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ABSTRACT OF THE DISSERTATION

Horospherical flows in infinite volume rank one homogeneous spaces:
effective equidistribution and applications

by

Jacqueline Warren

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Amir Mohammadi, Chair

We prove effective equidistribution of horospherical flows in SO(n, 1)◦/Γ when Γ is

geometrically finite and the frame flow is exponentially mixing for the Bowen-Margulis-

Sullivan measure. We also discuss settings in which such an exponential mixing result is

known to hold.

As a significant part of the proof, we establish quantitative nondivergence of horo-

spherical orbits, and show that the Patterson-Sullivan measure satisfies certain friendly-
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like properties when Γ is geometrically finite. We also prove that a much stronger result,

called global friendliness, if all cusps are assumed to be of maximal rank. The proof strat-

egy of the equidistribution theorems combines these with the “banana trick” of Margulis.

As an application, we study the distribution of non-discrete orbits of geometrically

finite groups in SO(n, 1) acting on the quotient of SO(n, 1) by a horospherical subgroup.

In particular, this can be identified with Γ acting on the “light cone” in Rn+1, or on

certain wedge products. We obtain asymptotics for the distribution of orbits of geomet-

rically finite groups when all cusps have maximal rank. When we also have that the

Bowen-Margulis-Sullivan measure is exponentially mixing, we obtain a quantitative ratio

theorem, using global friendliness of the PS measure.

xi



Chapter 1

Introduction

The group G = SO(n, 1)◦ with n ≥ 2, can be considered as the group of orientation

preserving isometries of the hyperbolic space Hn. Let Γ ⊆ G be a geometrically finite and

Zariski dense subgroup of G with infinite covolume, which may be thought of as having a

finite sided fundamental domain. In particular, when Γ is geometrically finite, Hn/Γ has

only finitely many cusps.

In this thesis, we establish an effective rate of equidistribution of orbits under the

action of a horospherical subgroup U ⊆ G under a certain exponential mixing assumption

(Assumption 1.1.2). As an application, we will study the distribution of the orbits of Γ

acting on U\G, which will be identified with the “light cone” in Rn+1.
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1.1 Effective Equidistribution

An early result on the equidistribution of horocyclic flows in G/Γ for G = SL2(R)

and Γ a lattice was obtained by Dani and Smillie in [DS84]. They proved that if U =
1 t

0 1

 : t ∈ R

 and if x does not have a closed U -orbit in G/Γ, then for every f ∈

Cc(X),

lim
T→∞

1

T

∫ T

0

f(utx)dt = m(f), (1.1)

where m denotes the normalized Haar probability measure on X. The lattice case is

well-understood in general, thanks to Ratner’s celebrated theorems on unipotent flows,

[Rat91].

Results such as these are not considered to be effective, because they do not address

the rate of convergence, and this is important in many applications. Burger proved

effective equidistribution of horocyclic flows for SL2(R)/Γ when Γ is a uniform lattice or

convex cocompact with critical exponent at least 1/2 in [Bur90]. Sarnak proved effective

equidistribution of translates of closed horocycles when Γ is a non-uniform lattice in

[Sar81]. More general results were obtained for non-uniform lattices using representation

theoretic methods by Flaminio and Forni in [FF03], and also by Strömbergsson in [Str13].

The case where Γ = SL2(Z) was also obtained independently by Sarnak and Ubis in

[SU15]. The higher dimensional setting has recently been considered by Katz [Kat19]

and McAdam [McA19]. McAdam proved equidistribution of abelian horospherical flows

in SLn(R)/Γ for n ≥ 3 when Γ is a cocompact lattice or SLn(Z), and Katz proved

2



equidistribution in greater generality when Γ is a lattice in a semi-simple linear group

without compact factors.

In infinite volume, we cannot hope for a result such as equation (1.1) for the Haar

measure: by the Hopf ratio ergodic theorem, for almost every point,

lim
T→∞

1

T

∫ T

0

f(utx)dt = 0.

This tells us that this is not the correct measure to consider. A key characteristic of the

Haar probability measure in the lattice case is that it is the unique U -invariant ergodic

Radon measure that is not supported on a closed U orbit, [DS84, Fur73]. By [Bur90,

Rob03, Win15], the measure with this property in the infinite volume setting is the Burger-

Roblin (BR) measure, which is defined fully in Chapter 3. The correct normalization will

be given by the Patterson-Sullivan (PS) measure, which is a geometrically defined measure

on U orbits. This is also defined in Chapter 3.

Maucourant and Schapira proved equidistribution of horocycle flows on geometri-

cally finite quotients of SL2(R) in [MS14], and in [MO16], Mohammadi and Oh generalize

these results to geometrically finite quotients of SO(n, 1)◦ for n ≥ 2. These results are

not effective, but will be useful for our applications to understanding the distribution of

orbits of a geometrically finite group. Oh and Shah also proved equidistribution on the

unit tangent bundle of geometrically finite hyperbolic manifolds in [OS13]. In [Edw19],

Edwards proves effective results for geometrically finite quotients of SL2(R).

We will use the result of Mohammadi and Oh, but we require some notation in

order to state this result.
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Let U = {ut : t ∈ Rn−1} denote the expanding horospherical flow, which is

parametrized in Chapter 3. Let BU(r) denote the ball in U of radius r with the max

norm on Rn−1. We denote by Λ(Γ) the set of limit points of Γ, and Λr(Γ) denotes the set

of radial limit points, defined fully in Chapter 3. The notation x± is also defined in that

chapter. Here, mBR denotes the BR measure and µPS denotes the PS measure. These

measures are also defined in Chapter 3.

Specifically, Mohammadi and Oh proved the following:

Theorem 1.1.1. [MO16, Theorem 4.6] Let Γ be geometrically finite. Fix x ∈ G/Γ such

that x− ∈ Λr(Γ). Then for any ψ ∈ Cc(G/Γ), we have that

lim
T→∞

1

µPS
x (BU(T ))

∫
BU (T )

ψ(ux)du = mBR(ψ).

We will extend these results to geometrically finite quotients of SO(n, 1)◦, under

the assumption of exponential mixing of the frame flow for the Bowen-Margulis-Sullivan

(BMS) measure, which is defined in Chapter 3. More explicitly, in Chapter 6 (but not 4

or 5), we will assume the following holds, where {as : s ∈ R} denotes the frame flow on

G/Γ:

Assumption 1.1.2 (Exponential Mixing). There exist c, κ > 0 and ` ∈ N which depend

only on Γ, such that for ψ, ϕ ∈ C∞c (G/Γ) and s > 0,∣∣∣∣∫
X

ψ (asx)ϕ (x) dmBMS (x)−mBMS (ψ)mBMS (ϕ)

∣∣∣∣ < cS`(ψ)S`(ϕ)e−κs.

Assumption 1.1.2 is known to hold when Γ is convex cocompact by [SW20], which

covers the case when G/Γ has no cusps. In [MO15], Mohammadi and Oh prove such a
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result for geometrically finite Γ under a spectral gap assumption (see Definition 2.0.1),

using decay of matrix coefficients. Edwards and Oh recently proved effective mixing for

the geodesic flow on the unit tangent bundle of a geometrically finite hyperbolic manifold

when the critical exponent is larger than (n− 1)/2 in [EO19]. Further details about this

assumption are discussed in Chapter 2.

We will need to restrict consideration to points satisfying the following geometric

property, which means that the point does not travel into a cusp “too fast”. Here, d is a

left-invariant Riemannian metric on G/Γ that projects to the hyperbolic distance on Hn.

Definition 1.1.3. For 0 < ε < 1 and s0 ≥ 1, we say that x ∈ G/Γ with x− ∈ Λ(Γ) is

(ε, s0)-Diophantine if for all s ≥ s0,

d(C0, a−sx) < (1− ε)s,

where C0 is a compact set arising from the thick-thin decomposition, and is fully defined in

§3.2. We say that x ∈ G/Γ with x− ∈ Λ(Γ) is ε-Diophantine if x is (ε, s0)-Diophantine

for some s0, and simply Diophantine if it is (ε, s0)-Diophantine for some ε and s0. J

Remark. A point x ∈ G/Γ is Diophantine if and only if x− ∈ Λr(Γ), because Definition

1.1.3 precisely says that x− 6∈ Λbp(Γ), by the construction of the thick-thin decomposition.

Here, Λbp(Γ) denotes the bounded parabolic limit points. These are defined fully in Chapter

3. J

In the case that Γ is a lattice, the condition x− ∈ Λ(Γ) is always satisfied. Also, if

Γ is convex cocompact, every point x ∈ G/Γ with x− ∈ Λ(Γ) will be Diophantine, because

5



all limit points are radial in this case (see Chapter 3).

Note that x is (ε, s0)-Diophantine if (1−ε)s is a bound on the asymptotic excursion

rate of the geodesic {a−sx}, i.e.

lim sup
s→∞

d(C0, a−sx)

s
≤ 1− ε. (1.2)

Sullivan’s logarithm law for geodesics when Γ is geometrically finite with δΓ >

(n− 1)/2 was shown in [KO21, SV95] (and is a strengthening of Sullivan’s logarithm law

for non-compact lattices ([Sul82, §9])), and implies that for almost all x ∈ G/Γ,

lim sup
s→∞

d(C0, a−sx)

log s
=

1

2δΓ − k
, (1.3)

where k is the maximal cusp rank. In [KO21], Kelmer and Oh showed a strengthening

of the above, considering excursion to individual cusps and obtaining a limit for the

shrinking target problem of the geodesic flow. Note also that the result stated in [KO21]

is for x ∈ T1(G/Γ), but since the distance function there is assumed to be K-invariant,

where Hn = K\G, and the set C0 is K-invariant as well (see §3.2), we can deduce the

form above.

It follows from (1.3) that the limit on the left hand side of (1.2) is zero for almost

every point x ∈ G/Γ (with respect to the invariant volume measure) in this case. More-

over, for any ε, the Hausdorff dimension of the set of directions in T1(Hn/Γ) around a

fixed point in Hn/Γ that do not satisfy (1.2) is computed in [MP93, Theorem 1]. For

geometrically finite Γ, the Hausdorff dimension of the set of directions around a fixed

point that do not satisfy (1.2) can be found in [HV62, SV95].
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1.2 Statements of Main Equidistribution Theorems

We will establish the following two theorems. Here, mBR denotes the BR measure,

mBMS denotes the Bowen-Margulis-Sullivan (BMS) measure, and µPS denotes the PS

measure. These measures are defined in Chapter 3. Throughout the paper, the notation

x� y

means there exists a constant c such that

x ≤ cy.

If a subscript is denoted, e.g. �Γ, this explicitly indicates that this constant depends on

Γ.

Theorem 1.2.1. Assume that Γ satisfies Assumption 1.1.2. For any 0 < ε < 1 and

s0 ≥ 1, there exist constants ` = `(Γ) ∈ N and κ = κ(Γ, ε) > 0 satisfying: for every

ψ ∈ C∞c (G/Γ), there exists c = c(Γ, suppψ) such that every x ∈ G/Γ that is (ε, s0)-

Diophantine, and for every r �Γ,ε s0,∣∣∣∣ 1

µPS
x (BU(r))

∫
BU (r)

ψ(utx)dµPS
x (t)−mBMS(ψ)

∣∣∣∣ ≤ cS`(ψ)r−κ,

where S`(ψ) is the `-Sobolev norm.

For the Haar measure, we will prove the following equidistribution result:

Theorem 1.2.2. Assume that Γ satisfies Assumption 1.1.2. For any 0 < ε < 1 and

s0 ≥ 1, there exist ` = `(Γ) ∈ N and κ = κ(Γ, ε) > 0 satisfying: for every ψ ∈ C∞c (G/Γ),

7



there exists c = c(Γ, suppψ) such that for every x ∈ G/Γ that is (ε, s0)-Diophantine, and

for all r �Γ,suppψ,ε s0,∣∣∣∣ 1

µPS
x (BU(r))

∫
BU (r)

ψ(utx)dt−mBR(ψ)

∣∣∣∣ ≤ cS`(ψ)r−κ,

where S`(ψ) is the `-Sobolev norm.

Note that the assumption that x is Diophantine is required to obtain quantitative

nondivergence of U orbits in Chapter 4, which is key in proving the above theorems. The

dependence on a Diophantine condition is necessary, and is analogous to known effective

equidistribution results for when Γ is a non-cocompact lattice (see [McA19, Str13]).

A key step towards proving Theorem 1.2.1 is the following.

Theorem 1.2.3. Assume that Γ satisfies Assumption 1.1.2. There exist κ = κ(Γ) and

` = `(Γ) which satisfy the following: for any ψ ∈ C∞c (X), there exists c = c(Γ, suppψ) > 0

such that for any f ∈ C∞c (BU(r)), 0 < r < 1, x ∈ suppmBMS, and s�Γ d(C0, x), we have∣∣∣∣∫
U

ψ(asutx)f(t)dµPS
x (t)− µPS

x (f)mBMS(ψ)

∣∣∣∣ < cS`(ψ)S`(f)e−κs.

In Chapter 6, we also prove an analogous statement for the Haar measure. Such

a result is proven in [MO15] under a spectral gap assumption on Γ, but we show in this

paper how to prove it whenever the frame flow is exponentially mixing.

The proof will use similar techniques as in [MO16, OS13]; in particular, we will

rely on Margulis’ “thickening trick” from his thesis, [Mar04].

In the proofs of our main theorems (Theorems 1.2.1 and 1.2.2), we use partition of

unity arguments. In particular, the bounds we get are on slightly bigger sets. As a result,

8



we need an effective bound on the PS measure of a small neighborhood of a boundary of

a ball relative to the PS measure of that ball. The following theorem achieves this. It is

shown using [DFSU20, Lemma 3.8] and [SV95, Theorem 2], together with quantitative

nondivergence established in Chapter 4:

Theorem 1.2.4. There exists a constant α = α(Γ) > 0, such that for every x ∈ G/Γ that

is (ε, s0)-Diophantine, for every 0 < s ≤ T
ε

1−ε , every 0 < ξ �Γ 1, and every T �Γ,ε s0,

µPS
a−sx(BU(ξ + T ))

µPS
a−sx(BU(T ))

− 1�Γ ξ
α.

1.3 Distribution of Orbits

We often seek to understand a group through the distribution of its orbits on a

given space. As an application of the equidistribution theorems stated above, we will

study the distribution of the orbits of a geometrically finite group Γ acting on Rn+1 and

other spaces.

When Γ is a lattice in SL2(R) acting on R2, this question was considered by

Ledrappier [Led99], who proved that

lim
T→∞

1

T

∑
γ∈Γ,‖γ‖≤T

f(Xγ) = c(Γ)

∫
R2

f(Y )

|X||Y |
dY

for compactly supported functions f and X ∈ R2, where c(Γ) is some constant depending

on the covolume of the lattice Γ, and ‖γ‖ denotes the `2 norm on Γ. Nogueira [Nog02]

independently obtained this result for Γ = SL2(Z) using different methods. More recently,

9



Macourant and Weiss obtained a quantitative version of this theorem for cocompact lat-

tices in SL2(R), and also for Γ = SL2(Z) in [MW12]. The case of lattices in SLn(R) acting

on different spaces V has also been considered, see for instance [Gor04, GM05].

In [Pol10], Pollicott proved a similar quantitative theorem for the action of a lattice

in SL2(C) on C2. In the p-adic case, Ledrappier and Pollicott [LP05] considered lattices

in SL2(Qp) acting on Q2
p.

