
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Deep Learning Gene Regulatory Network Dynamics from Transcriptomes

Permalink
https://escholarship.org/uc/item/1pf16167

Author
Maulding, Nathan

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pf16167
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

DEEP LEARNING GENE REGULATORY NETWORK DYNAMICS FROM
TRANSCRIPTOMES

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOINFORMATICS AND BIOMOLECULAR ENGINEERING

by

Nathan Maulding

June 2024

The Dissertation of Nathan Maulding
is approved:

Professor Benedict Paten, Chair

Professor Vanessa Jonsson

Professor Josh Stuart

Marc Hafner, PhD

Dean Peter F. Biehl
Vice Provost and Dean of Graduate Studies



Copyright © by

Nathan Maulding

2024



Table of Contents

List of Figures vi

Abstract viii

1 Acknowledgements ix

2 Introduction 1

3 Chapter I: Multi-transcriptomic profiling and codifying SARS-CoV-2 characteris-
tics 6
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Dual RNA-seq to simultaneously map virus-host transcriptomes . . . . 8
3.2.2 Differential expression (DE) analysis . . . . . . . . . . . . . . . . . . 9
3.2.3 Comparing human differential expression between samples and cell lines 10
3.2.4 Co-expression (CE) analysis . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Sankey Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.6 Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.7 Multi-Transcriptomic Profiling . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Robust viral transcript detection in human cell lines . . . . . . . . . . . 15
3.3.2 Robust detection of viral transcripts in human cell lines and BALF tissue 17
3.3.3 Concordant expression changes in BALF and cell lines . . . . . . . . . 19
3.3.4 Multi-view coexpression reveals a human transcriptional network asso-

ciated with SARS-CoV-2 transcripts . . . . . . . . . . . . . . . . . . . 25
3.3.5 Summary of dRAP findings . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Annotating and Profiling the SARS-CoV-2 Genome . . . . . . . . . . . . . . . 40

4 Chapter II: Associating transcription factors to single-cell trajectories with DREAMIT 41
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Gene regulation in single-cell trajectories . . . . . . . . . . . . . . . . 42

iii



4.1.2 Motivation and existing methods . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 DREAMIT algorithm overview . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Evaluating DREAMIT . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 The DREAMIT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Datasets and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Trajectory Pre-Processing: Pseudotime Focusing, Expression Quantiz-

ing and Spline Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Transcription factor to targets . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 DREAMIT metrics to detect a variety of TF-target relationships . . . . 57
4.2.5 Relational Set Enrichment Analysis (RSEA): Detecting significant TF-

target associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.6 Differential Expression (DE) . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.7 Evaluating the specificity of TF to target relationships . . . . . . . . . 62
4.2.8 Evaluating the overlaps between DREAMIT and other methods . . . . 64
4.2.9 Evaluating specificity in reporting TF-markers in a high-fidelity PBMC

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 DREAMIT Identifies Distinct PBMC markers . . . . . . . . . . . . . . 65
4.3.2 DREAMIT inference of gene regulatory logic for PBMC fate specification 67
4.3.3 DREAMIT Identifies tissue-relevant TFs at a higher rate than standard

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Chapter III: Transformer-based modeling of Clonal Selection and Expression Dy-
namics (TraCSED) 82
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Understanding innate and adaptive resistance with TraCSED . . . . . . 84
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Treatments induce different clonal selection and transcriptional responses 85
5.2.2 PLSR identifies baseline signatures associated with selection of clones . 88
5.2.3 Fitting a generative model for drug resistance . . . . . . . . . . . . . . 92
5.2.4 Model pathway features reveal adaptive resistance mechanisms . . . . 93
5.2.5 Adaptive resistance is reduced with combination treatment . . . . . . . 97

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Datasets and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 Drug response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 Single-cell analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.4 Quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.5 Partial least squares regression (PLSR) . . . . . . . . . . . . . . . . . 105
5.4.6 Overview of the dynamic generative model . . . . . . . . . . . . . . . 106
5.4.7 Selecting an appropriate trajectory representation . . . . . . . . . . . . 106

iv



5.4.8 Determining clonal survival for modeling . . . . . . . . . . . . . . . . 107
5.4.9 Framework and modeling design choices . . . . . . . . . . . . . . . . 108
5.4.10 Evaluation of the model . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.11 Temporal importance of features through permutation . . . . . . . . . 109
5.4.12 Interpretability of the model . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.13 Software availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.14 Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Supplementary Figures 111

Bibliography 136

v



List of Figures

3.1 Illustration of the dual RNAseq alignment pipeline (dRAP) . . . . . . . . . . . 14
3.2 Overview of dRAP application to SARS-CoV-2 analysis enabling the detection

of coexpression associations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 SARS-CoV-2 differential gene expression . . . . . . . . . . . . . . . . . . . . 18
3.4 SARS-CoV-2 expression across tissues . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Concordance in human gene response between NHBE and A549 cell lines . . . 21
3.6 Concordance in human gene response between BALF and NHBE samples . . . 22
3.7 Concordance in human gene response between BALF and A549 samples . . . . 23
3.8 Lack of concordance of PBMC and Lung sampls with SARS-CoV-2 infected

BALF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Co-expression analysis of human genes with SARS-CoV-2 . . . . . . . . . . . 28
3.10 Overlapping results obtained from methods . . . . . . . . . . . . . . . . . . . 30
3.11 Sankey diagram of consensus genes and pathways . . . . . . . . . . . . . . . . 31
3.12 The dRAP consensus network . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 Chemokine and immune activity modules . . . . . . . . . . . . . . . . . . . . 35
3.14 Cornification and viral regulation modules . . . . . . . . . . . . . . . . . . . . 36

4.1 A cell transition in an inferred trajectory . . . . . . . . . . . . . . . . . . . . . 43
4.2 DREAMIT identification of pseudotime associations . . . . . . . . . . . . . . 46
4.3 Expression smoothing across pseudotime . . . . . . . . . . . . . . . . . . . . 51
4.4 Modeling the gene expression of E2F4 across a trajectory . . . . . . . . . . . . 52
4.5 Modeling the gene expression of MYC across a trajectory . . . . . . . . . . . . 54
4.6 Spline parameter selection through CV and AIC . . . . . . . . . . . . . . . . . 55
4.7 Robust spline parameter choices . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 DREAMIT rolling correlation and RSEA . . . . . . . . . . . . . . . . . . . . 59
4.9 Calculating significance and RSEA . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 DREAMIT tissue specific precision-recall in PBMC . . . . . . . . . . . . . . . 66
4.11 TF-TF pseudotime-ordered regulatory network . . . . . . . . . . . . . . . . . 69
4.12 DREAMIT tissue specificity in 15 benchmark branches . . . . . . . . . . . . . 71
4.13 Upset plot of DREAMIT metric overlaps . . . . . . . . . . . . . . . . . . . . . 72

vi



4.14 DREAMIT TF-target relationship distributions . . . . . . . . . . . . . . . . . 73
4.15 DREAMIT correlation finds TFs that other methods miss . . . . . . . . . . . . 74
4.16 DREAMIT DTW finds TFs missed by other methods . . . . . . . . . . . . . . 75

5.1 Overview of the PLSR for innate resistance and TraCSED for adaptive resistance 87
5.2 Clones differentially respond to treatments . . . . . . . . . . . . . . . . . . . . 89
5.3 PLSR reveals baseline resistance signatures . . . . . . . . . . . . . . . . . . . 91
5.4 TraCSED modeling of selection values . . . . . . . . . . . . . . . . . . . . . . 94
5.5 TraCSED identifies pathways associated with PS clones . . . . . . . . . . . . . 96
5.6 Combination treatment reduces the importance of adaptive resistance . . . . . . 99

vii



Abstract

Deep Learning Gene Regulatory Network Dynamics from Transcriptomes

by

Nathan Maulding

Regulation of gene expression is critical for all life processes. RNAseq allows for the inves-

tigation of the expression state and the inference of gene regulatory networks (GRNs). The

GRN reveals mechanisms of disease and development both at an organismal and cellular level.

Constructing GRNs from expression data is done by detecting statistical relationships over a

series of samples. However, these relationships are noisy and do not take into account many

important variables. To explore one such limitation, I implemented dual RNAseq to investigate

the regulatory mechanisms that occur between both host and virus transcriptomes in SARS-

CoV-2 infected samples (Chapter 3). To address the temporal aspect of GRNs, I developed

a statistical framework for detecting relationships between transcription factors and their tar-

gets from inferred trajectory progressions (”pseudotime”) in single-cells (Chapter 4). Finally, I

developed an interpretable, time-aware deep learning transformer for modeling disease progres-

sion and demonstrate its ability to identify gene programs that promote breast cancer resistance

post-treatment (Chapter 5).
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Introduction
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Eukaryotic life follows a common structure with DNA, RNA, and proteins taking the

central role in the cell. Proteins, the units that define and coordinate a cell’s functional capacity,

are made as a result of translated gene expression. Expression of genes is a transient process

that is influenced by the state of the cellular environment. Generegulation occurs throughout

all biologic processes and is responsible for producing the unique cellular states and types.

The past decade has seen a revolution in molecular biology made possible by developments in

transcriptomic profiling through RNA sequencing [36]. The initial RNAseq technology, known

as bulk RNAseq, which assessed cells in aggregate, have expanded research beyond anecdotal

gene-level inquiries into systematic genome-wide views of cellular phenomena. [36]. RNAseq

allows for the investigation of the expression state and the inference of gene regulatory networks

(GRNs). The GRN reveals mechanisms of disease and development both at an organismal and

cellular level. However, there are limitations to the current ability of transcriptomic methods

to uncover the totality of the processes influencing the GRN of any given sample.The newer

single-cell RNAseq (scRNAseq) approach, which detects transcriptome activity within indi-

vidual cells, offers a higher resolution perspective on dynamic biological processes that would

otherwise be obscured using bulk sequencing. Inferring GRNs using scRNAseq information

shows much promise, but computational methods are still in development and represent an ac-

tive area of research.

There can be multiple species within a single RNAseq that contribute to the GRN.

This occurs commonly in studies of the gut microbiome, where there is an abundance of bacteria

with independent transcriptomes that interact with the host [117]. Additionally, host-pathogen

studies are also highly reliant on understanding how the two transcriptomes interact and regulate
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each other at a genetic level to produce a GRN [117]. This has become an increasingly apparent

need as many articles have been published on understanding how the SARS-CoV-2 virus causes

COVID-19 by initiating a genetic response within the host [16, 185]. These studies highlight the

conditional differences between healthy and disease states, but do not pursue how the expression

patterns of the human and SARS-CoV-2 transcriptomes associate together to form a GRN in a

disease state.

Multi-transcriptome quantification has been successfully implemented through dual

RNAseq methods [178, 177], but tools have not been developed to integrate this information

to infer GRNs. I applied dual RNAseq analysis to both cell lines and patient samples and used

multiple correlative methods including average linkage dendritic clustering, Pearson correlation

networks, and Pagerank network importance. I derive a consensus network implicated by these

multiple views that sheds new light on the roles of human genes and pathways in SARS-CoV-2

infection (Chapter 3).

Chronology is also important for understanding cellular processes because GRNs are

temporally ordered and controlled by regulators, such as transcription factors (TFs). TFs play a

central role in governing the transitions between different cellular states. These transitions are

driven by the dynamic regulation of gene expression orchestrated by TFs. The emergence of

”cell trajectory” inference methods has enabled the identification of transitions between differ-

ent cell states [141, 133]. By analyzing cells in the context of their ”pseudotime”, the temporal

regulation of genes and pathways along a transition “branch” from one cell state or type to

another can be assessed. Datasets, such as [128], have been subjected to trajectory analysis.

These pseudotime inferences revealed how the temporal expression patterns along the trajec-
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tory lineage lead to myeloid progenitor commitment. Tools have been developed to detect and

report differentially expressed genes along the trajectory branch. However, because this is an

emerging field, tools that analyze gene expression patterns in trajectories are scarce and should

be expanded.

I introduce a novel method for implicating TFs to cell trajectories called DREAMIT

– ’Dynamic Regulation of Expression Across Modules in Inferred Trajectories’ (Chapter 4).

DREAMIT aims to analyze dynamic regulatory patterns along trajectory branches, implicat-

ing transcription factors (TFs) involved in cell state transitions within scRNAseq datasets.

DREAMIT performs spline smoothing on the raw data followed by calculating metrics of as-

sociation between the TF and its targets. To assess DREAMIT’s performance, I used the TF-

Marker database, which allowed us to determine its effectiveness in identifying TFs known to

play essential roles in specific tissues, previously established as high-confidence markers for

those tissues [187].

In chapter 5, I leverage TraCe-Seq technology [28] to track the molecular states and

fitness of clones over time. To uncover differences associated with the selection process of

particular clones post-treatment, I map their pre-treatment or intermediate transcriptional states

to help us understand the gene programs that allow for that clone to be resistant. Methodologies

to interpret such datasets are still in their infancy. For example, clustering approaches can

fail to distinguish resistant from sensitive cell states as recent clonal barcoding systems have

shown that a few genes, or even a single gene, can determine a cell’s fate [138]. However,

incorporating clonal fitness information through a tunable parameter has been shown to benefit

the identification of features associated with cell outcomes [138].
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I developed a semi-supervised approach with partial least squares regression (PLSR)

to identify pre-treatment markers of innate resistance in TraCe-seq datasets. This approach

incorporates both the transcriptional similarities of cells together with a phenotypic response

to reveal signatures that might otherwise be hidden from traditional methods. Next, to identify

gene programs associated with adaptive resistance, I introduce TraCSED (Transformer-based

modeling of Clonal Selection and Expression Dynamics). TraCSED learns a dynamical process

of clonal selection using a clone trajectory’s inferred pseudotime from TraCe-Seq single-cell

RNA-seq data as the time series input for model fitting. TraCSED uncovers interpretable gene

programs that are directly related to the selection process and estimates time periods at which

these may be critical for resistance.
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Chapter 3

Chapter I: Multi-transcriptomic

profiling and codifying SARS-CoV-2

characteristics
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3.1 Background

The following dual RNAseq analysis of human and SARS-CoV-2 genes was pub-

lished in Scientific Reports by Maulding et. al. [104]. At the time of this writing, the SARS-

CoV-2 pandemic, which is caused by the coronavirus disease 2019 (COVID-19), has a global

mortality rate that is still unknown [45, 113]. Its first appearance was reported in December

2019 and has since spread to 213 countries and territories and has caused over 100 million con-

firmed cases [45, 123, 83](worldometers.info). The SARS-CoV-2 infection has been reported to

cause a variety of symptoms including fever, cough, fatigue, shortness of breath, and abnormal-

ities in the chest as determined by CT [74, 33, 58]. Severe cases manifest with acute respiratory

distress syndrome and lung injury, leading to morbidity due to damage to the alveolar lumen

leading to inflammation and pneumonia [183, 189].

A variety of model systems and tissue types have been used to study the transcrip-

tional response to SARS-CoV-2 infection in an effort to better understand the molecular basis

of COVID-19 [16, 185]. These studies have revealed a cytokine, chemokine, and immune re-

sponse to SARS-CoV-2 infection. This gene signature has been useful in understanding the

biology of the COVID-19 disease. While differential expression of gene families has been thor-

oughly investigated in SARS-CoV-2 infection, there has been no attempt to date to correlate

SARS-CoV-2 genes with the human host gene expression program.

We developed an unbiased multi-transcriptome read alignment pipeline to investigate

the transcriptomes of human and virus together in the same sample. Previous studies analyzed

only the human transcriptome, which provided important information about what genes and
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pathways are differentially expressed between infected compared to uninfected samples. How-

ever, as illustrated by countless gene expression analyses from microarrays to RNA-seq, a com-

plementary systems-level view can be achieved by looking at the co-expression of genes that

may pick up on more subtle, but still significant associations missed by differential expression.

Our pipeline leverages dual-RNAseq to quantify transcripts from both the host and pathogen to-

gether, which has shown promise in other systems [177, 178]. Dual-RNAseq originally required

additional library enrichment to detect rare classes of transcripts. However, modern sequencing

now yields a high enough read depth to provide accurate quantification of the entire host and

pathogen transcriptomes without the need for additional library enrichment steps.

Thus, the main aim of the work presented here is to investigate the utility of the

dual-RNAseq to study samples infected with the SARS-CoV-2 virus that makes it possible to

correlate human genes with specific viral genes. We applied the analysis to both cell lines and

patient samples and used multiple correlative methods including average linkage dendritic clus-

tering, Pearson correlation networks, and Pagerank network importance. We derive a consensus

network implicated by these multiple views that sheds new light on the roles of human genes

and pathways in SARS-CoV-2 infection.

3.2 Method

3.2.1 Dual RNA-seq to simultaneously map virus-host transcriptomes

In order to quantify the host and pathogen transcriptomes, we implemented a dual

RNA-seq [177, 178] analysis pipeline (dRAP). dRAP takes a series of reference FASTA files
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and their corresponding GTFs and concatenates them into a single FASTA and GTF, which is

subsequently used to create a mapping index. The human reference FASTA and ENSEMBL

GTF for hg38 and the SARS-CoV-2 reference FASTA (NC 045512v2) and REFSeq GTF were

downloaded from the UCSC Genome Browser [77]. RNAseq reads were trimmed using Trim-

momatic [18] to filter out low quality and adapter sequences. STAR was then used with the

parameters runMode=‘genomeGenerate’, sjdbOverhang=100, and genomeSAindexNbases=6,

to create a merged hg38/NC 045512v2 index [41, 78]. Following the creation of the merged in-

dex, each sample was then mapped to the index using STAR to get transcription counts with the

parameters outSAMtype, twopassMode, outFilterMultimapNmax, and quantMode set as ‘BAM

SortedByCoordinate’, ‘Basic’, 1, and ‘GeneCounts’, respectively. This generated a ‘ReadsPer-

Gene’ for each sample, which was then used as input for DESeq2 count normalization and

differential gene expression (DGE) determination [93]. Gene expression levels, as read counts,

were estimated and filtered by Cook’s distance and nominal p values were corrected for False

Discovery Rates (FDR) and a significance threshold was set at FDR < 0.05.

3.2.2 Differential expression (DE) analysis

To test whether dRAP is capable of detecting and quantifying host and pathogen

transcripts, we used two previously published datasets on patients and cell lines infected with

SARS-CoV-2 [16, 185]. NHBE and A549 cell lines (Wild-type n=3 and SARS-Cov-2 infected

n=3 each) and postmortem Lung Biopsies (Healthy n=2 and SARS-CoV-2 infected n=2) were

processed from the Tenoever data. Healthy (n=3) and SARS-CoV-2 infected (n=3) PBMC’s and

healthy (n=3) and SARS-CoV-2 infected (n=4) BALF patient samples were processed from the

9



Chen data. DESeq2 DGE of SARS-CoV-2 transcripts was determined for each tissue. Kendall

rank correlations were calculated for the padj values of SARS-CoV-2 transcripts between each

tissue type. Genes that did not qualify for statistics based on the DESeq2 cook’s distance criteria

were included as padj of 1, i.e. as the last rank in the set.

