round it down

instead of up, or up instead of down); call the resultˆ̂x.

Compute the sums of the individual elements of̂x; the desired quantiziation is̃x = x̂ if

is s is even, and̃x = ˆ̂x if s is odd.

Quantization to An

The An lattice is defined in ann-dimensional subspaceC of Y = Rn+1. The

subspaceC is spanned by then columns of the corresponding basis matrixBAn, and the

orthogonal complement ofC is spanned by the vectornAn. Thus, the nearest point in the

subspace,yC ∈ C, to any given pointy ∈ Y is given by

yC = y− (y,nAn) ·nAn.

An orthogonal basiŝBAn of C may easily be determined fromBAn via Gram Schmidt or-

thogonalization. With this orthogonal basis, the vectorsx∈Rn comprising theAn lattice

may be related to the corresponding vectorsyC ∈ C ⊂ Y (that is, on ann-dimensional

subspace ofRn+1) via the equation

yC = B̂Anx. (2.33a)
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Thus, starting from some pointx ∈ Rn but not yet quantized onto the lattice, we can

easily determine the corresponding(n+1)-dimensional vectoryC which lies within the

n-dimensional subspaceC of Rn+1 via (2.33a). Given this value ofyC ∈ C, we now need

to quantize onto the lattice. We may accomplish this with thefollowing simple steps:

• Round each component ofyC to the nearest integer, and call the resultŷ. Define the

deficiency∆ = ∑i ŷi , which quantifies the orthogonal distance of the pointŷ from the

subspaceC.

• If ∆ = 0, thenỹ = ŷ. If not, defined = yC − ŷ, and distribute the integers 0, . . . ,n

among the indicesi0, . . . , in such that

−1/2≤ d(ŷi0) ≤ d(ŷi1) ≤ . . . ≤ d(ŷin) ≤ 1/2.

If ∆ > 0, then nudgêy back onto theC subspace by defining ˜yik =





ŷik −1 k < ∆,

ŷik otherwise.

If ∆ < 0, then nudgêy back onto theC subspace by defining ˜yik =





ŷik +1 k > n+∆,

ŷik otherwise.

Back inn-dimensional parameter space, the quantized valueỹ ∈ C corresponds to

x̃ = B̂T
An

ỹ. (2.33b)

Quantization to the union of cosets

The dual latticesD∗
n andA∗

n, the triangular latticeA2, and the packingD+
n (in-

cluding the latticeE8
∼= E∗

8
∼= D+

8 ) are described via the union of simple, real cosets in

(2.5a), (2.8a), (2.7c), and (2.6), respectively. The latticesE7 andE∗
7 may be built via the

union of simple, real cosets via Construction A [see (2.18a)], with coset representatives

wi
[n,k,d] given in (2.22) and (2.23) respectively. To quantize a lattice described in such

a manner (as a union of simple cosets), one may quantize to each coset independently,

then select from these individual quantizations that lattice point which is nearest to the

original pointx.

The latticesE6 andE∗
6 may be built via the union of complex cosets [which are

scaled and shifted complexE latticesZ[ω]3] via ConstructionAπ
E

[see (2.19a)], with
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coset representativeswi
[n,k,d] given in (2.27) and (2.26) respectively. Following Conway

& Sloane (1984), to discretize a pointx to coseti in these cases:

• Determine the complex vectorz∈ C3 corresponding tox ∈ R6. Shift and scale such

that ẑ = (z−ai)/θ .

• Determine the real vectorx̂ ∈ R6 corresponding tôz∈ C3. Quantize the first, second,

and third pairs of elements ofx̂ to the real triangularA2 lattice to create the quantized

vector ˆ̃x.

• Determine the complex vectorˆ̃z∈ C3 corresponding tỗx ∈ R6. Unscale and unshift

such that̃z = θ ˆ̃z+ai .

• Determine the real vectorx̃ ∈ R6 corresponding tõz∈ C3.

2.7 Conclusions

In short, §2.3of this work is about generalizing to higher dimensions the famil-

iar triangular, BCC, and FCC lattices, which are dense alternatives to the cubic lattice

with reduced nonuniformity, whereas §2.4 of this work is about generalizing to higher

dimensions a few (specifically, the most regular) of the manyfamiliar nets arising in bi-

ology and crystallography, such as the honeycomb, diamond,and quartz graphs, which

are rare alternatives to the cubic lattice with reduced coordination number. The primary

successful application ofn-dimensional sphere packing theory to date is in coding the-

ory, as reviewed in §2.5. A working understanding of this material is essential for the

new practical applications of lattice theory to be studied in Chapters 3 and 4 of this

work, both of which leverage heavily the foundational material discussed here.
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Chapter 3

New Horizons in Sphere-Packing

Theory, Part II:

Lattice-Based Derivative-free

Optimization via Global Surrogates

Derivative-free algorithms are frequently required for the optimization of non-

smooth scalar functions inn dimensions resulting, for example, from physical experi-

ments or from the statistical averaging of numerical simulations of chaotic systems such

as turbulent flows. The core idea of all efficient algorithms for problems of this type is

to keep function evaluations far apart until convergence isapproached.Generalized pat-

tern search(GPS) algorithms, a modern class of methods particularly well suited to such

problems, accomplish this by coordinating the search with an underlying grid which is

refined, and coarsened, as appropriate. One of the most efficient subclasses of GPS algo-

rithms, known as thesurrogate management framework(SMF; see Bookeret al.1999),

alternates between an exploratorysearchover an interpolating function which summa-

rizes the trends exhibited by existing function evaluations, and an exhaustivepoll which

checks the function on neighboring points to confirm or confute the local optimality of

any givencandidate minimum point(CMP) on the underlying grid. The original SMF

algorithm implemented a GPS step on an underlying Cartesiangrid, augmented with a

96
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Kriging-based surrogate search. Rather than using then-dimensional Cartesian grid (the

typical choice), the present work introduces for this purpose the use of lattices derived

from n-dimensional sphere packings. As reviewed and analyzed extensively in Part I

of this series, such lattices are significantly more uniformand have many more nearest

neighbors than their Cartesian counterparts. Both of thesefacts make them far better

suited for coordinating GPS algorithms, as demonstrated here in a variety of numerical

tests.

3.1 Introduction

The minimization of computationally expensive, high-dimensional functions is

often most efficiently performed via gradient-based optimization algorithms such as

nonlinear conjugate gradients and L-BFGS-B. In complex systems for which an ac-

curate computer model is available, the gradient required by such algorithms may often

be found via adjoint analysis. However, when the function inquestion is not sufficiently

smooth to leverage gradient information effectively during its optimization (see, e.g.,

Figure3.1), a derivative-free approach is necessary. Such a scenariois evident, for ex-

ample, when optimizing a finite-time-average approximation of an infinite-time-average

statistic of a chaotic system such as a turbulent flow. Such anapproximation may be de-

termined via simulation or experiment. The truncation of the averaging window used to

determine this approximation renders derivative-based optimization strategies ill suited,

as the truncation error, though small, is effectively decorrelated from one flow sim-

ulation/experiment to the next. This effective decorrelation of the truncation error is

reflected by the exponential growth, over the entire finite time horizon considered, of

the adjoint field related to the optimization problem of interest in the simulation-based

setting.

Due to the often significant expense associated with performing repeated func-

tion evaluations (in the above example, turbulent flow simulations or experiments), a

derivative-free optimization algorithm which converges to within an accurate tolerance

of the global minimum of a nonconvex function of interest with a minimum number of

function evaluations is desired. It is noted that, in the general case, proof of convergence
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of an optimization algorithm to a global minimum is possibleonly when, in the limit

of a large number of function evaluationsN, the function evaluations become dense in

the feasible region of parameter space (Torn & Zilinskas, 1987). Though the algorithm

developed in the present work, when implemented properly, satisfies this condition, so

do far inferior approaches, such as a rather unintelligent algorithm which we call Ex-

haustive Sampling (ES), which simply covers the feasible parameter space with a grid,

evaluates the function ateverygridpoint, refines the grid by a factor of two, and repeats

until terminated. Thus, a guarantee of global convergence is not sufficient to establish

the efficiencyof an optimization algorithm. If function evaluations are relatively ex-

pensive, and thus only a relatively small number of functionevaluations can ultimately

be afforded, effective heuristics for rapid convergence are perhaps even more impor-

tant than rigorous proofs of the behavior of the optimization algorithm in the limit of

largeN, a limit that might actually be argued to be of limited relevance when function

evaluations are expensive. Given that such algorithms are often used in applications in

which only a few hundred function evaluations can be afforded, careful attention to such

heuristics forms an important foundation for the present study.

One of the earliest derivative-free optimization approaches to appear in the lit-

erature is thedownhill simplex method(see Spendley, Hext, & Himsworth 1962 and

Nelder & Mead 1965). The downhill simplex method is inherently based on an itera-

tive, amoeba-like evolution (moving one point at a time) of aset ofn+ 1 points inn

dimensions towards the minimum of a (possibly nonsmooth) function. A large body

of literature appeared after the original introduction of this method, much of which was

aimed at heuristic strategies designed to keep the evolvingsimplex as regular as possible

as the iteration proceeds, while expanding or contracting as appropriate. The grid-based

methods considered in the present work are fundamentally different, so we will not dwell

on such grid-free methods in this introduction. However, itis worth noting the inherent

dependence on the regularity an evolvingsimplex(that is, on ann-dimensional poly-

tope withn+1 vertices) in this classical method, and an analogous focusin the present

work on the identification (see §3.2.2) and characterization (see §3.2.1and3.2.4) of a

maximally-uniform simplex (referred to in the present workas aminimum positive ba-

sis) around the best point encountered thus far as the iterationproceeds, referred to in
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the present work as acandidate minimum point. The role of the simplex in both cases

is essentially identical: to identify the best direction tomove next using a minimum

number of new function evaluations.

If, for the moment, we give up on the goal of global convergence, the perhaps

simplest grid-based derivative-free optimization algorithm, which we call Successive

Polling (SP), proceeds as follows:

• Start with a coarse grid and evaluate the function at some starting point on this grid,

identified as the first candidate minimum point (CMP).

• Then, poll (that is, evaluate) the function values on gridpoints which neighbor the

CMP in parameter space, at a sufficient number of gridpoints to positively span1 the

feasible neighborhood of the CMP [this step ensures convergence, as discussed further

in Torczon 1997, Bookeret al. 1999, and Coope & Price 2001]. When polling:

(a) If any poll point is found to have a function value less than that of the CMP, imme-

diately consider this new point the new CMP and terminate thepresent poll step.

(b) If no poll points are found to have function values less than that of the CMP, refine

the grid by a factor of two.

• Initiate a new poll step, either (a) around the new CMP or (b) around the old CMP on

the refined grid, and repeat until terminated.

Though the basic SP algorithm described above, on its own, isnot very efficient, there

are a variety of effective techniques for accelerating it. All grid-based schemes which

effectively build on this basic SP idea are classified as GPS algorithms.

The most efficient subclass of GPS algorithms, known as the Surrogate Manage-

ment Framework (SMF; see Bookeret al., 1999), leverages inexpensive interpolating

“surrogate” functions (often, Kriging interpolations areused) to summarize the trends

of the existing function evaluations, and to provide suggested new regions of parameter

space in which to perform one or more additional function evaluation(s) between each

poll step. SMF algorithms thus alternate beween two steps:

(i) Searchover the inexpensive interpolating function to identify, based on the existing

function evaluations, the most promising gridpoint at which to perform a new func-

1That is, such that any feasible point in the neighborhood of the CMP can be reached via alinear
combination with non-negative coefficientsof the vectors from the CMP to the poll points.
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Figure 3.1: Prototypical nonsmooth optimization problem for which local gradient in-

formation is ill suited to accelerate the optimization algorithm.

tion evaluation. Perform a function evaluation at this point, update the interpolating

function, and repeat. The search step may be terminated either when it returns a grid-

point at which the function has already been evaluated, or when the function, once

evaluated, has a value greater than that of the CMP.

(ii) Poll the neighborhood of the new CMP identified by the search algorithm, following

rules (a) and (b) above.

There is substantial flexibility during the search step described above. An effective

search is essential for an efficient SMF algorithm. In the case that the search behaves

poorly and fails to return improved function values, the SMFalgorithm essentially re-

duces to the SP algorithm. If, however, the surrogate-basedsearch is effective, the SMF

algorithm will converge to a minimum far faster than a simpleSP-based minimization.

As the search and poll steps are essentially independent of each other, we will discuss

them each in turn in the sections that follow, then present how we have combined them.

Note that if the search produces a new CMP which is several gridpoints away

from the previous function evaluations, which occasionally happens when exploring

functions with multiple minima, the grid may becoarsenedappropriately in order to

explore the vicinity of this new CMP efficiently (that is, with a coarse grid first, then

refined as necessary). Note also that the interpolating surrogate function of the SMF

may be used toorder the function evaluations of the poll step, such that those poll

points which are most likely to have a function value lower than that of the CMP are

evaluated first. By so doing, the poll steps will, on average,terminate sooner, and the

computational cost of the overall algorithm may be reduced further.
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Table 3.1: Characteristics of select distinct lattices in dimensions 2, 3, and 8, ordered

from dense to rare (for a more complete characterization, see Tables 2 and 3 of Chapter

2). Listed (see Chapter 2) are the packing density,∆, covering thickness,Θ, mean

squared quantization error per dimension,G, and kissing number,τ. Note thatZn is

significantly outperformed in every standard metric in every dimensionn > 1 by the

available alternatives.

n lattice name ∆ Θ G τ

A2 hexagonal 0.90690 1.2092 0.080188 6
2

Z2 square 0.78540 1.5708 0.083333 4

A3 face-centered cubic (FCC) 0.74048 2.0944 0.078745 12

3 A∗
3 body-centered cubic (BCC) 0.68017 1.4635 0.078543 8

Z3 cubic 0.52360 2.7207 0.083333 6

E8 Gosset 0.25367 4.0587 0.071682 240

D8 0.12683 32.470 0.075914 112

A8 zero-sum 0.08456 32.993 0.077391 72
8

D∗
8 0.03171 8.1174 0.074735 16

A∗
8 0.02969 3.6658 0.075972 18

Z8 Cartesian 0.01585 64.939 0.083333 16

To the best of our knowledge, all previous GPS and SMF implementations have

been coordinated using Cartesian grids. A primary goal of the present work is to demon-

strate convincingly that significant performance gains maybe realized simply by es-

chewing this dominant Cartesian paradigm. Like in the game of checkers (contrast

“American” checkers with “Chinese” checkers), Cartesian grids are not the only choice

for discretizing parameter space. Other structured choices arising fromn-dimensional

sphere packing theory (see Tables 2.1 and 2.2, and further discussion in Chapter 2) are

significantly more uniform and have many more nearest neighbors, especially as the

dimension of the problem in question is increased; both of these properties suit these

alternative lattices well for coordinating grid-based optimization algorithms.
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Table 3.2: The densest, most uniform lattices available in several dimensions, and two

factors quantifying the degree to which these lattices are better than the corresponding

Cartesian grid in the same dimension;f∆ denotes the factor of improvement in the pack-

ing density, an indication of the uniformity of the lattice,and fτ denotes the factor of

improvement in the kissing number, an indication of the flexibility available in selecting

a positive basis from the nearest neighbors on the lattice. Note that the improvements

becoming especially pronounced as the dimensionn is increased.

A2 A3 D4 D5 E6 E7 E8 K12 Λ16 Λ24

f∆ 1.155 1.414 2 2.83 4.62 8 16 152 4096 1.68e7

fτ 1.5 2 3 4 6 9 15 31.5 135 4095

The definitive comprehensive reference on the subject ofn-dimensional sphere

packing theory is Conway & Sloane (1998)2. Chapter 2 of this study contains a concise

summary of this involved subject, describing essentially everything one needs to know

about lattices up to dimensionn = 24 in order to use them effectively in practical en-

gineering applications. For simplicity, the present investigation focuses on the use of

just two such lattices, the zero-sum latticeAn, which is ann-dimensional analog of the

2-dimensional hexagonal lattice and the 3-dimensional face-centered-cubic lattice, and

the Gosset latticeE8, which is an 8-dimensional analog of the 3-dimensional diamond

packing, and is especially uniform. Both are described completely in Chapter 2; for

brevity, this review will not be repeated here.

3.2 Extending lattice theory for derivative-free optimiza-

tion

To extend the lattice theory described in Chapter 2 of this study in order to coor-

dinate a derivative-free optimization, a few additional component algorithms are needed,

2In fact, as pointed out in Chapter 2, Conway & Sloane (1998, p.12) state: “A related application
that has not yet received much attention is the use of these packings for solving n-dimensional search or
approximation problems”; this is exactly the focus of the present work.
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which are now described. We begin with a short historical retrospective.

Thomson (1904), in his study of the structure of the atom, is credited with being

the first to address the problem3: “Where shouldk inimical dictators settle on a planet

in order to be as far away from each other as possible?” This question extends natu-

rally to n-dimensional planets, and has received significant attention in the years since

Thomson’s original paper. The question is readily answerednumerically by assigning

an identical “charge” to each ofn identical “particles”, restricting particle motion to the

surface of the sphere, and iteratively moving each particle(with some damping applied)

in the direction of the force caused by the other particles (projected onto the sphere) until

all particles come to equilibrium. The precise solution reached is a function of the dis-

tance metric and power law used when computing the force between any two particles;

in the electrostatic setting, Thomson used the Euclidian distance between the particles,

and a force which is proportional to the inverse square of this distance. The setting

based on other distance measures (e.g., measured along the surface of the sphere instead

of along a straight line) and other power laws are referred toas generalized Thomson

problems; in particular, the case based on thep’th power in the limit thatp→ ∞ (that is,

the max value) was studied in Tammes (1930), in his study of the boundaries of pollen

grains.