Similar questions have been studied extensively for lattices in a wide variety of

groups G. For instance, Gorodnik and Weiss consider in [GW07] second countable, locally

compact groups G with a general axiomatic approach, with several examples. More

recently, Gorodnik and Nevo comprehensively studied the action of a lattice in a connected

algebraic Lie group acting on infinite volume homogeneous varieties in [GN14], including

obtaining quantitative results under appropriate assumptions.

The case when Γ has infinite covolume was recently studied by Maucourant and

Schapira in [MS14], where they obtained an asymptotic version of Ledrappier’s result for

convex cocompact subgroups of SL2(R), with a scaling factor permitted. Moreover, they

prove that an ergodic theorem like Ledrappier’s in the lattice case cannot be obtained

in the infinite volume setting, because there is not even a ratio ergodic theorem. More

specifically, [MS14, Prop. 1.5] shows that if Γ ⊆ SL2(R) is geometrically finite with −I

the unique torsion element, then there exist small bump functions f and g such that for

10



ν-almost every v (where ν is defined in Chapter 9),∑
γ∈ΓT

f(vγ)∑
γ∈ΓT

g(vγ)

does not have a limit. Thus, it is impossible to obtain an ergodic theorem in this setting

with a normalization factor that does not depend on the functions. The key obstruction is

the fluctuating behaviour of the PS measure. However, they show that with an additional

averaging to address these fluctuations, there is a Log-Cesaro convergence, see [MS14,

Theorem 1.6].

As a consequence of a more general ratio theorem that we will discuss later in this

section, we will obtain the following asymptotic behaviour for Γ orbits acting on

V = en+1G \ {0},

which is similar to a result of Maucourant and Schapira for n = 2. Note that V consists

of null vectors of a certain quadratic form and corresponds to the upper half of the “light

cone” in the usual representation of SO(n, 1); see §9.1 for more details.

Proposition 1.3.1. Let Γ be convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V

with v− ∈ Λ(Γ), as T →∞, we have that

1

T δΓ/2

∑
γ∈ΓT

ϕ(vγ) �
∫
V

ϕ(u)
dν(u)

(‖v‖2 ‖u‖2)δΓ/2
,

where the implied constant depends on v and Γ. Here, δΓ denotes the critical exponent of

Γ, ‖u‖2 denotes the Euclidean norm of u ∈ Rn+1, and ΓT = {γ ∈ Γ : ‖γ‖ ≤ T}, where

‖γ‖ denotes the max norm of γ as a matrix in SLn+1(R). The notation v− ∈ Λr(Γ) is

discussed in Chapter 9.
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Here, the notation a � b means that there exists a constant λ > 1 such that

λ−1 ≤ a

b
≤ λ.

The precise definition of the measure ν is discussed in Chapter 9. It is the push-

forward of the measure ν defined in §3.3, which is part of the product structure of the BR

measure, defined fully in that section.

Recall that U = {ut : t ∈ Rn−1} is the expanding horospherical subgroup for

the frame flow A. Let P ⊂ G be the parabolic subgroup which contains the contracting

horospherical subgroup. Parametrizations of these groups are given in Chapter 3.

Proposition 1.3.1 is obtained by counting orbit points in U\G. We will also estab-

lish a stronger version, specifically showing that a more precise ratio tends to 1. When

Assumption 1.1.2 holds, we obtain a quantitative version of this statement. We need to

define additional notation in order to state this result.

Let UAK be the Iwasawa decomposition of SLn+1(R), and let Ψ : U\G → G be

the map

Ψ(Ug) = ak,

where g = uak in the Iwasawa decomposition.

We view G as embedded in SLn+1(R). For g ∈ G, let ‖g‖ denote the max norm

as a matrix in SLn+1(R). The following “product” is useful for our statements (a similar

definition exists in the SL2(R) case). For x, y ∈ U\G, let

x ? y :=

√
1

2
‖Ψ(x)−1E1,n+1Ψ(y)‖, (1.4)

12



where E1,n+1 is the (n + 1) × (n + 1) matrix with one in the (1, n + 1)-entry and zeros

everywhere else. For x ∈ U\G and g ∈ G, x ? xg measures the difference between the U

components of the Iwasawa decomposition of x and xg. More specifically, it measures the

(1, n+ 1) component of g.

For L ⊆ G, define

LT := {g ∈ L : ‖g‖ ≤ T}

and recall that

BU(T ) := {ut ∈ U : ‖t‖ ≤ T},

where ‖t‖ denotes the max norm of t ∈ Rn−1. Let πU : G → U\G denote the natural

projection map.

We will be interested in the following quantity:

I(ϕ, T, x) :=

∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p). (1.5)

Here, ϕ is a function on U\G, x ∈ U\G, T > 0, µPS denotes the PS measure, fully defined

in §3.1, and ν is defined in §3.3.

For two functions of T , a(T ), b(T ), we write

a(T ) ∼ b(T ) ⇐⇒ lim
T→∞

a(T )

b(T )
= 1.

We can now state a qualitative version of our ratio theorem. We emphasize to the

reader that Assumption 1.1.2 is not required for this result.
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Theorem 1.3.2. Let Γ be geometrically finite. For any ϕ ∈ Cc(U\G) and every x ∈ U\G

such that Ψ(x)− ∈ Λr(Γ), ∑
γ∈ΓT

ϕ(xγ) ∼ I(ϕ, T, x).

The notation g− for g ∈ G is defined in Chapter 3.

By the shadow lemma, Proposition 3.2.1, we obtain the following corollary of

Theorem 1.3.2 , which will in turn imply Proposition 1.3.1:

Corollary 1.3.3. Assume that Γ is convex cocompact. For any ϕ ∈ Cc(U\G) and every

x ∈ U\G such that Ψ(x)− ∈ Λ(Γ), as T →∞,

1

T δΓ/2

∑
γ∈ΓT

ϕ(xγ) �
∫
P

ϕ(πU(p))

(x ? πU(p))δΓ
dν(p),

where the implied constant depends on x and Γ.

Remark. The proof also works for Γ geometrically finite when the geodesic of Ψ(x)Γ is

bounded. We must then assume that Ψ(x)− ∈ Λr(Γ). J

Theorem 1.3.4. Assume that Assumption 1.1.2 holds. For any 0 < ε < 1, there exist

` = `(Γ) ∈ N and κ = κ(Γ, ε) satisfying: for every ϕ ∈ C∞c (U\G) and for every x ∈ U\G

such that Ψ(x)Γ is ε-Diophantine, and for all T �Γ,suppϕ,x 1,∣∣∣∣∣∣
∑

γ∈ΓT
ϕ(xγ)∫

P
µPS

Ψ(x)Γ

(
BU

( √
T

x?πU (p)

))
ϕ(πU(p))dν(p)

− 1

∣∣∣∣∣∣
�Γ,suppϕ,x T

−κ (1 + S`(ϕ)ν(ϕ ◦ πU)−1
)
.

14



The dependencies in this statement are quite explicit. The dependence of T on x

in Theorem 1.3.4 arises from the constant in Lemma 7.0.2, which is explicitly defined in

that proof, and the precise Diophantine nature of x, through Theorem 1.2.2 (i.e. the ε

and s0 that appear in Definition 1.1.3). The implied dependence on x in the conclusion

is discussed at the end of section Chapter 8.

If the support of the function is small enough, then we can get a more explicit

estimate, showing that this is a sort of ergodic theorem:

For x ∈ U\G and a compact set H ⊂ U\G, let R(H, x) := max
y,z∈H

x?y
x?z
.

Theorem 1.3.5. Assume that Assumption 1.1.2 holds. For any 0 < ε < 1, there exist

` = `(Γ) ∈ N and κ = κ(Γ, ε) satisfying: for every x ∈ U\G such that Ψ(x)Γ is ε-

Diophantine and every compact Ω ⊂ G, there exists T0 = T0(x,Ω) so that for every T ≥

T0, there exists η = η(T, `, κ, n,Ω) > 0 such that if ϕ ∈ C∞c (U\G) with Ψ(suppϕ) ⊆ Ω

and satisfies R(suppϕ, x)− 1 < η, then for every y ∈ suppϕ,∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣�Γ,Ω,x S`(ϕ)T−κ.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we discuss under what

conditions Assumption 1.1.2 is known to hold. In Chapter 3, we set out notation used in

the article, and define the measures we will be using, along with proving some important

facts about them. In Chapter 4, we prove quantitative nondivergence of horospherical
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orbits of Diophantine points, which is needed in the following chapters. In Chapter 5, we

control the PS measure of the boundary of a set by proving Theorem 1.2.4. In Chapter

6, we use Margulis’ “thickening trick” to prove Theorem 1.2.3 and an analogous result

for the Haar measure, which are key in the proofs of Theorems 1.2.1 and 1.2.2, which

are also contained in this chapter. Theorems 1.2.1 and 1.2.2 also rely on quantitative

nondivergence.

In Chapter 7, we begin the study of the distribution of the orbits of Γ acting on

U\G. Specifically, in this chapter, we explore the duality between Γ orbits on U\G and of

U orbits on G/Γ, and prove key lemmas that are common to the proofs of both Theorems

1.3.2 and 1.3.4. We also use a thickening argument, inspired by Ledrappier, to reduce the

problem to that of equidistribution of U orbits on G/Γ. In Chapter 8, we prove Theorem

1.3.2, using the equidistribution theorem of Mohammadi and Oh, Theorem 1.1.1. In this

chapter, we also prove Theorem 1.3.4 using Theorem 1.2.2. In Chapter 9, we consider

two specific examples, and prove Proposition 1.3.1. Finally, several technical details of

the proof of Theorem 1.2.4 are in the appendix, Chapter 10.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported

in part by the National Science and Engineering Research Council of Canada (NSERC)
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PGSD3-502346-2017 during this work.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Distribution of orbits of geometrically finite

groups acting on null vectors”, arXiv:2009.11968. The dissertation author was one of the

primary investigators and authors of this paper.
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Chapter 2

Known Exponential Mixing Results

We will assume the existence of an exponential mixing result in the proofs of our

main theorems (see Assumption 1.1.2). In this section we elaborate on the conditions

under which such a result is known. Here we assume that Γ is a Zariski dense discrete

subgroup of G.

There is a natural action of G on Hn and ∂Hn, the hyperbolic n-space and its

boundary, respectively. Let Λ(Γ) ⊆ ∂(Hn) denote the limit set of X, i.e., the set of all

accumulation points of Γz for some z ∈ Hn ∪ ∂(Hn). The convex core of X is the image

in X of the minimal convex subset of Hn which contains all geodesics connecting any two

points in Λ(Γ). We say that Γ is convex cocompact if the convex core of Hn/Γ is compact,

and geometrically finite if a unit neighborhood of the convex core of Γ has finite volume.

For Γ convex cocompact, Assumption 1.1.2 was proved by Sarkar and Winter in

[SW20, Theorem 1.1].
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Fix a point wo ∈ T1(Hn) and denote M = StabG(wo). Denote by Ĝ and M̂ the

unitary dual of G and M , respectively. A representation (π,H) ∈ Ĝ is called tempered if

for anyK-finite v ∈ H, the associated matrix coefficient function g 7→ 〈π(g)v, v〉 belongs to

L2+ε(G) for any ε > 0, and non-tempered otherwise. The non-tempered part of Ĝ consists

of the trivial representation, and complementary series representations U(v, s − n + 1)

parameterized by v ∈ M̂ and s ∈ Iv, where Iv ⊆ (n−1
2
, n− 1) is an interval depending on

v (see Hirai [Hir62]).

Definition 2.0.1. The space L2(X) has a spectral gap if there exist n−1
2
< s0 = s0(Γ) <

δ and n0 = n0(Γ) ∈ N such that

1. the multiplicity of U(v, δΓ − n+ 1) contained in L2(X) is at most dim(v)n0 for any

v ∈ M̂ ;

2. L2(X) does not weakly contain any U(v, s− n+ 1) with s ∈ (s0, δ) and v ∈ M̂ .

J

According to [MO15, Theorem 3.27], if δΓ >
n−1

2
for n = 2, 3, or if δΓ > n− 2 for

n ≥ 4, then L2(X) has a spectral gap. If δΓ ≤ n−1
2

, then there is no spectral gap, but it

was conjectured that whenever δΓ >
n−1

2
, L2(X) has a spectral gap (see [MO15]). Note

that if there are cusps of maximal rank n− 1, it follows that δΓ >
n−1

2
.

For Γ geometrically finite such that L2(X) has a spectral gap and δΓ > n−1
2

,

Mohammadi and Oh stated in [MO15, Theorem 1.6] an exponential mixing result similar

to Assumption 1.1.2. In their statement the constant c depends on Γ and the support of
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the functions. The dependence on the support of the functions arises in the last part of

the proof (see [MO15, §6.3]), and can be omitted by using the following lemma (the BR-

measure is defined in §3.3). Thus, we see that a result of the form needed in Assumption

1.1.2 holds in this case.

Lemma 2.0.2. If δ > (n− 1)/2, then there exists c = c(Γ) > 0 such that any B ⊂ X of

diameter smaller than 1 satisfies

mBR(B) ≤ c.

Proof. For any g ∈ G denote

Φ0(g) = |νg(o)|,

where o is the projection of wo onto Hn and for any x ∈ Hn, νx is the Patterson-Sullivan

density defined in §3.1. Since Φ0 is Γ-invariant, it can be considered as a smooth function

on X. Moreover, by assuming B contains K = StabG(o) and using the Cauchy Schwartz

inequality, we get

mBR(B) =

∫
B

Φ0(g)dmHaar(g)

≤
√
dmHaar(B) ‖Φ0‖2

� ‖Φ0‖2 .

According to [Sul79, §7] and by the assumption δ > (n − 1)/2, we have that φ0 ∈

L2(X).
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This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported

in part by the National Science and Engineering Research Council of Canada (NSERC)

PGSD3-502346-2017 during this work.

21



Chapter 3

Notation and Preliminaries

Recall that G = SO(n, 1)◦ and Γ ⊆ G is a geometrically finite Kleinian subgroup

of G. Denote

X := G/Γ.

G acts transitively on Hn, the hyperbolic n-space. Fix a reference point o ∈ Hn

and let K = StabG(o), then K\G = Hn. Let π : G→ Hn be the projection

π(g) = g(o). (3.1)

We will abuse notation and also write π for the induced map from G/Γ to Hn/Γ. For

convenience, we will assume throughout the paper that we have chosen o so that oΓ ∈

π(C0), where C0 is defined in §3.2. This says that oΓ is in the convex core of Hn/Γ.

Let d denote the left G-invariant metric on G which induces the hyperbolic metric

on K\G = Hn.
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Recall that Λ(Γ) ⊆ ∂(Hn) denotes the limit set of Γ, which is the set of accumu-

lation points of the Γ orbit of o. We denote the Hausdorff dimension of Λ(Γ) by δΓ. It is

equal to the critical exponent of Γ (see [Pat88]).

We say that a limit point ξ ∈ Λ(Γ) is radial if there exists a compact subset of

X so that some (and hence every) geodesic ray toward ξ has accumulation points in that

set. An element g ∈ G is called parabolic if the set of fixed points of g in ∂(Hn) is a

singleton. We say that a limit point is parabolic if it is fixed by a parabolic element of Γ.

A parabolic limit point ξ ∈ Λ(Γ) is called bounded if the stabilizer Γξ acts cocompactly

on Λ(Γ)− {ξ}.

We denote by Λr(Γ) and Λbp(Γ) the set of all radial limit points and the set of all

bounded parabolic limit points, respectively. By [Bow93], since Γ is geometrically finite,

we have that

Λ(Γ) = Λr(Γ) ∪ Λbp(Γ).

