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Matrix-valued Monge-Kantorovich
Optimal Mass Transport

Lipeng Ning, Tryphon T. Georgiou and Allen Tannenbaum

Abstract

We formulate an optimal transport problem for matrix-valukensity functions. This is pertinent in the spectral
analysis of multivariable time-series. The “mass” repnés@&nergy at various frequencies whereas, in addition to a
usual transportation cost across frequencies, a cost ationtis also taken into account. We show that it is natural
to seek the transportation plan in the tensor product of plaees for the two matrix-valued marginals. In contrast
to the classical Monge-Kantorovich setting, the transgam plan is no longer supported on a thin zero-measure
set.

. INTRODUCTION

The formulation of optimal mass transport (OMT) goes bacthtowork of G. Monge in 1781 [1]. The modern
formulation is due to Kantorovich in 19471[2]. In recent y®dhe subject is evolving rather rapidly due to the
wide range of applications in economics, theoretical pts;gprobability, etc. Important recent monographs on the
subject includel[3],[14],15].

Our interest in the subject of matrix-valued transport ioddges in the spectral analysis of multi-variable time-
series. It is natural to consider the weak topology for posmctra. This is because statistics typically represent
integrals of power spectra and hence a suitable form of icoityi is desirable. Optimal mass transport and the
geometry of the Wasserstein metric provide a natural frapnefor studying scalar densities. Thus, the scalar OMT
theory was used in_[6] for modeling slowly time-varying clgas in the power spectra of time-series. The salient
feature of matrix-valued densities is that power can slufoss frequencies as well as across different channels via
rotation of the corresponding eigenvectors. Thus, tramdpetween matrix-valued densities requires that we take
into account the cost of rotation as well as the cost of stgfpower across frequencies.

Besides the formulation of a “non-commutative” Monge-kaovich transportation problem, the main results in
the paper are that (1) the solution to our problem can be sagt@nvex-optimization problem, (2) geodesics can
be determined by convex programming, and (3) that the optirmasport plan has support which, in contrast to
the classical Monge-Kantorovich setting, is no longer aot@d on a thin zero-measure set.

Il. PRELIMINARIES ON OPTIMAL MASS TRANSPORT

Consider two probability density functionsy andu; supported orR. Let M (ug, 1) be the set of probability
measuresn(z,y) on R x R with py andp; as marginal density functions, i.e.

/ m(z,y)dy = po(a), / m(z,y)dz = i (y), m(z,y) > 0.
R R

The setM (uo, 1) is not empty sincen(z,y) = uo(z)u1(y) is always a feasible solution. Probability densities
can be thought of as distributions of mass and a e@sty) associated with transferring one unit of mass from
one locationz to y. For c(z,y) = |z — y|? the optimal transport cost gives rise to the 2-Wassersteitien

Walpo, 1) = a0, 1)
where

TaCuoun) = inf [ eagmia.g)dody (1)
meM (po,p1) JRXR
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Problem[(1) is a linear programming problem with dual
sup { [ oo — b | 0(e) = on(s) < (o)} @

see e.g.,[[3]. Moreover, for the quadratic cost functi¢n, y) = |z — y|2, T2(uo, 1) can also be written explicitly
in term of the cumulative distributions functions

Fi(z) = / pidx for i = 0,1,

—00

as follows (see [3, page 75])

1
To(uo, ) = /0 Fy () — L) P, 3)

and the optimal joint probability densiiy € M (1, 1) has support oz, T'(x)) whereT'(x) is the sub-differential
of a convex lower semi-continuous function. More specifical’(z) is uniquely defined by
Fo(z) = Fi(T(z)). (4)
Finally, a geodesig.-(7 € [0, 1]) betweenu, and i, can be written explicitly in terms of the cumulative functio
F. defined by
F . ((1—7)x+7T(x)) = Fy(x). (5)
Then, clearly,

Wa(po, ptr) = TWa(po, p1)
Walpr, p1) = (1 — 7)Wa (o, p1)-

[Il. M ATRIX-VALUED OPTIMAL MASS TRANSPORT
We consider the family

F = {u | for z € R, pu(z) € C™*™ Hermitian p(z) > 0, tr(/ p(x)dr) = 1},
R

of Hermitian positive semi-definite, matrix-valued deigsitonRR, normalized so that their trace integrates td\Ve
motivate a transportation cost to this matrix-valued sgttind introduce a generalization of the Monge-Kantorovich
OMT to matrix-valued densities.

