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Abstract

The mammalian urea cycle (UC) is responsible for siphoning catabolic waste nitrogen into urea 

for excretion. Disruptions of the functions of any of the enzymes or transporters lead to elevated 

ammonia and neurological injury. Carbamoyl phosphate synthetase 1 (CPS1) is the first and rate-

limiting UC enzyme responsible for the direct incorporation of ammonia into UC intermediates. 

Symptoms in CPS1 deficiency are typically the most severe of all UC disorders, and current 

clinical management is insufficient to prevent the associated morbidities and high mortality. With 

recent advances in basic and translational studies of CPS1, appreciation for this enzyme’s essential 

role in the UC has been broadened to include systemic metabolic regulation during homeostasis 

and disease. Here, we review recent advances in CPS1 biology and contextualize them around the 

role of CPS1 in health and disease.

Introduction

In ureotelic animals, nitrogen produced as a byproduct of amino acid catabolism is 

detoxified in the liver by the urea cycle, a system of 5 (6 including n-acetylglutamate 

synthase [NAGS]) enzymes and two transporter proteins (Figure 1). The first enzyme in the 

cycle is carbamoyl phosphate synthetase 1 (CPS1; E.C. 6.3.4.16), catalyzing the ATP-

dependent condensation of bicarbonate and ammonia to form carbamoyl phosphate1. 
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Carbamoyl phosphate undergoes subsequent stepwise catalysis to form citrulline, 

argininosuccinate, arginine, and finally ornithine and urea, through the actions of ornithine 

transcarbamylase, argininosuccinate synthetase, argininosuccinate lyase, and arginase, 

respectively, which is released into the blood for excretion by the kidneys2. Partial or total 

loss of function in any of the urea cycle proteins results in urea cycle disorders (UCDs), 

which occur in aggregate between 1:35,0003,4 and 1:50,0005,6 live births. CPS1 deficiency 

(OMIM #237300) is an autosomal recessive disorder7 with a prevalence of 1 in 300,0004 to 

1 in 1.3 million births3; estimates vary widely due to difficulty in diagnosis. Patients 

typically present with lethargy, vomiting, encephalopathy, and coma; subsequent blood 

analysis typically demonstrates elevated ammonia and glutamine along with reduced 

citrulline and arginine8. While the majority of cases appear in the neonatal period, others 

present less frequently occurring any time from childhood to adulthood depending on the 

extent of CPS1 functional loss. In neonates, up to 50% of symptomatic patients perish 

despite treatment4, many with the first episode. Late-onset patients have survival of over 

90%9. Long-term neurological deficits are found in the vast majority of neonatal onset cases, 

with a smaller proportion occurring in those diagnosed as late-onset6. CPS1-deficient 

patients tend to have the most severe symptoms of all UCDs4, contributing to the need for 

new treatment options for patients.

Clinical management of CPS1 deficiency is largely dependent on dietary protein restriction, 

administration of the nitrogen scavenging compounds phenylbutyrate and benzoate10,11, and 

L-arginine supplementation11. Keto analogues of amino acids (e.g. valine or phenylalanine) 

have also been used successfully12. However, these therapies are unable to prevent 

progressive neurological decline due to recurrent hyperammonemia, which often requires 

emergent hemodialysis to effectively clear13. Dialysis is effective in preventing mortality in 

severe cases but is unable to change the ultimate neurocognitive outcomes of the disorder. 

Early diagnosis and aggressive treatment are therefore essential for improving prognoses; 

however, initial diagnosis is hindered by the lack of a specific metabolite that distinguishes it 

from NAGS deficiency14, necessitating genome sequencing or functional testing. Prenatal 

and newborn screening could have a meaningful impact in speeding up diagnosis, though it 

is not routinely performed for CPS115. Orthotopic liver transplantation is effective in 

treating deficiency of CPS116,17, though there are potential associated complications 

including long-term risk of allograft rejection and post-operative infections18. Despite the 

high level of survival post-surgery19, CPS1 patients require long-term immunosuppression 

and may still require citrulline supplementation due to loss of CPS1 activity in enterocytes, 

the primary source of plasma citrulline8,17.