Fix wo ∈ T1(Hn) and let M = StabG(wo) so that T1(Hn) may be identified with

M\G. For w ∈ T1(Hn),

w± ∈ ∂Hn

denotes the forward and backward endpoints of the geodesic w determines. For g ∈ G,

we define

g± := w±o g.

Without loss of generality, we may assume that w±o ∈ Λ(Γ), and hence every γ ∈ Γ will

satisfy γ± ∈ Λ(Γ).
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Let A = {as : s ∈ R} be a one parameter diagonalizable subgroup such that M

and A commute, and such that the right at action on M\G = T1(Hn) corresponds to unit

speed geodesic flow. We parametrize A by A = {as : s ∈ R}, where

as =


es

I

e−s

 (3.2)

and I denotes the (n− 1)× (n− 1) identity matrix, and parametrize M by

M =




1

m

1

 : m ∈ SO(n− 1)


.

Let U denote the expanding horospherical subgroup

U = {g ∈ G : a−sgas → e as s→ +∞} ,

let Ũ be the contracting horospherical subgroup

Ũ = {g ∈ G : asga−s → e as s→ +∞} ,

and let P = MAŨ be the parabolic subgroup.

The group U is a connected abelian group, isomorphic to Rn−1. We may use the

parametrization t 7→ ut so that for any s ∈ R,

asuta−s = uest. (3.3)

Similarly, we parametrize Ũ by t 7→ vt ∈ Ũ so that for s ∈ R,

asvta−s = ve−st. (3.4)
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More explicitly, if t ∈ Rn−1 is viewed as a row vector,

ut =


1 t 1

2
‖t‖2

I tT

1

 (3.5)

and

vt =


1

tT I

1
2
|t|2 t 1

 .

For a subset H of G and η > 0, Hη denotes the closed η-neighborhood of e in H,

i.e.

Hη = {h ∈ H : d(h, e) ≤ η} .

For any r > 0 let

BU(r) = {ut : ‖t‖ ≤ r} and BŨ(r) = {vt : ‖t‖ ≤ r} ,

where ‖t‖ is the sup-norm of t ∈ Rn−1.

Lemma 3.0.1. For 0 < η < 1/4 and p ∈ Pη, there exists ρp : BU(1) → BU(1 + O(η))

that is a diffeomorphism onto its image and a constant D = D(η) < 3η such that

utp
−1 ∈ PDuρp(t).

Explicitly, if p = asvr, then ρp(t) =
t + 1

2
‖t‖2r

es(1− (t · r) + 1
4
‖r‖2‖t‖2)

.
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Proof. For s ∈ R and r ∈ Rn−1, let p = asvr. Then p−1 =


e−s

−e−srT I

1
2
e−s‖r‖2 −r es

 , so

utp
−1 =


e−s(1− (t · r) + 1

4
‖r‖2‖t‖2) t− 1

2
‖t‖2r 1

2
es‖t‖2

−e−srT + 1
2
e−s‖r‖2tT I − tT r estT

1
2
e−s‖r‖2 −r es

 .

Now, if p′ = as′vr′ , we obtain that

p′ut′ =


es
′

es
′
t′ 1

2
es
′‖t′‖2

r′T r′T t′ + I 1
2
‖t′‖2r′T + t′T

1
2
e−s

′‖r′‖2 1
2
e−s

′‖r′‖2t′ + e−s
′
r′ e−s

′
(1

4
‖r′‖2‖t′‖2 + (r′ · t′) + 1)

 .

We wish to solve for t′.

Setting entries equal yields

t +
1

2
‖t‖2r = es

′
t′

and

es
′
= e−s

(
1− (t · r) +

1

4
‖r‖2‖t‖2

)
. (3.6)

Combining these implies that

t′ =
t + 1

2
‖t‖2r

es(1− (t · r) + 1
4
‖r‖2 ‖t‖2)

.

We define ρp(t) to be this quantity. One can directly check that it satisfies the claim.
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3.1 Patterson-Sullivan and Lebesgue Measures

A family of finite measures {µx : x ∈ Hn} on ∂(Hn) is called a Γ-invariant

conformal density of dimension δµ > 0 if for every x, y ∈ Hn, ξ ∈ ∂(Hn) and γ ∈ Γ,

γ∗µx = µxγ and
dµy
dµx

(ξ) = e−δµβξ(y,x), (3.7)

where γ∗µx(F ) = µx(Fγ) for any Borel subset F of ∂(Hn).

We let {νx}x∈Hn denote the Patterson-Sullivan density on ∂Hn, that is, the unique

(up to scalar multiplication) conformal density of dimension δΓ.

For each x ∈ Hn, we denote by mx the unique probability measure on ∂(Hn)

which is invariant under the compact subgroup StabG(x). Then {mx : x ∈ Hn} forms

a G-invariant conformal density of dimension n − 1, called the Lebesgue density. Fix

o ∈ Hn.

For x, y ∈ Hn and ξ ∈ ∂(Hn), the Busemann function is given by

βξ(x, y) := lim
t→∞

d(x, ξt)− d(y, ξt)

where ξt is a geodesic ray towards ξ.

For g ∈ G, we can define measures on Ug using the conformal densities defined

previously. The Patterson-Sullivan measure (abbreviated as the PS-measure):

dµPS
Ug(utg) := eδΓβ(utg)

+ (o,utg(o))dνo((utg)+), (3.8)

and the Lebesgue measure

µLeb
Ug (utg) := e(n−1)β(utg)

+ (o,utg(o))dmo((utg)+).
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We similarly define the opposite PS measure on Ũg:

dµPS−
Ũg

(vtg) := eδΓβ(vtg)
− (o,vtg(o))dνo((vtg)−). (3.9)

The conformal properties of mx and νx imply that these definitions are independent

of the choice of o ∈ Hn.

We often view µPS
Ug as a measure on U via

dµPS
g (t) := dµPS

Ug(utg),

and similarly for µPS−
Ũg

on Ũ . For g ∈ G, s ∈ R, and E ⊆ U a Borel subset (or E ⊆ Ũ for

µPS−), these measures satisfy:

µLeb
g (E) = e(n−1)sµLeb

a−sg(a−sEas), (3.10)

µPS
g (E) = eδΓsµPS

a−sg(a−sEas), (3.11)

µPS−
g (E) = eδΓsµPS−

asg (asEa−s). (3.12)

In particular,

µPS
g (BU(es)) = eδΓsµPS

a−sg(BU(1)) and µPS−
g (BU−(es)) = eδΓsµPS−

asg (BU(1)).

The measure

dµLeb
Ug (utg) = dµLeb

U (ut) = dt

is independent of the orbit Ug and is simply the Lebesgue measure on U ≡ Rn−1 up to a

scalar multiple.

We will need the following fundamental results, which are stated for µPS and U ,

but also hold if we replace them with µPS− and Ũ .
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Lemma 3.1.1. The map g 7→ µPS
g is continuous, where the topology on the space of

regular Borel measures on U is given by µn → µ ⇐⇒ µn(f)→ µ(f) for all f ∈ Cc(U).

Proof. This is clear from the definition of the PS measure, since it is defined using the

Busemann function and stereographic projection.

Corollary 3.1.2. For any compact set Ω ⊆ G and any r > 0,

0 < inf
g∈Ω,g+∈Λ(Γ)

µPS
g (BU(r)g) ≤ sup

g∈Ω,g+∈Λ(Γ)

µPS
g (BU(r)g) <∞.

To define the PS measure on Ux for x ∈ X, note that

if x− ∈ Λr(Γ), then u 7→ ux is injective, (3.13)

and we can define the PS measure on Ux ⊆ X, denoted µPS
x , simply by pushforward of

µPS
g , where x = gΓ. In general, defining µPS

x requires more care, see e.g. [MO16, §2.3] for

more details. As before, we can view µPS
x as a measure on U via

dµPS
x (t) = dµPS

x (utx).

3.2 Thick-thin Decomposition and the Height Func-

tion

There exists a finite set of Γ-representatives ξ1, . . . , ξq ∈ Λbp(Γ). For i = 1, . . . , q,

fix gi ∈ G such that g−i = ξi, and for any R > 0, set

Hi(R) :=
⋃
s>R

Ka−sUgi, and Xi(R) := Hi(R)Γ (3.14)
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(recall, K = StabG(o)). Each Hi(R) is a horoball of depth R.

The rank of Hi(R) is the rank of the finitely generated abelian subgroup Γξi =

StabΓ(ξi). We say that the cusp has maximal rank if rank Γξ = n − 1. It is known that

each rank is strictly smaller than 2δΓ.

We denote

suppmBMS :=
{
gΓ ∈ X : g± ∈ Λ(Γ)

}
.

(For now, this is simply notation. The measure mBMS will be defined in the next section,

and this set is its support. It projects onto the convex core of Hn/Γ.) Note that the

condition g± ∈ Λ(Γ) is independent of the choice of representative of x = gΓ in the above

definition, because Λ(Γ) is Γ-invariant. Thus, the notation x± ∈ Λ(Γ) is well-defined,

even though x± itself is not.

According to [Bow93], there exists R0 ≥ 1 such that X1(R0), . . . ,Xq(R0) are dis-

joint, and for some compact set C0 ⊂ G/Γ,

suppmBMS ⊆ C0 t X1(R0) t · · · t Xq(R0).

For 1 ≤ i ≤ q and R ≥ R0, denote

X (R) := X1(R) t · · · t Xq(R), C(R) := suppmBMS −X (R).

We will need a version of Sullivan’s shadow lemma, obtained by Maucourant and

Schapira (see Proposition 5.1 and Remark 5.2 in [MS14]).
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Proposition 3.2.1. There exists a constant λ = λ(Γ) ≥ 1 such that for all x ∈ suppmBMS

and all T > 0, we have

λ−1T δΓe(k1(x,T )−δΓ)d(π(C0),π(a− log T x)) ≤ µPS
x (BU(T )) (3.15)

≤ λT δΓe(k1(x,T )−δΓ)d(π(C0),π(a− log T x)) (3.16)

and

λ−1T δΓe(k2(x,T )−δΓ)d(π(C0),π(alog T x)) ≤ µPS−
x (BŨ(T )) (3.17)

≤ λT δΓe(k2(x,T )−δΓ)d(π(C0),π(alog T x)),

where k1(x, T ) is the rank of Xi(R0) if a− log Tx ∈ Xi(R0) for some 1 ≤ i ≤ ` and equals 0

if a− log Tx ∈ C0, and k2(x, T ) is defined analogously for alog Tx. Recall the definition of π

from (3.1) as the projection from G to Hn.

Remark. When Γ is convex cocompact, C0 = suppmBMS, and the shadow lemma simplifies

to

λ−1T δΓ ≤ µPS
x (BU(T )) ≤ λT δΓ .

J

Definition 3.2.2. For x ∈ G/Γ, we define the height of x by

height(x) = d(π(C0), π(x)), (3.18)

where π : G/Γ→ Hn/Γ is the projection map as in (3.1), recalling that Hn/Γ ∼= K\G/Γ.

J
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Lemma 3.2.3. For any x ∈ suppmBMS and R ≥ R0, we have that

x ∈ C(R) ⇐⇒ height(x) ≤ R−R0.

Proof. The claim follows from the disjointness of Xi(R0), 1 ≤ i ≤ q from C0, and the fact

that Xi(R) ⊆ Xi(R0):

If x ∈ C(R), then either x ∈ C0, in which case height(x) = 0 and we are done, or

x ∈ Xi(R0). Assume the latter, then the Busemann function between x and the boundary

of Xi(R0) (which intersects C0) is at most R−R0. Thus, we may deduce the claim in this

case.

Next, assume x ∈ Xi(R) for some i. The Busemann function between two points in

different horoballs is at least R−R0. Since a point from Xi(R) cannot go into C0 without

passing through Xi(R0), this is a lower bound for the distance between the base points,

i.e. the height.

Corollary 3.2.4. Let x ∈ G/Γ be (ε, s0)-Diophantine. Then

height(x) < (2− ε)s0.

Proof. By Definition 1.1.3,

d(C0, a−s0x) < (1− ε)s0.
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Hence, we have that

height(x) ≤ d(C0, x)

< d(C0, a−s0x) + d(a−s0x, x)

< (1− ε)s0 + s0.

The injectivity radius at x ∈ X is defined to be the supremum over all ε > 0 such

that the map

h 7→ hx is injective on Gε.

We denote the injectivity radius at x by

inj(x).

The injectivity radius of a set Ω is defined to be

inf
x∈Ω

inj(x).

By the proof of [MO20, Proposition 6.7], there exists a constant σ = σ(Γ) > 0

such that for all x ∈ suppmBMS,

σ−1 inj(x) ≤ e− height(x) ≤ σ inj(x). (3.19)

The following fact is well-known, but we include a proof for completion.

33



Lemma 3.2.5. There exists T0 = T0(Γ) > 0 which satisfies the following. Let x ∈ G/Γ

with x− ∈ Λ(Γ), and let R > 0 be such that d(C0, x) < R. Then there exists t ∈ BU(2(R+

T0)) such that

(utx)± ∈ Λ(Γ).

In particular, for every 0 < ε < 1, s0 ≥ 1, and (ε, s0)-Diophantine point x, there exists

|t| �Γ s0 such that

(utx)± ∈ Λ(Γ).

Proof. Let g, h′ ∈ G be such that x = gΓ, h′− = g−, h′Γ ∈ KC0, and

d(g, h′) ≤ height(x) < R.

Since KC0 is a compact set, by [MO16, Lemma 3.3], there exists a constant T0, which

only depends on C0 (i.e., on Γ) such that for some t ∈ BU(T0),

(uth
′)± ∈ Λ(Γ).

Fix h := uth
′ and observe that

d(g, h) < R + T0. (3.20)

We must flow hΓ with an element of A so that it lies on Ux.

Because h− = g−, if s = βg−(h, g), then

ash ∈ Ug.
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Since βg−(h, g) ≤ d(h, g), we arrive at

d(g, ash) ≤ d(g, h) + d(h, ash)

≤ 2d(g, h)

≤ 2 (R + T0) .

For (ε, s0)-Diophantine x, observe that

d(C0, x) ≤ d(C0, a−s0x) + d(a−s0 , x)

< (1− ε)s0 + s0

< 2s0,

so we see that R = 2s0 works for all such points.

3.3 Bowen-Margulis-Sullivan and Burger-Roblin Mea-

sures

Recall π : G→ Hn from (3.1). In this section, we will abuse notation and write π

for the restriction of π to T1(Hn) ∼= M\G. Recalling the fixed reference point o ∈ Hn as

before, the map

w 7→ (w+, w−, s := βw−(o, π(w)))

is a homeomorphism between T1(Hn) and

(∂(Hn)× ∂(Hn)− {(ξ, ξ) : ξ ∈ ∂(Hn)})× R.
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This homeomorphism allows us to define the Bowen-Margulis-Sullivan (BMS) and

Burger-Roblin (BR) measures on T1(Hn), denoted by m̃BMS and m̃BR respectively:

dm̃BMS(w) := eδΓβw+ (o,π(w))eδΓβw− (o,π(w))dνo(w
+)dνo(w

−)ds,

dm̃BR(w) := e(n−1)βw+ (o,π(w))eδΓβw− (o,π(w))dmo(w
+)dνo(w

−)ds.