A. Tensor product and partial trace

Consider twon-dimensional Hilbert spaceX, and H; with basis{uy,...,u,} and{vy,...,v,}, respectively.
Let £L(Ho) and L(H;) denote the space of linear operators Hp and #,, respectively. Foip, € L(H,) and
p1 € L(H1), we denote their tensor product iy ® p; € L(Ho ® H1). Formally, the latter is defined via

Po® P uB U ppu @ Pyu.

Since our spaces are finite-dimensional this is preciselyitonecker product of the corresponding matrix repre-
sentation of the two operators.

Considerp € L(Ho ® H1) which can be thought of as a matrix of sizé x n?. The partial tracesrz;, and
try,, Or trg andtr; for brevity, are linear maps

peELHy®H) — tri(p) € L(Ho)
—  tro(p) € L(H1)

that are defined as follows. Partitigninto n x n block-entries and denote kpy,, the (k, £)-th block (I < k,¢ < n).
Then the partial trace, e.g.,

po = tri(p)



is then x n matrix with
[Polke = tr(pgy), for 1 <k, ¢ <n.

The partial trace
p1 = tro(p)
is defined in a similar manner for a corresponding partitibposee e.g.[[7]. More specifically, fdr<i,; <n,
let p7 be a sub-matrix op of sizen x n with the (k, £)-th entry[p*/],, = [pr¢)ij.- Then the(s, j)-th entry of p, is
[lp1)ij = tr(p").
Thus
tri(py ® p1) = tr(p1)py and tro(py @ py) = tr(py)ps-

B. Joint density for matrix-valued distributions

A naive attempt to define a joint probability density givenrgiaals s, 1 € F,, is to consider a matrix-valued
density with support ofR x R such thatm > 0 and

/ m(z,y)dy = py(z), / m(z,y)dr = py(y). (6)
R R

However, in contrast to the scalar case, this constrainbisalways feasible. To see this consider

wole) = 3 o Jate—e0+] ) 1 ooz

O I A P ) P

NN

L LN

It is easy to show thaf{6) cannot be met.
A natural definition for joint densitiesn that can serve as a transportation plan may be defined awéolfeor
(x,y) e R xR,

m(z,y) is n? x n? positive semi-definite matrix, (7a)
and with
mo(z,y) = tri(m(z, y)), mi(z,y) := tro(m(z,y)), (7b)
one has
/Rmo(w,y)dy = uo(x),/le(w,y)dw = p1(y)- (7c)

Thus, we denote by

M(pg, py) == {m | (73)— (7d) are satisfie}i

For this family, given marginals, there is always an adrbisgoint distribution as stated in the following propoasiti
Proposition 1: For anyu, i, € F,,, the setM (pu, i) is not empty.
Proof: Clearly, m := py ® py € M (pg, p1q)- [ |
We next motivate a natural form for the transportation c@sis is a functional on the joint density as in the
scalar case. However, besides a penalty on “linear” trahspe now take into account an “angular” penalty as
well.



C. Transportation cost

We interprettr(m(x,y)) as the amount of “mass” that is being transferred froro y. Thus, for a scalar cost
function ¢(z,y) as before, one may simply consider

min / c(z,y) tr(m(z,y))dzdy. (8)
meEM (po,11) JRXR
However, if tr(pg(z)) = tr(py(z)) Vo € R, then the optimal value of8) is zero. Thug (8) fails to gifgnt
mismatch in the matricial setting.
For simplicity, throughout, we only consider marginals which pointwise satisfytr(p) > 0. tr(u(z)) is a
scalar-valued density representing mass at locatiaile £@) _pas trace and contains directional information.

tr(p(z))
Likewise, for a joint densityn(x,y), assumingm(z,y) # 0, we consider

trg(m(z,y)) := tro(m(z,y))/ tr(m(z,y))
try (m(z,y)) == tri(m(z,y))/ tr(m(z,y)).