3.2.3 Comparing human differential expression between samples and cell lines

Because of the differences in SARS-CoV-2 transcripts detected between tissue and

sample types, we wanted to determine if these differences also were reflected by the host tran-

scriptional response. A one-to-one comparison of the log2 Fold-Change for each tissue against

each cell line was plotted to determine common differential gene expression patterns. Each

panel displays the log2 Fold-Change of one group versus the log2 Fold-Change of another by

plotting genes that exceed significance and fold change thresholds in each group. Each plotted

gene is sized according to its significance (-log10 adjusted p value) for the x-axis group and

colored according to its significance for the y-axis group. Genes that were up-regulated and met

threshold criteria for both groups were recorded as up-regulated matches. Figures display genes

that met the threshold criteria of |Fold-Change| > 1.5 and padj < 0.05. A Chi-square test was

then used to determine the likelihood of the distribution of genes with matched and mismatched

expression directionality between the two groups. These DGE were then used as input for

the gProfiler:GOSt functional profiling [137]. Common genes and ontologies in SARS-CoV-2

infected groups were recorded for use in downstream analysis.
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3.2.4 Co-expression (CE) analysis

Because the differences in SARS-CoV-2 expression appeared to result in notable

changes in host transcriptome response, we hypothesized that gene co-expression with SARS-

CoV-2 may illuminate mechanisms of action and therapeutic targets. To this end, we utilized

three different strategies as part of a Co-Expression (CE) analysis. These included analyses of

genes demonstrating high correlation with SARS-CoV-2 (CE-Net), genes clustered with SARS-

CoV-2, and genes with high weighted-PageRank influence (CE-PageRank).

For groups infected with SARS-CoV-2, genes passing Cook’s distance filtering with

DESeq2 were clustered using average linkage with the R package ‘hclust’ [93]. The resulting

dendritic tree was then cut into 200 clades of co-expression. Clades containing SARS-CoV-2

transcripts were then further subdivided into 5 clades. After this final subdivision, co-regulated

genes participating in clades containing SARS-CoV-2 transcripts were used as input for gPro-

filer:GOSt functional profiling [137]. The input genes and resulting pathways were separated

and used in downstream analysis.

DE genes with Benjamini–Hochberg corrected p values less than 0.05 were subsetted

for PageRank analysis. We used the topological overlap matrix (TOM) 43 generated from

a Pearson correlation matrix with a soft thresholding parameter of 30 to create a weighted

gene network using pairwise complete observations and then ran weighted PageRanks with a

damping parameter of 0.9 on each of the 5 sample groups [190]. Genes with PageRanks in

the top 80th percentile of NHBE, A549, and BALF sample groups were each used as input

for gProfiler:GOSt functional profiling [137]. The input genes and resulting pathways were
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separated and used in downstream comparisons.

To explore co-regulated and influential components in the infection, genes with sig-

nificant DE were correlated with SARS-CoV-2 transcripts for each group. Genes with an R2

relationship > 0.95 with a SARS-CoV-2 gene were used as input for gProfiler: GOSt functional

profiling. The input genes and resulting pathways were separated and used in downstream anal-

ysis. To visualize the highest correlated elements, the ‘network’ package in R [20] was used to

plot an edge between a SARS-CoV-2 transcript and a gene if R2 > 0.98. The size of the node in

the network illustrates the degree of connection each node has relative to the other nodes in the

network. It should be noted that, by virtue of the methodology, SARS-CoV-2 transcripts will

have a higher degree of connectivity.

3.2.5 Sankey Diagrams

To visualize how the four views affirm or disagree with one another, we created

Sankey diagrams. For Fig. 4B, the four views were connected to genes found in at least two

of the four views. Genes were colored based on the views that they were found in: white, light

blue, and dark blue indicate that DE and 1, 2, or 3 other views, respectively, and red for a gene

that is not found by DE, but was by a CE view. These genes are then connected to themes,

which consists of a list of gProfiler pathways in which the genes were found to be enriched

(Suppl. Table 1). For Suppl. Figure 10, the four methods are connected to genes found by any

of the four views and these genes.
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3.2.6 Network Construction

Finally, to visualize the gene and pathway agreement between the four views, the

recorded genes and gProfiler pathways from SARS-CoV-2 infected groups were used to create

gene to pathway networks for each view and for results that appear through multiple views. To

be in these networks, an inclusion criteria was enforced where each gene and pathway displayed

is found in at least two of the three SARS-CoV-2 infected sample types, namely BALF patient

samples, NHBE infected cells, and A549 infected cells. An edge was created between genes

and ontologies if they were implicated together by the gProfiler:GOSt result.

3.2.7 Multi-Transcriptomic Profiling

This analysis contributed the recent publication by Maulding et. al. [104]. To test the

dual RNA-seq approach for investigating SARS-CoV-2 infection, we built a dual RNA-seq anal-

ysis pipeline (dRAP) to map all transcripts of infected cells to either the host or viral genomes

in an unbiased manner (Fig. 1A; see “Methods” section). We hypothesize quantifying both host

and viral transcripts might enable a more sensitive and specific association of host pathways

responsive to SARS-COV-2 (SARS-CoV-2) infection. To our knowledge, this represents the

first attempt to estimate both host and virus transcription simultaneously in the same sample for

SARS-CoV-2.
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Figure 3.1: (A) Illustration of the dual RNAseq alignment pipeline (dRAP) using both host and
guest genomes. Dual RNAseq creates a single reference index for RNAseq read alignment with
STAR by appending “guest” genomes to the host genome allowing for simultaneous alignment
of reads with multiple transcriptomes where the best overall alignment is selected. An example
is shown where dRAP can resolve that a single read has a better match to the guest genome with
only 1 mismatch (green arrow) compared to the host genome with 3 mismatches (red vertical
lines). The SARS-CoV-2 guest genome (NC 045512v2) is depicted with its annotated set of
genes designated as open reading frames, structural proteins, or accessory factors.
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3.3 Results

3.3.1 Robust viral transcript detection in human cell lines

As a preliminary test, we first applied dRAP to previously published data on the

analysis of human cell lines for which the amount of infected virus was experimentally con-

trolled (Table 1; Fig. 2A). In the study that produced the original data, Blanco-Melo et al. [16]

exposed a variety of human respiratory cell lines with SARS-CoV-2 virus. In that study, the au-

thors found a robust host transcriptional response to infection for an ACE2 receptor-enhanced

alveolar basal epithelial cell line (A549) as well as a bronchial epithelial cell line (NHBE). As

the A549 and NHBE cell lines show robust host response and have established viral levels, we

reanalyzed the data with dRAP to jointly analyze both the host and viral transcriptomes.

Importantly, dRAP provides a quantification of the amount of viral transcript in a

host cell, which could be leveraged for downstream correlation-based analyses to implicate

pathways of host response (Fig. 1B). Thus, while there is high concordance of the particular

transcripts detected, dRAP reports a range of fold changes, with more dramatic overexpression

detected in the A549 cell line compared to NHBE, potentially due to contamination of the mock-

treated NHBE cells with SARS-CoV-2. Whether the differences are due to technical artifact

or biological factors, these observations support the idea that dRAP’s quantifiable differences

can serve as the basis for studying regulation dynamics associated with infection by jointly

analyzing the viral and host transcripts together.

The relative statistical significance of genes was also found to be consistent between

the cell lines (Kendall rank correlation 0.69, p < 0.01). For example, the genes core to the infec-
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Figure 3.2: (B) Overview of dRAP application to SARS-CoV-2 analysis enabling the detec-
tion of coexpression associations between transcripts originating from human (red lines) and
virus (blue lines). RNAseq reads from SARS-CoV-2 infected samples from human cell lines
(A549 and NHBE) and patients (BALF, PBMC, and Lung) were collected from public datasets
(Blanco-Melo et. al. 2020 and Xiong et. al. 2020 [16, 185]). Traditional RNAseq (dashed green
arrows), which does not quantify both human and viral transcripts, allows for only differential
expression analysis, while dRAP (black arrows) enables both downstream differential and co-
expression analyses between host and virus. A549, NHBE, and BALF samples were selected
for downstream analyses as they contained SARS-CoV-2 transcripts. Several co-expression
analyses (CE) were performed in linear (CE-Net) and nonlinear (CE-dendro) relationships be-
tween the human and SARS-CoV-2 transcriptomes and genes of influence (CE-PageRank) in
the gene regulatory network. Each CE view, along with DE, produced a set of results for A549,
NHBE, and BALF groups. Genes implicated in two or more CE views were collected and used
to determine enriched pathways (denoted “consensus pathways”). A “consensus network” was
determined by including genes and pathways found by two or more views.
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tion of the virus—ORF10, S, N, and M—were found to be the highest expressed genes in both

A549 and NHBE. Out of the eleven SARS-CoV-2 transcripts, eight were detected consistently

in both cell lines, suggesting viral transcripts can be determined robustly by dRAP in multiple

host cell types. In addition, there is significant concordance of differentially expressed human

genes between SARS-CoV-2 and RSV infections (Chi-Square 45.1, p < 1e−10) consistent with

the report by the original authors11 (Suppl. Figure 1).

3.3.2 Robust detection of viral transcripts in human cell lines and BALF tissue

We searched for human cells that express the most consistent levels of SARS-CoV-2

virus. We expected that lung tissue would show the highest amount of viral transcription based

on previous reports that the virus invades alveolar epithelial cells [67]. However, to our surprise,

the most striking finding was that many SARS-CoV-2-infected patient samples from the lung

or blood showed no SARS-CoV-2 expression. Specifically, PBMC samples had one patient

that showed a normalized transcript count of 1.1 for ORF1ab and S, while all other samples

and all SARS-CoV-2 genes had transcript counts of 0 (Table 1; Fig. 2A). No SARS-CoV-2

gene passed DESeq2 Cook’s distance filtering for the PBMC samples. Similarly, lung biopsy

samples showed inconsistent SARS-CoV-2 expression (Table 1; Fig. 2A). One patient showed

SARS-CoV-2 expression while the other patient had none. However, even for the patient that

did display SARS-CoV-2 gene expression, the expression levels were far less robust than that

observed in cell lines.

In stark contrast with these other patient samples, SARS-CoV-2 patient samples from

Bronchoalveolar lavage fluid (BALF) showed very robust SARS-CoV-2 expression that even
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BALF A549 NHBE PBMC Lung

Padj Log2(FC) Padj Log2(FC) Padj Log2(FC) Padj Log2(FC) Padj Log2(FC)

Cov2_ORF10 1.11E-32 18.3 2.11E-17 10.9 7.83E-177 4.7 DNQ DNQ 1.28E-05 11.9

Cov2_N 2.78E-50 21.4 5.83E-26 12.8 2.11E-58 6.9 DNQ DNQ 1.75E-05 10.1

Cov2_ORF8 7.45E-41 18.3 1.60E-11 9.7 5.93E-17 4.3 DNQ DNQ DNQ 9.6

Cov2_ORF7b 2.51E-04 11 DNQ 0.3 DNQ -1.3 DNQ DNQ DNQ DNQ

Cov2_ORF7a 4.86E-37 18.6 2.02E-13 9.7 8.81E-17 5.5 DNQ DNQ DNQ 9.3

Cov2_ORF6 2.81E-17 14.9 DNQ 5.9 DNQ 1.7 DNQ DNQ DNQ DNQ

Cov2_M 1.51E-42 19.1 1.71E-16 10.6 2.52E-21 6.5 DNQ DNQ DNQ 9.6

Cov2_E 1.20E-24 15.2 DNQ 7.7 DNQ 3.6 DNQ DNQ DNQ DNQ

Cov2_ORF3a 8.40E-40 19 8.07E-14 9.8 3.12E-13 7 DNQ DNQ DNQ 9

Cov2_S 1.16E-58 22.7 5.49E-18 11.1 2.24E-73 6.3 DNQ 0.4 DNQ 9.9

Cov2_ORF1ab 4.04E-69 24.7 5.01E-13 9.6 1.34E-20 4.8 DNQ 0.4 1.57E-03 10.6

Figure 3.3: SARS-CoV-2 differential gene expression for infected patient tissue and cell line
samples compared with non-infected samples. Patient tissue types show dramatically different
expression profiles with PBMC and Lung biopsy tissue rarely ever passing detection limits
while BALF tissues show robust expression in infected patients. Cell lines also display strong
SARS-CoV-2 expression although the magnitude of fold change was far less than that observed
in BALF samples. “DNQ” stands for “did not qualify”, which indicates genes that did not pass
Cook’s distance filtering in DESeq2 analysis.
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exceeded the levels observed in infected cell lines (Table 1; Fig. 2A). The most significant

SARS-CoV-2 gene was ORF1ab, followed by the S, N, and M genes. The overall profile of

BALF samples had a few notable differences from that of the infected cell lines, including a

much more significant overexpression of the SARS-CoV-2 ORF1ab gene and that the E, ORF6,

and ORF7b genes were also significantly overexpressed in BALF samples but not in cell lines.

Outside of these differences, the cell lines show similar features to the BALF SARS-CoV-

2 profile at a lower expression level, including the predominant overexpression of the S, N,

and M genes. Overall, the relative significance of SARS-CoV-2 genes were highly concordant

between BALF and A549 (Kendall rank correlation 0.49, p < 0.05) and NHBE (Kendall rank

correlation 0.56, p < 0.05) samples. In contrast, BALF and PBMC (unable to compute Kendall

rank correlation because all transcripts were undetected in PBMC samples) and Lung (Kendall

rank correlation 0.23, p=0.37) were shown to be discordant. Because of the similarities between

BALF patient samples and cell lines and the absence of a robust SARS-CoV-2 expression profile

in PBMC and lung biopsy samples, we used BALF, NHBE, and A549 samples in the following

host-virus joint analysis to implicate host pathways associated with SARS-CoV-2 infection.

3.3.3 Concordant expression changes in BALF and cell lines

Given that the virus is detected in BALF and not PBMCs and lung, we reasoned

that host expression changes in BALF would reflect a higher degree of direct responses to

infection, compared to lung and PBMCs. To test this, we asked if the BALF DE genes were

more comparable to the cell line DE genes relative to the DE genes derived from PBMCs and

lung.
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Figure 3.4: (A) dRAP is sensitive enough to detect subtle differences in SARS-CoV-2 tran-
scripts quantities resulting in differential expression within the SARS-CoV-2 transcriptome.
SARS-CoV-2 expression is also shown to be highly dependent on the system being studied.
Patient BALF samples show high amounts of SARS-CoV-2, while PBMC and Lung patient
samples display low or no SARS-CoV-2.
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Figure 3.5: Log2 fold change comparison between differential expressions in infected samples
against non-infected samples shows that the tissue specificity of SARS-CoV-2 extends to the
degree of concordance observed in the human transcriptome. (B) Statistically significant con-
cordance was observed between NHBE and A549 cell lines (p < 1e-5).
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Figure 3.6: Log2 fold change comparison between differential expressions in infected samples
against non-infected samples shows that the tissue specificity of SARS-CoV-2 extends to the
degree of concordance observed in the human transcriptome. (C) Statistically significant con-
cordance was observed between BALF patient samples with NHBE (p < 0.05).
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Figure 3.7: Log2 fold change comparison between differential expressions in infected samples
against non-infected samples shows that the tissue specificity of SARS-CoV-2 extends to the
degree of concordance observed in the human transcriptome. (D) Statistically significant con-
cordance was observed between BALF patient samples and A549 cell lines (p < 0.01).
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The total expression profile of these samples were then compared against each other to

determine common and diverging signatures in the various patient tissue samples and cell lines.

First, the profile of the NHBE and A549 cell lines were compared (Fig. 2B). Overall, there were

23 matching directional expression changes and 1 mismatched directional expression change in

genes meeting Fold Change and p value thresholds for both NHBE or A549 cells, demonstrating

a significant concordant relationship (Chi-Square 20.2, p < 1e-5). Genes showed a common up-

regulation between the two cell lines, which is clearly observed in the plot through changes in

size and color indicating increasing significance. Some of the most significant changes were

observed in genes with roles in antiviral response (MX1, IFI27, IRF9, OAS1, OAS3), and

chemokine signaling (CXCL5).

Comparing BALF patient samples with NHBE cells there were 51 matching direc-

tional expression changes and 33 mismatched directional expression changes (Fig. 2C), demon-

strating significant concordance (Chi-Square 3.9, p < 0.05). Most genes show common up-

regulation (47 genes), including SPRR2D, SPRR2A, PLAT, CXCL1, and CXCL2. The com-

parison of BALF with A549 cells produced a similar result (Chi-Square 9.3, p < 0.01) (Fig.

2D) with 29 matching directional expression changes and 10 mismatched directional expres-

sion changes.

Next, we compared BALF with lung and PBMC samples. BALF and lung samples

were found to have 16 matched directional expression changes and 23 mismatched directional

expression changes, demonstrating that the majority of gene expression changes are discordant,

but without reaching statistical significance(Chi-Square 1.3, p=0.26) (Fig. 2E). In a more ex-

treme manner, BALF and PBMC samples showed 275 matched directional expression changes
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and 683 mismatched directional expression changes, demonstrating that the majority of gene

expression changes are very significantly discordant (Chi-Square 173.7, p < 1e-38) with BALF

samples (Fig. 2F). Therefore, for both PBMC and lung samples there was a dominant discor-

dance in gene expression changes compared to BALF. This is consistent with our observations

above in which we found robust SARS-CoV-2 expression levels in BALF compared with unde-

tectable levels in PBMC and lung.

3.3.4 Multi-view coexpression reveals a human transcriptional network associ-

ated with SARS-CoV-2 transcripts

The estimates of viral and host RNAs for the same samples provided by dRAP enable

investigating host regulatory pathways through a coexpression (CE) analysis to identify human

transcripts most correlated with viral transcripts. CE could complement DE to find human

genes directly associated with viral infection by detecting more subtle patterns of transcripts

fluctuating concordantly with particular viral products that may suggest regulatory connections

between the viral and host genes. The BALF human tissue samples and the two cell lines were

used for CE as the above analyses found these samples provided robust viral RNA expression.

To prioritize candidate genes and pathways, we elected to use three different CE

strategies to see if any genes and pathways were nominated by one (or more) viewpoint(s).

First, we collected the top k most correlated human transcripts using Pearson correlation for

each viral protein and saved the union of these human proteins. Next, we performed a hierar-

chical clustering analysis on the Pearson correlation matrix to determine if there existed a clade,

or clades, enriched for viral proteins. Third, we performed a PageRank analysis on the Spear-
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Figure 3.8: Log2 fold change comparison between differential expressions in infected samples
against non-infected samples shows that the tissue specificity of SARS-CoV-2 extends to the de-
gree of concordance observed in the human transcriptome. However, there was no concordance
observed in BALF versus Lung (p = 0.26) (E) and a significant discordance versus PBMC (p <
1e-38) (F) patient samples. This suggests that the lack of SARS-CoV-2 expression observed in
Lung and PBMC samples is also associated with significantly altered human expression, mak-
ing these tissue types not ideal for learning SARS-CoV-2 mechanisms.
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man correlation matrix to determine which host genes are central to the host-virus correlation

network. Candidate host genes were collected from each of these approaches, compared to each

other as well as to the list of genes from DE analysis.

For the first CE view, we took the entirety of normalized transcript counts passing

DESeq2 Cook’s distance filtering and clustered their expression using an average linkage dis-

tance between pairwise Pearson correlations to create dendrograms with various clades [110].

BALF samples and NHBE and A549 cell lines infected with SARS-CoV-2 all had extremely

localized co-expression of SARS-CoV-2 genes with each other. This is evidenced by the fact

that in NHBE cells (Fig. 3A,B) and BALF samples (Suppl. Figure 2A) all SARS-CoV-2 genes

passing Cook’s distance were co-expressed in the same clade as each other. A549 cells were

similar with the exception of the SARS-CoV-2 N gene, which was located in an adjacent clade

(Suppl. Figure 2B). The CE-dendro analysis clustered some genes with SARS-CoV-2 genes

(Suppl. Figure 3) that were not implicated by differential expression analysis as they failed

to pass Benjamini–Hochberg corrected significance tests. These include MYC, NFKBIA, and

DDX1 that are implicated in proto-oncogenic pathways [31], immune response in lungs [4], and

host cofactor enhancement of SARS-CoV-1 replication [186], and thus of possible relevance to

SARS-CoV-2 mechanisms.