The conformal properties of {νx} and {mx} imply that these definitions are in-

dependent of the choice of o ∈ Hn. Using the identification of T1(Hn) with M\G, we

lift the above measures to G so that they are all invariant under M from the left. By

abuse of notation, we use the same notation (m̃BMS and m̃BR). These measures are left

Γ-invariant, and hence induce locally finite Borel measures on X, which are the Bowen-

Margulis-Sullivan measure mBMS and the Burger-Roblin measure mBR, respectively.

Note that

suppmBMS :=
{
x ∈ X : x± ∈ Λ(Γ)

}
and

suppmBR =
{
x ∈ X : x− ∈ Λ(Γ)

}
.

Recall P = MAŨ , which is exactly the stabilizer of w+
o in G. We can define

another measure ν on Pg for g ∈ G, which will give us a product structure for m̃BMS and

m̃BR that will be useful in our approach. For any g ∈ G define

dν(pg) := eδΓβ(pg)− (o,pg(o))dνo(w
−
o pg)dmds, (3.21)

on Pg, where s = β(pg)−(o, pg(o)), p = mav ∈ MAŨ and dm is the probability Haar

measure on M .
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Then for any ψ ∈ Cc(G) and g ∈ G, we have

m̃BMS(ψ) =

∫
Pg

∫
U

ψ(utpg)dµPS
pg (t)dν(pg), (3.22)

and

m̃BR(ψ) =

∫
Pg

∫
U

ψ(utpg)dtdν(pg). (3.23)

Lemma 3.3.1. There exists a constant λ = λ(Γ) > 1 such that for all g ∈ supp m̃BMS

and all 0 < ε < inj(g), we have

λ−1εδΓ+ 1
2

(n−1)(n−2)+1e(k2(x,ε)−δΓ)d(π(C0),π(alog εx))

≤ ν(Pεg)

≤ λεδΓ+ 1
2

(n−1)(n−2)+1e(k2(x,ε)−δΓ)d(π(C0),π(alog εx)),

where x = gΓ, and k2(x, ε) is as defined in Proposition 3.2.1.

Proof. Let x = gΓ. By Proposition 3.2.1, there exists λ̃ > 1 such that for all such ε,

λ̃−1εδΓe(k2(x,ε)−δΓ)d(π(C0),π(alog εx)) ≤ µPS−
g (BŨ(ε)) ≤ λ̃εδΓe(k2(x,ε)−δΓ)d(π(C0),π(alog εx)) (3.24)

From (3.21), if m denotes the probability Haar measure on M we then have

ν(Pεg) ≤
∫
Aε

∫
Mε

µPS−
g (BŨ(ε))dmds

≤ Cλ̃εδΓ+ 1
2

(n−1)(n−2)+1e(k2(x,ε)−δΓ)d(π(C0),π(alog εx)),

where C is determined by the scaling of the probability Haar measures on A and M .

The lower bound follows similarly. Then, λ = max{Cλ̃, λ̃} satisfies the conclusion of the

lemma.

37



3.4 Admissible Boxes and Smooth Partitions of Unity

Recall that for η > 0 we denoted by Gη the closed η-neighborhood of e in G. For

x ∈ X and η1 > 0, η2 ≥ 0 less than inj(x), we call

B = BU(η1)Pη2x

an admissible box (with respect to the PS measure) if B is the injective image of BU(η1)Pη2

in X under the map h 7→ hx and

µPS
px (BU(η1)px) 6= 0

for all p ∈ Pη2 . For g ∈ G, we say that B = BU(η1)Pη2g is an admissible box if B =

BU(η1)Pη2gΓ is one.

Note that if BU(η1)Pη2g is an admissible box, then there exists ε > 0 such that

BU(η1 + ε)Pη2+εg is also an admissible box. Moreover, every point has an admissible box

around it by [OS13, Lemma 2.17].

The error terms in our main theorems are in terms of Sobolev norms, which we

define here. For ` ∈ N, 1 ≤ p ≤ ∞, and ψ ∈ C∞(X) ∩ Lp(X) we consider the following

Sobolev norm

Sp,`(ψ) =
∑
‖Uψ‖p

where the sum is taken over all monomials U in a fixed basis of g = Lie(G) of order at

most `, and ‖·‖p denotes the Lp(X)-norm. Since we will be using S2,` most often, we set

S` = S2,`.
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Our proofs will require constructing smooth indicator functions and partitions of

unity with controlled Sobolev norms. We prove such lemmas below.

Lemma 3.4.1 ([KM96, Lemma 2.4.7]).

1. Let X, Y be Riemannian manifolds, and let ϕ ∈ C∞c (X), ψ ∈ C∞c (Y ). Consider

ϕ · ψ as a function on X × Y . Then

S`(ϕ · ψ) ≤ c(X, Y )S`(ϕ)S`(ψ),

where c(X, Y ) is a constant depending only on X and Y (independent of ϕ, ψ).

2. Let X be a Riemannian manifold of dimension N and let x ∈ X. Then for any

0 < r < 1, there exists a non-negative function f ∈ C∞c (X) such that supp(f) is

contained in the ball of radius r centered at x,
∫
X
f = 1, and

S`(f) ≤ c(X, x)r−`+N/2,

where c(X, x) is a constant depending only on X and x, not r.

Lemma 3.4.2. Let H be a horospherical subgroup of G (that is, U or Ũ). For every

ξ1, ξ2 > 0 and g ∈ G, there exists a non-negative smooth function χξ1,ξ2 defined on Hξ1+ξ2g

such that 0 ≤ χξ1,ξ2 ≤ 1, S`(χξ1,ξ2)�n,Γ ξ
n−1
1 ξ

−`−(n−1)/2
2 , and

χξ1,ξ2(h) =


0 if h 6∈ Hξ1+ξ2g

1 if h ∈ Hξ1−ξ2g

.
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Proof. According to Lemma 3.4.1(2), there exists c1 = c1(n) > 0 such that for every

ξ > 0, there exists a non-negative smooth function σξ defined on Hξ such that∫
H

σξ(h)dmHaar(h) = 1, S`(σξ) < c1ξ
−`−(n−1)/2. (3.25)

For g ∈ Ω, let χξ1,ξ2 = 1Hξ1g ∗ σξ2 . Then for any h ∈ H, we have 0 ≤ χξ1,ξ2(h) ≤ 1

and

χξ1,ξ2(h) =


0 if h /∈ Hξ1+ξ2g

1 if h ∈ Hξ1−ξ2g

Since for some c2 = c2(Γ) > 0

S1,0(1Hξ1g0) = mHaar(Hξ1) < c2ξ1
n−1,

by the properties of the Sobolev norm and (3.25) we arrive at

S`(χξ1,ξ2) ≤ S1,0(1Hξ1g0)S`(σξ2) < c1c2ξ1
n−1ξ2

−`−(n−1)/2.

Lemma 3.4.3. Let H be a horospherical subgroup of G, r > 0, ` ∈ N, and let E ⊂ H be

bounded. Then, there exists a partition of unity σ1, . . . , σk of E in HrE, i.e.

k∑
i=1

σi(x) =


0 if x /∈ HrE

1 if x ∈ E,

such that for some u1, . . . , uk ∈ E and all 1 ≤ i ≤ k

σi ∈ C∞c (Hrui), S`(σi)�n r
−`+n−1.

Moreover, if there exists R > r such that E = HR, then k �n

(
R
r

)n−1
.
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Proof. Let {u1, . . . , uk} be a maximal r
4
-separated set in E. Then

E ⊆
k⋃
i=1

Hr/2ui. (3.26)

Let 1 ≤ i ≤ k. According to [H0̈3, Theorem 1.4.2] there exists χi ∈ C∞c (Hrui)

such that 0 ≤ χi ≤ 1, χi(u) = 1 for any u ∈ Hr/2ui, and for 1 ≤ m ≤ `

|χ(m)
i | � r−m (3.27)

(where the implied constant depends only on n). Let σi be defined by

σi = χi(1− χi−1) · · · (1− χ1).

Then, each σi ∈ C∞c (Hrui) and

1−
k∑
i=1

σi =
k∏
i=1

(1− χi) = 0 on
k⋃
i=1

Hrui

implies that
∑k

i=1 σi = 1 on
⋃k
i=1 Hr/2ui.

By the rules for differentiating a product and (3.27) for 1 ≤ m ≤ ` we have

|σ(m)
i | ≤ Cr−m,

where C is the multiplicity of the cover in (3.26). By Besicovitch covering theorem, C

is bounded by a constant which depends only on n. Using the definition of the Sobolev

norm we arrive at

S`(σi)�n r
−`+n−1.

Now, assume there exists R > r such that E = HR. Since the geometry of H is of

an Euclidean space of dimension dimH, we then have

k �n

(
R

r

)n−1

.
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Lemma 3.4.4. Let H be either U or G. There exists `′ = `′(H) > 0 such that for any

integer ` > `′, η > 0, H ∈ {U,G}, and f ∈ C∞c (H), there exist functions fη,± ∈ C∞c (H)

which are supported on an 2η neighborhood of supp f , and for any h ∈ H satisfy

1. fη,−(h) ≤ minw∈Hη f(wh) ≤ maxw∈Hη f(wh) ≤ fη,+(h)

2. |fη,±(h)− f(h)| �supp f ηS`(f)

3. S`(fη,±)�H,supp f η
−2`S`(f).

Proof. First, according to [Aub82], there exists `′ ∈ N such that any ` > `′ satisfies

S∞,1(ψ)�suppψ S`(ψ) for any ψ ∈ C∞c (H).

Let f ′η,± be defined by

f ′η,+(h) := sup
w∈Hη

f(wh) and f ′η,−(h) := inf
w∈Hη

f(wh)

for any h ∈ H.

As before, we use Lemma 3.4.1(2) to deduce that there exist c1 = c1(H) > 0,

n1 = n1(H) and a non-negative smooth function ση supported on Hη such that

∫
H

ση(h)dmHaar(h) = 1, S`(ση) < c1η
−`−n1 .

Define fη,± by

fη,± := f ′2η,± ∗ ση.
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Then, fη,± are smooth functions which are supported on an 2η neighborhood of supp f .

Moreover, for any for any h ∈ H

f ′η,+(h) =

∫
Hη

f ′η,+(h)ση(u
−1)dmHaar(u)

≤
∫
Hη

f ′2η,+(uh)ση(u
−1)dmHaar(u) by definition of f ′2η,+ (3.28)

= fη,+(h)

≤
∫
Hη

f ′3η,+(h)ση(u
−1)dmHaar(u) by (3.28) and definition of f ′3η,+

= f ′3η,+(h).

In a similar way, one can show

f ′3η,− ≤ fη,− ≤ f ′η,−,

proving the first inequality.

By the mean value theorem, for any h ∈ H, w ∈ H3η

|f(wh)− f(h)| � ηS∞,1(f)�supp f S`(f).

Since f ′3η,− ≤ fη,− ≤ fη,+ ≤ f ′3η,+, there exist some w+, w− ∈ H3η such that

|fη,±(h)− f(h)| ≤ |f(w±h)− f(h)| ,

and we have the second inequality.

Now, we have

S`(fη,±) ≤ S∞,1(f ′2η,±)S`(ση)�H,supp f S`(f)η−`−n1+1.

By choosing `′ > n1, we may deduce the last inequality.
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The results below will be necessary for our application to understanding the orbits

of a geometrically finite subgroup Γ ⊆ SO(n, 1)◦ acting on U\G. The following lemma is

an immediate consequence of the product rule.

Lemma 3.4.5. Let X be a Riemannian manifold and let ϕ, ψ ∈ C∞c (X). For any ` ∈ N,

S`(ϕ · ψ)�` S`(ϕ)S`(ψ).

Lemma 3.4.6. For any `′ there exists ` > `′ which satisfies the following. Let X, Y be

Riemannian manifolds, ϕ ∈ C∞c (X), and ψ : Y → X be a smooth function. Then

S`′(ϕ ◦ ψ)�`′,ψ S`(ϕ).

Proof. By the chain rule, such that for any 1 ≤ k ≤ `′,

∥∥(ϕ ◦ ψ)(k)
∥∥

2
�ψ,k

k∑
i=0

∥∥ϕ(k) ◦ ψ
∥∥

2

�ψ,k

k∑
i=0

∥∥ϕ(k)
∥∥
∞m

Haar(suppϕ)

�ψ,k S∞,`′(ϕ)mHaar(suppϕ)

�ψ,k S`(ϕ),

where in the last line, we have used [Aub82] to choose ` > `′ satisfying

S∞,`′(f)mHaar(supp f)� S`(f)

for any f , where the implied constant is global.
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Lemma 3.4.7. Let H be a Riemannian manifold of dimension N , 0 < r < 1, ` ∈ N,

and E a bounded subset of H. Then, there exists a partition of unity σ1, . . . , σk of E in

Hr(E) = {g ∈ G : dH(g, E) ≤ r} where dH denotes the Riemannian metric on H, i.e.

k∑
i=1

σi(x) =


0 if x /∈ Hr(E)

1 if x ∈ E,

such that for some u1, . . . , uk ∈ E and all 1 ≤ i ≤ k

σi ∈ C∞c (Hr(ui)), S`(σi)�N r−`+N/2.

Moreover,
k∑
i=1

S`(σi)�N,E r
−`+N/2.

Proof. According to Lemma 3.4.1(2) there exists a non-negative smooth function σ sup-

ported on Hr/2 such that∫
H

σ(h)dmHaar(h) = 1, S`(σ)�N r−`+N/2.

Since H is a Riemannian manifold and E is bounded, there exists a smooth parti-

tion of unity, fi : H → R, i = 1, . . . , k, such that each fi is supported on a ball of radius

r/2 with a center ui ∈ E and

k∑
i=1

fi(x) =


0 if x /∈ Hr(E)

1 if x ∈ Hr/2(E).

For i = 1, . . . , k define σi by

σi := fi ∗ σ.
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We will show that σ1, . . . , σk satisfy the claim.

By definition, for i = 1, . . . , k, σi is supported on a ball of radius r and centered

at a point in E. By Young’s convolution inequality, we have

S`(σi) ≤ S1,0(fi)S`(σ)�N r−`+N/2. (3.29)

For any h ∈ E, h−1E contains the identity, and so we have h−1Hr/2(E) ⊇ Hr/2.

Thus,

k∑
i=1

σi(h) =
k∑
i=1

∫
H

fi (x)σ(hx−1)dmHaar(x)

=

∫
H

k∑
i=1

fi (x)σ
(
hx−1

)
dmHaar(x)

=

∫
Hr(E)

σ
(
hx−1

)
dmHaar(x)

= 1.

If h /∈ Hr(E), then we have h−1Hr/2(E)∩Hr/2 = ∅. Hence, the above computation

yields
k∑
i=1

σi(h) = 0.

Note that by (3.29), and since fi is a partition of unity, we may also deduce

k∑
i=1

S`(σi) ≤ S`(σ)
k∑
i=1

S1,0(fi)

= S`(σ)

∫
H

k∑
i=1

fi(x)dmHaar(x)

≤ S`(σ)mHaar(Hr(E))

�N,E r
−`+N/2.
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Chapter 4

Quantitative Nondivergence

In this chapter, we prove a quantitative nondivergence result that is crucial in our

proofs. We use the notation established in §3.2. The results in this chapter hold for any

Γ that is geometrically finite, without need for Assumption 1.1.2.

Recall from Chapter 1 that for 0 < ε < 1 and s0 ≥ 1, we say that x ∈ X = G/Γ

is (ε, s0)-Diophantine if for all τ > s0,

d(C0, a−τx) < (1− ε)τ, (4.1)

where C0 is the compact set defined in §3.2. Let R0 and q also be as defined in §3.2.

