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ABSTRACT OF THE DISSERTATION

Applications on Multi-Dimensional Sphere Packings: Deriative-Free
Optimization

by

Paul Belitz

Doctor of Philosophy in Engineering Sciences with Spezaion in Computational
Science

University of California, San Diego, 2011

Professor Thomas R Bewley, Chair

The field of n-dimensional sphere packings is elegant andinr@an its mathe-
matic development and characterization. However, pralcigplication of this powerful
body of work is lacking. The line of research presented isWork explores the applica-
tion of sphere packings to the field of derivative-free oettion. Chapter 2 reviews the
essential results available in this field, then extendssthesults by: (a) assembling a cat-
alog of key properties of the principle dense and rare spbteckings and nets available,
including hundreds of values not previously known; (b)adiucing and characterizing
several new families of regular rare sphere packings argj aetl (c) developing a new
algorithm for efficient solution of discrete Thompson peghk, restricted to nearest-
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neighbor points. These results are leveraged heavily irapipdications addressed in
Chapters 3 and 4. In particular, Chapter 3 builds from thésentation to develop a new
algorithm for Lattice-Based Derivative-free Optimizatioia Global Surrogates (LAB-
DOGS), leveraging dense sphere packings as an alternat@artesian grids to coor-
dinate derivative-free searches. The LABDOGS algorithovjles a highly efficient,
globally convergent optimization algorithm that requineghing more than a definition
of a feasible domain and a cost function handle. The LABDO@®rahm demon-
strates superior performance and convergence rates taitsstan-based competitors.
Chapter 4 builds from the material of Chapter 2 and 3 to devalbighly efficient lo-
cally convergent derivative-free optimization algoritlwalled A-MADS, which builds
from and improves upon the Mesh Adaptive Direct Search (MAEI&ss of optimiza-
tion algorithms. The\-MADS algorithm offers an alternative to the SuccessivdiRgpl
substep of LABDOGS, providing a locally convergent patssgarch algorithm that, un-
like SP, offers good convergence behavior when challengimgtraints on the feasible
region are encountere@-MADS inherits all the convergence characteristics of thstb
available MADS algorithms, while significantly improvingmvergence rates.
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Chapter 1
Preface

The field of numerical optimization is utilized in a variety applications in
modern society. From mathematical and scientific reseaocstructural analysis and
financial modeling, many fields have benefited from the wideesgh application of op-
timization theory. Generally speaking, numerical optiati@n is the process of locat-
ing the optimum of a cost function, which can be defined inualty unlimited ways.
Most often, the cost function is generated via experimemi,igtion, model, or similar
analysis. Some prototypical examples include the engimgef aircraft aerodynam-
ics, designing automobile components, determining flighedules, research of heart
surgery simulation, jet engine development, gas lasentym@nd maximizing compiler
performance. The impact of numerical optimization on madechnology, science, and
engineering has been significant. In today’s age of comguthre numerical tools for
effective optimization have already had significant impaad as computing resources
continue to increase in power and further decrease in dusgpplication of numerical
optimization will have an increasing impact in a number dtifie It is a safe assumption
that traditionally human-based decision making processiéfurther be phased out in
favor of the computational power of modern computers.

Numerical optimization is naturally divided into two distt classes of algo-
rithms: those that utilize derivatives of the cost functiondetermine an appropriate
direction of exploration, and derivative-free methodsjcliirequire nothing other than
evaluations of the cost function at various points in partemspace.

Derivative-based optimization methods have a long histdhe first calculus-



based analysis of function optima were performed by PiegrEatmat and Joseph Luis
Lagrange; iterative methods to numerically approach sythma were introduced by
Issac Newton and Carl Friedrich Gauss. These methods dréhstbasis for many
commonly used modern algorithms: Euler's method, appabtglsi formulated, gives
the steepest descent method, often the first numericalitdgopresented in the field of
optimization. Natural augmentations of Steepest Deseawt o the widespread bench-
mark Conjugate Gradient method, in which the negative grads augmented with
previous derivative information to produce a more effectiescent direction compared
to Steepest Descent. Similarly, the Broyden-Fletched@ob-Shanno (BFGS) method
is a modern adaptation of Newton’s method, utilizing an agjpnated Hessian captur-
ing the behavior of the cost function’s higher derivativesletermine an effective step
toward the function optimum at every step. The BFGS methagkrerally considered
the most sophisticated algorithm for modern convex opttnin algorithms, however,
Conjugate Gradient methods and similar are often choseead®e of implementation.
Further work has generated modern derivative-based #igotoolboxes, which include
linear programming, quadratic programming, and nonlipgagramming, all of which
have found widespread use in industry and academia.

Methods not requiring the use of a function’s derivativegehgerhaps surpris-
ingly, a much shorter history. Not practically useful urkie first computing devices
were invented, modern derivative-free optimization alkipons were (arguably) born
when George Danzig developed the Simplex algorithm in 184iethod which gener-
ates a set of points in parameter space (a ‘simplex’), sadiog the current best point,
upon which the cost function is evaluated. The best pointeted is located and a new
simplex generated, allowing the algorithm to ‘march’ todvarlocal optimum. Similar
derivative-free methods were soon developed, includingédtbelonging to the Pattern
Search class of algorithms of Hooke and Jeeves, identifid®&1. Like the original
Simplex method, Pattern Search methods sample the cosidumn a specific pattern
of points surrounding the current best point, allowing thgoathm to converge to a
local optimum of an appropriately behaved cost functiore glaometric restrictions on
patterns allowing algorithm convergence were identifiedtipy1979), who proved that
on an appropriately smooth convex cost function, the usepafsitive basis as the un-



derlying pattern is necessary to allow convergence. Fuahalysis has been performed
by Torczon, Lagarias, Dolan, and others.

Outside the realm of the well-studied Pattern Search dlguos, less rigorous
analysis, inspired by specific research challenges, ssbuitseveral popular optimiza-
tion schemes, including the classes of Genetic Algorithnis@imulated Annealing al-
gorithms. The former was inspired by biology and is commardgd in computational
biology, the latter inspired by metallurgy, and commonijized in modern engineering
applications. Unlike traditional pattern search methdmgh attempt to solve noncon-
vex problems via stochastic exploration steps. Due to therant difficulty of such
problems, few other effective algorithms have been esthdtl, making SA and Genetic
algorithms quite popular in certain fields.

Generally speaking, when applicable, derivative-basethoaks offer superior
performance to the sometimes unsophisticated derivé®eemethods. By locating
an effective descent direction, modern derivative-basethads allow convergence to
optima of extremely high-dimensional cost functions wimtg incurring a prohibitive
computational expense. An excellent example is the agpicaf Conjugate Gradient
optimizations to optimal control problems, where the datixe-based algorithm allows
optimization over a parameter space with a dimension greass one million. By
comparison, deriative-free methods, no matter how effiaersophisticated, are more
heavily penalized by the curse of dimensionality; that ssttee dimension of the cost
function becomes greater, the difficulty of the optimizatgwoblem becomes great very
quickly, relegating this class of methods to more moderateedsions. Despite this
intrinsic limitation, there are many cost functions of grimaportance which cannot be
solved via derivative-based methods. These include, famge, any cost function that
is defined by physical experiment, where itis impossibleafowate the derivative of the
cost function. Many computational cost functions are saamglagued, by cost function
noise, numerical intractability, or similar. Thus, the d®pment of effective derivative-
free optimization algorithms is of great importance to méelgs of significance.

Compared to the sophisticated and highly effective devigabased methods
of optimization in widespread use today, the developmenlenivative-free optimiza-
tion has generally been lacking. However, with increasiognguting power comes a



greater number of optimization problems, many of which #rsuited to derivative-
based methods, making the study and implementation of ates@+free optimization
methods paramount.

With this motivation as background, we delve into the thexdmypodern derivative-
free optimization. Broadly speaking, the field can be didideo two subfields: global
optimization, where the cost function is nonconvex and maogl minima exists, and
local optimization, where only a single optimum exists. &gapical analysis often em-
phasises the latter; however, in many problems relevantiety at large, cost functions
tend to be nonconvex, constrained, nonsmooth, and otrechisllenging. When con-
strained appropriately, many nonconvex problems can bieebrdown into a series of
convex local minima, therefore, both subfields must be cEmned.

Many global, or at least nonlocal, optimization algorithh@e been proposed
and implemented, with varying degrees of success. Perhajest known is Simulated
Annealing, a process in which a stochastic search is alldavednverge according to an
‘annealing schedule’ varying the locality of the searcbnircoarse to fine. Motivated
by the metallurgical process of annealing, Simulated Alingas a commonly used
nonlocal algorithm. Despite its popularity, SA algorithitesd to be only nonlocally,
rather than globally, convergent, and the class of algmstis generally inefficient with
respect to function evaluations. That is, to reach a giveal lef convergence requires
significantly more function evaluations than competingathyms. This limits the util-
ity of SA algorithms to the optimization of comparativelyekpensive cost functions or
cost functions ill suited to other algorithms (e.g. disereptimization).

Another well-known nonlocal class of algorithms is known@enetic Algo-
rithms, where each point in parameter space is hamed arvithail’, ‘member’, or
‘genome’. Via a process of heuristics, the ‘fittest’ of theliinduals are allowed to
‘breed’. Via the introduction of a stochastic ‘mutation’namber of ‘offspring’ points
are generated, upon which the cost function is evaluateein e fittest individuals are
again selected and allowed to breed. This process genarates of stochastic search.
Unfortunately, Genetic Algorithms have virtually no thetical underpinnings, conver-
gence criteria are unknown, and their performance is géyperxy poorly understood.
Somewhat humorously, many have struggled to provide adiieal explanation of why



genetic algorithms perform as well as they do.

With these limitations in mind, Generalized Pattern Se§@RS) methods have
been generally accepted as the most rigorous global anbdedsative-free optimiza-
tion methods yet devised. All GPS methods discretize thamater space via a mesh
or a grid, upon which all function evaluations are made. Tiignuization starts with a
comparatively coarse mesh; as convergence is neared, steim@fined. This has the
effect of keeping function evaluations far apart beforeveogence is attained, avoid-
ing extensive exploration of a fruitless region. For noalazptimization problems, the
Surrogate Management Framework (SMF) family of algorithenan obvious choice.
By melding a pattern search step offering efficient locairoation with a globally
convergent Search step, SMF algorithms offer good localegenceandgood global
convergence, rather than sacrificing one for the other as r&@AGenetic algorithms
do. Both the pattern search step and the Search step of an [gbHitlan can be any
of a great number of choices. However, all subalgorithmshf3ie on a grid - and
heretofore the only mesh choice examined has been the siaplesian grid.

In the examining of the efficiency of grid-based derivatikeefoptimization al-
gorithms, the authors have turned their attention to thetdyithg grid, in addition to the
subalgorithms that SMF is built off of. Cartesian grids andyane, highly inefficient,
grids, or lattices, that discretize parameter space. Thienatically mature, deep,
and subtle field oh-dimensional sphere packings offers a wide range of veryiefit
lattices that compete directly with Cartesian grids.

Despite being elegant, mature, and extremely useful, eegimg and science
applications of this mathematical field have been limited.s@ich, a careful review of
lattice theory, with emphasis on the tools necessary toyabp powerful body of lit-
erature to modern science and engineering challenges aasvalthorough review of
previous engineering applications, particularly codingdry, can be found in Chapter
2. Included in Chapter 2 are a large number of previously anknuniformity metrics
calculated by the authors, as well as several new packingigraed specifically for en-
gineering applications. Many pertinent algorithms aredieand succinctly presented
to facilitate future application of this body of literature

With the theoretical foundation of sphere packings presgeimt Chapter 2, Chap-



ter 3 delves into a lattice-based, globally convergentrogtition algorithm named
LABDOGS. Building the algorithm around a Successive Pgll{&P) pattern search
based on any of a large number of highly efficient latticesonhiced in Chapter 2, the
SP algorithm is introduced and thoroughly tested, dematisyy a significant increase
in convergence rates compared to the analogous algoritlpieimented on the Carte-
sian grid. With the SP Poll step defined and tested, Chapteer8introduces the sub-
ject of Kriging interplating functions, exploring globgltonvergent Search algorithms
based on the Kriging structure, ending up with the most modad efficient solution of
maximizing the likelyhood of improvement (MLI). Combinirige lattice-based SP Poll
with the MLI Search step, the most efficient SMF-like algamitto date, LABDOGS,
is fully defined. Testing on a variety of cost functions vesfiLABDOGS’ superior
convergence rates to Cartesian grid-based alternatives.

The LABDOGS algorithm works very well for global optimizati problems,
and allows for linear constraints on the cost function. Trakness of LABDOGS, as
well as any other SP-based algorithm, is that the Poll stgprighm fails to converge
under particular conditions. In particular, when hard ¢aists are encountered, the
SP algorithm generally fails to locate a feasible descartton and fails to converge.
In LABDOGS, this does not prevent the overall algorithm cengence; however, it is
desirable to implement a superior Poll step selected froenMlesh Adaptive Direct
Search (MADS) class of algorithms.

MADS algorithms are a sophisticated subclass of pattemtkea that allow for
the polling directions to become dense as the optimizatiogrnesses. By not reorient-
ing the poll step when a successful poll has been realizedod IADS algorithm will
perform analogously to a line search when challenging costtion behaviors are en-
countered. The best algorithm of the MADS subclass is knav@réhoMADS. Defined
on a Cartesian grid, OrthoMADS demonstrates some shortgsim convergence rates,
if not in convergence behaviors. In Chapter 3 OrthoMADS scdssed and analyzed.
By utilizing the n-dimensional lattices from Chapter 1 in a MADS frameworle f
MADS algorithm is defined and each component of the algoriththoroughly tested.
N-MADS maintains all the desirable convergence charatitesisf OrthoMADS, but
offers improved convergence ratesna- 8 approximately half as many function eval-



uations are required to converge compared to OrthoMADSs ithprovement in con-
vergence is the result of the low quantization error of tiide, the greater radius uni-
formity of the poll set, the minimal rather than maximal fiv& basis, and several other
distinguishing changes from OrthoMADS. The testing présgémn Chapter 3 clearly
establishe®\-MADS as the most efficient MADS algorithm yet devised.

The material covered in Chapter 1 is leveraged heavily tiinout Chapters 2
and 3, to great effect, firmly establishing the benefits dizinig efficient lattices to
discretize parameter space. Combined with the resultswieBes Cessna (2011), this
sequence of work demonstrates the potential impact thagspieéad application of-
dimensional sphere packings may have in modern sciencengiteering applications.



Chapter 2

New Horizons in Sphere Packing
Theory, Part I: Fundamental Concepts
and Constructions, from Dense to Rare

2.1 Introduction

The field ofn-dimensional sphere packings is elegant and mature in iteena
matical development and characterization. However, itilsrslatively limited in its
practical applications, especially for> 3. The present line of research intends to open
up two broad new areas for profitable application of this pdwdrody of mathemati-
cal literature in science and engineering. Towards this grepresent work (Chapter
2) reviews the essential results available in this fielddneding the theoretical liter-
ature for dense and rare sphere packings, which today ayelyadisjoint), catalogs
the key properties of the principle dense and rare spherdrmgcand corresponding
nets available (including hundreds of values not previplsiown), and extends the
study of regular rare sphere packings and nets t03 dimensions (an area which up
to now has been largely unexplored). These results areadgedrheavily in the practi-
cal applications addressed in Chapers 3 and 4. In partjclepter 3 builds from this
presentation to develop a new algorithm for Lattice-Basedvative-free Optimization
via Global Surrogates (LABDOGS), leveraging dense sphackipgs as an alternative



to Cartesian grids to coordinate derivative-free searcBéapter 3 also develops and
uses a new algorithm for efficient solution of discrete Theorpproblems restricted to
nearest-neighbor points of a lattice. Chapter 4 buildshadfrhaterial in Chapters 2 and
3 to develop a new, highly efficient Mesh Adaptive Direct $84IMADS) optimization

algorithm named\-MADS. The introduction of lattices allow&-MADS to converge

more than twice as efficiently as the current best MADS athori The present se-
guence of research projects establishes that significafarpgnce improvements may
be realized by leveragingdimensional sphere packings appropriately in such praicti

applications.

2.2 Anintroduction to lattices

An n-dimensional infinitesphere packings an array of nodal points iR" ob-
tained via the packing of identicatdimensional spheres. Byacking we mean an equi-
librium configuration of spheres, each with at least 2 neareighbors, against which a
repellant force is applied. Many packings investigatechmliterature aretablepack-
ings, meaning that there is a restoring force associatddamy small movement of any
node of the packing; this requires each sphere inrtkgirhensional) packing to have at
leastn+ 1 neighbors. However, unstable packings with lower nearegthbor counts
are also of interest. Note also that, by replacing each sphann-dimensional packing
with a nodal point (representing, e.g., a computer), andhecting those nodal points
which are nearest neighborsnet(a.k.a.interconnecbr contact graphis formed.

An n-dimensional realattice (a.k.a.lattice packing is a sphere packing which
is shift invariant (that is, which looks identical upon g$im§ any nodal point to the
origin); this shift invariance generally makes lattice kiags simpler to describe and
enumerate than their nonlattice alternatives. Note theretiare many regulasphere
packings which arenot shift invariant [the nonlattice packings correspondingtie
honeycomb net in 2D and the diamond and quartz nets in 3D ane seell-known
examples]. We will focus our attention in this work on thoselings and nets which

LAs introduced in the second-to-last paragraph®88 it is natural with certain sphere packings (for
example,D;, A, and the packings associated with P and T, nets) to define nets which aret
contact graphs of the corresponding sphere packings byecting non-nearest-neighbor points.

2The regularity of a nonlattice packing is quantified prelyise §2.4.1
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are at leastininodal(that is, which look identical upon shifting any nodal pdiatthe
origin and rotating and reflecting appropriately). Kwmnsesphere packings, from a
practical perspective, lattice packings are essentfaily good a choice as their more
cumbersome nonlattice alternativesiior 24 in terms of the four metrics defined below
(that is, for maximizing packing density and kissing numaed minimizing covering
thickness and quantization error). However, the lbaxs sphere packings (with small
kissing number) are all nonlattice packings.

As illustrated in Figure2.1 and Table2.1, we may introduce the subject of
dimensional sphere packings by focusing our attentiondinsthen = 2 case: specifi-
cally, on thetriangular® lattice (A,), thesquarelattice (Z2), and thehoneycommmonlat-
tice packing &} ). The characteristics of such sphere packings may be dieiry the
following measures:

e The packing radiusof a packing,p, is the maximal radius of the spheres in a set of
identical nonoverlapping spheres centered at each noddl po

e The packing densityof a packing,A, is the fraction of the volume of the domain
included within a set of identical non-overlapping spheresadiusp centered at each
nodal point on the packing. Packings that maximize this imate referred to aslose-
packed

e Thecovering radiusof a packing,R, is the maximum distance between any point in
the domain and its nearest nodal point on the packing.dEep hole®f a packing are
those points which are at a distariR&rom all of their nearest neighbors. Typical vectors
from a nodal point to the nearest deep holes in a lattice pgckie often denoted],

2], etc.

e Thecovering thicknessf a packing®, is the number of spheres of radiRsentered at
each nodal point containing an arbitrary point in the domaweraged over the domain.

e The Voronoi cellof a nodal point in a packing(R), consists of all points in the

8Forn =10, 11, 13, 18, 20, and 22, there exist nonlattice packingadtdPyoc, Pi1a, Piza, PBlg
B0 ) that are 8.3%, 9.6%, 9.6%, 4.0%, 5.2%, and 15.2% densethiearorresponding best known
lattice packings (Conway & Sloane 1999, p. xix); to put tmiiperspective, the density 685, is over
10° timesthe density ofZ?? .

“Note that many in this field refer to th& lattice as “hexagonal”. We prefer the unambiguous name
“triangular” to avoid confusion with the honeycomb noritztpacking (see Figur2.1).
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domain that are at least as close to the nodal g&ias they are to any other nodal point
P;.

e Themean squared quantization error per dimensadr lattice or uninodal nonlattice
packing,G, is the average mean square distance of any point in the ddm#s nearest
nodal point, normalized by times the appropriate power of the volumeg, of the
Voronoi cell. Shifting the origin to be at the centroid of ardboi cellQ(R), it is given
by

G:in+2 where S:/ IX|?dx, V/ dx. (2.1)
nVvn Q(R) Q(R)

e Thekissing numbenf a lattice or uninodal nonlattice packing, is the number of
nearest neighbors to any given nodal point in the packingotier words, it is the
number of spheres of radiygscentered at the nodal points of the packing that touch, or
“kiss”, the sphere of radiug centered at the origin.

e Thecoordination numbeof a net (derived from a sphere packing, as discussed previ-
ously) is the first number of the net®ordination sequencéhek’th element of which

is given bytdy —tdx_1, wheretdy, which quantifies the net®cal topological density

is the total number of nodes reached kiaops or less from the origin in the et

Certain applications, such as that explored in Chapter disfwork (Belitz
& Bewley 2011), require dense lattices. There are two kewHeaks with cubic ap-
proaches for such applications. First, tiiecretization of space is significantly less
uniformwhen using the cubic grid as opposed to the available alieesaas measured
by the packing densit, the covering thicknes®, and the mean-squared quantization
error per dimensionG (see Table.1). Second, theonfiguration of nearest-neighbor
gridpoints is significantly more limiteathen using the cubic grid, as measured by the
kissing number, which is an indicator of the degree of flexibility availalaen select-
ing from nearest-neighbor points. As seen by comparingithe2, n = 8, andn = 24

5In most cases, the natural net to form from a sphere packitngisontact graph; in such cases, the
kissing numbery, and the coordination number are equal. As mentioned puslyjpit is natural with
certain sphere packings to define nets whichraricontact graphs by connecting non-nearest-neighbor
points; in such cases, the kissing number (a property ofghere packing) and the coordination number
(as defined here, a property of a corresponding net) areni@rgenotequal. We find this clear semantical
distinction to be useful to prevent confusion between thesedistinct concepts; note that some authors
(e.g., Conway & Sloane 1999) do not make this distinction.
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Figure 2.1 The triangular lattice (a,b), the square lattice (c,d)d #me honeycomb
nonlattice packing (e,f). Indicated in the left three sulfes is thepackingwith spheres

of radiusp, the correspondingetor contact graph(solid lines), a typicaMoronoi cell
(dashed line), and thidssing numbef(that is, the spheres that contact a given sphere).
Indicated in the right three subfigures is twreringwith spheres of radiuR. Looking

at their respective packing densitiesn Table2.1, as compared with the square lattice,
the triangular lattice is said to lense and the honeycomb nonlattice packing is said
to berare.

cases in Tabl@.1, these drawbacks become increasingly substantial asriiendiomn
is increased; by the dimension= 24, the cubic grid has

e afactor of 0001930'1.1502e— 10~ 17,000,000 worse (lower) packing density,
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Table 2.1 Characteristics of selected lattice and uninodal naokfiackings and nets.

n | packing name A © G T

A triangular | 0.9069 | 1.2092 | 0.08019| 6

2 72 square 0.7854 | 1.5708 | 0.08333| 4

AS | honeycomb| 0.6046 | 2.4184 | 0.09623| 3

Eg Gosset 0.2537 4.059 | 0.07168| 240

78 cubic 0.01585 | 64.94 | 0.08333|| 16

° Vgo 5.590e-4| 49.89 | 0.09206| 4

(unstable)l 90 2.327e-4| 8731 |0.09266] 3
Noa Leech | 0.001930| 7.904 | 0.06577| 196560

24 g4 cubic || 1.150e-10| 4,200,263 0.08333| 48

e afactor of 4200,263/7.9035~ 530,000 worse (higher) covering thickness,

e a factor of 0083330.0658~ 1.27 worse (higher) mean-squared quantization error,
and

e a factor of 19656048~ 4100 worse (lower) kissing number

than the densest available alternative lattice. Thus, ¢lexgon of the cubic grid, by
default, for applications requiring dense (that is, uniipfattices withn > 3 is simply
untenable.

Other applications, such as that explored in Cessna & Be(@e$1), require
regular nets which, with low coordination number, conneca targe number of nodes
with each successive hop from the origin, as quantified byn#t&s coordination se-
guence. As mentioned previously, a useful measure of a togitslogical density is
given, e.g., bytdio, which is the number of distinct nodes within 10 hops of thigiar
Note that the coordination number of thedimensional cubic grid isr2 the coordi-
nation number of the alternativedimensional constructions introduced i2.gare as
small as 3 or 4, while the topological density increasesdtg@sn is increased (com-
pare, e.g., the values tdyo for A andZ?, with T = 3 andt = 4 respectively, to those
for Y32 andVg0 in Table2.1); it is thus seen that, for applications requiring graphtwi
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low coordination number and high topological density, tkestion of the cubic grid,
by default, is also untenable.

We are thus motivated to make the fundamental results of thertise and rare
n-dimensional sphere packing theory more broadly accessithe science and engi-
neering community, and to illustrate how this powerful badytheory may be put to
use in two important new applications of practical relewantowards this end, the re-
mainder of Chapter 2 succinctly reviews and extends segegalficant results in this
mature and sophisticated field, inter-relating the liter@ton dense and rare packings,
which is today largely disjoint. These results are leveddgeavily in the applications
described in Chapter 3 and 4. We note that, beyond providingpato-date and syn-
thetic review of this otherwise difficult subject in a (hopky) accessible language, a
significant number of new computations, constructionutigms, and metrics are also
reported in Chapter 2 [the reader is referred specificallatdes 2.2-2.3,3 4.4through
82.4.4 and 2.4.95.

The mathematical characterization of sphere packings thasgaand rich his-
tory. Some recent articles and popular books recount tist®tyi in detail, including
Zong (1999), Szpiro (2003), Hales (2006), and Aste & Wedf@8). The purpose of
the present article is not to repeat these historical rpgcts/es, which these sources do
quite adequately, but to characterize, catalog, and extenhfinite packings available
today to facilitate their practical application in new fieldNonetheless, we would re-
miss if we didn’t at least provide a brief historical contexthis field, which we attempt
in the following two subsections.

2.2.1 Finite packings: mystic marbles, stacked spheres, pauted
planets, cartoned cans, catastrophic sausages, and coniega
origins

We begin by defining, fom > 1, a notation to build from:

m
Tom21,  Tim% 3 Tok=m (the positive integers)
&1

In the sixth century BC, Pythagoras and his secret societyimierologists, the Pythagore-
ans, discovered geometrically (see Fig2i2 and pp. 43-50 of Heath 1931) the formula
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Figure 2.2 Ten marbles placed in a triangle (left) [referred to by tlyghBgoreans as a
TETPAKTU ¢, (tetractys), and upon which they placed a particular mystnificance],
and (right) the Pythagoreans’ placement of two triangulaugs of marbles into an
“oblong” mx (m+ 1) rectangle, from which the formula fdp nm, follows immediately.

for the number of marbles placed in a (2D) triangle (thaths, triangular numbers”):
m
Tom= Y Tik=m(m+1)/2
k=1

The earliest known mathematical work to discuss the (3xk#tg of objects is
a Sanskrit documernithe Aryabhatiya of Aryabhatgt99 AD; see Clark 1930, p. 37),
which states:

“In the case of arupaciti[lit., ‘pile’] which has ... the product of three terms,
having the number of terms for the first term and one as the comdifference, divided
by six, is thecitighanallit., ‘cubic contents of the pile’]. Or, the cube of the nuerlof
terms plus one, minus the cube root of this cube, dividedxy si

Thus, Aryabhata establishes, in words, two equivalentesgions for the number of
objects (“cubic contents”) in a (3D) triangular-based pyic (“pile”) with mobjects on

each edge:

7. mm+1)(m+2)  (m+ 13— (m+1)
sm= 3l - 6 !

note also thalam = S Tok.

Thomas Harriot was apparently the first to frame the probléspbere packing
mathematically in modern times (see, e.g., the biograptjeofiot by Rukeyser 1972).
At the request of Sir Walter Raleigh, for whom Harriot servaghong other capacities,
as an instructor of astronomical navigational and on varimoblems related to gun-
nery, Harriot (on December 12, 1591) computed, but did nddipk, the number of
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Figure 2.3 Pyramidal stacks of spheres with triangular, square, abtbhg” (rectan-
gular) bases. All three stacks are subsets of the facereenteibic lattice, discussed
further in 8.3.3

cannonballs in a pile with a triangular, squane> m|, and rectangularmi x (m+ 1),
a.k.a. “oblong”] base, as illustrated in Figu2e8, obtainingTz m, Sn, and Ry, respec-

tively, where
> mim+1)(am+1 S m(m+1)(2m+4
k=1 K=1

In 1614, Harriot wrotdDe Numeris Triangularibus Et inde De Progressionibus Artit
meticis: Magisteria magnéOn triangular numbers and thence on arithmetic progres-
sions: the great doctrif€. Looking closely at the triangular table of binomial coeffi-
cientd on pp. 1-3 (folios 108-110) of this remarkable document &éen that Harriot
understood thgeometriaelationship between the positive integ&rs,, the “triangular
numbers'T, m [that is, the number of spheres in a (2D) triangle witlspheres on each
edge], the “pyramidal numberd3 n, [that is, the number of spheres in a (3D) trianglar-
based pyramid witinspheres on each edge], and the next logical steps in thisragiic
progression, given by:

m(m+1)(m+2)(m+3)
41

m
A
T47m = Z T37k =
k=1

m(m+1)(m+2)(m+3)(m+4)
ol ’

m
A
Tsm= z Tax =
K=1

SHarriot (1614) passed through several hands before finallygopublished in 2009, almost 4 cen-
turies later.

"This now famous triangular table of binomial coefficientsrisorrectly attributed by many in the
west to Blaise Pascal (b. 1623), though it dates back to absarlier sources, the earliest being Pingala’s
Sanskrit workChandas Shastravritten in the fifth century BC.
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etc. In particular, Harriot noticed that tiie+ 1)'th element of thgn+m)’th row of this
triangular table isl, m. Accordingly, we may think ofl, , as the number of spheres in
an “n-dimensional pyramid” withm spheres on each edge, wilj, representingn + 1
spheres configured at the corners ohasimensional simplex. It is thus natural to credit
Harriot (1614) with the first important steps towards thedigry of laminated lattices,
discussed further inZ3.4and 8.3.6

Harriot also introduced the packing problem to Johannesafagtimately lead-
ing Kepler (1611), in another remarkable docum@trena seu de nive sexangflehe
six-cornered snowflakewhich also hypothesized about a related atomistic paybia-
sis for hexagonal symmetry in crystal structures of watecanjecture that

“The (cubic or hexagonal close) packing is the tightest jbsssuch that in no
other arrangement can more spheres be packed into the satagmen”

Kepler's conjecture is, of course, patently false if coes&dl in a finite container of
a specified shape. For instance, @>22d x 2d cubic container can fit 8 spheres of
diameted if arranged in Cartesian configuration, but can only fit 5 spbé arranged in

a “close-packed” configuratiénlt is presumed that Kepler in fact recognized this, and
thus Kepler’s conjecture is commonly understood as a ctnjecegarding the densest
packing possible in the limit that the size of the contaisdaken to infinity (for further
discusssion, see28.2.

Note in Figure2.3 that any sphere (referred to as a “sun”) on the interior of
the piles has 12 nearest neighbors (referred to as its “f@gneConsidering this sun
and its 12 planets in isolation, there is in fact adequatenrtm permute the planets
to different positions while keeping them in contact witle sun, something like a 12-
cornered Rubik’s cube with spherical pieces (see Fi@u4e Due to the extra space
available in this configuration, it is unclear upon first iasppon whether or not there is
sufficient room to fit a 13’th planet in to touch the sun whilegeng all of the other 12
planets in contact with it. In 1694, Isaac Newton conjedutes could not be done, in
a famous disagreement with David Gregory, who thought itccodMewton turned out
to be right, with a complete proof first given in Schitte & var tVaerden (1953), and
a substantially simplified proof given in Leech (1956).

Moving from 16th-century stacks of cannonballs to 21stiggncommerce, the

8For larger containers, the arrangements which pack in teatgst number of spheres (or other ob-
jects) must in general be found numerically (see Gensané, Zihiurmann 2006, and Friedman 2009).
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Figure 2.4: lllustration of the 13 spheres (a.k.a. Newton-Gregorgbem and plane-
tary permutations. Configuration (a) is 13 of the sphereertdkom the second, third,
and fourth layers of the stack in the orientation shown iruFeg.3b, whereas configu-
ration (c) is 13 of the spheres taken from the third, fourtid &fth layers of the stack
in the orientation shown in Figuiz3a [extended by one additional layer]. In both con-
figurations, the 12 “planets” (positioned around the cérfgan”) are centered at the
vertices of a cuboctahedron. The planets can be permutedibghing” together two
of the four planets on the corners of each square face, irntemating fashion, to form a
symmetric icosahedral configuration with significant sgaesveen each pair of planets
[configuration (b)], then “pushing” apart pairs of planetsan analogous fashion to form
a different cuboctahedron. Alternatively, starting froamtiguration (b), identifying any
pair of opposite planets as “poles”, and slightly shiftihg five planets in each of the
“tropics” as close as possible to their nearest respectilespthe resulting northern and
southern groupings of planets can be rotated in relatiorath ®ther along the equa-
tor. Repeated application of these two fundamental motiansbe used to permute the
planets arbitrarily.

guestion of dense finite packings of circles and spheres pralgical relevance in a
variety of packaging problems. For example, to form a reguidar cardboard carton for

12 fl oz soda cans, 164 énof cardboard per can is needed if 18 cans are placed in a
cartesian configuration with 3 rows of 6 cans per row, wheBe2% less cardboard per
can is needed if 18 cans are placed in a triangular configurgtvithin a rectangular
box) with 5 rows of {4,3,4,3,4} cans per row. If an eye-catwi(stackable, strong,
“green”...) hexagonal cardboard carton for the soda camnsed, with 19 cans (described

in marketing terms as “18 plus 1 free”) again placed in a gidar configuration, 17.7%
less cardboard per can is required.
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Two new questions arise when one “shrink-wraps” a numingof n-dimensional
spheres (resulting in a convex, fitted container), namelyatwconfiguration of the
spheres minimizes the surface area of the resulting caraamd what configuration
minimizes the volume of the resulting container? Both goastremain open, and are
reviewed in Zong (1999). Regarding the minimim surface argsstion, it was conjec-
tured by Croft, Falconer, & Guy (1991) that the minimum so&farea, fon > 2 and
largem, is achieved with a roughly spherical arrangement. In @sttregarding the
minimim volume question, it was conjectured by L. Fejes T@#875) that the mini-
mum volume, fom > 5 and anym, is achieved by placing the spheres in a line, leading
to a shrink-wrapped container in the shape of a “sausage’n Ead3, it has been shown
that a roughly spherical arrangement minimizes the volumnenf= 56, m= 59 to 62,
andm > 65, and it is conjectured that a sausage configuration maeisrthe volume for
all otherm (see Gandini & Willis 1992); fon = 4, there appears to be a similar “catas-
trophe” in the volume-minimizing solution, from a sausagefgyuration to a roughly
spherical configuration, a® is increased beyond a critical value (Willis 1983 conjec-
tures this critical value to b~ 75000, whereas Gandini & Zucco 1992 conjectures it
to bem= 375769).

Finally, L. Fejes T6th (1959) presents a curious set of goesthat arise when
considering the blocking of light with a finite number of op@gunit spheres packed
around the origin. The first such question, known as HorsiBnbblem, seeks the small-
est number of opaque unit spheres that completely conggalrilys emanating from a
point source at the center of a transparent unit sphere arifi@. A related question,
known as L. Fejes Toth’s Problem, seeks the smallest nunfbgpamjue spheres that
completely conceal light rays emanating from the surface wiit sphere at the origin
(e.g., in Figure2.4, adding additional outer planets to completely conceaVibw of the
sun from all angles). In 2D, the (trivial) answer to both gdesbs is 6, via the triangular
packing indicated in Figur@.1a. In higher dimensions, both questions remain open,
and the answer differs depending on whether or not the sgleerters are restricted to
the nodal points of a lattice. For the L. Fejes Toth’s Prohléann > 3, the answer is
unbounded if restricted to lattice points, and boundedif Ror Hornich’s Problem, the
answer is bounded in both cases, with the number of sphenejuired in the 3D case,
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when not restricted to lattice points, being somewhereaérémge 36< h < 42. Zong
(1999) derives several of the known bounds available in patblems.