CPS1 deficiency has been at the mercy of an unchanging therapeutic field for the better part 

of 40 years. The recent advancement in gene therapy successes in a variety of metabolic 

diseases, including ornithine transcarbamylase deficiency20, and the development of several 

model systems to study CPS1 biology in the past 10 years indicate that the time is 

appropriate for a fresh look at the state of the field for CPS1 deficiency. In addition, CPS1 

has been implicated in diseases beyond its classical deficiency21. The purpose of this review 

is to provide an overview of what is known about the biochemistry and regulation of CPS1 

and discuss how a variety of recently described models may be used to answer outstanding 

questions and address the development of much needed novel therapeutics.
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CPS1 In Homeostasis:

Gene Structure and Regulation—CPS1 is located on chromosome 2q34, spanning over 

120kb, and contains 38 exons with 37 introns22–24, the result of an ancient duplication of the 

CP synthesis domain (large subunit, carB in E. coli) and subsequent fusion with the 

glutaminase domain (small subunit, carA in E. coli) to form the mammalian 

holoenzyme25,26. A core promoter27 and both a −150bp proximal28 and −6kb distal29 

enhancer have been identified, which together produce a 5761bp mRNA24 with well-

conserved sequence homology between species25,30. There is one mammalian homolog of 

CPS1: CPS2, which is expressed as part of the ubiquitously expressed CAD (CPS2, 

aspartate transcarbamylase, and dihydrooritase) protein complex that regulates pyrimidine 

synthesis31; several orthologs exist across kingdoms, including E. coli CPS (eCPS) and 

CPS3, which is found in some fishes32. In addition to the protein-coding mRNA, a 2.3kb 

long noncoding RNA (lncRNA) is also produced from the CPS1 locus, specifically intron 

21, termed CPS1 intronic transcript 1 (CPS1-IT1)33. CPS1-IT1 has recently been the subject 

of increased investigation due to its putative tumor suppression functions (discussed below).

Transcriptional regulation is complex, largely having been studied in rodents historically, 

and occurs at the core promoter in addition to the two enhancer regions. The promoter 

contains a CAAT/enhancer binding protein (C/EBP) binding site necessary for 

transcriptional activation34,35, in addition to an activator protein 1 (AP1) binding site, which 

is an important negative transcriptional regulator36,37. AP1 binding to the promoter is 

mediated by the distal enhancer38, which is also responsible for the complex, liver-specific 

response to stimuli39. Cyclic AMP (cAMP) response binding protein (CREB) and 

glucocorticoid receptor (GR; via glucagon/cAMP and glucocorticoid signaling, respectively) 

bind the distal enhancer to promote transcriptional activation40. Moreover, AP1, C/EBP, GR, 

and hepatocyte nuclear factor 3 (HNF3) family protein binding sites are all found within the 

distal enhancer and mediate its function41–43. In addition to the distal enhancer, the proximal 

enhancer also contains C/EBP binding sites and a GAGA box, integrating the transcriptional 

effects of the distal enhancer28.

CPS1 expression, in addition to the other urea cycle enzymes, is indirectly regulated by 

various factors. miR-10a-3p negatively regulates the glucocorticoid receptor subunit NR3C1, 

which in turn reduces CPS1 expression44. Chromatin remodeling by Baf60a, a subunit of the 

Switch/Sucrose Non-Fermentable (SWI/SNF) complex, also reduces transcription when 

bound to the cofactor YB1. Competitive binding of YB1 and peroxisome proliferator-

activated receptor-γ coactivator 1α (PGC1α) to Baf60a clarifies the direct role of PGC1α in 

the induction of CPS1 expression45,46. AMP kinase (AMPK) activation suppresses CPS1 
expression47,48, though the exact mechanism is unclear; however, it has recently also been 

shown to increase transcription of urea cycle enzymes in general including CPS149, possibly 

through PGC1α signaling50.

Protein Structure and Function—First identified in the 1950s1 as the enzyme 

responsible for generating the citrulline precursor carbamoyl phosphate51, CPS1 has been 

the subject of extensive structural and biochemical characterization over the decades since. 

CPS1 is a 165kD protein that makes up 15–20% of total hepatic mitochondrial protein52,53. 
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After translation, the proenzyme is shuttled from the cytoplasm into the mitochondrial 

matrix, where it is cleaved to form the mature protein54. CPS1 is also found in the 

enterocytes of the small intestine, where it contributes to pyrimidine biosynthesis55,56 and 

circulating citrulline/arginine via the gut-renal axis57.