This chapter is dedicated to the proof of the following theorem, which says (in a

quantitative way) that most of the U orbit of a Diophantine point is not in the cusp:

Theorem 4.0.1. There exists β > 0 satisfying the following: for every

0 < ε < 1 and s0 ≥ 1, and for every (ε, s0)-Diophantine element x ∈ X, every R ≥ R0,
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every T �Γ,ε s0, and every 0 < s ≤ T ε, we have

µPS
a− log sx

(BU(T/s)a− log sx ∩ X (R))�n,Γ µ
PS
a− log sx

(BU(T/s)a− log sx)e−βR.

We now follow the notation of Mohammadi and Oh in [MO20, §6]. Equip Rn+1

with the Euclidean norm. Recall from §3.2 that for 1 ≤ i ≤ q, g−i = ξi. Without loss of

generality, we may further assume that gi satisfies
∥∥g−1

i e1

∥∥ = 1. Let

vi = g−1
i e1.

Lemma 4.0.2. For any i = 1, . . . , q, Γvi is a discrete subset of Rn+1.

Proof. Since ξi is assumed to be a bounded parabolic limit point, by definition we have

that (Λ(Γ) \ {ξi})/Γξi = (Λ(Γ) \ {ξi})/Γvi is compact, where

Gvi = g−1
i MUgi and Γvi = Γ ∩Gvi .

If γ ∈ Γvi , then Hi(R0)γ = Hi(R0). Therefore, the visual map induces a home-

omorphism between Hi(R0)/Γvi and (∂Hn \ {ξi})/Γvi . It follows that the quotient of

{g+ ∈ Λ : g ∈ Hi(R0)} by the action of Γvi is compact. Using the Iwasawa decomposition,

it follows that there exists a compact set U0 ⊂ U such that for any g = kaugi ∈ Hi(R0)

such that g+ ∈ Λ(Γ), k ∈ K, a ∈ A, and u ∈ U , there exist γ ∈ Γvi , k
′ ∈ K, u′ ∈ U0 so

that gγ = k′au′gi.

Since ξi is assumed to be a parabolic limit point, there exists a parabolic element

γ0 ∈ Γξi , i.e. γ0 = g−1
i mugi.
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Assume by contradiction that there exists an infinite sequence {γj} ∈ Γ such that

{γjvi} converges to 0. Using the Iwasawa decomposition we get that for all j there exist

atj ∈ A, kj ∈ K, and uniformly bounded uj ∈ U such that γj = kjatjujgi. Since

‖γjvi‖ =
∥∥kjatjuje1

∥∥ = etj ,

we may deduce that tj → −∞. In particular, γj ∈ Hi(R0) for all large enough j.

We have

γjγ0γ
−1
j = (kjatjujgi)(g

−1
i mugi)(g

−1
i u−1

j a−1
tj
k−1
j )

= kjatjujmuu
−1
j a−1

tj
k−1
j .

Since ujmu
−1
j = mju

′
j ∈MU , with u′j uniformly bounded, and since M centralizes A, we

have

γjγ0γ
−1
j = kjmjatju

′
jua

−1
tj
k−1
j .

Since u′ju is in a bounded subset of U , we get that atju
′
jua

−1
tj → e as tj → − ∞.

Since K and M are compact, it then follows that the sequence γjγ0γ
−1
j has a convergent

subsequence. This contradicts the discreteness of Γ, since the γj’s were assumed to be

distinct.

For any g ∈ G, we have that gΓ ∈ Xi(R), if and only if there exists γ ∈ Γ such

that

‖gγvi‖ ≤ e−R. (4.2)
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Indeed, by the Iwasawa decomposition and (3.14), if gΓ ∈ Xi(R), then there exist γ ∈ Γ,

k ∈ K, s > R, and u ∈ U , such that

‖gγvi‖ = ‖ka−sugivi‖ = ‖a−sei‖ = e−s.

Moreover, it follows from [MO20, Lemma 6.4, Lemma 6.5] that the γ in (4.2) is unique.

Note that both lemmas are proved under the additional assumption that n = 3, but this

assumption is not needed in their proof.

On the other hand, by [MO20, Lemma 6.5] and Lemma 4.0.2, there exists a con-

stant η0 = η0(Γ) > 0 such that if gΓ /∈ Xi(R0), then for any γ ∈ Γ,

‖gγvi‖ > η0. (4.3)

Lemma 4.0.3. There exists c = c(Γ) > 0 which satisfies the following. Let ε, s0 > 0 and

let g ∈ G. If x = gΓ is (ε, s0)-Diophantine, then for any T �Γ,ε s0,

sup
‖t‖≤T

inf
γ∈Γ

inf
i=1,...,q

‖utgγvi‖ > cT ε. (4.4)

Proof. Fix T > T0 = max

{
s0, η

1
ε−1

0

}
. We will first show that

inf
γ∈Γ

inf
i=1,...,q

‖a− log Tgγvi‖ > cT ε−1, (4.5)

for some constant 1 > c = c(Γ) > 0.

There are two cases to consider. If a− log Tx /∈ Xi(R0), then (4.5) follows from (4.3)

and the choice of T .
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Otherwise, a− log Tx ∈ Xi(R) for some maximal R > R0. According to Lemma

3.2.3, we have

d(x, C0) ≥ R−R0.

Then, because x is (ε, s0) Diophantine and T > s0, by (4.1), we may deduce that

R−R0 < (1− ε) log T.

Hence, a− log Tx 6∈ Xi((1− ε) log T +R0), so (4.2) implies (4.5).

Now, fix γ ∈ Γ and 1 ≤ i ≤ q, and let
x1

...

xn+1

 = a− log Tgγvi.

According to (4.5), there exists 1 ≤ k ≤ n such that |xk| > cT ε−1. If |x1| > cT ε−1, then

it follows from the action of a− log T on Rn+1 that

‖gγvi‖ ≥ |cTx1| > cT ε.

Otherwise, there exists 2 ≤ k ≤ n such that |xk| > cT ε−1. Then, for any t ∈ Rn−1,

the first coordinate of uta− log Tgγvi is

x1 + t · x′ + 1

2
‖t‖2 xn+1, where x′ =


x2

...

xn

 .

In particular, by taking tk = ±T (the k-th entry in t) one can ensure that

‖alog Tuta− log Tgγvi‖ > cT ε.
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A measure µ is called D-Federer if for all v ∈ supp(µ) and 0 < η ≤ 1,

µ(B(v, 3η)) ≤ Dµ(B(v, η)).

It is proved in the appendix, Chapter 10, (specifically Corollary 10.1.4) that there exists

D = D(Γ) > 0 such that:

if x ∈ X satisfies x− ∈ Λ(Γ), then µPS
x is D-Federer. (4.6)

For f : Rd → R and B ⊂ R, let

‖f‖B := sup
x∈B
|f(x)|.

Recall that U ∼= Rn−1.

Lemma 4.0.4. Let y ∈ suppmBMS and let f : BU(η) → Rn−1 be such that there exists

b 6= 0 so that for every coordinate function fi : BU(η)→ R, there exist ai ∈ R, such that

fi(t) = ai + bti.

Then for 0 < η ≤ 1 and 0 < ε < 1, we have

µPS
y ({t ∈ BU(η) : ‖f(t)‖ < ε})�Γ

(
ε

‖f‖BU (η)

)σ

µPS
y (BU(η)), (4.7)

where ‖f(x)‖ denotes the max norm.

Proof. First, note that if ‖f‖BU (η) < 2ε, then the result holds by assuming that the

implied coefficient in (4.7) is bigger than 2σ: in this case, the right hand side is grater or
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equal to

2σ

(
ε

‖f‖BU (η)

)σ

µPS
y (BU(η)) ≥ 2σ

( ε
2ε

)σ
µPS
y (BU(η))

≥ µPS
y ({t ∈ BU(η) : ‖f(t)‖ < ε}) ,

as desired. Thus, we now assume that

‖f‖BU (η) ≥ 2ε. (4.8)

If ‖f(t)‖ ≥ ε for all t ∈ BU(η) such that (uty)+ /∈ Λ(Γ), then there is nothing

to prove. So assume that ‖f(t)‖ < ε and (uty)+ ∈ Λ(Γ). Since each fi is linear, for all

t′ ∈ BU(η) with ‖f(t′)‖ < ε we get that for all 1 ≤ i ≤ n− 1,

|fi(t′)| = |ai + bt′| < ε

|b(t′i − ti)| = |fi(t′)− fi(t)| < 2ε.

Therefore,

‖f(x)‖ < ε =⇒ x ∈ BU(2ε/b)z.

Thus, by (4.6), we have that there exists σ = σ(Γ) > 0 so that

µPS
y ({x ∈ BU(η)y : ‖f(x)‖ < ε}) ≤ µPS

z (BU(2ε/b))

�Γ

(
2ε

bη

)σ
µPS
z (BU(η))

�Γ

(
2ε

bη

)σ
µPS
y (BU(3η))

�Γ

(
6ε

bη

)σ
µPS
y (BU(η))
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Assuming ‖f(t)‖ < ε for some t ∈ BU(η) (otherwise, as before, there is nothing

to prove), for any t′′ ∈ BU(η) and 1 ≤ i ≤ n− 1 we have

|fi(t′′)| ≤ |fi(t′′)− fi(t)|+ |fi(t)| < 2bη + ε.

Thus, ‖f‖BU (η)y − ε ≤ 2bη, so by (4.8),

1

2
‖f‖BU (η) ≤ 2bη,

which completes the proof.

A function f which satisfies (4.7) with the implied constant C for any ε > 0 and

any ball B ⊂ U ⊂ Rm, is called (C, σ)-good on U with respect to µ. Observe that

if g is (C, σ)-good and if |g(x)| ≤ |f(x)| for µ-a.e. x, then f is (C, σ)-good. (4.9)

In the proof of the following theorem we use similar ideas to the ones which appear

in the proof of [KLW04, Lemma 5.2]. Note that the proof in this case is simplified by the

third assumption, reflecting our rank one setting.

Proposition 4.0.5. Given positive constants C, β,D, and 0 < η < 1, there exists C ′ =

C ′(C, β,D) > 0 with the following property. Suppose µ is a D-Federer measure on Rm,

f : Rm → SLk(R) is a continuous map, 0 ≤ % ≤ η, z ∈ suppµ, Λ ⊂ Rk, B = B(z, r0) ⊂

Rm, and B̃ = B(z, 3r0) satisfy:

1. For any v ∈ Λ, the function t 7→ ‖f(t)v‖ is (C, β)-good on B̃ with respect to µ.

2. For any v ∈ Λ, there exists t ∈ B such that ‖f(t)v‖ ≥ %.
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3. For any t ∈ B, there is at most one v ∈ Λ which satisfies ‖f(t)v‖ < η.

Then, for any 0 < ε < %,

µ ({t ∈ B : ∃v ∈ Λ such that ‖f(t)v‖ < ε}) ≤ C ′
(
ε

%

)β
µ(B).

Proof. For any t ∈ B, denote

fΛ(t) = min {‖f(t)v‖ : v ∈ Λ} .

Let

E = {t ∈ B : fΛ(t) < %} ∩ suppµ,

and for each v ∈ Λ, define

Ev = {t ∈ B : ‖f(t)v‖ < %} ∩ suppµ.

Observe that by assumption (3), the Ev’s are a disjoint cover of E. For each t ∈ Ev,

define

rt,v = sup{r : ‖f(s)v‖ < % for all s ∈ B(t, rt,v)}.

By assumption (2), we know that for every t ∈ E, the set B(t, rt,v) does not

contain B. Thus, since t ∈ B, we deduce that rt,v < 2r0. For any fixed rt,v < r′t,v < 2r0,

we have that

B(t, r′t,v) ⊂ B(z, 3r0) = B̃, (4.10)

and by the definition of rt,v, there exists s ∈ B(t, r′t,v) such that

‖f(s)v‖ ≥ %.

56



Note that {B(t, rt,v) : t ∈ E, v ∈ Λ} is a cover of E. By the Besicovitch covering

theorem, there exists a countable subset I ⊂ E × Λ such that {B(t, rt,v) : (t, v) ∈ I} is

a cover of E with a covering number bounded by a constant which only depends on m.

Thus, ∑
(t,v)∈I

µ (B(t, rt,v))�m µ

 ⋃
(t,v)∈I

B(t, rt,v)

 . (4.11)

By assumption (3) and the continuity of f , for any (t, v) ∈ I and s ∈ E∩B(t, rt,v),

fΛ(s) = ‖f(s)v‖ .

Thus,

µ ({s ∈ B(t, rt,v) : fΛ(s) < ε}) = µ ({s ∈ B(t, rt,v) : ‖f(s)v‖ < ε})

≤ µ
({

s ∈ B(t, r′t,v) : ‖f(s)v‖ < ε
})
.

Thus, assumption (1) and the assumption that µ is D-Federer together imply that

µ ({s ∈ B(t, rt,v) : fΛ(s) < ε}) ≤ µ
({

s ∈ B(t, r′t,v) : ‖f(s)v‖ < ε
})

≤ C

(
ε

%

)β
µ(B(t, r′t,v))

≤ CD

(
ε

%

)β
µ(B(t, rt,v)). (4.12)
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Since E covers the set of points for which fΛ is less than ε, we may now conclude

µ ({t ∈ B : fΛ(t) < ε})

≤
∑

(t,v)∈I

µ ({s ∈ B(t, rt,v) : fΛ(t) < ε})

≤ CD
∑

(t,v)∈I

(
ε

%

)β
µ(B(t, rt,v)) by (4.12)

�m CD

(
ε

%

)β
µ

 ⋃
(t,v)∈I

B(t, rt,v)

 by (4.11)

�m CD

(
ε

%

)β
µ
(
B̃
)

by (4.10)

�m CD2

(
ε

%

)β
µ (B) µ is D-Federer.

Remark. Fix x ∈ X such that x− ∈ Λ(Γ). Since the PS-measure µPS
x is supported on

Ux ∩ suppmBMS, it follows from Lemma 4.0.4 and (4.6) that Proposition 4.0.5 holds for

µPS
x and function f which satisfies the assumption of Lemma 4.0.4. J

We are now ready to prove Theorem 4.0.1.

Proof of Theorem 4.0.1. Let x0 = a− log sx, and fix g ∈ G such that x = gΓ. By Lemma

4.0.3, for all T �Γ,ε s0, we have (4.4), that is, that

sup
‖t‖≤T

inf
γ∈Γ

inf
i=1,...,q

‖utgγvi‖ > T ε.

Let f : Rn−1 → SLn+1(R) be defined by

f(t) = uta− log sg.
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We first show that parts (1), (2), and (3) of Proposition 4.0.5 for µ = µPS
x0

, f , % = 1,

z = x0, r = T/s, η = e−R0 , and

Λ = Γ {v1, . . . , vq} .

Note that 0 /∈ Λ.

It follows from the action of ut on Rn+1 that for any v ∈ Rn+1 there exists v′ =

(v′1, . . . , v
′
n+1)T ∈ Rn+1 such that

f(t)v =

(
v′1 + t · v′′ + 1

2
‖t‖2 v′n+1, v

′
2 − t1v′n+1, . . . , v

′
n − tn−1v

′
n+1, v

′
n+1

)T
, (4.13)

where v′′ = (v′2, . . . , v
′
n)T . Thus, if v′n+1 6= 0, then t 7→ f(t)v is bounded from below

by a function which satisfies the assumption of Lemma 4.0.4. Therefore, by (4.9), for

any v ∈ Λ the function t 7→ ‖f(t)v‖ is (C, β)-good on B̃ with respect to µPS
x0

, for some

C = C(Γ) ≥ 1, β = β(Γ) > 0, which proves (1) of Proposition 4.0.5. Note that these

constants are uniform across all v so that v′n+1 6= 0.