We now generalize this classical question in two ways, and introduce a new

metric to characterize the solution found:

• First, the locations where the particles are allowed to settle are restricted to a discrete

set of points on a sphere, which are specified as the nearest-neighbor lattice points to

the CMP.

• Next, we allow some the particles’ locations on the sphere tobe specified (that is,

fixed) in advance, and only move the remaining (free) particles to arrive at the best

solution possible.

• Finally, the new metric we introduce is a check of whether or not the distribution

produced by numerical solution of the resulting “discrete Thomson problem” forms

a positive basisof the feasible neighborhood of the CMP; that is, in the case with no

3This curious problem, articulated by Meschkowski (1960) interms of inimical dictators (see also
L. Fejes Toth 1971), assumes that all locations on the planet’s surface are equally desirable, and that the
inimical dictators all cooperate.
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active constraints (cf. §4.4.4), whether or not all points on the unit sphere around the

CMP can be reached via a linear combinationwith non-negative coefficientsof the

vectors from the CMP to the optimized particle locations.

After developing a method to test for a positive basis, the remainder of this section

develops three efficient algorithms to iterate on this “discrete Thomson problem” until

a positive basis is found. To accomplish this, these algorithms first solve the discrete

Thomson problem numerically forn+ m particles wherem = 1. If the optimization

algorithm succeeds in producing a positive basis, the algorithm exits; otherwise,m is

increased by one and the process repeated until a positive basis is determined. The

resulting algoroithm is leveraged heavily during the poll step of the lattice-based SMF

algorithm developed later in this work.

3.2.1 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, we will at times need an

efficient test to determine whether or not the vectors to these points from the CMP form

a positive basis of the feasible domain around the CMP. Without loss of generality, we

will shift this problem so that the CMP corresponds to the origin in the discussion that

follows.

A set of vectors{x̃1, . . . , x̃k} for k ≥ n+ 1 is said topositively spanRn if any

point inRn may be reached via a linear combination of these vectors withnon-negative

coefficients. Since the 2n basis vectors{e1, . . . ,en,−e1, . . . ,−en} positively spanRn,

a convenient test for whether or not the vectors{x̃1, . . . , x̃k} positively spanRn is to

determine whether or not each vector in the setE = {e1, . . . ,en,−e1, . . . ,−en} can be

reached by a positive linear combination of the vectors{x̃1, . . . , x̃k}. That is, for each

vectore∈ E, a solutionz, with zi ≥ 0 for i = 1, . . . ,k, to the equatioñXz = e is sought,

whereX̃ =
(

x̃1 . . . x̃k
)

. If such az exists for each vectore∈ E, then the vectors

{x̃1, . . . , x̃k} positively spanRn; if such az does not exist, then the vectors{x̃1, . . . , x̃k}
do not positively spanRn.

Thus, testing a set of vectors to determine whether or not it positively spansRn

reduces simply to testing for the existence of a solution to 2n well-definedlinear pro-

gramsin standard form. Techniques to perform such tests, such as Matlab’slinprog
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algorithm, are well developed and readily available. Further, if a set ofk vectors posi-

tiviely spansRn, it is a simple matter to check whether or not this set of vectors is also a

positive basis ofRn, if such a check is necessary, simply by checking whether or not any

subset ofk−1 vectors chosen from this set also positively spanRn. Note that a positive

basis withk vectors will necessarily havek in the rangen+ 1≤ k ≤ 2n; the case with

k = n+1 is referred to as aminimalpositive basis, and the case withk = 2n is referred

to as amaximalpositive basis.

3.2.2 Selecting a positive basis

In §6 of Chapter 2, we described how to enumerate all points which are nearest

neighbors of the origin of a lattice (and thus, with the appropriate shift, all points which

are nearest neighbors of any CMP on the lattice). In §3.2.1above, we described how to

test a subset of such points to see if the vectors from the origin to these points form a

positive basis around the CMP. We now present a general algorithm to solve the prob-

lem of selecting a positive basis from the nearest-neighbors of the CMP using a minimal

number of new poll points, while creating the maximum achievable angular uniformity

between the vectors from the CMP to each of these points (thatis, while minimizing

the skewness of the resulting poll set). Note in Figure3.2that, as the number of nearest

neighbors increases, the flexibility in solving this (apparently, NP-hard) problem also

increases, though a perfectly distributed minimal positive basis (usingn+ 1 points) is

not always available. Ideally, form= 1, the solution to the discrete Thomson problem

will produce a positive basis with good angular uniformity;if it does not, we may suc-

cessively incrementm by one and try again until we succeed in producing a positive

basis. We have studied three algorithms for solving this problem:

Algorithm A. If the kissing numberτ of the lattice under consideration is relatively

large (that is, ifτ ≫ n; for example, for the Leech latticeΛ24), then a straightforward

algorithm can first be used to solve Thomson’s problem on a continuous sphere inn

dimensions. This can be done simply and quickly by fixingq ≥ 0 repulsive particles

at the prespecified lattice points, and initializingn+ m−q free repulsive particles on

the sphere randomly. Then, at each iteration, a straightforward force-based algorithm

may be used to move each free particle along the surface of thesphere a small amount
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Figure 3.2: Various minimal positive bases (shown in red) around the origin (shown

in blue) in the (left) triangular, (center) BCC, and (right)FCC lattices. Note that the

triangular and BCC lattices each have two perfectly distributed minimal positive bases.

In contrast, there are several choices for selecting a minimal positive basis in the FCC

lattice, but none is perfectly distributed.

in the direction that the other particles are tending to pushit, and iterating until the set

of particles approaches an equilibrium. The free particle that is nearest to a nearest-

neighbor lattice point around the CMP is then moved to said lattice point and fixed

there, and the remaining free particles adjusted until theyreach a new equilibrium. This

adjust/fix/adjust/fix sequence is repeated until all particles are fixed at lattice points.

Algorithm B.If the kissing numberτ of the lattice under consideration is relatively small

(that is, if τ is not well over an order of magnitude larger thann), then it turns out to

be more expedient to solve the discrete Thomson problem directly. To accomplish this,

again taking theq presepecified repulsive particles as fixed, we initializen+m−q free

repulsive particles randomly onn+ m− q nearest-neighbor lattice points around the

CMP and then, at each iteration, move the two or three4 free particles that are furthest

from equilibrium in the force-based model described above (that is, those free particles

which have the highest force component projected onto the surface of the sphere) into

new positions selected from the available locations in sucha way as to minimize the

maximum force (projected onto the sphere) over the entire set of (fixed and free) parti-

cles. Though each iteration of this algorithm involves an exhaustive search for placing

4Moving more than two or three particles at a time in this algorithm makes each iteration computa-
tionally intensive, and has little impact on overall convergence of the algorithm, whereas moving only
one at a time is found to significantly impede convergence to the optimal solution.
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the two or three free particles in question, it converges quickly whenτ is O(100) or less.

Algorithm C.For intermediate kissing numbersτ, a hybrid approach may be used: a

“good” initial distribution may be found using AlgorithmA, then this distribution may

be refined using AlgorithmB.

In each of these algorithms, to minimize the number of new function evaluations

required at each poll step, a check is first made to determine whether any previous

function evaluations have already been performed on the nearest-neighbor lattice points

around the CMP. If so, then particles are fixed at these locations, while the remaining

particles are adjusted via one of the three algorithms described above. By so doing,

previously-calculated function values may be used with maximum effectiveness during

the polling procedure. When performing the poll step of a surrogate-based search, in

order to orient the new poll set favorably (and, on average, exit the poll step quickly),

a particle may also be fixed at the nearest neighbor point withthe lowest value of the

surrogate function; when polling, this poll point is thus evaluated first.

The iterative algorithms described above, though in practice quite effective, are

not guaranteed to converge from arbitrary initial conditions to a positive basis for a

given value ofm, even if such a positive basis exists. To address this issue,if the al-

gorithm used fails to produce a positive basis, the algorithm may be repeated using a

new random starting distribution. Our numerical tests indicate that this repeated ran-

dom initialization scheme usually generates a positive basis within a few initializations

when such a positive basis indeed exists. Since at times, fora givenm, there exists no

configuration of the free particles on the nearest-neighborlattice points that produces a

positive basis, particularly when the previous function evaluations being leveraged are

poorly configured, the number of new random initializationsis limited to a prespecified

value. Once this value is reached,m is increased by one and the process repeated. As the

cost of each function evaluation increases, the user can increase the number of random

initializations attempted using one of the above algorithms for each value ofm in order

to avoid the computation of extraneous poll points that might in fact be unnecessary if

sufficient exploration by the discrete Thomson algorithm described above is performed.

Numerical tests have demonstrated the efficacy of this rather simple strategy,

which reliably generates a positive basis while keeping computational costs to a min-



108

imum even when leveraging a relatively poor configuration ofprevious function eval-

uations and when working in relatively high dimensionn. Additionally, the algorithm

itself is independent of the lattice being used; the only inputs to the algorithm are the

dimension of the problem, the locations of the nearest-neighbor lattice points, and the

identification of those nearest-neighbor lattice points for which previous function eval-

uations are available.

3.2.3 Implementation of feasible domain boundaries

When implementing a global search inn dimensions, or even when implement-

ing a local search on a function which is ill-defined for certain nonphysical values of the

parameters (such as negative concentrations of chemicals), it is important to restrict the

optimization algorithm to look only over a prespecified “feasible” region of parameter

space. For simplicity, the present work assumes rectangular constraints on this feasible

domain (that is, simple upper and lower bounds on each parameter value). An efficient

n-dimensional lattice with packing radiusρn is used to quantize the interior of the fea-

sible domain, efficient(n− 1)-dimensional lattices with packing radiusρn−1 = ρn/2

are used to quantize the portions of the boundary of the feasible domain with one active

constraint (that is, the “faces”), efficient(n−2)-dimensional lattices with packing radius

ρn−2 = ρn/4 are used to quantize the portions of the boundary of the feasible domain

with two active constraints (that is, the “edges”), etc. Thepresent section describes how

to search over the boundaries of the feasible domain, and howto move on and off of

these boundaries as appropriate, while carefully restricting all function evaluations to

the interior and boundary lattices in order to coordinate anefficient search.

We distinguish between two scenarios in which the polling algorithm as de-

scribed thus far must be adjusted to avoid violating the(n−1)-dimensional boundaries5

of the feasible domain. In the first scenario, the CMP is relatively far (that is, greater

thanρn but less than 2ρn) from the boundary of the feasible domain, and thus one or

more of the poll points as determined by one of the algorithmsproposed in §3.2.2might

land slightly outside this boundary. In this scenario, an effective remedy is simply to

eliminateall lattice points which land outside of the feasible domainfrom the list of po-

5That is, the portions of the boundary with a single active constraint.
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Figure 3.3: Constraint handling: a scenario in which a CMP atx =
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sits on

an (n−2) = 1-dimensional edge of ann = 3-dimensional feasible region with bounds

x1 ≥ 0 andx2 ≥ 0. Note that the feasible neighborhood of this edge is positively spanned

by the nearest neighbors on the integer lattice, and that twoadditional vectors are added

to the poll set to facilitate moving off of each of these active constraint boundaries.

tential poll points, and then toaugmentthis restricted list of potential poll points with all

lattice points on the nearby(n−1)-dimensional constraint surface which are less than

2ρn from the CMP. From this modified list of potential poll points, the poll set may be

selected in the usual fashion using one of the algorithms described in §3.2.2.

In the second scenario, the CMP is relatively close (that is,less thanρn) to the

boundary of the feasible domain. In this scenario, it is mosteffective simply to shift

the CMP onto the nearest lattice point on the(n− 1)-dimensional constraint surface.

With the CMP on the feasible domain boundary, each poll step explores a minimum

positive basis selected on the lattice quantizing the(n−1)-dimensional boundary and,

in addition, polls an additional lattice point on the interior of the feasible domain to allow

the algorithm to move back off this constraint boundary. Ideally, this additional point

would be located on a inward-facing vector normal to the(n−1)-dimensional feasible

domain boundary a distanceρn from the CMP; we thus choose the interior lattice point

closest to this location.

Multiple active constraints are handled in an analogous manner (see Figure3.3).

In an n-dimensional optimization problem withp ≥ 2 active constraints, the CMP is

located on an active constraint “surface” of dimensionn− p. An efficient (n− p)-
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dimensional lattice with packing radiusρn−p = ρn/2p is used to quantize this active

constraint surface, and a poll set is constructed by creating a positive basis selected

from the points neighboring the CMP within the(n− p)-dimensional active constraint

surface, together withp additional points located on the(n− p+ 1)-dimensional con-

straint surfaces neighboring the CMP. Ideally, thesep additional points would be lo-

cated on vectors normal to the(n− p)-dimensional active constraint surface a distance

ρn−p+1 = ρn/2p−1 from the CMP; we thus choose the lattice points on the(n− p+1)-

dimensional feasible domain boundaries closest to these locations.

In practice, it is found that, once an optimization routine moves ontop ≥ 1

feasible domain boundaries, it only somewhat infrequentlymoves back off. To account

for this, thep additional poll points mentioned in the previous paragraphare polled

after the other poll points forming the positive basis within the(n− p)-dimensional

active constraint surface.

3.2.4 Quantifying the skewness of positive bases

A final relevant metric of a lattice that relates to the performance of the corre-

sponding lattice-based optimization is the deviation fromperfect uniformity of the best

minimal positive basis available on nearest-neighbor lattice points. Thebest nearest-

neighbor minimal positive basis skewnessof a lattice,s, is thus now defined as the ratio

between the largest and the smallest angles between any two vectors in the best minimal

positive basis available on nearest-neighbor lattice points, minus one. Therefore,s= 0

indicates a perfectly uniform minimal positive basis on nearest-neighbor lattice points,

as exhibited byA2 (see Figure3.2a) andA∗
3 (Figure3.2b). In constrast,A3 throughA8

all haves= 0.3333 (see, e.g.,A3 in Figure3.2c).

Surprisingly, the best nearest-neighbor minimal positivebasis skewness ofE8

is alsos= 0.3333; one might initially expect it to be much smaller than this (indeed,

one might hope that it would be fairly close tos= 0) due to the relatively large kissing

number (τ = 240) of thisn = 8 lattice. Interestingly, the best nearest-neighbor positive

basis ofE8 when usingn+2 points (that is, instead of a minimal positive basis withn+1

points) is perfectly uniform. The tests reported in §3.5 thus usen+2 points instead of

n+1 points when polling on theE8 lattice.
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A minimal positive basis on nearest-neighbor lattice points doesn’t even exist on

the Zn lattice (indeed, a positive basis on nearest neighbors of the Zn lattice requires

a full 2n points). This was, in fact, a matter of significant inconvenience in previous

work when using the Cartesian lattice as the default choice for such problems, as using

a maximal positive basis rather than a minimal positive basis essentially doubles the cost

of each complete poll step for largen. When developing a minimal positive basis for

theZn lattice, it is thus common (see, e.g., Bookeret al. 1999) to select the Cartesian

unit vectorse1 throughen and one additional “oddball” vector in the(−1,−1, . . . ,−1)

direction which is
√

n longer. Note the “clustering” of the Cartesian unit vectorsin

directions generally opposite to the oddball vector. To quantify, the skewness of this

minimal positive basis is cos−1(−1/
√

n)/(π/2)−1, which in dimensionsn= 2 through

8 is given by 0.5, 0.3918, 0.3333, 0.2952, 0.2677, 0.2468, and 0.2301. Note that, while

the skewness of the angular distribution of this minimal positive basis actually decreases

gradually as the dimension of the problem increases, the ratio in lengths of the vectors

to the nearest-neighbor lattice points and the oddball vector in this basis increases like
√

n (that is, from 1.4142 inn = 2 to 2.8284 inn = 8). This is quite unfortunate, as it

leads to a peculiar nonisotropic behavior of the optimization algorithm over parameter

space (for further discussion on this point, see the sixth paragraph of §3.5.1). The tests

reported in §3.5 use this peculiar minimum positive basis, with a long oddball vector,

when polling on theZn lattice.

We now have all of the ingredients necessary to coordinate a GPS algorithm,

as laid out in §3.1, with any of the lattices listed in Tables 2-3 of Chapter 2, while both

reusing previous function evaluations and respecting sharp bounds on the feasible region

of parameter space. Numerical testing of such an algorithm is reported in §3.5.

3.3 A review of the Kriging interpolation strategy

3.3.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm is to interpolate, and ex-

trapolate, the trends exhibited by the existing function evaluations in order to suggest

new regions of parameter space, perhaps far from the CMP, where the function value
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is anticipated, with some reasonable degree of probability, to be lower than that of the

CMP. There are a variety of possible ways of accomplishing this; we leverage here the

Kriging interpolation strategy (Krige 1951; Matheron 1963; Jones 2001; Rasmussen &

Williams 2006).

The problem of interpolation is the problem of drawing a smooth curve through

data points in order to estimate the function values in regions where the function it-

self has not yet been computed. The problem of interpolation, thus, necessarily builds

on some hypothesis that models the function behavior in order to “connect the dots”.

The most common such model is a mechanical one, based on a thinpiece of wood, or

“spline”, that is “bent” in order to touch all the data points; this mechanical model leads

directly to the mathematical algorithm known as cubic spline interpolation. A perhaps

equally valid hypothesis, which forms the foundation for the Kriging interpolation strat-

egy, is tomodel the underlying function as a realization, with maximum likelihood, of

some stochastic process. The stochastic model used in this approach is selected to be

general enough to model a broad range of functions reasonably well, yet simple enough

to be fairly inexpensive to tune appropriately based on the measured data. There are

many such stochastic models which one can select; the simplestochastic model con-

sidered here leads to the easy-to-use interpolation strategy commonly referred to as

ordinary Kriging.

3.3.2 Notation of statistical description

To begin, considerN points{x1, . . . ,xN}, at which the function will ultimately

be evaluated, and model the function’s value at theseN points with the random vector

f =




f (x1)
...

f (xN)


=




f1
...

fN


 .