The second CE view used genes with significant differential expression (padj < 0.05)

to create a network of genes with an R2 > 0.98 with a SARS-CoV-2 gene (see “Methods”

section). The NHBE and A549 networks have a very similar architecture, whereas the BALF

network displays a much denser network of expression (Suppl. Figures 4–6). All three of these

networks display very similar gene signatures of Chemokines, SPRR’s, S100’s, viral response,
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Figure 3.9: By clustering expression SARS-CoV-2 and human expression patterns concurrently
we observed that SARS-CoV-2 transcripts were localized in a small clade visualized in red (A).
This clade of coexpression with SARS-CoV-2 transcripts contains a set of genes associated with
SARS-CoV-2 mechanisms in infection (B). The histogram distribution of PageRank values for
the A549 (C) and NHBE (D) cell lines shows that the SARS-CoV-2 genes are highly influential.
However, in BALF samples (E), SARS-CoV-2 genes are at the lower end of the PageRank
distribution likely due to the numerous differentially expressed genes creating a much larger set
than that for the cell lines. In A-C, the green line marks the 80th percentile in the distribution
and the small red nodes along the distribution represent SARS-CoV-2 genes.

and interferon response genes. The CE-Net for the strong linear relationships found between

SARS-CoV-2 genes and human genes displays a very modularized and sparse architecture of

particular genes localized in groups of pathways (Suppl. Figure 7). This network layout enabled

visually extracting gene subgroups that potentially coordinate to elicit specific responses. A few

examples of important gene subgroups in Suppl. Figure 7 include the gene modules indicative

of a lipopolysaccharide response and chemokine/cytokine activity (CXCL5, CXCL8, CCL20,

HIF1A), cornification and epithelial cell differentiation (SPRR2A, SPRR2D, SPRR2E, PI3,

KRT6B, ESF1, RHCG, MTSS1),and antiviral response (OAS1, MX1 and PARP9, DTX3L).
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The final CE view used weighted PageRank to find genes with high influence among

a set of significant DE genes. In A549 cells, many SARS-CoV-2 genes (S, ORF3a, ORF1ab,

ORF7a, ORF10) ranked above the 80th percentile of influence among significant DE genes

(Fig. 3C). Similarly, SARS-CoV-2 genes (M, S, N, ORF8, ORF10, ORF3a, ORF7a, ORF1ab)

for the most part ranked above the 80th percentile of influence (Fig. 3D). However, in BALF

patient samples, no SARS-CoV-2 were above the 80th percentile of influence (Fig. 3E). One

likely reason for this would be that the number of DE genes is over 20 times more numerous

than either of the cell lines. Therefore, the gene regulatory network driving the conditional re-

sponse is hidden behind more noise, likely due to the inherent increase in variability between

patient samples compared with cell lines. This suggests that many of the DE genes in BALF

samples may be more indicative of patient variability than of a response to SARS-CoV-2 in-

fection. CE for weighted PageRank shows a similarly sparse and modular architecture to that

observed by CE-Net (Suppl. Figure 8). However, the subgroups had some notable differences

in the participating modules, which consisted of the orange module (S100P, PROS1, PTAFR),

pink module (ICAM1, HBEGF, INHBA), purple module (CXCL5, ASS1, DTX3L, BIRC3,

IFIH1), and black module (MAFF, HDGF, CSNK1E, SAMD9, ITGA5, MCFD2). Finally, the

CE-PageRank network (Suppl. Figure 8) shows a variety of unique, modularized results in-

cluding a purple module (CXCL5, ASS1, DTX3L, BIRC3, IFIH1)(which was similar to the red

and blue modules observed in the consensus network (Fig. 4D–E)), a pink module (ICAM1,

INHBA, HBEGF), an orange module (PROS1, PTAFR, S100P), and a black module (MAFF,

HDGF, CSNK1E, SAMD9, ITGA5, MCFD2). Genes of potential import to highlight include

ICAM1, which has been implicated in viral entry and survival [122], S100P, implicated in cal-
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Figure 3.10: The overlap in gene and pathway results indicated by the DE comparison, Dendro-
grams, pearson correlation networks, and PageRank methods by venn diagram.

cium binding and human papillomavirus (HPV) [144], and SAMD9, shown to have antiviral

properties [118].

Relative to DE, the CE views produce some common, but primarily distinct, genes

and pathways (Fig. 4A). We collected 102 genes from the DE analysis that were implicated by

two out of the three separate DE analyses run on BALF, NHBE or A549 (see “Methods” section;

Suppl. Figure 9). The pathways in the core of the DE results were highly consistent and remi-

niscent of those described previously by the original authors [16]. We found that the candidate

genes suggested by the three different CE approaches are distinct from the DE results (overlaps

of 18, 23, and 10 with the CE-Dendro, CE-Nets, and CE-PageRank results, respectively). Of

the 102 DE genes, a majority (72 genes) were only indicated through DE, suggesting that DE

produces a large number of results that are exclusively a statistically significant conditional re-

sponse and are not indicative of linear correlation to the source (CE-Nets), co-regulation with

the source (CE-Dendrogram), or the most influential players in the geneset (CE-PageRank).
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Figure 3.11: The sankey diagram shows genes that were found by at least 2 of the four views
and the pathway themes that they participate in. This demonstrates that with a consensus of the
multiple views the genes and pathway themes that are reported as concluding results and drivers
of COVID-19 after extensive analysis in previous publications are immediately apparent with
the HOUSE analysis. Genes are colored based on the views that they are found in, white, light
blue, and dark blue indicate that DEA and 1, 2, or 3 other views, respectively, and red for a gene
that is not found by DEA, but was by a CEA view. These genes are then connected to themes,
which consists of a list of gProfiler pathways that they were found to be enriched in (Suppl.
Table 1).
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To reveal a core host regulatory response associated with SARS-COV-2 infection, we

constructed a consensus from the results of DE, intersected with any of the three CE views and

plotted the results as a Sankey diagram (Fig. 4B). Thematic biological processes were iden-

tified using the gProfiler tool31 on the resulting consensus to implicate pathways recorded in

the gProfiler ontology database that are statistically enriched among the gene set (see “Meth-

ods” section). SARS-COV-2 genes themselves were not included in the consensus as gProfiler

lacks annotations for this virus. The resulting consensus shares much in common with the CE-

Net, which is expected given the common results revealed by the views as discussed above.

Several genes and pathways were commonly implicated by DE and the CE views (e.g. 30

genes by DE and at least one CE; 16 genes by DE and two or more CEs). Five genes, all vi-

ral encoded—Cov2-ORF7a, Cov2-ORF1ab, Cov2-S, Cov2-ORF10, and Cov2-ORF3a, which

were first quantified using dRAP—and 14 pathways indicative of a Immune and Defense re-

sponse were found by all four views. Two genes—CXCL5, a chemokine, and PARP12, an

interferon-stimulated gene involved in regulating inflammation—were found by the three CE

views, but not by DE. The nine genes (Cov2-ORF8, Cov2-M, Cov2-N, SPRR2A, SPRR2D,

SPRR2E, RHCG, HIF1A, CXCL8) found by DE, CE-Nets, and CE-Dendrogram, but not CE-

PageRank could also be of interest for tight association with the virus albeit not central to the

known pathway membership interconnections that influence the PageRank analysis.

Viewing the consensus as a network (Fig. 4C) highlights several sub-modules of

densely interconnected genes and pathways (colored boxes, Fig. 4D–G). The first module (red

box: CXCL5, CXCL8, CCL20, ASS1, HIF1A; Fig. 4D) consisted of genes belonging to sev-

eral pathways expected to be implicated including Chemokine activity, IL-17 signaling pathway,
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Figure 3.12: The consensus network for the cross-analysis overlaps between these four methods
results in four gene modules.
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viral protein interaction with cytokine and cytokine receptor, cellular response to lipopolysac-

charide, and the ‘ASATCAAAG’ TCF-3 motif. The module is supported by previous findings

that SARS-CoV-1 infection stimulates the lipopolysaccharide receptor, TLR4, shown to pro-

duce an immune response [38] and lead to disease pathogenesis [56]. The second module (blue

box: DTX3L, IFIH1, BIRC3, S100A8, PRDM1, FOSL1; Fig. 4E) implicates roles for the

innate immune system’s defense response. DTX3L and PARP may be of particular interest

based on previous findings that they are required for an interferon response to certain coron-

aviruses [194] and PARP12/14 are required to inhibit the replication of the macrodomain (a

subunit of the transmembrane viral protein, nsp3) of coronaviruses and to produce the opti-

mal IFN response [57]. The third module (lime box: SPRR2A, SPRR2D, SPRR2E, KRT6B,

ALOX15B, PI3, RHCG; Fig. 4F) implicates the involvement of programmed cell death, ep-

ithelial cell differentiation and cornification and antiviral response through a DTX3L-PARP

axis. This gene subgroup is characterized by Keratinization, Keratinocyte cell differentiation,

cornification, formation of the cornified envelope, Epithelial cell differentiation, Epidermal dif-

ferentiation, programmed cell death, and structural constituents of skin epidermis. Finally, a

fourth module (black box: OAS1, IFITM3; Fig. 4G) indicates pathways of viral genome repli-

cation and cellular response to type 1 interferon. In summary, the consensus network reveals

many expected aspects of response involving chemokines and inflammation but also some po-

tentially new processes such as cornification that may implicate a specific apoptotic mechanism

involving particular host cells (e.g. keratinocytes).
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Figure 3.13: The red module (CXCL5, CXCL8, CCL20, ASS1, HIF1A) is indicative of
chemokine activity, cytokines, and a lipopolysaccharide response. (E) The blue module (IFIH1,
PRDM1, BIRC3, FOSL1, DTX3L, S100A8) indicates an innate immune response.
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Figure 3.14: The lime module (SPRR2A, SPRR2D, SPRR2E, KRT6B, ALOX15B, PI3) in-
dicates cornification/keratinization and epithelial cell differentiation changes. (G) The black
module (OAS1, IFITM3) indicates regulation of viral genome replication.
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3.3.5 Summary of dRAP findings

Using a dual RNA-seq analysis pipeline (dRAP) to detect both host and pathogen

transcriptomic gene expression, we implicate genes involved in viral infection and response us-

ing both differential expression (DE) and coexpression (CE) analyses. To elucidate therapeutic

implications, we applied dRAP to SARS-CoV-2-infected patient samples and cell lines. For

the first time, to our knowledge, we quantify the levels of SARS-CoV-2 transcripts in human

patients and cell lines. This new outlook revealed that the most strongly and consistently ex-

pressed transcripts were those that play essential roles in viral survival and propagation. The S,

N, and M genes—which are key to viral replication (N gene), assembly (M gene), release (M

gene), attachment (S gene), and entry (S gene) [5, 55]—had the highest levels of statistically

significant expression.

dRAP suggested an appreciable difference in viral transcript expression between pa-

tient tissue types and found that BALF had the most robust levels. PBMCs exhibited low (or

zero) levels of SARS-CoV-2 transcript expression, with no transcript detected as differentially

expressed between control and infected conditions (DESeq2 using Cook’s distance filtering;

Table 1, Fig. 2A). Similarly, lung biopsies lacked robust expression of SARS-CoV-2 transcripts

with all but one sample giving detectable levels (Table 1, Fig. 2A). In contrast, BALF samples

were found to express every SARS-CoV-2 transcript at extremely high levels (at least 14 times

higher in infected samples compared to controls; Table 1, Fig. 2A).

In addition to the robust viral response, the human transcriptional response of BALF

also matched more closely with SARS-CoV-2-infected cell lines than the other tissues matched
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to cell lines. dRAP identified that the NHBE cell line produced the highest magnitude of vi-

ral transcript expression (magnitudes higher than the A549 cell line, which also had some de-

tectable viral transcript levels). The human transcriptional response, as measured by differential

expression (DE) was found to be most similar between BALF and NHBE (Fig. 2C) with the

other tissues having little in common with cell lines or BALF (Fig. 2E–F). Interestingly, the

commonality between BALF and the NHBE cell line was even greater than when the cell lines

were compared to each other, which helps increase the credibility of these findings given they

are drawn from small sample sizes (Fig. 2B). These findings both underscore the relevance of

using BALF as the tissue to quantify the gene expression programs of SARS-CoV-2 infection

while suggesting some cell lines (e.g. NHBE) offer better laboratory models than others.

We investigated three different views to explore the roles of human genes and path-

ways relevant to viral infection implicated by coexpression (CE). DE measures the statistically

significant conditional response to infection that may nominate genes with either direct or in-

direct viral associations. The integrated view of the consensus CE and DE together (Fig. 4A,

Suppl. Fig.10) may provide a more enriched set of direct viral associations and host responses

supported by literature observations of previous coronaviruses, viral response machinery, and

symptoms observed in COVID-19 patients.

The modules of the consensus network suggest that SARS-CoV-2 may initiate a

response via lipopolysaccharide through increases in chemokine and cytokine activity (red

box, Fig. 4D), triggering an influx of intracellular calcium that induces the migration and

programmed death of epithelial cells through a hardening of the membrane by a keratiniza-

tion/cornification process (lime box, Fig. 4F) [38]. These findings are consistent with previous
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observations that chemokines activate a response in multiple cell types and tissues (includ-

ing epithelial and leukocyte) to produce high intracellular calcium and a migratory phenotype

[2, 120, 119]. Imbalances and compensation among chemokines may predict response to infec-

tion [179]. Indeed, mutations in chemokine-associated genes have been associated with severe

cases. Chemokine pathways may underlie symptoms that coincide with the various observa-

tions of COVID-19 symptoms including a respiratory mucosal immune response [179], inflam-

matory bowel disease (REF 44), interstitial lung disease [143], asthma [98], and Eosinophilic

Pneumonia (EP) [77], which is associated with “progressive shortness of breath (dyspnea) of

rapid onset and possibly acute respiratory failure, cough, fatigue, night sweats, fever, and unin-

tended weight loss.” Understanding the full scope of possible chemokine pathway engagement

and how to inform therapeutic approaches is of great interest.

In summary, this work suggests that specific human patient tissues are implicated in

robust SARS-CoV-2 expression, namely, Bronchoalveolar lavage fluid (BALF), while PBMC

and lung biopsies showed little to no viral expression. NHBE and A549 infected cell lines had

concordant gene expression changes compared to BALF, but PBMC and lung biopsy patient

samples. Finally, the coexpression analysis enabled by dRAP predicts a possible mechanism

by which COVID-19 may progress from the initial SARS-CoV-2 infection to patient symptoms

that may provide additional clues into therapeutic targets.
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3.4 Annotating and Profiling the SARS-CoV-2 Genome

In addition to the above, I entered into a collaborative effort and authorship of a

reliable reference genome for SARS-CoV-2 during the pandemic [47, 114]. It is an interac-

tive web-based tool, similar to the original UCSC Genome Browser, that collates the many

international efforts to study the virus’ evolution, mechanisms of action, and immunological

characteristics. The many different research efforts were cataloged as annotated tracks that can

be comparatively examined on a spatial map of the genome. These tracks highlight transcrip-

tomic, genomic, and immunological features in a familiar and standardized data organization

environment for thousands of researchers to make a one-stop shop for SARS-CoV-2 analysis.
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Chapter 4

Chapter II: Associating transcription

factors to single-cell trajectories with

DREAMIT
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4.1 Background

4.1.1 Gene regulation in single-cell trajectories

A cell’s type and state are a product of gene regulatory mechanisms controlled by

transcription factors. Transcription factors (TFs) play a central role in governing the transitions

between different cellular states. These transitions are driven by the dynamic regulation of gene

expression orchestrated by TFs. TFs bind to specific genomic regions, exerting precise control

over the activation or repression of target genes. This regulation is critical for processes such as

cellular differentiation, development, and responses to environmental cues. The identification of

TFs responsible for orchestrating these transitions is a fundamental endeavor in understanding

the molecular basis of cell state dynamics.

In recent years, advances in single-cell sequencing and transcriptomic methods have

granted researchers the ability to scrutinize gene regulatory networks with great sensitivity and

specificity. Moreover, the emergence of ”cell trajectory” inference methods has enabled the

identification of transitions between different cell states [141, 133]. Trajectory methods identify

changes in development, maturation, or response to environmental queues using gene expres-

sion changes across cells having similar transcriptomes. The dynamic regulation of genes can

then be inferred by following their relative expression across cells along a trajectory “branch”

transitioning from one cell state to another (Figure 1A).
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Figure 4.1: Expression across the cell transition in trajectory branches is used by DREAMIT to
infer a dynamic view of TF-to-target gene regulation.
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4.1.2 Motivation and existing methods

Unraveling dynamic transcription factor regulation of cell states from single-cell RNA

sequencing (scRNAseq) data presents several challenges. scRNAseq data itself introduces anal-

ysis complications, mainly due to its vast scale and sparsity [7]. These include issues like gene

expression dropouts, stochastic variations, delayed target responses, and disparities in chro-

matin accessibility. These factors can result in inconsistencies in known factor-to-target regula-

tions [70, 29, 8].

To address these issues, the first approaches to infer Gene Regulatory Networks from

scRNAseq data used “pseudobulked” transformations in which cell expression was grouped

across related cells. Most recently, a growing number of methods are available to infer GRNs

specifically from scRNAseq data (see [7, 105] for good reviews). To complement the infor-

mation in single-cell RNAseq data, some approaches extend to include multi-omic data, for

example the addition of ATACseq measured chromatin accessibility during the construction of

GRNs [7]. Nevertheless, multi-omic data is both costly and not yet widely accessible. Thus,

methods that extract TF-target relationships with strong support only from single-cell RNAseq

data are still needed.

Importantly for this study, given a GRN, few methods exist to annotate which par-

ticular TFs are relevant for a particular context of the data. For example, even if a GRN is

elucidated from a single cell dataset, it remains unclear which particular regulators to implicate

as relevant for a cell state or cell transition uncovered in that dataset. As an analogy to bulk

RNAseq analysis, GRNs can be inferred using methods like WGCNA [84] or ARACNe [102].
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However, an additional step beyond GRN inference is needed to predict activities of genetic

regulators using methods like MARINa [86], SPIA [159], and PARADIGM [171]. In the same

way, approaches are needed to infer how genes within a GRN contribute to particular trends in

a single-cell dataset. Current approaches use methods based on differential expression analysis,

clustering, cell-type annotation, and dimensionality reduction [180, 127, 96]. Specific meth-

ods like TRADE-Seq [169] and PseudotimeDE [149] enable users to investigate differential

gene expression as cells transition along a trajectory (see Figure 1B-C). Meanwhile, approaches

like SINGE [39] employ Granger causality ensembles to infer potential regulatory interactions.

Nevertheless, methods tailored for the specific inference of TF activity along trajectories re-

mains poorly studied and the performance of methods remains a challenging task, often lacking

objective criteria for evaluation [105].

4.1.3 DREAMIT algorithm overview

We introduce a novel method for implicating TFs to cell trajectories called DREAMIT

– ’Dynamic Regulation of Expression Across Modules in Inferred Trajectories.’ DREAMIT

aims to analyze dynamic regulatory patterns along trajectory branches, implicating transcrip-

tion factors (TFs) involved in cell state transitions within scRNAseq datasets (see Figure 1D-E).