On the other hand, if v 6= 0 and

v′n+1 = 0,

then t 7→ f(t)v is bounded below by some positive constant, and since positive constant

functions are (C, β)-good for any C ≥ 1, β > 0, we conclude that so is this function by

(4.9).

By (3.3), we have

uta− log s = a− log sust.
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Since multiplication by a− log s only changes the matrix entries by scaling, using (4.4), for

i = 1, . . . , q we get

sup
‖t‖≤T/s

‖a− log sustgγvi‖ > s−1 sup
‖t‖≤T

‖utgγvi‖ > s−1T ε.

Thus, for any s ≤ T ε, t < T/s, and v ∈ Λ,

‖f(t)v‖ ≥ 1,

which establishes (2) of Proposition 4.0.5.

Since η = e−R0 and Hi(R0)’s are pairwise disjoint, part (3) of Proposition 4.0.5

follows from the uniqueness of γ in (4.2) and (4.3).

According to 4.6, the measure µPS
x0

is D-Federer for any D > 0. Thus, we may now

use (4.2) and Proposition 4.0.5 to deduce

µPS
x0

(BU(T/s) ∩Hi(R))

= µPS
x0

({
t ∈ BU(T/s) : ∃γ ∈ Γ, 1 ≤ i ≤ q such that ‖f(t)γvi‖ < e−R

})
� e−RβµPS

x0
(BU(T/s)x0),

where the implied constant depends on n and Γ.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported
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in part by the National Science and Engineering Research Council of Canada (NSERC)

PGSD3-502346-2017 during this work.
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Chapter 5

Friendliness Properties of the PS

Measure

In this chapter we prove several key properties of the PS-measure, including that

slightly enlarging a ball does not increase the measure too much and that scaling the size

of the ball has a bounded multiplicative increase on the measure. Note that the results

in this chapter hold for any Γ that is geometrically finite; we do not require Assumption

1.1.2. In the setting that all cusps have maximal rank, or balls are centered at BMS

points, stronger statements hold. See the appendix, specifically Chapter 10, for more

details.

The main results in this chapter are the following, which both establish control

over the measure of a slightly enlarged ball. Many technical details of the proofs are

hidden in Proposition 5.0.4, which is proved in the appendix, Chapter 10.
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Theorem 5.0.1. There exists a constant α′ = α′(Γ) > 0, such that for every x ∈ G/Γ that

is (ε, s0)-Diophantine, for every 0 < s ≤ T
ε

1−ε , every 0 < ξ �Γ 1, and every T �Γ,ε s0,

µPS
a− log sx

(BU(ξ + T ))

µPS
a− log sx

(BU(T ))
− 1�Γ ξ

α′ .

Theorem 5.0.2. There exist α′ = α′(Γ) > 0, θ′ = θ′(Γ) ≥ α′, ω′ = ω′(Γ) ≥ 2δΓ, such

that for any g ∈ G with g− ∈ Λ(Γ) and 0 < ξ < η �Γ e
− height(gΓ), we have that

ν(Pξ+ηg)

ν(Pηg)
− 1�Γ e

ω′ height(gΓ) ξ
α′

ηθ′
.

Theorem 5.0.2 will be obtained as a corollary of the following:

Proposition 5.0.3. There exist constants α = α(Γ) > 0, θ = θ(Γ) ≥ α, and ω = ω(Γ) ≥

2δΓ such for x ∈ G/Γ which satisfies x+ ∈ Λ(Γ), and 0 < ξ < η �Γ e
− height(x) we have

µPS
x (BU(ξ + η))

µPS
x (BU(η))

− 1�Γ e
ω height(x) ξ

α

ηθ
.

We first show how to obtain Theorem 5.0.2 from Proposition 5.0.3.

Proof of Theorem 5.0.2 assuming Proposition 5.0.3. Using the product structure of ν, we

can write

ν(Pηg) =

∫
Aη

∫
Mη

µPS−
g (BŨ(η))dmds.

Then, by an analogous statement to Proposition 5.0.3 for µPS−, there exists a constant
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c0 = c0(Γ) > 0 such that

ν(Pη+ξg) =

∫
Aξ+η

∫
Mξ+η

µPS−
g (BŨ(ξ + η))dmds

≤
∫
Aξ+η

∫
Mξ+η

µPS−
g (BŨ(η))

[
1 + c0

ξα

ηθ
eω
′ height(gΓ)

]
dmds

=

[
1 + c0

ξα

ηθ
eω
′ height(gΓ)

][
(ξ + η)

1
2

(n−1)(n−2)+1

η
1
2

(n−1)(n−2)+1
ν(Pηg)

]
.

≤
[
1 + c0

ξα

ηθ
eω
′ height(gΓ)

] [
1 + c1

ξ

η

]
ν(Pηg),

where c1 > 0 is an absolute constant (which depends only on n) arising from the binomial

theorem. Therefore,

ν(Pξ+ηg)

ν(Pηg)
− 1�Γ e

ω′ height(gΓ) ξ
α

ηθ
· ξ
η

+
ξ

η
+ eω

′ height(gΓ) ξ
α

ηθ
. (5.1)

Since ξ < η, the first term on the left hand side of (5.1) is dominated by the last

term, and so

ν(Pξ+ηg)

ν(Pηg)
− 1�Γ

ξ

η
+ eω

′ height(gΓ) ξ

ηθ
.

Since eω height(gΓ) ≥ 1, if we define

α′ = min{1, α}, θ′ = max{1, θ},

then both terms are dominated by

eω height(gΓ) ξ
α′

ηθ′
,

which completes the proof.
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The following result, showing that the PS measure is not concentrated near hy-

perplanes, is proved in the appendix to improve the readability of this chapter. See

Proposition 10.2.2 for the proof. This result builds upon the work of Das, Fishman, Sim-

mons, and Urbański in [DFSU20], where it is shown that the PS density νo is friendly

when Γ is geometrically finite.

For a hyperplane L ⊂ U ∼= Rn−1 and ξ > 0, define

NU(L, ξ) := {uty : y ∈ L, t ∈ BU(ξ)}.

Proposition 5.0.4. Let Γ be geometrically finite and Zariski dense. There exist constants

α = α(Γ) > 0, ω = ω(Γ) ≥ 0, and θ = θ(Γ) > α satisfying the following: for any x ∈ G/Γ

with x+ ∈ Λ(Γ), and for every ξ > 0 and 0 < η �Γ e− height(x), we have that for every

hyperplane L,

µPS
x (NU(L, ξ) ∩BU(η))�Γ e

ω height(x) ξ
α

ηθ
µPS
x (BU(η)).

We are now ready to prove Proposition 5.0.3.

Proof of Proposition 5.0.3. It follows from the geometry of BU(ξ + η)x − BU(η)x that

there exist hyperplanes L1, . . . , Lm, where m only depends on n, such that

BU(ξ + η)x−BU(η)x ⊆
m⋃
i=1

NU(Li, 2ξ).
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For any 0 < ξ < η �Γ e
− height(x), we have that

µPS
x (BU(ξ + η))

µPS
x (BU(η))

− 1 =
µPS
x (BU(ξ + η)−BU(η))

µPS
x (BU(η))

≤
m∑
i=1

µPS
x (N (Li, ξ) ∩B(x, ξ + η))

µPS
x (BU(η))

by Proposition 5.0.4

�Γ me
ω height(x) ξ

α

ηθ
· µ

PS
x (BU(2η))

µPS
x (BU(η))

By (4.6), µPS
x is D-Federer (see Corollary 10.1.3 for more detail), in particular

µPS
x (BU(2η))�Γ µ

PS
x (BU(η)).

Thus, we obtain

µPS
x (BU(ξ + η))

µPS
x (BU(η))

− 1�Γ e
ω height(x) ξ

α

ηθ
,

and relabeling the constants completes the proof.

In (4.6), we saw that µPS
x is Federer when x ∈ suppmBMS. Below, we show that

µPS
x satisfies a similar condition for sufficiently large balls when x is Diophantine, but not

necessarily a BMS point.

Corollary 5.0.5. There exists a constant σ = σ(Γ) ≥ δΓ such that for every c ≥ 1 and

every x ∈ G/Γ that is (ε, s0)-Diophantine, if T �Γ,ε s0, then

µPS
x (BU(cT ))�Γ c

σµPS
x (BU(T )).

Proof. By Lemma 3.2.5, for some T0 �Γ,ε s0 there exists

y ∈ BU(T0)x ∩ suppmBMS.

66



Then for T ≥ T0, we have

BU(T − T0)y ⊆ BU(T )x ⊆ BU(T + T0)y.

Since c ≥ 1, we therefore have that for T ≥ 2T0,

µPS
x (BU(cT )) ≤ µPS

y (BU(cT + T0))

≤ µPS
y (BU((c+ 1)T ))

�Γ (c+ 1)σµPS
y (BU(T/2)) by (4.6)

�Γ (c+ 1)σµPS
y (BU(T − T0))

�Γ (c+ 1)σµPS
x (BU(T ))

�Γ (2c)σµPS
x (BU(T )) since c ≥ 1

�Γ c
σµPS

x (BU(T )).

Remark. Observe that if x is (ε, s0)-Diophantine and T �Γ,ε s0, then T is sufficiently

large to use Corollary 5.0.5 on a−sx for s > 0. To see this, observe that, in the notations

of the proof of Corollary 5.0.5, T0 is such that for any (ε, s0)-Diophantine point x, there

exists y ∈ suppmBMS and t ≤ T0 so that x = uty. Then

a−sx = a−suty = ue−sta−sy.

Thus, the distance to the nearest BMS point in the U orbit shrinks, and so T is still

sufficiently large. J
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Proposition 5.0.6. Let HR = {y ∈ G/Γ : height(y) ≤ R}. There exist constants

α = α(Γ) > 0, and ω = ω(Γ) ≥ 0 such that for every x ∈ G/Γ that is (ε, s0)-Diophantine

and for every 0 < ξ < 1/2, and T �Γ,ε s0,

µPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

µPS
x (BU(T ))

�Γ e
ωRξα.

Proof. Let T0 �Γ,ε s0 satisfy the conclusion of Lemma 3.2.5. For T ≥ T0, let

ET := N (L, ξ) ∩BU(T ) ∩HR ∩ suppmBMS,

and observe that µPS
x (ET ) = µPS

x (N (L, ξ) ∩BU(T ) ∩HR).

Let c1 = c1(Γ) > 0 be the implied constant in Proposition 5.0.4. Fix r = c1e
−R

and let {u1, . . . , uk} be a maximal r
2
-separated set in ET− r

4
. Then,

ET ⊆
k⋃
i=1

BU(r)ui.

Note also that by (4.6), we have that there exists a constant c2 = c2(Γ) > 0 such that for

all ui,

µPS
ui

(BU(r)) = µPS
ui

(BU(8(r/8)) ≤ c2µ
PS
ui

(BU(r/8)). (5.2)

68



Therefore,

µPS
x (N (L, ξ) ∩BU(T ) ∩HR)

≤
k∑
i=1

µPS
ui

(N (L, ξ) ∩BU(r))

�Γ e
ωR ξ

α

rθ

k∑
i=1

µPS
ui

(BU(r)) by Proposition 5.0.4

�Γ e
(ω+θ)Rξα

k∑
i=1

µPS
ui

(BU(r/8)) by (5.2)

�Γ e
(ω+θ)RξαµPS

x (BU(T + 1)) as the 1/8 balls are disjoint.

By Corollary 5.0.5, there exists σ = σ(Γ) ≥ δΓ so that

µPS
x (BU(T + 1)) ⊆ µPS

x (BU(2T ))�Γ 2σµPS
x (BU(T )).

Let

ω′ = ω + θ.

It follows from the geometry of BU(ξ+T )x−BU(T )x that there exist L1, . . . , Lm,

where m only depends on n, such that

BU(ξ + T )x−BU(T )x ⊆
m⋃
i=1

NU(Li, 2ξ).

Thus, we also have

(BU(ξ + T )x−BU(T )x) ∩HR ⊆
m⋃
i=1

NU(Li, 2ξ).
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We arrive at

µPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

µPS
x (BU(T ))

≤
m∑
i=1

µPS
x (N (Li, 2ξ) ∩BU(ξ + T ))

µPS
x (BU(T ))

�Γ me
ω′Rξα

µPS
x (BU(ξ + T ))

µPS
x (BU(T ))

By Corollary 5.0.5 again, we conclude that

µPS
x ((BU(ξ + T ) ∩HR)− (BU(T ) ∩HR))

µPS
x (BU(T ))

�Γ e
ω′Rξα,

which completes the proof.

We are now ready to prove Theorem 5.0.1. This will follow by combining Propo-

sition 5.0.6 with quantitative nondivergence, Theorem 4.0.1.

Proof of Theorem 5.0.1. Observe that by Lemma 3.2.3,

µPS
a− log sx

(BU(T + ξ)) = µPS
a− log sx

(BU(T + ξ)∩HR−R0) + µPS
a− log sx

(BU(T + ξ)∩X (R)) (5.3)

By Theorem 4.0.1, for T �Γ,ε s0, 0 < s ≤ T
ε

1−ε , and any R ≥ R0,

µPS
a− log sx

(BU(T + ξ) ∩ X (R)) = µPS
a− log sx

(BU((s(T + ξ)/s) ∩ X (R))

�Γ µ
PS
a− log sx

(BU(T + ξ))e−βR

�Γ µ
PS
a− log sx

(BU(T ))e−βR by Corollary 5.0.5

Observe that use of Corollary 5.0.5 is justified if T �Γ,ε s0 by the remark after that

statement. Similarly, by Proposition 5.0.6 and the same reasoning as in the remark, for
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T �Γ,ε s0, we have

µPS
a− log sx

(BU(T + ξ) ∩HR−R0)�Γ e
ωRξαµPS

a− log sx
(BU(T )) + µPS

a−sx(BU(T ) ∩HR−R0).

Putting this together with (5.3), we conclude

µPS
a− log sx

(BU(T + ξ))

= µPS
a− log sx

(BU(T + ξ) ∩HR−R0) + µPS
a− log sx

(BU(T + ξ) ∩ X (R))

�Γ

[
eωRξαµPS

a− log sx
(BU(T )) + µPS

a− log sx
(BU(T ) ∩HR−R0)

]
+ e−βRµPS

a− log sx
(BU(T ))

�Γ

(
eωRξα + e−βR + 1

)
µPS
a− log sx

(BU(T ))

Taking R = − α
ω+β

log ξ implies the result, provided that ξ is sufficiently small so that this

is larger than R0. Note that since α, ω, β,R0 are all constants depending only on Γ, this

is equivalent to requiring ξ �Γ 1.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported

in part by the National Science and Engineering Research Council of Canada (NSERC)

PGSD3-502346-2017 during this work.
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Chapter 6

Proofs of the Equidistribution

Theorems

In this chapter, we prove our effective equidistribution theorems. Recall the nota-

tion of §3.2. In particular, d denotes the hyperbolic distance, height(x) is the height of a

point x into the cusps, and C0 is the fixed compact set in G/Γ which is defined in §3.2.

In this chapter, Assumption 1.1.2 is critical.