2.2.2 Infinite packings

In the last 300 yearsnanydifferent constructions of infinite lattice and nonlat-
tice packings have been proposed in each dimension. Thekmgaeach have different
packing density, covering thickness, mean-squared qaagitn error, and kissing num-
ber, and their corresponding nets each have different ogical density; knowledge of
these properties is essential when selecting a packingtdonany given application.
We have thus attempted to catalog these constructions airdptioperties thoroughly
in the remainder of this review.

In the characterization of density, amongst lattice packings of a given di-
mension, théd,, Az, D4, Ds, Eg, E7, Eg, and/\24 constructions given inZ3 have been
proven to be of maximum density, in Lagrange (1773)fer 2, Gauss (1831) fan= 3,
Korkine & Zolotareff (1873, 1877) fon = 4 and 5, Blichfeldt (1935) fon = 6 through
8, and Cohn & Kumar (2009) fan = 24. There are no such proofs of optimality for
other values ofi, though the latticed,, andK, introduced in .3.6are likely candidates
in the range < n < 23.

Remarkably, if one considers both lattevednonlattice packings, proof of which
packing is of maximum density in a given dimension is stikogorn > 3. It was estab-
lished in Thue (1892) tha, has the maximum density amongst all lattice and nonlattice
packings fom = 2. Considerable attention has been focused over the cesitomi the
corresponding question fég in dimensiom = 3, that is, on Kepler’s conjecture (posed
in 1611) in the limit that the container size is taken to irfiniindeed, David Hilbert,
in his celebrated list of 23 significant open problems in raathtics in 1900, included
a generalization of Kepler's conjecture as part of his 18thbjem (see, e.g., Milnor
1976).

Note that it is not at all obvious that an infinite packing agular asAz would
necessarily be the packing that maximizes density. Indeed)entioned in footnot@
on pagelo, nonlattice packings are known in dimensions 10, 11, 13, 18, 20, and 22
that are each slightly denser than the densest known latiidéngs in these dimensions.
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Figure 2.5 A regular truncated octahedron (a), used tolfein Kelvin's conjecture;
(b) an irregular tetrakaidecahedron and dodecahedron, tostle R2 in the Weaire-
Phelan structure.

In three dimensions, physiologist Stephen Hales (172Mjsrgroundbreaking
work Vegetable Statickseported a curious experiment:

“I compressed several fresh parcels of Pease in the same.Poy, the great
incumbent of weight, pressed into the interstices of thes@eahich they adequately
filled up, being therefore formed into pretty regular dodeions.”

This report implied that many of the dilated peas in this expent had 12 nearest neigh-
bors and/or pentagonal faces. However, the “pretty regglaalification left a certain
ambiguity, and this experiment left mathematicians pukzhs it is patently impossible
to tile R3 with regular dodecahedra. Kelvin (1887) formalized thesgiom inherent in
Hales’ dilated pea experiment by asking hB%could be divided into regions of equal
volume while minimizing the partitional area. He conjeetithe answer to be a regular
tiling of R3 with truncated octahedra, which are in fact the VoronokoelitheA; lattice
(see 2.4.4. [Note that the Voronoi cell of thag lattice is the (face-transitivahombic
dodecahedron, which is dual to the cuboctahedron illuedrat Figure2.4a,c and tiles
RR3 with slightly greater partitional area than does the tilwith truncated octahedra.]
Kelvin’s conjecture stood for over 100 years, until Weair@Belan (1994) discovered a
tiling of R3 based on irregular tetrakaidecahedra (with 2 hexagonesfaod 12 pentag-
onal faces) and irregular dodecahedra (with 12 pentagaeak); this tiling has 0.3%
less partitional area than the much more regular tiling withcated octahedra consid-
ered by Kelvin (see Figur2.5). In hindsight, it is quite possible that Hales might have
in fact stumbled upon the Weaire-Phelan structure in hikiogopot (in 1727!) and,
seeing all of those pentagonal faces and 12-sided (as wedl-agled) dilated peas, as-
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serted that what he was looking at was a culinary approxandb a tiling ofR3 with
regular dodecahedra, even though such a tiling is impassibl

Returning to Kepler’s conjecture, in 1998, Thomas Haleg@hation to Stephen)
announced a long-sought-after proof, in a remarkably ditfenalysis making extensive
use of computer calculations. This proof was spread ovey@esee of papers published
in the years that followed (see Hales 2005). An extensivaudision of this proof, which
is still under mathematical scrutiny, is given in Szpiro@3) Inspiration for this proof
was based, in part, on a strategy to prove Kepler's conjegroposed by L. Fejes Toth
(1953), the first step of which is a quantitative version & Mewton-Gregory problem
discussed in3.2.1

2.3 Dense lattice packings fon < 24

There are many dense lattices more complex than the culbiceldhat offer
superior uniformity and nearest-neighbor configuratiangaantified by the standard
metrics introduced in 82 (namely, packing density, covering thickness, mean-sjuar
guantization error, and kissing number). This section i@y an overview of many
of these latticesthe definitive comprehensive reference for this subjectoisway &
Sloane (1999), to which the reader is referred for much matited discussion and
further references on most of the topics discusse@i8 $ote that the subject of coding
theory, reviewed in 8.5, is very closely related to the subject of dense lattice paysk
As mentioned in the abstract, the practical applicatiodaegg in Chapters 3 and 4 of
this work also leverages these constructions heavily.

2.3.1 Lattice terminology

The notationL, = M,, means that the latticds, and M, areequivalent(when
appropriately rotated and scaled) at the specified dimamsid\lso note that the four
most basic families of lattices introduced iB.8, denotedZ", A,, Dy, andE,, are often
referred to asoot latticesdue to their relation to the root systems of Lie algebra.

There are three primary methdds define any given-dimensional real lattice:

9A convenient alternative method for building a cloud ofitatpoints near the origin is based on the
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e As anexplicit descriptiorof the points included in the lattice.

e As aninteger linear combinatiorfthat is, a linear combination with integer coeffi-
cients) of a set of basis vector®' defined inR™™ for m > 0; for convenience, we
arrange these basis vectors as the coldfhofsa basis matrix! B.

e As aunion of cosetsor sets of nodal points, which themselves may or may not be
lattices.

The standard form of these definitions, as used4rB8makes it straightforward to
generalize application codes that can build easily uporoéitye lattices so described.

Note that any real (or complex) lattidg, also has associated with itdual
lattice, denoted_;;, which is defined such that

Li={xeR"(orC") : x-ueZforall ueLn}, (2.2)

whereZ denotes the set of all integers, dot denotes the usual salduct, and overbar
denotes the usual complex conjugateB i a square basis matrix fap, thenB=T is a
square basis matrix far).

Unless specified otherwise, the word lattice in this work liega real lattice,
defined inR". However, note that it is straightforward to extend this kvte com-
plex lattices, defined it". To accomplish this extension, it is necessary to extend the
concept of the integers, which are used to construct a éatti@ the “integer” linear
combination of the basis vectors in a basis maB;xas described above. There are two
primary such extensions:

e TheGaussian integerslefined a¥/ = {a+bi : a,be Z} wherel = /-1, which lie
on a square array in the complex plabe

stencil of nearest-neighbor points to the origin in thddattrepeatedly shifting this stencil to each of the
lattice points near the origin determined thus far in ordecreate additional lattice points in the cloud.
Unfortunately, this simple alternative method does notiwior all lattices, such ab;, andA;, (see 8.3.3
and2.3.9.

19 the literature on this subject, it is more common to usgeaerator matrix Mto describe the
construction of lattices. The basis matrix convent®uased here is related simply to the corresponding
generator matrix such th&t= MT; we find the basis matrix convention to be more natural in seoirits
linear algebraic interpretation.

LINote that integer linear combinations of the columns of nmatrices danot produce lattices (as
defined in the second paragraph @3%. The matrices listed inZ3as basis matrices are special in this
regard. Note also that basis matrices are not at all uniquiethle lattices constructed from alternative
forms of them are equivalent; the forms of the basis matlise=d in .3 were selected based on their
simplicity.
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e TheEisenstein integerslefined ag’ = {a+bw : a,bc Z} wherew= (—1+1/3)/2
[note thatw? = 1], which lie on a triangular array in the complex plabe

We may thus define three types of lattices from a basis mBtrix

e a real lattice, defined as a linear combination of the colunfrB with integers as
weights;

e a (complex) lattice, defined as a linear combination of the columnB wfith Gaus-
sian integers as weights; and

e a (complex)# lattice, defined as a linear combination of the columnB with Eisen-
stein integers as weights.

The speciah-dimensional real?, andé’ lattices formed by taking = I« are denoted
Z", ZN", andZ[w]" respectively. Note also that, for any complex lattice wigngents
7 € C", there is a corresponding real lattice with eleménsR?" such that

>”<:<D{21} Nz} ... O{Z} D{in})

The present work focuses on the practical use of real ladtidenonlattice packings with

.
. (2.3)

n> 3. Thus, in the present work, we only make brief use of comialgices to simplify
certain constructions.

2.3.2 The cubic latticezZ"

The cubic lattice Z", is definedZ" = {(x4,...,%)) : X € Z}, and may be con-
structed via integer linear combination of the columns efltasis matriB = I,«. The
cubic lattice is self dual [that isZ")* = Z"] for all n.

2.3.3 The checkerboard latticeDy, its dual Dy;, and the offset checker-
board packing D;f
Thecheckerboard latticeDy,, is ann-dimensional extension of the 3-dimensional

face-centered cubi@FCC, a.k.a.cubic close packedattice. It is defined

Dn={(Xt,..., %) €Z" 1 Xy + ...+ X, = even}, (2.4a)
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and may be constructed via integer linear combination o€ttemns of then x n basis

matrix
-1 1 0
-1 -1 1
Bp, = . (2.4b)
-1 1
0 -1

The dual of the checkerboard lattice, dendbgdand reasonably identified as the
offset cubic latticeis ann-dimensional extension of the 3-dimensiobaldy-centered

cubic(BCQ lattice. It may be written as

D} = DU ([1] + D) U (2] + Do) U([3] + D) = Z0 U ([1] + 27, (2.59)

where thecoset representativéd], [2], and[3] are defined in this case such that

1/2 0 1/2
=1 ", @=|"| B=[

1/2 0 1/2

1/2 1 ~1/2

TheDy, lattice may also be constructed via integer linear comimnaidf the columns of

then x n basis matrix

1 0 05
1 05
Bp; = . (2.5b)
1 05
0 05

It is important to recognize that, for > 5, the contact graph of thB}, lattice
is simply two disjoint nets given by the contact graphs offfleand shiftedZ" sets of
lattice points upon whiclD;, may be built [seeZ.58]. Thus, as suggested by Conway
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& Sloane (1997), we introduce, for> 4, ageneralized nefiormed by connecting each
node of the unshifte@" set to the 2 nearest nodes on the shiftéfl set, and each node
on the shiftedZ" set to the 2 nearest nodes on the unshiftédi set. The resulting net,
of coordination number'? is uninodal, but isota contact graph of the corresponding
sphere packing.

The packingD;;, reasonably identified as tléfset checkerboard packinis an
n-dimensional extension of the 3-dimensiod&amondpacking, and is defined simply
as

Dy = DnU([1] +Dn); (2.6)

note thatD;] is a lattice packing only for even, and thang is thediamond packing
(for further discussion, se€#.4).

2.3.4 The zero-sum latticeAy, its dual A, and the glued zero-sum
lattices A,

The zero-sum latticeA,, may be thought of as amdimensional extension of
the 2-dimensiondriangular lattice in 3 dimensionsAs = Ds. It is defined

An = {(X0,- - Xn) € Z™ i X0+ X0 = 0}, (2.7a)

and may be constructed via integer linear combination o€themns of thgn+1) x n

basis matrix
-1 0 1
1 -1 1
BAn = s with Na, = . (27b)
1 -1 1
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Lo
dw Nk O kN oW

Figure 2.6. A cloud of points on theé\, lattice, defined on a plane k3. Note that the
normal vectoma, = (1 1 1)T points directly out of the page in this view.

Notice thatA,, is constructed here viabasis vectors im+ 1 dimensions. The resulting
lattice lies in am-dimensional subspace R'; this subspace is normal to the vector
Na,. An illustrative example ig\,, the triangular P lattice, which may conveniently be
constructed on a plane Ik (see Figure.6).

Note that, starting from a (2D) triangular configuration cdimges or cannonballs
(see Figure.3a), one can stack additional layers of oranges in a trangalaiguration
on top, appropriately offset from the base layer, to buildhg(3D) FCC configuration
mentioned previously (see Figu2e3a). This idea is referred to as lamination, and will
be extended further inZ3.6when considering thA, family of lattices.

Also note that, in the special caserof 2, theA; lattice may also be written as

A =2 RyU(a+Ry), where a= (\/1;/22) (2.7¢c)

andR; is therectangular grid(not a lattice, nor even a nonlattice packing) obtained by
stretching théZ? lattice in the second element by a factonG3.
The dual of the zero-sum lattice, denot&f may be written as

n

A= (I8 +A), (2.8a)

s=0
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where then+ 1 coset representativés, for s=0,...,n, are defined such that ttkéh
component of the vectqs] is

S k<n+1-s
=3 " (2.8b)

s—n—1 H
] otherwise

TheAj lattice may be constructed via integer linear combinatibtine columns of the
(n+1) x n basis matrix

11 1 =
1
-1 0 o
-1 1
Ba: = . "L with  na =na,. (2.8¢)
1
-1 &7
0 1

A related family of lattice packings, developed in 812 of €ter (1951) and
reasonably identified as tlgtued zero-sum latticesAis a family of lattices somewhere
betweenA, and A}, [as given in 2.89] defined via the union of translates of, for
n>>5:

AL =AU ([g+A)U([29 + A U...U([(r—1)s +An), where r-s=n+1, (2.9)

where the components of the “glue” vectdss are specified inZ.80), and wherer
ands are integer divisors ofn+ 1) with 1 <s<n-+1 and 1< r < n+ 1, excluding
the case(r = 2,s= 3} for n=5. The lattices3, A, A, A3, AS, AY,, ATS, Ao, and
A%% are found to have especially good covering thickness, WitHdst four currently the
thinnest coverings available in their respective dimems{gee Baranovskii 1994, Anzin
2002, and Sikiig, Schirmann, & Vallentin 2008). Note also thgt= E;, A3 =~ E3, and
Ag = Eg, each of which is discussed further below.

Note finally that the contact graphs of some of fjglattices, such az;\g and
A‘l‘l, are disjoint nets given by the contact graphs ofAh@nd shiftedA,, sets of lattice
points upon which these glued zero-sum lattices are beit &9)]. Thus, as in the case
of Dy, for n > 4 as discussed in283.3 ageneralized netay be formed by connecting
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each node of the unshiftel}, set to the nearest nodes on the shitgdset. Again, the
resulting net is uninodal, but is not a contact graph of thressponding sphere packing.

2.3.5 The Gosset latticd=g = Eg, E7, E7, Eg, and Eg

TheGosset lattice E= Eg, which has a (remarkable) kissing number ef 240,

may be defined simply as

Es =Dy, (2.10a)

and may be constructed via integer linear combination o€ttemns of the & 8 basis
matrix

2 -1 0 12
1 -1 1/2
1 -1 1/2

Bg, = to-t vzl (2.10b)
1 -1 ~1/2

1 -1 -1/2

1 -1/2

0 ~1/2

The latticeEy is defined by restrictings, as constructed above, to a 7-dimensional
subspace,

Ez={(X,...,Xs) €Eg : X1 +... +xg =0}, (2.11a)

and may be constructed directly via integer linear comimnadf the columns of the
8 x 7 basis matrix
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~1 0 12 1/2
1 -1 1/2 1/2
1 -1 1/2 1/2
Be, = to 12 . with  ng = vz| (2.11b)
1 -1 -1/2 1/2
1 -1 -1/2 1/2
1 —1/2 1/2
0 ~1/2 1/2

The dual of theEy lattice may be written as
1/4
E; =E;U([1+Ey), where [1]= | 1/4 |, (2.12a)

—3/4
—3/4

and may be constructed directly via integer linear comimnadf the columns of the
8 x 7 basis matrix

~1 0 -3/4
1 -1 —3/4
1 -1 1/4
Be; = o L4 ., with  ng =ng, (2.12b)
1 -1 1/4

1 -1 1/4

1 1/4

0 1/4

The latticeEg is defined by further restrictingz, as defined inZ2.11), to a 6-
dimensional subspace,

Ee = {(X1,...,%s) € E7 : X1+ xg =0}, (2.13a)
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and may be constructed directly via integer linear comimnadf the columns of the

8 % 6 basis matrix

0 1/2

~1 1/2
1 -1 1/2
1 -1 1/2

1 -1 ~1/2

1 -1 -1/2

1 -1/2

0 ~1/2

The dual of theEg lattice may be written as

Es = Es U ([1] + Eg) U([2] +Eg),

, with

where [1] =

N =

—2/3
—2/3
1/4

1/4

R O O O O O O B

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

(2.13b)

and may be constructed directly via integer linear comimnadf the columns of the

8 x 6 basis matrix
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0 0 1/2
2/3  1/2
2/3  1/2
-1 -1/3 1/2 .
L1 13 1 , with Ne+ = NEg. (2.14b)
1 -1/3 -1/2
-1/3 -1/2

0o -1/2
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2.3.6 The laminated lattices\;, and K, lattices

The lattices in the\, andK, families can be built up one dimension, or “lami-
nate”, at a time, starting from the integer latti@es A1 = K1), to triangular Ay = N\ =
K»), to FCC QA3 = D3 = A3 = Kj3), all the way up (one layer at a time) to the remarkable
Leech lattice {\24 = Ko4). Both families of lattices may in fact be extended (but not
uniquely) to at leash = 48.

The Leech lattice/\»4, is the unique lattice im = 24 dimensions with a (re-
markable) kissing number af = 196 560. It may be constructed via integer linear
combination of the columns of the 2424 basis matrixBy,,, which is depicted here
in the celebrated Miracle Octad Generator (MOG) coordmdésee Curtis 1976 and
Conway & Sloane 1999):
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8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 -3

4 2 2 2 2 2 1

Broy = .
24
\/_8 4 2 2 2 2 2 2 1

As intheEg — E7 — Eg progression described i28.5 the/\, lattices fom=23 22, ...,1
may all be constructed by restricting the, lattice to smaller and smaller subspaces via

the normal vectors assembled in the mafrix

2There are, of coursenmanyequivalent constructions @, through/,s via restriction ofA,4, and
the available literature on the subject considers thesaer®tnies at length. The convenient form N
depicted here was deduced, with some effort, from Figur@bCnway & Sloane (1999).
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1 -1
1 -1
Np = !
1 1
1 1
1
1 1

:(n/\o n,\za).

Thus, the/\,3 lattice is obtained from the points of tlhe4 lattice inR24(which
themselves are generated via integer linear combinatitimeotolumns oB,,,) which
lie in the 23-dimensional subspace orthogonattg,. Similarly, theAy; lattice is ob-
tained from the points of thA,4 lattice which lie in the 22-dimensional subspace or-

thogonal to botima,, andnp,,, etc. Noting the block diagonal structureNy;, it follows
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that/\n may be constructed using the basis matrix, denBjgdgiven by then x n sub-
matrix in the upper-left corner ds,, for anyn € Ny = {21,20,16,9,8,5,4}. For the
remaining dimensions) € N, = {19,18 17,15,14,13/12 11, 10,7,6,3,2,1}, A, may
be constructed via the appropriate restriction of thedatgenerated by the next larger
basis matrix in the séd1; for example/\14 may be constructed iR° via restriction of
the lattice generated by the basis maBjy, to the subspace normal to the vectors (in
R16) given by the first 16 elements of,,. andnp,,.

A similar sequence of lattices, denotkd, may be constructed via restriction
of the Leech lattice (generated \#a,,) in a similar fashion (for details, see Figure 6.3
of Conway & Sloane 1999). Lattices from tiAg and/orK, families have the maximal
packing densities and kissing numbers amongst all latfmethe entire range consid-
ered here, KX n < 24. Note that thé\, andK families are not equivalent in the range
7<n<17, with A, being superior td,, by all four metrics introduced ing2 at most
values ofn in this range, except for the narrow range<d i < 13, where in facK, has
a slight advantage. Note also that there is some flexibilithe definition of the lattices
A11, N\12, andA\13; the branch of thé\, family considered here is that which maximizes
the kissing number in this range oh, and thus the corresponding lattices are denoted
AT NS, and AR, Note thatky, is referred to as the Coxeter-Todd lattice ax@

is referred to as the Barnes-Wall lattice.
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2.3.7 Some numerically-generated lattices for thin covengs in di-

mensions 6-15

Recall from 8.3.1that ann-dimensional real lattice may be defined as an integer
linear combination of a set af basis vector®' defined inR™™ for m > 0; that is, any
lattice point may be written as

X = &b+ &b+ .. + &b =BE,

where the element§é, ..., &,} of the vector§ are taken as integers. The square of
the distance of any lattice point from the origin is thus gty f(§) = ETAE, where
A= BTBis known as th&Sram matrixassociated with the lattice in question, and the
function f (&) is referred to as the correspondiggadratic form[note that each term of
f(&) is quadratic in the elements &f. All of the lattices studied thus far, when scaled
appropriately, are characterized by Gram matrices wmtikger elementsand thus their
corresponding quadratic fornf§&) have integer coefficients (and are thus referred to
asintegral quadratic formyg

There is particular mathematical interest in discovermggenerating numeri-
cally) both lattice and non-lattice packings which minimizovering thickness and/or
packing density. The numerical approach to this problendistlin Schirmann &
Vallentin (2006) and Sikig, Schirmann, & Vallentin (2008) has generated new lat-
tices in dimensions 6-15 with the thinnest covering thicdsss known amongst all lat-
tices. The lattice so generated in dimension 7 happens tesmond to an integral
guadratic form, but the others, apparently, do not. GranriogsA corresponding to
these 10 lattices (denotad!, LS, LS, ..., LSy are available ahttp://fma2.math.uni-
magdeburg.delatgeo/covering_table.html
(nonunique) basis matricé&corresponding to each of these lattices may be generated
simply by taking the Cholesky decomposition of the corresjeg Gram matrix, as
A=B'B.

2.3.8 Discussion

For all of the dense lattices described thus far, as wellahérare packings and
nets described in&4, Tables2.2 and2.3 list the known values of the packing density
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A, the covering thickned®, and the mean squared quantization error per dimenGion,
Table2.2also lists the coordination sequence throkgh 10 of the corresponding net,
as well as its local topological denstiy o. If this netis a contact graph, the coordination
number (that is, the first element of the coordination segeleis equal to the kissing
number of the corresponding packing; if this nenist a contact graph, it is marked
with a G, and the kissing numbar of the corresponding sphere packing is listed in
parentheses.

The other information appearing in Tal2e? is described further inZ4. Note
that Table2.2 alone has 8 columns and over 100 rows, with those resultshwie
believe to be new denoted in italics. The original sourceaufheof the several hun-
dred existing results reported can not feasibly be spelledhere. Suffice it to say that
the vast majority of those existing results related todagtiare discussed in Conway &
Sloane (1999) and in the On-Line Encyclopedia of Integeru8aqges (on the web at
http://ww.research. att.com -njas/ sequences/), where a large number of the
original references are listed in detail. The vast majaftthose existing results related
to 3D nets (see&4), including clear drawings of eacais well as detailed lists of origi-
nal references, are given in the Reticular Chemistry StredResource, available online
at, e.g.,http://rcsr.anu. edu. au/ nets/ f cu, where fcu” may be replaced by any
of the lowercase boldface three-letter identifiers givehahle2.2and 8.4; for further
discussion of this database and others, see O’Keeffe &2G08], Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that theeehaindreds of new results
reported in Tables 2 and 3, as denoted in italics; most okthes the result of painstak-
ing numerical simulation, some of which tooks weeks of CRueti(on a quad-core
3GHz Intel Xeon server) to complete.

Note finally that there are a variety of simple ways to quantiz the nearest
lattice point; for an introduction, see Appendix A.



Table 2.2 Known characteristics of selected lattices in dimensiehii< 9. Boldface denotes values known, or believed, to be
optimal among all lattices at that dimensi@nNote thatZ" is referred to as the cubic lattidé; is referred to as the Coxeter-Todd
lattice,/\1¢ is referred to as the Barnes-Wall lattice, akg is referred to as the Leech lattice. The symisalenotes approximate
values estimated via Monte Carlo integration; all otheultssreported have been determined in the literature analijt (see
Conway & Sloane 1998). The symbgl denotes a bound, not an exact value. Blank entries appear tméwvailable in the

published literature on this subject.

point
. o symbol
n packing net A ] G coordination sequence| tdig vertex
symbol
As.A5 A, | triangular | 0.90690| 1.2092 | 0.080188 %812;1186’024’ 30,36,42, 331 | 364653
72,D,,D5D; | square | 0.78540| 1.5708| 0.083333 g,zséézé,mla, 20,24, 28,551 | 4444 5
2 b 1
ASTAS honeycomb]| 0.60460| 2.4184 | 0.09623 2;1%79’3%2’ 15,18, 21, 166| 666
As A augmented || ) oo401 535 | 01652 | >4 6812141518, 15,1 51515
honeycomb 21, 22

6€



Table 2.2 continued

point
. L symbol
packing net A ] G coordination sequence| tdig vertex
symbol
12, 42, 92, 162, 252,
D3, Az, A3 fcu 0.74048| 2.0944| 0.078745|| 362, 492, 642, 812, 3871 324 436 56
1002
12, 44, 96, 170, 264,
hcp | 0.74048| 2.0944| 0.078745| 380, 516, 674, 852, 4061 324433 57
1052
. s 8, 26, 56, 98, 152, 218, 24 od
5 A, bcu | 0.68017| 1.4635| 0.078543 206, 386, 488, 602 2331 4246
6, 18, 38, 66, 102, 146
3 ) ) i) ) ) i) 12 3
Z pcu | 0.52360| 2.7207| 0.083333 108, 958, 326, 402 1561 412 6
4,12, 30, 52, 80, 116
60 ) ) ) ) i) ]
qtz, V§° | 0.39270| 2.0405| 0.08534 156. 204, 258, 318 1231| 6.6.65.65.87.87
AL.DF | dia, V| 0.34000| 2.7207| 0.09114 | % 12 24 42, 04,92 og) | 6 6, 6,.6,.6,.6,

124,162, 204, 252

017



Table 2.2 continued

point
. N symbol
packing net A © G coordination sequence | tdig vertex
symbol
4, 12, 25, 44, 67, 96,
lon 0.34009| 3.3068| 0.09139 130, 170, 214, 264 1027 | 6,.6,.6,.62.65.6o
TAk 4, 10, 20, 34, 52, 74,
AL sod 0.2777 | 8.781 | 0.1092 100, 130, 164, 202 791 4.4.6.6.6.6
A . 4,6, 12, 18, 36, 48, 60
+ _ 3 ’ ’ ’ ’ ’
A dia-a 0.12354| 9.1723| 0.1511 78,108, 126 497 | 3.12,.3.12,.3.12,
TR ] 4,6,12,17, 28, 38, 52
Ag sod-a 0.1033 | 28.26 | 0.1943 64. 84, 104 410 3.8.3.123.12
G: 4, 12, 36, 72, 122,
qzd, TS 0.6046 | 2.1549| 0.08151|| 188, 264, 354, 456, 570 2079 | 7. .73.73.73.73
(T=8)
G: 4, 12, 30, 58, 94,
cds Tgo 0.52360| 2.7207| 0.08333|| 138, 190, 250, 318, 394 1489 6.6.6.6.6,.*
(T=06)
4, 12, 28, 50, 76, 110
nbo, S3 0.39270| 3.1416| 0.08602 148, 194. 244 302 1169| 6,.6,.6,.62.8,.8-
bto (a = 60°), 0.2687 | 3.0042| 0.09129| 3, 6, 12, 24, 43, 64, 91
YSO (a~705°) | 0.2551 | 2.7251| 0.09217| 124, 160, 202 730 10.10,.10,
ths (a = 60°), 0.2327 | 4.3099| 0.09706| 3, 6, 12, 24, 38, 56, 77
Ygo (a~705°) | 0.2207 | 3.518 | 0.09817| 102, 129, 160 608 102105104

1474



Table 2.2 continued

point
. inati symbol
ackin A o G coordination sequence td
packing (throughk = 10) 10 vertex
symbol
3,6, 12, 24, 35, 48, 69,
srs 0.1851 | 3.4281 | 0.1072 86, 108, 138 530 105.105.105
srs-a | 0.0555 | 9.739 | 0.1882 254'5% 8,12,16, 24,32, 208 3.205.20;
24, 144, 456, 1056,
. 2040, 3504, 5544, 8256, 48,841 3% 4168 512
D4,Dj,A\q || 0.61685| 2.4674 | 0.076603 11736, 16080
G: 16, 80, 240, 544,
1040, 1776, 2800, 4160, 24,641 4112 8
5904, 8080 (T = 24)
20, 110, 340, 780, 1500,
A4 0.55173| 3.1780 | 0.078020|| 2570, 4060, 6040, 8580, 35,751 360 4120 510
11750
10, 50, 150, 340, 650,
A; 0.44138| 1.7655 | 0.077559|| 1110, 1750, 2600, 3690, 15,401 440 65

5050

A%



Table 2.2 continued
point
. inati symbol
ackin A o G coordination sequence td
packing (throughk = 10) 10 vertex
symbol
8, 32, 88, 192, 360, 608
4 —+ ’ ’ ’ ’ ’ ’ 24 ~4
7",Dy 0.30843| 4.9348 | 0.08333 952 1408, 1992, 2720 8361 46
5, 20, 50, 110, 200, 340
+ b b 1 H b ] 10
A, 0.17655| 6.3558 | 0.08827 525 780, 1095, 1500 4626 6
5, 15, 35, 70, 125, 205
Tp » 19,39, 70, 125, 209, 5 65
Ay 0.10593 42 .4 0.1221 315, 460, 645, 875 2751 4°.6
A 5, 8, 20, 32, 80, 116
+ b L L ] H b 6
A, 0.03354| 23.82 0.1398 170, 236, 380, 482 1530 3614
G:4,12,36,92,200,384,
TZO 0.3084 4935 | 0.08333| 664,1056,1576,2240 6265 83.83.83.83.84.%
(1=8)
4, 12, 36, 84, 172, 292,
Sa 0.1542 3.855 | 0.08692 468, 692, 988, 1348 4097 8,.8,.85.85.85.85
4,12, 36, 74, 136, 228
90 i) i) ) b ] 1
A% 0.1187 5.814 | 0.09333 352, 518, 732, 994 3087 85.86.87.87.87.87
YE{O 0.06793| 6.458 | 0.09736 3.6,12,24, 48,90, 146, 1374 12,.12,.12,

230, 336, 478

ey



Table 2.2 continued

p0|nt
: coordination sequence symbol
packing || - A © G (throughk = 10) tdho vertex
symbol
40, 370, 1640, 4930,
Ds,As | 0.46526| 4.5977 | 0.075786|| 11752, 24050, 44200, 463,715 | 32404520 520
75010, 119720, 182002
30, 240, 1010, 2970,
As 0.37988| 5.9218 | 0.077647|| 7002, 14240, 26070, 272,755 | 31204300515
44130, 70310, 106752
G: 32, 242,992, 2882,
i 6752, 13682, 24992, 480 ~16
Dt 0.32899 2.4982 | 0.075625| 4,545 67935 102002 261,051 4480 6
(1 =10
16, 120, 480, 1410,
D¢ 0.28736| 5.2638 | 0.07784 || 3296, 6712, 12256, 128,349 480,640
20770, 33056, 50232
12, 72, 272, 762, 1752,
A 0.25543| 2.1243 | 0.076922| 3512, 6372, 10722, 66,241 450 g6
17012, 25752
10, 50, 170, 450, 1002,
A 0.16449| 9.1955 | 0.083333|| 1970, 3530, 5890, 9290, 36,365 490 6°

14002

14%



Table 2.2 continued

point
: inati symbol
ackin A o) G coordination sequence td
packing (throughk — 10) 10 vertex
symbol
6, 30, 90, 240, 510,
AL 0.08514 | 8.8223 | 0.08646| 1010, 1770, 2970, 4626, 18,255 6o
7002
6, 21, 56, 126, 252, 461
TAX 1 1 1 H 1 ) 9 6
AL 0.035174| 254.9 | 0.1349 786, 1266, 1946, 2877 7798 496
~ 6, 10, 30, 50, 150, 230
+ ) ) L] ) ) b 10
Al 0.008055 35.81 | 0.1313 || 201"000" 1050 1420 3907 310125
G: 4, 12, 36, 100, 258
90 ) ) ) y )
T 0.16449| 9.1955 | 0.08333 610, 2 (1 — 10) ? 85.85.8,.85.105.%
4,12,36, 100, 244, 514,
Ss 0.05140| 9.310 | 0.08666 080, 1682, 2724, 4162 10,459 8.8.8.8.8,.8,
4,12,36, 100, 248, 522
60 ) ) i) ) ) b
Ve 0.04786 | 8.4884 | 0.08753 088, 1724, 2800, 4324 10,759 8.8.8.8.8,.8,
3,6, 12,24, 48,90, 168
60 ’ ’ ’ ] ] ’ ’
Yé 0.03516 | 254.8 | 0.1350 312 556, 914 2134 12,.12,.12,
T 0.02478 | 6.2578 | 0.09038 S'(?’:lih)%’ 100, 268, ? 85.8,.85.8,.1110.%
4,12,36, 100, 220, 428
90 ) ) i) ) ) b
Ve 0.02478| 6.016 | 0.09037 752, 1254, 1044, 2924 7675 8.8.8.8.8,.8,
3,6, 12,24,48,90, 168
90 ’ ’ ’ H 1 ’ ’
\E 0.01858| 11.19 | 0.09605 312 532, 872 2068 12,.12,.12,

14



Table 2.2 continued

p0|nt
: coordination sequence symbol
packing A © G (throughk — 10) tdio vertex
symbol
72, 1062, 6696, 26316,
Es, N | 0.37295| 7.0722 | 0.074347| 77688, 189810, 405720, 2,900,773 | 372041800536
785304, 1408104
54, 828, 5202, 203786,
. 60030, 146484, 312858, 270 41134 =27
E; 0.33151| 2.6521 | 0.074244 605232, 1084808 4,065,031 | 3270411345
1830060
60, 792, 4724, 180986,
Dg 0.32298| 8.7205 | 0.075591|| 52716, 127816, 271908, 3,520,837 | 348041260530
524640, 938652, 1581432
32, 332, 1824, 6778,
D¢ 0.27252| 5.1677 | 0.07459 || 19488, 46980, 99680, 1,289,685 4480 g16

192112, 343584, 578876

o



Table 2.2 continued

point
. inati symbol
ackin A o) G coordination sequence td
backing (throughk = 10) 10 vertex
symbol
42, 462, 2562, 94927
As 0.24415| 9.8401 | 0.077466| 27174, 65226, 137886, 1,775,005 | 32104630521
264936, 472626, 794598
G: 64, 728, 4032, 14896,

§ 42560, 102024, 215488, 1084 <32
D 0.16149| 4.3603 | 0.075120 413792, 737856, 1240120 244,069 41984 5
(1=12

14, 98, 462, 1596, 4410,

A 0.13453| 2.5511 | 0.076490| 10374, 21658, 41272, 275,661 484,67
73206, 122570

Lt 0.31853| 2.4648 ? 32,7 ? ?
12, 72, 292, 912, 2364,

75 0.08075| 17.441 | 0.08333| 5336, 10836, 20256, 134,245 450 g6

35436, 58728

LY



Table 2.2 continued

point
: inati symbol
ackin A o) G coordination sequence td
packing (throughk = 10) 10 vertex
symbol
7, 42, 147, 462, 1127,
AL 0.03844 | 19.681 | 0.08525| 2562, 5047, 9492, 16317, 62,378 62
27174
7, 28, 84, 210, 462, 924
TAx ’ ’ ’ ’ ’ ’ 14 o7
A 0.010459| 1836.5 | 0.14712 1715, 2096, 4977, 7924 19,328 446
~ 7, 12, 42, 72, 252, 402
i ) , ) , ; , 15
Al 0.001774/ 99.91 | 0.1259 777 1182, 2457, 3492 6,496 31516
. ?
T 0.08075| 17.441 | 0.08333 | & 4 12.36.100." ? ?
(1=12)
4, 12, 36, 100, 276, 66(
1o O : ' ' ?
Se 0.01514| 9.78 | 0.08601 1484, 2920, 7 . 8.8.8.8.8,.8,
4, 12, 36, 100, 276, 61(
90 - ) ) ) ) ) b
A 9.740e-3| 19.79 | 0.09322 1984, 2346, 4152, 6792 15,613 8.8.8.8.8,.8,
Yo 4.640e-3| 24.15 | 0.09479| > O 12,24, 48,90, 168, 554, 12,.12,.12