Sincetry(m(x,y)) andtr,(m(x,y)) are normalized to have unit trace, their difference cagtuhe directional
mismatch between the two partial traces. Thus take

tr(|[(tzo — try)m(z, y)[Fm(z,y))

to quantify the rotational mismatch. The above motivates ftillowing cost functional that includes both terms,
rotational and linear:

ir <<c<x,y> (e — t_r1>m<x,y>u%>m<w,y>)

where X > 0 can be used to weigh in the relative significance of the twmser

D. Optimal transportation problem

In view of the above, we now arrive at the following formudatiof a matrix-valued version of the OMT, namely
the determination of

Toatug)i= _min [ (e M (e~ m)mifym ) ded. ©)
meM (po,11) JRxR
Interestingly, [9) can be cast as a convex optimization lerabWe explain this next.
Since, by definition,
tro(m) tr(m) = tro(m),
try(m)tr(m) = tri(m),
we deduce that
I(tzg — try)m| tr(m)?
tr(m)
[[(tro — tro)m||3
tr(m)
Now let m(z,y) = tr(m(x,y)) and letmg(z,y) andm,(z,y) be as in[[¥). The expression for the optimal cost
in @) can be equivalently written as

I(trg — try)m[f tr(m) =

_ 2
min { [ (ctwmmte + MY oy | o). (o) 2 0

mo, M1, m

tr(mo(z,y)) = tr(ma(z,y)) = m(z,y)

[ o)y = o)
[ e = )}, (10



Since, forz > 0,
(y —2)?
x
is convex in the arguments y, z, it readily follows that the integral if_(10) is a convex fuional. All constraints

in (I0) are also convex and therefore, so is the optimizatiadblem.

IV. ON THE GEOMETRY OFOPTIMAL MASS TRANSPORT

A standard result in the (scalar) OMT theory is that the tpantation plan is the sub-differential of a convex
function. As a consequence the transportation plan hasosupply on a monotonically non-decreasing zero-
measure set. This is no longer true for the optimal tranggort plan for matrix-valued density functions and this
we discuss next.

In optimal transport theory for scalar-valued distribngpthe optimal transportation plan has a certain cyclicall
monotonic property![3]. More specifically, ifz1,y1), (z2,y2) are two points where the transportation plan has
support, thenzy, > x1 impliesys > ;. The interpretation is that optimal transportation patbshdt cross. For the
case of matrix-valued distributions as [d (4), this propenay not hold in the same way. However, interestingly, a
weaker monotonicity property holds for the supporting dethe optimal matrix transportation plan. The property
is defined next and the precise statement is given in Propo&tbelow.

Definition 2: A set S ¢ R? is called aX-monotonically non-decreasindgor A > 0, if for any two points
(z1,11), (x2,y2) € S, it holds that

(2 —z1)(y1 —y2) < A

A geometric interpretation for a-monotonically non-decreasing set is thatifi, y1), (z2,y2) € S andzs > x4,
y1 > y2, then the area of the rectangle with vertides, y;) (i,j € {1,2}) is not larger tham. The transportation
plan of the scalar-valued optimal transportation probleitih\& quadratic cost has support orD-anonotonically
non-decreasing set.

Proposition 3: Given p, u; € F, let m be the optimal transportation plan inl (9) with> 0. Thenm has
support on at most & - \)-monotonically non-decreasing set.

Proof: See the appendix. |
Then the optimal transportation cogt »(ug, 11) Satisfies the following properties:

1) Tox(peg, po1)=Tox (101, 120),
2) Ta(po, 1) 2 0, .
3) T2(ko, 1) = 0 if and only if py = p;.

Thus, althoughs \ (1, 1) can be used to compare matrix-valued densities, it is nottaarend neither is7.?,
since the triangular inequality does not hold in general. Wile introduce a slightly different formulation of a
transportation problem which does give rise to a metric.

A. Optimal transport on a subset

In this subsection, we restrict attention to a certain sub$dransport plansM (u, 1;) and show that the
corresponding optimal transportation cost induces a mdiore specifically, let

Mo (g py) = {m | m(y) = po(@) ® p (Wale,y), m € M}.
Form(xz,y) € Mo(pg, 1),

trg(m(z,y)) == py(2)/ tr(p, ()
try (m(z,y)) = po(y)/ tr(pg(y))-

Given py and i, the “orientation” of the mass afn(z,y) is fixed. Thus, in this case, the optimal transportation
cost is