CPS1 catalyzes the overall formation of carbamoyl phosphate in three distinct steps (Figure 

2A): i) bicarbonate phosphorylation to form carboxyphosphate; ii) condensation of 

carboxyphosphate with ammonia to form carbamate; and iii) carbamate phosphorylation to 

form carbamoylphosphate58. Steps i and iii consume 1 ATP each59,60, with ammonia being 

consumed from the coupled Glutaminase (encoded by the GLS gene) reaction that releases 

glutamate and ammonia61. Exogenously supplied ammonia is necessary for CPS1, in 

contrast to the other homologs (eCPS, CPS2, and CPS3), due to loss of glutaminase activity 

in the small subunit from a conversion of the catalytic cysteine residue to serine25. CPS1 is 

organized into multiple domains, individually responsible for the partial reactions62–64, 

enzyme stability65,66, and allosteric regulation by n-acetylglutamate (NAG)67 (Figure 2B). 

X-ray crystallography studies of eCPS demonstrated that a 96Å internal tunnel is 

responsible for shuttling reaction intermediates between domains58,68–70, which was 

subsequently confirmed with the crystal structure of the human enzyme71. This crystal 

structure was also used to confirm the binding site of NAG and the impact of clinical 

mutations in that region72,73.

CPS1 enzyme function is coordinately regulated with the rest of the urea cycle in response 

to various stimuli. Upon feeding, the urea cycle, including CPS1, is upregulated to 

metabolize the digested proteins. During fasting, rising nicotinamide adenine dinucleotide 

(NAD) levels activate Sirtuin proteins; specifically, Sirtuin 5 (Sirt5) deacetylates74,75 and 

deglutarylates76 CPS1, removing the inhibitory protein modifications from the critical 

cysteines in ATP binding sites. Glucagon administration rapidly increases the 

intramitochondrial concentration of NAG (the essential allosteric activator of CPS1), binding 

more CPS1 molecules and boosting activity77. Glucagon signaling via cAMP also increases 

the expression of PGC1α, which rapidly induces increased Sirt5 expression to deacetylate, 

and thus activate, CPS145. In contrast, Sirt5 is negatively regulated by miR-19b during low 

protein intake, ultimately reducing CPS1 activity to inhibit catabolism of critical amino 

acids44. Sirt5 is also inhibited by AMPK78, reducing CPS1 activity, potentially as a result of 

urea cycle flow and AMP generation by argininosuccinate synthase79. Altogether, CPS1 

regulation in response to fasting and feeding, mediated principally by glucagon and 

glucocorticoid, is diurnal and an important aspect of liver-wide circadian regulation80. A 

schematic diagram of CPS1 gene and protein regulation is depicted in Figure 3.

CPS1 In Disease:

Classical CPS1 deficiency has long been recognized as being the result of loss of CPS1 

enzymatic function81 resulting in hyperammonemia and neonatal mortality if not rapidly 

recognized and controlled. However, CPS1 expression has emerged as playing a role in other 

diseases, including cancer, which has been known since at least the 1980s but has not been 

used as more than a diagnostic82, cardiovascular disease, and obesity.
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Cancer—Due to the essential role of CPS1 in detoxifying ammonia and providing the 

precursor molecules for pyrimidines and arginine, its role in promoting cancer growth may 

not seem surprising. CPS1 has been found to be upregulated in a wide variety of cancer 

types, including gastric83 and lung47, though not in others (e.g. breast cancer)84. 

Counterintuitively, CPS1 is often found to be decreased or absent in small intestinal 

cancers85 and hepatocellular carcinomas82. The reason for this downregulation is unclear, 

though aberrant global methylation may play a role86. Several studies have confirmed the 

role of CPS1 in supplying pyrimidines to the rapidly growing tumor, its loss causing 

deleterious effects on tumor cell viability and proliferation47,87. CPS1 upregulation may be 

multi-faceted depending on the tissue of origin: in non-small-cell lung carcinomas, liver 

kinase B1/AMPK-mediated CPS1 transcriptional repression is lost, allowing the gene to be 

transcribed48. In bladder cancer, caspase recruitment domain family member 10 (CARD10), 

via nuclear factor kappa B (NF-κB), activates CPS1 expression88.