312, 580, 1046

8v



Tab

e 2.2 continued

packing

coordination sequence
(throughk = 10)

tdio

point
symbol
vertex
symbol

E7,\7

0.29530

13.810

0.073231

126, 2898,
133506,
1433810,
7902594,
29896146

25886,
490014,
3573054,
15942206,

59,400,241

32016 45796 563

0.26170

4.7248

0.07273

64, 1092, 8064, 37842,
131328, 371940,
906816, 1976898,
3946048, 7344164

14,724,257

41792 6224

0.21578

4.1872

0.073116

56, 938, 7688, 39746,
150248, 455114,
1171928, 2668610,
5521880, 10585514

20,601,723

41512 628

0.20881

16.749

0.075686

84,1498, 11620, 55650,
195972, 559258,
1371316, 2999682,
6003956, 11193882

22,392,919

3840. 42604_ 542

0.14765

18.899

0.077396

56, 812, 5768, 26474,
91112, 256508,
623576, 1356194,
2703512, 5025692

10,089,705

3336.41176. 528

6t



Table 2.2 continued

point
: coordination sequence symbol
packing | 4 © G (throughk — 10) t610 vertex
symbol
G: 128, 2186, 16256,
75938, 263552,
D3 0.07382| 4.5687 | 0.07493 | 745418, 1817216, | 29,487,171 | 48064664
3959426, 7902848,
14704202 (1 = 14)
16, 128, 688, 2746,
. 8752, 23536, 55568, 112 8
As 0.06542| 3.0596 | 0.076187 118498, 232976, 871,661 A2 6
428752
LS 0.11738| 2.9000 ? ? ? ?
14,98, 462, 1666, 4942,
7’ 0.03691| 33.498 | 0.083333|| 12642, 28814, 59906, 433,905 484 67
115598, 209762
8, 56, 224, 812, 2240
AT 0.01636| 30.163 | 0.08442 || 5768, 12656, 26474, 189,303 628
49952, 91112
8, 36, 120, 330, 792
A5 || 2.839e-3] ? ? 1716, 3432, 6434, 43,713 420 68

11432, 19412

0S



Table 2.2 continued

point
. inati symbol
ackin A o G coordination sequence td
packing (throughk = 10) 10 vertex
symbol
~ 8, 14, 56, 98, 392, 644
+ ) , 14, 90, Jo, ; ' 21 1 o7
A 3.586e-4| 137.9 | 0.1214 1400, 2198, 5096, 7532 17,439 32112
G: 4,12, 36, 100, 276
60 ’ ’ ) ) y " s
TS 0.05673| 15.87 | 0.08076 | (1= 20) . .
S 4.035e-3| 24.15 | 0.08525|| 4, 12, 36, 100, 276, ? ? ?
V80 |1 3.730e-3| 15.00 | 0.08702| 4, 12,36, 100, 276, ? ? ?
4, 12, 36, 100, 276,
V0 |l 2.424e-3| 32.39 | 0.09267 | 724, 1676, 3592, 7012, 26,301 8.8.8.8.8,.8,
12868
Y¢0 1.652e-3| 18.95 | 0.08854 | 3,6, 12, 24,48, ? ? ?
Y% | 1.074e-3| 36.73 | 0.09365 3,6, 12,24, 48,90, 168, 2290 12,.12,.12,

312, 580, 1046

TG



Table 2.2 continued

p0|nt
- coordination sequence symbol
packing || - 4 © G (throughk = 10) tdo vertex
symbol
240, 9120, 121680,
Eq.EX 864960, 4113840,
Dt ;\*8 0.25367| 4.0587 | 0.071682|| 14905440, 44480400, | 1,006,201,681 3°7204218405120
8 114879360,
265422960, 561403680
112, 2592, 25424,
149568, 629808,
Dg 0.12683| 32.470 | 0.075914|| 2100832, 5910288, | 123,302,609 | 3134444816556
14610560, 32641008,
67232416
72,1332,11832, 66222,
271224, 889716, 504 42016 =36
Ag 0.08456| 32.993 | 0.077391 2476296, 6077196, 51,019,255 | 3°04420165
13507416, 27717948
G: 256, 6560, 65280,
384064, 1614080,
D} 0.03171| 8.1174 | 0.074735| 5374176, 15097600, | 314,358,881 | 4325126128

37281920, 83222784,
171312160 (T = 16)

[AS]



Table 2.2 continued

point
. inati symbol
ackin A o) G coordination sequence td
backing (throughk — 10) 10 vertex
symbol
18, 162, 978, 4482,
. 16722, 53154, 148626, 144 9
.02 . 075972 17,44 4144
A 0.02969| 3.6658 | 0.0759 374274, 864146, 3,317,445 6
1854882
LS 0.08253| 3.1422 ? ? ? ?
16, 128, 688, 2816,
9424, 27008, 68464
78 .01 4. . ! ' ’ 1,256,4 4112 g8
0.01585| 64.939 | 0.083333 157184, 332688, ,256,465 6
658048
9, 72, 324, 1332, 4104,
Ad 6.599e-3| 65.99 | 0.0838 || 11832, 28674, 66222, 520,198 636
136404, 271224
9, 45, 165, 495, 1287
A 7.128e-4) 2 ? 3003, 6435, 12870, 92,368 427 6°
24309, 43749
A 9, 16, 72, 128, 576,
Ad 6.759e-5| 301.1 | 0.1178 || 968, 2340, 3768, 9648, 32,242 328128

14716

€q



Table 2.2 continued

point
. inati bol
ackin A o G coordination sequence td sym
packing (throughk = 10) 10 vertex
symbol
G: 4, 12, 36, 100, 276
90 y ) ) y y " s
T3 0.01585 6494 | 0.08333| ;2 "% 7 o : :
Se | 9.903e-4| 28.28 | 0.08452| 12 36,100,276, 724, ? ?
4, 12, 36, 100, 276,
Vo 5.590e-4| 49.89 | 0.09206 || 724, 1908, 4390, 9876, 37,009 8.8.8.8.8,.8,
19682
v | 2.327e-4| 87.31 | 0.09266 | > 6 12,24, 48,90, 168, 2200 | 12,.12,12

312, 580, 1046

12°]



Table 2.3 Known characteristics of selected lattices in dimensighrd< 24.

n | packing A © G T
Ng 0.14577 | 9.0035| 0.07206| 272

Dg 0.14577 | 4.3331| 0.07110| 144

D} 0.01288 | 8.6662| 0.07469| 18

9 A 0.01268 | 4.3889| 0.07582|| 20
A 0.08447 | 4.3402| 0.07207| 90

LS 0.08149 | 4.2686| ? ?

78 0.006442| 126.81| 0.08333| 18

A1o 0.09202 | 12.409| 0.07150| 336

D7, 0.07969 | 7.7825| 0.07081|| 180

10 ' 0.005128| 5.2517| 0.07570| 22
LS, 0.02995 | 5.1545|  ? ?

710 0.002490| 249.04| 0.08333| 20

K11 0.06043 | 2 ? 432
AT | 0.05888 | 24.781| 0.07116| 438

D}, 0.04163 | 8.4072| ? 220

11 5 0.001974| 6.2813| 0.07562| 24
Al 0.04740 | 5.5983| 0.07025|| 132

LS, 0.04124 | 5.5056| ? ?

71 9.200e-4| 491.40| 0.08333| 22
Ki2,Ki, | 0.04945 | 17.783| 0.07010| 756
AT | 0.04173 | 30.419| 0.07058| 648

D1, 0.02086 | 15.209|  ? 264

121 A, | 7.271e-4] 7.5101] 0.07557|| 26
LS, 0.004306| 7.4655| 2 ?

712 3.260e-4| 973.41| 0.08333| 24

55



Table 2.3 continued.

n | packing A © G T
Kis 0.02921| 2 ? 918
ATEX | 0.02846 | 60.455| 0.07009|| 906
i 2.569e-4| 8.9768| 0.07553| 28
131 a7 2 |7.8641] 2 | 368
LS, 0.002255| 7.7621| 2 ?
713 1.112e-4| 1934.6| 0.08333| 26
14 0.02162 | 98.876| 0.06946| 1422
Ay 8.740e-5| 10.727| 0.07551| 30
14| A, ? 9.0066| ? ?
LS, 0.005221| 8.8252| 2 ?
714 3.658e-5| 3855.6| 0.08333| 28
Ais 0.01686 | 202.91| 0.06892| 2340
Al 2.870e-5| 12.817| 0.07549| 32
15| A5 ? 11.602| ? ?
LSe 6.206e-5| 11.005|  ? ?
715 1.164e-5| 7703.1| 0.08333|| 30
A6, Njg || 0.01471| 96.500| 0.06830| 4320
16| Al 9.116e-6| 15.311| 0.07549| 34
716 3.591e-6| 15,422| 0.08333| 32
A17 0.008811| 197.72| 0.06822|| 5346
A, 2.807e-6| 18.288| 0.07549| 36
7 Ay 2 |12357] 2 ?
Al 1.076e-6| 30,936| 0.08333| 34
Mg 0.005928| 301.19| 0.06792| 7398
18 i 8.396e-7| 21.841| 0.07550| 38
718 3.134e-7| 62,158| 0.08333| 36

56



Table 2.3 continued.

n | packing A o G T
A | 0.004121] 607.62 |0.06767| 10668
Al | 2.443e-7| 26.082 | 0.07552] 40
197 a0 ? 21229 | 2 ?
719 | 8.892e-8| 125,077 ] 0.08333] 38
A | 0.003226] 889.86 | 0.06731] 17400
5o || 6.924e-8| 31.143 | 0.07553] 42
200 A7, ? 20367 | 2 ?
720 2.461e-8| 252,020 | 0.08333| 40
A2i | 0.002466] 1839.5 |0.06701] 27720
5, || 1.914e-9| 37.185 | 0.07555] 44
211 Al ? 27773 | 2 ?
720 | 6.651e-9| 508,417 | 0.08333] 42
N2z | 0.002128| <34268| 2 | 49896
Ns, | 2.952e-a| <27884| 2 1782
221 p5, | 5.168e-10 44395 | 0.07558] 46
7?2 1.757e-9| 1,026,792 0.08333| 44
Azs | 0001905 <76000| 2 | 93150
Nss | 2788e-a| <15322| 2 4600
231 ps, | 1.364e-10 53.000 | 0.07560] 48
723 4.543e-10| 2,075,774, 0.08333|| 46
A2a, Ny | 0.001930] 7.9035 | 0.06577| 196560
24| a5, | 3523e-11 63.269 | 0.07563] 50
z?* | 1.150e-10] 4,200,263 0.08333] 48

57
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2.4 Rare nonlattice packings and nets fon < 8

We now turn our attention to the problem of infinire sphere packings, with
packing densityower than that of the corresponding cubic packing, and the glagel
lated problem of infinite nets. Far= 2, this problem is essentially trivial. For= 3,
the richness of solutions to this problem is fascinating, alo@ to the intense interest in
crystallographic structures with various desirable cloatproperties, has been exhaus-
tively studied and catalogued. For- 3, relatively few regular constructions are known,
and it appears as if what academic interest there has bearohgst led to any appli-
cations of significance in science and engineering; Bewl&ye&sna (2011) intends to
change this, thus motivating the present study.

Interest inn-dimensional space groups and symmetries dates back tortke n
teenth century, with the work of Hessel, Bravais, Gadolirgnkenheim, Barlow, Ro-
drigues, Mobius, Jordan, Sohncke, Fedorov, Schonflieské&riand Klein. Histori-
cal accounts of this early work, as well as several followroathematical develop-
ments related to space groups and symmetries, are availa®iewn et al. (1978) and
Schwarzenberger (1980). Much of the related work in the bélgeometry was devel-
oped by Coxeter (1970, 1973, 1974, 1987, 1989). Despitérttense interest, there are
very few explicit constructions of regular rare sphere jpag&forn > 3 available today,
outside of very short treatments of the subject by O’Keeff@9(b) and Beukemann &
Klee (1992), discussed below.

As mentioned in the abstract and explored in depth in Bewl&ye&sna (2011),
certain emerging engineering applications now motivagefthither development and
deployment of quasi-infinite-dimensional nets, with a particular focus on structured
nets with low coordination number and high topological dignsSuch nets are well
suited for the rapid spread of information in switchless patational interconnect sys-
tems with a reduced number of wires and, thus, reduced c¢ostidh systems, a logical
network withn > 3 may easily be designed and btiland, as we will see, there are
significant potential benefits for so doing. We are thus nadéiel to revisit the problem

BRecall, e.g., the “hypercube” computational interconsgstem introduced several years ago; though
designed with a logical network with> 3, the hypercube, like most computational interconneatagies
deployed today, is significantly hampered by its inherepetelence on a Cartesian topology.
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of the design of structured nets with low coordination numbete that none of the lat-
tice alternatives to the cubic lattice discussed2rBHhave a coordination number lower
than that of the corresponding cubic lattice= 2n. However, fom = 3, there is a wide
range of stable and unstable nonlattice packings that teadah nets; as shown below,
many of these packings and nets generalize naturally teehidjimensions.

2.4.1 Netterminology

The terminology used to discuss 3D nets, most of which génesareadily to
the discussion afi-dimensional nets, has been clarified significantly oveldbedecade,
and is now quite precise.

Recall first the measures defined & & including thecoordination numberthe
coordination sequencend ak-hop measure dbcal topological densityiven by the
cumulative sum of all nodes reached witlkihops from origin, denotettl (Tables 2.1
and 2.2 list this quantity fok = 10). O’Keeffe (1991a) defines another, sometimes pre-
ferred (see, e.g., Grosse-Kunstleve et al. 1996) measugmioél topological density
td = limy_,, tdy/k", which reveals the rate of growth taf, with k in the limit of largek.
[For a uninodah-dimensional netid may be found by representitftthe coordination
sequence as afm — 1)’th-order polynomial in the number of hops then taking the
leading coefficient of this polynomial and dividing Imyj Despite some impressive ef-
forts in representing coordination sequences with suchnoohials (see, e.g., Conway
& Sloane 1997, and the references contained therein), tlaesunetd is currently un-
known for most of the nets discussed here. As a matter of ctatipnal tractability, we
thus resort in the present work to the tabulation of the ltmablogical density measure,
tdio, as this measure is much easier to compute.

Our attention in this work is focused almost exclusivelyegpilibrium packings
(that is, on sphere packings which, if unperturbed, can beapressive loads applied
at the edges of a packing that is built out to fill a finite condexnain) and their cor-
respondingequilibrium nets(which are constructed with tensile members connecting
nearest-neighbor nodes, and can bear tensile loads ajgplied edges of a finite con-

140r by approximatinghis coordination sequence as(an- 1)'th-order polynomial for largé, if such
a polynomial does not fit exactly.
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vex domain}®16, Equilibrium packings fall into two catagories: stableatls, sphere
packings which, if perturbed, oscillate about their edpilim configurations, and return
to these configurations if there is damping present in theesysand unstable (that is,
sphere packings which depart from equilibrium if pertunh&ee consider both.

After years of conflicting terminology in the literature orts, the concepts of
cycles rings, strong rings tilings, natural tilings point symbolsandvertex symbols
have, in 3D, finally crystallized. The reader is referred tat@8v et al. (2009) and
the references contained therein for description of thiseno terminology, as well as
numerous cautions concerning the conflicting nomenclatadopted elsewhere in the
published literature. In short:

e A cycleis a sequence of nodes in a net, connected by edges, sucheliast and last
nodes of the sequence coincide, while none of the other nodles sequence appears
more than once.

e A cycle sumof cycles A and B, is the union of those edges in either A or Brimi
both.

e Aringis a cycle that is not the sum of two smaller cycles.

e A strong ringis a cycle that is not the sum of any number of smaller cycles.

e A tiling of R3 by a 3D net is simply the dissection of 3D space into volumessegh
faces, which in general may be curved (amimal surfaceslike soap bubbles; see,
e.g., Sadoc & Rivier 1999), are bounded by cycles of the neBDAnet generally
admits many tilings.

e Thedual of a tiling is the unique new tiling obtained by placing a nesrtex inside
each original tile and connecting the vertices of adjaciées (that is, with shared
faces) in the original tiling with edges. If a tiling and iteal are identical, the tiling
is said to beself-dual The dual of a dual is the original tiling.

15A family of structures with both tensile and compressive roers, known atensegrity might be said
to cover the gap between purely compressive sphere packimypurely tensile nets. The mathematical
characterization of tensegrity systems in 3D is now preaise largely to the work of Skelton & de
Oliveira (2009). An interesting extension of the presentlgtwould be to generalize such tensegrity
systems to > 3 dimensions.

18For the purpose of the applications studied in Chapters 3ame do not actually use the property
of mechanical equilibrium of the corresponding structuhes property may rather be considered as a
convenient means to an end when designing a regular packingto Several nets discussed in the
literature (see, e.g., Wells 1977, page 80) are not eqiutibsphere packings, and might be interesting to
consider further.
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e A natural tiling of R® by a 3D net is a tiling with the smallest possible tiles sugit th
the tiles have the maximum combinatorial symmetry and allféites of the tiles are
strong rings. A 3D net oftérf admits a unique natural tiling. If a tiling and its dual
are both natural, the pair is referred toregural duals If a natural tiling is self-dual,
it is said to benaturally self-dual

e Thepoint symbobf a uninodal net, of the formA2.BP.C®. . ., indicates that there age
pairs of edges touching the node at the origin with shortgdes of lengthA, b pairs
of edges touching the node at the origin with shortest cyaiésngthB (with B > A),
etc. Note that the sum of the superscripts in a point symhaldo(t —1)/2.

e Thevertex symbobf a uninodal net, of the form,.B,.C;.. ., indicates that the first
pair of edges touching the node at the origin hashortest rings of lengt, the
second pair of edges touching the node at the origirbhe®rtest rings of lengtB,
etc. If for any entry there is only 1 such shortest ring, thessuipt is suppressed,; if for
any entry there is no ring, a subscrigs used. The entries are sorted such that smaller
rings are listed first, and when two rings of the same size applee entry with the
smaller subscript is listed first. In the special case ef4, the six entries of the vertex
symbol are listed as three pairs of entries, with each paantries corresponding to
opposite pairs of edges, and are otherwise again sorteddnoatiest to largest. Note
that the number of entries in a vertex symbot [ — 1) /2.

The concepts atyclesrings, strong rings point symbolsandvertex symbolextend im-
mediately tan dimensions; for practical considerations (specificalégduse the number
of entries in a vertex symbol gets unmanageable for lajgeve list the point symbol
in Table2.2whereverr > 5, and the vertex symbol where< 4. The extension of the
tiling concept ton dimensions is more delicate, and is discussed furthe? 4.8
Following Delgado-Friedrichs et al. (2003a,b), tiegularity of a 3D net may
now be characterized precisely. In short, consider a 3D rt pvkinds of vertex
andqg kinds of edge and whose natural tiling is characterized kinds of face and
kinds of tile. Delgado-Friedrichs & Huson (2000) introddaeclear and self-consistent
method for characterizing the regularity of such a net syryglforming the arraypgrs

"unfortunately, not all 3D nets have natural tilings, and ednave multiple natural tilings; §3 of
Blatov et al. (2007) discusses this issue further.
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examining the 4-digit number so formed, referred to astthssitivity of the net, the
most “regular” 3D nets are generally those with the smatlesisitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and
edges in its primitive celf; that is, upon deletion of any further edges in the primitive
cell, the resulting net breaks into multiple disconnectedicsures. Beukemann & Klee
(1992) establish that there are only 15 such minimal net®inC&lgado-Friedrichs &
O’Keeffe (2003) define a 3D net dmrycentricif every vertex is placed in the center
of gravity of its neighbors (to which it is connected by edgdédonneau et al. (2004),
in turn, establish that 7 of the 15 such minimal nets in 3D ralésions that is, when
arranged in barycentric fashion, the location of two or m@mices coincide (and, thus,
the netis in a sense degenerate). Of the 8 remaining minietalvithout collision, five
are uninodal.

2.4.2 2D nets

Consider first the development of uninodal 2D nets with lowrdmation num-
ber. Start from the triangulaif = Ao) lattice (see 8.2) and perform a red/black/blue
coloring of the nodes such that no two nearest-neighborsadethe same color. If we
retain only the red and black nodes, we are left withiibaeycomb packin¢see Fig-
ure2.le), and the corresponding net is an array of hexagons. Theioation number
of this stable sphere packingis= 3, which is less than that of the 2D square packing
(1 =4); this implies fewer wires in the corresponding computedionterconnect appli-
cation. Unfortunately, the topological density of this retjuite poor, withtd;g = 166
(that is, with information spreading from one node to onlyp Ihers after a message
progresses 10 hops in the network application). We are tlutivated to explore other
ways of constructing structured (that is, easy-to-build aasy-to-navigate) nets with
low coordination number (that is, with low cost) but high ¢dggical density (that is,
with a fast spread of information).

Note that the honeycomb packing has a packing density wkitdss than that
of the corresponding triangular and square lattices dssmlipreviously (see Tabk?2).

18A primitive cellof a net is the smallest fundamental volume (e.g., hypeidiia¢, when repeated as
an infinite array in all directions with zero spacing, gemesdhe net.
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If minimization of packing density is the gdd then the honeycomb packing may be
augmentedy replacing every sphere with a set of three spheres in cprdgach such
set forming an equilateral triangle which touches the naigh in exactly the same
locations as the single sphere which it replaces in thermaldunaugmented) packing
(see, e.g., Heesch & Laves 1933, Figure 13). The packingtgerishe resulting stable
augmented honeyconplacking is less than/3 that of the original honeycomb packing
(see Table.2), and is the rarest uninodal sphere packing available in 2D.

2.4.3 A List of Twelve “highly regular” uninodal 3D nets

There are far too many 3D nets to review them all here. We ttestify a
List of Twelve highly “regular” (as defined in&4.], via their transitivity) uninodal 3D
nets upon which we will focus our attention and which, foliog/Delgado-Friedrichs
et al. (2003a,b), we denote (listing from dense to rare):

1. fcu: face-centered cubic (FCG), nbo: NbO, 9. cds CdSQ,
2. bcu: body-centered cubic (BA)dia: diamond, 10. bto: B,Os,
3. pcu: cubic, 7. sod sodalite, 11. ths: ThSk,
4. qtz: quartz, 8. gzd: quartz duall2. srs: SrSp.

See Table2.2 for the common names, associated packings, and key chastcgeof
eacl®. These twelve nets have been studied thoroughly in thatite, including the
landmark work of Wells (1977, 1979, 1983, 1984) and scoresipbrtant publications
since, including Koch & Fischer (1995, 2006) and the numenmafierences contained
therein; space does not allow a comprehensive review otbtioiad body of literature
here, nor even a comprehensive analysis of these twelvestuglied nets. Suffice it to
say here that included in our List of Twelve are the§ular nets (that is, of transitivity
1111),bcu, pcu, nbo, dia, andsrs, and the 1quasiregularnet (of transitivity 1112),
fcu, as well as 2 of the 14emiregulamets (of transitivity 11s), gtz andsod (both of
which have transitivity 1121), as discussed in Delgadedtichs et al. (2003a,b). Also
included in this list are the 5 uninodal minimal nets withoallision, pcu, dia, cds, srs,
andths, the first 4 of which are naturally self-dual, as discusseBlanneau et al. (2004,

Note that, fom > 3, the authors are actually unaware of any practical agipicaother than mathe-
matical curiosity, for which minimization of packing detysis a significant goal.

20pgain, clear drawings of each of these nets are availatietat / / r csr. anu. edu. au/ net s/ f cu,
where ‘f cu” may be replaced by any of the lowercase boldface threerlténtifiers given here.
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Table 1); note thatds is of transitivity 1221, andhs is of transitivity 1217, The
remaining 2 nets on our List of Twelvgzd (transitivity 1211; see Delgado-Friedrichs
et al. 2003c) andbto (transitivity 1221; see Blatov 2007), are included becafdbeir
close structural relationship to the others, as discusselddr in .4.4 We also note
that four on our List of Twelveqtz, qzd, bto, andsrs, arechiral (that is, these nets twist
in such a way that the nets and their reflections are not sapabte).

The 12 remaining semiregular nets (of transitivityd)Iof Delgado-Friedrichs et
al. (2003b, Table 1) are the next natural candidates in a@lxisrtomy bixg, crs, reo, and
rhr might be of particular interest), perhaps followed by theb®dal edge-transitive
nets (of transitivity 2is) of Delgado-Friedrichs et al. (2006, Table 1) and the 3 bin-
odal minimal nets without collision (of transitivity 2222211, and 2321) of Bonneau
et al. (2004, Table 1). Note that just half of the List of Tweelonsidered here (specif-
ically, in order of frequencydia, pcu, srs, ths, nbo, andcds) account for 66% of the
774 uninodal metal-organic frameworks (MOFs) tabulatethenCambridge Structural
Database (CSD), as reviewed by Ockwig et al. (2005), thusatidg the prevalence in
nature of several of the structures considered here.

The idea of augmentation, introduced i8.4.2 extends directly to many 3D
nets in order to reduce packing density. For example, indtable) packings related to
thedia andsodnets (discussed further irf2&.4and &.4.4respectively), both of which
have coordination number 4, we may replace each sphere sith @ four spheres in
contact, each such set of spheres forming a tetrahedraatjrigevhat is referred to as
the augmented diamon(tia-a) and augmented sodalitésod-g nets. In the case of
the augmentation of the packing related to diee net, each tetrahedral set touches the
neighbors in exactly the same locations as the single sp¥teoh it replaces in the orig-
inal (unaugmented) packing (see Heesch & Laves 1933, FitRireln the case of the
augmentation of the packing related to o net, as the angles between the 4 nearest
neighbors of any node are not uniform in tbed net, each tetrahedral set is slightly
larger than the single sphere which they replace in themaldunaugmented) packing,
and the contact points are slightly shifted (O’Keeffe 199 tiote that the packing asso-
ciated with thesod-anet is the rarest uninodal stable 3D packing currently kno@m

2IAs illustrated in Bonneau et al. (2004, Figure 3), a selfidiling of ths may in fact be constructed;
this tiling has transitivity 1221.


http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/qtz
http://rcsr.anu.edu.au/nets/qzd
http://rcsr.anu.edu.au/nets/bto
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/hxg
http://rcsr.anu.edu.au/nets/crs
http://rcsr.anu.edu.au/nets/reo
http://rcsr.anu.edu.au/nets/rhr
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/pcu
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/ths
http://rcsr.anu.edu.au/nets/nbo
http://rcsr.anu.edu.au/nets/cds
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/dia-a
http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/ths

65

the other hand, in the augmentation of the (unstable) pgckiated to tharsnet, which
has coordination number 3, we may replace each sphere wéhat three spheres in
contact, each such set of spheres, as in the augmentatitve dioheycomb packing,
forming an equilateral triangle and touching the neighlimexactly the same locations
as the single sphere which it replaces in the original (unearged) packing (see Heesch
& Laves 1933, Figure 10); note that the packing associatéul the resultingsrs-anet

is the rarest uninodal unstable 3D packing known.

Comparing augmented honeycomb to honeycodi,a (transitivity 1222) to
dia, sod-a(transitivity 1332) tosod andsrs-a (transitivity 1221) tosrs, it is seen that
augmentation, while reducing the packing dendt{see Table2.2), also significantly
reduces both the topological densitg; o, and the regularity of the resulting net. Thus,
the process of augmentation appears to be of little intéveshe purpose of developing
efficient computational interconnects. Note that FiscR@06) and Dorozinski & Fis-
cher (2006) show that the process of augmentation can bategpmdefinitely in order
to obtain (non-uninodal) sphere packings of arbitrarily jmacking density.

Finally, there are two other 3D nets which, though less ragihian our List of
Twelve, are worthy of “honorable mentionfiexagonal close packincp, transitivity
1232) andonsdaleite(lon, transitivity 1222). As hinted by their identical packingrd
sities (see Tabl2.2a), hcp is closely related técu, andlon is closely related tdia; cu-
riously, both have slighthhighervalues ottd; than do their more regular cousins. The
relations between these two pairs of packings is readilgieatiwhen they are consid-
ered as built up in layers, as introduced in the second papagf &.3.4and discussed
further below.

The Ag lattice (a.k.a. FCC, corresponding to tloel net) may be built up as an
alternating series of three 2D triangul&@p] layers, offset from each other in the form
abcabc . ., with the nodes in one layer over the holes in the layer behmp;is built up
similarly, but with two alternating layers, offset from d&aather in the formabab. ..

Similarly, the sphere packings corresponding todi@eandlon nets may be built
up as alternating series of approximately 2D honeycomlrsagtiset from each other.
These honeycomb “layers” are in fact not quite 2D; if the roohea single layer are
marked with an alternate red/black coloring, the red nodesased a bit and the black


http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/srs-a
http://rcsr.anu.edu.au/nets/dia-a
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/sod-a
http://rcsr.anu.edu.au/nets/sod
http://rcsr.anu.edu.au/nets/srs-a
http://rcsr.anu.edu.au/nets/srs
http://rcsr.anu.edu.au/nets/hcp
http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/hcp
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/lon
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/fcu
http://rcsr.anu.edu.au/nets/hcp
http://rcsr.anu.edu.au/nets/dia
http://rcsr.anu.edu.au/nets/lon

66

nodes lowered a bit. In both packings, the layers are offeet feach other, with the
lowered nodes in one layer directly over the raised nodekarother. In the packing
corresponding to thdia net, there are three such alternating layers stacked irothe f
abcabc. .; in the packing corresponding to then net, there are two such alternating
layers stacked in the forebab. ..

2.4.4 Uninodal extension of several regular 3D nets to higheli-

mensions

The fcu net is based on thB3 = A3 lattice, and thus may be extendedrto
dimensions in two obvious ways (that is, \vAa or D). The bcu net is based on the
D3 = A; lattice, and thus may also be extendedtdimensions in two obvious ways
(via A% or D}). Thepcu net is based on th&? lattice, and thus extends todimension
viaZ". This section explores how most of the other nets on the Eisivelve described
above extend naturally to higher dimensions.

It is important to recall that the nets in tig, case fom > 4 turn out to be a bit
peculiar, as discussed further i@.8.3 the T2 and TS nets encountered ire§4.4are
similar.

Extending dia: the A} and D;i packings

Thedia net may be obtained from the well-knovy packing defined inZ.6)
(see also Sloane 1987), and thus extends naturalfydionensions a®;". However,
there is an alternative construction of ttia net, described below and denotad,
which is equivalent td; for n = 3 but extends ta dimensions differently. In fact,
a third extension of theia net ton dimensions, thé&/2° construction, is introduced in
§2.4.4 These alternative extensions of tflia net ton dimensions, with low coordina-
tion number, are perhaps better suited tBgnfor many practical applications. We thus
stress that names such asdimensional diamond” are parochial, as there are somstime
multiple “natural’n-dimensional extensions of a net related to a given threeedsional
crystalline structure (e.gD7, At, andVy?). Forn-dimensional nets in general, we thus
strongly prefer names derived from a corresponding weihdd n-dimensional lattice
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or, when such a name is not available, names evocative ofrtftgmensional construc-
tion; this preference is in sharp contrast with the namegesigd by O’Keeffe (1991b).

Recall the first paragraph o&.2 Now start from a BCCA; = D3) lattice and
perform a red/black/blue/yellow coloring of the pointsistitat no two nearest-neighbor
points are the same color. If we retain only the red and blaxktp, we are left with
the diamond packing. The coordination number of this pagksit = 4, which is less
than that of the 3D cubic packing & 6), but also has a reduced topological density,
as quantified byd;o (see Table2.2). The diamond packing also has a packing density
which is less than that of the corresponding FCC, BCC, andcdatiices.

Note in general [se€2(83] that A}, may be defined as the unionof- 1 shifted
A, lattices, which is analogous to the property [sBéb@] that D, may be defined as
the union of 4 shifted, lattices. Recall fromZ.6) that D;;, which we referred to
the offset checkerboard packingias defined as the union of just 2 shifted lattices,
and generates the diamond packing in 3D (wH2se2 Ag). Motivated by the previous
paragraph and the first paragraph @42 we are thus also keenly interested in the
nonlattice packing considered in Table 1 of O’Keeffe (1991enoted heré,| and
referred to as theffset zero-sum packin@gnd which is defined as the union of just 2
shiftedA, lattices [cf. @.6), (2.9)]:

= k<n,
Al =AU([1+A,), where [1,=¢"" (2.15)
%‘1 k=n+1.

The coordination number of the regular uninodal nonlagiaekingAl is n+ 1, with
thesen+ 1 nearest neighbors forming amdimensionalsimplex[that is, inn dimen-
sions, a polytope witim+ 1 vertices—e.g., im = 3 dimensions, a tetrahedron (with 4
vertices)]. The generalization of the honeycomb and diahpatkings to higher dimen-
sions given byAt is significant, as it illustrates how a highly regular statdeking with
coordination number lower than that of the cubic lattice rhayextended to dimension
n> 3. Note also that the nonlattice packings are distinct from the lattice packings
A}, defined in 2.9), which are generated in a similar manner.
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Augmenting the A packing: A,J{

The third paragraph of &4.3discusses the augmentation of thg packing,
replacing each sphere with a tetrahedral set of 4 smallezreph This idea extends
immediately to the augmentation, indimensions, of thé\} packing discussed above,
replacing eachrtdimensional) sphere with amdimensional simplex of + 1 smaller
spheres.

Extending sod the A, packing

The familiarsodnet is formed by the edges of the Voronoi tesselation of space
formed by theA; (that is, BCC) packing, with the nodes of the net located at th
holesof the packing rather than at the centers of the spheres gfabtieing. As noted
by O’Keeffe (1991b), this construction extends immediatel the n-dimensional net
formed by the Voronoi tesselation of space via &jepacking. Constructing tha),
packing as defined in&3.4 the holes of this packing that are nearest to the origirt (tha
is, in its Voronoi tesselation, the corners of the Vorondiiwlich contains the origin)
are given by thén+ 1)! permutations of the vector (see Conway & Sloane, 1999, page
474):

1 T

m (—n —-n+2 —n+4 ... n) .
These nodal points [which, like the lattice pointsAjfitself, are defined in atn+ 1)-
dimensional space, but all lie in thredimensional subspace orthogonal to the vector
na, defined in .70] are equidistant from thein 4+ 1 nearest neighbors, and form
permutohedrgin 3D, truncated octahedawhich tile n-dimensional space. Note that
these nodal points themselves form a uninodal sphere paekth coordination num-
bert = n+1; due to its relationship to thiesselatiorof space via the points of th;

packing, we thus introduce the notatit¥;, for this packing.

Extending nbo: the S,, construction

The nbo net, a subset of thpcu net, has an obvious uninodal extensiomto
dimensions witht = 4, which may be visualized as the contact graph formed by re-
peating a unit hypercube pattern as an infinite array withspacing (see Figur2.11),
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Figure 2.7. Construction of three rare packings: (left) thig (honeycomb) net, (center)
the Y3 (ths) net, and (right) thev3° (dia) net. All three constructions build from left to

right in the above figures from a basi¥™or “V” stencil, and have obvious extensions

to higher dimensions.

where each hypercube itself has two paths which “snake”gatbe edges from the
(0,0,---,0,0) node to the(1,1,---,1,1) node, one coordinate direction at a time; we
thus suggest the symb6}, to denote this construction. These two paths touch at the
opposite corners of the unit hypercube.