Taaluon) = _win  [u (<c+ Al o —t_rom(x,y)n%)m) dady. (1)

meMo(y‘Ovy‘l



Proposition 4: For T2 » as in [11) andug, u; € F,

do (o, py) := (7~'2,A(Ho, H1)) ’ (12)

defines a metric ouF.
Proof: It is straightforward to prove that

da (o, 1) = daa(py, ) > 0

and thatdy x(pg, 1) = 0 if and only if py = p,. We will show that the triangle inequality also holds. For
s s o € T, let

e (.1 — Ho(7) p(y) men (2

D= g () © oy ()Y
) Ho(2) m 5

2D = ) a2

be the optimal transportation plan for the paigs,, ;) and (uq, p5), respectively, whereng; and mqo are
two (scalar-valued) joint densities dk* with marginalstr(g,), tr(p,) andtr(u,), tr(uy), respectively. Given
mo1(z,y) andmis(y, z) there is a joint density functiom(z,y, z) on R? with mg; andm,, as the marginals on
the corresponding subspacks [3, page 208]. We denote

o () 1y (y) po(2)
tr(pg(2)) — tr(pi(y)) — tr(pe(2))

then it hasmg; andm,, as the matrix-valued marginal distributions.

Now, letms(x, z) = tr“ﬁ(”(”)) ® tfﬁ((i)mog(w, z) be the marginal distribution af(x, y, z) when tracing out the

y-component. Themny(z, z) is a candidate transportation plan betwggnand p,. Thus

m(z,y,z)

m(x,y,z) =

1

da » (g, o) < </R2 <( 2)? + )\Htr,u(()()) _ tfﬁiiil) H%) m02dmdz> 2

Mo()_ﬂz(z)zmw 2
(( D+ M @) tru2<z>”F> ddyd)

[NIE

Po(2) _ pi(y) pi(y) Bo(z) 1o mdzdudz
Tl " TG o) ) ddyd)

(x—y+y—2)7+2A

Ho(z) _ pi(y) 2 morda 2
<( [, (e e s = g sl Jmod dy) *
)

P (y) ) 2\m P :
([ (=22 el iy
= da \ (Ko, 1) + d2 (15 pg)

where the last inequality is from the fact tht-norm defines a metric. |
Proposition 5: Given pu, uy € F, let m be the optimal transportation plan in_{12), then has support on at
most a(2 - A\)-monotonically non-decreasing set.
Proof: We need to prove that ifn(x1,y1) # 0 andm(zg, y2) # 0, thenzy > x4, y1 > yo implies

(y1 — yg)(xg — 1‘1) S 2. (13)
Assume thatn evaluated at the four poin{s;, y;), with i, j € {1,2}, is as follows
m(x;,y;) = mij - A; ® Bj

with
_ o (i) B — Ho(vi)
tr(p ()" " (g (vi)



andmq1, maee > 0. The steps of the proof are similar to those of Proposftiofir8t, we assume that Proposition
fails and that

(y1 — y2)(z2 — 21) > 2.

Then we show that a smaller cost can be obtained by reargtiggrimass”. Consider the situation wheny > mq;
first and letm be a new transportation plan with

m(ry,y1) =0

m(ry,y2) = (M1 +miz2) - A1 ® By
m(r2,y1) = (mi1 +ma1) - A2 ® By
m(z2,y2) = (ma2 —m1) - A2 ® Ba.

Then,m has the same marginals as at the four points and the cost incurred by is
2 2
DO miy (@ —y;)® + M A = BjlI§) (14)
i=1 j=1
while the cost incurred byn is

(m11 +ma2) ((z1 — y2)” + A A1 — Ba|})
+(mar +mar) ((z2 — 1) + M| A2 — Bi[[7)
+(maz2 — ma1) (2 — y2)? + A A2 — Ball7) - (15)

After canceling the common terms, to show thatl (14) is lathan [15), it suffices to show that

(1 — 21)° + (y2 — 22)% + A|A1 — Bilg + Al 42 — Bolf%
> (y2 — 21)° + (y1 — 32)° + A| A1 — Ba|[§ + Al|A2 — By fz.