Though these mechanisms are becoming clearer, two major questions remain. First, what 

factors are promoting CPS1 activity? Regardless of its upregulated expression, CPS1 is 

completely dependent on NAG to function; there is no activity in its absence. Therefore, the 

co-upregulation of CPS1 and NAGS is important to address in future studies to more fully 

understand if co-induction of the two is happening, whether some other external small 

molecule is promoting CPS1 activity (such as with glycerol, described below), or if there are 

gain-of-function mutations that are yet to be identified. Second, what is the precise 

mechanism of CPS1-mediated pyrimidine synthesis? CPS1 is principally a mitochondrial 

enzyme, shuttled into the matrix immediately after translation54, sequestering it away from 

the pyrimidine-synthesizing CAD enzyme, which contains CPS2 that catalyzes the same 

reaction as CPS1 in the cytoplasm. CAD-mediated pyrimidine synthesis is distinct from any 

CPS1 activity, and CPS1 silencing in cancer cells did not demonstrate any impact on CAD 

abundance48, ruling out the possibility that the effects of CPS1 loss in these cells was 

impacted by reduced CPS2. In addition, carbamoyl phosphate is a labile molecule that does 

not typically traffic to the cytoplasm from the mitochondria, though it may spillover after 

excessive accumulation89, suggesting that aberrant CPS1 activity may overwhelm the 

mitochondrial matrix with carbamoyl phosphate that then interacts with CAD. Some small 

amount of CPS1 protein may be present in cytoplasm normally55, and oncogenic 

overexpression may result in a level of cytoplasmic protein that significantly contributes to 

pyrimidine homeostasis. Whether overexpression alone is sufficient to drive tumorigenesis, 

or if it is a byproduct of global aberrant gene expression, remains to be investigated.

By investigating outstanding questions about CPS1 expression in cancer, CPS1 may become 

an attractive target for therapeutic development. Indeed, N-carglumic acid (NCA), the 

structural analog of NAG and active ingredient in Carbaglu©, was shown to inhibit cancer 

cell growth and induce apoptosis in several different types of cancers90. This is especially 

intriguing as NCA increases CPS1 activity, which intuitively might promote cancer growth, 

and warrants more in-depth investigation to fully elucidate the mechanisms involved. 

Additionally, a recently performed drug screening study identified two small molecules, 

termed H3B-12091 and H3B-61692, that selectively and potently inhibit CPS1 function by 
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blocking ATP hydrolysis, paving the way for new, more targeted small molecule-based anti-

cancer drugs.

Beyond the protein itself, the discovery that the CPS1-derived lncRNA CPS1-IT1 impacts 

tumor proliferation87,93–95 has also renewed focus on CPS1 in the context of cancer. CPS1-

IT1 expression is correlated with better prognoses in hepatocellular carcinoma93, ovarian 

cancer96, lung cancer97, and colorectal cancer98. Its overexpression reduces tumor cell 

proliferation and induces apoptosis96,97 by inhibiting hypoxia inducible factor 1α 
signaling98 and Cyr6-mediated angiogenesis95 in colorectal and melanoma cells, 

respectively. These anti-tumor proliferation properties make CPS1-IT1 an appealing gene 

therapy candidate for use in a wide variety of tumors, either by delivering the full sequence 

directly to cancer cells or by promoting its expression from the endogenous locus.

Cardiovascular Disease—Appreciation for the role of CPS1 in cardiovascular disease 

has recently increased due to the identification of single nucleotide polymorphisms (SNPs) 

associated with it. The SNP rs1047891 encodes a C>A transversion, a missense mutation in 

exon 36 leading to the incorporation of asparagine instead of threonine at amino acid residue 

1405 (T1405N). T1405N was initially associated with protection against neonatal 

hypertension99, as well as post-cardiac surgery and post-bone marrow transplant 

complications100. However, T1405N has subsequently been shown to functionally impair 

CPS1 activity by 30–40%101, contradicting the hypothesis that T1405N promotes increased 

circulating arginine and endothelial nitric oxide signaling (eNOS)100. Further studies aimed 

at determining the impact of this SNP have shown varying results that prevent it from being 

clearly shown as pathogenic102,103. Specifically, the hypothesis that reduced CPS1 activity 

leads to restricted nitric oxide signaling substrates, thereby contributing to hypertension, has 

not been demonstrated in adults102, despite being found in neonates100; the seemingly 

contradictory results have led to the concept of environmentally determined gene expression 

(EDGE), in which protein variants only show a measurable phenotype under some 

environmental stress condition100. As newborns have lower CPS1 expression than adults104 

and a higher metabolic demand, diminished CPS1 function at this time may exhibit 

pathological effects until it is masked by increased total protein to accommodate the 

disparity. In support of the EDGE hypothesis, T1405N has also been correlated with 

hyperammonemia in epilepsy patients receiving valproic acid105, demonstrating that an 

environmental stressor for an unrelated disorder may exacerbate underlying genetic deficits 

that would otherwise show no phenotype. T1405N is found in 30% of the population106 and 

may therefore present an important marker to consider in personalized medicine when 

determining other disease susceptibilities as well as treatment strategies.