Extending ths and bto: the Y3° and Y8 constructions

The honeycomb packing;, of coordination number = 3, contains a funda-
mentalY-shaped stencil. As illustrated in FiguPera, starting with thisy stencil and
adjoining translates of itself, tip to tip, builds up the legnomb packing in 2D. Extend-
ing this idea to 3D, as illustrated in Figu2e/b, we may “twist” theY stencil by 90 at
each level: starting with the basitstencil in, say, the!-e? plane, we can shift to the
right (in ') and adjoiny stencils twisted by 90(that is, aligned in the'-e3 plane), then
shift to the right again and adjolvi stencils twisted again (aligned in tie&-€? plane),
etc. This construction forms thls net in 3D, and extends immediately to dimension
n > 3; we thus denote this constructivC.

Instead of twisting they stencil by 90 at each step, we may instead twist it
by 60°. This forms thebto net in 3D. As with thehcp versusfcu andlon versusdia
nets in 3D, as described at the end @f43 there is a bit of flexibility in terms of the
ordering of the the successive twists for- 3. A highly regular net for odah, which
we denoter 80, is formed by pairing off the dimensions after the first artéralating the
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Figure 2.8 Variation of the Voronoi volume of th¥° & Y89 and (right)v2° & V8°
packings as a function af forn=2ton= 8.

twists as follows: starting with the basitstencil in, say, the!-e? plane, we continue
by adjoiningY stencils in theet-e* plane, then in the!-e® plane, etc. We then adjoi
stencils in theet-z59 plane, where$3 is the vector formed by rotating tfeé unit vector
60° in the direction towards®; we continue by adjoininy stencils in thee!-z52 plane,
then in thee!-z89 plane, etc. Next, we adjoiv stencils in thee'-z13° plane, wherezl2°

is the vector formed by rotating ttz&3 vector 60 further in thee?-€® plane; we continue
by adjoiningY stencils in thee-z12° plane, then in the!-z32° plane, etc., and repeat
(that is, with stencils again aligned in teb-€? plane).

TheY2? and Y& constructions have a parameter, denateahd defined as half
of the angle between the two top branches ofYh&tencil (thus,a — 0° closes down
theY to anl, whereasx — 90° opens up th&' to aT). The Voronoi volume of thézfﬁo
andY® constructions may be written as simple functionsrais follows:

Hean(@) = f, (@) Kool )

Heo(a) = fy, (o) Ko@)

with o =45°.

Where fy, (a) = (2—+/2) (1+cosa) (v/2 sina)"L. This relation is plotted in Figure
2.8a. The characteristics of2° and Y& reported in Table2.2 are computed fon =
cos 1(1/n), as marked with circles in Figu&8a, which maximizes the Voronoi volume
and, thus, minimizes the packing density. An alternatienrachoice isx = 60, which
results in barycentric constructionss§° andYg°.
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Extending dia and gtz: the V° and V& constructions

TheV?2° andV8 constructions are defined in an identical manner as ¥#jiand
Yﬁo counterparts, with & stencil replacing th& stencil (see, e.g., Figuz7c), thus
resulting in nets with coordination numbee= 4 instead off = 3. These constructions
lead to thedia andqtz nets in 3D.

As with the Y2° and Y&° construction, thev?® and V& constructions have a
parameter, denoted and defined as half of the angle between the two top branches of
the V stencil. The Voronoi volume of thé2° andVS® constructions may be written as
simple functions otr as follows:

Rgo(@) = fv, (@) Kgo(@)

b with a=45, fy (a)=2"2cosa (sina)" .
Kgo(a) = fy, (@) Kyeo(Q)

This relation is plotted in Figur@.80. The characteristics of2° and V0 reported in
Table2.2 are computed foor = cos 1(1/./n), as marked with circles in Figur2.8a,
which maximize the Voronoi volumes and, thus, minimize theking density. Note
that theV2? andVE° constructions are barycentric for aayin the range 6< a < 90°.

Extending cdsand gzd: the T2° and T80 constructions

The T2° and T8 constructions are defined in an analogous manner as\tf&ir
V20, Y80 andV8 counterparts, and lead to tieds andqzd nets in 3D. The only dif-
ference now is that, instead of adjoining two n¥wr V symbols on the tips of each
or V symbol in the previous layer, we now adjoin a single nesymbol centered atop
eachT symbol in the previous layer, appropriately twisted; thesestructions thus re-
sult in nets with coordination number= 4. Note that the “horizontal” and “vertical”
distances between nodes in these constructions are eqdahat these constructions
are parameter free and barycentric.

Note that thex; direction is special in therP0, Y80, V20, V&0 T30 and TEC
constructions. These constructions are configured in thisintentionally, in order to
construct equilibrium packings; however, other variagiane certainly possible. Note
also that ther80, V&% and T8 constructions involve pairing off the dimensions after the
first and rotating in each pair of dimensions’@a a time, in the manner described in
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§2.4.4 If we follow the same procedure but rotate”2Q a time, we recover nets equiv-
alent to the corresponding?®, V20, andT?O nets, respectively, as defined previously.

Note also that th& 20, V20, andT2° constructions form square layers in tees
plane, thes-e5 plane, thess-€; plane, etc., whereas th0, V80 and T8 constructions
form triangular layers in these planes. In the resulif}g, Y80, V20, andVv80 nets, there
are, in fact, no edges of the net within these layers (thatlisf the edges connect nodes
in different layers). On the other hand, in the resultifty and T8 nets, each node is
connected via edges of the net to exactly two others (madefour or six) within these
layers. As with the peculiad;, net discussed previously, tA§° and T80 constructions
are, in factnotcontact graphs of the corresponding sphere packfngsme bonds must
be cut in the corresponding contact graphs (which, in the &30, is simplyZ") in
order to form theT2° and T8 nets.

Other extensions

Sectiong.4.4through2.4.4summarize several uninodal familieseflimensional
extrapolations of some common 3D nets; most of these (umdgsated otherwise, via
references to existing literature) are new. Note that Oft€e€1991b) mentions two
other such extensions, one corresponding toldhenet and one corresponding to the
sod-a the latter of which is currently the rarest uninodal stagdeking known fon > 3
(and which, consistent with the above developed namingaxtions, we might suggest
to identify asTA’,;). Beukemann & Klee (1992, page 50) mentions two extensibtied
own (at least, ton = 4), both related to thdia net. Judging from the vast assortment of
distinct rare sphere packings and related nets availal8®jrthere are certainlgnany
more uninodal extensions to higher dimensions of regutar3® packings that are still
awaiting discovery; we have focused our attention here oatwsppear to be several
of the most regular. The regularity ofdimensional nets fon > 3 is discussed further
below.

22Note that there is a lower-symmetry formadsin 3D with four nearest neighbors per node whose
contact graph does generate tiisnet; see Delgado-Friedrichs (2005, Figure 1). Lower symyrietms
of otherTP? and T80 constructions, whose nets are contact graphs, might aisb ex
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73

2.4.5 Regularity and transitivity of n-dimensional nets forn > 3

As reviewed in 8.4.1 the regularity of a 3D net is defined based on its transitiv-
ity, which in turn is based on the so-called natural tilingloé 3D net. The natural tiles
of 3D nets have been thoroughly characterized in the liteedor all of the most regu-
lar 3D nets available. InZ4.4 we described uninodal extensions of several regular 3D
nets to higher dimensions, and mentioned that many morewsucbdal nets witm > 3
most certainly exist. The natural question to ask, thenpi the concepts of regular-
ity and transitivity can be extended to higher dimensionghat we may differentiate
between these nets and identify those which are the modaregu

This question is difficult to visualize in dimensions highkan three, and re-
quires a symbolic/numerical description of the net to peacel he net arising from the
Z" lattice forn= 4,5, ..., which is naturally tiled byr-dimensional hypercubes, is by far
the easiest starting point. Denote first the symHelsv,x,y,z} as variables that range
from 0to 1. The 3D unit cube, denotérlyz}, has six faces,xy0, xyl, x0z, x1z, Oyz 1yz}.
Each face, in turn, has four edges; e{@yz} has edgeg0y0,0y1,00z 01z}. Finally,
each edge connects two nodes; e{®0z} connects node$000,001}. The 4D unit
hypercube{wxyz, has eight 3-faceqwxy0, wxyl, wx0z, wx1z, wOyz wlyz Oxyz 1xyz},
each 3-face has six 2-faces, each 2-face has four edgesaahddge connects two
nodes. The 5D unit hypercubgywxyz, has ten 4-faces, each 4-face has eight 3-faces,
each 3-face has six 2-faces, each 2-face has four edgesaahddge connects two
nodes; etc.

In 3D, as reviewed in &4.], the transitivity is based on the number of distinct
nodes, edges, (two-dimensional) faces, and (three-diova¥ tiles. By analogy, then,
in 4D we may define the transitivity of a net based on the nunalbelistinct nodes,
edges, 2-faces, 3-faces, and (4-dimensional) tiles in afwral tiling. Similarly, in 5D,
we may define the transitivity based on the number of distioctes, edges, 2-faces,
3-faces, 4-faces and (5-dimensional) tiles in the natiliat etc. Via this definition,
the net derived from th&?* lattice has transitivity 11111, the net derived from #re
lattice has transitivity 111111, etc.

For all of the other nets with > 3 listed in Table2.2, the computation of the
transitivity remains an important unsolved problem. Nbigtin a tiling corresponding
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to a 3D net, the (two-dimensional) faces of the (three-dsiaral) tiles are, in gen-
eral, minimal surfaces stretched over non-planar framds foom (one-dimensional)
edges between several nodal points defined in 3D. In a tilorgesponding to am-
dimensional net fon > 3, the 2-faces of the tiles are, in general, minimal surfaces
stretched over nonplanar frames between several nodegddfin dimensions. [Note
that the computation of such minimal surfaces idimensions is straightforward using
standard level set methods; see, e.g., Cecil (2005).] 8ewktthese nonplanar 2-faces
combine to form the boundaries of each 3-face, which itsatiot confined to lie within
a 3D subspace of thedimensional domain. Several of these 3-faces then combine
form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilingsaigparently a task that
could be readily accomplished numerically, but is, in gahexpected to be difficult to
visualize.

2.5 Coding theory

Though the lattices that arise framdimensional sphere packings have connec-
tions that permeate many foundational concepts in numlsaryhand pure geometry,
the list of successful direct applications in science angirexering ofn-dimensional
sphere packings with > 3 is currently surprisingly shai; this list includes

¢ the numerical evaluation of integrals (Sloan & Kachoyan7)98

¢ the solution of the linear Diophantine inequalities thate&in integer linear program-
ming (Schrijver 1986),

e the characterization of crystals with curious five-fold sgetries (Janssen 1986),

e attempts at unifying the 4 fundamental forces (in 10, 11 GdiPnensions) via super-
string theory (Kaku 1999), and

¢ the development of maximally effective numerical schemesldress an information-
theoretic interference suppression problem known as thgaWhausen counterexam-
ple (Grover, Sahai, & Park 2010).

23Notably, Conway & Sloane (1999, page 12) state: “A relatepliagtion that has not yet received
much attention is the use of these packings for soluhigmensionakearchor approximatiorproblems”;
this is exactly the problem focused on in Chapter 3.
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Far and away the most elegant and practical applicationddmensional sphere pack-
ings, however, is in the framing and understanding@wbr correcting codegECC9.
The reader is referred to Leech & Sloane (1971), Thompso83)L Pless (1998), and
Conway & Sloane (1999) for comprehensive reviews of th@riaing subjectA brief
overview of this field, drawn primarily from these four redaces, is given here to em-
phasize the existing practical relevancenadimensional sphere packings witt> 3;
we aim to augment this list of practical applications sigaifitly in Chapters 3 and 4
of the present work, based heavily on the various extensibnsdimensional sphere
packing theory developed in this work.

To proceed, defin€q as the set of symbols infaite field (a.k.a.Galois field
of orderq, whereq = p? with p prime, and definég as the set of all vectors of order
n with elements selected frofRg. The cases of particular interest in this work are
the binary fieldF, = {0,1}, theternary fieldF3 = {0,1,2}, and thequaternary field
F4={0,1, w, @}, where, as in 8.3.1 w = (—1+1/3)/2 [note thatw? = w, @& = w,
andw- w = 1]. In afinite fieldFq, addition ¢) and multiplication () are closed (that is,
they map to elements within the field) and satisfy the usuabruhey are associative,
commutative, and distributive, there is a 0 element suchdhaO = a, there is a 1
element such that- 1 = a, for eacha there is an elemerit-a) such that+ (—a) =0,
and for eacla # 0 there is an elememt ! such that-a—1 = 1. If g is itself prime (e.g.,
if g= 2 orq= 3), then standard integer addition and multiplication mddrms a finite
field. If not (e.qg., ifg=4), a bit more care is required in order to obtain closure iwithe
finite field while respecting these necessary rules on awtdeind multiplication. For the
cases considered in this section (specificélyy,F3, andF,), addition and multiplication
on Fq are thus defined as follows:

+oj1 - fol1 +]o0f1]2 -[0[1]2
S i S L E R I
110 Lol 212|101 210|211
+[O0|l|w|w |0[1|w|w
0|01 | w|w 0|00 (0]|O0
Fa 111|/0|w]|w 1101 | w|w
wl|lw|lw|0|1 w|0|lw|lw|l
wl|lw|lw|[1l|0 w|0|lw|l|w
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An [n,K]q (or, whend is explicitly specified]n, k,d]q) linear?* g-ary?® code(LC)
may now be defined as@ary linear combinatior{that is, a linear combination with
coefficients selected frorfg, with addition and multiplication defined elementwise on
Fq, as discussed above) of a sekof nindependenbasis vectorsﬂ[wq € Fg,

where the basis vectors are selected such that each gf tesultingcodewords
Wi[mkh € Fg (thatis, eacly-ary linear combination of the basis vectors) differs froamste
of the other codewords in at leastlements (referred to in this setting as Hemming
distancg. We denote by, g, (0rVink q),) thenx k basis matrixvith thek basis vectors
Vi[rnk}q as its columns, and Bty . (Or Wiy i g1,) then x o codeword matrixwith the g
COdeWOI’dSN'[rL
and a companiofn—k) x n parity checkmatrixH, y, in the standard (a.k.aystematie

K 35 its columns. Further, without loss of generality, we t@esV,

form?6

Ik
V[n7k]q - )

; ] and Hiy, = [_P(n,k)xk |(n,k)x(nfk)} . (2.16)
(n—k) xk
Note thatHjn g, Vink, = O (0nFg)?”, which establishes that the basis vecta%@]q S0
constructed [and, thus, all of the valid codewondgiven byg-ary linear combination of
these basis vectors] each satisfy the parity check equatiir{),[k}qw =0 (onFg), implied
by the rows ofH, ¢ s illustrated by the several examples given in this stahidam
in §2.5.1 82.5.2 and 8.5.3 The firstk symbols of arin,k|q LC so defined are referred
to as thedata symbok®, and the lash — k symbols are referred to as tharity symbols

24Nonlinearg-ary codes also appear in the literature, in which the valitegvords ar@otsimply linear
combinations of a set of basis vectors, but rather must bmerated individually. Such codes, which are
related to nonlattice packings, are in general more diffimutecode than LCs, and are not considered
further here.

25This work focuses on the cases with= 2 [termed ainear binary code(LBC)], q = 3 [termed a
linear ternary codgLTC)], andq = 4 [termed dinear quaternary codéLQC)], in §2.5.1, §82.5.2 and
§2.5.3respectively. In cases withh= 2, which are the most common, we frequently write simplk] or
[n,k,d], dropping theg subscript.

28| the literature on this subject, it is more common to use engator matrix'G to describe the
construction of linear codes. The “basis matrix” convemiibused here is related simply to the corre-
sponding generator matrix such that= G'; we find the basis matrix convention to be more natural in
terms of its linear algebraic interpretation.

2IThe qualifiers “(orFq)” and “(modq)” are used, as appropriate, to remind the reader that niioétip
tion and addition in the equation indicated are performedhentwise on the finite fielel;, as discussed
above.

28The word “bit”, a portmanteau word for “binary digit”, is gerally reserved for the case with= 2;
in the general case, we use the word “symbol” in its place.
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The key to designing a “goodh,k|q LC is to construct theparity submatrix R .k

in (2.16 in such a way that the value dfin the resulting code (that is, the minimum
Hamming distance between valid codewords) is maximizedif@n values oh, k, and

g; significant effort was required for this construction dgrithe development of some
of the codes reviewed in285.1 §2.5.2 and 8.5.3 Indeed, the problem of designing
a good binary error correcting code is essentially a finiteesp packing problem on
F»; thus the very close relationship between the design of-eowecting codes and the
design of infinite sphere packingsit!, as discussed in%3,

Forqg = p? with p prime,conjugation inFq (that is, for scalars € Fg) is defined
such thatv'= vP; conjugation ian (that is, for vectory € Fg), as well as for matrices
formed with a number of such vectors as columns, is perforeh@rientwise. Thdual
codeof any [n,k]q LC is then the[n,n—k]q LC given by the union of all codewords
w € Fg for whichw-v =0 (onFg) for all v € {vi[mk]q fori=1,....k} [cf. (2.2)].
The codeword and parity check matrices for this dual code ttmay, when arranged in
standard form, be written as

i1 (K .
V[n,nfk]q: [(n _);_(l_n )] and H[n,nfk]q: P’ I(nfk)x(nfk) ; (2.17)

whereP denotes conjugation iRy of each element of the parity submatfbof the origi-
nal[n,k|q LC. Note thatP" is of orderk x (n—Kk), and, of course, thai[nyn,k}qv[mn,k]q =
0 (onFg). Note also that, for LBCs and LTCB,= P.

Graphically, the codewords of dn, k,d], LBC may be thought of as a carefully
chosen subset ofdf the 2' corners on a single-dimensional unit hypercube,as illus-
trated forn = 3 in Figure2.9, whereas am, k, d]3 LTC may be thought of as a subset of
3¢ of the 3 gridpoints in a cluster of 2unit hypercubes im-dimensions, as illustrated
for n=3in Figure2.1Q For anyq, d quantifies the minimum number of symbols which
differ between any two codewords. It follows that:

e An LC with d = 2 issingle error detectindSED) [see, e.g., Figure2.9a and2.1(a].
In this case, the sum (dfy) of the symbols in each valid transmitted codeword is zero,
so if itis assumed that at most one symbol error occured asgddim is nonzero, then
a symbol error in transmission occurred, whereas if it i® zéren a symbol error did
not occur. However, if a symbol error in transmission ocdutbe received (invalid)
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Figure 2.9 Valid codewords of (left) the (SEDB, 2,2], LBC, and (right) its dual, the
(perfect, SECJ3,1, 3|, LBC. In this cased specifies the number of edges that separate
any two valid codewords. The blue spheres denote the origin.

c 4 o
Figure 2.1Q Valid codewords of (left) the (SEDB, 2,2]3 LTC, and (right) its dual, the
(SEC)[3,1, 3|3 LTC (cf. Figure2.9).

codeword is generally equidistant from multiple valid cededs, so it is not possible
to correct the symbol error. Two or more symbol errors gdhyecause the codeword
to be misinterpreted.

e An LC with d = 3 issingle error correcting SEQ [see, e.g., Figure3.% and2.1M].
In this case, if it is again assumed that at most one symbof errtransmission oc-
cured, then if the received codeword is not a valid codewtreke is only one valid
codeword that is unit Hamming distance away, so the singtésy error may in fact
be corrected Again, 2 or more symbol errors generally cause the codewniuk
misinterpreted.

e An LC with d =4 issingle error correcting and double error detectif@ECDED. In
this case, if a single symbol error occurs, the receivedwottkwill be unit Hamming
distance away from a single valid codeword, and thus singhebsl| errors can be
corrected. However, if two symbol errors occur, the reagivedeword is generally
Hamming distance 2 away from multiple valid codewords, sold® symbol errors
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can be detected bubt corrected. Now, 3 or more symbol errors generally cause the
codewords to be misinterpreted.

An LC with d =5 is double error correcting DEC), with 3 or more symbol errors
generally causing misinterpretation.

An LC with d = 6 is double error correcting and triple error detectinpECTED),
with 4 or more symbol errors generally causing misintegdren.

An LC with d = 7 is triple error correcting (TEC), with 4 or more symbol errors
generally causing misinterpretation.

An LC with d = 8 istriple error correcting and quadruple error detectif§ECQED,
with 5 or symbol errors generally causing misinterpretatio

An LC with d = 9 isquadruple error correctingQEQ), with 5 or more symbol errors
generally causing misinterpretation.

The labels defined above are frequently used to quantifyriioe eorrection capability

of an LC. Alternatively, if error correction isot attempted, then:

An LC with d = 2 is single error detecting, with 2 or more symbol errors galhe
causing misinterpretation.
An LC with d = 3 is double error detecting, with 3 or more symbol errors gahe
causing misinterpretation.
An LC with d = 4 is triple error detecting, with 4 or more symbol errors gatlg
causing misinterpretation.
An LC with d = 5 is quadruple error detecting, with 5 or more symbol errerssgally
causing misinterpretation.

Error correcting algorithms are useful for a broad range athdransmission or data

storage applications in which it is difficult or impossible tequest that a corrupted

codeword be retransmitted; algorithms which use such LEsrfor detection only, on

the other hand, may be used only when efficient handshakingasporated in a manner

which makes it easy to request and resend any messages tfrifomicorrupted during

transmission.

An [nk,d]q LC is calledperfectif, for some integett > 0, each possibl@-

dimensionab-ary codeword is of Hamming distanter less from a single valid code-

word (that is, if there are no “wasted” codewords which arendang distancé + 1 or



80

Figure 2.11 The lattice corresponding to[a,k,d] LBC is formed by repeating the
unit hypercube pattern given by the LBC (see, e.g., Figu8e as an infinite array
with unit spacing. In the above example, we illustrate thigiesion for (left) the face-
centered cubic (FCC) lattice generated by [1€, 2] LBC, D3 = Ui, (wi[37272] +273),
and (right) the body-centered cubic (BCC) lattice generatethe[3,1,3] LBC, D} =
Ui2:1 (w‘[37173] +273). The blue spheres, taken together, formrimitive cellthat, re-
peated as an infinite array wigerospacing, tile (that is, fill) the domain.

more from the valid codewords, and thus may not be correctddnthe assumption that
at most symbol errors have occured); note that a perfect code had ed2f +1 > 1. A
remarkable proof by Tietavainen (1973), which was basecalated work by Van Lint,
establishes that thenly nontrivial perfect LCs are thgg"—1)/(q—1),(d" —1)/(q—
1) —r,3|q perfectg-ary Hamming codes and th23,12,7], and [11,6,5]3 binary and
ternary Golay codes, described further % 1and 8.5.2

An [n,k,d] LC is calledquasi-perfectf, for some integet > 1, each possible-
dimensionagi-ary codeword is either (a) of Hamming distameel or less from a single
valid codeword, and thus up te- 1 symbol errors may be corrected, or (b) of Hamming
distancet from at least one valid codeword, and thus codewords twaymbol errors
may be detected but not necessarily corrected (that ispagdhere are no “wasted”
codewords which are Hamming distarice 1 or more from a valid codeword, and thus
may not be reconciled under the assumption that at trgyghbol errors have occured);
note that a quasi-perfect code has egten 2t > 2.
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Note finally, as illustrated fon = 3 in Figure2.11, that a real lattice correspond-
ing to an[n,k,d]> LBC may often be constructed by forming a union bfcdsets:
2k

Construction A | J (Wi, g, +22"), (2.18a)
-1

where thecoset representativasa this constructionwi[ fori=1,...,2 are the

n,k7d]2
codewords of thén, k,d], LBC under consideration an@v -+ 2Z") denotes &" lattice
scaled by a factor of 2 with all nodal points shifted by theteew; thus, Construction
A denotes the union of the nodal points in several such saaddshiftedZ" lattices.

An alternative real lattice may sometimes be constructad vi

[im} e 22}, (2.18b)

where(27Z) denotes the even integers, and thus the last condition istdoes written
YiL1% =0 (mod 2).
In an analogous fashion, a complex lattice correspondig o, k,d]q LC may

ok
Construction B | (Wjpq,+2J) where J= {x eZ"
i=1

often be constructed by forming a uniong$fshifted and scaled-dimensionalf’ lattices
Z]w]" (see 8.3.1) such that

qk

Construction & : | (Wi, g, + TZ[w]"), (2.192)
=1

where, in the sequel, the multiplicative factaitakes two possible values (2 afd=
w— = 11/3) and the coset representatives in this construotir?{kd]q fori=1,...,d

are the codewords of the, k, d]q LC under consideration. An alternative complex lattice
may sometimes be constructed via:

qk

Construction 8 : [ ] (Wi[n kdjg T 1) where J= {x € Zlw"
i=1

n

e
(2.19b)

where(711&’) denotes the lattice of Eisenstein integers in the complarepmultiplied

(that is, rotated and scaled) by the (possibly complexofaat Note the remarkable

similarity in structure between the real construction2iri89-(2.180 and the complex

constructions inZ.199-(2.19H. Note also that real lattices corresponding to any of the

complex lattices so constructed may easily be generate@\da
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2.5.1 Exemplary linear binary codes (LBCs)

We now summarize some of the families of LBCs available, diesg each in
the standard form2(16):

e The simplé® [n,n—1,2] binary single parity check codese SED, and includ@, 1,2],
[3,2,2],4,3,2], [5,4,2], etc. Using such a code, for eagh— 1) data bits to be trans-
mitted, a parity bit is generated such that the sum (mod 2hefdata bits plus the
parity bitis 0; when decoding, an error is flagged if this sumod 2) is 1. Thed3,2, 2]
code illustrated in Figurg.9a is given by

10 0101
Vize2= |0 1|, Hp2zg= (l 1 1) , Wigoy=10 0 1 1]. (2.20)
11 01120

As seen fom = 3 in Figure2.11a, via Construction A, thén,n—1,2] binary single
parity check code generates tbg lattice (see 8.3.3, which forn= 3 is FCC.

e The dual of the binary single parity check codes are the sifmpl, n| binary repeti-
tion codeswhich include[2,1,2] (SED), [3,1,3] (SEC),[4,1,4] (SECDED),[5,1,5]
(DEC), etc. (note that thi,1,2] code is self dual, and that th8, 1, 3] code is per-
fect). This family of codes just repeats any given dataliines; when decoding, one
simply needs to determine which of the two valid codewords the received code is
nearest to. Thé3,1, 3] code illustrated in Figur2.% is given by

1 01
110
Visig=|1]. Hgig= 10 1) W13 =[0 1]. (2.21)
1 01

As seen fom = 3 in Figure2.11b, via Construction A, thén, 1, n| binary repetition
code generates tHeg;, lattice (see 8.3.3, which forn= 3 is BCC. Via Construction
B, on the other hand, thi, 1, 8] binary repetition code generates thglattice (see

29As suggested in FootnoRS on pager6, wheng = 2, we may suppress tligsubscript for notational
clarity; we thus do this throughouf&.1
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82.3.5. Note also that thé3,2,2] binary single parity check code with each bit re-
peatedm times leads to &8m,2,2m| code that may be rearranged into standard form
and written as

l2x2

Viam2,2m = [ ] » Hamaom = [Pam-2)x2  lam-2)x(@m-2)

Piam-2)x2
Im-1x1 Om-1)x1
Pam-2x2= | Om-1)x1 Lm-1)x1
1m><1 1m><1
In particular, takingn= 4 and applying Construction B, the resultifi, 2, 8] code,
which is TECQED, generates th¢;* lattice (see 8.3.6.

e The[2™—1 2M—1—m, 3] binary Hamming codeare perfect and SEC, and include
[3,1,3], [7,4,3], [15,11,3], etc. For a giver{2™— 1 — m) data bits to be transmitted,
each parity bit is generated such that the sum (mod 2) of écpkat subset of the
data bits plus that parity bit is 0; when decoding, theparity bits may be used to
determine not only whether or not a single bit error occukehi¢h is true if one or
more of these parity bits is nonzero), but if it didhich bit contains the error. To
illustrate, the venerabl@, 4, 3] code is given by
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1000
0100
0010 011110
Vizaz =0 0 0 1|, Hpsg=|1 0110 1 0f,
0111 110100
1011
1101
(2.22)
010101010101010
001100110011001
000011110000111
Wrag3=|/0 0000000111 1111
001111001100001
010110101010010
011001101001100

Taking the matrixH7 43 times any of the valid codewordsi[77473] (listed in the
columns ofWy 4 3) gives (mod 2) the zero vector, whereas taking the madx 3
times any invalid codeword gives (mod 2) a nonzero vectordém — k = 3, which
may be interpreted as a nonzero 3-bit binary number, th@énteorresponding to
which we call thesyndromeof the invalid codeword, denotesd Conveniently, assum-
ing no more than one bit error occurred, this numbaray be used in a simple way
in this particular class of codes to determine which bit niogstlipped in the (invalid)
codeword received to find the nearest valid codeword, tlygsgeldorming single error
correction. To accomplish this, as easily verified by hamshading thek data bits of
the codeword ad; and then — k parity bits asp; and reordering these bits as the vec-
tor { p1, p2,d1, p3,dz,d3,ds}, it is thesth element of this vector that must be flipped.
Note also that, via Construction A, thé 4,3] binary Hamming code generates the
E; lattice (see 8.3.5.

The dual of the binary Hamming codes are [fe— 1,k, 2€-1] binary simplex codes
which include[3,2,2] (SED), [7,3,4] (SECDED),[15,4,8] (TECQED), etc. These
codes are remarkable geometrically, as their codeworas #osimplex. We have
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already illustrated thé8,2, 2| code in Figure2.9a; the[7,3,4] code is given by

100 0101010 2}
010 00110011
00 1 00001111
Vi7ag=|0 1 1|, Wzsg=|001 1110 0,
101 01011010
110 01100110 (2.23)
111 0110100 Y
011100
Horsa = 1010100
"M lt100010
111000

Via Construction A, thd7,3,4] binary simplex code generates thke lattice (see
82.3.95. Via Construction B, on the other hand, tfb, 4,8] binary simplex code
generates thA s lattice (see 8.3.9.

e The[2™ 2M—1—m, 4] extended binary Hamming coda® quasi-perfectand SECDED,
and include[4,1,4], [8,4,4], [16,11 4], etc. These codes are just binary Hamming
codes with an additional overall parity bit, and thus, assgmo more than 2 bit er-
rors have occured, may be decoded similarly. Defining thd®mesas in the binary
Hamming code (neglecting the overall parity bit), and defyp as the sum over all
the bits (including the overall parity bit), there are zerbdorors ifs= p = 0, there
two bit errors (which may be detected but not uniquely cdedkif s+ 0 andp = 0,
and there is a single bit errorf£ 0 (in which case, i6= 0, this error is in the overall
parity bit, and, ifs£ 0, this error is in one of the other bits and may be correctsdda
onsjust as in the binary Hamming code). To illustrate in staddarm, the venerable
[8,4,4] code is given b3P

30The standard form of th§, 4,4] code shown here may be related to the perhaps more intutive f
of this code described previously in this paragraph by @ptathe last row of the concomitant parity
check matrixP,. 4 [see .16] by the sum (mod 2) of all of the rows &fin the form given in 2.24). This
results in a row with 1 in each of its elements, implying siyngh overall parity check on th&, 4, 3] code
in (2.22. These two forms are, of course, equivalent.
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Via Construction A, the8,4, 4| extended binary Hamming code again generates the
Eg lattice (see 8.3.5.

The dual of the extended binary Hamming codes are[2fem+ 1,2™1] binary
biorthogonal codega.k.a.Hadamard codgs and include thé4,3,2| (SED), [8,4, 4]
(SECDED),[16,5,8] (TECQED), [32,6,16], etc. (note that thé8,4,4] code is self
dual). The[32,6,16) code was used on the Mariner 9 spacecraft. These codes are
distinguished by the characteristic that their codewordswutually orthogonal [that

is, W' -wl = 0 (mod 2) fori # j]. Note that the[4,3,2] and[8,4,4] codes have al-
ready been discussed above. Via Construction B,[16g5, 8] binary biorthogonal
code generates thg lattice (see 8.3.9.

The [n,(n+1)/2,d] binary quadratic residue codesre defined for all prime for
which there exists an integer<d x < n such thatx’> = 2 (modn) [equivalently, for
all primen of the formn = 8m+ 1 wheremis an integer], and includg@, 4, 3] (SEC,
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perfect, a.k.a. a binary Hamming codé}7,9,5| (DEC), [23,12,7] (TEC, perfect,
a.k.a. thebinary Golay codg [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc.
Adding an overall parity bit to these codes, thet+ 1,(n+1)/2,d + 1] extended
binary quadratic residue codesclude [8,4,4] (SECDED, quasi-perfect, self-dual,
a.k.a. an extended binary Hamming cod#3,9, 6] (DECTED),[24,12, 8] (TECQED,
quasi-perfect, self-dual, a.k.a. taetended binary Golay cojlé32 16, 8] (TECQED),
[42,21,10], [48,24,12], etc. The venerabli4,12, 8] extended binary Golay code,
which was used by the Voyager 1 & 2 spacecratft, is given by

l12x12

V24128 = [ g ] . Hpai09 = [P12x12 |12><12]7
Prox12
011111111111}
1110111000 10C¢
11 0111000101
101110001011
1111000101 10C¢ (2.25)
111000101101

Prox12 = ;
11 0001011011
1 00010110111
1 001011011 10U
1 01 01101110 0C¢(
11 011011100 0C¢C
10110111000 /1

the [23,12 7] binary Golay code may be obtained from the matrix of basitorsc
V23127 constructed as ir2(16) with P;1..12 given by any 11 rows of the matrB .12
defined above. Via Construction B, tf#4, 12, 8] extended binary Golay code gener-
ates an intermediate lattice which may be joined with a tede®f itself to construct
the/\y4 lattice (see 8.3.6.

As illustrated above in the case of the binary Hamming codktlae binary Go-
lay code, a perfect code may betendedo a quasi-perfect code by adding an overall
parity bit. A code obtained by the reverse of this procesat () by removing a parity
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bit to reduce the length of a code by one) is sometimes saidpaoitctured In contrast,
a code obtained by removing one or more data bits (in esssmaply setting the un-
needed data bits to zero) is said todtwrtened A typical and common application is
in error-correcting memory systems for computers, in whinghdata often comes natu-
rally in blocks of 64 bits. Starting from tH&27,120, 3] binary Hamming code, one may
eliminate 56 data bits to create a shortefigl64, 3] SEC code; alternatively, starting

from the[128 120, 4] extended binary Hamming code, one may eliminate 56 data bits

to create a shortengd2, 64,4 SECDED code. Many so-called ECC Memory chips are
based on variants of such binary Hamming codes, which areragty simple and fast
to decode. Note also that, via Construction B, [@E9, 8], [20,8, 8], and[19, 7, 8] codes
obtained by shortening th&4, 12, 8] extended binary Golay code by 3, 4, or 5 data bits
generate, respectively, thheq, Ayg, andAqg lattices (see 8.3.6.

Many of the binary codes introduced thus far fall within gkrfamily of codes
collectively referred to aReed-Mullercodes, illustrated in Figur2.12

k=2"d=1
132, 32£]universe codes
16161 k=2"-1ld=2
18,8,1] [32,31, 2] §inglg, payity check godes
4441 [16,15,2] ¥ extended Hamming
J12,2,1] 18,7,2] 2264
JL1,1] 14,3,2] [16,11,4]
9[27,1,7 2] ,,,,, {[8,’ 4’747] 77777 6[53?1]:@>8]k = 2m_1. d = 2(m+1)/2
[4,1,4] [16,5,8] self-dual codes
[8,1,8] [32,6,16]
161,16 | k=m+ld=2""
32,1, 32]biorthogonal codes
k=1,d=2"
B repetition codes

Figure 2.12 The family of 2™ k,d] Reed-Muller binary codes fon=0 to 5.
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2.5.2 Exemplary linear ternary codes (LTCs)

We now summarize some of the families of LTCs available, deisg each in
the standard form2(16), noting that all have analogs in the binary setting:

e The [n,n— 1,2|3 ternary single parity check codese SED, and includ&,1,2]s,
[3,2,2]3, [4,3,2]3, etc. As illustrated fon = 3 in Figure2.10a, the[3,2, 2]3 code is
given by

10 01201201
V[37272]3 =10 1}, H[37272]3 = (1 1 1) , VV[37272]3 =|0001112 2
2 2 02121010

(2.26)

Via ConstructionAfﬁ, the [3,2,2]3 ternary single parity check code generatesEfe
lattice (see 8.3.5.

e The dual of the ternary single parity check codes ar€fithi n|3 ternary repetition
codeswhich include[2,1,2]3 (SED), [3,1, 3|3 (SEC),[4,1,4]3 (SECDED), etc. (note
thatthe[2, 1,2]3 code is self dual). Asillustrated for= 3 in Figure2.1(, the[3,1, 3|3
code is given by

1 210 01 2
Vis13, = |[1], Hgiz;= (2 0 1) ; Wie13,=10 1 2. (2.27)
1 01 2

Via Constructiomg, the[3,1, 3|3 ternary repetition code generates Fdattice (see
§2.3.5. Via ConstructiorB?, on the other hand, thé, 1, 6] ternary repetition code
generates thk;, lattice (see 8.3.6.

e The[(3M—1)/2,(3™—1)/2— m,3|3 ternary Hamming codeare perfect and SEC,
and includ€l4,2, 3|3 (a.k.a. thetetracodg, [13 10, 3|3, [40,36, 3|3, etc. To illustrate,
the venerablé4, 2, 3|3 tetracode is given by
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10 0120120
Vizs, = 017\/\/[423}3: 0001112 2,
“ 2 2 “ 0212101
1 2 0122011 (2.28)
H[423}3:<1110>'
“ 2101

Via Constructiomg, the[4,2, 3|3 tetracode again generates tdattice (see 8.3.5.