DREAMIT uses pseudotime ordering within a robust subrange of a trajectory branch (pseudo-

time focusing) to group individual cells into bins. It aggregates the cell-based expression data

into a set of robust pseudobulk measurements containing gene expression averaged within bins

of neighboring cells. It then smooths trends after searching for an optimal fitting spline across

the bins. DREAMIT rejects further analyzing branches that produce highly variable smoothing
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Figure 4.2: Associating transcription factors (TFs) to trajectory branches via identification of
TF-to-target coexpression along pseudotime. B. Expression levels of a hypothetical gene in
individual cells (y-axis) illustrating the division into arbitrary “start” and “end” states along the
pseudotime of a theoretical differentiation process from stem cells to differentiated erythrocytes
(x-axis). C. Differences in the expression level between “start” and “end” states may not exist
which may cause Differential Expression (“DE”) approaches to miss other patterns in the data
(e.g. concordant fluctuations in the middle of pseudotime). D. DREAMIT models the entirety
of the expression on the branch and assesses TF-to-target relationships that look for a consistent
relationship between the expression levels (y-axis) of a TF (green line) and its target genes
(blue lines) along pseudotime (x-axis). E. Alignment plot showing one TF (y-axis) aligned to
a “typical” target from a target set (x-axis) illustrating how allowing for a lag or delay (red
line) can help a metric pick up on an association between a TF and its targets over a subset of
pseudotime (blue line) in which all the targets have the same lag in expression relative to the
TF.
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estimates (covariation in spline fitting parameters found to be greater than 1.0 across 80% sub-

sampling; see Methods) as these branches may represent sparse or noisy parts of the data that

could produce unreliable TF inferences.

Using the transformed smoothed data, it calculates the association between a TF and

all of its predicted targets according to the TRRUST database assessed using multiple metrics

(e.g., Pearson correlation, Mutual Information, Dynamic Time Warping distance, etc). Finally,

DREAMIT uses a Relational Set Enrichment Analysis (RSEA) test to evaluate the significance

of the TF-to-target associations and identify a core set of targets (target focusing) compared to

a background model, which consists of arbitrarily selected targets.

4.1.4 Evaluating DREAMIT

We evaluated the performance of DREAMIT by measuring its ability to recover TFs

with known relevance to several datasets. Our evaluation, although serving as a ’bronze stan-

dard,’ is based on the lack of suitable reference datasets with known underlying regulations

driving the major differences among cells, as previously noted [39]. To assess DREAMIT’s

performance, we employed a TF-Marker database, which allowed us to determine its effective-

ness in identifying TFs known to play essential roles in specific tissues, previously established as

high-confidence markers for those tissues [187]. While the evidence from gene expression alone

should be viewed with caution as coexpression of transcription factors to targets are correlative

and not causative, our findings revealed that DREAMIT outperformed traditional approaches,

including differential expression analysis and GENIE3, in several instances.
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4.2 The DREAMIT method

DREAMIT contains the following major steps: (1) pseudotime ordering to bin indi-

vidual cells together, (2) averaging gene expression for each bin, (3) fitting a spline model to

derive gene expression that smooths trends, (4) calculating the association between a TF and all

of its predicted targets according to the TRRUST database using several different metrics, (5)

identifying the significance of the set of targets using an empirically sampled null model and

identifying a core set of the targets using an enrichment test and (6) retaining any TFs with a

significant concordance after multiple hypothesis correction. These different steps are described

in the following sections.

4.2.1 Datasets and Dependencies

DREAMIT relies on RNA expression data and the allocation of cells to specific

branches, including their positions along these branches, which are represented as ”pseudo-

time.” These assignments are determined through the application of a cell trajectory inference

method, as illustrated in Figure 1A. For this work, slingshot and PAGA were used to infer tra-

jectories and pseudotime [152, 182]. PAGA was used for the Paul et al. dataset [128] since

that study published a set of cell clusters that could be used as input to the PAGA method.

Slingshot was used for the benchmark datasets (described next). The selection of Slingshot was

based on the absence of pre-existing clustering assignments in these benchmark datasets and

its well-documented performance in systematic evaluations [141]. The analysis is dependent

on pseudotime assignments estimated by trajectory methods. Errors introduced by a trajec-
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tory method can impact which gene regulatory relationships can be identified. DREAMIT is

downstream of trajectory methods and is therefore subject to the same errors.

For benchmarking, we collected 7 datasets from EBI representing a diversity of tis-

sues (including brain, heart, embryo, retina, bone marrow, testis) [101], a heart development

dataset [52], and a dataset of stem to PBMC lineage [169] for testing DREAMIT. Each of these

datasets have undergone preprocessing through the standard scanpy pipeline [181].

Traditional methods compare different states on the branch to each other in terms of

differential expression, between a “start” and an “end” state (Figure 1B-C). DREAMIT takes a

different approach in which the full set of expression values along pseudotime are used to infer

a relationship between a Transcription Factor (TF) and its target. To do this, the method uses a

set of predicted linkages between regulators and targets. For this study, we used both the human

and mouse regulator-target predictions contained in the TRRUST database [63], which contains

interactions mined from over 11,000 PubMed articles. To convert mouse regulogs to human, we

used the orthology mapping published by the Mouse Genome Informatics (MGI) consortium

[44]. These known regulatory datasets are provided with DREAMIT or the user can choose to

include their own regulator-target interactions.

4.2.2 Trajectory Pre-Processing: Pseudotime Focusing, Expression Quantizing

and Spline Smoothing

DREAMIT bases its analysis in first producing a smoothed representation of the data

through psuedotime focusing and spline fitting. The use of splines to model scRNAseq data

along a trajectory branch follows previous work [169, 149]. We selected spline models that
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incorporated both goodness-of-fit and robustness.

The assignments of cells to locations along a trajectory, commonly referred to as

pseudotimes, can reflect a fairly irregular distribution in which the density of cells can vary

appreciably from one area to the next. This irregularity in cell number along pseudotime could

result in only a few cells, or even a single cell, having a disproportionately large influence

in correlation or distance calculations made by DREAMIT (described below). For this rea-

son, DREAMIT applies a pseudotime focusing step in which it retains the cells that have been

assigned contiguous pseudotime values falling within 1.5 times the interquartile range of all

pseudotime values of the branch (Figure 4A-B). The outlier cells that could impact detecting

robust trends across pseudotime are eliminated from all subsequent steps.

DREAMIT discretizes the assigned pseudotime values into discrete ordinal levels in

order to buffer against further irregularities in the data. Discretization bins are chosen to have

an equal number of pseudotime increments, where each bin also has a minimum of 10 cells. Ex-

pression levels are then averaged across all cells in the same bin (Figure 4C). Thus, the result of

the quantization step produces a type of pseudobulk dataset in which gene expression levels are

averaged across cells landing in the same ordinal bin. DREAMIT attempts different resolutions

of discretization by varying the number of bins from 4 to 100 and chooses a satisfactory number

using a hyperparameter search step (described below). It also provides the option of using the

raw expression data for the next step of spline smoothing rather than the binned pseudobulk

data.

The expression levels of the retained cells could have substantial noise due to tech-

nical and biological factors; for example, noise due to the well-documented zero-inflated bias
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Figure 4.3: A. Cells with outlier pseudotime assignments (red dots) compared to the other
cells (green dots) are shown. B. Pseudotime focusing removes outliers from the analysis and
retains cells within 1.5 times the interquartile range of all pseudotime values of the branch (see
Methods). C. Cells are grouped into bins containing at least 10 cells per bin. The average
expression of a gene is calculated from all the cells in a bin (blue line) and this bin-averaged
expression is used for all subsequent analysis. D. Spline smoothing incorporates information
from cells in neighboring bins to further smooth out the expression changes in pseudotime
(green curve).
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Figure 4.4: A. Illustration of E2F4 expression (y-axis) across pseudotime (x-axis) along the
stem to erythrocyte trajectory branch from the PBMC dataset with normalized (Scanpy) expres-
sion (color indicates number of cells); spline-smoothed expression shown for each pseudtime
bin (black line); red ellipses illustrate bin width. Histograms plot the distribution of cells at
given expression increments (y-axis) and psuedotime increments (x-axis).
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in single-cell RNAseq data [35] (see Figure 5A-B for two examples of raw expression lev-

els). In addition to only averaging the expression levels within a bin, DREAMIT uses a spline

smoothing step to incorporate information from cells in neighboring bins (Figure 4D). The dis-

cretized pseudotime units are treated as the independent variable and the average expression

levels are fit with a zero-inflated negative binomial generalized additive model spline smooth-

ing (NBGAMSS) of the expression values following the recent approaches of TRADE-Seq and

PseudotimeDE [169, 149]. The number of cells in a bin is used as a ”weight” for the fitted data

point, placing more emphasis on areas with more support that are assumed to have more reliable

estimates of average expression compared to areas with a fewer number of cells. A smoothing

factor determines the number of resulting knots produced by the NBGAMSS (see Figure 5A-B

for two examples of smoothed expression). Note that other smoothing operations are possible

such as the kernel smoothing used by SINGE [40].

The hyperparameters for a spline are selected by searching for a combination that

maximizes the goodness and robustness of the fit, measured by Akaike Information Criterion

(AIC) and Coefficient of Variation (CV), respectively. Subsamples are used to compute the Co-

efficient of Variation (CV) to reflect robustness. We subsample a trajectory branch by choosing

80% of the cells, without replacement, repeated 30 times. The average Akaike Information

Criteria (AIC) is calculated across these subsamples to reflect the accuracy of the fit to the

quantized data. Likewise, the CV is calculated across these subsamples. We search for a set of

tolerable spline parameters – the number of bins and the smoothing factor – that minimizes both

the CV and the AIC. A perfect dataset would have an AIC and CV of 0. We used the distance

to the origin of a spline’s associated AIC-CV pair as a measure of goodness that combines both
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Figure 4.5: Same plot as in Figure 4.4 but for the MYC transcription factor.

the fit quality and robustness. To illustrate the spline selection process qualitatively, we plotted

splines for ANKRD43 and FRY1 that had a good fit (low AIC and CV; suppl. Fig 11-12) as

well as a poor fit (high AIC and CV; Suppl. Fig 13-14). The differences in a poor modeling are

evident at high bin numbers, but it should be noted that most spline fits are not extremely off

base in terms of modeling, but the best parameters enhance the smoothness. All of the tested

spline representations of the PMBC dataset [169] were plotted to assess their AIC (goodness

of fit) and CV (robustness of fit)(Figure 5C), with little to no trend being observed with the

changing bin and smoothing factor parameters.

As RNAseq becomes more cost effective, datasets will increase in resolution, decreas-

ing the distance between cell state transitions, and the discretization step may not be necessary
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Figure 4.6: Each spline parameter choice produces a different fit to the data. Robustness of
the fit was assessed by measuring the coefficient of variation (CV) across subsamples of the
data (y-axis, see Methods). Goodness of the fit was assessed using Akaike information criterion
(AIC) (x-axis). Parameter values that produce spline fits plotted toward the origin (bottom left)
are preferred to those further away.
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Figure 4.7: Same as in Figure 4.6 but only showing parameterizations that achieve tolerable
levels of robustness (CV < 1).

for some datasets. Thus, DREAMIT provides the option of using the raw expression data for

spline smoothing without first performing the quantization binning step. We tested the influence

of binning on the Paul et al. dataset and found that it produced TF predictions with more tissue

specificity compared to predictions obtained without the binning step (see Suppl. Fig 15a-b).

Expression data for each of the 100 most variable genes is used for the hyperparameter

search. Once an optimal value for these parameters are found, the preprocessing is applied to

all genes. In order to ensure that DREAMIT only ever reports on robust representations of the

data the maximum threshold for Coefficient of Variation is set to 1 (Figure 5D) in this and all

other data analyses. Only trajectory branches that meet this CV criterion will be assessed by

DREAMIT.
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4.2.3 Transcription factor to targets

To quantify relationships between a transcription factor (TF) and its targets, DREAMIT

performs a series of pairwise tests (e.g. Pearson correlations or dynamic time warping align-

ments, see next section) between a particular TF and each of its predicted target genes. The

targets of a particular TF are taken from the regulatory interactions recorded in the TRRUST

database [63]. The number of targets for each TF in DREAMIT is a result of at least three fac-

tors: 1) which targets are linked to the TF in the TRRUST database, 2) are retained after scanpy

filtering of the data to select for highly variable genes, and 3) are included after DREAMIT

RSEA.

4.2.4 DREAMIT metrics to detect a variety of TF-target relationships

The connection between the expression levels of a transcription factor (TF) and those

of its target genes can vary from being straightforward and linear to more nuanced. This vari-

ation depends on the particular regulon (i.e. the strength of association between a TF and a

large or small subset of its target genes). For that reason, DREAMIT includes several metrics

to pick up on TF-target associations. For each TF with an associated target set, DREAMIT cal-

culates Pearson correlation, Spearman correlation, Dynamic Time Warping Cost, and Mutual

Information content [10, 111, 109, 81]. We describe the details of the calculation of each of

these methods in the following paragraphs.

Pearson correlation provides evidence regarding the strength of the linear relation-

ship between the factor and its targets, while Spearman correlation reflects the strength of the
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monotonic relationship. Because the factor and targets can have positive or negative correlation,

the metric must be squared to create a distribution that is comparable to a random background

distribution. Therefore, it is primarily the strength of the relationship that is considered in

DREAMIT, but all relationships are included in the report for the user to investigate.

Dynamic Time Warping (DTW) measures how well the expression pattern of a factor

can be aligned to the pattern of a target. Target genes may follow a similar pattern as a regulator

but have delayed timing that may be detectable in a single cell dataset with enough resolution

to reveal cellular processes. DTW finds an optimal match between the patterns that introduces

the fewest delays in time [25]. Therefore, a factor with a small DTW distance from its targets

implies that the targets are tightly controlled by the transcription factor with few delays in

pseudotime.

Mutual Information (MI) measures the potentially non-linear dependency between

the expression of a factor and that of a target gene. It measures how much a factor’s expression

distribution reduces the uncertainty about the target’s expression distribution. Including MI

among the metrics expands the relationships that can be detected between TFs and targets but

can produce results in which the nature of the regulatory interaction is not clear (e.g. in the

cases where correlation-based metrics fail to pick up a relation). [166].

In addition to the standard use of these metrics, a rolling metric calculation is also

performed. In the rolling metric calculation, the possibility of a delay in targets responding

to factor expression changes is considered by sliding the window in which the relationship is

measured. In other words, a rolling window is applied to the target’s expression where each

window interval is a bin of smoothed expression (Figure 4E-F). Therefore, the rolling metric
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Figure 4.8: E. DREAMIT quantifies TF-target relationships through pairwise tests of the spline
smoothed expression of the TF (green line) and its target genes (blue lines). F. Illustration
of a “rolling” metric incorporating pseudotime lag. A significant lagged correlation will be
detected when several targets share the same delay. G. Target focusing employs Relational
Set Enrichment Analysis (RSEA, see Methods) to identify a “core” set of targets with high
association to the target (blue lines) while excluding the targets with weak or poor association
(red curve). H. 75% of the targets with the highest concordance to the factor are retained.

reports the bin increment delay where the peak strength of the delayed relationship occurs.

DTW allows for delays in factor target relationships, but is flexible as to the synchronization.

In contrast, the rolling metrics report significant factor target relationships with the same time

delay, so that all targets respond to the factor expression at a similar pseudotime.
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4.2.5 Relational Set Enrichment Analysis (RSEA): Detecting significant TF-target

associations

In addition to a standard reporting of these prior known TF-target associations, DREAMIT

uses a two-step Relational Set Enrichment Analysis (RSEA) to highlight the core set of relation-

ships (Figure 4G-J). RSEA begins by performing target focusing to capture the enriched target

response followed by a Kolmogorov–Smirnov test (KS test) to assess significance. A transcrip-

tion factor may activate a subset of its targets in a particular tissue. DREAMIT attempts to

identify the set of utilized targets by identifying a focus set. Target focusing uses the provided

set of targets for a factor (e.g. in this study, [63]). DREAMIT performs two steps to identify

targets with consistent expression with the factor. First, it checks if the direction of regulation

is consistent with the activation/inhibition annotation available from the TRRUST database. If

the database has no annotation about the directionality of regulation (46% of relations in the

TRRUST database), then this consistency check is skipped. Second, DREAMIT performs a

focusing step to retain a set of targets that mutually have the strongest relations to the TF; i.e.

keeps only those targets with the highest scores to the TF using the current choice of metric.

A range of percentile thresholds were tested from 10-35 with similar results for 20 and above,

with 20 and 25 having the best early precision (Suppl Fig 15c-d). The target focusing threshold

is a hyperparameter of DREAMIT; 25 was used in this analysis. Targets with an association to

the TF above the 25th percentile of a DREAMIT metric are retained in a core “target focus” set.

Conversely, targets with deviant expression are filtered out in an effort to reduce false positives.

To determine the significance of a DREAMIT relationship metric for a TF, the dis-
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Figure 4.9: I. Significance is assessed by comparing TF-to-target metric scores to a random
background in which random targets are chosen to be of the same size as the TFs original
regulon (yellow lists) with a Kolmogorov-Smirnov test. J. The core set of targets (blue nodes)
found by RSEA are used in the statistical analysis.

tribution of metric levels between the TF and its targets is compared to a random background

distribution. The background set is chosen to be equal to the largest target set considered.

After the random targets are selected, the same metrics are calculated for the random set and

then compared to the true factor-to-target distribution using the Kolmogorov–Smirnov test (KS

test)[11]. A Benjamini-Hochberg correction [160] is then performed on the p-values generated

for each factor by the KS test to account for false discoveries. Transcription factors with ad-

justed p-values < 0.05 are considered significantly non-random for the association in question.

Both RSEA results and the full set of TF-targets are evaluated using this KS test and p-value

correction method.

4.2.6 Differential Expression (DE)

DREAMIT uses a differential expression (DE) t-test between the start and end of a

cell trajectory using the original data values (“Raw DE”) as well as using the spline-inferred
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data values (“Smooth DE”). The spline-inferred, Smooth DE approach uses a generalized ad-

ditive model (GAM) as the basis for the DE test, similar to previous methods such as Monocle-

2, TRADE-Seq and PseudotimeDE [169, 149, 134]. For the DE test (either raw or smooth),

DREAMIT divides a trajectory branch into two equal segments, the “start” and the “end”. For

raw expression, outlier cells are pruned such that those with aberrant pseudotime values are

ignored. If a gene shows a statistically significant change between these two conditions then

it is considered differentially expressed. Statistics such as fold change, t-statistic, pvalue, and

FDR are then reported for each gene on a branch for both the raw and smoothed data.

4.2.7 Evaluating the specificity of TF to target relationships

To determine the specificity of DREAMIT, ROC, Precision-Recall, and early preci-

sion were assessed. True “hits” are defined as transcription factors that are markers of the tissue

under study. All other transcription factor findings are considered false hits. This assumption

does not provide perfect accuracy to true biology as there are likely many factors that have yet to

be classified in the TF-Marker database being used [187], and also every factor marker of a tis-

sue need not be active at all times. However, this bronze standard metric does give an enhanced

insight into DREAMIT’s ability to highlight tissue specificity. ROC, Precision-recall, and early

precision were assessed branch by branch and as an aggregate. These specificity curves were

determined for findings by Pearson correlation, Spearman correlation, dynamic time warping,

mutual information, rolling calculations, and by the most significant method for each factor. By

examining the TPR, FPR, precision, and recall under various p-value thresholds, the specificity

of these methods can be assessed comparatively. For early precision, we followed previous
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works [40] that defined this metric as the precision at recall levels < 0.1.