To proceed further, we need a clear statistical framework todescribe this random vector.

The cumulative distribution function (CDF) of the random vector f, denoted

df(f), is a mapping fromf ∈ Rn to the real interval[0,1] that monotonically increases in
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each of the components off, and is defined

df(f) = P( f1 ≤ f
1
, f2 ≤ f

2
, . . . , fn ≤ f

n
),

wheref is some particular value of the random vectorf andP(S) denotes a probability

measure that the conditions stated inSare true. In the scalar case, for example,df (1) =

0.6 means that it is 60% likely that the random variablef satisfies the conditionf ≤ 1.

For a random vectorf whose CDF is modelled as being differentiable everywhere, the

probability density function (PDF)pf(f ′) ≥ 0 is a scalar function off ′ defined such that

df(f) =
∫ f

1

−∞

∫ f
2

−∞
· · ·
∫ f

n

−∞
pf(f

′)d f ′1d f ′2 · · ·d f ′n ⇔ pf(f
′) =

∂ ndf(f)
∂ f

1
∂ f

2
· · ·∂ f

n

∣∣∣
f=f ′

.

For small|∆f ′|, the quantitypf(f ′)∆ f ′1∆ f ′2 · · ·∆ f ′n represents the probability that the ran-

dom vectorf takes some value within a small rectangular region centeredat the valuef ′

and of width∆ f ′i in each coordinate directionei . Note that the integral ofpf(f ′) over all

possible values off ′ is unity, that is

∫

Rn
pf(f

′)df ′ = 1.

The expected value of a functiong(f) of a random vectorf is given by

E {g(f)} =
∫

Rn
g(f ′) pf(f

′)dx′.

The expected value may be interpreted as the average of the quantity in question over

many realizations. In particular, the meanf̄ and covariancePf of the random vectorf are

defined as

f̄ , E {f}=
∫

Rn
f ′ pf(f

′)df ′, Pf , E {(f− f̄)(f− f̄)T}=
∫

Rn
(f ′− f̄)(f ′− f̄)T pf(f

′)df ′.

3.3.3 Statistical modeling assumptions of ordinary Kriging

The PDF of the random vectorf = fn×1 in this analysis is modelled as Gaussian,

and is thus restricted to the generic form

pf(f
′) =

1

(2π)n/2|Pf|1/2
exp

−(f ′− f̄)TP−1
f (f ′− f̄)

2
, (3.1a)
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where the covariancePf is modelled as a constantσ2, referred to as the variance, times a

correlation matrixRwhose{i, j}’th componentr i j is given by a model of the correlation

of the random functionf between pointsxi andx j , where this correlation modelr(·, ·)
itself decays exponentially with the distance between pointsxi andx j ; that is,

Pf , σ2R, where r i j , r(xi ,x j) and r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ−yℓ|pℓ

)
(3.1b)

for some yet-to-be-determined constantsσ2, θℓ > 0, and 0< pℓ ≤ 2 for ℓ = 1, . . . ,n.

The mean̄f in the Gaussian model (3.1a) is itself modelled as uniform over all of its

components:

f̄ , µ1 (3.1c)

for some yet-to-be-determined constantµ. There is extensive debate in the recent litera-

ture (see, e.g., Isaaks & Srivastava 1989; Rasmussen & Williams 2006) on the statistical

modeling assumptions one should use in a Kriging model of this sort. It is straightfor-

ward to extend the present investigation to incorporate less restrictive Kriging models;

the ordinary Kriging model is used here primarily due to its simplicity.

3.3.4 Optimization of the coefficients of the model

If the vector of observed function values is

f o =




f o
1
...

f o
N


 ,

then the PDF corresponding to this observation in the statistical model proposed in (3.1)

can be written as

pf(f
o) =

1

(2π)n/2(σ2)n/2|R|1/2
exp

−(f o−µ1)TR−1(f o−µ1)

2σ2 . (3.2)

The process of Kriging modeling boils down to selecting the parametersσ2, θℓ, pℓ,

andµ in the statistical model proposed in (3.1) to maximize the PDF evaluated for the

function values actually observed,f = f o, as given in (3.2).

Maximizing pf(f o) is equivalent to minimizing the negative of its log. Thus, for

simplicity, consider

J = − log[pf(f
o)] =

n
2

log(2π)+
n
2

log(σ2)+
1
2

log(|R|)+
(f o−µ1)TR−1(f o−µ1)

2σ2 .

(3.3)
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Setting the derivatives ofJ with respect toµ and σ2 equal to zero and solving, the

optimal values ofµ andσ2 are determined immediately:

µ =
1TR−1f o

1TR−11
, σ2 =

(f o−µ1)TR−1(f o−µ1)

n
. (3.4)

With these optimal values ofµ andσ2 applied, noting that the last term in (3.3) is now

constant, what remains to be done is to minimize

J1 =
n
2

log(σ2)+
1
2

log(|R|) (3.5)

with respect to the remaining free parameters6 θℓ andpℓ, whereσ2 is given as a function

of R in (3.4) andR, in turn, is given as a function of the free parametersθℓ and pℓ in

(3.1b). This minimization must, in general, be performed numerically. However, the

functionJ1 is smooth in the parametersθℓ andpℓ, so this optimization may be performed

efficiently with a standard gradient-based algorithm, suchas the nonquadratic conjugate

gradient algorithm, where the gradient itself, for simplicity, may easily be determined

via a simple finite difference or complex-step derivative approach.

Note that, after each new function evaluation, the Kriging parameters often ad-

just only slightly, and thus the previously-converged values of these parameters form

a good initial guess for this gradient-based optimization algorithm. Note also that,

while performing this optimization, the determinant of thecorrelation matrix occasion-

ally reaches machine zero. To avoid the numerical difficultythat taking the log of zero

would otherwise induce, a small [O(10−6)] term may be added to the diagonal elements

of R. By so doing, the Kriging predictor does not quite have the value of the sampled

data at each sampled point; however, it remains quite close,and the algorithm is made

numerically robust [Bookeret al, 1999].

6To simplify this optimization,pℓ may be specified by the user instead of being determined via op-
timization; this is especially appropriate to do when the number of function evaluationsN is relatively
small, and thus there is not yet enough data to determine boththeθℓ andpℓ uniquely. If this approach is
followed, pℓ = 1 or 2 are natural choices; the case withpℓ = 1 is referred to as an Ornstein-Uhlenbeck
process, whereas the case withpℓ = 2 is infinitely differentiable everywhere.
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3.3.5 Using the tuned statistical model to predict the function value

at new locations

Once the parameters of the stochastic model have been tuned as described above,

the tuned Kriging model facilitates the computationally inexpensive prediction of the

function value at any new location̄x. To perform this prediction, consider now the

N +1 points{x1, . . . ,xN, x̄}, and model the function’s value at theseN+1 points with

the vector

f̄ =

(
f

f (x̄)

)
=

(
f

f̄

)
,

wheref is theN×1 random vector considered previously andf̄ is the random scalar

modeling the function at the new point. Analogous statistical assumptions as laid out in

(3.1) are again applied, with the correlation matrix now writtenas

R̄=

[
R r̄

r̄T 1

]
, Pf̄ , σ2R̄, (3.6)

whereR is theN×N correlation matrix considered previously and, consistentwith this

definition, the vector̄r is constructed with components

r̄ i = r(xi, x̄), where r(x,y) ,
n

∏
ℓ=1

exp
(
−θℓ|xℓ−yℓ|pℓ

)
.

Following Jones (2001), note by the matrix inversion lemma thatR̄−1 may be written

R̄−1 =

[
R r̄

r̄T 1

]−1

=

[
R−1+R−1r̄(1− r̄TR−1r̄)−1r̄TR−1 −R−1r̄(1− r̄TR−1r̄)−1

−(1− r̄TR−1r̄)−1r̄TR−1 (1− r̄TR−1r̄)−1

]
.

(3.7)

Keeping the parameter valuesσ2, θℓ, pℓ, andµ as tuned previously, we now

examine the variation of the PDF in the remaining unknown random variable,f̄ . Sub-

stituting (3.6) and (3.7) into a PDF of the form (3.1a), we may write

pf̄(f̄
′) = C1 ·exp

−(f̄ ′−µ1)TR̄−1(f̄ ′−µ1)

2σ2 = . . . = C2 ·exp
−[ f̄ ′− f̂ ]T [ f̄ ′− f̂ ]

2s2 , (3.8)

where, with a minor amount of algebraic rearrangement, the mean and variance of this
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Figure 3.4: (a) The Kriging predictor,f̂ (x), and (b) its associated uncertainty,s2(x),

for a perturbed quadratic bowl sampled on a square grid of 7×7 points. (c) The corre-

sponding MLI search function used for a global search in two dimensions (see §3.4).

scalar Gaussian distribution modeling the random scalarf̄ work out to be7

f̂ (x̄) = E { f (x̄)} = E { f̄} = µ + rT R−1(f o−µ1), (3.9a)

s2(x̄) = E {[ f (x̄)− f̂ ]2} = E {[ f̄ − f̂ ]2} = σ2(1− rTR−1r). (3.9b)

Equations (3.9a)-(3.9b) give the final formulae for the Kriging predictor,̂f (x̄), and its

associated uncertainty,s2(x̄).

When applied numerically to a representative test problem,as expected, the

Kriging predictor function, which we denotêf (x̄), interpolates [that is, it goes through

every observed function value at pointsx̄ = x1 to x̄ = xN], whereas the uncertainty func-

tion, denoteds2(x̄), is zero at each sampled point, and resembles a Gaussian “bump”

between these sampled points, as seen in Figure3.4. Note that, once the parameters of

the statistical model have been determined, as described in§3.3.4, the formula (3.9a)-

(3.9b) for the Kriging predictorf̂ (x̄) and its corresponding uncertaintys2(x̄) at any test

point x̄ is computationally quite inexpensive8.

7An alternative interpretation of this process models the constantµ itself as a stochastic variable rather
than as a constant. Following this line of reasoning ultimately gives the same formula for the predictor
f̂ (x̄) as given in (3.9a), and a slightly modified formula for its associated uncertainty,

s2(x̄) = σ2
(

1− rTR−1r +
(1− rTR−1r)2

1TR−11

)
. (3.9b’)

Which formula [(3.9b) or (3.9b’)] is used in the present model is ultimately a matter of little consequence
as far as the overall derivative-free optimization algorithm is concerned; we thus prefer the form given in
(3.9b) due to its computational simplicity.

8Note that, for maximum efficiency,R−1 should be saved between function evaluations and reused for
every new computation of̂f ands2 required.
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3.4 A review of global optimization strategies leveraging

Kriging-based interpolation

The previous section reviewed the Kriging interpolation strategy which, based

on a sparse set of observed function valuesf o(xi) for i = 1, . . . ,N, develops a func-

tion predictor f̂ (x) and a model of the uncertaintys2(x) associated with this prediction

for any given set of parameter valuesx. Leveraging this Kriging model, an efficient

search algorithm can now be developed for the derivative-free optimization algorithm

summarized in §3.1.

The effectiveness of the various Kriging-based search strategies which one might

propose may be tested by applying them repeatedly to simple test problems via the

following procedure:

• a search functionJ(x) is first developed based on a Kriging model fit to the exist-

ing function evaluations,

• a gradient-based search is used to minimize this (computationally inexpensive,

smoothly-varying) search function,

• the functionf (x) is sampled at the pointx̃ which minimizes the search function9,

• the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem with multiple minima, f (x) =

sin(x) + x2, on the intervalx ∈ [−10,10], and use four starting points to initialize the

searchx = −10, x = −5.2, x = 6, andx = 10. Ineffective search strategies will not

converge to the global minimum off (x) in this test, and may not even converge to a local

minimum. More effective search strategies converge to the global minimum following

this approach, and the number of function evaluations required for convergence indicates

the effectiveness of the search strategy used.

Perhaps the most “obvious” strategy to use in such problems is simply fitting a

Kriging model to the known data, then searching the Kriging predictor itself,J(x) =

f̂ (x), for its minimum value. This simple approach has been implemented in a variety

of examples with reasonably good results (see Bookeret al, 1999). However, as shown

9For the moment, to focus our attention on the behavior of the search algorithm itself, no underlying
grid is used to coordinate the search in order to keep function evaluations far apart.
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Figure 3.5: Convergence of a search algorithm minimizing the Kriging predictor,

J(x) = f̂ (x), at each iteration. This algorithm does not necessarily converge to even

a local minimum, and in this example has stalled, far from theglobal minimum, after

six iterations.

clearly in Figure3.5, this approach can easily break down. The Kriging predictordoes

not necessarily model the function accurately, and its minimization fails to guarantee

convergence to even a local minimum of the functionf (x). This observed fact can

be motivated informally by identifying the Kriging predictor as aninterpolatingfunc-

tion which only under extraördinary conditions predicts a function value significantly

lower than all of the previously-computed function values;under ordinary conditions, a

strategy of minimizing the predictor will thus often stall in the vicinity of the previously-

evaluated points.

To avoid the shortcomings of a search defined solely by the minimization of the

predictor, another strategy explored by Bookeret al (1999) is to evaluate the function

at two points in parameter space during the search: one point chosen to minimize the

predictor, and the other point chosen to maximize the predictor uncertainty. Such a

heuristic provides a guarantee of global convergence, as the seach becomes dense in

the parameter space as the total number of function evaluations,N, approaches infinity

(see §3.1). However, this approach generally does not converge quickly as compared
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Figure 3.6: Convergence of a search algorithm minimizingJ(x) = f̂ (x)− c · s2(x) at

each iteration, takingc = 1. Note that the global minimum is found after just a few

iterations. However, global convergence is not guaranteed.

with the improved methods described below, as the extra search point has no component

associated with the predictor, and is thus often evaluated in relatively “poor” regions of

parameter space.

We are thus motivated to develop a more flexible strategy to explore slightly

away from the minima of the predictor. To achieve this, consider the minimization of

J(x) = f̂ (x)−c·s2(x), wherec is some constant (see Cox & John 1997 and Jones 2001).

A search coordinated by this function will tend to explore regions of parameter space

where both the predictor of the function value is relativelylow and the uncertainty of

this prediction in the Kriging model is relatively high. With this strategy, the search

is driven to regions of higher uncertainty, with the−c · s2(x) term in J(x) tending to

cause the algorithm to explore away from previously evaluated points. Additionally,

minimizing f̂ (x)−c·s2(x) allows the algorithm to explore the vicinity ofmultiplelocal

minima in successive iterations in order to determine, withan increasing degree of cer-

tainty, which local “bowl” in fact has the deepest minimum. The parameterc provides

a natural means to “tune” the degree to which the search is driven to regions of higher

uncertainty, with smaller values ofc focusing the search more on refining the vicinity
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of the lowest function value(s) already found, and larger values ofc focusing the search

more on exploring regions of parameter space which are stillrelatively poorly sampled.

This parameter may tuned based on knowledge of the function being minimized: if the

function is suspected to have multiple minima,c can be made relatively large to ensure

a more exploratory search, whereas if the function is suspected of having a single min-

imum, c can be made relatively small to ensure a more focused search in the vicinity

of the CMP. For an appropriate intermediate value ofc, the resulting algorithm is of-

ten quite effective at both global exploration and local refinement of the minimum, as

illustrated in Figure3.6. The strategy of searchingJ(x) = f̂ (x)−c · s2(x) also extends

naturally to multiple dimensions, as illustrated for a two-dimensional problem in Figure

3.4c. Note also that, in the spirit of Bookeret al (1999) [who effectively suggested, in

the present notation, exploring based on bothc = 0 andc→ ∞ at each search step], one

can perform a search using multiple but finite values ofc at each search step, returning a

set of points designed to focus, to varying degrees, on the competing objectives of global

exploration and local refinement. If at each search stepk at least one point is included

which minimizesf̂ (x)−ck ·s2(x) for a value ofck which itself approaches∞ ask→ ∞,

then the search drives at least some new function evaluations sufficiently far from the

existing points that the function evaluations eventually become dense over the feasible

domain, thus guaranteeing global convergence. Thus, anf̂ (x)− c · s2(x) search, when

used properly, can indeed be used in a globally convergent manner.

Minimizing J(x) = f̂ (x)−c · s2(x) is not the only strategy to take advantage of

the estimate of the uncertainty of the predictor provided bythe Kriging model. Another

effective search strategy involves maximizing the probability of achieving a target level

of improvement below the current CMP; this is called themaximum likelihood of im-

provement(MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen 1991, Elder

1992, and Mockus 1994]. If the current CMP has a function value fmin, then this search

strategy seeks thatx for which the probability of finding a function valuef (x) less than

some prespecified target valueftarget [that is, for which f (x) ≤ ftarget< fmin] is maxi-

mized in the Kriging model. Iff (x) is known to be a positive function, a typical target

value in this approach isftarget= (1− δ ) fmin, whereδ may be selected somewhere in

the range of 0.01 to 0.2. As for the parameterc discussed in the previous paragraph,
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Figure 3.7: MLI search with a targetT = 10%. Note convergence to global minimum,

as well as exploratory nature of the search which guaranteesglobal convergence.

the parameterδ in this strategy tunes the degree to which the search is driven to regions

of higher uncertainty, with smaller values ofδ focusing the search more on refining

the vicinity of the lowest function value(s) already found,and larger values ofδ focus-

ing the search more on exploring regions of parameter space which are still relatively

poorly sampled. As seen in Figure3.7, the MLI search offers performance similar to

the f̂ (x)− c · s2(x) method discussed previously. In contrast with thef̂ (x)− c · s2(x)

approach, even for a fixed (finite) value ofδ , the MLI approach eventually drives the

function evaluations far enough away from existing points that the function evaluations

eventually become dense over the feasible domain, thus guaranteeing global conver-

gence. Thus, the MLI approach is inherently globally convergent.