The above holds since

(y1 — 21)° + (y2 — 2)* + M| A1 — Bi|g + M| A2 — Ba|#
>(y1 — 21)% + (y2 — 22)?
=(y1 — x2)* + (y2 — 1)% + 2(x2 — 1) (Y1 — ¥2)
>(y1 — @2)” + (y2 — 21)% + 4
>(y1 — 22)® + (1 — 22)* + A(| 41 — Ba|lp + |42 — B1[3).
The caseni; > msgy proceeds similarly. [ |
V. EXAMPLE

We highlight the relevance of the matrix-valued OMT to spalcanalysis by presenting an numerical example
of spectral morphing. The idea is to model slowly time-vagyichanges in the spectral domain by geodesics in
a suitable geometry (see e.d.] [6]] [8]). The importance dfTOstems from the fact that it induces a weakly
continuous metric. Thereby, geodesics smoothly shift tsplepower across frequencies lessening the possibility
of a fade-in fade-out phenomenon. The classical theory ofTGilows constructing such geodesics for scalar-
valued distributions. The example below demonstrateswatan now have analogous construction of geodesics
of matrix-valued power spectra as well.

Starting with g, 1, € F we approximate the geodesic between them by identifyhg 1 points between the
two. More specifically, we sk, = py andu, = pq, and determings, € F, for k =1,..., N — 1 by solving

N-1

i . 16
L > Toalthn, s r,) (16)



As noted in Sectioi III-D, numerically this can be solved @iaconvex programming problem. The numerical
example is based on the following two matrix-valued powercs@al densities

B 1 01| meer O 1 0.2¢°
o =1 g2e0 1 0 001]|0 1

(1 027001 0 1 0
Pi=1¢9 1 0 e ) 02 1

ap(z) = (2% — 1.8 cos(

with

)z 4+ 0.9?)

Wl N

(22 — 1.4 cos(=)z +0.7%)

ar(z) = (2> —1.8 cos(%)z +0.9%)
2
(22 -15 608(1_7;)’2 +0.75%),

shown in Figuré 1. The value of a power spectral density alh g@aint in frequency is & x 2 Hermitian matrix.
Hence, the(1,1), (1,2), and (2,2) subplots display the magnitude of the corresponding emtiie., [ (1,1)],
|n(1,2)| (= |w(2,1)]) and|u(2,2)|, respectively. Thé2,1) subplot displays the phaséu(1,2) (= —Zu(2,1)).

The three dimensional plots in Figure 2 show the solutioril@) (vith A = 0.1 which is an approximation of a
geodesic. The two boundary plots represent the power spegtand; shown in blue and red, respectively, using
the same convention about magnitudes and phases. Thera tli7 power spectrau, , k = 1,...,7 shown
along the geodesic betwegsy and i;, and the time indices correspondsripo= g It is interesting to observe the
smooth shift of the energy from one “channel” to the other oner the geodesic path while the peak shifts from
one frequency to another.

--=- “LU;(LZ)(H)‘
e ‘/Ll.(ll) ((})‘

=== Ho(22) ()

— Hi,(2,2) (9)

Fig. 1. Subplots (1,1), (1,2) and (2,2) shqe(1,1), |w;(1,2)| (same agp;(2,1)|) and i,(2,2). Subplot (2,1) shows/(u,(2,1)) for
1 € {0,1} in blue and red, respectively.

VI. CONCLUSIONS

This paper considers the optimal mass transportation @moldf matrix-valued densities. This is motivated by
the need for a suitable topology for the spectral analysinufivariable time-series. It is well known that the OMT
between scalar densities induces a Riemannian metridll€],(fee also [11] a systems viewpoint and connections
to image analysis and metrics on power spectra). Our irttbessbeen in extending such a Riemannian structure to
matrix-valued densities. Thus, we formulate a “non-conatiwe” version of the Monge-Kantorovich transportation
problem which can be cast as a convex-optimization probleterestingly, in contrast to the scalar case, the optimal
transport plan is no longer supported on a set of measure ¥ersions of non-commutative Monge-Kantorovich
transportation has been studied in the context of freeglritiby [12]. The relation of that to our formulation is stil



#m.(m)(e) \#m,u.z)(‘g)\

0.2 0.1

01 005

1 0 1 1
’ Tk
> 05 Tk 05 k

Litr, (2,1)(0) Hrg(2,2)(0)

05 Tk

Fig. 2. The interpolated resulig, for k = 0,...,8 computed from[{(16) withu, and p; as the two boundary points: subplots (1,1),
(1,2) and (2,2) shows,, (1,1), |, (1,2)| (same asy,, (2,1)]) and ., (2,2), subplot (2,1) shows/(se., (2,1)).

unclear. Finally, we note that if the matrix-valued distitibns commute, then it is easy to check that our set-up
reduces to that of a number of scalar problems, which is dleacase in[[12].