The dual of the ternary Hamming codes are [t(hé -1)/2/k, 3"*1]3 ternary simplex
codes which include[4,2,3]3 (SEC), [13,3,9]3 (QEC), [40,4,27]3, etc. (note that
the [4,2,3]3 code is self dual). These codes are remarkable geomeyriealitheir
codewords are all equidistant from one another.

The [n,(n+ 1)/2,d]3 ternary quadratic residue codesre defined for all primen
for which there exists an integer<l x < n such that® = 3 (modn), and include
[11,6,5]3 (DEC, perfect, a.k.a. theernary Golay codg [13,7,5|3 (DEC), [23,12, 8|3
(TECQED), [37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these
codes, thén+ 1, (n+1)/2,d + 1]z extended ternary quadratic residue codieslude
[12,6,6]3 (DECTED, quasi-perfect, self-dual, a.kthe extended ternary Golay cde
[14,7,6]3 (DECTED), [24,12,9)3 (QEC), [38,19,11]3, [48 24,153, etc. The venera-
ble [12 6, 6|3 extended ternary Golay code is given by

011111
101221

Va6 = [LZZ]’ H[127676}3:[_P6><6 |6><6]7 Pox6 = 1 ; 2 é i 2 ;
122101

112210

(2.29)

the (punctured)11,6,5]3 code may be obtained from the matrix of basis vectors
V1165 constructed as in2(16) with P, given by any 5 rows of the matriRs.e



91

defined above. Via Constructioﬁg, the[12, 6, 6]3 extended ternary Golay code gen-
erates an intermediate lattice which may be joined with tremglates of itself to

generate théo, lattice (see 8.3.6.

2.5.3 Exemplary linear quaternary codes (LQCs)

We now summarize some of the families of LQCs available, rileisg) each in
the standard form2(16):

e The[n,n—1,2], quaternary single parity check codase SED, and includi,1,2]4,
[3,2,2]4, [4,3,2]4, etc. The[3,2,2]4 code is given by

1 0
Viz22,=10 1], H[3,2,2]4:(1 1 1),
11
_ _ _ . (2.30)
01 w wO01w w0 1l w w0 1 w w
Ws20,=[00 0 0111 1w wwwwww w
01 wwlOwwwwO0 1 wwll O

e The dual of the quaternary single parity check codes arénttien|, quaternary rep-
etition codes which include[2,1,2]4 (SED), [3,1,3]4 (SEC), [4,1,4]4 (SECDED),
etc. (note that thg, 1, 2|4 code is self dual). Thg, 1,3]4 code is given by

1 110 01w w
V[37173}4: 1 ’ H[37173}4: (1 0 1)’ \/\/[3,1,3}4: 01w 6 (231)
1 01w w

e The[(4M—-1)/3,(4™—1)/3—m,3]4 quaternary Hamming codese perfect and SEC,
and includ€5, 3, 3], [21,18, 34, [85,81, 3|4, etc. The[(4M—1)/3+1,(4M—1)/3—
m, 4]4 extended quaternary Hamming codee quasi-perfect and SECDED, and in-
clude [6,3,4]4 (a.k.a. thehexacodl [22,18,4|4, [86,81, 44, etc. To illustrate, the
venerablg6, 3,4]4 hexacode, which has’4= 64 valid codewords, is given by
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1 0 O
g ; 2 l1 w w100
Vie 3.4, = , Heza,=|w 1 w 0 1 0f, (2.32)
bow w w1 001
w 1l w
w w 1

Via ConstructionAi@, the [6,3,4]4 hexacode generates tig; lattice. Thel[6,3,4|4
hexacode also forms the basis for the Miracle Octad GenelsltdG) construction
of the/\y4 lattice, as discussed in Chapter 11 of Conway & Sloane (1999)

e The dual of the quaternary Hamming codes are[t4e— 1) /3, k,4<"1]4 quaternary
simplex codeswhich include(5, 2, 4], (SECDED),[21,3,16]4, [85,4,64]4, etc. These
codes are remarkable geometrically, as their codewordalbeguidistant from one
another.

We note finally that the simple low-dimensional LBC, LTC, dr@C construc-
tions given above are now supplanted by the more comiplexdensity parity-check
(LDPC, a.k.a.Gallagen codes andurbo codes for high performance coding applica-
tions such as 10GBase-T ethernet and deep space commaimicatir more informa-
tion on these codes, the reader is referred to Gallager §18@8rouet al. (1993), and
Moon (2005).

2.6 Quantization (that is, moving onto a Lattice)

For convenience, we now review briefly some methods (addmiedChapter 20
of Conway & Sloane 1999) for quantization from an arbitrapynpx in R" onto a point
X on the discrete lattice, which is defined via integer lineanbination of the columns
of the corresponding basis mati The solution to this problem is lattice specific,
and thus is treated lattice by lattice in the subsectionsvibelNote that we neglect
the problem of scaling of the lattices in this discussionjolvhs trivial to implement
in code. For brevity, our review below focuses on quantimato the root lattices up
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to dimensionn = 8. Quantization to the lattices, andK, in dimension 9< n < 24
is a more difficult problem, and is the subject of numerousepam the area of coding
theory (see 8.5) in the last 20 years, where many efficient algorithms fohquoblems
have been proposed and tuned.

Quantization to Z"

Quantize tdZ" simply by rounding each elementwto the nearest integer.

Quantization to Dy,

Quantize tdy by roundingx two different ways:

e Round each element a&fto the nearest integer, and call the result

e Round each element of to the nearest integaxceptthat element ok which is
furthest from an integer, and round that element the wrong(ttet is, round it down
instead of up, or up instead of down); call the result

Compute the sumof the individual elements of; the desired quantiziation 6= X if
is sis even, an& = X if sis odd.

Quantization to A,

The A, lattice is defined in am-dimensional subspace of Y = R"1. The
subspac€ is spanned by the columns of the corresponding basis majy,, and the
orthogonal complement & is spanned by the vectop,. Thus, the nearest point in the
subspaceyc € C, to any given poiny € Y is given by

Yc=Y— (y7 nAn) ‘Na,-

An orthogonal basiéAn of C may easily be determined froBp, via Gram Schmidt or-
thogonalization. With this orthogonal basis, the vecioesR" comprising the, lattice

may be related to the corresponding vecyyse C C Y (that is, on am-dimensional
subspace dR"*1) via the equation

yc = Bax. (2.33a)
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Thus, starting from some poimte R" but not yet quantized onto the lattice, we can
easily determine the correspondifrgt 1)-dimensional vectoyc which lies within the
n-dimensional subspaceof R™? via (2.339. Given this value of/c € C, we now need

to quantize onto the lattice. We may accomplish this withfélewing simple steps:

e Round each component g§ to the nearest integer, and call the resulDefine the
deficiencyA = ¥;¥i, which quantifies the orthogonal distance of the pgifrom the
subspacé€.

e If A=0, theny =Y. If not, defined = yc —V, and distribute the integers.0.,n
among the indicew, ..., i, such that

~1/2<d(i,) <d(9,) <. < d(§i,) < 1/2

~ .. ~ y|k - 1 k < A7
If A> 0, then nudg§ back onto thé& subspace by defining, =
Vi otherwise

R Y+ k>n4A,
If A <0, then nudg§ back onto the& subspace by defining, =
Vi otherwise

Back inn-dimensional parameter space, the quantized viali€ corresponds to

A

% =B 9. (2.33b)

Quantization to the union of cosets

The dual latticeD}, and A}, the triangular latticéd,, and the packind; (in-
cluding the latticeEg = E; = D{) are described via the union of simple, real cosets in
(2.59, (2.89, (2.79, and @.6), respectively. The lattices; andE; may be built via the
union of simple, real cosets via Construction A [sBd4.83], with coset representatives
w‘[n7k7d] given in .22 and @.23 respectively. To quantize a lattice described in such
a manner (as a union of simple cosets), one may quantize loceaet independently,
then select from these individual quantizations thatdatpoint which is nearest to the
original pointx.

The latticesEg andEZ may be built via the union of complex cosets [which are
scaled and shifted complex latticesZ[w]?] via ConstructionA” [see @.193], with
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coset representativw%n kd given in 2.27) and Q.26) respectively. Following Conway
& Sloane (1984), to discretize a poixto coset in these cases:

e Determine the complex vectare C2 corresponding tox € R®. Shift and scale such
thatz = (z—a)/6.

e Determine the real vectére R corresponding t@ € C3. Quantize the first, second,
and third pairs of elements &fto the real triangula®, lattice to create the quantized
vectorX.

e Determine the complex vectare C2 corresponding t& € R®. Unscale and unshift
such that = 67 + a.

e Determine the real vectére R® corresponding t@ e C3.

2.7 Conclusions

In short, .3 of this work is about generalizing to higher dimensions tmaif-
iar triangular, BCC, and FCC lattices, which are dense radtigres to the cubic lattice
with reduced nonuniformity, wherea2.8 of this work is about generalizing to higher
dimensions a few (specifically, the most regular) of the mfamyiliar nets arising in bi-
ology and crystallography, such as the honeycomb, diamamdiguartz graphs, which
are rare alternatives to the cubic lattice with reduced dioation number. The primary
successful application af-dimensional sphere packing theory to date is in coding the-
ory, as reviewed in 85 A working understanding of this material is essential foe t
new practical applications of lattice theory to be studiedChapters 3 and 4 of this
work, both of which leverage heavily the foundational mialetiscussed here.
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Chapter 3

New Horizons in Sphere-Packing
Theory, Part II:

Lattice-Based Derivative-free
Optimization via Global Surrogates

Derivative-free algorithms are frequently required foe tptimization of non-
smooth scalar functions in dimensions resulting, for example, from physical experi-
ments or from the statistical averaging of numerical sirioites of chaotic systems such
as turbulent flows. The core idea of all efficient algorithmisgroblems of this type is
to keep function evaluations far apart until convergenep@oachedGeneralized pat-
tern searc(GP9 algorithms, a modern class of methods particularly wetesito such
problems, accomplish this by coordinating the search witlirderlying grid which is
refined, and coarsened, as appropriate. One of the mose¢effsztibclasses of GPS algo-
rithms, known as theurrogate management framewdMF, see Bookeet al. 1999),
alternates between an explorat@garchover an interpolating function which summa-
rizes the trends exhibited by existing function evaluati@nd an exhaustiyell which
checks the function on neighboring points to confirm or ctethe local optimality of
any givencandidate minimum poir(CMP) on the underlying grid. The original SMF
algorithm implemented a GPS step on an underlying Cartegidnaugmented with a

96
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Kriging-based surrogate search. Rather than using-tisnensional Cartesian grid (the
typical choice), the present work introduces for this psthe use of lattices derived
from n-dimensional sphere packings. As reviewed and analyzezhsixely in Part |
of this series, such lattices are significantly more unifarmd have many more nearest
neighbors than their Cartesian counterparts. Both of tfete make them far better
suited for coordinating GPS algorithms, as demonstrateelinea variety of numerical
tests.

3.1 Introduction

The minimization of computationally expensive, high-dmamnal functions is
often most efficiently performed via gradient-based optation algorithms such as
nonlinear conjugate gradients and L-BFGS-B. In complexesys for which an ac-
curate computer model is available, the gradient requiyeslich algorithms may often
be found via adjoint analysis. However, when the functioguestion is not sufficiently
smooth to leverage gradient information effectively dgrits optimization (see, e.g.,
Figure3.1), a derivative-free approach is necessary. Such a scesawident, for ex-
ample, when optimizing a finite-time-average approxinratiban infinite-time-average
statistic of a chaotic system such as a turbulent flow. Su@approximation may be de-
termined via simulation or experiment. The truncation & #élveraging window used to
determine this approximation renders derivative-basdidagation strategies ill suited,
as the truncation error, though small, is effectively deslated from one flow sim-
ulation/experiment to the next. This effective decorielatof the truncation error is
reflected by the exponential growth, over the entire finteetihorizon considered, of
the adjoint field related to the optimization problem of net& in the simulation-based
setting.

Due to the often significant expense associated with perfaymepeated func-
tion evaluations (in the above example, turbulent flow satiahs or experiments), a
derivative-free optimization algorithm which convergesatthin an accurate tolerance
of the global minimum of a nonconvex function of interesthwat minimum number of
function evaluations is desired. It is noted that, in theagahcase, proof of convergence
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of an optimization algorithm to a global minimum is possibldy when, in the limit
of a large number of function evaluatioNs the function evaluations become dense in
the feasible region of parameter space (Torn & Zilinska8,719Though the algorithm
developed in the present work, when implemented propeatisfees this condition, so
do far inferior approaches, such as a rather unintelligiyariathm which we call Ex-
haustive Sampling (ES), which simply covers the feasiblamp&ter space with a grid,
evaluates the function awverygridpoint, refines the grid by a factor of two, and repeats
until terminated. Thus, a guarantee of global convergenc®i sufficient to establish
the efficiencyof an optimization algorithm. If function evaluations aedatively ex-
pensive, and thus only a relatively small number of funcgwaluations can ultimately
be afforded, effective heuristics for rapid convergenae m@rhaps even more impor-
tant than rigorous proofs of the behavior of the optimizatidgorithm in the limit of
largeN, a limit that might actually be argued to be of limited relega when function
evaluations are expensive. Given that such algorithmsféea ased in applications in
which only a few hundred function evaluations can be affdrdareful attention to such
heuristics forms an important foundation for the preseud\st

One of the earliest derivative-free optimization appr@ascto appear in the lit-
erature is thedownhill simplex metho¢see Spendley, Hext, & Himsworth 1962 and
Nelder & Mead 1965). The downhill simplex method is inhelgbised on an itera-
tive, amoeba-like evolution (moving one point at a time) afed ofn+ 1 points inn
dimensions towards the minimum of a (possibly nhonsmoothgtion. A large body
of literature appeared after the original introductionte§tmethod, much of which was
aimed at heuristic strategies designed to keep the evabinpglex as regular as possible
as the iteration proceeds, while expanding or contractsrgp@ropriate. The grid-based
methods considered in the present work are fundamentéigyreint, so we will not dwell
on such grid-free methods in this introduction. Howevels worth noting the inherent
dependence on the regularity an evolvsimplex(that is, on am-dimensional poly-
tope withn+ 1 vertices) in this classical method, and an analogous fioctie present
work on the identification (see38.2 and characterization (se@.82.1and3.2.9 of a
maximally-uniform simplex (referred to in the present wakaminimum positive ba-
sig) around the best point encountered thus far as the iterptioceeds, referred to in
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the present work as @andidate minimum pointThe role of the simplex in both cases
is essentially identical: to identify the best directionnmve next using a minimum
number of new function evaluations.

If, for the moment, we give up on the goal of global convergernhe perhaps
simplest grid-based derivative-free optimization altjori, which we call Successive

Polling (SP), proceeds as follows:

e Start with a coarse grid and evaluate the function at sonmBrgigoint on this grid,
identified as the first candidate minimum point (CMP).

e Then, poll (that is, evaluate) the function values on gridfgowhich neighbor the
CMP in parameter space, at a sufficient number of gridpomnpositively spah the
feasible neighborhood of the CMP [this step ensures coenery as discussed further
in Torczon 1997, Bookeet al. 1999, and Coope & Price 2001]. When polling:

(a) If any poll point is found to have a function value lesgtti@at of the CMP, imme-
diately consider this new point the new CMP and terminatgtieeent poll step.
(b) If no poll points are found to have function values lesmtthat of the CMP, refine

the grid by a factor of two.

¢ Initiate a new poll step, either (a) around the new CMP or (buad the old CMP on

the refined grid, and repeat until terminated.

Though the basic SP algorithm described above, on its owngtigery efficient, there
are a variety of effective techniques for accelerating ill. ghid-based schemes which
effectively build on this basic SP idea are classified as G§&ithms.

The most efficient subclass of GPS algorithms, known as th&ate Manage-
ment Framework (SMF; see Booker al., 1999), leverages inexpensive interpolating
“surrogate” functions (often, Kriging interpolations aweed) to summarize the trends
of the existing function evaluations, and to provide sutggsew regions of parameter
space in which to perform one or more additional functionai@on(s) between each

poll step. SMF algorithms thus alternate beween two steps:

(i) Searchover the inexpensive interpolating function to identifgsied on the existing
function evaluations, the most promising gridpoint at whic perform a new func-

That is, such that any feasible point in the neighborhoothef@MP can be reached vialiaear
combination with non-negative coefficienfshe vectors from the CMP to the poll points.
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Figure 3.1 Prototypical nonsmooth optimization problem for whickabgradient in-
formation is ill suited to accelerate the optimization altfon.

tion evaluation. Perform a function evaluation at this poupdate the interpolating
function, and repeat. The search step may be terminatest @ithen it returns a grid-
point at which the function has already been evaluated, @mwthe function, once
evaluated, has a value greater than that of the CMP.

(i) Poll the neighborhood of the new CMP identified by the search dhgor following
rules (a) and (b) above.

There is substantial flexibility during the search step dbed above. An effective
search is essential for an efficient SMF algorithm. In theedhat the search behaves
poorly and fails to return improved function values, the SM§orithm essentially re-
duces to the SP algorithm. If, however, the surrogate-bssacth is effective, the SMF
algorithm will converge to a minimum far faster than a simpR-based minimization.
As the search and poll steps are essentially independemicbfaher, we will discuss
them each in turn in the sections that follow, then presemt\we have combined them.

Note that if the search produces a new CMP which is severdpgmts away
from the previous function evaluations, which occasignabppens when exploring
functions with multiple minima, the grid may kmarsenedappropriately in order to
explore the vicinity of this new CMP efficiently (that is, Wit coarse grid first, then
refined as necessary). Note also that the interpolatinggate function of the SMF
may be used tmrder the function evaluations of the poll step, such that thodé po
points which are most likely to have a function value lowarttihat of the CMP are
evaluated first. By so doing, the poll steps will, on averdganinate sooner, and the
computational cost of the overall algorithm may be reducethér.
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Table 3.1 Characteristics of select distinct lattices in dimensi@n3, and 8, ordered
from dense to rare (for a more complete characterizatianTables 2 and 3 of Chapter
2). Listed (see Chapter 2) are the packing denditycovering thickness@, mean
squared quantization error per dimensi@j,and kissing number;. Note thatZ" is
significantly outperformed in every standard metric in gvéimensionn > 1 by the
available alternatives.

n | lattice name A ©] G T
) A hexagonal 0.90690| 1.2092| 0.080188| 6
72 square 0.78540| 1.5708| 0.083333|| 4

Az face-centered cubic (FCC)) 0.74048| 2.0944| 0.078745| 12
3 5 | body-centered cubic (BCC) 0.68017| 1.4635| 0.078543| 8

YA cubic 0.52360| 2.7207| 0.083333| 6
Es Gosset 0.25367| 4.0587| 0.071682| 240
Dsg 0.12683| 32.470| 0.075914| 112
Ag zero-sum 0.08456| 32.993| 0.077391| 72
° Dg 0.03171| 8.1174| 0.074735| 16
Ag 0.02969| 3.6658| 0.075972| 18
78 Cartesian 0.01585| 64.939| 0.083333|| 16

To the best of our knowledge, all previous GPS and SMF impigat®ns have
been coordinated using Cartesian grids. A primary goal@ptiesent work is to demon-
strate convincingly that significant performance gains rbayrealized simply by es-
chewing this dominant Cartesian paradigm. Like in the gafeheckers (contrast
“American” checkers with “Chinese” checkers), Cartesiadgare not the only choice
for discretizing parameter space. Other structured ckacising fromn-dimensional
sphere packing theory (see Tables 2.1 and 2.2, and furtbeushion in Chapter 2) are
significantly more uniform and have many more nearest ne@ighbespecially as the
dimension of the problem in question is increased; both e$¢hproperties suit these
alternative lattices well for coordinating grid-basediopzation algorithms.
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Table 3.2 The densest, most uniform lattices available in severakdsions, and two
factors quantifying the degree to which these lattices ateebthan the corresponding
Cartesian grid in the same dimensidp;denotes the factor of improvement in the pack-
ing density, an indication of the uniformity of the latticnd f; denotes the factor of
improvement in the kissing number, an indication of the fiéity available in selecting

a positive basis from the nearest neighbors on the latticge bhat the improvements
becoming especially pronounced as the dimensisincreased.

Ao Az |Ds| Ds | Eg |E7 | Eg| Kio | A1 | Noa
fa | 1.155| 1.414| 2 | 2.83|4.62| 8 | 16| 152 | 4096 1.68’
fr | 15 2 3| 4 6 | 9 |15|31.5| 135 | 4095

The definitive comprehensive reference on the subjeatdimensional sphere
packing theory is Conway & Sloane (1998Chapter 2 of this study contains a concise
summary of this involved subject, describing essentiallgrgthing one needs to know
about lattices up to dimensian= 24 in order to use them effectively in practical en-
gineering applications. For simplicity, the present irtigegtion focuses on the use of
just two such lattices, the zero-sum lattiég which is ann-dimensional analog of the
2-dimensional hexagonal lattice and the 3-dimensiona-tantered-cubic lattice, and
the Gosset latticE&g, which is an 8-dimensional analog of the 3-dimensional diath
packing, and is especially uniform. Both are described detaly in Chapter 2; for
brevity, this review will not be repeated here.

3.2 Extending lattice theory for derivative-free optimiza
tion

To extend the lattice theory described in Chapter 2 of thidysin order to coor-
dinate a derivative-free optimization, a few additionalgmnent algorithms are needed,

2In fact, as pointed out in Chapter 2, Conway & Sloane (1998,2).state: “A related application
that has not yet received much attention is the use of thedénmg for solving n-dimensional search or
approximation problems”; this is exactly the focus of thegant work.
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which are now described. We begin with a short historicabsgtective.

Thomson (1904), in his study of the structure of the atomraslited with being
the first to address the problém‘Where shouldk inimical dictators settle on a planet
in order to be as far away from each other as possible?” Thestopn extends natu-
rally to n-dimensional planets, and has received significant attenti the years since
Thomson'’s original paper. The question is readily answergderically by assigning
an identical “charge” to each ofidentical “particles”, restricting particle motion to the
surface of the sphere, and iteratively moving each parfveitn some damping applied)
in the direction of the force caused by the other particlegjéoted onto the sphere) until
all particles come to equilibrium. The precise solutionctesd is a function of the dis-
tance metric and power law used when computing the forcedstany two particles;
in the electrostatic setting, Thomson used the Euclidigtadce between the particles,
and a force which is proportional to the inverse square of tiétance. The setting
based on other distance measures (e.g., measured alongfdwe of the sphere instead
of along a straight line) and other power laws are referreastgeneralized Thomson
problems; in particular, the case based ontie power in the limit thatp — o (that is,
the max value) was studied in Tammes (1930), in his studyebthundaries of pollen
grains.

We now generalize this classical question in two ways, amadiice a new
metric to characterize the solution found:

e First, the locations where the particles are allowed tdesate restricted to a discrete
set of points on a sphere, which are specified as the neaiggthor lattice points to
the CMP.

e Next, we allow some the particles’ locations on the spherbet@pecified (that is,
fixed) in advance, and only move the remaining (free) pasitob arrive at the best
solution possible.

e Finally, the new metric we introduce is a check of whether ot the distribution
produced by numerical solution of the resulting “discret®mson problem” forms
a positive basi®of the feasible neighborhood of the CMP; that is, in the caitle mo

3This curious problem, articulated by Meschkowski (1960ja@rms of inimical dictators (see also
L. Fejes Toth 1971), assumes that all locations on the ptasetface are equally desirable, and that the
inimical dictators all cooperate.
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active constraints (cf.484.4, whether or not all points on the unit sphere around the
CMP can be reached via a linear combinatwith non-negative coefficients the
vectors from the CMP to the optimized patrticle locations.

After developing a method to test for a positive basis, thaeaiader of this section
develops three efficient algorithms to iterate on this “dise Thomson problem” until
a positive basis is found. To accomplish this, these algarst first solve the discrete
Thomson problem numerically far+ m particles wheren= 1. If the optimization
algorithm succeeds in producing a positive basis, the dlgorexits; otherwisem is
increased by one and the process repeated until a positsre isadetermined. The
resulting algoroithm is leveraged heavily during the ptdipsof the lattice-based SMF
algorithm developed later in this work.

3.2.1 Testing for a positive basis

Given a subset of the nearest-neighbor lattice points, vieatviimes need an
efficient test to determine whether or not the vectors todlpeénts from the CMP form
a positive basis of the feasible domain around the CMP. Withass of generality, we
will shift this problem so that the CMP corresponds to thgiorin the discussion that
follows.

A set of vectors{X!,..., %} for k > n+ 1 is said topositively sparR" if any
point inR" may be reached via a linear combination of these vectorsnithnegative
coefficients. Since therRbasis vectorgel,...,e", —€,..., —€"} positively spank",
a convenient test for whether or not the vect¢fs, ..., XK} positively spanR" is to
determine whether or not each vector in theBet {e!,...,€", —¢e!,...,—€"} can be
reached by a positive linear combination of the vectdds ..., %¥}. That is, for each
vectore € E, a solutionz, with z > 0 fori = 1,...,k, to the equatiorXz = eis sought,
whereX = (il ik). If such az exists for each vectoe € E, then the vectors
{*,...,%% positively sparR"; if such az does not exist, then the vectof&®, ..., %<}
do not positively spaiik".

Thus, testing a set of vectors to determine whether or natsitpely spanR"
reduces simply to testing for the existence of a solutionntevall-definedlinear pro-
gramsin standard form. Techniques to perform such tests, suchak&bks| i npr og
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algorithm, are well developed and readily available. Fentif a set ofk vectors posi-
tiviely spansR", it is a simple matter to check whether or not this set of vedtoalso a
positive basis oR", if such a check is necessary, simply by checking whetheotamy
subset ok — 1 vectors chosen from this set also positively sginNote that a positive
basis withk vectors will necessarily havein the rangen+ 1 < k < 2n; the case with
k=n+1 is referred to as minimalpositive basis, and the case wkhk- 2n is referred
to as amaximalpositive basis.

3.2.2 Selecting a positive basis

In 86 of Chapter 2, we described how to enumerate all pointsiwdre nearest
neighbors of the origin of a lattice (and thus, with the ajppiate shift, all points which
are nearest neighbors of any CMP on the lattice).3r28 above, we described how to
test a subset of such points to see if the vectors from thénaiagthese points form a
positive basis around the CMP. We now present a generalitdgoto solve the prob-
lem of selecting a positive basis from the nearest-neighbfithe CMP using a minimal
number of new poll points, while creating the maximum acaidg angular uniformity
between the vectors from the CMP to each of these points ighathile minimizing
the skewness of the resulting poll set). Note in Figditzthat, as the number of nearest
neighbors increases, the flexibility in solving this (apgrdty, NP-hard) problem also
increases, though a perfectly distributed minimal posibasis (usingn+ 1 points) is
not always available. Ideally, fon= 1, the solution to the discrete Thomson problem
will produce a positive basis with good angular uniformifyit does not, we may suc-
cessively incrementn by one and try again until we succeed in producing a positive
basis. We have studied three algorithms for solving thibler:

Algorithm A.If the kissing numberr of the lattice under consideration is relatively
large (that is, ift > n; for example, for the Leech lattick,,), then a straightforward
algorithm can first be used to solve Thomson’s problem on &maous sphere im
dimensions. This can be done simply and quickly by fixgng O repulsive particles
at the prespecified lattice points, and initializing- m— q free repulsive particles on
the sphere randomly. Then, at each iteration, a straighéfiar force-based algorithm
may be used to move each free particle along the surface gptiere a small amount
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Figure 3.2 Various minimal positive bases (shown in red) around thgimi(shown
in blue) in the (left) triangular, (center) BCC, and (rigC lattices. Note that the
triangular and BCC lattices each have two perfectly digted minimal positive bases.
In contrast, there are several choices for selecting a nainpositive basis in the FCC
lattice, but none is perfectly distributed.

in the direction that the other particles are tending to pgtysdnd iterating until the set
of particles approaches an equilibrium. The free partict ts nearest to a nearest-
neighbor lattice point around the CMP is then moved to saiic&point and fixed
there, and the remaining free particles adjusted until teagh a new equilibrium. This
adjust/fix/adjust/fix sequence is repeated until all pkesiare fixed at lattice points.

Algorithm B.If the kissing number of the lattice under consideration is relatively small
(that is, if T is not well over an order of magnitude larger tha)) then it turns out to
be more expedient to solve the discrete Thomson problerathjirdo accomplish this,
again taking the presepecified repulsive particles as fixed, we initiatizem— q free
repulsive particles randomly om+ m— q nearest-neighbor lattice points around the
CMP and then, at each iteration, move the two or thfese particles that are furthest
from equilibrium in the force-based model described abtivat (s, those free particles
which have the highest force component projected onto tHawaiof the sphere) into
new positions selected from the available locations in su@ay as to minimize the
maximum force (projected onto the sphere) over the entirefgéixed and free) parti-
cles. Though each iteration of this algorithm involves ahasstive search for placing

4Moving more than two or three particles at a time in this alion makes each iteration computa-
tionally intensive, and has little impact on overall corgamnce of the algorithm, whereas moving only
one at a time is found to significantly impede convergenchémptimal solution.
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the two or three free particles in question, it convergeslduiwhent is O(100) or less.

Algorithm C.For intermediate kissing humbers a hybrid approach may be used: a
“good” initial distribution may be found using Algorithi, then this distribution may
be refined using AlgorithrB.

In each of these algorithms, to minimize the number of newtion evaluations
required at each poll step, a check is first made to determimether any previous
function evaluations have already been performed on theseaeighbor lattice points
around the CMP. If so, then particles are fixed at these lmestiwhile the remaining
particles are adjusted via one of the three algorithms destrabove. By so doing,
previously-calculated function values may be used withimarn effectiveness during
the polling procedure. When performing the poll step of amyate-based search, in
order to orient the new poll set favorably (and, on averagi tiee poll step quickly),
a particle may also be fixed at the nearest neighbor point théHowest value of the
surrogate function; when polling, this poll point is thusaated first.

The iterative algorithms described above, though in pcaajuite effective, are
not guaranteed to converge from arbitrary initial conditido a positive basis for a
given value ofm, even if such a positive basis exists. To address this isGtles al-
gorithm used fails to produce a positive basis, the algarithay be repeated using a
new random starting distribution. Our numerical testsgatk that this repeated ran-
dom initialization scheme usually generates a positiveshaishin a few initializations
when such a positive basis indeed exists. Since at timesg, gorenm, there exists no
configuration of the free particles on the nearest-neighditice points that produces a
positive basis, particularly when the previous functioalaations being leveraged are
poorly configured, the number of new random initializatiemkmited to a prespecified
value. Once this value is reachexdlis increased by one and the process repeated. As the
cost of each function evaluation increases, the user caease the number of random
initializations attempted using one of the above algorgHar each value afnin order
to avoid the computation of extraneous poll points that migliact be unnecessary if
sufficient exploration by the discrete Thomson algorithreadibed above is performed.

Numerical tests have demonstrated the efficacy of this ratineple strategy,
which reliably generates a positive basis while keepingmatational costs to a min-
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imum even when leveraging a relatively poor configuratiopmavious function eval-
uations and when working in relatively high dimensimnAdditionally, the algorithm

itself is independent of the lattice being used; the onlyisgdo the algorithm are the
dimension of the problem, the locations of the nearesthimglattice points, and the
identification of those nearest-neighbor lattice pointsWbich previous function eval-
uations are available.

3.2.3 Implementation of feasible domain boundaries

When implementing a global searchnmdimensions, or even when implement-
ing a local search on a function which is ill-defined for certaonphysical values of the
parameters (such as negative concentrations of chemitassimportant to restrict the
optimization algorithm to look only over a prespecified ‘$éde” region of parameter
space. For simplicity, the present work assumes rectangarestraints on this feasible
domain (that is, simple upper and lower bounds on each paeawvedue). An efficient
n-dimensional lattice with packing radiys is used to quantize the interior of the fea-
sible domain, efficien{n — 1)-dimensional lattices with packing radiys_1 = pn/2
are used to quantize the portions of the boundary of theldleadomain with one active
constraint (that is, the “faces”), efficie(rt— 2)-dimensional lattices with packing radius
Pn—2 = Pn/4 are used to quantize the portions of the boundary of thebleadomain
with two active constraints (that is, the “edges”), etc. phesent section describes how
to search over the boundaries of the feasible domain, andttamove on and off of
these boundaries as appropriate, while carefully restgall function evaluations to
the interior and boundary lattices in order to coordinateffinient search.

We distinguish between two scenarios in which the pollingpethm as de-
scribed thus far must be adjusted to avoid violating(the 1)-dimensional boundariés
of the feasible domain. In the first scenario, the CMP is nedfit far (that is, greater
than p, but less than 2,) from the boundary of the feasible domain, and thus one or
more of the poll points as determined by one of the algorithroposed in §.2.2might
land slightly outside this boundary. In this scenario, dective remedy is simply to
eliminateall lattice points which land outside of the feasible donfeam the list of po-

5That is, the portions of the boundary with a single activestaint.
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Figure 3.3 Constraint handling: a scenario in which a CMPxat (O 0 0)T sits on
an(n—2) = 1-dimensional edge of am= 3-dimensional feasible region with bounds
X1 > 0 andx, > 0. Note that the feasible neighborhood of this edge is p@fjtspanned
by the nearest neighbors on the integer lattice, and thaatedional vectors are added
to the poll set to facilitate moving off of each of these agtonstraint boundaries.

tential poll points, and then taugmenthis restricted list of potential poll points with all
lattice points on the nearbiyn — 1)-dimensional constraint surface which are less than
2pn from the CMP. From this modified list of potential poll pointee poll set may be
selected in the usual fashion using one of the algorithmerites] in 8.2.2

In the second scenario, the CMP is relatively close (thdess tharpy) to the
boundary of the feasible domain. In this scenario, it is nedfgctive simply to shift
the CMP onto the nearest lattice point on {me- 1)-dimensional constraint surface.
With the CMP on the feasible domain boundary, each poll sigpoees a minimum
positive basis selected on the lattice quantizing(the 1)-dimensional boundary and,
in addition, polls an additional lattice point on the interof the feasible domain to allow
the algorithm to move back off this constraint boundary.allye this additional point
would be located on a inward-facing vector normal to the- 1)-dimensional feasible
domain boundary a distangg from the CMP; we thus choose the interior lattice point
closest to this location.

Multiple active constraints are handled in an analogousmaafsee Figur8.3).
In an n-dimensional optimization problem with > 2 active constraints, the CMP is
located on an active constraint “surface” of dimension p. An efficient (n— p)-



110

dimensional lattice with packing radiys—, = pn/2P is used to quantize this active
constraint surface, and a poll set is constructed by crgatipositive basis selected
from the points neighboring the CMP within tlie — p)-dimensional active constraint
surface, together witlp additional points located on th@ — p+ 1)-dimensional con-
straint surfaces neighboring the CMP. Ideally, thesadditional points would be lo-
cated on vectors normal to tiie — p)-dimensional active constraint surface a distance
Pn—p+1= pn/2P~1 from the CMP; we thus choose the lattice points on(ine p+ 1)-
dimensional feasible domain boundaries closest to thesgitms.