Even more sophisticated search strategies can also be proposed, as reviewed

elegantly by Jones (2001). However, the simplicity, flexibility, and performance given

by the strategy of maximizing the MLI renders this approach as adequate for our testing

purposes here.

Since both theJ(x) = f̂ (x)−c·s2(x) search function and the MLI search func-

tion are inexpensive to compute, continuous, and smooth, but in general have multiple
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minima, an efficient gradient-based search, initialized from several well-selected points

in parameter space, may be used to to minimize them. As the uncertaintys2(x) goes

to zero at each sample point,J(x) will tend to dip between each sample point. Thus, a

search is initialized on 2n·N total points forming a positive basis near (say, at a distance

of ρn/2) to each of theN sample points, and each of these starting points is marched to

a local minima of the search function using an efficient gradient-based search (which is

constrained to remain within the feasible domain ofx). The lowest point of the paths so

generated will very likely be the global minima of the searchfunction. For simplicity,

the necessary gradients for this search may be computed via asimple second-order cen-

tral finite difference scheme applied to the Kriging model, though more sophisticated

and efficient approaches are also possible.

3.5 Results

Putting everything together, we now develop and test what weidentify as the

Lattice Based Derivative-free Optimization via Global Surrogates(LABDOGS) algo-

rithm. This algorithm consists of an SMF-based optimization (see §3.1) coordinated

by uniformn-dimensional lattices (see §3.2, and further discussion in Chapter 2 of this

study) while leveraging a Kriging interpolant (see §3.3) to perform an efficient global

search based on the MLI search function(see §3.4). The full algorithm has been im-

plemented in an efficient numerical code and is tested in thissection inn = 2 to n = 8

dimensions using theZn, An, andE8 lattices to coordinate the search, and is applied here

to: Shifted quadratic bowls:

fQ(x) = (x−xo)TA(x−xo)

Shifted Rosenbrock functions:

fR(x) = ∑n−1
i=0 {[1− (xi −xo

i )]
2+(−1)n500[(xi+1−xo

i+1)− (xi −xo
i )

2]2

The Branin function:

fB(x) = [1−2x2+0.05sin(4πx2)−x1]
2+[x2−0.5sin(2πx1)]

2
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The “T1” function:

fM(x) = sin(5x1)+sin(5x2)+0.02[(5x1+1.5)2+(5x2+1.5)2]

Note that the first two test functions aren-dimensional and have unique minima,

whereas the last two test functions are 2-dimensional and have multiple minima.

3.5.1 SP applied to convex functions

To test the hypothesis that the efficiency of a pattern searchis significantly

affected by the packing efficiency and/or the nearest-neighbor distribution of the lat-

tices which coordinate it, a large number of SP optimizations were first performed on

randomly-shifted quadratic bowls to gather and compare statistical data on the perfor-

mance ofZn-based,An-based, andE8-based SP optimizations. The positive-definite

matricesA > 0 and offsetsxo defining the quadratic bowls to be minimized, as well as

the starting points used in the searches, were selected at random for every set of tests,

and the initialZn, An, andE8 lattices were scaled such that the initial number of points

per unit volume of parameter space was identical.

The Zn-based,An-based, andE8-based SP algorithms were run from the same

starting points on the same quadratic test functions to the same level of convergence.

Note that several of the significant built-in acceleration features of the full LABDOGS

code were in fact turned off for this baseline comparison. Most notably, complete polls

were performed (that is, the poll steps were not terminated immediately upon finding

a lower CMP), and no attempt was made to reuse previously-computed points when

forming each successive poll set, or to orient optimally anygiven poll set. In fact, the

angular distribution of the poll set around the CMP was fixed from one step to the next

in these initial tests.

Two quantitative measures of the relative efficiency of the optimization algo-

rithms to be tested are now defined. The metricp is defined as thepercentage of runs

in which the lattice-based algorithm requires fewer function evaluations than does the

Zn-based algorithm to converge 99.99% of the way from the initial value ofJ(x) to the

optimal value ofJ(x) [which, in these test problems, is easy to compute analytically].

The metricr is defined as theratio of the average number of function evaluationsre-
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Table 3.3: Performance comparison between theAn-based SP algorithm and theZn-

based SP algorithm applied to randomly shifted quadratic bowls for n = 2 to 8. It is

seen that theA8-based SP algorithm outperformed theZ8-based SP algorithm 85% of

the time, and on average required 30% as many function evaluations to reach the same

level of convergence.

n 2 3 4 5 6 7 8

p 74.77 81.32 84.03 84.53 84.43 84.56 85.28
r 0.4290 0.4161 0.3273 0.3585 0.3150 0.3345 0.3060

Table 3.4: Performance comparison between theE8-based SP algorithm and theZ8-

based SP algorithm applied to randomly shifted quadratic bowls. It is seen that the

E8-based SP algorithm outperformed theZ8-based SP algorithm 91% of the time, and

on average required 15.5% as many function evaluations to reach the same level of

convergence, thus offering nearly twice the performance ofAn.

n 8

p 90.65
r 0.1554

quired for the lattice-based algorithm to converge 99.99% of the way from the initial

value ofJ(x) to the optimal value ofJ(x) divided by the average number of function

evaluations needed for theZn-based algorithm to converge the same amount.

The p andr measures described above (averaged over 5000 runs for each value

of n) were calculated in the case of theAn lattice (forn = 2 to n = 8) and theE8 lattice,

and are reported in Tables3.3 and3.4. Note that values ofp over 50% and values of

r less than 1 indicate that, on average, the lattice-based SP algorithm outperforms the

Zn-based SP algorithm, withp quantifying how often andr quantifying how much.

Note in Table2.1 that the “best” lattice inn = 2 andn = 3, accoring to several

standard metrics, isAn; however, as the dimension of the problem increases, several

other lattices become available, and that byn = 8 theE8 lattice appears to be the best

choice. This observation is consistent with the numerical results reported in Tables

3.3 and3.4, which indicates that theAn-based optimizations provided a consistent and
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Figure 3.8: Typical paths taken by theA2-based SP algorithm (dots) and theZ2-based

SP algorithm (+) on a randomly-shifted quadratic bowl.

substantial improvement over theZn-based optimizations over the entire rangen = 2 to

8, and that, inn = 8, theE8-based optimization significantly outperformed theA8-based

optimization.

The mechanism by which the lattice-based SP algorithms outperform theZn-

based SP algorithm on quadratic test problems is now examined in detail. As described

previously, theZn minimal positive basis vectors are distributed with poor angular uni-

formity and can not be selected on nearest-neighbor latticepoints. When the optimal

descent direction is poorly approximated by thesen+ 1 vectors (such as when the op-

timal descent direction is configured somewhere approximately midway between the

oddball vector and one of the Cartesian unit vectors), the search path must “zig-zag” to

move towards the actual minimum. If the local curvature of the function is small com-

pared to the current lattice spacing, then the search algorithm must take several steps in

a rather poor direction before it must eventually turn back down the “valley floor”, as

illustrated by the path of theZn-based SP algorithm in Figure3.8. Once in this valley,

the lattice spacing must be diminished such that each step ofthe “zig-zag” path required

to proceed down the valley floor in fact decreases the function; this leads to otherwise

unnecessary lattice refinement and thus very slow progress by the SP algorithm. This

effect is exacerbated when the vectors of the poll set are of substantially different length,

as the entire set of vectors must be scaled down until movement along the direction of
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Figure 3.9: A sample SP minimization comparing theAn-based case (dash-dot line at

left and black+ at center) with theZn-based case (solid line at left and blue∗ at right)

on a randomly shifted Rosenbrock function. Note the superior convergence rate of the

An-based approach (as illustrated in the convergence plot at left), resulting in further

progress toward the minimum at[1,−1] (as illustrated in the subfigures at center and

right).

the longest poll vector during this zig-zagging motion still decreases the function. This

leads to the poor convergence behavior demonstrated by theZn-based SP algorithm

along the narrow valley floor of the quadratic bowl indicatedin Figure3.8. Of course,

the present arguments are statistical in nature, and in specific cases either theAn-based

SP algorithm or theZn-based SP algorithm will sometimes get “lucky” and converge

remarkably quickly. However, it is clear that the optimal descent direction at any given

iteration is more likely to be “far” from the poll vectors when the poll set is distributed

with poor angular uniformity.

The An-based andZn-based SP algorithms were also applied to a randomly-

shifted Rosenbrock function in a similar fashion. Figure3.9 demonstrates a typical

case, indicating the respective rates of convergence of thetwo SP algorithms. TheAn-

based SP algorithm demonstrates a substantially improved convergence rate compared

to theZn-based SP algorithm.

These results demonstrate that the efficiency of the SP portion of a pattern search

can be substantially improved simply by implementing a moreefficient lattice to dis-

cretize parameter space.
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3.5.2 LABDOGS applied to Rosenbrock functions

To test the hypothesis that the efficiency of the full LABDOGSalgorithm is

significantly affected by the choice of the lattices which coordinate it, a more demanding

test than a quadratic bowl is required. We thus consider herethe application of the full

LABDOGS algorithm to randomly shifted Rosenbrock functions. The “valley” in which

the minimum of the Rosenbrock function lies is narrow, curved, and relatively flat (that

is, with a vanishing second derivative) along the bottom. This makes it a difficult test

case for any SMF-like algorithm to approximate with a surrogate function of sufficient

accuracy to be particularly useful along the valley floor, other than simply to indicate

where the function evaluations are currently relatively sparse. In other words, both

the search and poll components of the LABDOGS algorithm are put to the test when

searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of theAn-based andZn-based LABDOGS

algorithms (usingc= 5) applied to randomly shifted Rosenbrock functions are reported

here. As in the SP tests described previously, the initialAn andZn lattices were scaled

appropriately so as to be of the same initial density.

Recall in the SP tests the metricp, which quantifiedhow oftenthe lattice-based

method outperformed the Cartesian-based method, and the metric r, which quantifying

how muchthe lattice-based method outperformed the Cartesian-based method. In this

section, we use two similar metrics, ¯p and ¯r, but now terminate each optimization after a

particular number of iterations rather than after convergence to a given percentage of the

(known) optimal solution. Specifically, the metric ¯p is defined as the percentage of runs

in which theAn-based LABDOGS algorithm converged further than did theZn-based

LABDOGS algorithm after 300 function evaluations, whereasthe metric ¯r is defined as

the ratio of the average function value to which theAn-based LABDOGS algorithm con-

verged after 300 function evaluations divided by the average function value to which the

Zn-based LABDOGS algorithm converged after 300 function evaluations. The results

for n = 2 to 5 (averaged over 200 runs forn = 2, 3, and 4, and 100 runs forn = 5) are

reported in Table3.5. Note that values of ¯p over 50% and values of ¯r less than 1 indi-

cate that, on average, the lattice-based LABDOGS algorithmoutperforms theZn-based

LABDOGS algorithm, with ¯p quantifying how often and ¯r quantifying how much. It is
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Figure 3.10: Convergence of the LABDOGS code usingAn (red) vsZn (green), on an

n = 6 Rosenbrock function.

Table 3.5: Performance comparison between theAn-based LABDOGS algorithm and

theZn-based LABDOGS algorithm applied to randomly shifted Rosenbrock functions.

For n = 2, it is seen that theAn-based SP algorithm outperformed theZn-based SP

algorithm about 64% of the time, and on average converged to afunction value 65%

better using the same number of function evaluations.

n 2 3 4 5

p̄ 64.0 56.0 63.0 68.0
r̄ 0.651 0.699 0.773 0.758

seen that theAn-based LABDOGS algorithm consistently and significantly outperforms

theZn-based LABDOGS algorithm.

Figure3.10compares the convergence of theAn-based andZn-based LABDOGS

algorithms on a representative realization of the Rosenbrock function inn= 6. The con-

vergence of the two algorithms are similar in behavior during the first 20 iterations,

during which they share a nearly identical search, with the differences between the two

becoming more and more apparent as convergence is approached. Initially, the poll steps

return much smaller improvements than the search steps. Once the surrogate model ade-

quately represents the walls of the Rosenbrock function, thereby identifying the “valley

floor”, the search becomes less effective, and both algorithms rely more heavily on the

polling algorithm to identify the minimum.
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Figure 3.11: Points evaluated by the LABDOGS algorithm when exploring the Branin

function (with multiple minima), with (left)c = 2 and (right)c= 10000. Note the more

“focused” sampling whenc is small and the more “exploratory” sampling whenc is

large.

3.5.3 LABDOGS applied to Branin andT1 —demonstrating global

exploration with local refinement

Thus far, only functions with unique minima have been explored. As the LAB-

DOGS algorithm has the capability to locate and explore multiple local minima in an

attempt to identify and refine an estimate of the global minimum, some searches were

performed on two test functions with multiple minima, Branin andT1, to demonstrate

this capability.

On the interval−2 < x < 2,−2 < y < 2, the Branin function has five local min-

ima. As seen in Figure3.11, with the search parameterc= 2, the LABDOGS algorithm

does an excellent job of locating and exploring all of these local minima, eventually

converging to an accurate estimate of the global minimum. With c = 10000, the search

tends to be more “space-filling”, acting at each step to reduce the maximum uncertainty

of the Kriging surrogate. It is clearly evident that, as the number of function evalua-

tions gets large in thec = 10000 case, this search will tend to explore nearly uniformly

over the entire feasible domain. [In the limit thatc is infinite, the function evaluations

become dense asN → ∞, thereby assuring global convergence.] However, for a small
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Figure 3.12: Points evaluated by the LABDOGS algorithm when exploring theT1 func-

tion (with multiple minima) withc = 1000 after (left) 30 function evaluations, (center)

60 function evaluations, and (right) 100 function evaluations. Note (after 30 function

evaluations) that the LABDOGS algorithm initially identifies and converges to a local

minimum near the lower-left corner. Ultimately (after 100 function evaluations), the

LABDOGS algorithm successfully identifies a refined estimate of the global minimum.

number of total function evaluationsN [which should be the primary problem of interest

if function evaluations are expensive!], the strategy withsmallerc in fact identifies and

refines the estimate of the global minimum point much sooner,as the case with largec

wastes a lot of computational effort reducing the uncertainty of the surrogate in areas

predicted to have poor function values.

Similar behavior can be seen for theT1 test function in Figure3.12. Initially,

the algorithm happens upon the local minimum in the lower-left corner of the feasible

domain. With its exploratory function evaluations, however, the algorithm ultimately

identifies and refines its estimate of the global minimum.

While these results indicate encouraging global exploration, further testing of

the LABDOGS algorithm on nonconvex functions is certainly warranted, particularly

in high-dimensional problems. In particular, further refinement of the algorithm to pro-

vide the most robust combination of “focused” and “exploratory” sampling remains to

be performed; however, the present results clearly demonstrate the capability and flex-

ibility of the LABDOGS algorithm to strike this balance while maintaining maximum

computational efficiency.
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3.6 Conclusions

The present work proposes a new algorithm, dubbed LABDOGS, for derivative-

free optimization formed via the tight integration of

• the efficient SMF algorithm (see §3.1) for a surrogate-based search coordinated

by an underlying grid, in order to keep function evaluationsfar apart until conver-

gence is approached,

• a uniform “grid” selected from those available in lattice theory (see §3.2and fur-

ther discussion in Chapter 2 of this study) to coordinate such an optimization

algorithm, in order to reduce the average quantization error of a grid of a given

density and to better distribute the poll points during the poll step, and

• a highly effective search algorithm, leveraging a Kriging interpolant (see §3.3) to

construct the MLI search function combining both the function predictor and a

model of its associated uncertainty, in order to provide a flexible combination of

global exploration and local refinement during the search (see §3.4).

The numerical results achieved via this algorithm (see §3.5) indicate effective conver-

gence of the resulting algorithm on a range of benchmark optimization problems, and

reveal a clear advantage for using an efficient lattice derived from ann-dimensional

sphere packing to coordinate such a search, rather than the heretofore default choice,Zn,

which is simply untenable in light of the clear advantages ofusing alternative lattices

which are, quantifiably, both more uniform and have a more favorable distribution of

nearest neighbors, especially as the dimension of the optimization problem is increased.

The flexible numerical code we have developed which implements the LAB-

DOGS algorithm has been written from scratch, and each subroutine of the code has

been scrutinized to maximize its overall efficiency for systems with expensive function

evaluations.

Much interesting work remains to be done. The possible applications of such a

derivative-free optimization code are quite broad. Natural extensions of the algorithm

proposed herein include the implementation and testing of avariety of lattices, more

sophisticated versions of Kriging interpolation, and appropriate penalities for online

parameter tuning; such extensions are all well underway, and will be reported in future
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work.
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Chapter 4

Lattice-based Mesh Adaptive Direct

Search (Λ-MADS)

4.1 Introduction

This chapter introduces and testsΛ-MADS, a new variant of the Mesh Adaptive

Direct Search (MADS) class of derivative-free optimization algorithms for constrained

nonsmooth functions that is built on maximally uniformlatticesΛn, rather than Carte-

sian gridsZn, as the underlying mesh used to coordinate the exploration of parameter

space. When a poll step fails to find a mesh point with a better function value than that

of the current candidate minimum point (CMP), in addition toreorienting the poll set,

a mesh refinement of a factor of 2 (rather than a factor of 4, as used in previous MADS

implementations) is performed inΛ-MADS; slowing the refinement of the mesh in this

manner as the iteration proceeds is found to increase the rate of convergence, as an

appropriately-coarse underlying mesh is valuable in generalized pattern search (GPS)

algorithms of this sort in order to keep function evaluations relatively far apart until

convergence is approached. The current leading (Cartesian-based) MADS algorithm,

OrthoMADS, is extended naturally to the present lattice-based setting by restricting the

new poll points to lie on the shell of lattice points that liek hops from the current CMP

at thek’th level of mesh refinement. In such shells, there is a rapidly-growing set of

points to select the poll points from in the lattice-based setting ask is increased (dubbed

134
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the ‘coordination sequence’), thus leading to poll sets with high angularandradial uni-

formity. A novel mesh coarsening heuristic is also introduced which makes maximum

use of the most recent effective polling direction while keeping the underlying mesh

appropriately coarse. Numerical tests demonstrate conclusively that the convergence

of the resultingΛ-MADS algorithm is significantly faster than previous MADS imple-

mentations, thus making improved progress towards the minimum when only a limited

number of function evaluations can be afforded. As with other MADS variants, the pos-

sible polling directions ultimately become dense on the unit hypersphere as the lattice is

refined, thus preserving the guaranteed convergence characteristics of the MADS class

of algorithms as the number of function evaluations ultimately becomes large.