In a similar manner, competing approaches, differential expression (DE) and GENIE3

[75], were comparatively assessed against these DREAMIT methods. For DE, if the transcrip-

tion factor (TF) is a listed marker of the tissue under study then it is considered a true hit, while

all other TFs are considered false hits. This is the same method used for DREAMIT. Addition-

ally, the DE targets were assessed by comparing the T-statistics of the targets with a background

set using the KS test. For the TF in question, it is considered significant if its targets score bet-

ter than the random background. Both the scanpy processed expression (rawDE) and the spline

smoothed expression from DREAMIT (smoothDE) were assessed for both TF DE and DE tar-

gets. For GENIE3, a distribution of weights is determined for TFs to known targets from Trrust

[63]. This is then statistically compared to a distribution of weights for TFs to randomly selected

genes (representing the background) with a KS test. This is done for both scanpy processed ex-

pression (rawGENIE3) and the spline smoothed expression from DREAMIT (smoothGENIE3).

Specificity is then assessed in the same way as DREAMIT where tissue markers are true hits

and all other TFs are false hits.

We note that rawDE has some processing done (IQR pruning of cells with outlier

pseudotime assignments). This processing was done, because often dividing a branch strictly

on the original pseudotime assignments results in severe imbalances in the number of cells in

the start and end segments. Therefore, some processing was still useful in this analysis above

the traditional approach, even before results are considered.
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4.2.8 Evaluating the overlaps between DREAMIT and other methods

In order to compare the findings of DREAMIT, DE, and GENIE3 methods, a set of

TF-branch pairs were recorded for each method’s predictions. For example, the pair (MEK,Branch-

3) would record that MEK was associated with the third trajectory branch of the dataset. The

TF-branch pair sets of each method were compared and visualized using an Upset plot. This

was done for both the tissue-specific markers of the respective branches being assessed and for

the non-markers for DREAMIT, rawDE, smoothDE, rawDEtargets, smoothDEtargets, rawGE-

NIE, and smoothGENIE. Likewise, the DREAMIT subcomponent methods Pearson, Spearman,

DTW, MI, and Rolling were also assessed via Upset plot for both tissue-specific TF marker and

non-marker findings. We note that different upstream methods for manifold learning and tra-

jectory inference could be used in conjunction with DREAMIT (such as scGNN [173], DESC

[87], and scMGCA [192]).

4.2.9 Evaluating specificity in reporting TF-markers in a high-fidelity PBMC

dataset

To assess the specificity and biology of DREAMIT in a “silver standard”, a PBMC

dataset was used [128]. Because this dataset was derived from mice, a set of regulogs [44] was

used in this analysis so that downstream specificity and tissue markers can be assessed. Due to

a higher proportion of TFs being categorized as blood-specific markers or not, the specificity

for DREAMIT can more accurately be determined. ROC, precision-recall, and early precision

are determined in the same way as above, using the TF-marker database [187]. Individual
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factors were then investigated further as to their status in the marker database and in the overall

literature.

4.3 Results

4.3.1 DREAMIT Identifies Distinct PBMC markers

To evaluate DREAMIT’s specificity in a highly curated setting in which confident

tissue-specific transcription factor (TF) regulation is well known, we chose the blood marrow

dataset from Paul et. al. [128]. This dataset contains stem cells transitioning to various blood

cell types (erythrocytes, monocytes, neutrophil) suitable for trajectory branch inference and

contains a well-characterized set of marker genes. We estimated the accuracy of the methods

using an average of 16.3 markers per branch by calculating precision-recall, and early preci-

sion (see Methods). DREAMIT was found to have the highest average precision and early

precision (AUC=0.57, E= 1.00) while the other approaches had lower estimates – smooth-

GENIE (AUC=0.46, E=0.38), rawGENIE (AUC=0.43, E=0.27), rawDE (AUC=0.33, E=0.29),

smoothDE (AUC=0.33, E=0.17), rawDEtargets (AUC=0.49, E=0.40), and smoothDEtargets

(AUC=0.32, E=0.17) (Figure 2A). These estimates demonstrate that DREAMIT on average

achieves levels of precision moderately higher than chance expectation as 35% of the tran-

scription factors were tissue-related for this analysis. For example, the method achieves both a

precision and recall of 0.55 which is significantly different than chance guessing at the 0.05 level

(P<0.026, Hypergeometric test). In addition to tissue specificity, we also compared DREAMIT

to Perturb-Seq results in hematopoiesis from Lara-Astiaso et. al. [85]. The TFs annotated to
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Figure 4.10: Performance of inferring blood differentiation TFs on the PBMC dataset. A.
Precision-recall curve measuring rate of identifying blood-related transcription factors anno-
tated in TF-Marker DB from the analysis of the PBMC dataset. A dotted line is plotted on the
precision-recall to denote where early-precision is considered.

either the monocyte or erythrocyte branches had a high degree of overlap with Perturb-Seq data

that report on factors that modulate these lineages (6 out of 8 TFs) and the downstream differ-

ential expression observed in marker genes had a higher concordance with those TFs selected

by DREAMIT compared to the two that were not selected (Suppl. Fig 16).
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4.3.2 DREAMIT inference of gene regulatory logic for PBMC fate specification

The majority of transcription factors (TFs) identified by DREAMIT were annotated

as markers of stem cells or blood cells, which aligns with the input data from the Paul et al.

dataset. This dataset represents the transition from stem cells to differentiated blood cell types.

For instance, on the trajectory from stem cells to erythrocytes, DREAMIT found 16 significant

TFs. Among these, five were well-known blood and peripheral blood markers based on the

TF-marker database (RUNX1, GATA1, EGR1, STAT1, ETS1). Furthermore, three other TFs

were stem cell markers (YBX1, MYC, RELA). Out of the remaining eight TFs identified by

DREAMIT, six had established literature support connecting them to roles in stem cell and

peripheral blood mononucleocyte (PBMC) development, such as DNMT1 [3], EZH2 [76, 69],

E2F4 [73, 72], KLF6 [24, 46], NFE2L2 [115], and TP53 [80, 125]. The last two TFs, MYB and

MYCN, had a less clear relationship.

On the trajectory from stem cells to monocytes, DREAMIT identified a total of 13

significant TFs. Six of them (CEBPA, ETS1, IRF1, ATF4, RUNX1, STAT3) were blood and

peripheral blood markers, while three were recognized as stem cell markers (IRF8, KLF4,

NFKB1). Among the remaining four TFs on this trajectory (ZBTB16, MYCN, ELF1, VDR),

only the vitamin D receptor (VDR) had established literature supporting its involvement in

monocytes [155, 22].

To further investigate how DREAMIT findings provide insight, a TF-to-TF network

was created alongside their temporal order of activation. For the significant DREAMIT find-

ings from the high fidelity Paul et. al. PBMC dataset [128], TF-to-TF relationships were plot-
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ted for the stem-to-monocyte trajectory (Figure 2B). TFs are connected in the network if they

were recorded as linked in the TRRUST database and significant by DREAMIT. Analyzing the

(smoothed) expression patterns of TFs in the network revealed a correlation with the temporal

changes in expression and the connectivity in the TF-to-TF network, as illustrated in Figure

2C. For example, the factors STAT3 and RUNX1 are upregulated at the initial time point and

their targeted TFs are upregulated in a later time point, consistent with the network inferred

using the TRRUST TF-to-TF relationships [53, 19, 124]. In another example, a concurrent in-

crease in ZBTB16 and CEBPA (regulated by ZBTB16) was observed followed by increases in

their downstream target TFs – STAT3 (regulated by CEBPA) and VDR (regulated by STAT3).

On the stem-to-erythrocyte trajectory branch, DREAMIT identified an analogous TF-to-TF net-

work (see Suppl Fig 17). RUNX1, EGR1, MYCN, and ETS1 increased in the early stages of the

trajectory branch with widespread increased expression across the TF network in later stages.

GATA1 and DNMT1, both regulated by a single distinct TF, show increases in expression fol-

lowing increases in their single regulator (MYC -¿ GATA1, DNMT1 -¿ TP53).

4.3.3 DREAMIT Identifies tissue-relevant TFs at a higher rate than standard

approaches.

Systematic assessment of a method’s accuracy in identifying TFs for a specific trajec-

tory branch requires access to a diverse range of tissues with well-documented TF roles. Un-

fortunately, for many tissues, comprehensive single-cell analyses have not yet been conducted

to establish a reliable set of TFs. Nonetheless, some relevant information has been gathered

and stored in repositories like TF-Marker DB [187]. To address this challenge, we gathered
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Figure 4.11: B. TF-TF relationships found by DREAMIT depicted for the stem to monocyte
branch from this PBMC dataset. C. The expression (y-axis) of the TFs from part B plotted
across pseudotime (x-axis).
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seven datasets in which at least one TF was found in both TRRUST and TF-Marker DB, and

was annotated as a regulator in tissues examined in the experiments. In total, this ”bronze stan-

dard” benchmark encompassed 84 TFs identified as pertinent, resulting in 207 instances of TF

associations with various datasets. This benchmark covered 15 trajectory branches across six

different tissues, including the brain, heart, embryo, retina, bone marrow, and testis.

To assess the methods’ capacity to identify tissue-specific TFs in the benchmark

datasets, we employed a precision-recall analysis. This approach is suitable for situations where

we anticipate a far larger number of negatives than positives, primarily because we treat all un-

known markers in the benchmark as negatives. To facilitate a robust comparison, we evaluated

the overall performance of DREAMIT, Differential Expression (DE), and GENIE3 across all

trajectory branches and tissues. To gauge the performance of these methods, we used the area

under the curve (AUC) to evaluate their general performance across all recall levels. Addi-

tionally, we used ”early precision” (E) [39] to assess performance under a strict confidence

threshold, where only the top-ranked relationships are taken into account for calculation.

DREAMIT had the highest average precision (AUC=0.20) surpassing its competi-

tors, rawDE (AUC=0.13), smoothDE (AUC=0.13), rawDEtargets (AUC=0.16), smoothDEtar-

gets (AUC=0.16), rawGENIE (AUC=0.16), and smoothGENIE (AUC=0.18) (Figure 3A). Addi-

tionally, DREAMIT demonstrates a much stronger early precision (E=0.42) compared to rawDE

(E=0.09), smoothDE (E=0.08), rawDEtargets (E=0.19), smoothDEtargets (E=0.13), rawGENIE

(E=0.33), and smoothGENIE (E=0.21).

The individual metrics of DREAMIT (excluded from Figure 3A for clarity) main-

tained their respective specificity rankings when assessed by precision-recall with the exception
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Figure 4.12: Precision (y-axis) versus recall (x-axis) measuring each method’s ability to detect
TFs from one of the 15 benchmark trajectory branches in which true positive TFs were assumed
to be those annotated by TF-Marker DB as previously associated with the tissue assayed by the
experiment.

of MI (AUC=0.17) and Rolling (AUC=0.18), which both fall behind Pearson (AUC=0.22),

Spearman (AUC=0.21), and DTW (AUC=0.19). On the other hand, the early precision of

these component methods is ranked quite differently with Rolling (E=0.43) scoring the best

(even slightly superior to the DREAMIT ensemble, E=0.42) followed by MI (E=0.38), DTW

(E=0.35), Spearman (E=0.28), and Pearson (E=0.28), respectively. Both the component meth-

ods and the ENSEMBLE outperformed DE and GENIE3 in average and early precision.

To further compare DREAMIT, DE, and GENIE3, we created an upset plot to view

the distinct and common TF-to-branch association pairs found across all of the 15 branches in

the benchmark (Figure 3B). The tissue-specific TF-to-branch predictions found at FDR¡0.05 in

each method are shown. DREAMIT finds the most number of TF-to-branch associations (109;
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Figure 4.13: Upset plot illustrating the set intersections between all methods of the TFs inferred
for each branch; i.e. set members compared are TF-branch pairs. DREAMIT had the highest
number of TF-branch pairs (109) with 26 uniquely predicted.

7.3 TFs per branch) followed by rawGENIE (58; 3.9 TFs per branch), rawDE (40; 2.7 TFs

per branch), rawDEtargets (25; 1.7 TFs per branch), smoothGENIE (18; 1.2 TFs per branch),

smoothDEtargets (17; 1.1 TFs per branch) and smoothDE (10; 0.7 TFs per branch). DREAMIT

produced the largest number of TF predictions per trajectory branch making it the most sensi-

tive method. In addition, DREAMIT shares the most overlap with rawGENIE, 52 associations

(89.6%), and with rawDE, 33 associations (82.5%). We also investigated the overlaps of TF-

to-branch associations found by the components of DREAMIT (data not shown). DTW found

the most associations (73) followed by MI (71), Rolling (66), Pearson (64), and Spearman (39).

There was a high degree of overlap amongst all of the methods. Spearman had the least over-

lapping associations, but 100% of its findings were also reported in one of the other 4 methods.

Mutual information and DTW had the most exclusive TF-to-branch associations. Overall 16.5%

of the associations found by DREAMIT were found by all component methods, and 66.2% were

found by at least two.
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Figure 4.14: DREAMIT compares the TF-target relationship distribution to a background for
each constituent metric and reports significant TFs through a Kolmogorov-Smirnov test. Exam-
ples of five different TFs with different metrics plotted along the x-axis (colors indicate TFs);
each TF plotted as a pair with left side showing the observed metric for the targets of the factor
and the right side showing the distribution of randomly selected targets.

Taken together, the vast majority of tissue-specific TF-to-branch associations found

by the two competing methods were also found by DREAMIT, and in addition DREAMIT

found more than 50 associations missed by these methods. The total number of associations

that could have been reported in this analysis was 130. This means that DREAMIT found

83.8% of tissue specific associations, while rawGENIE and rawDE found 44.6% and 30.8%,

respectively. DREAMIT had the highest degree of specificity and the highest percentage of

tissue-specific markers.

DREAMIT found several cases, missed by other methods, in which the TF-to-target

distribution was distinct from the background and found to be significant with a KS test (Figure
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Figure 4.15: D. Illustration of ETS2 factor with its targets found to be significant by Pearson.
To visualize genes of different expression scales in one plot, each gene’s expression from one
bin was divided by that gene’s expression summed across all bins (fractional expression; y-
axis). E. Illustration of SRF found to be significantly correlated with its targets using Spearman
correlation. Fractional expression (y-axis) was used for visualization purposes.

3C). First, the marker ETS2 (Figure 3D) was found to be significant according to the DREAMIT

Pearson method (Rsq=0.77, FDR<0.001), as well as the marker SRF (Figure 3E) on the same

cardiac trajectory branch by the DREAMIT Spearman method (Ssq=0.70, FDR<0.005) [51].

DREAMIT captured these two annotated, biological markers in the trajectory data, while all

other methods overlooked this as significant with the exception of rawDEtargets for ETS2

(pval<0.005). Second, the marker TP53 (data not shown) was observed to be significant by

DREAMIT Pearson (Rsq=0.77, FDR<1e-7) [100], despite the large number of targets (n=78)

introducing potential noise into the calculation of the Pearson correlation. This demonstrates

that DREAMIT is able to find strong TF-to-target relationships in both small and large target

sets. This finding was missed by rawDE, rawDEtargets, smoothDE, and smoothGENIE, but

was reported to be significant by rawGENIE and smoothDEtargets.

The DREAMIT DTW method also detected a significant association for ELK1 (D=0.24,

FDR<0.01) (Figure 3F), an association that was missed by all other methods [51]. Finally, the
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Figure 4.16: Dynamic time warping picked up on a significant relationship between ELK1
(y-axis) and its targets (x-axis); the alignment graph illustrates that the targets all maintain a
relationship with the factor but there is variability from one target to the next in terms of the
exact nature of the relationship.

DREAMIT MI method found significance in the ZEB1 marker (MI=2.35, FDR<0.005), which

was missed by rawDE, smoothDE, rawDEtargets, smoothDEtargets, and rawGENIE, but was

found by smoothGENIE, suggesting that the smoothing spline implemented provides benefit to

other methods of analysis.

To demonstrate the significance and minimal variability of the above results, their

distributions were plotted as a swarm plot. The markers ZEB1, TP53, SRF, and ETS2 were

all significantly above the background indicating a strong relationship found through either MI

content, Pearson correlation, or Spearman correlation. The marker ELK1 was significantly

below the background DTW distance, which indicates a stronger DTW alignment for ELK1.

Altogether, these findings demonstrate that DREAMIT associates TFs to trajectories consistent
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with their known tissue specificity and that these findings are missed by DE and GENIE methods

in many cases.

4.4 Discussion

In this work, we presented DREAMIT, Dynamic Regulation of Expression Across

Modules in Inferred Trajectories, a novel framework for testing and identifying dynamic gene

regulation in TF to target relationships. The method can be used downstream of any method

that projects single cell data into a lower dimensional manifolds and derives a cell trajectory

solution (e.g. Monocle instead of Slingshot used in this study).The method was developed to aid

researchers in identifying the gene-gene regulatory relationships governing the state transitions

cells undergo detectable in associations between their transcriptomes. Previous methods either

ignore gene regulation, such as TRADE-seq or PseudotimeDE [169, 149], or were not designed

specifically for single-cell trajectories, such as GENIE3 [75]. As such, DREAMIT provides a

complementary perspective on interpreting gene regulatory mechanisms from scRNAseq data.

TF-target sets, whether taken from databases or user-supplied, will likely contain

targets that are irrelevant for the analysis of a particular tissue and may not reliably detect an

association of a TF to a trajectory branch. For this reason, we introduced the use of several

association metrics (e.g. Pearson, Mutual Information, Dynamic Time Warp, etc) as well as

the use of a Relational Set Enrichment Analysis (RSEA) to detect the significance of a target

set’s association relative to a random background that can tolerate such noise in the target set.

Furthermore, we found that using a target focusing step, much like an enrichment analysis can
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identify a “leading edge” of contributing pathway genes to a differential expression signature,

helps boost the RSEA detection signal.

In a benchmark set of data encompassing six tissues, we found that DREAMIT ex-

ceeded the performance of Differential Expression (DE) and GENIE3. DREAMIT had both

a higher sensitivity overall and captured more tissue-specific markers.In summary, DREAMIT

was shown to have higher sensitivity, finding over 80% of the tested markers, with higher ROC,

precision-recall, and early precision compared to DE and GENIE3 based methods. In the PBMC

dataset, DREAMIT also had the highest specificity in terms of ROC (AUC=0.66), precision-

recall (AUC=0.57), and early precision (E=1.00). On the erythrocyte branch, DREAMIT found

16 significant TFs, 5 of which were known blood markers and 3 were known stem cell markers.

On the monocyte branch, there were 13 significant TFs, 6 were known blood markers and 3

were stem cell markers. Of the significant TFs found by DREAMIT that were not established

markers in the TF-marker database [19], 9 of them had established or emerging roles in stem

and PBMC development in the literature (see Suppl. Table 1). For example, the finding asso-

ciation of VDR with monocytes was not documented in the TF marker database but has been

demonstrated in recent literature [155, 22]. Thus, among DREAMIT’s predictions are potential

new examples of tissue-specific regulation by novel factors.