6.1 Proof of Theorem 1.2.3

We will first prove the following proposition, which is a form of Theorem 1.2.3 for

G. Theorem 1.2.3 will follow by a partition of unity argument.

Proposition 6.1.1. There exist κ = κ(Γ) and ` = `(Γ) which satisfy the following: let

72



0 < r < 1, ψ ∈ C∞c (G) supported on an admissible box, and f ∈ C∞c (BU(r)). Then, there

exists c = c(Γ, suppψ) > 0 such that for any g ∈ supp m̃BMS, and s �Γ height(gΓ), we

have ∣∣∣∣∣∑
γ∈Γ

∫
U

ψ(asutgγ)f(t)dµPS
g (t)− µPS

g (f)m̃BMS(ψ)

∣∣∣∣∣
< cS`(ψ)S`(f)e−κsµPS

g (BU(1)).

Proof. Without loss of generality assume that f and ψ are non-negative functions.

Step 1: Setup and approximations.

Let κ′, `′ satisfy the conclusion of Assumption 1.1.2, and let ` > `′ satisfy the

conclusion of Lemma 3.4.4. Observe that ` can be increased if necessary while maintaining

this property.

Because ψ is supported on an admissible box, there exists 0 < η0 < 1/2 (depending

on suppψ) such that G3η0 suppψ is still an admissible box. For 0 < η < η0, let ψη,± satisfy

the conclusion of Lemma 3.4.4 for G, 3η, and ψ. In particular, for all small η > 0

S`′(ψη,±)�suppψ η
−2`S`(ψ). (6.1)

Since ψ is uniformly continuous and the BMS-measure is finite, we may deduce

from Lemma 3.4.4(2) that

∣∣m̃BMS(ψη,±)− m̃BMS(ψ)
∣∣�suppψ,Γ ηS`(ψ). (6.2)

According to Lemma 3.0.1, for any p ∈ Pη, there exists ρp : BU(1)→ BU(1+O(η))
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that is a diffeomorphism onto its image and a constant D = D(η) < 3η such that

utp
−1 ∈ PDuρp(t). (6.3)

Step 2: Assuming that f is supported on a small ball.

We start by proving that there exists κ > 0 such that if f ∈ C∞c (BU(r1)), where

r1 ≤ inj(g), then for s > 0,

∑
γ∈Γ

∫
U

ψ(asutgγ)f(t)dµPS
g (t)− m̃BMS(ψ)µPS

g (f) (6.4)

�Γ,suppψ S` (ψ)S` (f) e−2κsµPS
g (BU(1)).

For any s > 0 and γ ∈ Γ, from (6.3) we have that

∫
BU (r1)

ψ(asutgγ)f(t)dµPS
g (t)

=
1

ν(Pηg)

∫
Pηg

∫
BU (r1)

ψ(asutp
−1pgγ)f(t)dµPS

g (t)dν(pg)

≤ 1

ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ)f(t)dµPS
g (t)dν(pg),

where the last inequality follows since asP3ηa−s ⊂ P3η for any positive s.

Step 2.1: Use the product structure of the BMS measure.

For any p ∈ Pη, (utg)+ = (uρp(t)pg)+, the measures dµPS
g (t) and d(ρp∗µ

PS
pg (t)) =

dµPS
pg (ρp(t)) are absolutely continuous with each other, and the Radon-Nikodym derivative

at t is given by

dµPS
g (t)

dµPS
pg (ρp(t))

= eδΓβ(utg)
+ (utg(o),uρp(t)pg(o)). (6.5)
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Let 0 < ξ < η. Let χη,ξ satisfy the conclusion of Lemma 3.4.2 for H = P , ξ1 = η−ξ,

ξ2 = ξ, and g. Let ϕη,g be the function defined on BU(1)Pηg given by

ϕη,g(uρp(t)pg) :=
f(t)χη,ξ(pg)

ν(Pηg)eδΓβ(utg)
+ (utg(o),uρp(t)pg(o))

.

We will need a bound on S`(ϕη,g). To that end, note that

∣∣β(utg)+(utg(o), uρp(t)pg(o))
∣∣ ≤ d(utg(o), uρp(t)pg(o))

= d(g(o), u−tuρp(t)pg(o)).

Since u−tuρp(t)p ∈ G5η, the above is bounded by some absolute constant (depending only

on Γ) for all η < 1
2
.

Thus, because the Busemann function is Lipschitz, we have that for all p ∈ Pη,

S`(β(utg0)+(utg(o), uρp(t)pg(o)))�Γ 1. (6.6)

By [KM96, Lemma 2.4.7(a)], Lemma 3.4.2, (6.6), and Lemma 3.3.1, we have

S`(ϕη,g)�Γ,` ν(Pηg)−1S`(f)S`(χη,ξ)

�Γ,` η
−(δΓ+ 1

2
(n−1)(n−2)+1)e(δΓ−k2(x,η))d(π(C0),π(alog ηg))S`(χη,ξ)S`(f)

�Γ,` e
δΓ(| log η|+height(gΓ))η−(δΓ+ 1

2
(n−1)(n−2)+1)ηn−1ξ−`−(n−1)/2S`(f)

�Γ,` e
δΓ height(gΓ)η−(2δΓ+ 1

2
(n−1)(n−2)+1)ηn−1ξ−`−(n−1)/2S`(f)

�Γ,` e
δΓ height(gΓ)η4n− 1

2
n2−3−2δΓξ−`−(n−1)/2S`(f) (6.7)

Note that the dependence on ` arises from the exponential of the Busemann function in

the denominator.
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Also, using the product structure of m̃BMS in (3.22), we get

1

ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ)f(t)dµPS
g (t)dν(pg)

=
1

ν(Pηg)

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ)f(t)
dµPS

g (t)

dµPS
pg (ρp(t))

dµPS
pg (ρp(t))dν(pg)

≤
∫
G

ψη,+(ashγ)ϕη,g(h)dm̃BMS(h).

Step 2.2: Use the exponential mixing assumption.

By defining Ψη,+(hΓ) =
∑
γ∈Γ

ψη,+(hγ) and Φη,g(hΓ) :=
∑
γ∈Γ

ϕη,g(hγ), we obtain

∑
γ∈Γ

∫
G

ψη,+(ashγ)ϕη,g(h)dm̃BMS(h) ≤
∫
X

Ψη,+(asx)Φη,g(x)dmBMS(x)

for any positive s. Note that

S`′(Ψη,+) = S`′(ψη,+) and S`′(Φη,g) = S`′(ϕη,g). (6.8)

In particular, (6.1) and (6.7) imply

S`′(Ψη,+)�suppψ η
−2`S`(ψ) and

S`′(Φη,g)�Γ e
δΓ height(gΓ)η4n− 1

2
n2−3−2δΓξ−`−(n−1)/2S`(f). (6.9)

By Assumption 1.1.2,

∫
Ψη,+ (asx) Φη,g (x) dmBMS (x)−mBMS (Ψη,+)mBMS (Φη,g)

�Γ S`′ (Ψη,+)S`′ (Φη,g) e
−κ′s.
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Then, by (6.9), there exists c1 = c1(Γ, suppψ) such that

∑
γ∈Γ

∫
BU (r1)

ψ(asutgγ)f(t)dµPS
g (t)

< mBMS (Ψη,+)mBMS (Φη,g) + c1e
δΓ height(gΓ)η4n− 1

2
n2−3−2δΓξ−`−(n−1)/2S` (ψ)S` (f) e−κ

′s.

Step 2.3: Rewrite in terms of ψ and f .

Using Lemma 3.4.2 and (6.5), one can calculate

mBMS(Φη,g) =

∫
G

ϕη,g(h)dm̃BMS(h)

=
1

ν(Pηg)

∫
Pg

∫
U

f(t)χη,ξ(p)

eδΓβ(utg)
+ (utg(o),uρp(t)pg(o))

dµPS
pg (ρp(t))dν(pg)

=
1

ν(Pηg)

∫
Pg

∫
U

f(t)χη,ξ(p)dµ
PS
g (t)dν(pg)

≤ ν(Pη+ξg)

ν(Pηg)

∫
BU (r1)

f(t)dµPS
g (t).

Thus, by Proposition 5.0.2, there exist α, θ, ω, c0 > 0 depending only on Γ such

that

mBMS(Φη,g) ≤
(

1 + c2e
ω height(gΓ) ξ

α

ηθ

)∫
BU (r1)

f(t)dµPS
g (t)

=

(
1 + c2e

ω height(gΓ) ξ
α

ηθ

)∫
BU (r1)

f(t)dµPS
g (t)

=

(
1 + c2e

ω height(gΓ) ξ
α

ηθ

)
µPS
g (f).
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Using (6.2), we get that there exists c3 = c3(Γ, suppψ) such that

mBMS(Ψη,+) ≤
∫
G

ψη,+(g)dm̃BMS(g)

< m̃BMS(ψ) + c3ηS`(ψ).

To summarize, we have

∑
γ∈Γ

∫
BU (r1)

ψ(asutgγ)f(t)dµPS
g (t)

≤ 1

ν(Pηg)

∑
γ∈Γ

∫
Pηg

∫
BU (r1)

ψη,+(asuρp(t)pgγ)f(t)dµPS
g (t)dν(pg)

≤
∑
γ∈Γ

∫
G

ψη,+(ashγ)ϕη,g(h)dm̃BMS(h)

≤
∫
X

Ψη,+(asx)Φη,g(x)dmBMS(x)

< mBMS (Ψη,+)mBMS (Φη,g) + c1η
4n− 1

2
n2−3−δΓ−2`ξ−`−(n−1)/2S` (ψ)S` (f) e−κ

′s

<
(
m̃BMS(ψ) + c3ηS`(ψ)

)((
1 + c2e

ω height(gΓ) ξ
α

ηθ

)
µPS
g (f)

)
+ c1e

δΓ height(gΓ)η4n− 1
2
n2−3−2δΓξ−`−(n−1)/2S` (ψ)S` (f) e−κ

′s.

It follows from the proof of Lemma 3.4.4 that m̃BMS(ψ) �suppψ S`(ψ) and µPS
g (f) �

S`(f)µPS
g (BU(1)). Then, using Proposition 3.2.1 we arrive at

∑
γ∈Γ

∫
BU (r1)

ψ(asutgγ)f(t)dµPS
g (t)− µPS

g (f)m̃BMS(ψ)

�Γ

(
eω height(gΓ) ξ

α

ηθ
+ eδΓ height(gΓ)η4n− 1

2
n2−3−2δΓξ−`−(n−1)/2e−κ

′s

)
· S` (ψ)S` (f)µPS

g (BU(1))
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Define

κ =
3αθκ′

2θ(2`+ n− 1) + 9α(2δΓ + 3 + n2/2− 4n)
,

and note that by making ` larger if necessary, we guarantee κ > 0. Recall from (3.19)

that

e−height(gΓ) �Γ inj(g).

For s ≥ max{θ, ω} height(gΓ)/κ, choose

η = e−κs/θ, ξ = e−4κs/α. (6.10)

Note that η < inj(gΓ) by choice of s, ω height(gΓ) ≤ κs, and ξ < η since by Proposition

5.0.2, α < θ. By Proposition 5.0.2 we have ω > δΓ, therefore δΓ height(gΓ) ≤ κs. Note

also that max{θ, ω} height(gΓ)/κ�Γ height(gΓ).

With these choices, we obtain

eω height(gΓ)

(
ξ

ηθ′

)α′
+ eδΓ height(gΓ)η4n− 1

2
n2−3−2δΓξ−`−(n−1)/2e−κ

′s ≤ 2e−2κs. (6.11)

In a similar way, using ψη,−, one can show a lower bound, proving (6.4).

Step 3: Covering argument for general f .

We now deduce the claim by decomposing f into a sum of functions, each defined

on a ball of radius r1 in U .

Let u1, . . . , uk and σ1, . . . , σk ∈ C∞c (BU(r)) satisfy the conclusion of Lemma 3.4.7

for E = BU(r) and r1. For 1 ≤ i ≤ k, let

fi := fσi.
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Then, f ≤
∑k

i−1 fi, and by Lemma 3.4.7 and [KM96, Lemma 2.4.7(a)]

S`(fi)�Γ S`(f)S`(σi)�Γ r
−`+n−1
1 S`(f). (6.12)

Since each fi is supported on BU(r1)ui for some ui ∈ BU(1), by (6.4) we have

∑
γ∈Γ

∫
BU (r1)

ψ(asutgγ)fi(t)dµPS
g (t)− m̃BMS(ψ)µPS

g (fi)

�Γ,suppψ µ
PS
g (BU(1))S` (ψ)S` (fi) e

−2κs.

Summing the above expressions for i = 1, . . . , k, we get

∑
γ∈Γ

∫
BU (r)

ψ(asutgγ)f(t)dµPS
g (t)− m̃BMS(ψ)µPS

g (f)

� kr−`+n−1
1 S` (ψ)S` (f) e−2κsµPS

g (BU(1))

�
(
r

r1

)n−1

r−`+n−1
1 S` (ψ)S` (f) e−2κsµPS

g (BU(1))

� r−`1 S` (ψ)S` (f) e−2κsµPS
g (BU(1))

� S` (ψ)S` (f) e−κsµPS
g (BU(1)),

where the first inequality is by Lemma 3.4.7, the second inequality follows from r1 =

inj(g) > e−κs/`, the third is by (6.10) and because r < 1, and the implied constants

depend on Γ and suppψ.

As before, using similar arguments, one can show a lower bound, proving the claim.

We will now use a partition of unity argument to prove Theorem 1.2.3. For the

reader’s convenience, we restate it below.
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Theorem 6.1.2. There exist κ = κ(Γ) and ` = `(Γ) which satisfy the following: for

any ψ ∈ C∞c (X), there exists c = c(Γ, suppψ) > 0 such that for any f ∈ C∞c (BU(r)),

0 < r < 1, x ∈ suppmBMS, and s�Γ height(x), we have

∣∣∣∣∫
U

ψ(asutx)f(t)dµPS
x (t)− µPS

x (f)mBMS(ψ)

∣∣∣∣ < cS`(ψ)S`(f)e−κs.

Proof. According to [OS13, Lemma 2.17], there exists an admissible box By around y,

for any y ∈ X. Then, {By : y ∈ suppψ} is an open cover of the compact set suppψ.

Hence, there exists a minimal sub-cover By1 , . . . , Byk . Using a similar construction to

one in Lemma 3.4.7, there exist σ1, . . . , σk, a partition of unity for suppψ, such that for

i = 1, . . . , k we have σi ∈ C∞c (Byi) and for i = 1, . . . , k and m = 1, . . . , `

|σ(m)
i | �suppψ,Γ 1 (6.13)

(the implied constant depends on the chosen sub-cover).

Define ψi = ψσi. Then

ψ =
k∑
i=1

ψi, (6.14)

and by (6.13) and the product rule, we have

S`(ψi)�suppψ,Γ S`(ψ). (6.15)

According to Proposition 6.1.1 and Proposition 3.2.1, there exist c = c(Γ, suppψ) > 0,

81



λ = λ(Γ) > 1 such that for s�Γ height(x),

∫
BU (r)

ψ(asutx)f(t)dt

=
k∑
i=1

∫
BU (r)

ψi(asutx)f(t)dt

≤
k∑
i=1

mBMS(ψi)µ
PS
x (f) + cS`(ψi)S`(f)e−κsµPS

x (BU(1))

≤
k∑
i=1

mBMS(ψi)µ
PS
g (f) + cλS`(ψi)S`(f)e−κs+(n−1−δΓ)d(π(C0),π(x))

�Γ,suppψ m
BMS(ψ)µPS

g (f) + cλS`(ψ)S`(f)e−κs+(n−1−δΓ) height(x).

where the last line follows by the definition of height(x) and equations (6.14) and (6.15).