4.2 Background

Practical applications in engineering, science, finance, business, and elsewhere

often call for efficient derivative-free algorithms for theoptimization of expensive non-

smooth functions over a constrained space ofn parameters. The field of derivative-free

optimization has a long and rich history which includes the development of downhill

simplex algorithms, genetic algorithms, and simulated annealing algorithms. The most

computationally efficient family of derivative-free optimization algorithms available to-

day, known asgeneralized pattern search(GPS) methods, leverage an underlying mesh

to coordinate the exploration of parameter space. The fundamental purpose of this un-

derlying mesh is to keep function evaluations relatively far apart until convergence is

approached. All GPS implementations developed by other groups, that we have seen to

date, use Cartesian grids to coordinate the exploration of parameter space.

Lattice theory (which builds on the closely-related subjects of n-dimensional

sphere packings and error-correcting codes) provides a natural alternative to Cartesian

grids for the discretization of parameter space. Conway & Sloane (1998) provides a

comprehensive mathematical reference on many important elements of lattice theory;

the succinct up-to-date review of this subject in Chapter 2 lays out out essentially every-

thing that is needed to apply this otherwise somewhat abstruse subject in practical ap-

plications. The standard measures of lattice uniformity (described in Conway & Sloane
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1998 and summarized in Chapter 2) are

• the packing density, ∆ [that is, the percentage of the domain contained within

the spheres when identical spheres with the largest radius possible such that the

spheres do not overlap1 are centered at each lattice point],

• thecovering thickness, Θ [that is, the average number of spheres that contain any

point in the domain when identical spheres with the smallestradius possible such

that the every point in the domain is contained within at least one sphere2 are

centered at each lattice point],

• an appropriately-normalized measure of themean-squared quantization error per

dimension, G, and

• the kissing number, τ [that it, the number of nearest neighbors of each lattice

point].

By all four of these standard measures, Cartesian grids become highly nonuniform as

the dimensionn of the parameter space under consideration is increased; for example,

in n= 24 dimensions, the Cartesian grid,Z24, is characterized by∆ = 1.150e−10,Θ =

4200263,G= 0.08333, andτ = 196560, whereas the Leech lattice,Λ24, is characterized

by ∆ = 0.001930,Θ = 7.904,G = 0.06577, andτ = 48.

A series of highly (in most dimensions, maximally) dense lattices, referred to as the

laminatedlattices and denotedΛn, may be constructed in dimensionsn = 2 to 23 by

appropriately restricting the remarkable Leech lattice mentioned above to successively

lower and lower dimensions. Forn = 2 to 8, the resulting lattices are equivalent, re-

spectively, to the so-called root latticesA2, D3, D4, D5, E6, E7, andE8, each of which

have fairly simple constructions and associated quantization algorithms, as reviewed in

Chapter 2; some of the salient properties of these lattices are compared with the corre-

sponding Cartesian grids in Table4.1, theZ2 andΛ2 lattices are visualized in Figure4.1,

and theZ3 andΛ3 lattices are visualized in Figure4.2. A primary focus of our research

program is to investigate how such highly uniformn-dimensional lattices may be used

to accelerate GPS algorithms3.

1The radius of these nonoverlapping spheres, called thepacking radius, is usually denotedρ .
2The radius of these overlapping spheres that cover the domain, called thecovering radius, is usually

denotedR.
3Note that Conway & Sloane (1998, p. 12) state: “A related application that has not yet received much



137

Table 4.1: Augmenting the data available in Table2.2, presented here are the number

of available points to select the poll set from at thek’th level of grid refinement; ‘L/O:’

denotes the LTMADS or OrthoMADS contexts, ‘Z:’ denotes theZ-MADS context, and

‘Λ:’denotes theΛ-MADS context

lattice Available points to select the poll set from as the grid is refined.

D2
∼= Z2 L/O: 8, 16, 32, 64, 128,. . . (Figs4.1a,4.3, and4.4)

Z: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,. . . (Figs4.1b, 4.5)

A2
∼= Λ2 Λ: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60,. . . (Figs4.1c, 4.6)

Z3 L/O: 26, 98, 386, 1538, 6146,. . . (see Figure4.2a)
Z: 6, 18, 38, 66, 102, 146, 198, 258, 326, 402,. . . (Fig. 4.2b)

D3
∼= A3

∼= Λ3 Λ: 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002,. . . (Fig. 4.2c)

Z4 L/O: 80, 544, 4160, 32896, 262400,. . .

Z: 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720,. . .

D4
∼= Λ4 Λ: 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080,. . .

Z5 L/O: 242, 2882, 42242, 660482, 10506242,. . .

Z: 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002,. . .

D5
∼= Λ5

Λ: 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720,
182002,. . .

Z6 L/O: 728, 14896, 413792, 12746944, 403964288,. . .

Z: 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728,. . .

E6
∼= Λ6

Λ: 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304,
1408104, 2376126,. . .

Z7 L/O: 2186, 75938, 3959426, 239479298, 15105828866,. . .
Z: 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598,
209762,. . .

E7
∼= Λ7

Λ: 126, 2898, 25886, 133506, 490014, 1433810, 3573054,
7902594, 15942206, 29896146,. . .

Z8 L/O: 6560, 384064, 37281920, 4412866816, 553517580800,. . .
Z: 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688,
658048,. . .

E8
∼= Λ8

Λ: 240, 9120, 121680, 864960, 4113840, 14905440, 44480400,
114879360, 265422960, 561403680,. . .
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4.2.1 Successive polling (SP)

The simplest prototype GPS algorithm, referred to here assuccessive polling

(SP), starts from a candidate minimum point (CMP) on a given mesh and polls (that

is, checks) the value of the function at a set of nearest-neighbor mesh points which

positively span4 the feasible neighborhood of the CMP. If a function value lower than

that of the CMP is located during the poll, the new best point is defined as the new

CMP, and the process repeated; if the poll fails to find a pointwith a better function

value, then the mesh is refined by some integer factor5, so that the function evaluations

on the coarser mesh coincide with points on the refined mesh (and may thus be reused

efficiently as the iterations proceed on successively refined meshes), and the process

repeated until convergence.

Unfortunately, the prototype SP algorithm described aboveis convergent (albeit

to a local minimum) only if the parameter space being explored is unconstrained and

the function being optimized is continuously differentiable6; that is, if the function be-

ing optimized is sufficiently smooth that, after a sufficientnumber of grid refinements,

the function is locally flat enough that, if the CMP is not yet at a minimum, one of the

poll points (which, again, are distributed over a set of directions that positively span the

neighborhood of the CMP) is guaranteed to have an improved function value, below that

of the CMP. For general nonsmooth functions, for functions that are only piecewise dif-

ferentiable7, or even for continuously differentiable functions with hard constraints on

the feasible domain in parameter space, the SP algorithm is not always convergent, as

the finite number of poll directions available might miss thefeasible descent directions

around the CMP altogether, regardless of the level of grid refinement. Indeed, in the

attention is the use of these packings for solvingn-dimensional search or approximation problems”; this
is exactly the focus of this research program.

4A set of lattice points is said topositively spanthe feasible neighborhood of the CMP if any point
in the feasible neighborhood of the CMP may be reached by a linear combination withnon-negative
coefficientsof the vectors from the CMP to the poll points.

5Typically, a factor of two is used, in order to keep the refinement of the mesh as slow as possible as
the iteration proceeds.

6A function is said to becontinuously differentiableif its derivative is (a) defined everywhere, and (b)
continous.

7An example of apiecewise differentiablefunction is one with a cusp (akin to the hard chine along
the bottom centerline of the hull of many high-speed boats),with the function being continuously differ-
entiable on either side of the cusp.
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constrained case, if the CMP is on the constraint boundary, then in most cases the feasi-

ble poll points donot positively span the feasible neighborhood of the CMP regardless

of the level of grid refinement; this is a key challenge that the poll steps in the MADS

class of algorithms, discussed further below, are specifically designed to address.

4.2.2 SMF and LABDOGS

Thesurrogate management framework(SMF) of Booker et al. (1999) is a gener-

alization of the SP method described above that alternates between a SP-type ‘poll’ step,

and ‘search’ step which cleverly leverages a Kriging-basedinterpolation of all existing

function evaluations in order to identify promising and relatively unexplored regions of

parameter space. The work presented in Chapter 3 extends theSMF to incorporate lat-

tices, amongst other significant improvements8, in a manner intended to make maximal

use of each and every function evaluation, which are assumedto be expensive, during

the optimization process. The resultinglattice-based derivative-free optimization via

global surrogates(LABDOGS) algorithm shows a significant improvement in the rate

of convergence over the original SMF algorithm.

When used appropriately, the search step of the SMF and LABDOGS algorithms

can in fact be used to assureglobal convergence, even when the function being opti-

mized is nonsmooth and/or the parameter space being considered is constrained, despite

the fact that the SP-type poll step of the SMF and LABDOGS algorithms, taken on their

own, don’t even establish local convergence for nonsmooth or constrained functions, as

discussed above. That is, the search step of the SMF and LABDOGS algorithms can be

designed such that, as the number of function evaluations ofthe algorithm gets large,

the function evaluations ultimately become dense over parameter space, thereby ensur-

ing global convergence (for further discussion, see Torczon 1997, Booker et al. 1999,

Jones 2001, and Belitz & Bewley 2011).

4.2.3 Mesh Adaptive Direct Search (LTMADS & OrthoMADS)

Mesh Adaptive Direct Search(MADS) algorithms are an alternative class of GPS

8Most notably, a markedly improved search function, as suggested by Jones (2001).
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Figure 4.1: The (a, b)Z2 and (c)Λ2 lattices, indicating (a) the first three shells of

potential poll points onZ2 used in the LTMADS and OrthoMADS formulations, and

(b, c) the first five shells of potential poll points used, respectively, in theZ-MADS

andΛ-MADS formulations. The number of points in all three sets ofshells (arranged,

respectively, in squares, diamonds, and hexagons around the CMP) are listed in Table

4.1.

Figure 4.2: The (a, b)Z3 and (c)Λ3 lattices, indicating (a) the first three shells of

potential poll points onZ3 used in the LTMADS and OrthoMADS formulations, and

(b, c) the first three shells of potential poll points used, respectively, in theZ-MADS

andΛ-MADS formulations. The number of points in all three sets ofshells (arranged,

respectively, in cubes, octahedra, and cuboctahedra around the CMP) are listed in Table

4.1.
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methods designed to overcome the fundamental convergence shortcoming of the polling

algorithm used in the prototype SP method (and built upon in the SMF and LABDOGS

methods), as described above. They accomplish this by increasing (without bound) the

number of directions around current CMP that may be polled asthe grid is refined;

as the number of grid refinements performed increases, the possible polling directions

ultimately become dense over the feasible neighborhood of the CMP. This is achieved in

the MADS setting, in general, by selecting the poll points from a shell9 of non-nearest-

neighbor mesh points around the CMP.

Existing variants of MADS include LTMADS (Abramson, Audet,& Dennis

2005; for a graphical depiction, see Figure4.3), which is quite popular for difficult

numerical optimization (see, e.g., Marsden et al., 2011), and OrthoMADS (Audet &

Dennis 2008; for a graphical depiction, see Figure4.4), the latter of which essentially

supercedes the former. Both LTMADS and OrthoMADS are based on an underlying

Cartesian gridZn, with LTMADS based onminimalpositive bases, withn+ 1 vectors

around the CMP, and OrthoMADS based onmaximalpositive bases, with 2n vectors

around the CMP. In both the LTMADS and OrthoMADS algorithms,the underlying

grid is refined by a factor offour upon each refinement of the grid10, whereas the shell

of points from which the next poll set is to be selcted lie on a hypercube around the CMP

whose width is reduced only by a factor oftwo upon each refinement of the grid. That

is, the set of potential poll points around the CMP in the LTMADS and OrthoMADS

formulations is the set of points on theZn grid of L∞ norm 2k (see Figures4.1a and

4.2a), scaled down by a factor of 1/4k, wherek = 0,1,2, . . . is the number of grid refine-

ments performed thus far; the LTMADS algorithm will selectn+ 1 of these points to

poll (see Figure4.3), whereas the OrthoMADS algorithm will select 2n of these points

to poll (see Figure4.4). Thus, as the underlying Cartesian grid is successively refined

in LTMADS and OrthoMADS, the shell of points from which the poll is selected con-

tains successively more and more points, ultimately increasing in number by a factor

of ∼ 2n−1 upon each refinement of theZn grid (see Table4.1). Given an appropriate

9We use the word ‘shell’ in this work to denote the surface of the region given by the convex hull of
the specified points.

10That is, after just five grid refinements, the refined grid thathas less than 1/1000 of the original grid
spacing in every coordinate direction.
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Figure 4.3: The underlying Cartesian gridZ2 ( ) and two successive factor-of-four

refinements of this grid (from left to right) in then = 2 LTMADS algorithm. Given a

CMP at the center of each subfigure, the shell of points from which the poll points are

selected are marked (∗), and a representative poll set is indicated (◦); this poll set forms

a minimal positive basis ( ), with n+1 vectors around the CMP.

Figure 4.4: The underlying Cartesian gridZ2 ( ) and two successive factor-of-four

refinements of this grid in then = 2 OrthoMADS algorithm (cf. Figure4.3). The shell

of points from which the poll points are selected are marked (∗), and a representative

poll set is indicated (◦); this poll set forms an (orthogonal) maximal positive basis (

), with 2n vectors around the CMP.

scheme for selecting the poll points to actually use from this shell of possible poll points

around the CMP, convergence (albeit, to local minima) of theMADS algorithm may

thus be established (see Abramson, Audet, & Dennis 2005 and Audet & Dennis 2008)

even when the function being optimized is nonsmooth, and/orthe parameter space being

considered is constrained.

LTMADS selects the first ‘seed’ vector of the poll set using a pseudo-random
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Figure 4.5: The underlying Cartesian gridZ2 ( ) and five successive factor-of-two

refinements of this grid in then = 2 Z-MADS algorithm (cf. Figures4.3and4.4). The

set of points from which the poll points are selected are marked (∗), and a representative

poll set is indicated (◦); this poll set forms a maximal positive basis around the CMPon

the original grid and a minimal positive basis around the CMPon the others ( ).

algorithm, then builds a minimal positive basis via a stochastic lower triangularcon-

struction (thus motivating the algorithm name); for details, see Abramson, Audet, &

Dennis (2005). As illustrated in in Figure4.3, the radial and angular uniformity of the

poll sets generated by the LTMADS algorithm can both be poor;the poll set shown in in

Figure4.3a has one poll vector that is
√

n longer than the others, and the angles between

the poll vectors vary from 90◦ to 135◦.

OrthoMADS, in contrast, selects the first ‘seed’ vector of the poll set using a (low

discrepancy) ‘quasi-random’ Halton sequence, builds up set of n−1 directions that are

orthogonalto this seed (thus motivating the algorithm name) via a Householder-based

QR algorithm, then finds the 2npoints amongst the (hypercube-shaped) shell of potential

poll points that are closest to these directions and their opposites; for details, see Audet

& Dennis (2008). As illustrated in in Figure4.4, the radial and angular uniformity of the
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poll sets generated by the OrthoMADS algorithm forn = 2 are perfect. Unfortunately,

for n> 2, the radial and angular uniformity of the OrthoMADS poll sets can, again, both

be poor. Consider, e.g., the case withn= 3 and a first seed vector of the poll set oriented

torwards one of the corners of the cube; it is clearly not possible to select the remaining

five poll points to provide both good radial uniformity11 and good angular uniformity

in this case. Note also that an OrthoMADS poll require 2n function evaluations to

complete, rather than then+ 1 function evaluations required to complete a poll on a

minimum positive basis, such as that used by LTMADS; for larger values ofn, this fact

alone results in about a factor of 2 reduction in the rate of convergence.

4.2.4 Slowing the mesh refinement of Cartesian-based MADS algo-

rithms (Z-MADS)

Before we discuss shifting the MADS algorithm onto a more uniform lattice,

we first note that the factor-of-four method of successive refinement, as described in

the previous section and illustrated in Figures4.3 and4.4, is not the only choice for a

MADS-type algorithm on a Cartesian grid. As illustrated in Figure 4.5, the Cartesian

grid may instead be refined only by a factor oftwo whenever a poll step fails; this helps

to slow the refinement of the underlying mesh as the iterations proceed, thus respect-

ing the overall GPS objective of keeping function evaluations relatively far apart until

convergence is approached. As the Cartesian grid is refined in this modified approach,

which we will call Z-MADS, the shell of points around the CMP from which the poll

points are selected is increased one ‘hop’ at a time (see Figures4.1b & 4.2b). Thus,

as the underlying Cartesian grid is successively refined inZ-MADS, the shell of points

from which the poll is selected ultimately decreases in width by a factor of∼ 2 upon

each refinement of the grid. Further, as the underlying Cartesian grid is successively

refined, the shell of points from which the poll is selected again contains successively

more and more points; the available points to select the pollset from in this case is the

number of pointsk hops from the origin onZn for k = 1,2,3, . . . (that is, thecoordi-

nation sequenceof Zn, as listed in Table4.1). Noting the discussion at the end of the

previous section, at each poll step, theZ-MADS algorithm selectsn+1 of these points

11The radial nonuniformity of this approach is quantified in §4.3.
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Figure 4.6: The underlyingΛ2 lattice ( ) and five successive factor-of-two refine-

ments of this lattice in then= 2 Λ-MADS algorithm (cf. Figures4.3, 4.4, and4.5). The

set of points from which the poll points are selected are marked (∗), and a representative

poll set is indicated (◦); this poll set forms a minimal positive basis around the CMP(

).

to poll.