In addition to the T1405N variant, rs715 has been identified as a SNP associated with 

disease. rs715 is a T>C transition in the 3’ UTR of CPS1 and is associated with reduced urea 

cycle intermediates, increased glycine, and protection against coronary artery disease107,108. 

The exact mechanism of rs715 is uncertain; however, it is part of the same haplotype as 

T1405N and thus may only be indicative of T1405N presence and subsequent impact. 

Reduced activity from the T1405N variant is proposed to lead to increased circulating 

glycine; the relationship between glycine and betaine, which controls blood pressure, may 

also explain how reduced urea cycle-dependent glycine catabolism leads to decreased blood 
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pressure and improved cardiovascular health107,108. Additional studies are needed to further 

elucidate the complex interactions of CPS1 and glycine on cardiovascular health, as well as 

the components of EDGE. Studies of this sort would benefit immensely from a robust cell or 

animal model, as they are currently largely limited to correlative studies or small studies in 

healthy adults.

Obesity—The rising incidence of obesity worldwide has led to increased attention on 

finding novel underlying mechanisms and potential treatment strategies. Urea cycle function 

is reduced in obesity109 as elevated lipid availability decreases glucose utilization for energy 

and inhibits protein catabolism, possibly facilitated in part by SWI/SNF-mediated chromatin 

remodeling46. Increased ammonia has been implicated in the effects of high-fat diet 

(HFD)110, making CPS1, as the rate-limiting enzyme, an intriguing target for therapeutic 

development. In obese patients undergoing dietary intervention and weight maintenance, 

patients who regained previously lost weight had increased baseline CPS1 expression 

relative to those that maintained weight loss, in addition to having reduced glycine21. Inter-

individual differences in CPS1 expression may reflect a genetic predisposition to metabolize 

proteins for energy more than the general population, reducing patient ability to utilize 

stored lipids21. The connection between obesity and cardiovascular disease has long been 

known, and these new studies provide a previously unrecognized link between them through 

CPS1 activity and glycine/betaine metabolism21,107. Studies in obesity may also point to 

possible therapies, even ones as simple as modulating dietary protein intake. For developing 

pharmaceuticals, the dietary flavonoid nobiletin is found in citrus fruits and influences a 

broad array of metabolic processes (reviewed in Huang et al. 2016111). In mice fed HFD, 

nobiletin was found to increase Cps1 transcription via C/EBP112. While further work is 

required to fully elucidate cellular targets and mechanisms, small molecules may provide a 

robust means to rescue the reduced CPS1 expression and activity associated with obesity. In 

contrast, the H3B-120/616 small molecule inhibitors of CPS191,92 may provide a means of 

keeping CPS1 expression in check to help maintain weight and prevent relapse. Together, a 

variety of approaches and small molecules may be used to fine tune CPS1 activity to 

optimize therapeutic benefits for individual patients.

Other Diseases—In addition to cardiovascular disease, the T1405N variant of CPS1 has 

been associated with necrotizing enterocolitis in newborns113. However, a follow up study 

from the same group failed to show diminished circulating arginine levels, making the 

strength of the correlation unclear114. Further studies are needed to determine the effects, if 

any, of T1405N on arginine levels and their subsequent influence on the development of 

enterocolitis.

Beyond obesity and cardiovascular disease, CPS1 has also recently been implicated in major 

depressive disorder. Four novel SNPs were reported to be associated with major depressive 

disorder in patients from the National Institute on Aging – Late Onset Alzheimer’s Disease 

Family Study115. In context with other SNPs identified in this study in the glutaminase 

(GLS) and glutamine synthetase (GLUL) genes, which are also closely linked to ammonia 

metabolism, the authors hypothesized that reduced CPS1 enzyme activity leads to increased 

circulating ammonia and a concomitant increase in neural GLUL-derived glutamine. 
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Increased glutamine leads to decreased glutamate (the substrate for GLUL), an important 

neurotransmitter, which is a known cause of neuronal dysfunction116. As other urea cycle 

enzyme deficiencies have been linked to neuronal phenotypes117, a link between the urea 

cycle and the brain through CPS1 is distinctly possible and warrants further investigation.