In practice, it is found that, once an optimization routineves ontop > 1
feasible domain boundaries, it only somewhat infrequemibyes back off. To account
for this, the p additional poll points mentioned in the previous paragraph polled
after the other poll points forming the positive basis within tfre— p)-dimensional
active constraint surface.

3.2.4 Quantifying the skewness of positive bases

A final relevant metric of a lattice that relates to the perfance of the corre-
sponding lattice-based optimization is the deviation fimenfect uniformity of the best
minimal positive basis available on nearest-neighboickatpoints. Thebest nearest-
neighbor minimal positive basis skewnes$s lattice,s, is thus now defined as the ratio
between the largest and the smallest angles between anetiars in the best minimal
positive basis available on nearest-neighbor latticetspminus one. Therefore= 0
indicates a perfectly uniform minimal positive basis onnes&neighbor lattice points,
as exhibited byA; (see Figured.2a) andA; (Figure3.20). In constrastAz throughAg
all haves = 0.3333 (see, e.gAg in Figure3.2c).

Surprisingly, the best nearest-neighbor minimal positigsis skewness dig
is alsos = 0.3333; one might initially expect it to be much smaller thais tindeed,
one might hope that it would be fairly closede= 0) due to the relatively large kissing
number ¢ = 240) of thisn = 8 lattice. Interestingly, the best nearest-neighbor p@sit
basis ofEg when usingh+ 2 points (that is, instead of a minimal positive basis with1l
points) is perfectly uniform. The tests reported BiSthus usen+ 2 points instead of
n-+ 1 points when polling on thEg lattice.
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A minimal positive basis on nearest-neighbor lattice poddesn’t even exist on
the Z" lattice (indeed, a positive basis on nearest neighborseo¥.thlattice requires
a full 2n points). This was, in fact, a matter of significant inconegrtie in previous
work when using the Cartesian lattice as the default chacsuch problems, as using
a maximal positive basis rather than a minimal positivedassentially doubles the cost
of each complete poll step for large When developing a minimal positive basis for
the Z" lattice, it is thus common (see, e.g., Booktral. 1999) to select the Cartesian
unit vectorse! throughe” and one additional “oddball” vector in the-1, -1, ..., 1)
direction which is\/n longer. Note the “clustering” of the Cartesian unit vectors
directions generally opposite to the oddball vector. Tordgifyg the skewness of this
minimal positive basis is cos$(—1/,/n)/(1/2) — 1, which in dimensiona = 2 through
8 is given by 0.5, 0.3918, 0.3333, 0.2952, 0.2677, 0.24680a2301. Note that, while
the skewness of the angular distribution of this minimaltpesbasis actually decreases
gradually as the dimension of the problem increases, th@iratengths of the vectors
to the nearest-neighbor lattice points and the oddballoventthis basis increases like
/N (that is, from 1.4142 im = 2 to 2.8284 inn = 8). This is quite unfortunate, as it
leads to a peculiar nonisotropic behavior of the optim@aalgorithm over parameter
space (for further discussion on this point, see the sixtagraph of 8.5.1). The tests
reported in 8.5 use this peculiar minimum positive basis, with a long odbbettor,
when polling on theZ" lattice.

We now have all of the ingredients necessary to coordinat®3a &gorithm,
as laid out in 8.1, with any of the lattices listed in Tables 2-3 of Chapter 2jlevboth
reusing previous function evaluations and respectingsh@unnds on the feasible region
of parameter space. Numerical testing of such an algorighmegorted in 8.5.

3.3 Areview of the Kriging interpolation strategy

3.3.1 Interpolation - basic concepts

The purpose of the search step of an SMF algorithm is to iotatg, and ex-
trapolate, the trends exhibited by the existing functioaleations in order to suggest
new regions of parameter space, perhaps far from the CMRgewhe function value
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is anticipated, with some reasonable degree of probalititipe lower than that of the

CMP. There are a variety of possible ways of accomplishimng the leverage here the

Kriging interpolation strategy (Krige 1951; Matheron 1988nes 2001; Rasmussen &
Williams 2006).

The problem of interpolation is the problem of drawing a sthawurve through
data points in order to estimate the function values in regiwhere the function it-
self has not yet been computed. The problem of interpolattars, necessarily builds
on some hypothesis that models the function behavior inrdaléconnect the dots”.
The most common such model is a mechanical one, based on pi¢lem of wood, or
“spline”, that is “bent” in order to touch all the data pointisis mechanical model leads
directly to the mathematical algorithm known as cubic spiimerpolation. A perhaps
equally valid hypothesis, which forms the foundation fa Kriging interpolation strat-
egy, is tomodel the underlying function as a realization, with maximiikelihood, of
some stochastic proces$he stochastic model used in this approach is selected to be
general enough to model a broad range of functions reaspnatl, yet simple enough
to be fairly inexpensive to tune appropriately based on teasured data. There are
many such stochastic models which one can select; the sishpdbastic model con-
sidered here leads to the easy-to-use interpolation gyratemmonly referred to as
ordinary Kriging.

3.3.2 Notation of statistical description

To begin, consideN points{x%,...,xN}, at which the function will ultimately
be evaluated, and model the function’s value at tiepeints with the random vector

f(Xl) fl
f= : =1 :
f(XN) fN
To proceed further, we need a clear statistical framewodeszribe this random vector.

The cumulative distribution function (CDF) of the randonctar f, denoted
d:(f), is @ mapping fronf € R" to the real interval0, 1] that monotonically increases in
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each of the components fifand is defined
df(t) = P(fl < 117 f2 < 127 cey fn < in)7

wheref is some particular value of the random vedt@ndP(S) denotes a probability
measure that the conditions stateiare true. In the scalar case, for examplgl) =
0.6 means that it is 60% likely that the random variablgatisfies the conditioh < 1.
For a random vectdrwhose CDF is modelled as being differentiable everywhée, t
probability density function (PDR)(f’) > 0 is a scalar function df defined such that

0"dk(f)

0,08, -0 -t

//2 pff’dfldfz df e pf) =

For small|Af’|, the quantitypr (f')Af] AfS - - - Afy represents the probability that the ran-
dom vectorf takes some value within a small rectangular region cenigréte valudg’
and of widthAf/ in each coordinate directicg. Note that the integral of(f) over all
possible values df is unity, that is

pr(f/)df’ = 1.
Rn

The expected value of a functigif) of a random vectof is given by

£an} = [ o) pr(f)ax

The expected value may be interpreted as the average of #mgityun question over
many realizations. In particular, the mefaand covarianc of the random vectdrare
defined as

feafty= [ Fud,  RESETHE-DT= [ =D -HT p)ar

3.3.3 Statistical modeling assumptions of ordinary Krigirg

The PDF of the random vectbe= f,,.1 in this analysis is modelled as Gaussian,
and is thus restricted to the generic form

1 —(F'—H)TR (' 1)

) = Gz

(3.1a8)
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where the covariand® is modelled as a constaat, referred to as the variance, times a
correlation matribR whose{i, j }'th component;; is given by a model of the correlation
of the random functiorf between pointx' andx!, where this correlation mode{., )

itself decays exponentially with the distance betweentsoirandx!; that is,
n

P2 0%R, where rjj2r(x',x)) and r(x,y)éﬂexp(—@ﬂxe—ydpf’) (3.1b)
1

for some yet-to-be-determined constaats 6, > 0, and O< p, < 2 for ¢ =1,...,n.
The mearf in the Gaussian modeB(19 is itself modelled as uniform over all of its
components:

f2u1 (3.1¢)
for some yet-to-be-determined constantThere is extensive debate in the recent litera-
ture (see, e.g., Isaaks & Srivastava 1989; Rasmussen 8&aWidli2006) on the statistical
modeling assumptions one should use in a Kriging model sfgbit. It is straightfor-
ward to extend the present investigation to incorporate festrictive Kriging models;
the ordinary Kriging model is used here primarily due to itsdicity.

3.3.4 Optimization of the coefficients of the model

If the vector of observed function values is
o

fO =
fQ

then the PDF corresponding to this observation in the sitalsnodel proposed ir8(1)

can be written as
1 —(fe—p)TRI(fo— p1)
0y _
pr(f7) = (27-[)n/2(02)n/2|R‘1/2eXp 202 )

The process of Kriging modeling boils down to selecting tleeapmeterss?, 6, p,

(3.2)

andu in the statistical model proposed iB.1) to maximize the PDF evaluated for the
function values actually observeds- f°, as given in 8.2).
Maximizing p;(f°) is equivalent to minimizing the negative of its log. Thusg;, fo
simplicity, consider
(fO—p1)TRH(fO—pl)
202

J = —log[ps(f°)] = glog(Zn) + g log(a?) + % log(|R|) + :
(3.3)
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Setting the derivatives af with respect tou and o2 equal to zero and solving, the
optimal values ofz ando? are determined immediately:

1TR1fo ,  (fo—pl)TRY(fo—p1)

_- _ 3.4
TrRi1’ ¢ n (34)

u

With these optimal values gf andg? applied, noting that the last term i8.8) is now
constant, what remains to be done is to minimize

3= Dlog(0?) + 5 log(|R) (3.5)

with respect to the remaining free parametésandp,, whereo? is given as a function
of Rin (3.4 andR, in turn, is given as a function of the free parame®@rsnd p, in
(3.1b. This minimization must, in general, be performed nunalyc However, the
functionJ; is smooth in the parametefisandpy, so this optimization may be performed
efficiently with a standard gradient-based algorithm, sacthe nonquadratic conjugate
gradient algorithm, where the gradient itself, for simipjicmay easily be determined
via a simple finite difference or complex-step derivativpraach.

Note that, after each new function evaluation, the Krigiagameters often ad-
just only slightly, and thus the previously-converged eslwf these parameters form
a good initial guess for this gradient-based optimizatigodthm. Note also that,
while performing this optimization, the determinant of ttw@relation matrix occasion-
ally reaches machine zero. To avoid the numerical diffictiigt taking the log of zero
would otherwise induce, a smad[10-6)] term may be added to the diagonal elements
of R. By so doing, the Kriging predictor does not quite have theeaf the sampled
data at each sampled point; however, it remains quite closgthe algorithm is made
numerically robust [Bookeet al, 1999].

5To simplify this optimization,p, may be specified by the user instead of being determined via op
timization; this is especially appropriate to do when thenber of function evaluation is relatively
small, and thus there is not yet enough data to determinetbeth andp, uniquely. If this approach is
followed, py = 1 or 2 are natural choices; the case with= 1 is referred to as an Ornstein-Uhlenbeck
process, whereas the case with= 2 is infinitely differentiable everywhere.
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3.3.5 Using the tuned statistical model to predict the funabn value

at new locations
Once the parameters of the stochastic model have been tsidedeibed above,
the tuned Kriging model facilitates the computationallgxpensive prediction of the

function value at any new location To perform this prediction, consider now the
N+ 1 points{x%,...,xN X}, and model the function’s value at thee- 1 points with

- (f(%) - @

wheref is theN x 1 random vector considered previously ahis the random scalar

the vector

modeling the function at the new point. Analogous stattassumptions as laid out in
(3.1 are again applied, with the correlation matrix now writéen

r —
= , Pr£ o°R, (3.6)
rio1

R—

whereRis theN x N correlation matrix considered previously and, consistétit this
definition, the vector is constructed with components

n

fi=r(x,x), where r(x,y)éﬂ

;1€‘XI0< — Byl —W|pé)-

Following Jones (2001), note by the matrix inversion lemhe R may be written

— R 1
R'=
[r_T 1
(3.7)

Keeping the parameter value®, 6,, p;, and 1 as tuned previously, we now

RI+RY1-rMRM) R - RY1-rTR 1IN
—(1-TTRI)4TR? (1-TTR 1)1 '

examine the variation of the PDF in the remaining unknowradlogm variable,f. Sub-
stituting 3.6) and @.7) into a PDF of the form3.19, we may write
(" — p) TRO(F — 1)

pr(f') =Cy - exp— 557 =...=Cy-exp—

where, with a minor amount of algebraic rearrangement, teeamand variance of this
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Figure 3.4 (a) The Kriging predictorf (x), and (b) its associated uncertaingg(x),
for a perturbed quadratic bowl sampled on a square grid>o7 points. (c) The corre-
sponding MLI search function used for a global search in timoethsions (see34).

scalar Gaussian distribution modeling the random sdalmork out to bé

f(x)=E{t(0)} =&{f} = pu+r R Y- p1), (3.9a)
LX) = E{[f(X) — ]2} = &{[f — f]?} = a?(1—r TR 1r). (3.9b)

Equations 8.99-(3.9b give the final formulae for the Kriging predictof,(i), and its
associated uncertaints?(X).

When applied numerically to a representative test problasmexpected, the
Kriging predictor function, which we denot@(i), interpolates [that is, it goes through
every observed function value at points- x* to x = x\], whereas the uncertainty func-
tion, denoteds?(X), is zero at each sampled point, and resembles a Gaussiamp=bum
between these sampled points, as seen in FigdreNote that, once the parameters of
the statistical model have been determined, as describ88l34 the formula 8.99-
(3.9b) for the Kriging predictorf(i) and its corresponding uncertairgf(X) at any test
pointX is computationally quite inexpensfe

"An alternative interpretation of this process models thestantu itself as a stochastic variable rather
than as a constant. Following this line of reasoning ultetyagives the same formula for the predictor
f(x) as given in 8.99, and a slightly modified formula for its associated undatya

1-rTR1r)?
2 —o?(1-rRiry AR DT
(X)=0 r M+ —Tr 11

Which formula [3.9bH or (3.9B)] is used in the present model is ultimately a matter ofditonsequence
as far as the overall derivative-free optimization alduoritis concerned; we thus prefer the form given in
(3.9 due to its computational simplicity.

8Note that, for maximum efficiencig ! should be saved between function evaluations and reused for
every new computation of ands? required.

(3.95)
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3.4 Areview of global optimization strategies leveraging

Kriging-based interpolation

The previous section reviewed the Kriging interpolatiomtggy which, based
on a sparse set of observed function valfi@éx) for i = 1,...,N, develops a func-
tion predictorf (x) and a model of the uncertain§(x) associated with this prediction
for any given set of parameter values Leveraging this Kriging model, an efficient
search algorithm can now be developed for the derivatige-ptimization algorithm
summarized in 8.1

The effectiveness of the various Kriging-based searchegfies which one might
propose may be tested by applying them repeatedly to sinegleproblems via the
following procedure:

e a search functiod(x) is first developed based on a Kriging model fit to the exist-
ing function evaluations,

e a gradient-based search is used to minimize this (computlly inexpensive,
smoothly-varying) search function,

e the functionf (x) is sampled at the poitwhich minimizes the search functigjn

¢ the Kriging model is updated, and the search is repeated.

In the present work, we consider a scalar test problem withiphei minima, f(x) =
sin(x) +x2, on the intervak € [~10,10], and use four starting points to initialize the
searchx = —10, x = —5.2, x = 6, andx = 10. Ineffective search strategies will not
converge to the global minimum éfx) in this test, and may not even converge to a local
minimum. More effective search strategies converge to tbiead minimum following
this approach, and the number of function evaluations reddor convergence indicates
the effectiveness of the search strategy used.

Perhaps the most “obvious” strategy to use in such problsrasriply fitting a
Kriging model to the known data, then searching the Krigingdgctor itself,J(x) =

f(x), for its minimum value. This simple approach has been impleted in a variety
of examples with reasonably good results (see Boekat, 1999). However, as shown

9For the moment, to focus our attention on the behavior of #aech algorithm itself, no underlying
grid is used to coordinate the search in order to keep fumeN@luations far apart.
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Figure 3.5 Convergence of a search algorithm minimizing the Krigimgdictor,
J(x) = f(x), at each iteration. This algorithm does not necessarilyege to even
a local minimum, and in this example has stalled, far fromgludal minimum, after

six iterations.

clearly in Figure3.5, this approach can easily break down. The Kriging predidtss
not necessarily model the function accurately, and its mizeition fails to guarantee
convergence to even a local minimum of the functitix). This observed fact can
be motivated informally by identifying the Kriging predactas aninterpolatingfunc-
tion which only under extradrdinary conditions predictauadtion value significantly
lower than all of the previously-computed function valuascer ordinary conditions, a
strategy of minimizing the predictor will thus often stailthe vicinity of the previously-
evaluated points.

To avoid the shortcomings of a search defined solely by thenmeation of the
predictor, another strategy explored by Bookeal (1999) is to evaluate the function
at two points in parameter space during the search: one point chtosainimize the
predictor, and the other point chosen to maximize the ptediencertainty. Such a
heuristic provides a guarantee of global convergence, @sd¢hch becomes dense in
the parameter space as the total number of function evahghl, approaches infinity
(see 8.1). However, this approach generally does not converge fuak compared
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Figure 3.6 Convergence of a search algorithm minimizihg) = f(x) —c- s2(x) at
each iteration, taking = 1. Note that the global minimum is found after just a few

iterations. However, global convergence is not guaranteed

with the improved methods described below, as the extralsgamint has no component
associated with the predictor, and is thus often evaluateelatively “poor” regions of
parameter space.

We are thus motivated to develop a more flexible strategy pooes slightly
awayfrom the minima of the predictor. To achieve this, consider tminimization of
J(x) = f(x) —c-%(x), wherecis some constant (see Cox & John 1997 and Jones 2001).
A search coordinated by this function will tend to explorgioms of parameter space
where both the predictor of the function value is relatiiely and the uncertainty of
this prediction in the Kriging model is relatively high. Withis strategy, the search
is driven to regions of higher uncertainty, with the - s?(x) term in J(x) tending to
cause the algorithm to explore away from previously evaldigtoints. Additionally,
minimizing f (x) — c- $(x) allows the algorithm to explore the vicinity ofultiplelocal
minima in successive iterations in order to determine, &ithncreasing degree of cer-
tainty, which local “bow!” in fact has the deepest minimurmhéelparametec provides
a natural means to “tune” the degree to which the searchvsmto regions of higher
uncertainty, with smaller values offocusing the search more on refining the vicinity
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of the lowest function value(s) already found, and largénes ofc focusing the search
more on exploring regions of parameter space which arealdtively poorly sampled.
This parameter may tuned based on knowledge of the funcgomgbminimized: if the
function is suspected to have multiple minincagan be made relatively large to ensure
a more exploratory search, whereas if the function is susgexf having a single min-
imum, ¢ can be made relatively small to ensure a more focused seattie ivicinity
of the CMP. For an appropriate intermediate value,afhe resulting algorithm is of-
ten quite effective at both global exploration and localnefinent of the minimum, as
illustrated in Figure3.6. The strategy of searchint{x) = f(x) — c- $(x) also extends
naturally to multiple dimensions, as illustrated for a tdioaensional problem in Figure
3.4c. Note also that, in the spirit of Booket al (1999) [who effectively suggested, in
the present notation, exploring based on oth0 andc — « at each search step], one
can perform a search using multiple but finite values aff each search step, returning a
set of points designed to focus, to varying degrees, on timpeting objectives of global
exploration and local refinement. If at each search ktapleast one point is included
which minimizesf (x) — ¢ - $2(x) for a value ofc, which itself approaches ask — o,
then the search drives at least some new function evalisasiofficiently far from the
existing points that the function evaluations eventuadlgdime dense over the feasible
domain, thus guaranteeing global convergence. Thug(@n— c-%(x) search, when
used properly, can indeed be used in a globally convergenhara

Minimizing J(x) = f(x) — c- $%(x) is not the only strategy to take advantage of
the estimate of the uncertainty of the predictor providetheyKriging model. Another
effective search strategy involves maximizing the proliglof achieving a target level
of improvement below the current CMP; this is called thaximum likelihood of im-
provemen{MLI) approach [see Kushner 1964, Stuckman 1988, Perttunen EQ$dr
1992, and Mockus 1994]. If the current CMP has a functione/d\,, then this search
strategy seeks thatfor which the probability of finding a function valugx) less than
some prespecified target valligrget [that is, for whichf(x) < fiarget < fmin] is maxi-
mized in the Kriging model. Iff (x) is known to be a positive function, a typical target
value in this approach i&arget= (1 — 9) fmin, Wwhered may be selected somewhere in
the range of M1 to Q2. As for the parameter discussed in the previous paragraph,
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Figure 3.7: MLI search with a targeT = 10%. Note convergence to global minimum,
as well as exploratory nature of the search which guaragieesl convergence.

the parameted in this strategy tunes the degree to which the search isrdtoveegions
of higher uncertainty, with smaller values &ffocusing the search more on refining
the vicinity of the lowest function value(s) already foumad larger values ab focus-
ing the search more on exploring regions of parameter spachvare still relatively
poorly sampled. As seen in FiguBe7, the MLI search offers performance similar to
the f(x) — c- s2(x) method discussed previously. In contrast with fi{&) — c- s2(x)
approach, even for a fixed (finite) value &f the MLI approach eventually drives the
function evaluations far enough away from existing poihtt the function evaluations
eventually become dense over the feasible domain, thusgiesing global conver-
gence. Thus, the MLI approach is inherently globally cogeet.

Even more sophisticated search strategies can also begeapas reviewed
elegantly by Jones (2001). However, the simplicity, flei{iand performance given
by the strategy of maximizing the MLI renders this approashdequate for our testing
purposes here.

Since both the(x) = f(x) — c- $%(x) search function and the MLI search func-
tion are inexpensive to compute, continuous, and smoothnlgeneral have multiple
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minima, an efficient gradient-based search, initializedfiseveral well-selected points
in parameter space, may be used to to minimize them. As thertaity s>(x) goes

to zero at each sample poid{(x) will tend to dip between each sample point. Thus, a
search is initialized onr2 N total points forming a positive basis near (say, at a diganc
of pn/2) to each of thé\ sample points, and each of these starting points is marched t
a local minima of the search function using an efficient ggatibased search (which is
constrained to remain within the feasible domaixpfThe lowest point of the paths so
generated will very likely be the global minima of the seaiwhction. For simplicity,
the necessary gradients for this search may be computedsingie second-order cen-
tral finite difference scheme applied to the Kriging modefugh more sophisticated
and efficient approaches are also possible.

3.5 Results

Putting everything together, we now develop and test whaidestify as the
Lattice Based Derivative-free Optimization via Global ®gates(LABDOGS algo-
rithm. This algorithm consists of an SMF-based optimizatisee 8.1) coordinated
by uniformn-dimensional lattices (see8&, and further discussion in Chapter 2 of this
study) while leveraging a Kriging interpolant (se2.§ to perform an efficient global
search based on the MLI search function(s8ef)§ The full algorithm has been im-
plemented in an efficient numerical code and is tested inseision inn=2ton =38
dimensions using th&", A,, andEg lattices to coordinate the search, and is applied here
to: Shifted quadratic bowls:

fo(x) = (x—X°) TA(X —x°)
Shifted Rosenbrock functions:
fR(X) = S {11 — (6 = X)2 + (—1)"500{ (%1 —XPq) — (% — X))
The Branin function:

fe(X) = [1— 2x2 + 0.05Sin(47m%p) — X1]2 4 [X2 — 0.5 sin(271%1) ]
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The “T;” function:
fwm(X) = sin(5%1) + sin(5x2) +0.02[(5x; + 1.5)% + (5x2 + 1.5)?]

Note that the first two test functions aredlimensional and have unique minima,
whereas the last two test functions are 2-dimensional avel tmaltiple minima.

3.5.1 SP applied to convex functions

To test the hypothesis that the efficiency of a pattern semrdignificantly
affected by the packing efficiency and/or the nearest-@ghlistribution of the lat-
tices which coordinate it, a large number of SP optimizatiamre first performed on
randomly-shifted quadratic bowls to gather and comparésstal data on the perfor-
mance ofZ"-based,A,-based, andEg-based SP optimizations. The positive-definite
matricesA > 0 and offsetx® defining the quadratic bowls to be minimized, as well as
the starting points used in the searches, were selectedddmafor every set of tests,
and the initialZ", A,, andEg lattices were scaled such that the initial number of points
per unit volume of parameter space was identical.

The Z"-based Ay-based, andEg-based SP algorithms were run from the same
starting points on the same quadratic test functions to dngeslevel of convergence.
Note that several of the significant built-in acceleratieattires of the full LABDOGS
code were in fact turned off for this baseline comparisonstMmtably, complete polls
were performed (that is, the poll steps were not terminatatdediately upon finding
a lower CMP), and no attempt was made to reuse previouslyated points when
forming each successive poll set, or to orient optimally giwen poll set. In fact, the
angular distribution of the poll set around the CMP was fixedf one step to the next
in these initial tests.

Two quantitative measures of the relative efficiency of tpémization algo-
rithms to be tested are now defined. The metris defined as thpercentage of runs
in which the lattice-based algorithm requires fewer fumetevaluations than does the
Z"-based algorithm to converge 99.99% of the way from theahit@alue ofJ(x) to the
optimal value ofJ(x) [which, in these test problems, is easy to compute anallyfjca
The metricr is defined as theatio of the average number of function evaluatioas
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Table 3.3 Performance comparison between fhebased SP algorithm and the-
based SP algorithm applied to randomly shifted quadratigldéor n=2 to 8. ltis
seen that thé\g-based SP algorithm outperformed th&based SP algorithm 85% of
the time, and on average required 30% as many function ewahgao reach the same
level of convergence.
nf 2 | 8 [ 4 [ 5 | 6 [ 7 [ 8 |

p| 74.77 | 81.32 | 84.03 | 84.53 | 84.43 | 84.56 | 85.28
r | 0.4290| 0.4161| 0.3273| 0.3585| 0.3150( 0.3345| 0.3060

Table 3.4 Performance comparison between Bgbased SP algorithm and tt#-
based SP algorithm applied to randomly shifted quadratigldo It is seen that the
Eg-based SP algorithm outperformed th&-based SP algorithm 91% of the time, and
on average required 15.5% as many function evaluationsachréhe same level of
convergence, thus offering nearly twice the performanao&,of

n| 8 |
p| 90.65
r | 0.1554

quired for the lattice-based algorithm to converge 99.99% e way from the initial
value ofJ(x) to the optimal value of(x) divided by the average number of function
evaluations needed for tt#'-based algorithm to converge the same amount.

The p andr measures described above (averaged over 5000 runs for alaeh v
of n) were calculated in the case of thAg lattice (forn = 2 ton = 8) and thekg lattice,
and are reported in Tablé&3 and3.4 Note that values op over 50% and values of
r less than 1 indicate that, on average, the lattice-basedgeRtam outperforms the
Z"-based SP algorithm, witp quantifying how often and quantifying how much.

Note in Table2.1that the “best” lattice im = 2 andn = 3, accoring to several
standard metrics, i8y,; however, as the dimension of the problem increases, devera
other lattices become available, and thatrby 8 the Eg lattice appears to be the best
choice. This observation is consistent with the numeriealits reported in Tables
3.3and3.4, which indicates that thA,-based optimizations provided a consistent and
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Figure 3.8 Typical paths taken by th&,-based SP algorithm (dots) and thébased
SP algorithm (+) on a randomly-shifted quadratic bowl.

substantial improvement over t#8-based optimizations over the entire ramge 2 to
8, and that, im = 8, theEg-based optimization significantly outperformed thebased
optimization.

The mechanism by which the lattice-based SP algorithmseofatpn theZ"-
based SP algorithm on quadratic test problems is how exahmngetail. As described
previously, theZ" minimal positive basis vectors are distributed with poagudar uni-
formity and can not be selected on nearest-neighbor Igttdets. When the optimal
descent direction is poorly approximated by thasel vectors (such as when the op-
timal descent direction is configured somewhere approxtypahidway between the
oddball vector and one of the Cartesian unit vectors), taecbepath must “zig-zag” to
move towards the actual minimum. If the local curvature effilnction is small com-
pared to the current lattice spacing, then the search #igomust take several steps in
a rather poor direction before it must eventually turn bacwl the “valley floor”, as
illustrated by the path of th&"-based SP algorithm in Figu8 Once in this valley,
the lattice spacing must be diminished such that each stifye 6fig-zag” path required
to proceed down the valley floor in fact decreases the functius leads to otherwise
unnecessary lattice refinement and thus very slow progresisebSP algorithm. This
effect is exacerbated when the vectors of the poll set arelasttantially different length,
as the entire set of vectors must be scaled down until moveabeng the direction of
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Figure 3.9 A sample SP minimization comparing tAg-based case (dash-dot line at
left and black+ at center) with théZ"-based case (solid line at left and bkiat right)

on a randomly shifted Rosenbrock function. Note the supevavergence rate of the
Ap-based approach (as illustrated in the convergence pl@ftt tesulting in further
progress toward the minimum &t —1] (as illustrated in the subfigures at center and
right).

the longest poll vector during this zig-zagging motionl stédcreases the function. This
leads to the poor convergence behavior demonstrated b¥'tmsed SP algorithm
along the narrow valley floor of the quadratic bowl indicatedrigure3.8. Of course,
the present arguments are statistical in nature, and infepe&ses either thé,-based
SP algorithm or theZ"-based SP algorithm will sometimes get “lucky” and converge
remarkably quickly. However, it is clear that the optimasdent direction at any given
iteration is more likely to be “far” from the poll vectors whehe poll set is distributed
with poor angular uniformity.

The Ay-based andZ"-based SP algorithms were also applied to a randomly-
shifted Rosenbrock function in a similar fashion. Fig®® demonstrates a typical
case, indicating the respective rates of convergence dinbé&SP algorithms. Théy,-
based SP algorithm demonstrates a substantially improwegecgence rate compared
to theZ"-based SP algorithm.

These results demonstrate that the efficiency of the SRopartia pattern search
can be substantially improved simply by implementing a neffeient lattice to dis-
cretize parameter space.
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3.5.2 LABDOGS applied to Rosenbrock functions

To test the hypothesis that the efficiency of the full LABDOGI§orithm is
significantly affected by the choice of the lattices whicb@bnate it, a more demanding
test than a quadratic bowl is required. We thus consider therapplication of the full
LABDOGS algorithm to randomly shifted Rosenbrock functoihe “valley” in which
the minimum of the Rosenbrock function lies is narrow, cdpnand relatively flat (that
is, with a vanishing second derivative) along the bottomis Thakes it a difficult test
case for any SMF-like algorithm to approximate with a suategunction of sufficient
accuracy to be particularly useful along the valley floohestthan simply to indicate
where the function evaluations are currently relativelgrsp. In other words, both
the search and poll components of the LABDOGS algorithm ategthe test when
searching along the valley floor of the Rosenbrock function.

Two comparisons of the efficiencies of thg-based an&."-based LABDOGS
algorithms (using = 5) applied to randomly shifted Rosenbrock functions areriepol
here. As in the SP tests described previously, the initigdndZ" lattices were scaled
appropriately so as to be of the same initial density.

Recall in the SP tests the metp¢which quantifiechow oftenthe lattice-based
method outperformed the Cartesian-based method, and tine mevhich quantifying
how muchthe lattice-based method outperformed the Cartesiardbas¢hod. In this
section, we use two similar metriggandr, but now terminate each optimization after a
particular number of iterations rather than after convecgdo a given percentage of the
(known) optimal solution. Specifically, the metgds defined as the percentage of runs
in which theAs-based LABDOGS algorithm converged further than did #iebased
LABDOGS algorithm after 300 function evaluations, wherdasmetricr is defined as
the ratio of the average function value to which fyebased LABDOGS algorithm con-
verged after 300 function evaluations divided by the avefagction value to which the
Z"-based LABDOGS algorithm converged after 300 function ea@bns. The results
forn= 2 to 5 (averaged over 200 runs foe= 2, 3, and 4, and 100 runs for=5) are
reported in Table.5. Note that values op over 50% and values afless than 1 indi-
cate that, on average, the lattice-based LABDOGS algorithtperforms th&Z"-based
LABDOGS algorithm, withp quantifying how often and quantifying how much. It is



129

\ “HitH
10 Ao M
T
L
L i
- R

10° 1 Mt -
‘ : h
e 1

1

L L L L I L L L n
0 20 40 60 80 100 120 140 160 180 200

Figure 3.1Q Convergence of the LABDOGS code usiAg (red) vsZ" (green), on an
n= 6 Rosenbrock function.

Table 3.5 Performance comparison between thebased LABDOGS algorithm and
the Z"-based LABDOGS algorithm applied to randomly shifted Raseok functions.

For n= 2, it is seen that thé\,-based SP algorithm outperformed the-based SP
algorithm about 64% of the time, and on average convergedftmcion value 65%

better using the same number of function evaluations.

" 2 [ 3 [ 45

64.0 | 56.0 | 63.0 | 68.0
0.651| 0.699| 0.773| 0.758

seen that thé,-based LABDOGS algorithm consistently and significantlypauforms
theZ"-based LABDOGS algorithm.

Figure3.10compares the convergence of thebased an@."-based LABDOGS
algorithms on a representative realization of the Rosatnction inn= 6. The con-
vergence of the two algorithms are similar in behavior dyitihe first 20 iterations,
during which they share a nearly identical search, with ifferénces between the two
becoming more and more apparent as convergence is appdodcitially, the poll steps
return much smaller improvements than the search step® tbasurrogate model ade-
quately represents the walls of the Rosenbrock functiaretty identifying the “valley
floor”, the search becomes less effective, and both algostrely more heavily on the
polling algorithm to identify the minimum.
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Figure 3.11 Points evaluated by the LABDOGS algorithm when explorimg Branin
function (with multiple minima), with (leftg = 2 and (right)c = 10000. Note the more
“focused” sampling whert is small and the more “exploratory” sampling wheris
large.

3.5.3 LABDOGS applied to Branin and T; —demonstrating global

exploration with local refinement

Thus far, only functions with unique minima have been exgdorAs the LAB-
DOGS algorithm has the capability to locate and explore ipleliocal minima in an
attempt to identify and refine an estimate of the global minimsome searches were
performed on two test functions with multiple minima, BragindT;, to demonstrate
this capability.

On the interval-2 < x < 2,—2 < y < 2, the Branin function has five local min-
ima. As seen in Figur8.11, with the search parameter= 2, the LABDOGS algorithm
does an excellent job of locating and exploring all of thes=al minima, eventually
converging to an accurate estimate of the global minimunth\d4= 10000, the search
tends to be more “space-filling”, acting at each step to redine maximum uncertainty
of the Kriging surrogate. It is clearly evident that, as themier of function evalua-
tions gets large in the = 10000 case, this search will tend to explore nearly unifgrml
over the entire feasible domain. [In the limit thais infinite, the function evaluations

become dense d¢ — o, thereby assuring global convergence.] However, for alsmal
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Figure 3.12 Points evaluated by the LABDOGS algorithm when explorimgT func-
tion (with multiple minima) withc = 1000 after (left) 30 function evaluations, (center)
60 function evaluations, and (right) 100 function evaloas. Note (after 30 function
evaluations) that the LABDOGS algorithm initially iden¢i§ and converges to a local
minimum near the lower-left corner. Ultimately (after 1Q@h€tion evaluations), the
LABDOGS algorithm successfully identifies a refined estigratthe global minimum.

number of total function evaluatioms[which should be the primary problem of interest
if function evaluations are expensive!], the strategy sitinallerc in fact identifies and
refines the estimate of the global minimum point much soatethe case with large
wastes a lot of computational effort reducing the uncetyairi the surrogate in areas
predicted to have poor function values.

Similar behavior can be seen for thg test function in Figure8.12 Initially,
the algorithm happens upon the local minimum in the low#rderner of the feasible
domain. With its exploratory function evaluations, howevke algorithm ultimately
identifies and refines its estimate of the global minimum.

While these results indicate encouraging global explomatfurther testing of
the LABDOGS algorithm on nonconvex functions is certainlgrianted, particularly
in high-dimensional problems. In particular, further refiment of the algorithm to pro-
vide the most robust combination of “focused” and “explorgt sampling remains to
be performed; however, the present results clearly demaieghe capability and flex-
ibility of the LABDOGS algorithm to strike this balance waimaintaining maximum

computational efficiency.
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3.6 Conclusions

The present work proposes a new algorithm, dubbed LABDO@Sidrivative-
free optimization formed via the tight integration of

¢ the efficient SMF algorithm (see38l) for a surrogate-based search coordinated
by an underlying grid, in order to keep function evaluatitarsapart until conver-
gence is approached,

¢ a uniform “grid” selected from those available in latticedny (see 8.2and fur-
ther discussion in Chapter 2 of this study) to coordinatéhsarc optimization
algorithm, in order to reduce the average quantizatiorref@ grid of a given
density and to better distribute the poll points during tb# gtep, and

¢ a highly effective search algorithm, leveraging a Krigingerpolant (see33) to
construct the MLI search function combining both the funictpredictor and a
model of its associated uncertainty, in order to providexlile combination of
global exploration and local refinement during the seareb §8.4).