Additionally, DREAMIT was able to find 26 TF-to-branch associations missed by any

other competing method (Figure 3B). For example, significant marker findings of ETS2, SRF,

TP53, ELK1, and ZEB1 were captured by DREAMIT, but missed by the others. DREAMIT

presumably can pick up on these overlooked cases presumably because it considers multiple

relationship modalities between TFs and their targets (e.g. Pearson, DTW, MI, etc).
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DREAMIT uses only scRNAseq data to implicate TFs to particular cell transitions.

As such, the association of TFs to branches based on the gene coexpression of targets should

be viewed as suggestive. In addition, since the metrics are based on coexpression relations and

since the directionality of pseudotime may not reflect “real time” in a cell, the TF could promote

or repress activity along a branch. As new multi-modal datasets are increasingly published (e.g.

ATACseq and RNAseq on the same cells), an obvious question becomes whether incorporating

additional datasets would improve the performance of a TF association method like DREAMIT.

One such approach called Dictys was published recently [174], which uses a probabilistic model

to incorporate ATACseq and RNAseq for TF activity inference. To quantify DREAMIT’s lim-

itation in using only the RNAseq data, we compared its performance to Dictys on the human

hematopoietic dataset analyzed by the Dictys authors with their published trajectory solution

(using the STREAM method [29]). Surprisingly, we found the performance of DREAMIT to

be comparable and often superior to Dictys on the B-cell, the Erythroid, and the Monocyte

branches (Suppl Fig. 18). Notably, DREAMIT’s precision was higher than Dictys over most

recall levels considering all 10 different temporal GRNs produced by Dictys for each of the

three trajectory branches. For this comparison, DREAMIT was run using the author-provided

smoothed data as well as the raw expression data. We found that the results from smoothed

data had the best early precision. Thus, even using only the RNAseq data and ignoring the

ATACseq data that Dictys incorporated, DREAMIT identified as many tissue-specific TFs (and

sometimes slightly more at the early precision levels) compared to Dictys and that many of the

TFs were those reported by the authors. The recent PerturbSeq study in mouse by Lara-Astiaso

et al. [85] in which TFs were systematically knocked out and then specific marker gene ex-
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pression assayed, also showed a high concordance with DREAMIT findings from the Paul et

al. dataset [128]. We found that, out of the 8 murine TFs reported for the HSC-to-monocyte

or HSC-to-erythrocyte lineages, six of the human orthologs had been associated by DREAMIT

to either one of these branches. Furthermore, the two that had not been associated with either

branch showed much lower levels of marker gene differential expression in the monocyte and

erythrocyte branches when the TFs were knocked-out (see Supplemental Fig. 16). These fur-

ther demonstrates the advantage of DREAMIT to compensate for the lack of multi-omic data

through the use of TRRUST relationships and RSEA.

One limitation of DREAMIT is that it considers one TF at a time even though it is

known that TFs work together in combination. Even so, several significant associations are

found by considering individual TFs in isolation. Extensions of the work are possible that could

test combinations of TFs. For example, starting with pairwise TF combination detection, one

could test the association between two TFs as well as all pairwise associations between the

distinct members of their target sets using the same metrics and statistical tests defined in this

work. The drawback of the approach would be the difficulty currently in evaluating its success

as there is limited availability of datasets in which TF combinations have been annotated as

relevant.

While DREAMIT exceeded competitors in our evaluations, all of the methods had

low precision. This is likely due to the limited availability of relevant TFs associated to a

particular tissue and to specific branches produced by trajectory inference. For example, using

TFs from the TF Marker database allowed us to consider multiple datasets for the evaluation, but

it assumed TFs annotated to a tissue were relevant for any/all branches in a dataset that assayed
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a specific tissue. It is certainly possible that other TFs or other biological differences underlie

the variation in the observed transcriptomes of individual cells. There is clearly a need for well

annotated datasets that can be used as benchmarks for gene regulatory network inference in

single cell analyses [40]. As more datasets with multiple data modalities become available (e.g.

ATACseq and RNAseq), it will be possible to develop sets of TFs relevant for branches in a

more unbiased and systematic fashion.

DREAMIT code is available on Github https://github.com/nathanmaulding/DREAMIT.git.

The grid search that DREAMIT uses to find good parameters for spline fitting contributes the

biggest impact to running time and grows linearly with the number of cells along a trajectory.

For example, the smallest dataset in this study took 14.8 seconds and the longest took 189,704

seconds. Parallelization of the grid search to utilize nodes on a large compute cluster could

greatly improve the running time as each parameter combination is independent.

4.5 Conclusions

In conclusion, we developed and evaluated DREAMIT, a novel framework for in-

vestigating dynamic gene regulation in TF-to-target relationships gleaned from cell trajectories

inferred in single-cell RNAseq data. DREAMIT was found to outperform baseline approaches

in 15 different trajectory branches in a benchmark dataset and the well-characterized PBMC

dataset. DREAMIT detected the association of TFs to tissue-specific trajectories in several in-

stances where the association was missed by all other methods, demonstrating its variety of

metrics may help it detect some of the dynamic interdependencies preserved in the pseudotime
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inference provided by the cell trajectory analysis. It would be interesting to apply DREAMIT

to single-cell time-series datasets like Klein et al [79] as they become more widely available.

In conclusion, DREAMIT offers a complementary approach for shedding light on TF-to-TF

networks that govern the temporal regulation assayed by emerging single cell datasets.
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Chapter 5

Chapter III: Transformer-based

modeling of Clonal Selection and

Expression Dynamics (TraCSED)
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5.1 Background

While cancer is traditionally considered a disease of genetic alterations, studies have

shown adaptive resistance to treatment often involves molecular differences in genetically iden-

tical cells [146, 135, 145, 140, 148, 60, 147, 42, 157]. The plastic nature of the response to

treatments and its heterogeneity may even be a necessity to enable the emergence or selection

of resistant clones [37]. Characterizing and understanding tumor heterogeneity and how it af-

fects treatment response is critical to the development of new therapeutic strategies in oncology.

Advances in single-cell technologies, such as the tracking of molecular states over time, can be

used to address those questions [42, 13, 15, 176, 61, 121, 50, 168, 163, 139, 130]. In partic-

ular, transcriptional heterogeneity can be captured through clonal barcoding methods such as

TraCe-Seq [28]. Studies have also shown that “twin” clones (i.e. sister cells with the same

barcodes) show a higher degree of transcriptional similarity than other clones [54], suggesting

that the transcriptional state of barcoded clones persists after multiple divisions. Leveraging

this assumption, TraCe-Seq measures the fitness and transcriptional trajectory of clones in par-

allel pools of cells undergoing different treatments. To uncover differences associated with the

selection process, the fitness of clones at the end of treatment can be mapped back to their

transcriptional states pre-treatment or at intermediate time points.

While experimental advances have been substantial, methodologies to interpret such

multidimensional single-cell transcriptional data sets are still in their infancy. For example,

clustering approaches can fail to distinguish resistant from sensitive cell states as recent clonal

barcoding systems have shown that a few genes, or even a single gene, can determine a cell’s
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fate [138]. However, incorporating clonal information through a tunable parameter into the di-

mensionality reduction has been shown to benefit the identification of features associated with

cell outcomes [138]. Innate resistance may play a major role as intrinsic cell states conferring

resistance could be encoded prior to external stimuli [54]. Additional forms of non-genetic re-

sponse may also contribute to resistance. For example, altering epigenetics or rewiring signaling

networks could underlie adaptive resistance that emerges after treatment has begun [27]. Be-

cause traditional methods rarely integrate longitudinal data as a continuum and associate them

with an outcome, they yield limited understanding of adaptive resistance, its underlying gene

programs, and their time at which such changes occur.

5.1.1 Understanding innate and adaptive resistance with TraCSED

To address those shortcomings, we first developed a semi-supervised approach with

partial least squares regression (PLSR) to identify pre-treatment markers of innate resistance in

TraCe-seq datasets (Figure 1A-D). This approach incorporates both the transcriptional similar-

ities of cells together with a phenotypic response to reveal signatures that might otherwise be

hidden from traditional methods. PLSR uncovers single gene markers of innate resistance in

breast cancer, such as SNHG25 and CLDN1, which were missed by traditional clustering and

differential expression methods.

Next, to identify gene programs associated with adaptive resistance, we introduce

TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics) that

learns a dynamical process of clonal selection using a clone trajectory’s inferred pseudotime

from TraCe-Seq single-cell RNA-seq data as the time series input for model fitting (Figure 1E-
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G). TraCSED uncovers interpretable gene programs that are directly related to the selection

process and estimates time periods at which these may be critical for resistance.

We applied PLSR and TraCSED to infer resistance mechanisms for two treatments

used in the clinic to treat breast cancer, palbociclib and giredestrant, which target CDK4/6

and estrogen receptor (ER), respectively. We compared the results of single-agent treatments

to combination therapy in which we observed different factors associated with resistance. In

particular, all clones that were resistant to single-agent treatments became sensitive to the com-

bination except one that was still resistant to the combination. This demonstrates the value

in TraCSED in finding important pathways associated with a phenotypic variable, in this case

clone fitness, and how this information can guide our biological understanding of drug response.

5.2 Results

5.2.1 Treatments induce different clonal selection and transcriptional responses

We performed a TraCE-seq experiment with T-47D cells treated with giredestrant, a

selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor,

for 1, 4, 8, or 26 days (Figure 1A). The acute response from T-47D cells to either drugs is

cytostatic as shown by the normalized growth rate (GR) values close to zero (Figure S1A) [62].

Both treatments showed a decrease of clone diversity, quantified by a reduction in the number

of unique clonal barcodes in the cell population (Figure 2A). We classified clones as either

negatively selected (NS) or positively selected (PS) based on the ratio of clone frequency in

the overall population at day 26 versus day 0, which we termed the “endpoint selection value”,
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Figure 5.1: (A) TraCe-seq experiment includes single-cell RNAseq data from a series of pre-
treatment and post-treatment time points that originate from the same pool of barcoded cells. In
our case, the treatments include either giredestrant alone (0.1µM), palbociclib alone (0.2µM),
or their combination (same concentration). (B-D) Baseline investigations begin by determining
the “endpoint selection value” for each clone (circles or triangles) by dividing the fraction of
the clone 26 days after treatment by the fraction of clones present pre-treatment relative to
the population (B). These covariates are assigned to clones at baseline and combined with the
single-cell RNAseq data to create a partial least squares regression (PLSR) dimension reduction
(C). A majority of resistant cells are specific to a cluster, which is then compared to clusters
with a majority of sensitive cells (D). (E-G) To model adaptive resistance the selection values
of clones across the time of treatment must first be determined. This is initiated by selecting a
pseudotime cell-by-cell ordering inferred by slingshot which is consistent with the experimental
time ordering (E). Clone selection values along the selected pseudotime are determined by
dividing the prevalence of the cells ahead of a given cell in the trajectory by the prevalence
behind it (F). Finally, clone selection values are paired with gene or pathway features for the
single cell to model the prediction of single-cell selection value (G). This prediction considers
the temporal context as well as the feature values, such that downstream model interpretability
analysis yields dynamic features important in resistance.

a surrogate for clone fitness (Figure 1B). Clones with a greater frequency after 26 days of

treatment would have an endpoint selection value greater than 1 and would be considered PS,

whereas clones with less frequency would be less than 1 and NS. As an illustration, when we

selected the 11 clones with at least 200 cells across all time points, we observed differences as

to which clones were PS for giredestrant compared to palbociclib treatment (Figure 2B).

UMAP based on PCA showed that both treatments induced a strong transcriptional

response with clear separation of the cells in each treatment group, suggesting the dynamics

of response are characteristic of each treatment (Figure 2C, S1B). By day 26, the separation

in transcriptomes between treatments was clear with cells from the palbociclib-treated sam-

ple overlapping in UMAP space with baseline cells. In contrast, the giredestrant-treated cells

formed a separate UMAP cluster, reflecting a more pronounced shift in transcriptional state.

In terms of pathway scores, reduction of ER activity is sustained throughout the time points of
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the giredestrant-treated samples (Figure 2E), but the fraction of cells with E2F positive score

returns to baseline levels in both giredestrant- and palbociclib-treated samples (Figure 2D).

Giredestrant’s inhibition of ER activity was maximal around 4-8 days aligned with its effect

on cell cycle (Figure 2E). Consistent with this result, we observed by Western Blot a downreg-

ulation of ER and its target, the progesterone receptor (PR) in the giredestrant-treated sample

(Figure S1C) and a regain of pRb in both PS populations. The PS populations for each treatment

were, as expected, more resistant than the parental population to the treatment used for selec-

tion as shown by the positive GR values reflecting partial growth inhibition (Figure S1A, C).

PS cells can proliferate, albeit slower when rechallenged with palbociclib treatment, whereas

the PS cells in the giredestrant treatment became completely insensitive to giredestrant. We

also observed a partial cross-resistance between the two drugs (Figure S1A): the palbociclib-PS

population has much GR values for the response to giredestrant than the parental population

and the reverse is also true.

5.2.2 PLSR identifies baseline signatures associated with selection of clones

The observed “rebound” in the E2F proliferation signature score could be due either

to an innate fitness advantage of some clones prior to treatment, which allow those clones to

overcome other ones, or it could be due to an adaptive response induced by the treatment itself

in the PS clones. In either case, we hypothesized that the initial transcriptional state influences

the likelihood of a clone being positively selected under treatment. However, initial attempts

using pseudobulk samples in which cells from clones of similar endpoint selection values were

grouped revealed few differentially expressed genes for either treatment condition (Figure S2A).
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Figure 5.2: Giredestrant and palbociclib induce unique clonal selection and transcriptional re-
sponses over time. (A) Overall number of clones detected in samples of T-47D cells treated
with either giredestrant (left) or palbociclib (right) at different time points. (B) Fraction of cells
for clones with a minimum of 200 cells for giredestrant (left) or palbociclib (right) treatments
at different time points. (C) UMAP of cells from the baseline sample and each time point indi-
vidually for both giredestrant or palbociclib treatments. (D-E) Pathway scores from scuttle for
the E2F targets pathway (D) and ER activity (E) for baseline cells and cells treated with either
palbociclib or giredestrant at different time points.
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Alternatively, unsupervised clustering via PCA did not separate PS and NS clones for either

treatment due to high gene expression variability across cells of one clone compared to the

separation achieved through PCA clustering (Figure S2B). Thus, both DE and PCA clusters

failed to identify informative resistance pathways.

We therefore undertook a more sensitive approach to detect resistance pathways using

semi-supervised partial least-squares regression (PLSR) dimensionality reduction (see Meth-

ods; Figure 1C). PLSR incorporates the transcriptional state as independent variables and the

endpoint selection value as a dependent variable to search for a data projection in which PS

and NS clones are well separated in the lower dimensional space. Using the PLSR-corrected

UMAP, cells from PS clones were better separated from cells from NS clones (Figure 3A,B).

In this projection, we were easily able to define clusters that were strongly enriched clones that

were positively selected across time (Figure S2C, S2D) revealing baseline markers of selection

(Figure S2E).

PS cells were aggregated into a single PLSR cluster for giredestrant treatment (Fig-

ure 3A), which enabled a pseudobulk differential gene expression analysis comparing expres-

sion observed in cells of the PS cluster to cells outside the cluster. Among the differentially

expressed genes (DEGs), high SNHG25 and low CLDN1 expression were identified (Fig-

ure 3C, 3E). Similarly, a PS cluster was also identified for the palbociclib-treated cells (Fig-

ure 3B), with SNHG25 and CLDN1 identified as DEGs for the palbociclib PS cluster (Fig-

ure 3D, 3F). CLDN1 is a known marker used for classifying subtypes of breast cancer, and

low CLDN1 is a marker for aggressive triple-negative BRCA and predictive of recurrence

[196, 107, 95, 49]. SNHG25 has been shown to be associated with tumor activity, but is poorly
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Figure 5.3: Partial least squares regression (PLSR) reveals baseline signatures hidden by tra-
ditional approaches like differential expression. (A-B) PLSR-based UMAP for baseline cells
associated with outcome of either giredestrant (A) or palbociclib (B) treatment. Positively se-
lected (PS) cells are in blue and negatively selected (NS) in orange. (C-F) SNHG25 and CLDN1
expression levels are displayed in the UMAP (C-D) and violin plots (E-F) for giredestrant (C,E)
or palbociclib (D,F). Cluster 4 contains most PS cells for both giredestrant and palbociclib (see
Figure S1D).
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understood [90, 195, 65, 193, 14].

5.2.3 Fitting a generative model for drug resistance

As both positively and negatively selected clones had a strong transcriptional response

as illustrated in the UMAP (Fig S3C-E), we extended our modeling framework to leverage the

longitudinal transcriptional data and explore potential acquired resistance mechanisms. We

therefore took a dynamical modeling approach to identify the transcriptional programs asso-

ciated with the clonal selection process revealed by the TraCE-seq data. We assumed that a

population of cells ordered along a continuous cell trajectory captured the progression from

sensitivity to resistance of individual clones. We used the Slingshot method to estimate the cell

trajectory and project the cells along a response curve, establishing a pseudotime ordering of

the cells. We calculated selection values across the Slingshot pseudotime for each clone (Figure

4A-B, see Methods). To associate transcriptional changes with treatment response, we devel-

oped an interpretable generative model that predicts selection values based on a set of pathway

features, called TraCSED for Transformer-based modeling of Clonal Selection and Expression

Dynamics. After the Slingshot pseudotime is established, we calculated the selection value

along the trajectory for every cell belonging to a clone (Figure 1E-F, Figure 4A-B). The se-

lection value for a cell belonging to clone c at time t was calculated as the fraction of clone

c’s cells present after time t in the pseudotime ordering. The transformer was then trained to

predict the selection value of the cell at time t using its own features as well as the features

and selection values of clone c cells in the context of the cell of interest (Figure 1G). Testing

of model accuracy occurred over four pseudotime intervals (Figure 4C). In this way, the model
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learned a conditional relationship between the features and selection values based on where the

cell resided in pseudotime.

We required a minimum number of cells (set to n=200) to be present across the time

course to model the selection process of a specific clone as selection values were too noisy

otherwise (see Methods). 11 clones in total fit this criteria for at least one treatment (Palboci-

clib - 9, Giredestrant - 10, Combination treatment - 11). To predict the selection value across

time (Figure 4D, see Methods), we used the individual cell Hallmark pathways scores [88] as

features. Across the four testing periods, the quality of predictions varied, but the general obser-

vation was that the prediction was good when the selection values remained in the range to the

preceding training data. However, the selection value can get noisy in the last testing period due

to its dependence on the number of cells, which decreased at the end of the trajectory (Figure

4E). When assessing the contribution of the attention and convolutional layers, we found that

the combination of both sets of layers yielded the best compromise of fit quality and prediction

accuracy (Figure S4). While the performance of the model may not be enough to extrapolate be-

yond the experimental time, TraCSED provides interpretability of the features associated with

the positive or negative selection values of specific clones.

5.2.4 Model pathway features reveal adaptive resistance mechanisms

Permutation of TraCSED’s input layer enables the identification of features that in-

duce changes to the predicted selection value, a procedure called permutation importance [6].