Finally, CPS1 may also play a role in regulating the immune response to injury. During 

acetaminophen-induced acute liver injury in mice, CPS1 was shown to be released into the 

circulation and taken up by macrophages. CPS1 uptake led to macrophage polarization and 

subsequent liver homing, where they mediated an anti-inflammatory protective response to 

the injury118. Strikingly, these effects were shown to be independent of enzyme function, 

leading to the conclusion that CPS1 acts as an immunomodulatory cytokine. Though the 

mechanism of action remains unclear, the capacity of CPS1 to promote macrophage 

polarization and result in reduced inflammation regardless of whether it is administered 

before or after injury suggests that it may be a novel way to treat liver injury in a variety of 

contexts, including hepatitis, substance abuse, and autoimmune diseases.

Emerging Therapeutics

The primary treatment strategy for CPS1 deficiency is protein restriction and the 

administration of nitrogen scavengers. However, this standard of care is insufficient to 

prevent recurrent hyperammonemia and neurological insult. Nitrogen scavengers are further 

limited by toxicity at high doses and unwanted side effects from chronic use119–121. Further, 

these interventions depend on early recognition of the disease, which is not typically 

diagnosed until after major crises122, while liver transplantation offers a curative option but 

is limited by availability and complication risk18. The recent development of several model 

systems has led to the ability to develop and test novel treatments for CPS1 deficiency.

Cell-Based Models—For the majority of the past 60 years, biochemical studies relied on 

isolating CPS1 from model organisms such as E. coli and rats, leaving the clinical impact of 

various described human mutations uncharacterized. To address this, an expression system 

overexpressing E. coli Cps (eCPS) was developed to test the impact of clinically relevant 

mutations123. Because the structure of eCPS is well-characterized, this system provided the 

means to test several mutations and determine how they impact enzyme structure and 

function, which was done initially for 8 variants found in human patients, showing that they 

correlate well in vitro with the clinical presentation123. The major limitation to this system is 

that eCPS is only 40% homologous to human CPS1, with two subunits and an intact 

glutaminase domain, making some aspects of structure and function difficult or impossible 

to correlate to human phenotypes.

To address the eCPS system limitations, various other expression systems were generated to 

study mammalian CPS1. Rat CPS1 shares 95% homology with human CPS1; the cDNA was 

therefore incorporated into the baculovirus/insect cells overexpression system (using the Sf9 

cell line from Spodoptera frugiperda) to rapidly generate and purify CPS1 variants to test the 

effects of mutations124. 9 mutations from CPS1 patients were investigated using this system 

and shown to correlate closely to their clinical phenotypes, aided by the then-recently 

published crystal structure of the NAG binding domain72,73. The same system was 
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subsequently modified to produce recombinant human CPS1125, which was used to show 

that glycerol can activate CPS1 in the absence of NAG. Glycerol-stimulated CPS1 activity 

had been appreciated previously in rats67 but had not been directly tested and characterized 

on human protein. This advancement allows for the development of other potential 

therapeutics that allosterically activate CPS1 in the context of a damaged NAG binding site. 

Interestingly, it also suggests how CPS1 may be active without NAG, having implications 

towards its regulation in cancer (discussed above), as well as suggesting alternative methods 

of improving CPS1 activity with unrelated small molecules that are NAG binding site-

independent. Other human CPS1 cDNA expression systems were generated in the fission 

yeast Schizosaccharomyces pombe101 and immortalized human cell lines HepG2 

(hepatoma) and LO2 (fetal liver)126. Testing in the yeast system led to the direct comparison 

in enzyme kinetics between the threonine and asparagine variants at residue 1405101 

(T1405N, discussed above), offering a potential platform for testing pharmaceutical 

interventions to increase activity. The human cell lines used were modified with CRISPR/

Cas9 to express tdTomato in-frame with CPS1, with fluorescence intensity reflecting CPS1 

expression levels. These lines were validated and used in a high-throughput small molecule 

screen to identify resveratrol as a modulator of CPS1 expression126 and means to potentially 

increase ammonia clearance and urea formation in bioartificial livers.