The numerical results achieved via this algorithm (s@&)8ndicate effective conver-
gence of the resulting algorithm on a range of benchmarkrop#tion problems, and
reveal a clear advantage for using an efficient lattice ddrivom ann-dimensional
sphere packing to coordinate such a search, rather thaeté®fore default choic&,",
which is simply untenable in light of the clear advantagesisihg alternative lattices
which are, quantifiably, both more uniform and have a morerve distribution of
nearest neighbors, especially as the dimension of the atiion problem is increased.

The flexible numerical code we have developed which implemére LAB-
DOGS algorithm has been written from scratch, and each stiheoof the code has
been scrutinized to maximize its overall efficiency for syss with expensive function
evaluations.

Much interesting work remains to be done. The possible egiins of such a
derivative-free optimization code are quite broad. Ndtardensions of the algorithm
proposed herein include the implementation and testing \&reety of lattices, more
sophisticated versions of Kriging interpolation, and amprate penalities for online
parameter tuning; such extensions are all well underwayyvath be reported in future
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work.
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Chapter 4

Lattice-based Mesh Adaptive Direct
Search \-MADS)

4.1 Introduction

This chapter introduces and te&tsMADS, a new variant of the Mesh Adaptive
Direct Search (MADS) class of derivative-free optimizatelgorithms for constrained
nonsmooth functions that is built on maximally unifotattices/, rather than Carte-
sian gridsZ", as the underlying mesh used to coordinate the explorafipam@mmeter
space. When a poll step fails to find a mesh point with a batieetfon value than that
of the current candidate minimum point (CMP), in additiorréorienting the poll set,
a mesh refinement of a factor of 2 (rather than a factor of 4sed in previous MADS
implementations) is performed l-MADS; slowing the refinement of the mesh in this
manner as the iteration proceeds is found to increase theofatonvergence, as an
appropriately-coarse underlying mesh is valuable in gdizexd pattern search (GPS)
algorithms of this sort in order to keep function evaluasioalatively far apart until
convergence is approached. The current leading (Cartbsised) MADS algorithm,
OrthoMADS, is extended naturally to the present latticedubsetting by restricting the
new poll points to lie on the shell of lattice points thatki@ops from the current CMP
at thek'th level of mesh refinement. In such shells, there is a rgpigbwing set of
points to select the poll points from in the lattice-basdtisgask is increased (dubbed

134
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the ‘coordination sequence’), thus leading to poll setdWwigh angulaandradial uni-
formity. A novel mesh coarsening heuristic is also intragtligvhich makes maximum
use of the most recent effective polling direction while jeg the underlying mesh
appropriately coarse. Numerical tests demonstrate csively that the convergence
of the resulting\-MADS algorithm is significantly faster than previous MADS&ple-
mentations, thus making improved progress towards thenmoim when only a limited
number of function evaluations can be afforded. As with bMADS variants, the pos-
sible polling directions ultimately become dense on the lnypersphere as the lattice is
refined, thus preserving the guaranteed convergence thiastics of the MADS class
of algorithms as the number of function evaluations ultehabecomes large.

4.2 Background

Practical applications in engineering, science, finanasiness, and elsewhere
often call for efficient derivative-free algorithms for thptimization of expensive non-
smooth functions over a constrained spaca parameters. The field of derivative-free
optimization has a long and rich history which includes tegedlopment of downhill
simplex algorithms, genetic algorithms, and simulateceafing algorithms. The most
computationally efficient family of derivative-free optimation algorithms available to-
day, known ageneralized pattern seardGPS) methods, leverage an underlying mesh
to coordinate the exploration of parameter space. The fuedéal purpose of this un-
derlying mesh is to keep function evaluations relativelydpart until convergence is
approached. All GPS implementations developed by otharggahat we have seen to
date, use Cartesian grids to coordinate the exploratioa@meter space.

Lattice theory (which builds on the closely-related sutgeaf n-dimensional
sphere packings and error-correcting codes) provideswuralatlternative to Cartesian
grids for the discretization of parameter space. Conway éas¢ (1998) provides a
comprehensive mathematical reference on many importaniegits of lattice theory;
the succinct up-to-date review of this subject in Chaptery® but out essentially every-
thing that is needed to apply this otherwise somewhat aEssubject in practical ap-
plications. The standard measures of lattice uniformigs(dibed in Conway & Sloane
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1998 and summarized in Chapter 2) are

¢ the packing densityA [that is, the percentage of the domain contained within
the spheres when identical spheres with the largest radissilde such that the
spheres do not overljare centered at each lattice point],

e thecovering thicknes$ [that is, the average number of spheres that contain any
point in the domain when identical spheres with the smaitbedius possible such
that the every point in the domain is contained within at tease sphereare
centered at each lattice point],

e an appropriately-normalized measure of thean-squared quantization error per
dimensionG, and

e the kissing numberr [that it, the number of nearest neighbors of each lattice
point].

By all four of these standard measures, Cartesian gridsnbet¢ughly nonuniform as
the dimensiom of the parameter space under consideration is increasedx&mple,
in n= 24 dimensions, the Cartesian gri¢f?, is characterized bg = 1.150e— 10,0 =
4200263G = 0.08333, and = 196560, whereas the Leech lattiigy, is characterized
by A =0.0019300 = 7.904,G = 0.06577, and = 48.

A series of highly (in most dimensions, maximally) denséidas, referred to as the
laminatedlattices and denoted,,, may be constructed in dimensions= 2 to 23 by
appropriately restricting the remarkable Leech latticentiomed above to successively
lower and lower dimensions. For= 2 to 8, the resulting lattices are equivalent, re-
spectively, to the so-called root lattics, D3, D4, Ds, Eg, E7, andEg, each of which
have fairly simple constructions and associated quarmizatigorithms, as reviewed in
Chapter 2; some of the salient properties of these lattices@mpared with the corre-
sponding Cartesian grids in Tallel, theZ?2 andA; lattices are visualized in Figurel,
and theZ3 and/\; lattices are visualized in Figuse2 A primary focus of our research
program is to investigate how such highly uniformdimensional lattices may be used
to accelerate GPS algorithfas

The radius of these nonoverlapping spheres, callegaloking radiusis usually denoteg.

2The radius of these overlapping spheres that cover the doealled thecovering radiusis usually
denotedR.

3Note that Conway & Sloane (1998, p. 12) state: “A related i@pfibn that has not yet received much
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Table 4.1 Augmenting the data available in Talf2e2, presented here are the number
of available points to select the poll set from at Kié level of grid refinement; ‘L/O>’
denotes the LTMADS or OrthoMADS context¥,:" denotes th&Z-MADS context, and
‘A\’denotes the\-MADS context

lattice Available points to select the poll set from as the grid iswed.

L/O: 8, 16, 32, 64, 128,.. (Figs4.1a, 4.3 and4.4)
7: 4,8,12, 16, 20, 24, 28, 32, 36, 40, (Figs4.1b, 4.5)

Ao =N, N: 6,12, 18, 24, 30, 36, 42, 48, 54, 60, (Figs4.1c, 4.6)

L/O: 26, 98, 386, 1538, 6146,. (see Figuret.2a)
Z: 6, 18, 38, 66, 102, 146, 198, 258, 326, 402 (Fig. 4.2b)

D3 = A3 = /N3 || N\ 12,42,92, 162, 252, 362, 492, 642, 812, 1002(Fig. 4.2c)

L/O: 80, 544, 4160, 32896, 262400,
Z: 8,32, 88, 192, 360, 608, 952, 1408, 1992, 2720,

D4 =/\4 N\: 24,144,456, 1056, 2040, 3504, 5544, 8256, 11736, 1608Q,

L/O: 242, 2882, 42242, 660482, 10506242,

ZS
Z: 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002,
D~ A A: 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720,
5=1% 182002....
76 L/O: 728, 14896, 413792, 12746944, 403964288,
7: 12,72, 292,912, 2364, 5336, 10836, 20256, 35436, 58728,
£~ A A 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304,
6=1% 1408104, 2376126, .
. L/O: 2186, 75938, 3959426, 239479298, 15105828866,
Z 7. 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598,
209762, ..
£~ A A: 126, 2898, 25886, 133506, 490014, 1433810, 3573054,
= 7902594, 15942206, 29896146,
8 L/O: 6560, 384064, 37281920, 4412866816, 553517580800,
Z 7: 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688,
658048, ..
Eo ™ Ag A: 240, 9120, 121680, 864960, 4113840, 14905440, 44480400,

114879360, 265422960, 561403680,
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4.2.1 Successive polling (SP)

The simplest prototype GPS algorithm, referred to hersursessive polling
(SP), starts from a candidate minimum point (CMP) on a givasimand polls (that
is, checks) the value of the function at a set of nearesthaheigmesh points which
positively spafl the feasible neighborhood of the CMP. If a function valuedothan
that of the CMP is located during the poll, the new best pandefined as the new
CMP, and the process repeated; if the poll fails to find a pwith a better function
value, then the mesh is refined by some integer facsarthat the function evaluations
on the coarser mesh coincide with points on the refined meghr(eay thus be reused
efficiently as the iterations proceed on successively réfmeshes), and the process
repeated until convergence.

Unfortunately, the prototype SP algorithm described ab®wenvergent (albeit
to a local minimum) only if the parameter space being explaseunconstrained and
the function being optimized is continuously differentifh that is, if the function be-
ing optimized is sufficiently smooth that, after a sufficianimber of grid refinements,
the function is locally flat enough that, if the CMP is not yeaaminimum, one of the
poll points (which, again, are distributed over a set ofatimns that positively span the
neighborhood of the CMP) is guaranteed to have an improvedtifun value, below that
of the CMP. For general nonsmooth functions, for functidra ire only piecewise dif-
ferentiablé, or even for continuously differentiable functions withrti@onstraints on
the feasible domain in parameter space, the SP algorithmtialways convergent, as
the finite number of poll directions available might miss teasible descent directions
around the CMP altogether, regardless of the level of gfihesment. Indeed, in the

attention is the use of these packings for soluirdimensional search or approximation problems”; this
is exactly the focus of this research program.

4A set of lattice points is said tpositively sparthe feasible neighborhood of the CMP if any point
in the feasible neighborhood of the CMP may be reached byeailicombination witmon-negative
coefficientof the vectors from the CMP to the poll points.

STypically, a factor of two is used, in order to keep the refieatrof the mesh as slow as possible as
the iteration proceeds.

6A function is said to be&ontinuously differentiabli its derivative is (a) defined everywhere, and (b)
continous.

“An example of gpiecewise differentiabl&unction is one with a cusp (akin to the hard chine along
the bottom centerline of the hull of many high-speed boatih the function being continuously differ-
entiable on either side of the cusp.
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constrained case, if the CMP is on the constraint boundagwy, in most cases the feasi-
ble poll points danot positively span the feasible neighborhood of the CMP rdgasd
of the level of grid refinement; this is a key challenge that ploll steps in the MADS
class of algorithms, discussed further below, are spelijfidasigned to address.

4.2.2 SMF and LABDOGS

Thesurrogate management framewd&MF) of Booker et al. (1999) is a gener-
alization of the SP method described above that alternatesslen a SP-type ‘poll’ step,
and ‘search’ step which cleverly leverages a Kriging-basggtpolation of all existing
function evaluations in order to identify promising andatelely unexplored regions of
parameter space. The work presented in Chapter 3 exten&tRdo incorporate lat-
tices, amongst other significant improvemé&nis a manner intended to make maximal
use of each and every function evaluation, which are assuoked expensive, during
the optimization process. The resultifegtice-based derivative-free optimization via
global surrogatefLABDOGS) algorithm shows a significant improvement in théer
of convergence over the original SMF algorithm.

When used appropriately, the search step of the SMF and LAB®@&lgorithms
can in fact be used to assugbal convergence, even when the function being opti-
mized is nonsmooth and/or the parameter space being coedideconstrained, despite
the fact that the SP-type poll step of the SMF and LABDOGSrélgms, taken on their
own, don’t even establish local convergence for nonsmootionstrained functions, as
discussed above. That is, the search step of the SMF and LABD&gorithms can be
designed such that, as the number of function evaluatiotiseoélgorithm gets large,
the function evaluations ultimately become dense ovempetrar space, thereby ensur-
ing global convergence (for further discussion, see Tarc@97, Booker et al. 1999,
Jones 2001, and Belitz & Bewley 2011).

4.2.3 Mesh Adaptive Direct Search (LTMADS & OrthoMADS)

Mesh Adaptive Direct Sear¢MADS) algorithms are an alternative class of GPS

8Most notably, a markedly improved search function, as ssiggeby Jones (2001).
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Figure 4.1 The (a, b)Z? and (c)A; lattices, indicating (a) the first three shells of
potential poll points orZ? used in the LTMADS and OrthoMADS formulations, and
(b, c) the first five shells of potential poll points used, edjvely, in theZ-MADS
and/A\-MADS formulations. The number of points in all three setsbélls (arranged,
respectively, in squares, diamonds, and hexagons aroen@NP) are listed in Table
4.1

Figure 4.2 The (a, b)Z2 and (c) A3 lattices, indicating (a) the first three shells of
potential poll points orZ3 used in the LTMADS and OrthoMADS formulations, and
(b, c) the first three shells of potential poll points usedpestively, in theZ-MADS
and/A\-MADS formulations. The number of points in all three setsbélls (arranged,
respectively, in cubes, octahedra, and cuboctahedra@tberCMP) are listed in Table

4.1
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methods designed to overcome the fundamental convergkadeaming of the polling
algorithm used in the prototype SP method (and built upoherSMF and LABDOGS
methods), as described above. They accomplish this byasicrg (without bound) the
number of directions around current CMP that may be pollethasgrid is refined;
as the number of grid refinements performed increases, th&lpe polling directions
ultimately become dense over the feasible neighborhodiedEMP. This is achieved in
the MADS setting, in general, by selecting the poll pointsiira shefl of non-nearest-
neighbor mesh points around the CMP.

Existing variants of MADS include LTMADS (Abramson, Audei, Dennis
2005; for a graphical depiction, see Figuted), which is quite popular for difficult
numerical optimization (see, e.g., Marsden et al., 20149, @rthoMADS (Audet &
Dennis 2008; for a graphical depiction, see Figdr, the latter of which essentially
supercedes the former. Both LTMADS and OrthoMADS are basedrounderlying
Cartesian gridZ", with LTMADS based ominimal positive bases, with+ 1 vectors
around the CMP, and OrthoMADS based maximalpositive bases, withr2vectors
around the CMP. In both the LTMADS and OrthoMADS algorithrtise underlying
grid is refined by a factor dur upon each refinement of the gliwhereas the shell
of points from which the next poll set is to be selcted lie orypdrcube around the CMP
whose width is reduced only by a factortwfo upon each refinement of the grid. That
is, the set of potential poll points around the CMP in the LT and OrthoMADS
formulations is the set of points on tf#" grid of L, norm X (see Figuredt.1a and
4.2a), scaled down by a factor of 4%, wherek = 0,1, 2, ... is the number of grid refine-
ments performed thus far; the LTMADS algorithm will select 1 of these points to
poll (see Figuret.3), whereas the OrthoMADS algorithm will seleat @f these points
to poll (see Figuret.4). Thus, as the underlying Cartesian grid is successivdiyae
in LTMADS and OrthoMADS, the shell of points from which thelpig selected con-
tains successively more and more points, ultimately irgingain number by a factor
of ~ 2"1 upon each refinement of t1&" grid (see Tablet.1). Given an appropriate

%We use the wordshell in this work to denote the surface of the region given by thevex hull of
the specified points.

°That is, after just five grid refinements, the refined grid tet less than/1L000 of the original grid
spacing in every coordinate direction.
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Figure 4.3 The underlying Cartesian gri#f ( — ) and two successive factor-of-four
refinements of this grid (from left to right) in the= 2 LTMADS algorithm. Given a
CMP at the center of each subfigure, the shell of points fronchvthe poll points are
selected are markeed)( and a representative poll set is indicatey] this poll set forms
a minimal positive basis{— ), with n+ 1 vectors around the CMP.

Figure 4.4 The underlying Cartesian grif ( ) and two successive factor-of-four
refinements of this grid in the = 2 OrthoMADS algorithm (cf. Figurd.3). The shell
of points from which the poll points are selected are markgdand a representative
poll set is indicatedd); this poll set forms an (orthogonal) maximal positive sgsi—

), with 2n vectors around the CMP.

scheme for selecting the poll points to actually use frors shiell of possible poll points
around the CMP, convergence (albeit, to local minima) of MA&DS algorithm may
thus be established (see Abramson, Audet, & Dennis 2005 aétA% Dennis 2008)
even when the function being optimized is nonsmooth, antifparameter space being
considered is constrained.

LTMADS selects the first ‘seed’ vector of the poll set usingsgydo-random



143

Figure 4.5 The underlying Cartesian grif? ( — ) and five successive factor-of-two
refinements of this grid in the = 2 Z-MADS algorithm (cf. Figuregl.3and4.4). The
set of points from which the poll points are selected are et(k), and a representative
poll set is indicatedd); this poll set forms a maximal positive basis around the GMP
the original grid and a minimal positive basis around the GMRhe others £—).

algorithm, then builds a minimal positive basis via a staticdower triangular con-
struction (thus motivating the algorithm name); for detagee Abramson, Audet, &
Dennis (2005). As illustrated in in Figu#e3 the radial and angular uniformity of the
poll sets generated by the LTMADS algorithm can both be pibarpoll set shown in in
Figure4.3a has one poll vector that ign longer than the others, and the angles between
the poll vectors vary from 90to 135'.

OrthoMADS, in contrast, selects the first ‘seed’ vector efpioll set using a (low
discrepancy) ‘quasi-random’ Halton sequence, builds tipfse— 1 directions that are
orthogonalto this seed (thus motivating the algorithm name) via a Hoalsker-based
QR algorithm, then finds thapoints amongst the (hypercube-shaped) shell of potential
poll points that are closest to these directions and thgipsipes; for details, see Audet
& Dennis (2008). As illustrated in in Figuee4, the radial and angular uniformity of the
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poll sets generated by the OrthoMADS algorithm ifioe 2 are perfect. Unfortunately,
for n > 2, the radial and angular uniformity of the OrthoMADS polissean, again, both
be poor. Consider, e.g., the case witk 3 and a first seed vector of the poll set oriented
torwards one of the corners of the cube; it is clearly not ixbs$o select the remaining
five poll points to provide both good radial uniformifyand good angular uniformity
in this case. Note also that an OrthoMADS poll requiref@nction evaluations to
complete, rather than the+ 1 function evaluations required to complete a poll on a
minimum positive basis, such as that used by LTMADS; fordangalues oh, this fact
alone results in about a factor of 2 reduction in the rate affecgence.

4.2.4 Slowing the mesh refinement of Cartesian-based MADSgu-
rithms (Z-MADYS)

Before we discuss shifting the MADS algorithm onto a morefanm lattice,
we first note that the factor-of-four method of successiimeenent, as described in
the previous section and illustrated in Figude8 and4.4, is not the only choice for a
MADS-type algorithm on a Cartesian grid. As illustrated iigute 4.5, the Cartesian
grid may instead be refined only by a factortwb whenever a poll step fails; this helps
to slow the refinement of the underlying mesh as the iteratmmoceed, thus respect-
ing the overall GPS objective of keeping function evaluagicelatively far apart until
convergence is approached. As the Cartesian grid is refindtds modified approach,
which we will call Z-MADS, the shell of points around the CMP from which the poll
points are selected is increased one ‘hop’ at a time (sead3dulb & 4.2b). Thus,
as the underlying Cartesian grid is successively refinéttMADS, the shell of points
from which the poll is selected ultimately decreases in wioly a factor of~ 2 upon
each refinement of the grid. Further, as the underlying G@regrid is successively
refined, the shell of points from which the poll is selectediagontains successively
more and more points; the available points to select thegeblfrom in this case is the
number of pointk hops from the origin oiZ" for k= 1,2,3,... (that is, thecoordi-
nation sequencef Z", as listed in Tabl&l.1). Noting the discussion at the end of the
previous section, at each poll step, tWdMADS algorithm selects + 1 of these points

1The radial nonuniformity of this approach is quantified h3
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Figure 4.6. The underlying\, lattice ( —— ) and five successive factor-of-two refine-

ments of this lattice in tha = 2 A-MADS algorithm (cf. Figuresl.3, 4.4, and4.5). The
set of points from which the poll points are selected are exh(k), and a representative

poll set is indicatedd); this poll set forms a minimal positive basis around the CMP

—).

to poll.

4.2.5 An overview of Lattice-based MADS (\-MADS)

The present work demonstrates how uniform lattices ofthdamily may be
used to significantly accelerate the convergence of the MARSs of algorithms in
order to solve the constrained nonsmooth optimizationlprokargmid f(x) : x € Q}
whereQ C R". The functionf(x) to be minimized is treated in this setting as a ‘black
box’ for which derivative information is perhaps impossitib derive and, even if it
can be derived, is possibly poorly behaved due to the pailgntionsmooth nature of
the function of interest. The resulting optimization algon, dubbed\-MADS (for
a graphical depiction, see Figudet), follows naturally from theZ-MADS algorithm
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described above, with the exploration of parameter coatdohby the laminated lattices
N\n rather than the Cartesian gri@l’. As discussed in Conway & Sloane (1997) and
Baake & Grimm (1997), closed-form expressions of the cowtiibn sequences @t
throughAg (that is, the number of potential polling points in each hséd by the\-
MADS algorithm) are given by the coefficients of the seriegamsions ak = 0 of the
following expressionsSy, (x) = (1+4x+x2)/(1—x)?,

Sha(X) = (14 9+ 9 +x3) /(1 -x)°,

Sh,(X) = (1+20x+54x2 + 203 +x) / (1 — x)4,
She(X) = (14 35x+180¢% + 180¢3 + 355+ x°) /(1 — X)°,
Shg (X) = (1+66x+ 645¢ + 1384 + 645¢* + 66x° + %) /(1 — X)°,
Sh,(X) = (14 11K+ 2032 + 82113 + 878%* 4+ 2035 + 118 + x) /(1 — x)7,
Shg(X) = (1+ 232+ 7228 + 55384 + 133510 + 1072245 + 24508 + 232" +
x3)/(1—-x)®.

Such series expansions are easily calculated in Mathesnati¢/olframAlpha
or similar ; the first 10 terms of each of these series arediist&able4.1

The resulting\-MADS algorithm is quite straightforward to use, thoughrsig
icant care must be exercised on several subtle issues migmentation in order to
ensure the maximum rate of convergence of the resultingitigg, after exploring a bit
further the some geometrical considerations of this foatioih in 8.3, these implemen-
tation issues are addressed at lengthdri8in 84.5, we attempt to quantify the impact
of each of the individual implementation issues discussaé land in 8.4 in focused
numerical experiments; we then verify that the fihaMADS algorithm converges sig-
nificantly faster than the previous OrthoMADS algorithm ame representative test
problems, and provide some concluding remarks.

4.3 Geometrical considerations

We now consider further some relevamntlimensional geometrical issues related
to this optimization framework. We are specifically inteéegsin n-dimensionalcon-
vex polytopesthat is, inn-dimensional convex objects with flat sides, more commonly
calledpolygonsn n = 2 dimensionspolyhedronsn n = 3 dimensions, angolychorons
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in n = 4 dimensions (a good reference on this general subjectafedinbaum 2002).

TheVoronoi cellof a lattice is the set of all points that are as close to thgioas
they are to any other lattice point; stated another way, tirenoi cell contains exactly
those points that quantize to the origin (or, shifting theovimi cell appropriately, to
any other lattice point) when performing lattice quanimat The dual of any convex
polytope may be formed by the processpolar reciprocation(Griinbaum 2002). The
dual of the Voronoi cell is called theelaunay cell

On the Cartesian lattice and the root lattiégsDn, Eg, E7, andEg, the Voronoi
cells are established solely by the locations of the neassghbors to the origin. As dis-
cussed further in Chapter 21 of Conway & Sloane 1998, definiag the kissing num-
ber of the corresponding-dimensional lattice, the Voronoi cells of these latticesym
be constructed by the union ofidentical (but rotatedjundamental simplicegach of
which has the origin and other points as vertices (identified precisely in Figure$21
21.7, and 21.8 of Conway & Sloane 1998). Time- 1)-dimensional face of each fun-
damental simplex that is opposite to the origin forms a pedpmilar bisector of the line
segment between the origin and each of the nearest neigbbtirs origin on the cor-
responding lattice; the Voronoi cell is then the conwvedimensional region contained
by all T of these(n— 1)-dimensional faces. So defined, the Voronoi cell of Aa&= N\,
lattice is ahexagon(with T = 6 one-dimensional faces, a.k.a. edges), the Voronoi cell
of the D3 = Az = A3 lattice is arhombic dodecahedrofwith 7 = 12 two-dimensional
faces), and the Voronoi cell of tHe, = A4 lattice is a24-cell (a.k.a.icositetrachoron
with T = 24 three-dimensional faces); the Voronoi cellg\afthrough/Ag are less com-
monly known structures, but are constructed in the samediasiThe Delaunay cells
of these lattices (that is, the duals of the correspondingidi cells) are each simply
the convex hull of the nearest neighbors of the origin; tthes Delaunay cell of thé
lattice is also dexagor(rotated 30 from the corresponding Voronoi cell), the Delaunay
cell of the/\s lattice is acuboctahedropand the Delaunay cell of the, lattice is also a
24-cell(again, rotated).

As discussed previously, the LTMADS and OrthoMADS formidas build out
shells of potential polling points in the shapes of hypeesusee Figure$.1la and4.2a),
which are precisely the shape of the Voronoi cells of theasponding Cartesian lattice
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Z". In n= 2 to 8 dimensions, a hypercube goes by the following nasgsare cube
tesseractpenteracthexeracthepteract andocteract

The Z-MADS formulation, in contrast, builds out shells of poti@htpolling
points a given number of hops from the CMP on #iktlattice (see Figured.1b and
4.2b). These shells are precisely in the shapes of the convéxdfithe nearest neigh-
bors of the origin (that is, of the corresponding Delaundiscer the duals of the cor-
responding Voronoi cells); note specifically that the dwdleypercubes are known as
cross polytopedn n= 2 to 8 dimensions, a cross polytope goes by the following same
squaré?, octahedron16-cell, pentacrosshexacrossheptacrossandoctacross

Similarly, the A-MADS formulation builds out sets of potential polling ptsn
a given number of hops from the CMP on thg lattice (see Figured.1c and4.2c).
These shells are precisely in the shapes of the corresppBditaunay cells which, for
n= 2 to 8 dimensions, are simply the convex hulls of the latticm{s that are nearest
neighbors of the origin in the correspondifg lattice, as described above.

The resulting shell shapes in the LTMADS/OrthoMADB;MADS, and A-
MADS formulations are summarized in Tal2e2. The radial nonuniformity of each
of these shells is defined here as the maximal radius of tHe(aha vertex) divided
by the minimal radius of the shell (at the center of a facell, guantifies the maximum
radial nonuniformity possible in the corresponding polisseRemarkably, due to the
polar reciprocation process mentioned previously, whatates a convex polytope and
it's dual, the radial nonuniformity of a Voronoi cell and thige radial nonuniformity
of the corresponding Delaunay cell of a lattice are, in fagtjal. Using the notation
introduced previously, they are both given by the coveradjus divided by the packing
radius [that is, byR/p] of the lattice, and may thus also be written astltl root of the
covering thickness divided by threth root of the packing density [that is, b /A)Y/"]
of the latticé?.

2Since in the present case the Delaunay cell is rotatédré the corresponding Voronoi cell, the
cross polytope forming the Delaunay cell in the- 2 case is perhaps better identified asliamond.

BRecall that both the covering thickne®sand the packing density of the lattices of interest in this
work are listed in Tabld.Z1; thus, the radial nonuniformity values presented in Ta@may be derived
directly from the® andA values presented in Tabfel



Table 4.2 Radial nonuniformity of the shell of potenial poll points the LTMADS/OrthoMADS,Z-MADS, and A-MADS

formulations, as a function of the dimension

LTMADS/OrthoMADS Z-MADS N-MADS

n | shell shape radial nonuniformityshell shape radial nonuniformity shell shape radial nonuniformity
2| square V2~ 141 diamond V2~x141 hexagon V4/3~1.16

3 cube V3~ 173 octahedron V3~1.73 cuboctaheron V2~1.41

4| tesseract V4=2.00 16-cell V4=2.00 24-cell V2~ 141

5| penteract V5~ 224 pentacross V5a 224 (see text) v/5/2~ 158

6| hexeract V6~ 2.45 hexacross V6~ 245 (see text) \/8/3~1.63

7 | hepteract V7~ 265 heptacross V7~ 265 (see text) V3~ 173

8| octeract V8~ 2.83 octacross V8~ 2.83 (see text) V2~ 141

671
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It may finally be observed that, in all dimensions, the shellpotential poll
points in the LTMADS/OrthoMADS and.-MADS formulations are characterized by
significantly more severe radial nonuniformity than thellsbepotential poll points
in the corresponding\-MADS formulation, with the differences becoming espdyial
pronounced as is increased, as quantified in Taldl& This observation, in addition to
the significantly improved spatial uniformity of tig, lattices as compared with ti#"
grids used previously (apparently, by default) for the dowation of MADS algorithms,
are two key motivations for the present investigation.

4.4 Issues affecting the implementation and the speed of

convergence of theA-MADS algorithm

The basic idea of th&-MADS algorithm has already been laid out. To recap:
starting with an initial, relatively coar&®lattice with nearest neighbors spadegapart,
and starting from an initial feasible candidate minimummp@CMP) on this lattice, a
set ofn+ 1 points which are nearest neighbors to the CMP on the latieselected in
such a way as tpositively sparfthat is, to linearly span with non-negative coefficients)
the neighborhood of the CMP. The value of the function is {helfed(that is, checked)
on these points. If a poll point is found with a lower functigalue than that of the
CMP, then this new lattice point is defined as the new CMP, haghtocess repeated; if
not, then the lattice is refined by factor of two, a new poll(sahdomly reoriented) is
chosen on the refined lattice (from a shell of potential polhgs containing all lattice
points that ar&k+ 1 hops from the CMP, whereis the number of lattice refinements
performed thus far), and the process repeated until coexesy There are a number of
subtle issues that must be addressed in order to specifglgosithm completely, and
to endow it with the maximum possible efficiency. These issare now addressed.

14An initial grid spacing of about four to eight gridpoints froone edge of the feasible domain to the
other in each parameter direction has proven to be effeictioeir numerical experiments performed to
date. Note also that, in general, the scaling of each pagmrnrethe optimization problem of interest
is found to have a significant effect on the rate of convergesfca GPS algorithm; the most effective
scalings are those in which, on average, the function oféstevaries at approximately the same rate
in each coordinate direction; this provides a general goatrive for when setting up an optimization
problem for solution via a GPS algorithm.
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4.4.1 Moving around on, and quantizing to, the laminated latices
An

Thetheoryof n-dimensional lattices is quite sophisticated (see Conw&jagane
1998); however, theractical useof n-dimensional lattices is entirely straightforward,
as discussed in Chapter 2. Once the enumeration and quantiaggorithms for any
given lattice are in place, as discussed below, the lattiag be used in the present
application in a straightforward manner.

Any real lattice is defined simply by alhteger linear combinatiors of the
columns of an appropriate basis matixBasis matrices for the seven laminated lattices
considered in this chapteky throughAg, are given by

1/2

~1 1/2
1 -1 1/2
1 -1 1/2

1 -1 ~1/2

1 -1 -1/2

1 -1/2

~1/2

5That is, all linear combinations with integer coefficients.
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~1 1/2
1 -1 1/2
1 -1 1/2

B 1 -1 1/2 |
1 -1 ~1/2

1 -1 -1/2

1 -1/2

~1/2

2 -1 1/2
1 -1 1/2
1 -1 1/2

1 -1 1/2

1 -1 ~1/2

1 -1 -1/2

1 -1/2

~1/2

Note that, in the simple representations used abye/)\g, and/\7 are defined
on hyperplanes of higher-dimensional spaces; this presafy a relatively minor added
complexity when enumerating the lattice points accordothese definitions. Several
properties of the seven lattices so defined are listed irePall Associated with each of
these lattices is a straightforward and computationafigieht quantizationalgorithm,
described in §1.5, which takes any pointRf and computes the closest point on the
discrete lattice\n.

Enumerating the nearest neighbors of a lattice

In the computational implementation of thAeMADS algorithm, it is numeri-
cally tractable and convenient to enumerate explicitlyritbarest neighbors of the ori-
gin of the lattice. These nearest neighbors may be detedrbgetaking all integer
linear combinations of the associated basis vectors, defibeve, for integer coeffi-
cients ranging from-m to +m (initially taking, say,m = 2), and keeping the distinct
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lattice points so generated that are closest to the orifjthere aretr such points gen-
erated (where is listed for each lattice in Tabk.1), then finish, otherwise, increase

by one and try again.

Bypassing the enumeration of subsequent shells of a lattide the practical A-
MADS algorithm

For small values of, it is also numerically tractable to compute the first few
shells of neighbors outside of the nearest neighbors, dstddpn Figurest.1c & 4.2c.
These subsequent shells may be created by shifting thestessighbor shell to each
point of the outermost shell determined thus far, and kegfrack of all of the distinct
new lattice points so generated. This method is computatipefficient for shells
containing up to a few thousand lattice points.

However, for shells that contain more than a few thousarttéapoints (that
is, for the outer shells in the higher dimensiar)s the direct enumeration procedure
described above becomes numerically intractable.

We thus avoid completely the direct enumerations of thelsloeitside of the
nearest-neighbor shell in the practiegeMADS algorithm. Instead, we determine the
average radius of each target shell of points around the ¥€\d work directly with
the (normalized) desired pdilirections scaling these directions by the average radius
of the target shell and then quantizing to the nearest égtent in order to generate the
corresponding poll point. For target shells of small radihst is, at most a few hops
from the CMP), this approach returns poll points on the taspell itself, as depicted
in Figures4.1c & 4.2c. For target shells of larger radius, however, this apgroaturns
poll points with, in fact, somewhat improved radial unifatynthan is possible when
strictly using only points on the target shell itself. Th&daxation of the strict use of
the shells defined in terms of number of hops from the origifoisad to work quite
effectively in practice.

16K nowing the nearest-neighbor distance at the present téwgrlid refinement, as well as the radial
nonuniformity of the target shell from Table2, the average radius of each target shell can be well
approximated quite easily.
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4.4.2 Evaluating the poll points: complete polling versusncom-

plete polling

If a function value lower than that of the CMP is located dgrthe poll step
of A-MADS, the poll may be terminated immediately, the new beshipdefined as
the new CMP, and the process repeated (a strategy refer@sinioomplete polling;
alternatively, the poll step may be driven all the way to ctetipn, after which the
best point found during the polling is identified as the new k4 strategy referred
to ascomplete polling In all GPS settings that we have tested to date, our nualeric
experiments indicate that, on average, incomplete pollirggnerally the most efficient
choice; incomplete polling is thus implemented\fMADS.

4.4.3 Refining the mesh

As mentioned previously and illustrated in Figyr®, the lattice is refined only
by a factor of two, rather than a factor of four, whenever a gtep fails in the algorithm
we propose; this helps to slow the refinement of the undeglyesh as the iterations
proceed, thus respecting the overall GPS objective of kgdpinction evaluations rela-
tively far apart until convergence is approached.

As in Z-MADS, as the lattice is refined in-MADS, the shell of points around
the CMP from which the poll points are selected is increassgmtially’ one hop at
a time (see Figured.1c & 4.2c and Figuret.6). This shell is much closer to spherical
than are the shells of points considered in the LTMADS/OMA®S and Z-MADS
contexts, as quantified in Tab#e2 of 84.3 As a consequence, the radial uniformity
of the A-MADS poll sets is substantially better than the radial amifity of the LT-
MADS/OrthoMADS andZ-MADS poll sets.