In addition, by altering the inputs as a function of pseudotime, a dynamic pathway importance

can be calculated, enabling the interpretability across time for individual clones. Using this
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Figure 5.4: Transformer-based modeling of Clonal Selection and Expression Dynamics
(TraCSED) predicts selection values across pseudotime. (A-C) An example clone (red) ex-
ists as part of a total population of cells (black) across a pseudotime progression. To determine
the selection value at any given time (blue) for the clone in question the fraction of cells ahead
and behind a given pseudotime is used (A, see Methods). This results in a continuous selec-
tion value curve for each clone across pseudotime (B). This model of dynamic selection is then
tested in four different increments (red) along pseudotime to ensure a quality model fit at all
time points (C). (D) The resulting transformation from raw data along pseudotime to selection
value curves for each clone is shown for each clone in palbociclib (left) and giredestrant (right)
treatments. (E) Example of the model testing (red) for two clones under giredestrant treatment
is displayed.
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procedure we found, for example, permuting scores from “Epithelial Mesenchymal Transition”

(EMT) resulted in a deviation from the true selection value (upper panel) and a spike in feature

importance (middle panel) within a pseudotime range that aligns with the 4 to 8 day time points

of giredestrant treatment (lower panel) (Figure 5A). This exemplifies how the model is made

interpretable for a single clone. In order to understand whether these selection mechanisms ob-

served were more universal, we plotted pathway scores and feature importance for all modeled

clones together. Scores for the EMT pathway in PS clones were decreased compared to NS

clones between 0.5-0.9 pseudotime for giredestrant treatment (Figure 5B).

Similarly, we examined the feature importance for clones undergoing palbociclib

treatment. For example, the E2F target score was important between 8 to 26 days (Figure 5C).

When looking at all clones together, the “Estrogen Response Late” scores for PS clones were

important and increased above NS clones in pseudotime ranges of 0.35-0.5 corresponding to the

early time points (Figure 5D). This Estrogen Response signature in PS clones preceded another

signature where E2F target scores increased within pseudotime ranges of 0.6-0.8 (Figure 5E).

Other pathways were similarly noted as important in selection including “G2M checkpoint” in

palbociclib and the AKT pathway in giredestrant (Figure S5). Taken together, these findings

suggested that single-agent treatment was not sufficient to overcome adaptive resistance but the

combination of palbociclib and giredestrant might be effective because the giredestrant may

prevent the positive selection of clones in the palbociclib treatment that had higher ER activity.
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Figure 5.5: (A) Predictions by a clone model with permuted EMT activity (red) were plot-
ted against the true selection values (black) under giredestrant treatment (A, upper panel). The
models reported feature importance for the EMT pathway with averaging smoothing of 20 (light
blue) or 150 (dark blue) adjacent cells is shown along pseudotime (middle panel). The ridge
plot of pseudotime distributions for each time point in giredestrant treatment is aligned with
the above plots (lower panel). (B) Smoothed model importance (averaging 20 adjacent cells)
was then plotted for PS clones (bold, dashed lines) and NS clones (faint, solid lines) in the
giredestant treatment for the EMT pathway (upper panel). Smoothed pathway activity (aver-
aging 50 adjacent cells) was also plotted (lower panel). (C-E) Similar to A-B for palbociclib
treatment: true selection values (black) and a clone model with permuted E2F targets (red)
were shown (C, upper panel) with smoothed model importance scores for the pathway (C, mid-
dle panel) and ridge plots of pseudotime distributions for palbociclib treatment (C, lower panel).
Smoothed model importance (upper; adjacent 20 cells) and smoothed pathway activity (lower;
adjacent 50 cells) were then plotted for Estrogen Response Late (D) and E2F targets (E) in pal-
bociclib treatment.
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5.2.5 Adaptive resistance is reduced with combination treatment

Next we treated cells with palbociclib and giredestrant as a combination to investigate

our earlier finding. Combination therapy proved to be effective in suppressing proliferation and

ER activity across the whole population, which was not previously achieved by palbociclib or

giredestrant alone (Figure S6A-B). While most clones that were PS in only one of the single

agent treatments became NS in the presence of combination, one clone was PS in both single-

agent treatments and remained PS in the combination treatment after six months (Figure 6A).

The selected population is indeed much more resistant to treatment than individual resistant

populations (Figure S1B). Similar to the giredestrant-PS population, the surviving population

lost ER and PR expression compared to the parental population suggesting independence on

ER activity (Figure S6C). In addition, surviving cells have lower cyclin D expression, while re-

taining high pRB, showing less dependency on CDK4/6-CyclinD activity to proliferate (Figure

S6C). Our PLSR method identified two different clusters associated with PS (Figure 6B and

S6D). Similarly to individual treatments, high SNHG25 was also associated with resistance in

combination, but in contrast, CLDN1 no longer showed enrichment in the PS clusters. Addition-

ally, SNCG was specifically associated with resistance in combination therapy (Figure 6C-E).

SNGC is a synuclein protein known as a marker for late-stage breast cancer [184, 162, 197],

implying that cells resistant to combination treatment could be reflecting a cellular state found

in tumors from late-stage patients.

We then used TraCSED to characterize the dynamic selection process occuring in

the combination treatment. Because the Estrogen Response signature was important in the
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selection process for palbociclib alone and preceding higher E2F targets signature scores, we

were curious to see the effect of suppressing ER signaling with giredestrant. We observed

that both ER and proliferative signatures had lower activity and showed reduced importance in

predicting the selection values of PS clones (Figure S6E-F) compared to what was observed

for the palbociclib treatment. Similarly, the EMT pathway had low activity in PS clones under

giredestrant treatment, but in the combination treatment all clones had similar levels of EMT

pathway activity (Figure S6G).

While the combination treatment is overall more potent, one PS clone (92196) still

emerged after 6 months. Scores for key gene signatures such as “Hallmark Estrogen Response

Late” (Figure 6F), “ER induced” (Figure 6G), or “EMT” (Figure 6H) pathways were not sub-

stantially different than a clone (90850) that is outcompeted at 6 months. The lack of dif-

ferentiation is consistent with our model identified that the features associated with positive

selection are substantially less important in the combination treatment compared to the single

agent ones. Therefore, baseline expression of the SNHG25 and SNCG genes found through

PLSR are the primary markers of positive selection for combination treatment and differentiate

clone 92196 from the other ones (Figure S7). In conclusion, TraCSED is complementary to

PLSR for identifying the different factors associated with adaptive and innate resistance. PLSR

highlighted markers of innate resistance that are consistent with late-stage cancer phenotypes,

whereas TraCSED allowed us to identify vulnerabilities in adaptive resistance to single agent

treatments that were addressed through combination treatment.
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Figure 5.6: Combination of palbociclib and giredestrant reduces the importance of adaptive
resistance mechanisms. (A) Fraction of cells for clones with a minimum of 200 cells in the
combination of giredestrant and palbociclib at different time points. (B) PLSR-based UMAP
for baseline cells associated with outcome combination treatment. Positively selected (PS) cells
are in blue and negatively selected (NS) in orange. (C-D) Gene expression in baseline cells
was shown via UMAP from (B) for SNHG25 (C) and SNCG (D). (E-F) Violin plot of SNHG25
(E) and SNCG expression (F) in baseline cells. PS cells are in clusters 3 and 5 (see SFig 6C).
(G-I) Pathway activity for a PS clone (orange) and a stable clone (blue) plotted for palbociclib
(faint, dashed lines), giredestrant (faint, dotted lines), and their combination (bold, solid lines)
using gene sets for Estrogen Response Late (G), ER induced (H), and Epithelial Mesenchymal
Transition activity (I).
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5.3 Discussion

Giredestrant and palbociclib were effective in blocking proliferation of T-47D cells

and resulted in a selective bottleneck as reflected by the reduction of the number of clones

over time. This process was associated with changes in the transcriptomes of cells, in partic-

ular down-regulation of ER and, respectively, proliferative signaling. However, some clones

were positively selected and differences were observed in the selection process between the

two single-agent treatments (Figure 2A-E). This positive selection can occur due to an innate

resistance detectable in pre-treatment conditions, or it could be a result of an emerging adap-

tive resistance. To investigate these mechanisms, we developed a PLSR approach for finding

markers of innate resistance (Figure 1A-D), and a transformer-based model, called TraCSED,

for finding markers of dynamic selection in adaptive resistance (Figure 1E-G).

We found that both unsupervised clustering and differential expression analysis com-

paring PS and NS clones of pseudobulked samples to study innate resistance was not effective

in this study (Fig S2A-B). On the other hand, supervised clustering based on PLSR balances in-

trinsic variability of the clone with the outcome and enabled us to isolate PS clones into a single

cluster for giredestrant (Figure 3A) and palbociclib (Figure 3B), which revealed markers unique

to the PS cluster (Figure S2E). Two examples of these PS markers were SNHG25 and CLDN1.

In giredestrant and palbociclib treatments, SNHG25 is increased in the PS cluster and CLDN1

is decreased (Figure 3C-F). SNHG25 is associated with a variety of cancers [90, 195, 65, 193],

and is part of a family of long-noncoding RNAs (SNHGs) with multi-functional roles in can-

cer progression, particularly in the EMT pathway [14]. In addition, CLDN1 levels are well-
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documented for their role in EMT and breast cancer, have been used previously for subtyping

different types of cancer such as the claudin-low basal subtype in breast cancer [68], and cor-

relate with breast cancer recurrence [196, 107, 95, 49]. PCA-based clustering was not able to

identify those genes (Figure S2F), and neither of these PS markers were found with pseudobulk

differential expression (Figure S2F), demonstrating the value of PLSR in finding mechanisms

of innate resistance.

In addition to innate mechanisms of resistance, we observed transcriptional changes

in both PS and NS clones after treatment (Figure S3C-E). Because existing methods do not

associate outcomes like selection with temporal transitions, we developed TraCSED, a context-

aware and interpretable model composed of attention and convolution layers, to investigate

mechanisms of adaptive resistance. The dynamic selection for each clone is modeled across

pseudotime (Figure 1E-G; Figure 4A-B) and then tested at four pseudotime intervals (Figure

4C, E). The TraCSED model facilitates interpretability by highlighting features important for

the selection process of individual clones (see Methods). The EMT pathway had high model

importance and low activity for PS clones in giredestrant treatment (Figure 5B), suggesting this

pathway may be associated with resistance. In palbociclib treatment, there was high model

importance and increased activity in the Estrogen Response Late pathway (Figure 5D) which

preceded a subsequent increase in the E2F targets pathway (Figure 5E). Thus in both cases, the

TraCSED model captured an adaptive resistance mechanism to single-agent treatments.

When combining giredestrant and palbociclib, only one PS clone survived 6 months

of combination treatment (Figure 6A). Consistent with our hypothesis, the adaptive resistance

pathways we identified with TraCSED in the single agent treatments were no longer associated
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with dynamic selection in the combination (Figure S6C-E). Additionally, the single surviving

PS clone did not demonstrate activity in the ER and EMT pathways differing from NS clones

(Figure 6F-H). Thus, only the high SNHG25 and high SNCG activity (Figure 6C-E and S7)

identified by the PLSR approach in the two PS clusters differentiated the PS clone from the NS

ones suggesting that innate resistance mechanisms were driving resistance to giredestrant and

palbociclib combination treatment. Increased SNCG is a known marker of resistance and late-

stage Breast cancer [184, 162, 197], suggesting that the innate cellular state of these PS clusters

may resemble a state found in late-stage tumors. While we elected to use pathway features for

our modeling for compute efficiency, increased interpretability, and reduced noise, our modeling

approach can also be applied at the gene level. In cases where data quality allows for gene-level

analyses, TraCSED may be able to identify individual genes associated with resistance that may

not be captured in pathway-level analyses.

Determining how a cell will respond to treatment and how it might be resistant is

an ongoing field of study. Here we developed a PLSR approach and the TraCSED model for

determining markers of innate and adaptive resistance, respectively. With PLSR, we were able

to identify SNHG25 and CLDN1 markers of positive selection in single-agent treatment, which

were not found by traditional methods of pseudobulk and unsupervised clustering. Through

TraCSED dynamic modeling we found pathways associated with adaptive resistance, includ-

ing increased ER activity in palbociclib treatment. We were then able to show that the adap-

tive resistance is reduced when palbociclib is combined with the ER suppressing activity of

giredestrant. Consistently with our hypothesis, our model identified that no feature was asso-

ciated with an adaptive resistance in the combination treatment, leaving the innate resistance
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marker, SNHG25 and SNCG, found with the PLSR model, as the main features associated with

positively selected cells. Altogether, our two complementary modeling approaches contribute

to study and characterize non-genetic sources of therapeutic resistance.

5.4 Methods

5.4.1 Datasets and Dependencies

T-47D breast cancer cells were labeled with TraCe-seq library as previously described

[28]. A subculture was established from 300 cells to establish the input cell population. These

400 cells were expanded to 2 million cells total, and randomly distributed to the following treat-

ment groups in replicates: 100 nM giredestrant treatment, 200 nM palbociclib treatment, and

100 nM giredestrant + 200 nM palbociclib combination treatment. Cells were trypsinized after

1, 4, 8, or 26 days of treatment and profiled by single cell RNA-sequencing using Chromium

Single Cell 3’ Reagent Kits (10x Genomics). Baseline scRNA-seq profiling was obtained after

1 day of treatment in DMSO. In addition, for the combination treatment, cells were harvested

and profiled after 6 months following exposure to both compounds.

5.4.2 Drug response

T-47D (female, adenocarcinoma from pleura) ER+ breast cancer cell lines were cul-

tured using standard aseptic tissue culture techniques at 37°C in RPMI medium supplemented

with 10% FBS, 2mM L-Glutamine (Catalog 10440, Sigma), 1X Minimum Essential Media,

Non-Essential Amino Acids (MEM NEAA, Catalog No. 11140-0500, Thermo Fisher) and
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1X Antibiotic-Antimycotic (Catalog No.15240-112, Thermo Fisher). Cell line ancestry was

determined using Short Tandem Repeat (STR) profiling using the Promega PowerPlex 16 Sys-

tem. Cells were treated for 7 days with either 0.2µM of giredestrant, 0.2µM of palbociclib,

or their combination and the relative number of viable cells was determined by CyQUANT

(ThermoFisher, C7026). Growth rate normalization was performed [62].

5.4.3 Single-cell analysis

For pathway features, we used Hallmark pathways [88] and a select set of curated

pathways. Single-cells were scored on their pathway activity using the scuttle package in R

[106]. Activity across time and treatments is shown via violin plot. Additionally, PCA dimen-

sionality reduction to 5 principal components, followed by UMAP plotting was used to view

how cells transcriptomic features change throughout time in the different treatments.

5.4.4 Quality control

The number of clones present across time and treatment was plotted. Clones with

200 cells or more were displayed with a stacked barplot showing the various clones’ relative

proportion across time and treatment (Figure 2B). Clones were considered positively selected

if the proportion of the cells increased relative to the population. All clones that did not have a

total of 200 cells across time were combined and displayed as “other”. No bias in read counts

between PS and NS clones or across treatments and time points was observed.
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5.4.5 Partial least squares regression (PLSR)

Phenotypic comparison based on pseudobulk was performed with DESeq2 differen-

tial expression (DE) [94] on clonal response to treatment in which clones that increased over

their baseline percentage by 26 days of treatment (resistant) were compared to those that were

absent after 26 days (sensitive). Additionally, expression based PCA clustering was performed

to group cells by similar transcriptomes.

For the partial least squares regression (PLSR) method [1], the endpoint selection

value is included as a covariate for the dimensionality reduction of expression that we termed

the selection value. The endpoint selection value is a ratio of the cells present after 26 days of

treatment over the cells present at baseline. The first 5 components are then used to plot a UMAP

representation of the data. Leiden clustering was then done at various resolutions. Pairwise

distance of PS and NS cells was performed for both the PLSR and PCA methods to compare

which is better at distinguishing the two states. To understand how the clones are distributed

across the PLSR clusters, a heatmap displaying the fraction of the clone population in each

cluster was plotted. Alongside the heatmap is included the increase (red) or decrease (blue)

for each clone compared to pretreatment conditions for Days 1, 4, 8, and 26 after treatment

(Figure S2D). Resistant clones were concentrated in a single cluster which was then compared

to sensitive clusters via the findMarkers package by scran [99]. PS (blue) and NS cells (orange)

were plotted as a UMAP. PS markers found through findMarkers were plotted via UMAP and

violin plots.
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5.4.6 Overview of the dynamic generative model

The fundamental steps of the generative modeling approach are 1) selecting an appro-

priate pseudotime trajectory representation of the data, 2) determining the selection values for

each clone across pseudotime, 3) modeling the selection values of each clone, 4) evaluating the

model for overfitting, and 5) assessing feature importance across time through permutations of

the model. This method allows for the prediction of selection values, but its primary focus is to

avoid overfitting and to create feature interpretability across time.

5.4.7 Selecting an appropriate trajectory representation

In order to model the single-cell selection value of a particular clone, cells must be

ordered along a continuous trajectory with start and end points consistent with the experimen-

tal design. In this case the trajectory continuum is made using Slingshot pseudotime inference

[152]. Selecting a representation that closely resembles the experiment is done through tak-

ing the TRACE-Seq data and 1) performing dimensionality reduction through PCA or PLSR,

2) producing Leiden clustered representations at various resolutions, 3) performing Slingshot

inference with assigned start and end clusters and normalizing pseudotime, 4) selecting an ap-

propriate pseudotime representation through a summation of KS statistics between TRACE-Seq

time points. This results in a pseudotime representation that can be used for modeling clonal

selection values.

The TRACE-Seq data is represented in both an unsupervised (PCA) and semi-supervised

(PLSR) fashion for comparison. Leiden clustering is then performed on a series of resolutions
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between 0.2 and 1. Start and end clusters are then selected (based on consistency with the

experiment and maximizing distance between start and end points) as input for each and used

as input for Slingshot. The pseudotime inference produced by slingshot is then normalized on

a 0-1 scale, where the first percentile of pseudotime is set as the minimum value, 0, and the

ninety-ninth percentile of pseudotime is set as the maximum value, 1. Each of these normalized

pseudotime series is then assessed via a KS statistic summation [103], where the pseudotime

distribution of Day 0 is compared to Day 1, Day 1 to Day 4, etc. The trajectory representation

with the largest KS statistic summation is then selected and used for modeling clonal selection

values.

5.4.8 Determining clonal survival for modeling

Modeling resistance in an interpretable way begins with clonal selection values. With

four different testing periods and a quality model fit being the utmost priority for interpretability,

clones must have a minimum of 200 cells across time to be modeled. This left 11 clones across

treatments which have sufficient cells. To make selection value a dynamic metric, we map it

across the pseudotime continuum. This is done by considering the number of cells of the clone

of interest compared to the total population. At each pseudotime t that a cell exists, a calculation

is made where the cell population “ahead” of the cell of interest in pseudotime is divided by the

cell population “behind” it (Figure 4A) using the following equation:

log2((#cloneATa f ter/#populationTa f ter)/(#cloneATbe f ore/#populationTbe f ore))

To avoid the strong fluctuations occurring at the start and end points of the selection
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value curves due to a smaller number of cells present at the extremes (Figure 4B), we fit a

smoothing process through iteratively averaging 5 adjacent cells (Figure 4D). Then, a boundary

threshold is placed to preserve the regions of pseudotime with less than 0.15 max-normalized

absolute change in selection value.

5.4.9 Framework and modeling design choices

Our primary objective is an interpretable model across pseudotime that avoids overfit-

ting, whereas extrapolation beyond the experimental time is not of interest. Since the modeling

is sequential and we want to evaluate the fit across the whole pseudotime, we decided to test our

model on multiple intervals instead of only testing the end of the pseudotime. We withheld four

intervals that represented 20% of the pseudotime for testing: [0.2-0.25], [0.45-0.5], [0.7-0.75],

and [0.95-1] (Figure 4C). Additionally, clones are trained and tested separate from each other

to create individual models. This facilitates interpretability and keeps resistance mechanisms

distinctive between clones.