While cDNA-expressing systems have great value, a means to test non-coding mutations is 

also necessary for a more complete understanding of the CPS1 mutation spectrum. To this 

end, a modified BAC was generated that contains the entire 120kb CPS1 gene, including the 

enhancers and promoter, introns, and untranslated regions, and expressed in the MRC-5V2 

human lung fibroblast cell line127. This system provides a powerful way to interrogate native 

human CPS1 regulation, which would help to confirm the in-depth findings from rodent 

studies, as well as determine the biological effects of splicing, intronic, and other regulatory 

mutations that are untestable in the other cell-based systems. In particular, this may be the 

most impactful way to address the interactions of environmental stressors and SNPs that are 

essential for driving the EDGE hypothesis postulated to be the cause behind the associated 

effects of the T1405N variant. The same approach may be used to elucidate the interactions 

of SNPs identified in major depressive disorder as well as the rs715 SNP that protects 

against coronary artery disease. Beyond SNPs, this model offers a useful platform for 

determining the mechanism of AMPK-mediated CPS1 regulation, in addition to how 

mutations and methylation patterns impact tumorigenesis. Together, the wide variety of cell 

systems offers a powerful way to investigate the plethora of described clinical mutations in 

CPS1.

Animal Models—By studying the molecular impacts of various mutations on CPS1 

stability and function, we can gain important insights into how and why the deficiency 

progresses in individuals. However, to design and test potential therapeutics, robust animal 

models are essential. The severity of disease symptoms and high therapeutic threshold have 

made the development of animal models technically challenging30,128, in turn hindering 

therapeutic development. Other potential treatments have been tried but not validated in 

controlled clinical studies, such as therapeutic hypothermia129,130 and hepatocyte 

transplantation131, both of which would benefit immensely from testable animal models. To 
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address the need for new models, our group recently generated and characterized two 

models of CPS1 deficiency in mice. In the constitutive knock out, neonates homozygous for 

a deletion in exons 3 and 4, which introduces a premature stop codon, rapidly develop lethal 

hyperammonemia with milk intake and perish within 24 hours of birth132. This model 

recapitulates the human phenotype as well as a previously published model also describing a 

constitutive knock out133. To our knowledge however, this previous model was never used 

for any therapeutic development and has since been lost134.

Though useful for replicating disease phenotypes, the constitutive knock out is technically 

challenging to use as a platform for proof-of-principle studies due to the rapid death of pups 

and typical births occurring overnight. To generate a more malleable genetic model, we 

generated a conditional knock out mouse model that uses the Cre/LoxP system to delete 

exons 3 and 4 in Cps1, introducing a nonsense mutation that leads to gradual decline and 

death with hyperammonemia and hyperglutaminemia over the course of 3 weeks135. With 

this controlled loss of protein and longer time window for therapy, we demonstrated that 

murine Cps1 deficiency is treatable using a recombinant helper-dependent adenovirus 

expressing murine Cps1135. We were subsequently able to show using this model that an 

AAV-based gene therapy approach was feasible and corrected the disorder by expressing 

human CPS1136. Successful gene therapies have been described for the other enzymes in the 

urea cycle137–140, and these new studies in CPS1 deficiency lay the groundwork for rescuing 

the more severe neonatal phenotype in the constitutive knock out and potential clinical 

translation. With over 250 unique mutations reported, and >90% of them being private 

mutations141 (arising in single families only), a successful gene addition approach has the 

potential to benefit all CPS1 deficiency patients.

A final mouse model was also recently established utilizing human patient hepatocytes and a 

mouse model of liver repopulation142. The triple transgenic Fah−/−/Rag2−/−/Il2γ−/− (FRG) 

mouse is a long-standing liver repopulation model in which a defect of tyrosine metabolism 

(Fah loss) causes endogenous hepatocytes to accrue toxic metabolites and die in the absence 

of the drug Nitisinone (NTBC)143. By withdrawing NTBC after transplantation of human 

CPS1 patient hepatocytes, the engrafted human cells repopulate the liver with FAH-

expressing cells without rejection (Rag2 and Il2γ loss). By controlling the level of 

repopulation, transplanted FRG mouse livers can be repopulated with human hepatocytes 

until symptoms of CPS1 deficiency appear, allowing the development of therapeutics in an 

environment that more closely resembles the native human milieu. One major limitation is 

the access to primary human hepatocytes from patients, though ever-improving gene editing- 

and pluripotent cell-based tools may eliminate this issue altogether in the near future. 

Indeed, this system holds great promise for directly testing the ability of small molecules 

and gene-based approaches to treat CPS1 deficiency arising from different structural and 

functional mutations. Glycerol holds promise for activating CPS1 in cases where the NAG 

binding site is mutated125; this therapeutic niche may also be occupied by n-carglumic acid 

(NCA), which is used to treat NAG synthase deficiency. As CPS1 is not fully saturated with 

NAG at physiological concentrations144, increasing CPS1 activity with exogenous NCA 

may offer an expedient treatment option for patients, provided their particular mutation is 

amenable as NCA can actually decrease ureagenesis in some CPS1 deficiency 

contexts145–147. NCA may also promote enzyme stability in variants with mutations outside 
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of active sites that cause protein misfolding148, highlighting its versatility and the need for 

further studies.