The available points to select the poll set from asAhgrid is refined is thus
given (again, essentiafly) by the coordination sequence of the corresponding lattice
theA-MADS algorithm will selecin+ 1 of these points to poll, unless previous function
evaluations are available which may be exploited (for fartfiscussion, seei#t.4. As

17As mentioned in 8.4.1, this method is modified slightly in the practio&MADS algorithm for the
outer shells.
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listed in Tabled.1, the coordination sequence of thg lattice grows faster than the coor-
dination sequence of the correspondiiigattice, and thus there are more points to pick
from in A-MADS than there are i@-MADS at any given level of mesh refineméht

Note that ten factor-of-two grid refinements corresponda tefined grid that
has less than /1L000 of the original grid spacing in every coordinate di@tt As the
dimension of the problem under consideration is increas$esljs probably essentially
as far as most practical derivative-free optimization peots would ever be taken; the
behavior as the number of grid refinements is taken to infigjtirom the perspective of
difficult practical problems to be solved with limited comational resources, mostly a
mathematical curiosity.

Thus, in addition to a&oarsesigrid spacing to be used by the optimization al-
gorithm (see the first paragraph o4.8), it is useful in the practical implementation
of A-MADS to also set dinestgrid spacing to be used by the optimization algorithm.
Note in Table4.1that, after about ten factor-of-two grid refinements in hiADS
algorithm, there are ot of points available to select the poll set from. Once on this
finest grid, rather than refining the grid even further afeatefailed poll step, it is prac-
tically useful to remain on this finest grid level until all tife potential polling points
at this level have, one poll set at a time, been exhaustivetglked (or the CPU time
allocated to perform the optimization has run out), afterclwhif all of these poll sets
fail to provide a new CMP, the optimization algorithm simpdéyminates. There is little
practical use to refine the grid even further than this, andaiog can actually lead to
a substantially reduced overall rate of convergence anth@eased sensitivity to nu-
merical precision issues, as the step size gets imprdgt&alall when too many grid
refinements are performed.

18There are in fact many more points available in the LTMADSOMADS context after a given
number of mesh refinements than there are iIMHMADS context after the same number of mesh refine-
ments. However, an argument may be made that there is nareadl”, from a convergence persepective,
for the number of available points in the shells of potemi@l points in a MADS-type algorithm to grow
so quickly; a MADS algorithm will only evaluate a small subséthe points in any given shell anyway.
The fact that the number of points in each successive sheNgwithout bound is enough to establish
convergence of the corresponding MADS algorithm. As far axan tell, the fact the number of points
in the LTMADS/OrthoMADS shells grows extremely quickly és€abled.1) does not actually benefit the
overall rate of convergence of the practical LTMADS or ONtADS algorithms.
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4.4.4 Generating new poll sets

Minimizing the number of new function evaluations required in each poll

A significant difference between LTMADS and OrthoMADS, ascléed pre-
viously, is that one uses a minimal positive basis at eadrsfap, whereas the other uses
a maximal positive basis at each poll step. The numerictd that we have performed
to date indicate that, all other things being equal (inalgdhe approximate angular and
radial uniformity of the respective poll sets), it is usyatiore efficient computationally
to minimize the number of new function evaluations requireeéach poll step, espe-
cially as the dimension of the problem is increased; thus, when no previous function
evaluations are available which may be exploited (for farttiscussion, see4&t.9,
the use of minimal positive bases is generally preferreds iBnot a strong preference
however, and it is entirely straightforward to implement gets with more tham+ 1
poll points in theA-MADS algorithm.

Generating a uniform poll set that positively spans the neigborhood of the CMP
leveraging a Thompson algorithm

The flexible algorithm that we use to actually generate pett svith good an-
gular uniformity in the present work while performing themmum number of new
function evaluations possible in each poll step is derivieglctly from the method de-
veloped in 811.B of Belitz & Bewley (2011) and Chapter 3. Indir to generate poll
points'® on the target shell with good angular uniformity from the GM# first model
p “charged patrticles” distributed randomly on a sphere wattlius given by the aver-
age radius of the target shell. A Thompson algorithm is theeduo drive this set of
particles to an equilibrium configuration on this spheree Tihal equilibrium position
of these particles is then discretized to the nearest éaff@ints, as motivated by the
third paragraph of £4.1 Finally, these discretized points are checked to enswe th
they positively span the neighborhood of the CMP, a test factvis given in 8lI.A of
Belitz & Bewley (2011) and Chapter 3. If points so generatedadt positively span the

We may initially takep = n+ 1; note that this algorithm is easily and naturally extenuethree
important ways in 8.4.4 84.4.4 and 8.4.4
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neighborhood of the CMP, a different random initial distition of the p particles on
the sphere may be tried, and the process repeated; if thegwratill fails to produce a
discretized set op points that positively span the neighborhood of the CpIR, incre-
mented by one, and the process repeated until a positivatynspg set of poll points is
successfully found.

Implementing constraints on the feasible parameter domain

The feasible domain of parameter space over which the agdtion is per-
formed might in fact be difficult or impossible to identify @&rcharacterize a priori.
Thus, the constraints on the feasible domain of parameseresare ignored completely
at the stage of selecting which specific points from the tasell are to be polled.
If a given poll point proves to be infeasible when it is ultitely evaluated, the corre-
sponding function value is simply set to infinity (or, to amitarily large value), and
the poll step is continued. Since interpolating functiores r@ot used by th&-MADS
algorithm (in contrast with the SMF and LABDOGS algorithmemtioned previously),
this simple manner of handling the implementation of caists is entirely adequate.

Reusing existing function evaluations during each poll s{g

It is a simple matter to incorporata existing function evaluations available on
or within the target shell in the process described4m&t “fixed” charged particles
are simply assigned to points on the unit sphere correspgridithe existing function
evaluations (that is, scaling their distance from the CMBrapriately), and other “free”
charged particles are allowed to move to equilibrium posgion the sphere in the man-
ner described in the previous section; the equilibrium tpwss of these free particles
are then discretized to the nearest lattice points to genéra new poll points. By so
doing, the number of new function evaluations required togiete a poll step (which,
taken together with the existing function evaluations jjpey spans the neighborhood
of the CMP) can often be reduced significantly.
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Reorienting the poll set in a low-discrepency fashion afteone or more unsuccessful
poll steps, leveraging a Thompson algorithm

If a given poll step in thé\-MADS algorithm fails to identify a new CMP, after
refining the mesh and incrementing the shell containing dssiple poll points, the poll
set must be reoriented. It is desirable that the orientagfathis new poll set explore
new directions around the CMP, not re-examine those doestalready explored at
the previous failed poll steps. This problem might at firgreequite straightforward,
but is in fact one of the more subtle issues that must be reckerith in the MADS
framework.

One could attempt to reorient the new poll set in a pseuddenarfashion; this is
in fact what was implemented in LTMADS. Though this approach likely generate
some new directions to explore with each new poll step, suchpproach will also
waste computational effort with some new poll points that essentially aligned with
polling directions that have already been tried (unsudagsaround the current CMP.

OrthoMADS thus introduced some sort of low-discrepancygjtrandom’ Hal-
ton sequence on the first ‘seed’ vector used to generate thegipin an attempt to
generate a fresh new set of polling directions. This firstisesetor uniquely defines
the remaining orthogonal directions of the poll set wiea 2. For largem, however,
it does not; by focusing only on the successive placementheokeed vector, when
n> 2, itis not at all clear that thentirenew poll set will be well differentiated from the
previous sets of polling directions already explored acbtlne current CMP.

In the present work, we thus propose a more geometric saltdgithis problem.
Notably, our solution considea! of the directions of the failed poll sets, as well as
all of the directions the prospective new poll set (that is, nst {he seed vectors that
generate these directions). The approach we use is a naxtealion of the Thompson
algorithm described previously. We simply add additionetdi charged particles, with
substantially reduced charge, at the failed poll pointsnftbhe previous (failed) poll
sets when we solve the Thompson problem for the new poll g8infThis naturally

20A generalizedrhompson formulation may also be used to account for theeoapplied by the fixed
particles associated with the points from the previousagoll sets, applying a force that falls off faster
than the ¥r? rule of normal charged particles. So doing achieves a difféation between the old and
new directions in the resulting algorithm, but tends to lthe additional deformation of the new poll
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generates a new poll set which is not only itself highly umipbut is also generally
well differentiated from the directions of the previousiéd) poll sets around the CMP,
thus generalizing naturally the idea of low-discrepaseguencesf vectors to low-
discrepancyetsof vectors.

Optional step: including a poll point designed to accelerat convergence when the
function is locally Ct

As discussed in Chapter 3, if

the function is locally continuously differentiable,

the CMP is not yet at a critical point,

there are no active constraints,

a poll set is considered which positively spans the CMP, and

the grid spacing is sufficiently small,

then one of the poll points is guaranteed to provide an imgutdunction value, below
that of the CMP.

If all of the above assumptions are true, except that thegpating is not yet
quite sufficiently small enough to ensure that an improveuattion value is evident in
the poll set (that is, if quadratic terms in the local Tayleriss expansion of the cost
function are still significant), then it is straightforwaial estimate the linear terms of
the local Taylor series expansion of the function if a papstails, and then to identify
the downhill direction in this locally linear approximati@f the function. This may be
achieved simply by taking a linear fit of the function evaloas in the most recent failed
poll steg?, denoted herd (x()) = f() fori = 1,..., p wherep > n+ 1. Fitting these
function evaluations with the linear modé(x) = x - g+ b and assembling the results

set that these additional fixed particles might otherwisate.
21The function value at the CMP itself may be ignored in thistfiicause this function value does not
affect the linear coefficients in local Taylor series expam®f the function.
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for each of thep poll points, we may write

& 1) (g (10

x<12> X2 1 | f (2)
: : On

x(lp) P 1) \ b f(p)

If p=n+1, this system of equations may be solved for the gradyert p > n+

1, a least-squares estimate of the gradgeig easily determined from this system of
equations. Either way, the gradient so determined may bealaed and scaled by the
average radius of the target shell of the subsequent ppll atel the closest lattice point
on the refined grid to the negative of this vector (that is,h@ tdownhill direction in
the locally linear approximation of the function) foundughgenerating what we might
identify as at least a new “lattice point of interest”. Thésequent poll set may thus be
forced to include this new lattice point of interest (andshags, scheduled to evaluate
this new poll point first). Using the Thompson algorithm désed previously, of course,
this is quite easy to accomplish: simply add one more fixedgdthparticle on the
sphere corresponding to this new lattice point of interast optimize the remaining
free particles as described previously. Note that, if thecfion is not expected to be
locally C? fairly often as the iteration proceeds, or if a given polipstiecludes one or
more poll points which prove to be infeasible, then this omail step should certainly be
skipped.

4.4.5 Keeping a given poll orientation if a poll successfuflfinds a

new CMP, facilitating discrete line minimizations

A new poll set orientation is selected (and the grid refinedy after a poll step
does not successfully identify a new CMP. If, on the otherdharpoll step succeeds in
identifying a new CMP, then the old poll set orientation iediground the new CMP
(without refining the grid), and the first direction pollediirsthe same direction as
moved previously. Since incomplete polling is used (s&4.9), if this new poll point
again reduces the function value, then the iteration pséderther in this direction
without evaluating the poll points in the other directiotisjs allowing something of a
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discrete line minimization to be performed via successineamplete) poll steps, all
proceeding in the same direction after a single functiorluateon at each poll step.
This strategy, combined with the mesh coarsening hewigigcussed in&4.6 tends

to make maximum use out of any given descent direction thgtheadentified, which

in some problems (such as those with active constraintdasetwith only piecewise
differentiable functions, as discussed previously) mighct take several failed poll
steps (that is, many many function evaluations) in ordemib. fi

4.4.6 Coarsening the mesh

Under challenging cost functions, e.g. hard constraifnt8JADS converges
well due to the poll set orientation re-using methodologtlioed above. New poll ori-
entations are utilized until a descent direction is realjz¢ which point the successful
orientation is maintained until the next unsuccessful 8telb. This ensures convergence
when there exists a cone of descent directions, howeveswmakfowever, as the conver-
gence of MADS algorithms is contingent upon grid refinemdtgrainsuccessful Poll
steps, often the mesh is refined very significantly while tee ®oll orientations are
tried. This behavior limits the step size once an approgifatll orientation is located.
To avoid the low convergence due to mesh overrefinementp®IADS implements a
mesh coarsening scheme where the mesh is coarsened byraofattt every success-
ful Poll step. The poll orientation utilized on the coarsezgh is simply the direction
previously given by the Halton sequence at that level of nmneBhement.

This behavior, while attempting to prevent mesh overrefimetngenerally fails
to deliver increased performance, as the Poll reverts tonaptamal orientation upon
coarsening, virtually ensuring the failure of the Poll oa toarser mesh.

In the interest of delivering superior convergence pertoroe,\-MADS im-
plements the following coarsening scheme: upon two suieesaccessful Poll steps
utilizing the same poll orientatiod\-MADS coarsens the mesh by a factor oh2ain-
taining the current, successful, Poll orientatioli the next Poll proves successful, the
algorithm continues as normal; if unsuccessful, the nektdep refines the mesh by a
factor of 2maintainingthe current Poll orientation on the finer mesh. Thus, theesgsc
ful Poll orientation is located on the fine mesh and re-usethercoarse mesh. In the
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case that several Poll steps are required to locate a Petitation lying in the cone of
descent directions, this methodology allows for this daéon to be utilized on coarser
meshes, taking larger steps toward the function minimum.

4.5 Isolated numerical testing of each component issue
leading to A-MADS

In order to isolate the effects of the options presented icti@e 3, several
MADS algorithms, each incrementally different from the \pogis, were numerically
tested to determine comparative convergence efficiendresesting the comparative
performance of two algorithms, a statistically relevanininer of optimizations were
performed to calculate the average performance of eachitigo In each test, the cost
function consists of a randomly generated quadratic bovle minimum of this cost
function is selected as a random point a distance-=6fl from the origin. The initial
CMP is a random point located a distamice 10 from the origin. The lattice scaling of
theZ, lattice was set to ond®z, = 1, the scaling of thé lattices were selected such that
the volume of the voronoi cell matched the volume of Zyevoronoi cell at the scaling
above, that isRp, = (Aa, /Dz,)Y".

Both optimizations begin at the initial CMP and are then @rge to a tolerance
of 0.001 of the initial CMP value. One thousand such runs wereopeiéd for each al-
gorithm comparison. In comparing two algorithms A and B, gheameters quantifying
performance are the percent of total runs that algorithm B/emed faster than algo-
rithm A, p, and the ratio of the average number of functional evaluatagorithm B re-
quired to the number of evaluations that algorithm A reqiiire Thus, ag approaches
100 and approaches 0, algorithm B becomes far more efficient thaoridtgn A.

As discussed in Section 3, l-MADS there is the option to build the poll set,
refining with a factor of 4, on shells 2,4,8,16... or refining by a factor of 2, on shells
1,234,.... We thus test\-MADS with a minimal positive basis and fast, factor of 4,
refinement, then slow, factor of two, refinement. As showrried 1 and 2 of Tablé.3
we find that the slow refinement scheme results in a more eftialgorithm.

Next, we investigate the effect of the lattice choice in a M&BIgorithm by
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Table 4.3 Convergence comparison of fundamental features ofAtMADS algorithm

n 2 3 4 5 6 7 8
p | 2X 61.1 | 56.0 | 54.3 | 525 | 56.6 | 57.7 | 57.7
r \f( 0.828| 0.905| 0.872| 0.921| 0.874| 0.868| 0.896
p | Zn 453 | 50.5| 54.4 | 54.3 | 56.2 | 64.1 | 66.8
r XSN 1.11 | 1.01 | 0.946| 0.948| 0.930| 0.873| 0.8173
p | Maxbasis | 47.7 | 53.6 | 65.5| 78.7 | 85.1 | 91.9 | 945
r \,\',‘T'in basis | 136 | 1.37 | 0.868| 0.602| 0.481| 0.369| 0.276

p | Complete | 703 | 716 | 75.1| 755 | 69.2 | 77.1 | 82.1

VS
" | Incomplete | 0-829| 0.819| 0.691| 0.737| 0.784/| 0.633| 0.572
p | OthoMADS 449 | 51.4| 56.1 | 78.4 | 74.0 | 79.8 | 84.8

VS
" | AAMADS 0.839| 0.865| 0.821| 0.638| 0.81 | 0.607| 0.48

comparingZ-MADS to A-MADS, both utilizing a maximal positive basis, and the slow
factor-of-2 refinement discussed above. As can be seenan B of Tabled.3 by
simply replacing the&Z, grid with the A, lattice, the MADS algorithm makes signifi-
cant gains in efficiency in dimensions higher than 3. In lodierensions, as expected,
the performance difference is negligible; as the dimerssiooreases the performance
difference becomes more and more pronounced. These resiiltate how efficient
lattices are the preferred choice compared to the Cartgsidmor coordinating MADS
optimizations, particularly as the dimension of the costtion increases.

The choice of a minimal over a maximal positive basis has todihe authors’
knowledge, been numerically established in the literatwhile it has often been sug-
gest that a minimal basghouldincrease convergence rates, we test this hypothesis in
lines 5-6 of Table4.3. The maximal basis is more efficient in low dimension= 2
and 3), as the dimension increases, the difference betwearhbice of basis becomes
significant; the minimal basis provides superior perforogato the maximal basis. For
maximizing efficiency in high dimensions, a minimal posatig the appropriate config-
uration. As per these resuls;MADS is configured to utilize a maximal basis fok 4
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and a minimal basis for higher dimensions.

The question of incomplete polling (that is, terminating Boll step upon locat-
ing a superior CMP) compared to complete polling (that is)@ating the cost function
on each member of the Poll set before redefining the CMP) kagaimained neglected
in the literature. As such, the efficiency comparisomMeMADS, utilizing a minimal
positive basis with factor-of-2 refinement, can be seennedi7-8 of Tablel.3. The
data clearly demonstrate how the incomplete poll set is gpeagriate choice for all
dimensions.

These numerical results validate the utilizationN\fMADS of the following:
building poll sets on the Delaunay cells of thelattice, refining one shell per refine-
ment (refining the mesh by a factor of 2); implementing a malioompared to a max-
imal positive basis in dimensions greater than four; andgigicomplete as opposed
to complete polling. These features makéIADS unique among MADS-type algo-
rithms. Having tested each component leading to the definibif A-MADS, the nu-
merical comparison to OrthoMADS is made. The results carobad in lines 9-10 of
Table4.3. A-MADS demonstrates significantly improved convergencesabmpared
to OrthoMADS, requiring only 48% to 90% as many function exaions to reach con-
vergence, and converging faster than OrthoMADS in the nitgjof trials, with the
performance difference becoming larger as the dimensitimeatost function increases.

4.6 Further numerical testing of the completeA-MADS

algorithm

The above testing on randomly generated quadratic bowlgepraealuable in
evaluating the relative efficiencies of various componehdions in establishing the
NA-MADS algorithm. Testing comparing to OrthoMADS indicats increase in con-
vergence rate. To further investigate these results, dutésting was performed, pre-
cisely as described above, on tikdimensional Rosenbrock cost function. The standard
2-dimensional Rosenbrock function is well known as an op@tion benchmark; the
deep ‘valley’ in which the optimum lies makes for a particiyfachallenging convex
optimization problem. The analog in higher dimensionsvegiby
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Table 4.4 Performance comparison between OrthoMADS AAAADS on the Rosen-

brock test function.

(n| 2 | 3] 4 | 5] 6 [ 7] 8 |
p| 90.0 | N/A | 94.21 | N/A | 87.58| N/A | 90.1
r | 0.571| N/A | 0.5515| N/A | 0.561| N/A | 0.544

n/2

I = 3 [60G_1 —%ai)? + (¥ei-1)7]
&

defined only for even dimensions. This function is convesxthwhe global min-
imum at(1,1,1,...,1) where the function has a value of zero.

The same series of tests described above were performededRogenbrock
test function in dimensions = 2,4,6,8. The results can be seen in Tadlé. This
data validates the legitimacy of the previous testing on anecballenging cost func-
tion, and confirms the superior convergence rate MaBtADS has over OrthoMADS.
As expected, the performance difference between the Gamtbssed algorithm and
the A\ based algorithm increases with dimensionnka 2, A-MADS requires 88% as
many function evaluations to converge;nn= 8 it requires only 50% as many evalu-
ations. Similarly, inn = 2, r = 55; however, im = 8,r = 97. That is, OrthoMADS
outperformed\-MADS in only 3% of all test optimizations im = 8. This result is
remarkable, and confirms the high performance oftHdADS algorithm compared to
its competitors.

Recall from above that the convergence metpcandr are defined with re-
spect to a preselected level of convergence. To test cozweggates at various levels
of convergencep andr were calculated for four differing levels of convergencet,0
0.05, 0001, Q0001, optimizing the-dimensional Rosenbrock function, comparing Or-
thoMADS toA-MADS. The results are graphically presentedtid. The superior per-
formance ofA-MADS indicated by the previous analysis is verified at vagylevels of
convergence. Im = 4 and greate’\-MADS proves to have superior convergence rates
to OrthoMADS at all levels of convergence. Generally spegkithe greater the level
of convergence (that is, the more difficult the optimizajjghe greater the performance
difference betweeN-MADS and OrthoMADS.



95

90

851

80

751

of

1.2

11r

1l

09r

0.8F

166

651
0.7}

60

~—_ 0.6
551 T~ 77,,,@/

50 : : 05 : :
107 10° 107 107 107 10° 107 107

Figure 4.7: The efficiency metricg (L) andr (R) comparing\-MADS to OrthoMADS
on the Rosenbrock cost function for convergence goals.ho®5,0.001 0.0001 in
dimensions = 2 (red circles)n = 4 (magentat-), n = 6 (black asterisk), and = 8
(green dots). Note howx-MADS outperforms OrthoMADS in high dimensions for all

convergence levels.

Table 4.5 Performance comparison betwe&fMADS without, and with, coarsening,
on quadratic bowls (lines 1-2) and the Rosenbrock test fom¢lines 3-4).

in| 2 | 3] 4[] 5 [ 6 |7 |8 |
| 346 | 325] 324 | 496 | 826 | 481 | 484
r | 0.945| 1.06| 1.147| 0.730] 0.699] 0.808| 0.866
p| 522 |N/A| 588 | N/A | 82.6 | N/A | 74.4
r | 1.03 | N/A | 0.984] N/A | 0.699] N/A | 0.864

Finally, we test the effects of the coarsening scheme adli@mbove. The\-
MADS coarsening methodology outlined above emphasizesetge of the successful
poll orientation on the coarser grid after two consecutivecessful Poll steps on the
finer grid, allowing the algorithm to maintain the proper Ipmlientation, while tak-
ing a larger step toward the minimum, thereby maintainingrgdr average step size
and speeding convergence. To test the effect of coarsenitigs fashion, the same
testing methodology outlined above was used, teshifldADS without coarsening to
N-MADS with coarsening on a statistically relevant numbemaofdratic bowls, and
then then-dimensional Rosenbrock function. The results are suna@diin Tabled.6.

Coarsening offers superior convergence in high dimensjersicularly on the
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challenging Rosenbrock function. However, somewhat singly, on these convex
and unconstrained cost functions, coarsening offered waradge in lower dimensions,
in fact incurring a performance penalty. Notice that coairsg performed particularly
well on the Rosenbrock function, clearly delivering supegerformance than the non-
coarsening algorithm. This indicates that implementingarsening strategy will be
more valuable on a cost function with challenging behavibhsconstrained cost func-
tions are comparatively easy for a MADS algorithm to handidaating a descent
direction is straightforward; more challenging is maintag an appropriate mesh scal-
ing in the presence of hard constraints. In the latter sc@&MADS often has to
perform many unsuccessful Poll steps before a descentidimezan be located. While
N-MADS’ ability to refine the mesh more slowly than LTMADS andt@oMADS pre-
vents as much over-refinement during this process, oftem#sh is refined more than
necessary. Under these circumstances, the coarseniteggtis particularly appropri-
ate. Thus, we recommend that users implement mesh coagsandifficult constrained
optimization problems.

4.7 A Numerical Example: Locating the Deep Hole of a

Lattice

An example of a research optimization problem that can beedoWwith A-
MADS but not by a simpler SP pattern search was encountergtdebguthors while
performing numerical analysis of efficient lattices (seeflr 2). The challenge is to
calculate the location of a deep hole belonging to the omgide of a particular lattice.
By definition, a deep hole is the furthest point from a givetida node that remains as
close or closer to said node than any other node of the laffibas, if one enumerates
a great number of lattice points surrounding the origin, gimgn point can be analyzed
to determine whether or not said point lies within the voia®l (that is, if the point is
closer to the origin than any other lattice point in the clpuhe objective is to locate
the point furthest from the origin that remains in the voriaredl of the origin node. The
cost function for thed, lattice can be seen in Figure 3.2.

In the interest of remaining computationally feasible, domstraints must be
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Figure 4.8 Locating the deep holes of the lattice utilizing Successive Polling (left)
and/A\-MADS (right). The hard constraints are indicated in blatle cost funtion con-
tours are plotted as well. The inability of the SP algoritlirh&ndle constraints prevents
convergence/\A-MADS maintains convergence and locates the deep hole.

hard. This is performed by calculating the distance fromheaade in the cloud to the
CMP. If the distance from the CMP to the origin is less thandiséance from the CMP
to any another node, the CMP lies inside the voronoi cell &edcbst function value
is the distance to the origin. Otherwise, the CMP lies oet$iek voronoi cell, and as
such is not valid for evaluation, so the cost function val@finity. This presents a
challenging problem where traditional derivative-baskgbi@athms cannot be applied,
as the constraint surfaces are unknown, and SP and otheesBRS algorithm fail to
converge.

Under the only numerically feasible problem definition, as be seen in Figure
3.8, the Successive Polling algorithm ceases converggrmeancountering a constraint
surface. Once the algorithm nears the constraint bountteynly element of the poll
set with a component in the descent direction violates timstcaint and the algorithm
stalls. TheA-MADS algorithm, however, stochastically locates an aaéinn allowing
it to follow the constraint directions and moves along thastmints to the deep hole.
This method was used to locate the deep holes of a great nwhlsgtices, allowing
for the calculation of many previously unknown metrics,aeed in Bewley, Belitz, &
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Figure 4.9 Locating the deep holes of the lattice utilizingA-MADS with no coars-
ening, plotting the CMP as green dots (L), and coarsenindggmented (R), plotting the
CMP as a black cross. The algorithm with coarsening enalbdéedlg maintains a larger
average step size, speeding convergence in the presencé/efanstraints.

Cessna, (2011).

Figure 3.8 above clearly demonstrates one shortcoming adracnarsening
MADS scheme on a cost function subject to hard constraintstevthe algorithm lo-
cates a suitable descent direction, the mesh becomes venfifititing the step size
taken. To rectify this, the coarsening scheme describesiealsoimplemented in\-
MADS, and the deep hole test function is reconsidered. Asbeaseen in Figure 3.8,
without coarsening, the step size along the black consttainndary is very small,
requiring a great number of function evaluations to coneerg/ith coarsening, good
descent directions are reused, and the deep hole is lochiézimaintaining a coarser
grid size on average.

4.8 Conclusion

In this document we investigate the performance of curreesiMAdaptive Di-
rect Search (MADS) methods, and introduce a new MADS algorit\-MADS. Via
exhaustive numerical testing, we conclusively demonstifzt in the interest of algo-
rithm efficiency, it is highly desirable to coordiate a MAD8asch on (1) an efficient
lattice, (2) to locate the Poll sets on the Delauney cell efl#ttice, (3) to utilize a min-
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imal rather than a maximal positive basis, and (4) to impleinrecomplete polling of
the Poll sets.

TheA-MADS algorithmis significantly more efficient than any costipg MADS
algorithm due to careful selection of the most efficient stilod the choices presented
above. As such\-MADS is the most efficient MADS algorithm yet developed, asd
the clear choice for difficult modern convex optimizatioolplems.



Chapter 5
Conclusion

The current work investigates the applicatiomedimensional sphere packings,
or lattices, as they relate to modern derivative-free ogttion algorithms. The results
presented in Chapters 3 and 4 demonstrate clearly thafisartigains in convergence
rates are commonly realized among the best modern gridilzdgerithms by replacing
the ubiquitous Cartesian grid with an efficient lattice.

In Chapter 2 a review of sphere packing theory is presenteddogent fash-
ion, covering the majority of well known lattices, givingatough characterizations of
said lattices, including significant new material. Sevekal packings are introduced,
some specifically for engineering applications, and mamyipusly unknown metrics
are presented, rounding out the analysis of common latt®egeral higher-dimensional
extensions of previously known packings are also consideidumerous algorithms
necessary for practical implementation of lattice theoeymesented, most importantly
guantization algorithms for the most efficient members efAhclass of lattices. Fi-
nally, a summary of coding theory, the most widely known agtion ofn-dimensional
sphere packings to engineering applications, is presei@bdpter 2 aims to be a con-
cise, engineering-oriented presentation of lattice theaimed to motivate and guide
future work applying this rigorous field of mathematics te tmodern fields of engi-
neering and computational science.

Chapter 3 delves into modern derivative-free optimizatimory and implemen-
tation, investigating the Generalized Pattern Search JGRSs of algorithms. The Sur-
rogate Management Framework (SMF) algorithm is introdenedl investigated, start-

171
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ing with the Successive Polling (SP) pattern search Pqil #idapting the SP algorithm
to the efficient lattices presented in Chapter 2 is covened extensive numerical test-
ing indicates that simply by replacing the inefficient Cai@ grid with a more efficient
alternative the SP algorithm’s convergence rate is imptale to greater radial and an-
gular uniformity of the poll set. Next, the Search step of $iMF algorithm is explored,
reviewing Kriging surrogate methodology and derivation.itiAan understanding of
Kriging, various globally and nonlocally convergent Séaschemes are described and
tested. One of the most effective modern Search algorithximzes the likelyhood
of improvement, giving a Search step that is both globalliyveogent and locally effi-
cient. Combining the highly efficient lattice-based SP RBtdp and the MLI Kriging
Search step, a new SMF algorithm, named LAttice-Based Birarfree Optimization
via Global Surrogates (LABDOGS) algorithm is defined. Nuicertesting of LAB-
DOGS indicates that, as expected, the lattice-based SMEsigdificantly outperforms
its Cartesian equivalent, with the performance differebeeoming greater as the di-
mension of the problem increases. The MLI search offersajlobnvergence as well
as speeding local convergence, and the efficient lattisecb&P Poll step ensures fast
local convergence.

Motivated by the success of implementing efficient latticethe SMF frame-
work, Chapter 4 focuses on a more sophisticated class of GfpEtAhms known as
Mesh Adaptive Direct Search (MADS) algorithms. Among thestnsophisticated of
modern GPS algorithms, MADS algorithms aim to improve ugadonvergence be-
havior exhibited by simpler GPS methods. Specifically, t@msed optimization prob-
lems present a special challenge to SP algorithms, whitkofaonverge when a hard
constraint prevents any valid poll directions from lyingle cone of descent directions.
MADS, specifically OrthoMADS, overcomes this problem byoaling the polling di-
rection to become dense as convergence is neared. Comhbieiignse polling direc-
tions with intelligent poll orientation re-using, a wellsigned MADS algorithm con-
verges well even in the presence of constraints or othetesigahg function behavior
that foils conventional GPS algorithms. Recognizing tiat best of modern MADS
algorithms, OrthoMADS, is intrinsically limited by sevérdactors, including its de-
sign upon the Cartesian lattice, Chapter 4 builds a new MAQS8rahm, A-MADS,
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from the ground up, numerically and theoretically investigg every option available
to build the algorithm. In comparison to previous MADS algfuns,A-MADS achieves
improved convergence performance by implementing an effidattice, building more
uniform poll sets, refining the poll set via new methodolagylizing a minimal basis
when appropriate, and finally implementing a more effectivarsening strategy than
had previously been described in the literature. All théseges, numerically isolated,
tested, and verified, result W-MADS inheriting all the convergence behavior present
in the best MADS algorithms, while increasing the convergerate significantly. In
n= 8, for exampleA-MADS requires approximately half as many function evatat
as OrthoMADS to reach the same level of convergence. As WtBDOGS, as the
dimension of the cost function increases, the performaiiterehce betwee\-MADS
and OrthoMADS increases, establishinglADS as the most efficient MADS algo-
rithm yet devised.

The application oih-dimensional sphere packings to modern optimization al-
gorithm design is only one example of the impacts that thid fi¢ mathematics can
potentially have a significant impact in. Coding theory, assarized in Chapter 2, is
another example; using lattices to provide an efficientradenect scheme for super-
computers as described in Cessna & Bewley (2011) is andttmvever, the potential
for engineering application of lattice theory is vast. Thihar hopes that the material
presented in Chapter 2 will prove useful in achieving thieptal, with the applications
decribed in Chapters 3 and 4 serving as motivation.

The most logical extension of the work presented in this dwent is the merg-
ing of the LABDOGS and\-MADS algorithms; by replacing the SP Poll step of LAB-
DOGS with a MADS step, a hybrid algorithm, perhaps to be naMa®DOGS, will
maintain all the convergence characteristics of LABDOG dewbifering superior con-
straint handling abilities. As LABDOGS by nature requirescunded domain for the
MLI search to be defined, choosing a Poll step that can besti&éauch constraints
would be a efficacious strategy.

Further refinements of LABDOGS or the aforementioned MAD @I prob-
ably be minor. One weakness of LABDOGS is its use of Ordinarngidg. The as-
sumptions behind the Kriging model have the surrogate ageve the mean of the
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data points where the surrogate is far from previously exgloegions. Additionally,
Ordinary Kriging fails to account for variability in indidual dimensions, limiting the
ability of the surrogate to accurately model difficult fulects. Perhaps some conver-
gence potential in LABDOGS could be realized by implememtimore sophisticated
forms of Kriging, or perhaps a different interpolating s&gy altogether. In practice, it
is difficult to imagine how a Poll step more effective th&MADS would be generated
beyond the modifications outlined in Chapter 3 (e.g. usimgstirrogate to predict the
best Poll point, which could be extended to using the suteoggpredict an appropriate
Poll orientation). Similarly, while the MLI Search is notetlmost sophisticated Search
available, real-world performance between MLI and other8ealgorithms is likely to
be difficult to measure.

The A-MADS algorithm is quite complete and mature for the costctions
herein assumed, laying some fundamental questions relev&@¥PS algorithms in gen-
eral to rest (specifically, the effect of utilizing a maxinvarsus minimal positive basis).
While the MADS class of algorithms was specifically develbpa challenging func-
tion behaviors, e.g. hard constraints, little work has beé@me in establishing discrete
analogs to modern derivitive-based optimization constrhandling, which typically
optimize on a subspace of constraints, adding and remowtigeaconstraints as the
algorithm progresses toward an optimum. This sort of befhasignificantly reduces
the dimension of the space being considered by the optimizatgorithm. As such, an
obvious extension in derivative-free algorithms woulawailthe Poll set to be redefined
on a reduced-dimension subspace of constraint ‘walls’ wampropriate. This idea is
outlined in Chapter 3 for a SP optimization, the same coulufiemented in MADS.
Defining the poll set on the subspace of active constraint$ aading appropriate vec-
tors allowing the algorithm to move off the constraints cbpbssibly offer significant
improvements in convergence rates on cost functions witkali constraints.

Further extension of this work, in the mind of the author, {domove away
from the prototypical cost function assumed throughoug thork, the distinguishing
characteristics of which include continuity and coarsalesdifferentiability. One fun-
damental limitation of the GPS class of algorithms heregspnted is that for discrete
or integer cost functions (e.g. the famous Travelling Sablsproblem), GPS methods
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are not generally applicable. Simulated Annealing or Geradtjorithms, by compari-
son, can handle such cost functions; indeed, while SA and @#nazations are often
(mis) applied to continuous cost functions, they are bastdto discrete problems. The
guestion of how to extend the lattice-based methodologygrted in this document to
such new classes of optimization problems is open for reegand may well result in
interesting and significant findings.

In the meantime, it is the author’s sincere hope that LABDOGMADS, and
the presentation af-dimensional sphere packings of Chapter 2 and Bewley, Bdit
Cessna (2011), will find widespread application in modegirggering.
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