4.2.5 An overview of Lattice-based MADS (Λ-MADS)

The present work demonstrates how uniform lattices of theΛn family may be

used to significantly accelerate the convergence of the MADSclass of algorithms in

order to solve the constrained nonsmooth optimization problem argmin{ f (x) : x ∈ Ω}
whereΩ ⊂ Rn. The functionf (x) to be minimized is treated in this setting as a ‘black

box’ for which derivative information is perhaps impossible to derive and, even if it

can be derived, is possibly poorly behaved due to the potentially nonsmooth nature of

the function of interest. The resulting optimization algorithm, dubbedΛ-MADS (for

a graphical depiction, see Figure4.6), follows naturally from theZ-MADS algorithm
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described above, with the exploration of parameter coordinated by the laminated lattices

Λn rather than the Cartesian gridZn. As discussed in Conway & Sloane (1997) and

Baake & Grimm (1997), closed-form expressions of the coordination sequences ofΛ2

throughΛ8 (that is, the number of potential polling points in each shell used by theΛ-

MADS algorithm) are given by the coefficients of the series expansions atx = 0 of the

following expressions:SΛ2(x) = (1+4x+x2)/(1−x)2,

SΛ3(x) = (1+9x+9x2 +x3)/(1−x)3,

SΛ4(x) = (1+20x+54x2+20x3 +x4)/(1−x)4,

SΛ5(x) = (1+35x+180x2+180x3 +35x4+x5)/(1−x)5,

SΛ6(x) = (1+66x+645x2+1384x3+645x4 +66x5 +x6)/(1−x)6,

SΛ7(x) = (1+119x+2037x2+8211x3+8787x4+2037x5 +119x6+x7)/(1−x)7,

SΛ8(x) = (1+232x+7228x2 +55384x3 +133510x4 +107224x5 +24508x6 +232x7 +

x8)/(1−x)8.

Such series expansions are easily calculated in Mathematica or Wolfram|Alpha

or similar ; the first 10 terms of each of these series are listed in Table4.1.

The resultingΛ-MADS algorithm is quite straightforward to use, though signif-

icant care must be exercised on several subtle issues in its implementation in order to

ensure the maximum rate of convergence of the resulting algorithm; after exploring a bit

further the some geometrical considerations of this formulation in §4.3, these implemen-

tation issues are addressed at length in §4.4. In §4.5, we attempt to quantify the impact

of each of the individual implementation issues discussed here and in §4.4 in focused

numerical experiments; we then verify that the finalΛ-MADS algorithm converges sig-

nificantly faster than the previous OrthoMADS algorithm on some representative test

problems, and provide some concluding remarks.

4.3 Geometrical considerations

We now consider further some relevantn-dimensional geometrical issues related

to this optimization framework. We are specifically interested in n-dimensionalcon-

vex polytopes, that is, inn-dimensional convex objects with flat sides, more commonly

calledpolygonsin n= 2 dimensions,polyhedronsin n= 3 dimensions, andpolychorons
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in n = 4 dimensions (a good reference on this general subject area is Grünbaum 2002).

TheVoronoi cellof a lattice is the set of all points that are as close to the origin as

they are to any other lattice point; stated another way, the Voronoi cell contains exactly

those points that quantize to the origin (or, shifting the Voronoi cell appropriately, to

any other lattice point) when performing lattice quantization. The dual of any convex

polytope may be formed by the process ofpolar reciprocation(Grünbaum 2002). The

dual of the Voronoi cell is called theDelaunay cell.

On the Cartesian lattice and the root latticesAn, Dn, E6, E7, andE8, the Voronoi

cells are established solely by the locations of the nearestneighbors to the origin. As dis-

cussed further in Chapter 21 of Conway & Sloane 1998, definingτ as the kissing num-

ber of the correspondingn-dimensional lattice, the Voronoi cells of these lattices may

be constructed by the union ofτ identical (but rotated)fundamental simplices, each of

which has the origin andn other points as vertices (identified precisely in Figures 21.6,

21.7, and 21.8 of Conway & Sloane 1998). The(n−1)-dimensional face of each fun-

damental simplex that is opposite to the origin forms a perpendicular bisector of the line

segment between the origin and each of the nearest neighborsof the origin on the cor-

responding lattice; the Voronoi cell is then the convexn-dimensional region contained

by all τ of these(n−1)-dimensional faces. So defined, the Voronoi cell of theA2
∼= Λ2

lattice is ahexagon(with τ = 6 one-dimensional faces, a.k.a. edges), the Voronoi cell

of theD3
∼= A3

∼= Λ3 lattice is arhombic dodecahedron(with τ = 12 two-dimensional

faces), and the Voronoi cell of theD4
∼= Λ4 lattice is a24-cell (a.k.a.icositetrachoron,

with τ = 24 three-dimensional faces); the Voronoi cells ofΛ5 throughΛ8 are less com-

monly known structures, but are constructed in the same fashion. The Delaunay cells

of these lattices (that is, the duals of the corresponding Voronoi cells) are each simply

the convex hull of the nearest neighbors of the origin; thus,the Delaunay cell of theΛ2

lattice is also ahexagon(rotated 30◦ from the corresponding Voronoi cell), the Delaunay

cell of theΛ3 lattice is acuboctahedron, and the Delaunay cell of theΛ4 lattice is also a

24-cell(again, rotated).

As discussed previously, the LTMADS and OrthoMADS formulations build out

shells of potential polling points in the shapes of hypercubes (see Figures4.1a and4.2a),

which are precisely the shape of the Voronoi cells of the corresponding Cartesian lattice
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Zn. In n = 2 to 8 dimensions, a hypercube goes by the following names:square, cube,

tesseract, penteract, hexeract, hepteract, andocteract.

The Z-MADS formulation, in contrast, builds out shells of potential polling

points a given number of hops from the CMP on theZn lattice (see Figures4.1b and

4.2b). These shells are precisely in the shapes of the convex hulls of the nearest neigh-

bors of the origin (that is, of the corresponding Delaunay cells, or the duals of the cor-

responding Voronoi cells); note specifically that the dualsof hypercubes are known as

cross polytopes. In n= 2 to 8 dimensions, a cross polytope goes by the following names:

square12, octahedron, 16-cell, pentacross, hexacross, heptacross, andoctacross.

Similarly, theΛ-MADS formulation builds out sets of potential polling points

a given number of hops from the CMP on theΛn lattice (see Figures4.1c and4.2c).

These shells are precisely in the shapes of the corresponding Delaunay cells which, for

n = 2 to 8 dimensions, are simply the convex hulls of the lattice points that are nearest

neighbors of the origin in the correspondingΛn lattice, as described above.

The resulting shell shapes in the LTMADS/OrthoMADS,Z-MADS, and Λ-

MADS formulations are summarized in Table2.2. The radial nonuniformity of each

of these shells is defined here as the maximal radius of the shell (at a vertex) divided

by the minimal radius of the shell (at the center of a face), and quantifies the maximum

radial nonuniformity possible in the corresponding poll sets. Remarkably, due to the

polar reciprocation process mentioned previously, which relates a convex polytope and

it’s dual, the radial nonuniformity of a Voronoi cell and thethe radial nonuniformity

of the corresponding Delaunay cell of a lattice are, in fact,equal. Using the notation

introduced previously, they are both given by the covering radius divided by the packing

radius [that is, byR/ρ ] of the lattice, and may thus also be written as then’th root of the

covering thickness divided by then’th root of the packing density [that is, by(Θ/∆)1/n]

of the lattice13.

12Since in the present case the Delaunay cell is rotated 45◦ from the corresponding Voronoi cell, the
cross polytope forming the Delaunay cell in then = 2 case is perhaps better identified as a ‘diamond’.

13Recall that both the covering thicknessΘ and the packing density∆ of the lattices of interest in this
work are listed in Table4.1; thus, the radial nonuniformity values presented in Table4.2may be derived
directly from theΘ and∆ values presented in Table4.1.
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Table 4.2: Radial nonuniformity of the shell of potenial poll points in the LTMADS/OrthoMADS,Z-MADS, andΛ-MADS

formulations, as a function of the dimensionn.

LTMADS/OrthoMADS Z-MADS Λ-MADS
n shell shape radial nonuniformityshell shape radial nonuniformity shell shape radial nonuniformity

2 square
√

2≈ 1.41 diamond
√

2≈ 1.41 hexagon
√

4/3≈ 1.16

3 cube
√

3≈ 1.73 octahedron
√

3≈ 1.73 cuboctaheron
√

2≈ 1.41

4 tesseract
√

4 = 2.00 16-cell
√

4 = 2.00 24-cell
√

2≈ 1.41

5 penteract
√

5≈ 2.24 pentacross
√

5≈ 2.24 (see text)
√

5/2≈ 1.58

6 hexeract
√

6≈ 2.45 hexacross
√

6≈ 2.45 (see text)
√

8/3≈ 1.63

7 hepteract
√

7≈ 2.65 heptacross
√

7≈ 2.65 (see text)
√

3≈ 1.73

8 octeract
√

8≈ 2.83 octacross
√

8≈ 2.83 (see text)
√

2≈ 1.41
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It may finally be observed that, in all dimensions, the shellsof potential poll

points in the LTMADS/OrthoMADS andZ-MADS formulations are characterized by

significantly more severe radial nonuniformity than the shell of potential poll points

in the correspondingΛ-MADS formulation, with the differences becoming especially

pronounced asn is increased, as quantified in Table4.2. This observation, in addition to

the significantly improved spatial uniformity of theΛn lattices as compared with theZn

grids used previously (apparently, by default) for the coordination of MADS algorithms,

are two key motivations for the present investigation.

4.4 Issues affecting the implementation and the speed of

convergence of theΛ-MADS algorithm

The basic idea of theΛ-MADS algorithm has already been laid out. To recap:

starting with an initial, relatively coarse14 lattice with nearest neighbors spaced∆0 apart,

and starting from an initial feasible candidate minimum point (CMP) on this lattice, a

set ofn+1 points which are nearest neighbors to the CMP on the latticeare selected in

such a way as topositively span(that is, to linearly span with non-negative coefficients)

the neighborhood of the CMP. The value of the function is thenpolled(that is, checked)

on these points. If a poll point is found with a lower functionvalue than that of the

CMP, then this new lattice point is defined as the new CMP, and the process repeated; if

not, then the lattice is refined by factor of two, a new poll set(randomly reoriented) is

chosen on the refined lattice (from a shell of potential poll points containing all lattice

points that arek+ 1 hops from the CMP, wherek is the number of lattice refinements

performed thus far), and the process repeated until convergence. There are a number of

subtle issues that must be addressed in order to specify thisalgorithm completely, and

to endow it with the maximum possible efficiency. These issues are now addressed.

14An initial grid spacing of about four to eight gridpoints from one edge of the feasible domain to the
other in each parameter direction has proven to be effectivein our numerical experiments performed to
date. Note also that, in general, the scaling of each parameter in the optimization problem of interest
is found to have a significant effect on the rate of convergence of a GPS algorithm; the most effective
scalings are those in which, on average, the function of interest varies at approximately the same rate
in each coordinate direction; this provides a general goal to strive for when setting up an optimization
problem for solution via a GPS algorithm.
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4.4.1 Moving around on, and quantizing to, the laminated lattices

Λn

Thetheoryof n-dimensional lattices is quite sophisticated (see Conway &Sloane

1998); however, thepractical useof n-dimensional lattices is entirely straightforward,

as discussed in Chapter 2. Once the enumeration and quantization algorithms for any

given lattice are in place, as discussed below, the lattice may be used in the present

application in a straightforward manner.

Any real lattice is defined simply by allinteger linear combinations15 of the

columns of an appropriate basis matrixB. Basis matrices for the seven laminated lattices

considered in this chapter,Λ2 throughΛ8, are given by

BΛ2 =




−1

1 −1

1


 , BΛ3 =




−1 1

−1 −1 1

−1


 , BΛ4 =




−1 1

−1 −1 1

−1 1

−1




,

BΛ5 =




−1 1

−1 −1 1

−1 1

−1 1

−1




, BΛ6 =




1/2

−1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

−1/2




15That is, all linear combinations with integer coefficients.
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BΛ7 =




−1 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

−1/2




,

BΛ8 =




2 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 1/2

1 −1 −1/2

1 −1 −1/2

1 −1/2

−1/2




.

Note that, in the simple representations used above,Λ2, Λ6, andΛ7 are defined

on hyperplanes of higher-dimensional spaces; this presents only a relatively minor added

complexity when enumerating the lattice points according to these definitions. Several

properties of the seven lattices so defined are listed in Table4.1. Associated with each of

these lattices is a straightforward and computationally efficient quantizationalgorithm,

described in §1.5, which takes any point inRn and computes the closest point on the

discrete latticeΛn.

Enumerating the nearest neighbors of a lattice

In the computational implementation of theΛ-MADS algorithm, it is numeri-

cally tractable and convenient to enumerate explicitly thenearest neighbors of the ori-

gin of the lattice. These nearest neighbors may be determined by taking all integer

linear combinations of the associated basis vectors, defined above, for integer coeffi-

cients ranging from−m to +m (initially taking, say,m= 2), and keeping the distinct
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lattice points so generated that are closest to the origin; if there areτ such points gen-

erated (whereτ is listed for each lattice in Table4.1), then finish, otherwise, increasem

by one and try again.

Bypassing the enumeration of subsequent shells of a latticein the practical Λ-

MADS algorithm

For small values ofn, it is also numerically tractable to compute the first few

shells of neighbors outside of the nearest neighbors, as depicted in Figures4.1c & 4.2c.

These subsequent shells may be created by shifting the nearest-neighbor shell to each

point of the outermost shell determined thus far, and keeping track of all of the distinct

new lattice points so generated. This method is computationally efficient for shells

containing up to a few thousand lattice points.

However, for shells that contain more than a few thousand lattice points (that

is, for the outer shells in the higher dimensionsn), the direct enumeration procedure

described above becomes numerically intractable.

We thus avoid completely the direct enumerations of the shells outside of the

nearest-neighbor shell in the practicalΛ-MADS algorithm. Instead, we determine the

average radius of each target shell of points around the CMP16, and work directly with

the (normalized) desired polldirections, scaling these directions by the average radius

of the target shell and then quantizing to the nearest lattice point in order to generate the

corresponding poll point. For target shells of small radius(that is, at most a few hops

from the CMP), this approach returns poll points on the target shell itself, as depicted

in Figures4.1c & 4.2c. For target shells of larger radius, however, this approach returns

poll points with, in fact, somewhat improved radial uniformity than is possible when

strictly using only points on the target shell itself. This relaxation of the strict use of

the shells defined in terms of number of hops from the origin isfound to work quite

effectively in practice.

16Knowing the nearest-neighbor distance at the present levelof grid refinement, as well as the radial
nonuniformity of the target shell from Table4.2, the average radius of each target shell can be well
approximated quite easily.
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4.4.2 Evaluating the poll points: complete polling versus incom-

plete polling

If a function value lower than that of the CMP is located during the poll step

of Λ-MADS, the poll may be terminated immediately, the new best point defined as

the new CMP, and the process repeated (a strategy referred toas incomplete polling);

alternatively, the poll step may be driven all the way to completion, after which the

best point found during the polling is identified as the new CMP (a strategy referred

to ascomplete polling). In all GPS settings that we have tested to date, our numerical

experiments indicate that, on average, incomplete pollingis generally the most efficient

choice; incomplete polling is thus implemented inΛ-MADS.

4.4.3 Refining the mesh

As mentioned previously and illustrated in Figure4.6, the lattice is refined only

by a factor of two, rather than a factor of four, whenever a poll step fails in the algorithm

we propose; this helps to slow the refinement of the underlying mesh as the iterations

proceed, thus respecting the overall GPS objective of keeping function evaluations rela-

tively far apart until convergence is approached.

As in Z-MADS, as the lattice is refined inΛ-MADS, the shell of points around

the CMP from which the poll points are selected is increased essentially17 one hop at

a time (see Figures4.1c & 4.2c and Figure4.6). This shell is much closer to spherical

than are the shells of points considered in the LTMADS/OrthoMADS and Z-MADS

contexts, as quantified in Table4.2 of §4.3. As a consequence, the radial uniformity

of the Λ-MADS poll sets is substantially better than the radial uniformity of the LT-

MADS/OrthoMADS andZ-MADS poll sets.

The available points to select the poll set from as theΛn grid is refined is thus

given (again, essentially17) by the coordination sequence of the corresponding lattice;

theΛ-MADS algorithm will selectn+1 of these points to poll, unless previous function

evaluations are available which may be exploited (for further discussion, see §4.4.4). As

17As mentioned in §4.4.1, this method is modified slightly in the practicalΛ-MADS algorithm for the
outer shells.
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listed in Table4.1, the coordination sequence of theΛn lattice grows faster than the coor-

dination sequence of the correspondingZn lattice, and thus there are more points to pick

from in Λ-MADS than there are inZ-MADS at any given level of mesh refinement18.

Note that ten factor-of-two grid refinements corresponds toa refined grid that

has less than 1/1000 of the original grid spacing in every coordinate direction. As the

dimension of the problem under consideration is increased,this is probably essentially

as far as most practical derivative-free optimization problems would ever be taken; the

behavior as the number of grid refinements is taken to infinityis, from the perspective of

difficult practical problems to be solved with limited computational resources, mostly a

mathematical curiosity.