5.4.10 Evaluation of the model

In order to evaluate the contributions of different aspects of the model, we employed

three “control” approaches: regression, a transformer without convolutional layers, and a trans-

former without attention layers. Regression provides a simple baseline by which to assess

whether the temporal context adds value to the model fit. Subtracting the convolution or atten-

tion aspects of the model, reveals the influence of these aspects’ importance to the architecture

for generalizing an accurate learning rule from the data. These models are then assessed via
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mean squared error (MSE) on the testing data in the four time periods described above (Figure

4E).

5.4.11 Temporal importance of features through permutation

To assess the influence of features on the prediction of the selection value we used

permutation feature importance [6]. In this approach we randomized a feature of interest 30

times and used the model with the altered feature to make a prediction. Changes in an important

feature result in increased prediction error from baseline. For the 30 permutations of a feature,

we compute the error at each pseudotime position to assess which features are important in

predicting the selection value at specific pseudotimes. The mean error at each position is used

in downstream analysis.

5.4.12 Interpretability of the model

As an example of how feature permutation provides interpretability to the model of

dynamic selection in a particular clone, the true selection value curve was plotted (black) with

the permuted model’s selection value prediction (Figures 5A and 5C). Below this was the model

importance scores for the permuted pathway with various smoothing factors (averaging the

adjacent 20 or 150 scores). Ridge plots of the pseudotime distributions of real time were plotted

to understand how the pathways found to be important can be attributed to periods within the

experiment.

Mean error scores from each of the clone models were smoothed by averaging the

adjacent 20 scores and plotted together. The activity for the feature is also plotted along pseu-
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dotime with a similar smoothing process of averaging the adjacent 50 scores. In each of these

plots, PS clones are shown in bold, dashed lines and NS clones in faint, solid lines (Figures 5B

and 5D-E). This was done for the Epithelial Mesenchymal Transition, Estrogen Response Late,

and E2F targets pathways. To compare palbociclib, giredestrant, and combination treatment

the activity scores for a PS clone and a stable clone were plotted for EMT and ER pathways.

In these plots the pathway activity of the PS clone (orange) is plotted for each of the three

treatments across time with the activity of the stable clone (blue) so that the two clones and

treatments can be assessed (Figure 6G-I).

5.4.13 Software availability

The code used for the TraCSED model and PLSR investigation of innate resistance in

this paper can be found at https://github.com/Genentech/TraCSED.

5.4.14 Data availability

Single-cell data can be accessed in GEO under the series GSE260703 (reviewer access

token: yxkxcwikpzobhcr ).
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Chapter 6

Supplementary Figures
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Supplemental Figure 1. Comparison differential expression programs in SARS-CoV-2 (COV-2)

infected versus respiratory syncytial virus (RSV) infected cells. Differential expression (DE) of

infected versus control in A549 cell lines produced a set of genes (circles, symbols displayed

for a selected few) passing a log2 fold change (1.5) and significance cutoff (p-val<0.05, dashed

vertical and horizontal lines) in both RSV (y-axis) and SARS-CoV-2 (x-axis) with high concor-

dance (line of perfect correspondence shown; green line) as indicated by the number of genes

with matching expression in the upper right quadrant of the plot (57 matches) or lower left (4

matches) compared to off-diagonal quadrants (0 and 6 genes). Significance levels of individual

genes are depicted with size (COV-2) and intensity (RSV) from the two viruses.
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Supplemental Figure 2. Normalized gene counts are clustered by average linkage distance

Pearson correlation and visualized by dendrograms. For both BALF tissue (A) and A549 cell

lines (B), SARS-CoV-2 transcripts were located within a single clade (boxed in red to the left of

the dendrogram) after 200 clades were created across the entirety of the hierarchical structure.
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Supplemental Figure 3. The CE-Dendro gene and gProfiler pathways are visualized as a net-

work where an edge is drawn between genes and the pathways for which they are members. A

purple box is shown to highlight a particular group of genes with functional significance that

were largely results not found by the DE view (CXCL5, CCL20, NFKBIA, MYC, PTGS2,

IFI35, C3, DDX1, PTK2). These genes are important for cytokine and chemokine activity,

antiviral response, and the innate immune system.
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Supplemental Figure 4. Gene results from CE-Net in NHBE cells that were correlated with

SARS-CoV-2 transcripts at |R| > 0.98 are visualized as a network where edges are drawn be-

tween human genes and the SARS-CoV-2 genes which they are correlated with. SARS-CoV-2

genes are shown in red and human genes in blue. Increasing node size indicates that the gene

is connected to more nodes within the network. The S, ORF10, and ORF8 genes were found

to be connected with the most human genes at this |R| threshold, suggesting that they may be

functionally important for SARS-CoV-2 in its influence on the human transcriptome.
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Supplemental Figure 5. Gene results from CE-Net in A549 cells that were correlated with

SARS-CoV-2 transcripts at R > 0.98 are visualized as a network where edges are drawn be-

tween human genes and the SARS-CoV-2 genes which they are correlated with. SARS-CoV-2

genes are shown in red and human genes in blue. Increasing node size indicates that the gene is

connected to more nodes within the network. The S, ORF10, ORF8, and ORF1ab genes were

found to be connected with the most human genes at this |R| threshold, suggesting that they

may be functionally important for SARS-CoV-2 in its influence on the human transcriptome.
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Supplemental Figure 6. Gene results from CE-Net in BALF tissue that were correlated with

SARS-CoV-2 transcripts at R > 0.98 are visualized as a network where edges are drawn be-

tween human genes and the SARS-CoV-2 genes which they are correlated with. SARS-CoV-2

genes are shown in red and human genes in blue. Increasing node size indicates that the gene
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is connected to more nodes within the network. Most of the SARS-CoV-2 genes depicted in

this network were similarly connected to many human genes. In contrast, ORF6 was not co-

correlated to human genes with any other SARS-CoV-2 gene.

Supplemental Figure 7. The CE-Net gene and gProfiler pathways are visualized as a network
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where an edge is drawn between genes and the pathways for which they are members. The

black box shows genes (OAS1 and MX1) with antiviral properties. The red box shows genes

indicative of chemokine and cytokine activity (CXCL5, CXCL8, CCL20, HIF1A). The pink box

highlights the PARP9-DTX3L gene group. Finally, the green box shows a group of genes in-

volved in cornification and cell death processes (MTSS1, RHCG, KRT6B, ESF1, PI3, SPRR2A,

SPRR2D, SPRR2E).

Supplemental Figure 8. The CE-PageRank gene and gProfiler pathways are visualized as a

network where an edge is drawn between genes and the pathways for which they are members.

The purple box highlights a gene group (ASS1, CXCL5, DTX3L, BIRC3, IFIH1) indicative

of lipopolysaccharide response and cytokine, chemokine, and immune activity. The pink box
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shows genes (ICAM1, HBEGF, INHBA) involved in various processes including viral entry

and survival. The yellow box shows genes involved in calcium binding and secretory activity

(S100P, PROS1, PTAFR). Lastly, the black box highlights gene results that were not found by

DE (MAFF, HDGF, CSNK1E, ITGA5, SAMD9, MCFD2).

Supplemental Figure 9. The DE gene and gProfiler pathways are visualized as a network where

an edge is drawn between genes and the pathways for which they are members. White nodes

(indicating genes or pathways that were only found by DE) were a dominant feature (72 genes)

among the gene results for DE, suggesting that DE highlights the conditional response of human
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genes to SARS-CoV-2 infection.

Supplemental Figure 10. The sankey diagram shows genes that were found by any of the four

views and the pathway themes that they participate in. Genes are colored based on the views
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that they are found in, white, light blue, and dark blue indicate that DEA and 1, 2, or 3 other

views, respectively, and red for a gene that is not found by DEA, but was by a CEA view.

Suppl Figure 11. The 30 spline subsampled smooth data representations for Ankrd43 are plotted

with expression plotted on the y-axis and pseudotime on the x-axis. This was using the best set

of params (lowest AIC and CV) determined through the AIC and CV balancing depicted in

Figure 5 and described in the methods.
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Suppl Figure 12. The 30 spline subsampled smooth data representations for FRY are plotted

with expression plotted on the y-axis and pseudotime on the x-axis. This was using the best

set of params (lowest AIC and CV) determined through the AIC and CV balancing depicted in

Figure 5 and described in the methods.
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Suppl Figure 13. The 30 spline subsampled smooth data representations for Ankrd43 are plotted

with expression plotted on the y-axis and pseudotime on the x-axis. This was using the worst

set of params (highest AIC and CV) determined through the AIC and CV balancing depicted in

Figure 5 and described in the methods.
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Suppl Figure 14. The 30 spline subsampled smooth data representations for FRY are plotted

with expression plotted on the y-axis and pseudotime on the x-axis. This was using the worst

set of params (highest AIC and CV) determined through the AIC and CV balancing depicted in

Figure 5 and described in the methods.
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Suppl Figure 15. Using the same paul data plotted in Figure 2A the binning and pruning pro-

cesses implemented by DREAMIT were compared to alternatives. Using binning for our spline

smoothing (black) and spline smoothing without binning the raw data (red) is shown on a ROC

plot (A) and precision-recall plot (B). Different thresholds for the pruning process were com-

pared using precision-recall (C) and ROC (D). Early precision is plotted at a recall level of

0.1.

126



Suppl Figure 16. TFs scored by DREAMIT and the Perturb-seq experiment from Lara-Astiaso

et. al. [85] were plotted against a set of markers for HSC, early myeloid, monocyte, and

erythrocyte cell types. The color of each dot represents the logarithm base-2 of the fold change

(a ceiling of -5 and +5 was implemented) and the size of a dot represents (1 - the adjusted P-

value) reflecting the differential expression of a marker gene after a TF is knocked out. The fold

change and P-values were obtained from the Lara-Astiaso et. al. publication. DREAMIT found

TF set A (pink - Atf4, Cebpa, Irf8, Runx1) to be significant in the monocyte lineage, the TF set

B (purple - Runx1, Gata1, Ezh2) to be significant in the erythrocyte lineage, and the TF set C

(black - Gata2, Crebbp) to not be significant in either lineage.
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Suppl Figure 17. The TF-TF network displays directionality and regulation from TRRUST. The

color of each TF node represents the cell type; red for blood marker, blue for stem marker, and

green for others. These annotations were obtained from the TF-Marker database.

Suppl Figure 18. DREAMIT and Dictys precision-recall for tissue specificity from the TF-

Marker database is plotted for three different branches for the (A) B-cell lineage, (B) Erythroid

lineage, and (C) Monocyte lineage. Dictys results are plotted in black, DREAMIT results using

raw data and the DREAMIT spline smoothing approach are plotted in red, and DREAMIT re-

sults using pre-processed and smoothed data from Dictys are plotted in blue. The early precision

AUC is taken at 0.1 recall where the dashed line is plotted.
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Supp. Figure 1

Suppl Figure 19. (A) GR value for parental T-47D, giredestrant-treated PS population, or

palbociclib-treated PS population, or combination-treated PS population treated for 7 days with

either 0.2µM of giredestrant, 0.2µM of palbociclib, or their combination. (B) Transcriptomic

changes are observed in palbociclib treated cells (blue), but return to a baseline (orange) state,

while giredestrant-treated cells (green) have remained changed. (C) Western Blot of parental

T-47D [A], giredestrant-treated PS population [B], or palbociclib-treated PS population [C],

treated for 24 hours with either DMSO [1], giredestrant [2], palbociclib [3], or their combina-

tion [4].
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Supp. Figure 2

A B
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Suppl Figure 20. The PIP gene is differentially expressed in PS clones compared to NS clones

in giredestrant and palbociclib (A). PS clones (blue) are not separated from NS clones (orange)

when PCA dimension reduction is used to create a UMAP projection (B). Clustering results

produced from the PLSR approach are plotted for giredestrant and palbociclib-treated cells (C).
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Heatmaps depict the fraction of clones (y-axis) within a given PLSR cluster (x-axis), where

cluster 4 is the PS cluster in both giredestrant and palbociclib treatment. The barplots on the

right side show the increase (in red) or decrease (in blue) in the clonal population at days 1, 4,

8, and 26 after treatment (D). Genes found to be differentially expressed via findMarkers are

plotted relative to the expression in the PS cluster 4 (E). Genes found through the PLSR ap-

proach, SNHG25 and CLDN1, were not shown to be differentially expressed when comparing

PS clones to NS clones (F).
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Suppl Figure 21. Ridge plots depict the pairwise distance between two PS cells (blue), two NS

cells (red), and one PS cell and one NS cell (green) when PCA dimension reduction is used

(A). The distance between PS to PS cells and NS to NS cells is reduced, while PS and NS

cells are more separated with PLSR (B). The transcriptomes of a NS clone (orange) and PS

clone (blue) and their centroids (triangles) are plotted together pre-treatment, showing they are

not separated (C). When treated with giredestrant (D) or palbociclib (E) the transcriptomes of

these clones change throughout treatment, but the clone centroids remain together and are not

separated by treatment.
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Suppl Figure 22. The model error in training is plotted relative to multivariate regression

(dashed line) for modeling up till each of the four testing increments at 0.25 (black), 0.5 (red),

0.75 (green), and the full fraction of the clonal data (blue). Error is represented as the mean er-

ror for the modeled barcodes for the full TraCSED model (left), TraCSED without the attention

layers (middle), and TraCSED without the convolutional layers (right) for both giredestrant and

palbociclib (A). The model error is then also plotted in the same way for the validation data (B).

Giredestrant PalbociclibA B

Supplementary Figure 5

Suppl Figure 23. Smoothed model importance (averaging 20 adjacent cells) was plotted for

PS clones (bold, dashed lines) and NS clones (faint, solid lines) for the AKT pathway in

giredestrant treatment (upper panel). Smoothed pathway activity (averaging 50 adjacent cells)

was also plotted (lower panel, A). Similarly, the smoothed model importance (upper panel) and

pathway activity (lower panel) were plotted for the G2M checkpoint pathway in palbociclib
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treatment (B).
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Supplementary Figure 6

Suppl Figure 24. Pathway scores for E2F targets (A) and ER induced activity (B) is plot-

ted across pre-treatment (orange) and for the duration of treatment with palbociclib (blue),

giredestrant (green), and the giredestrant-palbociclib combination therapy (yellow). The cluster

results from the PLSR approach are plotted for the giredestrant and palbociclib combination

treatment (C). Smoothed model importance (averaging 20 adjacent cells) was plotted for PS

clones (bold, dashed lines) and NS clones (faint, solid lines)(upper panel). Smoothed pathway

activity (averaging 50 adjacent cells) was also plotted (lower panel). This was done for the E2F

targets pathway (C), Estrogen Response Late (D), and EMT pathway (E).
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Supplementary Figure 7

Suppl Figure 25. Distribution of cells at baseline based on the expression of SNHG25 and

SNCG. Black outline shows all cells; color density shows cells from each clone individually.
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Jihong Guan, Shuigeng Zhou, Alexander N Gorban, Daniel E Bauer, Martin J Aryee,

David M Langenau, Andrei Zinovyev, Jason D Buenrostro, Guo-Cheng Yuan, and Luca

Pinello. Single-cell trajectories reconstruction, exploration and mapping of omics data

with STREAM. Nat. Commun., 10(1):1903, April 2019.

[33] Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang

Qiu, Jingli Wang, Ying Liu, Yuan Wei, et al. Epidemiological and clinical characteristics

of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study.

The lancet, 395(10223):507–513, 2020.

[34] Ji Yeh Choi and Heungsun Hwang. Bayesian generalized structured component analysis.

Br. J. Math. Stat. Psychol., 73(2):347–373, May 2020.

[35] Kwangbom Choi, Yang Chen, Daniel A Skelly, and Gary A Churchill. Bayesian

model selection reveals biological origins of zero inflation in single-cell transcriptomics.

Genome biology, 21(1):1–16, 2020.

[36] Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra

Cervera, Andrew McPherson, Michał Wojciech Szcześniak, Daniel J Gaffney, Laura L
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aux. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget,

7(3):2284–2296, January 2016.

[70] Christian H Holland, Jovan Tanevski, Javier Perales-Patón, Jan Gleixner, Manu P Kumar,

Elisabetta Mereu, Brian A Joughin, Oliver Stegle, Douglas A Lauffenburger, Holger

Heyn, et al. Robustness and applicability of transcription factor and pathway analysis

tools on single-cell rna-seq data. Genome biology, 21(1):1–19, 2020.

[71] Christian H Holland, Jovan Tanevski, Javier Perales-Patón, Jan Gleixner, Manu P Kumar,

Elisabetta Mereu, Brian A Joughin, Oliver Stegle, Douglas A Lauffenburger, Holger

Heyn, Bence Szalai, and Julio Saez-Rodriguez. Robustness and applicability of tran-

148



scription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol.,

21(1):36, February 2020.

[72] Jenny Hsu, Julia Arand, Andrea Chaikovsky, Nancie A Mooney, Janos Demeter,

Caileen M Brison, Romane Oliverio, Hannes Vogel, Seth M Rubin, Peter K Jackson,

and Julien Sage. E2F4 regulates transcriptional activation in mouse embryonic stem

cells independently of the RB family. Nat. Commun., 10(1):2939, July 2019.

[73] Jenny Hsu and Julien Sage. Novel functions for the transcription factor E2F4 in devel-

opment and disease. Cell Cycle, 15(23):3183–3190, December 2016.

[74] Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang,

Guohui Fan, Jiuyang Xu, Xiaoying Gu, et al. Clinical features of patients infected with

2019 novel coronavirus in wuhan, china. The lancet, 395(10223):497–506, 2020.

[75] Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. Infer-

ring regulatory networks from expression data using tree-based methods. PLoS One,

5(9):e12776, September 2010.

[76] Leonie M Kamminga, Leonid V Bystrykh, Aletta de Boer, Sita Houwer, José Douma,
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[85] David Lara-Astiaso, Ainhoa Goñi-Salaverri, Julen Mendieta-Esteban, Nisha Narayan,

Cynthia Del Valle, Torsten Gross, George Giotopoulos, Tumas Beinortas, Mar Navarro-

Alonso, Laura Pilar Aguado-Alvaro, Jon Zazpe, Francesco Marchese, Natalia Torrea,

Isabel A. Calvo, Cecile K. Lopez, Diego Alignani, Aitziber Lopez, Borja Saez, Jake P.

Taylor-King, Felipe Prosper, Nikolaus Fortelny, and Brian J. P. Huntly. In vivo screening

characterizes chromatin factor functions during normal and malignant hematopoiesis.

Nature Genetics, 55(9):1542–1554, August 2023.

[86] Celine Lefebvre, Presha Rajbhandari, Mariano J Alvarez, Pradeep Bandaru, Wei Keat

Lim, Mai Sato, Kai Wang, Pavel Sumazin, Manjunath Kustagi, Brygida C Bisikirska,

Katia Basso, Pedro Beltrao, Nevan Krogan, Jean Gautier, Riccardo Dalla-Favera, and

Andrea Califano. A human b-cell interactome identifies MYB and FOXM1 as master

regulators of proliferation in germinal centers. Mol. Syst. Biol., 6(1):377, June 2010.

[87] Xiangjie Li, Kui Wang, Yafei Lyu, Huize Pan, Jingxiao Zhang, Dwight Stambolian,

Katalin Susztak, Muredach P Reilly, Gang Hu, and Mingyao Li. Deep learning en-

ables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat.

Commun., 11(1):2338, May 2020.

151



[88] Arthur Liberzon, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P. Mesirov,
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