Additional therapeutics may arise from work in other diseases. Most closely related is work 

done in the urea cycle deficiencies of Arginase 1149 and Citrin150, both of which 

demonstrated replacement of the missing proteins using lipid nanoparticles (LNPs) 

delivering mRNA. LNPs as gene therapy vehicles have gained significant traction recently 

due to their low immunogenicity and high scalability, as well as their amenability to chronic 

administrations, making them a valuable tool in testing alternative options to classical viral 

gene therapies. One major limitation to this approach for CPS1 deficiency is the requirement 

for high levels of protein pan-hepatically128, which may not be reachable due to general 

restriction of LNP-mediated expression to the perivasculature and toxicity at high doses; 

further studies are crucial to determine if this approach is feasible. Similarly, other non-viral 

approaches, such as plasmid/mini circle delivery and pluripotent stem cell-derived 

hepatocyte transplantation, may offer safer and more effective strategies as the technologies 

continue to improve. Obesity studies may also be unexpected sources for discovering means 

of controlling CPS1 expression and developing therapies. The small molecule nobiletin 

(discussed earlier) increases CPS1 expression in mice fed HFD. However, it was not able to 

further increase CPS1 expression in mice fed high protein, potentially limiting its usage to 

smaller gains in expression not necessarily suitable in CPS1 deficiency. Further studies to 

determine the extent of transcriptional increase and the possibility of treating more moderate 

CPS1 deficiency are needed, including other diseases in which CPS1 is downregulated 

secondarily or cases of acute hyperammonemia.

Final Remarks

CPS1 deficiency is a devastating urea cycle disorder with limited treatment options. 

Extensive biochemical and molecular characterization make this enzyme a clear target for 

therapeutic development not only in the classical disorder but also in newly associated 

diseases including hypertension and obesity. Follow-up studies to proof-of-concept gene 

therapies are essential to bringing this treatment to the clinic, as well as more detailed 

investigations of the interactions of small molecules on CPS1 to stabilize and promote its 

function. New cell and animal models offer a wealth of potential for gaining a deeper 

understanding of how this urea cycle enzyme may be linked to systemic metabolism and 

homeostasis.
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Figure 1. 
Diagram of the mammalian urea cycle. CPS1 catalyzes the first step of the urea cycle by 

condensing ammonia with bicarbonate, generating carbamoyl phosphate that is eventually 

incorporated into urea and excreted by the kidneys.
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Figure 2. 
Structure and biochemistry of CPS1. A) CPS1 generates carbamoyl phosphate in 3 steps by 

phosphorylating bicarbonate (i), condensing carboxyphosphate with nitrogen (ii), and 

phosphorylating carbamate (iii). B) The structure of human CPS1 has two major 

conformations, not bound to NAG (unbound, left panel) or bound to NAG and ATP (bound, 

right panel). Conformational changes throughout the enzyme, responsible for the formation 

of a stable tunnel to shuttle reaction intermediates (dashed line), perpetuate from the NAG-

binding domain (white) into the carbamate phosphorylation (yellow), integrating (orange), 

bicarbonate phosphorylation (purple), glutaminase-like (green), and N-terminal (red) 

domains. NAG is shown as green spheres in the NAG-binding domain, while ATP molecules 

are cyan spheres the kinase domains. Based on structures from de Cima et al. 2015.
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Figure 3. 
Interactions regulating the gene and protein expression of CPS1. The promoter (blue DNA) 

and enhancer (green DNA) elements are responsible for integrating a diverse array of signals 

to precisely regulate CPS1 expression according to the needs of the cell. Protein level 

regulation is responsible for rapid responses to metabolic flux. CPS1 activators are shown in 

pink, with suppressors in yellow. Abbreviations: AMPK, AMP kinase; cAMP, cyclic AMP; 

PGC1α, peroxisome proliferator-activated receptor-gamma coactivator 1α; C/EBP, CAAT/

enhancer binding protein; CREB, cAMP response element binding protein; AP1, activator 

protein 1; HNF3, hepatocyte nuclear factor 3; GCR, glucocorticoid receptor; YB1, Y-box 

binding protein 1; SWI/SNF, Switch/Sucrose Non-Fermentable; NAGS, n-acetylglutamate 

synthase.
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