Thus, in addition to acoarsestgrid spacing to be used by the optimization al-

gorithm (see the first paragraph of §4.4), it is useful in the practical implementation

of Λ-MADS to also set afinestgrid spacing to be used by the optimization algorithm.

Note in Table4.1 that, after about ten factor-of-two grid refinements in theΛ-MADS

algorithm, there are alot of points available to select the poll set from. Once on this

finest grid, rather than refining the grid even further after each failed poll step, it is prac-

tically useful to remain on this finest grid level until all ofthe potential polling points

at this level have, one poll set at a time, been exhaustively checked (or the CPU time

allocated to perform the optimization has run out), after which, if all of these poll sets

fail to provide a new CMP, the optimization algorithm simplyterminates. There is little

practical use to refine the grid even further than this, and sodoing can actually lead to

a substantially reduced overall rate of convergence and an increased sensitivity to nu-

merical precision issues, as the step size gets impractically small when too many grid

refinements are performed.

18There are in fact many more points available in the LTMADS/OrthoMADS context after a given
number of mesh refinements than there are in theΛ-MADS context after the same number of mesh refine-
ments. However, an argument may be made that there is no real “need”, from a convergence persepective,
for the number of available points in the shells of potentialpoll points in a MADS-type algorithm to grow
so quickly; a MADS algorithm will only evaluate a small subset of the points in any given shell anyway.
The fact that the number of points in each successive shell grows without bound is enough to establish
convergence of the corresponding MADS algorithm. As far as we can tell, the fact the number of points
in the LTMADS/OrthoMADS shells grows extremely quickly (see Table4.1) does not actually benefit the
overall rate of convergence of the practical LTMADS or OrthoMADS algorithms.
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4.4.4 Generating new poll sets

Minimizing the number of new function evaluations required in each poll

A significant difference between LTMADS and OrthoMADS, as described pre-

viously, is that one uses a minimal positive basis at each poll step, whereas the other uses

a maximal positive basis at each poll step. The numerical tests that we have performed

to date indicate that, all other things being equal (including the approximate angular and

radial uniformity of the respective poll sets), it is usually more efficient computationally

to minimize the number of new function evaluations requiredin each poll step, espe-

cially as the dimensionn of the problem is increased; thus, when no previous function

evaluations are available which may be exploited (for further discussion, see §4.4.4),

the use of minimal positive bases is generally preferred. This is not a strong preference

however, and it is entirely straightforward to implement poll sets with more thann+1

poll points in theΛ-MADS algorithm.

Generating a uniform poll set that positively spans the neighborhood of the CMP

leveraging a Thompson algorithm

The flexible algorithm that we use to actually generate poll sets with good an-

gular uniformity in the present work while performing the minimum number of new

function evaluations possible in each poll step is derived directly from the method de-

veloped in §II.B of Belitz & Bewley (2011) and Chapter 3. In brief, to generatep poll

points19 on the target shell with good angular uniformity from the CMP, we first model

p “charged particles” distributed randomly on a sphere with radius given by the aver-

age radius of the target shell. A Thompson algorithm is then used to drive this set of

particles to an equilibrium configuration on this sphere. The final equilibrium position

of these particles is then discretized to the nearest lattice points, as motivated by the

third paragraph of §4.4.1. Finally, these discretized points are checked to ensure that

they positively span the neighborhood of the CMP, a test for which is given in §II.A of

Belitz & Bewley (2011) and Chapter 3. If points so generated do not positively span the

19We may initially takep = n+ 1; note that this algorithm is easily and naturally extendedin three
important ways in §4.4.4, §4.4.4, and §4.4.4.
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neighborhood of the CMP, a different random initial distribution of thep particles on

the sphere may be tried, and the process repeated; if the process still fails to produce a

discretized set ofp points that positively span the neighborhood of the CMP,p is incre-

mented by one, and the process repeated until a positively spanning set of poll points is

successfully found.

Implementing constraints on the feasible parameter domain

The feasible domain of parameter space over which the optimization is per-

formed might in fact be difficult or impossible to identify and characterize a priori.

Thus, the constraints on the feasible domain of parameter space are ignored completely

at the stage of selecting which specific points from the target shell are to be polled.

If a given poll point proves to be infeasible when it is ultimately evaluated, the corre-

sponding function value is simply set to infinity (or, to an arbitrarily large value), and

the poll step is continued. Since interpolating functions are not used by theΛ-MADS

algorithm (in contrast with the SMF and LABDOGS algorithms mentioned previously),

this simple manner of handling the implementation of constraints is entirely adequate.

Reusing existing function evaluations during each poll step

It is a simple matter to incorporatem existing function evaluations available on

or within the target shell in the process described in §4.4.4: “fixed” charged particles

are simply assigned to points on the unit sphere corresponding to the existing function

evaluations (that is, scaling their distance from the CMP appropriately), and other “free”

charged particles are allowed to move to equilibrium positions on the sphere in the man-

ner described in the previous section; the equilibrium positions of these free particles

are then discretized to the nearest lattice points to generate the new poll points. By so

doing, the number of new function evaluations required to complete a poll step (which,

taken together with the existing function evaluations, positively spans the neighborhood

of the CMP) can often be reduced significantly.
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Reorienting the poll set in a low-discrepency fashion afterone or more unsuccessful

poll steps, leveraging a Thompson algorithm

If a given poll step in theΛ-MADS algorithm fails to identify a new CMP, after

refining the mesh and incrementing the shell containing the possible poll points, the poll

set must be reoriented. It is desirable that the orientationof this new poll set explore

new directions around the CMP, not re-examine those directions already explored at

the previous failed poll steps. This problem might at first seem quite straightforward,

but is in fact one of the more subtle issues that must be reckoned with in the MADS

framework.

One could attempt to reorient the new poll set in a pseudo-random fashion; this is

in fact what was implemented in LTMADS. Though this approachwill likely generate

some new directions to explore with each new poll step, such an approach will also

waste computational effort with some new poll points that are essentially aligned with

polling directions that have already been tried (unsuccessfully) around the current CMP.

OrthoMADS thus introduced some sort of low-discrepancy ‘quasi-random’ Hal-

ton sequence on the first ‘seed’ vector used to generate the poll set, in an attempt to

generate a fresh new set of polling directions. This first seed vector uniquely defines

the remaining orthogonal directions of the poll set whenn = 2. For largern, however,

it does not; by focusing only on the successive placements ofthe seed vector, when

n > 2, it is not at all clear that theentirenew poll set will be well differentiated from the

previous sets of polling directions already explored around the current CMP.

In the present work, we thus propose a more geometric solution to this problem.

Notably, our solution considersall of the directions of the failed poll sets, as well as

all of the directions the prospective new poll set (that is, not just the seed vectors that

generate these directions). The approach we use is a naturalextension of the Thompson

algorithm described previously. We simply add additional fixed charged particles, with

substantially reduced charge, at the failed poll points from the previous (failed) poll

sets when we solve the Thompson problem for the new poll points20. This naturally

20A generalizedThompson formulation may also be used to account for the forces applied by the fixed
particles associated with the points from the previous failed poll sets, applying a force that falls off faster
than the 1/r2 rule of normal charged particles. So doing achieves a differentiation between the old and
new directions in the resulting algorithm, but tends to reduce the additional deformation of the new poll
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generates a new poll set which is not only itself highly uniform, but is also generally

well differentiated from the directions of the previous (failed) poll sets around the CMP,

thus generalizing naturally the idea of low-discrepancysequencesof vectors to low-

discrepancysetsof vectors.

Optional step: including a poll point designed to accelerate convergence when the

function is locally C1

As discussed in Chapter 3, if

• the function is locally continuously differentiable,

• the CMP is not yet at a critical point,

• there are no active constraints,

• a poll set is considered which positively spans the CMP, and

• the grid spacing is sufficiently small,

then one of the poll points is guaranteed to provide an improved function value, below

that of the CMP.

If all of the above assumptions are true, except that the gridspacing is not yet

quite sufficiently small enough to ensure that an improved function value is evident in

the poll set (that is, if quadratic terms in the local Taylor series expansion of the cost

function are still significant), then it is straightforwardto estimate the linear terms of

the local Taylor series expansion of the function if a poll step fails, and then to identify

the downhill direction in this locally linear approximation of the function. This may be

achieved simply by taking a linear fit of the function evaluations in the most recent failed

poll step21, denoted heref (x(i)) = f (i) for i = 1, . . . , p wherep ≥ n+ 1. Fitting these

function evaluations with the linear modelf (x) = x ·g+ b and assembling the results

set that these additional fixed particles might otherwise create.
21The function value at the CMP itself may be ignored in this fit,because this function value does not

affect the linear coefficients in local Taylor series expansion of the function.
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for each of thep poll points, we may write




x(1)
1 · · · x(1)

n 1

x(2)
1 · · · x(2)

n 1
...

...
...

...

x(p)
1 · · · x(p)

n 1







g1
...

gn

b




=




f (1)

f (2)

...

f (p)




.

If p = n+ 1, this system of equations may be solved for the gradientg; if p > n+

1, a least-squares estimate of the gradientg is easily determined from this system of

equations. Either way, the gradient so determined may be normalized and scaled by the

average radius of the target shell of the subsequent poll step, and the closest lattice point

on the refined grid to the negative of this vector (that is, in the downhill direction in

the locally linear approximation of the function) found, thus generating what we might

identify as at least a new “lattice point of interest”. The subsequent poll set may thus be

forced to include this new lattice point of interest (and, perhaps, scheduled to evaluate

this new poll point first). Using the Thompson algorithm described previously, of course,

this is quite easy to accomplish: simply add one more fixed charged particle on the

sphere corresponding to this new lattice point of interest,and optimize the remaining

free particles as described previously. Note that, if the function is not expected to be

locally C1 fairly often as the iteration proceeds, or if a given poll step includes one or

more poll points which prove to be infeasible, then this optional step should certainly be

skipped.

4.4.5 Keeping a given poll orientation if a poll successfully finds a

new CMP, facilitating discrete line minimizations

A new poll set orientation is selected (and the grid refined) only after a poll step

does not successfully identify a new CMP. If, on the other hand, a poll step succeeds in

identifying a new CMP, then the old poll set orientation is used around the new CMP

(without refining the grid), and the first direction polled isin the same direction as

moved previously. Since incomplete polling is used (see §4.4.2), if this new poll point

again reduces the function value, then the iteration proceeds further in this direction

without evaluating the poll points in the other directions,thus allowing something of a
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discrete line minimization to be performed via successive (incomplete) poll steps, all

proceeding in the same direction after a single function evaluation at each poll step.

This strategy, combined with the mesh coarsening heuristics discussed in §4.4.6, tends

to make maximum use out of any given descent direction that may be identified, which

in some problems (such as those with active constraints, or those with only piecewise

differentiable functions, as discussed previously) mightin fact take several failed poll

steps (that is, many many function evaluations) in order to find.

4.4.6 Coarsening the mesh

Under challenging cost functions, e.g. hard constraints,Λ-MADS converges

well due to the poll set orientation re-using methodology outlined above. New poll ori-

entations are utilized until a descent direction is realized, at which point the successful

orientation is maintained until the next unsuccessful Pollstep. This ensures convergence

when there exists a cone of descent directions, however narrow. However, as the conver-

gence of MADS algorithms is contingent upon grid refinement after unsuccessful Poll

steps, often the mesh is refined very significantly while the new Poll orientations are

tried. This behavior limits the step size once an appropriate Poll orientation is located.

To avoid the low convergence due to mesh overrefinement, OrthoMADS implements a

mesh coarsening scheme where the mesh is coarsened by a factor of 4 at every success-

ful Poll step. The poll orientation utilized on the coarser mesh is simply the direction

previously given by the Halton sequence at that level of meshrefinement.

This behavior, while attempting to prevent mesh overrefinement, generally fails

to deliver increased performance, as the Poll reverts to a nonoptimal orientation upon

coarsening, virtually ensuring the failure of the Poll on the coarser mesh.

In the interest of delivering superior convergence performance,Λ-MADS im-

plements the following coarsening scheme: upon two successive successful Poll steps

utilizing the same poll orientation,Λ-MADS coarsens the mesh by a factor of 2,main-

taining the current, successful, Poll orientation. If the next Poll proves successful, the

algorithm continues as normal; if unsuccessful, the next Poll step refines the mesh by a

factor of 2maintainingthe current Poll orientation on the finer mesh. Thus, the success-

ful Poll orientation is located on the fine mesh and re-used onthe coarse mesh. In the
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case that several Poll steps are required to locate a Poll orientation lying in the cone of

descent directions, this methodology allows for this orientation to be utilized on coarser

meshes, taking larger steps toward the function minimum.

4.5 Isolated numerical testing of each component issue

leading toΛ-MADS

In order to isolate the effects of the options presented in Section 3, several

MADS algorithms, each incrementally different from the previous, were numerically

tested to determine comparative convergence efficiencies.In testing the comparative

performance of two algorithms, a statistically relevant number of optimizations were

performed to calculate the average performance of each algorithm. In each test, the cost

function consists of a randomly generated quadratic bowl. The minimum of this cost

function is selected as a random point a distance ofr = 1 from the origin. The initial

CMP is a random point located a distancer = 10 from the origin. The lattice scaling of

theZn lattice was set to one:RZn = 1; the scaling of theΛ lattices were selected such that

the volume of the voronoi cell matched the volume of theZn voronoi cell at the scaling

above, that is,RΛn = (∆Λn/∆Zn)
1/n.

Both optimizations begin at the initial CMP and are then converge to a tolerance

of 0.001 of the initial CMP value. One thousand such runs were performed for each al-

gorithm comparison. In comparing two algorithms A and B, theparameters quantifying

performance are the percent of total runs that algorithm B converged faster than algo-

rithm A, p, and the ratio of the average number of functional evaluations algorithm B re-

quired to the number of evaluations that algorithm A required, r. Thus, asp approaches

100 andr approaches 0, algorithm B becomes far more efficient than algorithm A.

As discussed in Section 3, inΛ-MADS there is the option to build the poll set,

refining with a factor of 4, on shells 1,2,4,8,16... or refining by a factor of 2, on shells

1,2,3,4, ..... We thus testΛ-MADS with a minimal positive basis and fast, factor of 4,

refinement, then slow, factor of two, refinement. As shown in lines 1 and 2 of Table4.3,

we find that the slow refinement scheme results in a more efficient algorithm.

Next, we investigate the effect of the lattice choice in a MADS algorithm by
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Table 4.3: Convergence comparison of fundamental features of theΛ-MADS algorithm

n 2 3 4 5 6 7 8

p 2x
vs
4x

61.1 56.0 54.3 52.5 56.6 57.7 57.7

r 0.828 0.905 0.872 0.921 0.874 0.868 0.896

p Zn

vs
ΛN

45.3 50.5 54.4 54.3 56.2 64.1 66.8

r 1.11 1.01 0.946 0.948 0.930 0.873 0.8173

p Max basis
vs
Min basis

47.7 53.6 65.5 78.7 85.1 91.9 94.5

r 1.36 1.37 0.868 0.602 0.481 0.369 0.276

p Complete
vs
Incomplete

70.3 71.6 75.1 75.5 69.2 77.1 82.1

r 0.829 0.819 0.691 0.737 0.784 0.633 0.572

p OrthoMADS
vs
Λ-MADS

44.9 51.4 56.1 78.4 74.0 79.8 84.8

r 0.839 0.865 0.821 0.638 0.81 0.607 0.48

comparingZ-MADS to Λ-MADS, both utilizing a maximal positive basis, and the slow

factor-of-2 refinement discussed above. As can be seen in lines 3-4 of Table4.3, by

simply replacing theZn grid with theΛn lattice, the MADS algorithm makes signifi-

cant gains in efficiency in dimensions higher than 3. In lowerdimensions, as expected,

the performance difference is negligible; as the dimensions increases the performance

difference becomes more and more pronounced. These resultsindicate how efficient

lattices are the preferred choice compared to the Cartesiangrid for coordinating MADS

optimizations, particularly as the dimension of the cost function increases.

The choice of a minimal over a maximal positive basis has not,to the authors’

knowledge, been numerically established in the literature. While it has often been sug-

gest that a minimal basisshouldincrease convergence rates, we test this hypothesis in

lines 5-6 of Table4.3. The maximal basis is more efficient in low dimension (n = 2

and 3), as the dimension increases, the difference between the choice of basis becomes

significant; the minimal basis provides superior performance to the maximal basis. For

maximizing efficiency in high dimensions, a minimal positive is the appropriate config-

uration. As per these results,Λ-MADS is configured to utilize a maximal basis forn< 4
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and a minimal basis for higher dimensions.

The question of incomplete polling (that is, terminating the Poll step upon locat-

ing a superior CMP) compared to complete polling (that is, evaluating the cost function

on each member of the Poll set before redefining the CMP) has also remained neglected

in the literature. As such, the efficiency comparison ofΛ-MADS, utilizing a minimal

positive basis with factor-of-2 refinement, can be seen in lines 7-8 of Table4.3. The

data clearly demonstrate how the incomplete poll set is the appropriate choice for all

dimensions.

These numerical results validate the utilization inΛ-MADS of the following:

building poll sets on the Delaunay cells of theΛ lattice, refining one shell per refine-

ment (refining the mesh by a factor of 2); implementing a minimal compared to a max-

imal positive basis in dimensions greater than four; and using incomplete as opposed

to complete polling. These features makeΛ-MADS unique among MADS-type algo-

rithms. Having tested each component leading to the definition of Λ-MADS, the nu-

merical comparison to OrthoMADS is made. The results can be found in lines 9-10 of

Table4.3. Λ-MADS demonstrates significantly improved convergence rates compared

to OrthoMADS, requiring only 48% to 90% as many function evaluations to reach con-

vergence, and converging faster than OrthoMADS in the majority of trials, with the

performance difference becoming larger as the dimension ofthe cost function increases.