VIl. APPENDIX PROOF OFPROPOSITIONJ]
We need to prove that ifn(z1,y1) # 0 andm(xe, y2) # 0, thenxzy > x4, y1 > yo implies
(w2 — 21)(y1 — y2) < 4\ 17)
Without loss of generality, let
m(ac,-, yj) = m,-j . Aij & Bij (18)
with A;;, B;j > 0, tr(A;;) = tr(By;) = 1 andi,j € {1,2}. Note thatm;» andmg; could be zero ifm does not
have support on the particular point. We assume that theittmmdh the proposition fails and
(xg — wl)(yl — y2) > 4)\, (19)

then we show that by rearranging mass the cost can be reduced.
We first consider the situation wheny, > mq;. By rearranging the value oh at the four pointgz;, y;) with
i,7 € {1,2}, we construct a new transportation plan at these four locations as follows

m(zy,y1) = 0 (20a)
m(z1,y2) = (mi1+mi2)- A2 ® Bra (20b)
m(za,y1) = (mi1+ma1)- Ao @ Bay (20c)
m(z2,y2) = (mag —my1) - Az ® Ba (20d)
where
= muApt+tmipAin 5 miiBa +miaBio
A = ,Bia =
mi1 + mi2 mi1 + mi2
= muAx+moda 5 miui1Bi+mo By
Ay = ,Ba1 = .
mi1 + mai mi1 + mai

This new transportation plarh has the same marginals as at x1, z5 andy;, y. The original cost incurred by
m at these four locations is

2 2
> mi (@i — ;) + Al Ay — By 2) (1)
i=1 j=1



10

while the cost incurred byn is
(ma11 +ma) ((961 —y2)” + A A2 — 5’12\\%)
+(m11 +ma) <(962 — 1) + Al Az — 321\\12?)
+(ma2 —ma1) ((z2 — y2)? + A|Asz — Baol[7) - (22)

After simplification, to show tha{(21) is larger thdn (22)suffices to show that

2ma(z2 — 21)(y1 — y2) (23)
is larger than
2 ~ ~ 2
Ama [ Y03 1Ay = Byl — Y 14 — Ball (24a)
i=1 j#i i—1
+ Amia <||/i12 — Biolff — || A1z — Ble%) (24b)
+ Amg; <||/121 — B} — | Az — B21H%) - (24c)

From the assumption in(119), the value of](23R0Am ;. We derive upper bounds for each term[inl(24). First,
243)< Ay (Hf~112 — Bua|lf + || 421 — B21H%> < 4Amq;
where the last inequality follows from the fact that fdr B > 0 andtr(A) = tr(B) = 1,
|A - B|j3 = tr(A? — 2AB + B?) < tr(A? + B < 2.
For an upper bound of (2#b),
| 412 = Biol# — [[A12 — Bia|lf

=tr ((12112 — Big 4 A1z — B12)(A1g — Big — Ajp + 312))

mi1

=—— ( |A11 — Bl — [|A12 — Buzlp —
| - I

mi1

mi2 2
————||A11 — Boa — A2+ Bro )
mi1 + mi2 | I

<—— || A1 — Baaoll?
T
<9 M

Tomyr +my2

where the second equality follows from the definition 4f, and B;» while the last inequality is obtained by
bounding the terms in the trace. Thus

(248) < 2XAm9
In a similar manner[(24cX 2\m;. Therefore,

24) < 8Am1; < (23)

which implies that the cost incurred by is smaller than the cost incurred by.
For the case wherm1; > moo, We can prove the claim by constructing a new transportgiian+n with values

mi1
— < 2)\7’)@11.
mi1 + mi2

m(z1,y1) (m11 —ma2) - A1 ® By
m(z1,y2) = (miz+ma)- A1z ® By
m(ze,y1) = (ma1 +ma2)- Ag1 ® Boy
m(z2,y2) = 0
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with
Ay = mi2A12 +mogArr By = m12B12 + maoaBao
mi2 + Mao2 mi2 + Mao2
Ay = ma1 A2y + m22A2275g21 _ ma1 By + m22B11‘
ma1 + Mo2 ma1 + mMo2

The rest of the proof is carried out in a similar manner.
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