4.6 Further numerical testing of the completeΛ-MADS

algorithm

The above testing on randomly generated quadratic bowls proves valuable in

evaluating the relative efficiencies of various component selections in establishing the

Λ-MADS algorithm. Testing comparing to OrthoMADS indicatesan increase in con-

vergence rate. To further investigate these results, further testing was performed, pre-

cisely as described above, on then-dimensional Rosenbrock cost function. The standard

2-dimensional Rosenbrock function is well known as an optimization benchmark; the

deep ‘valley’ in which the optimum lies makes for a particularly challenging convex

optimization problem. The analog in higher dimensions is given by
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Table 4.4: Performance comparison between OrthoMADS andΛ-MADS on the Rosen-

brock test function.

n 2 3 4 5 6 7 8

p 90.0 N/A 94.21 N/A 87.58 N/A 90.1
r 0.571 N/A 0.5515 N/A 0.561 N/A 0.544

J(x) =
n/2

∑
i=1

[5(x2
2i−1−x2i)

2+(x2i−1)
2]

defined only for even dimensions. This function is convex, with the global min-

imum at(1,1,1, ...,1) where the function has a value of zero.

The same series of tests described above were performed on the Rosenbrock

test function in dimensionsn = 2,4,6,8. The results can be seen in Table4.6. This

data validates the legitimacy of the previous testing on a more challenging cost func-

tion, and confirms the superior convergence rate thatΛ-MADS has over OrthoMADS.

As expected, the performance difference between the Cartesian-based algorithm and

theΛn based algorithm increases with dimension. Inn = 2, Λ-MADS requires 88% as

many function evaluations to converge; inn = 8 it requires only 50% as many evalu-

ations. Similarly, inn = 2, r = 55; however, inn = 8, r = 97. That is, OrthoMADS

outperformedΛ-MADS in only 3% of all test optimizations inn = 8. This result is

remarkable, and confirms the high performance of theΛ-MADS algorithm compared to

its competitors.

Recall from above that the convergence metricsp and r are defined with re-

spect to a preselected level of convergence. To test convergence rates at various levels

of convergence,p andr were calculated for four differing levels of convergence: 0.1,

0.05, 0.001, 0.0001, optimizing then-dimensional Rosenbrock function, comparing Or-

thoMADS toΛ-MADS. The results are graphically presented in4.7. The superior per-

formance ofΛ-MADS indicated by the previous analysis is verified at varying levels of

convergence. Inn = 4 and greater,Λ-MADS proves to have superior convergence rates

to OrthoMADS at all levels of convergence. Generally speaking, the greater the level

of convergence (that is, the more difficult the optimization), the greater the performance

difference betweenΛ-MADS and OrthoMADS.



166

10
−4

10
−3

10
−2

10
−1

50

55

60

65

70

75

80

85

90

95

10
−4

10
−3

10
−2

10
−1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 4.7: The efficiency metricsp (L) andr (R) comparingΛ-MADS to OrthoMADS

on the Rosenbrock cost function for convergence goals of 0.1,0.05,0.001,0.0001 in

dimensionsn = 2 (red circles),n = 4 (magenta+), n = 6 (black asterisk), andn = 8

(green dots). Note howΛ-MADS outperforms OrthoMADS in high dimensions for all

convergence levels.

Table 4.5: Performance comparison betweenΛ-MADS without, and with, coarsening,

on quadratic bowls (lines 1-2) and the Rosenbrock test function (lines 3-4).

n 2 3 4 5 6 7 8

p 34.6 32.5 32.4 49.6 82.6 48.1 48.4
r 0.945 1.06 1.147 0.730 0.699 0.808 0.866
p 52.2 N/A 58.8 N/A 82.6 N/A 74.4
r 1.03 N/A 0.984 N/A 0.699 N/A 0.864

Finally, we test the effects of the coarsening scheme outlined above. TheΛ-

MADS coarsening methodology outlined above emphasizes thereuse of the successful

poll orientation on the coarser grid after two consecutive successful Poll steps on the

finer grid, allowing the algorithm to maintain the proper poll orientation, while tak-

ing a larger step toward the minimum, thereby maintaining a larger average step size

and speeding convergence. To test the effect of coarsening in this fashion, the same

testing methodology outlined above was used, testingΛ-MADS without coarsening to

Λ-MADS with coarsening on a statistically relevant number ofquadratic bowls, and

then then-dimensional Rosenbrock function. The results are summarized in Table4.6.

Coarsening offers superior convergence in high dimensions, particularly on the
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challenging Rosenbrock function. However, somewhat surprisingly, on these convex

and unconstrained cost functions, coarsening offered no advantage in lower dimensions,

in fact incurring a performance penalty. Notice that coarsening performed particularly

well on the Rosenbrock function, clearly delivering superior performance than the non-

coarsening algorithm. This indicates that implementing a coarsening strategy will be

more valuable on a cost function with challenging behaviors. Unconstrained cost func-

tions are comparatively easy for a MADS algorithm to handle as locating a descent

direction is straightforward; more challenging is maintaining an appropriate mesh scal-

ing in the presence of hard constraints. In the latter scenario Λ-MADS often has to

perform many unsuccessful Poll steps before a descent direction can be located. While

Λ-MADS’ ability to refine the mesh more slowly than LTMADS and OrthoMADS pre-

vents as much over-refinement during this process, often themesh is refined more than

necessary. Under these circumstances, the coarsening strategy is particularly appropri-

ate. Thus, we recommend that users implement mesh coarsening on difficult constrained

optimization problems.

4.7 A Numerical Example: Locating the Deep Hole of a

Lattice

An example of a research optimization problem that can be solved with Λ-

MADS but not by a simpler SP pattern search was encountered bythe authors while

performing numerical analysis of efficient lattices (see Chapter 2). The challenge is to

calculate the location of a deep hole belonging to the originnode of a particular lattice.

By definition, a deep hole is the furthest point from a given lattice node that remains as

close or closer to said node than any other node of the lattice. Thus, if one enumerates

a great number of lattice points surrounding the origin, anygiven point can be analyzed

to determine whether or not said point lies within the voronoi cell (that is, if the point is

closer to the origin than any other lattice point in the cloud). The objective is to locate

the point furthest from the origin that remains in the voronoi cell of the origin node. The

cost function for theA2 lattice can be seen in Figure 3.2.

In the interest of remaining computationally feasible, theconstraints must be
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Figure 4.8: Locating the deep holes of theA2 lattice utilizing Successive Polling (left)

andΛ-MADS (right). The hard constraints are indicated in black;the cost funtion con-

tours are plotted as well. The inability of the SP algorithm to handle constraints prevents

convergence;Λ-MADS maintains convergence and locates the deep hole.

hard. This is performed by calculating the distance from each node in the cloud to the

CMP. If the distance from the CMP to the origin is less than thedistance from the CMP

to any another node, the CMP lies inside the voronoi cell and the cost function value

is the distance to the origin. Otherwise, the CMP lies outside the voronoi cell, and as

such is not valid for evaluation, so the cost function value is infinity. This presents a

challenging problem where traditional derivative-based algorithms cannot be applied,

as the constraint surfaces are unknown, and SP and other simple GPS algorithm fail to

converge.

Under the only numerically feasible problem definition, as can be seen in Figure

3.8, the Successive Polling algorithm ceases convergence upon encountering a constraint

surface. Once the algorithm nears the constraint boundary,the only element of the poll

set with a component in the descent direction violates the constraint and the algorithm

stalls. TheΛ-MADS algorithm, however, stochastically locates an orientation allowing

it to follow the constraint directions and moves along the constraints to the deep hole.

This method was used to locate the deep holes of a great numberof lattices, allowing

for the calculation of many previously unknown metrics, reported in Bewley, Belitz, &
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Figure 4.9: Locating the deep holes of theA2 lattice utilizingΛ-MADS with no coars-

ening, plotting the CMP as green dots (L), and coarsening implemented (R), plotting the

CMP as a black cross. The algorithm with coarsening enabled clearly maintains a larger

average step size, speeding convergence in the presence of active constraints.

Cessna, (2011).

Figure 3.8 above clearly demonstrates one shortcoming of a non-coarsening

MADS scheme on a cost function subject to hard constraints: while the algorithm lo-

cates a suitable descent direction, the mesh becomes very fine, limiting the step size

taken. To rectify this, the coarsening scheme described above is implemented inΛ-

MADS, and the deep hole test function is reconsidered. As canbe seen in Figure 3.8,

without coarsening, the step size along the black constraint boundary is very small,

requiring a great number of function evaluations to converge. With coarsening, good

descent directions are reused, and the deep hole is located while maintaining a coarser

grid size on average.

4.8 Conclusion

In this document we investigate the performance of current Mesh Adaptive Di-

rect Search (MADS) methods, and introduce a new MADS algorithm, Λ-MADS. Via

exhaustive numerical testing, we conclusively demonstrate that in the interest of algo-

rithm efficiency, it is highly desirable to coordiate a MADS search on (1) an efficient

lattice, (2) to locate the Poll sets on the Delauney cell of the lattice, (3) to utilize a min-
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imal rather than a maximal positive basis, and (4) to implement incomplete polling of

the Poll sets.

TheΛ-MADS algorithm is significantly more efficient than any competing MADS

algorithm due to careful selection of the most efficient subset of the choices presented

above. As such,Λ-MADS is the most efficient MADS algorithm yet developed, andis

the clear choice for difficult modern convex optimization problems.



Chapter 5

Conclusion

The current work investigates the application ofn-dimensional sphere packings,

or lattices, as they relate to modern derivative-free optimization algorithms. The results

presented in Chapters 3 and 4 demonstrate clearly that significant gains in convergence

rates are commonly realized among the best modern grid-based algorithms by replacing

the ubiquitous Cartesian grid with an efficient lattice.

In Chapter 2 a review of sphere packing theory is presented ina cogent fash-

ion, covering the majority of well known lattices, giving thorough characterizations of

said lattices, including significant new material. Severalnew packings are introduced,

some specifically for engineering applications, and many previously unknown metrics

are presented, rounding out the analysis of common lattices. Several higher-dimensional

extensions of previously known packings are also considered. Numerous algorithms

necessary for practical implementation of lattice theory are presented, most importantly

quantization algorithms for the most efficient members of the Λ class of lattices. Fi-

nally, a summary of coding theory, the most widely known application ofn-dimensional

sphere packings to engineering applications, is presented. Chapter 2 aims to be a con-

cise, engineering-oriented presentation of lattice theory, aimed to motivate and guide

future work applying this rigorous field of mathematics to the modern fields of engi-

neering and computational science.

Chapter 3 delves into modern derivative-free optimizationtheory and implemen-

tation, investigating the Generalized Pattern Search (GPS) class of algorithms. The Sur-

rogate Management Framework (SMF) algorithm is introducedand investigated, start-

171
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ing with the Successive Polling (SP) pattern search Poll step. Adapting the SP algorithm

to the efficient lattices presented in Chapter 2 is covered, and extensive numerical test-

ing indicates that simply by replacing the inefficient Cartesian grid with a more efficient

alternative the SP algorithm’s convergence rate is improved due to greater radial and an-

gular uniformity of the poll set. Next, the Search step of theSMF algorithm is explored,

reviewing Kriging surrogate methodology and derivation. With an understanding of

Kriging, various globally and nonlocally convergent Search schemes are described and

tested. One of the most effective modern Search algorithm maximizes the likelyhood

of improvement, giving a Search step that is both globally convergent and locally effi-

cient. Combining the highly efficient lattice-based SP Pollstep and the MLI Kriging

Search step, a new SMF algorithm, named LAttice-Based Derivative-free Optimization

via Global Surrogates (LABDOGS) algorithm is defined. Numerical testing of LAB-

DOGS indicates that, as expected, the lattice-based SMF code significantly outperforms

its Cartesian equivalent, with the performance differencebecoming greater as the di-

mension of the problem increases. The MLI search offers global convergence as well

as speeding local convergence, and the efficient lattice-based SP Poll step ensures fast

local convergence.

Motivated by the success of implementing efficient latticesin the SMF frame-

work, Chapter 4 focuses on a more sophisticated class of GPS algorithms known as

Mesh Adaptive Direct Search (MADS) algorithms. Among the most sophisticated of

modern GPS algorithms, MADS algorithms aim to improve upon the convergence be-

havior exhibited by simpler GPS methods. Specifically, constrained optimization prob-

lems present a special challenge to SP algorithms, which fail to converge when a hard

constraint prevents any valid poll directions from lying inthe cone of descent directions.

MADS, specifically OrthoMADS, overcomes this problem by allowing the polling di-

rection to become dense as convergence is neared. Combiningthe dense polling direc-

tions with intelligent poll orientation re-using, a well designed MADS algorithm con-

verges well even in the presence of constraints or other challenging function behavior

that foils conventional GPS algorithms. Recognizing that the best of modern MADS

algorithms, OrthoMADS, is intrinsically limited by several factors, including its de-

sign upon the Cartesian lattice, Chapter 4 builds a new MADS algorithm, Λ-MADS,
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from the ground up, numerically and theoretically investigating every option available

to build the algorithm. In comparison to previous MADS algorithms,Λ-MADS achieves

improved convergence performance by implementing an efficient lattice, building more

uniform poll sets, refining the poll set via new methodology,utilizing a minimal basis

when appropriate, and finally implementing a more effectivecoarsening strategy than

had previously been described in the literature. All these changes, numerically isolated,

tested, and verified, result inΛ-MADS inheriting all the convergence behavior present

in the best MADS algorithms, while increasing the convergence rate significantly. In

n = 8, for example,Λ-MADS requires approximately half as many function evaluations

as OrthoMADS to reach the same level of convergence. As with LABDOGS, as the

dimension of the cost function increases, the performance difference betweenΛ-MADS

and OrthoMADS increases, establishingΛ-MADS as the most efficient MADS algo-

rithm yet devised.

The application ofn-dimensional sphere packings to modern optimization al-

gorithm design is only one example of the impacts that this field of mathematics can

potentially have a significant impact in. Coding theory, as summarized in Chapter 2, is

another example; using lattices to provide an efficient interconnect scheme for super-

computers as described in Cessna & Bewley (2011) is another.However, the potential

for engineering application of lattice theory is vast. The author hopes that the material

presented in Chapter 2 will prove useful in achieving this potential, with the applications

decribed in Chapters 3 and 4 serving as motivation.

The most logical extension of the work presented in this document is the merg-

ing of the LABDOGS andΛ-MADS algorithms; by replacing the SP Poll step of LAB-

DOGS with a MADS step, a hybrid algorithm, perhaps to be namedMADDOGS, will

maintain all the convergence characteristics of LABDOGS while offering superior con-

straint handling abilities. As LABDOGS by nature requires abounded domain for the

MLI search to be defined, choosing a Poll step that can best handle such constraints

would be a efficacious strategy.

Further refinements of LABDOGS or the aforementioned MADDOGS will prob-

ably be minor. One weakness of LABDOGS is its use of Ordinary Kriging. The as-

sumptions behind the Kriging model have the surrogate converge to the mean of the
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data points where the surrogate is far from previously explored regions. Additionally,

Ordinary Kriging fails to account for variability in individual dimensions, limiting the

ability of the surrogate to accurately model difficult functions. Perhaps some conver-

gence potential in LABDOGS could be realized by implementing more sophisticated

forms of Kriging, or perhaps a different interpolating strategy altogether. In practice, it

is difficult to imagine how a Poll step more effective thanΛ-MADS would be generated

beyond the modifications outlined in Chapter 3 (e.g. using the surrogate to predict the

best Poll point, which could be extended to using the surrogate to predict an appropriate

Poll orientation). Similarly, while the MLI Search is not the most sophisticated Search

available, real-world performance between MLI and other Search algorithms is likely to

be difficult to measure.

The Λ-MADS algorithm is quite complete and mature for the cost functions

herein assumed, laying some fundamental questions relevant to GPS algorithms in gen-

eral to rest (specifically, the effect of utilizing a maximalversus minimal positive basis).

While the MADS class of algorithms was specifically developed for challenging func-

tion behaviors, e.g. hard constraints, little work has beendone in establishing discrete

analogs to modern derivitive-based optimization constraint handling, which typically

optimize on a subspace of constraints, adding and removing active constraints as the

algorithm progresses toward an optimum. This sort of behavior significantly reduces

the dimension of the space being considered by the optimization algorithm. As such, an

obvious extension in derivative-free algorithms would allow the Poll set to be redefined

on a reduced-dimension subspace of constraint ‘walls’ whenappropriate. This idea is

outlined in Chapter 3 for a SP optimization, the same could beimplemented in MADS.

Defining the poll set on the subspace of active constraints, and adding appropriate vec-

tors allowing the algorithm to move off the constraints could possibly offer significant

improvements in convergence rates on cost functions with linear constraints.

Further extension of this work, in the mind of the author, would move away

from the prototypical cost function assumed throughout this work, the distinguishing

characteristics of which include continuity and coarse-scale differentiability. One fun-

damental limitation of the GPS class of algorithms herein presented is that for discrete

or integer cost functions (e.g. the famous Travelling Salesman problem), GPS methods
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are not generally applicable. Simulated Annealing or Genetic algorithms, by compari-

son, can handle such cost functions; indeed, while SA and GA optimizations are often

(mis) applied to continuous cost functions, they are best suited to discrete problems. The

question of how to extend the lattice-based methodology presented in this document to

such new classes of optimization problems is open for research, and may well result in

interesting and significant findings.

In the meantime, it is the author’s sincere hope that LABDOGS, Λ-MADS, and

the presentation ofn-dimensional sphere packings of Chapter 2 and Bewley, Belitz, &

Cessna (2011), will find widespread application in modern engineering.
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[86] Mockus, J (1994) Application of Bayesian approach to numerical methods of
global and stochastic optimization.Journal of Global Optimization, 4, 347â̆AŞ365.
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