Moreover, we may assume that s ≥ 2(n−1−δΓ)
κ

height(x) without changing the assumption

s�Γ height(x). Then

e−κs+(n−1−δΓ) height(x) �Γ e
−κs/2,

as desired.

We will now use Theorem 1.2.3 to prove a similar result for the Haar measure.

This will be necessary for the proof of Theorem 1.2.2. Note that such a result is proven in

[MO15] under a spectral gap assumption on Γ, but we show here how to prove it whenever

the frame flow is exponentially mixing.

Theorem 6.1.3. There exists κ = κ(Γ) < 1 and ` = `(Γ) that satisfy the following:

let 0 < r < 1, let f ∈ C∞c (BU(r)), and let ψ ∈ C∞c (X) be supported on an admissible

box. Then there exists c = c(Γ, suppψ) > 0 such that for every x ∈ suppmBMS and
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s�Γ,suppψ height(x),

∣∣∣∣e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt− µPS
x (f)mBR(ψ)

∣∣∣∣ < cS`(ψ)S`(f)e−κs.

Proof. Step 1: Setup and approximations.

Assume s�Γ height(x), and let κ, `′ satisfy the conclusion of Theorem 1.2.3, and

` > `′ satisfy the conclusion of Lemma 3.4.4.

Since ψ is assumed to be supported on an admissible box, there exist r0, η, ε0, ε1 > 0

(depending only on suppψ) and z ∈ X such that

suppψ = BU(r0)Pηz,

and

Gε0 suppψ ⊂ BU(r0 + ε1)Pη+ε1z,

where BU(r + ε1)Pη+ε1z is also an admissible box. Denote η′ = η + ε1 and r′0 = r0 + ε1.

Without loss of generality, assume that f is a non-negative function. Continuously

extend ψ to Pη′ by defining ψ = 0 on Pη′ \ Pη.

For 0 < ε < ε0 let ψε,± and fε,± for Lemma 3.4.4 for G, ε, ψ and U, ε, f , respectively.

By Lemma 3.4.4,

S`′(ψε,±)�Γ,supp(ψ) ε
−2`S`(ψ) and S`′(fε,±)�Γ ε

−2`S`(f). (6.16)

Moreover, by Lemma 3.4.4(2),

‖fε,± − f‖∞ ≤ εS`(f). (6.17)
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For p ∈ Pη′ , define

ϕ(p) := µPS
pz (BU(r′0)pz). (6.18)

Step 1.1: Construct a smooth approximation to 1/ϕ.

Since the Busemann function is smooth and ϕ is bounded below by a positive

quantity on Pη′ by Corollary 3.1.2, the mean value theorem implies that for any 0 < ε < ε0

and all p, p′ ∈ Pε, there exists a constant d = d(Γ, suppψ) such that∣∣∣∣ 1

ϕ(p)
− 1

ϕ(p′)

∣∣∣∣ ≤ dε

ϕ(p)
. (6.19)

By Lemma 3.4.2, for any ξ > 0, there exists a non-negative smooth function χξ

with

1Pε−ξ ≤ χξ ≤ 1Pε (6.20)

and S`′(χξ)�Γ,n (ε− ξ/2)n−1(ξ/2)−`
′−(n−1)/2. Define

σ(p) :=
1

ϕ
∗ χξ
m(Pε−ξ)

(6.21)

where m denotes the probability Haar measure on P . Then, assuming ε0 < 1/2 and

ξ ≤ ε2, by (6.19), (6.20), and (6.21), we have that

1− dε
ϕ(p)

≤ 1

m(Pε−ξ)

∫
pPε−ξ

1

ϕ(p′)
dp′ (6.22)

≤ σ(p)

≤ 1

m(Pε−ξ)

∫
pPε

1 + dε

ϕ(p′)
dp′

≤
(

ε

ε− ξ

)n
1 + dε

ϕ(p)

≤ 1 + d′ε

ϕ(p)
, (6.23)
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for some absolute constant d′ > 0.

For upz ∈ BU(r′0)Pη′z and 0 < ε < ε0, let

Ψε,±(upz) = σ(p)

∫
Upz

ψc1ε,±(utpz)dt.

Then, by (6.19),

sup
w∈Gε

Ψε,±(wupz) = sup
w∈Pε

σ(wp)

∫
Uwpz

ψc1ε,+(utwpz)dt

≤ (1 + d′ε)Ψ2ε,±. (6.24)

Step 2: Bounding with PS measure.

Let

P (f, ψ, x; s) = {p ∈ Pη : as supp(f)x ∩BU(r0)pz 6= ∅}.

By [MO15, Lemma 6.2], there exists an absolute constant c1 > 0 such that

e(n−1)s

∫
BU (r)

ψ(asutx)f(t)dt (6.25)

≤ (1 + c1ε)
∑

p∈P (f,ψ,x;s)

fc1e−sη(a−spz)

∫
Upz

ψc1ε,+(utpz)dt.

It now follows from [MO15, Lemma 6.5], (6.22), and (6.24) that there exists an

absolute constant c2 > 0 such that

e−δΓs
∑

p∈P (f,ψ,x;s)

fc1e−sη(a−spz)

∫
Upz

ψc1ε,+(utpz)dt

≤ (1 + c2ε)(1 + d′ε)

1− dε

∫
U

Ψ2c2ε,+(asutx)f(c1+c2)e−sε0,+(t)dµPS
x (t).

Note that (6.22) is needed because our definition of Ψε,+ is not identical to Ψ as defined

in [MO15, Lemma 6.5]. The latter is bounded above by 1
1−dεΨε,+ by (6.22).
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Combining the above with (6.25), we get that there exist constants c3 > 0, c4 =

c4(Γ, suppψ) > 0 such that

e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt

≤ (1 + c4ε)

∫
U

Ψc3ε,+(asutx)fc3e−sε0,+(t)dµPS
x (t).

It follows from Theorem 1.2.3 that for some constant c5 = c5(Γ, suppψ) > 0

e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt

≤ (1 + c4ε)
(
µPS
x (fc3e−sε0,+)mBMS(Ψc3ε,+) + c5S`′(Ψc3ε,+)S`′(fc3e−sε0,+)e−κs

)
. (6.26)

Step 3: Bounding the error terms.

We now show how to bound the various error terms to obtain the desired conclu-

sion.

To compute mBMS(Ψ), we use (3.22), (6.17), and (6.23) to deduce that for some

c6 = c6(Γ, suppψ), if ξ = ε2,

mBMS(Ψc3ε,+)

≤ (1 + d′ε)

∫
Pη′z

∫
BU (r′0)

1

µPS
pz (BU(r′0)pz)

∫
BU (r′0)pz

ψc1ε,±(utpz)dtdµPS
pz (t)dν(pz)

≤ (1 + d′ε)

∫
Pη′z

∫
BU (r′0)pz

ψc1ε,±(utpz)dtdν(pz)

≤ (1 + d′ε)
(
mBR(ψ) + c6εS`(ψ)

)
. (6.27)

By Proposition 3.2.1, if s is sufficiently large so that r + c3e
−sε0 ≤ 1 (note that
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this requirement on s depends only on Γ and suppψ), we have that

µPS
x (BU(r + c3e

−sε0)) ≤ µPS
x (BU(1))�Γ e

(n−1−δΓ)d(π(C0),π(x)). (6.28)

Hence, by (6.17) and (6.28), we have

µPS
x (fc3e−sε0,+)− µPS

x (f)�Γ e
−sε0S`(f)µPS

x (BU(r + c3e
−sε0))

�Γ e
−sε0S`(f)e(n−1−δΓ)d(π(C0),π(x)). (6.29)

According to [KM96, Lemma 2.4.7(a)] and (6.16), if ξ = ε2 and

ε = e−
κs

2(n+4`) , (6.30)

then

S`′(Ψc3ε,+)�Γ S`′(ψc3ε,+)S`′(σ)

�Γ (m(Pε−ξ))
−1(ε− ξ/2)n−1ξ−`

′−(n−1)/2ε−2`S`(ψ)

� ε−1−2`ξ−`
′−(n−1)/2S`(ψ)

≤ eκs/2S`(ψ). (6.31)

Using (6.26), (6.27), (6.29), and (6.31), we obtain

e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt− µPS
x (f)mBR(ψ)

≤ (1 + c4ε)

[
d′εµPS

x (f)mBR(ψ) + (1 + d′ε)

{
c6εµ

PS
x (f)S`(ψ)

+ (e−sε0m
BR(ψ)S`(f) + c6e

−sε0εS`(f)S`(ψ))e(n−1−δΓ)d(π(C0),π(x))

}

+ c8S`(ψ)S`(f)e−κs/2

]
(6.32)

87



These remaining error terms can be controlled as follows. Using (6.28), we can

deduce

µPS
x (f) ≤ ‖f‖∞ µ

PS
x (BU(r))�Γ S`(f)e(n−1−δΓ)(π(C0),π(x)). (6.33)

We also have that

mBR(ψ)�Γ,suppψ S`(ψ). (6.34)

Combining (6.32), (6.33), and (6.34) implies

e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt− µPS
x (f)mBR(ψ)

�Γ,suppψ S`(ψ)S`(f)

[
d′ε+ (1 + d′ε)

(
c6ε(1 + e−sε0) + e−sε0

)
e(n−1−δΓ)d(π(C0),π(x)) + c8e

−κs/2

]

(6.35)

Finally, by the choice of ε in (6.30) and because we may assume without loss of

generality that κ < 1, we obtain from (6.35) that there exists κ′ < 1 such that

e(n−1−δΓ)s

∫
BU (r)

ψ(asutx)f(t)dt− µPS
x (f)mBR(ψ)

�Γ,suppψ S`(ψ)S`(f)e−κ
′s+(n−1−δΓ)d(π(C0),π(x)).

Recall that d(π(C0), π(x)) = height(x). Thus, if we assume that s ≥ 2(n−1−δΓ)
κ′

height(x)

(which means s�Γ height(x)), then

e−κ
′s+(n−1−δΓ) height(x) �Γ e

−κ′/2s,

which completes the proof.
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6.2 Proof of Theorem 1.2.1

In this section, we prove Theorem 1.2.1, which is restated below for the reader’s

convenience. The proof relies on the quantitative nondivergence result in Theorem 4.0.1

and Theorem 1.2.3. As a reminder, throughout the section, we must assume that As-

sumption 1.1.2 holds.

Theorem 6.2.1. For any 0 < ε < 1 and s0 ≥ 1, there exist constants ` = `(Γ) ∈ N and

κ = κ(Γ, ε) > 0 satisfying: for every ψ ∈ C∞c (G/Γ), there exists c = c(Γ, suppψ) such

that every x ∈ G/Γ that is (ε, s0)-Diophantine, and for every T with T 1−ε/2 �Γ s0,

∣∣∣∣ 1

µPS
x (BU(T ))

∫
BU (T )

ψ(utx)dµPS
x (t)−mBMS(ψ)

∣∣∣∣ ≤ cS`(ψ)r−κ,

where S`(ψ) is the `-Sobolev norm.

Proof. Let β > 0 satisfy the conclusion of Theorem 4.0.1 for ε and s0. Let κ′ > 0, ` ∈ N

satisfy the conclusion of Theorem 1.2.3.

Since x is (ε, s0)-Diophantine, by Theorem 4.0.1, for T0 �Γ s0 and R ≥ R0,

µPS
x0

(BU(T0)x0 ∩ X (R))� µPS
x0

(BU(T0)x0)e−βR, (6.36)

where

sε :=
ε

2
log T, T0 := Te−sε = T 1−ε/2, x0 := a−sεx. (6.37)

By (3.3) and (3.11), we have

1

µPS
x (BU(T ))

∫
BU (T )

ψ(utx)dµPS
x (t) =

1

µPS
x0

(BU(T0))

∫
BU (T0)

ψ(asεutx0)dµPS
x0

(t).
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Fix R > R0, and define

Q0 = BU(T0)x0 ∩ C(R).

By the definition of C(R),

Q0 ⊆ suppmBMS.

Let ρ > 0 be smaller than half of the injectivity radius of Q0.

First, by Lemma 3.4.7, there exist {y : y ∈ I0} ⊆ Q0 and fy ∈ C∞c (BU(2ρ)y)

satisfying

S`(fy)� ρ−`+n−1 (6.38)

and ∑
y

fy = 1 on E1 :=
⋃
y∈I0

BU(ρ)y ⊇ Q0

and 0 outside of

E2 =
⋃
y∈I0

BU(2ρ)y.

Observe that

Q0 ⊆ E1 ⊆ E2 ⊆ BU(T0 + 2ρ)x0. (6.39)

Thus,

∫
utx0∈E1

ψ(asεutx0)dµPS
x0

(t) ≤
∑
y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0)dµPS
x0

(t)

Because Q0 ⊆ suppmBMS, we may use Proposition 3.2.1 to deduce that there exists
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λ = λ(Γ) ≥ 1 such that for any y ∈ I0, we have

µPS
y (BU(ρ)) ≥ λ−1ρδΓe(k(y,ρ)−δΓ)d(π(C0),π(a− log ρy))

≥ λ−1ρδΓe−δΓd(π(C0),π(a− log ρy))

≥ λ−1ρδΓe−δΓ(− log ρ)e−δΓ height(y) since ρ < 1

�Γ λ
−1ρ2δΓe−δΓ height(y)

≥ λ−1ρ2δΓe−δΓR,

where the last line follows by Lemma 3.2.3.

Since esε = T ε/2, it follows from (6.38) and the above, that if we choose ρ and R

such that

eδΓRρn−1−`−2δΓ �Γ T
εκ′/4, (6.40)

then, by the choice of fy, we have

S`(fy)� µPS
y (BU(ρ))eκ

′sε/2 � µPS
y (fy)e

κ′sε/2 (6.41)

where the implied constant is absolute.

If we further assume that

T �Γ e
2R/ε (6.42)

(with the implied constant coming from Theorem 1.2.3), then sε �Γ R, and by (6.41),

Theorem 1.2.3, and Lemma 3.2.3, there exist c1, c2 > 0 which depend only on Γ and

91



suppψ such that

∑
y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0)dµPS
x0

(t)

≤
∑
y∈I0

(
mBMS(ψ)µPS

y (fy) + c1S`(ψ)S`(fy)e
−κ′sε

)
≤
∑
y∈I0

µPS
y (fy)

(
mBMS(ψ) + c2S`(ψ)e−κ

′sε/2
)

By Lemma 3.2.3 and Theorem 5.0.1, there exists c3 = c3(Γ) > 0 such that if T0 � s0,

then there exist α = α(Γ) > 0, c3 = c3(Γ) > 0 such that

∑
y∈I0

µPS
y (fy) ≤ µPS

x0
(BU(T0 + 2ρ) ∩ C(R + 1))

�Γ (1 + c3(2ρ)α)µPS
x0
BU(T0)

Thus, we arrive at

∑
y∈I0

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0)dµPS
x0

(t) (6.43)

≤ µPS
x0

(BU(T0)) (1 + c3 (2ρ)α)
(
mBMS(ψ) + c2S`(ψ)e−κ

′sε/2
)

Fix

κ := κ′ε/4, R >
κ

β
log T, ρ < T−

κ
α (6.44)

such that ρ also satisfies the assumption of Theorem 5.0.1, and R which satisfies (6.40)

and (6.42). Thus, (6.43) and (6.44) imply

1

µPS
x0

(BU(T0))

∫
utx0∈E1

ψ(asεutx0)dµPS
x0

(t)−mBMS(ψ)

�Γ,suppψ S`(ψ)T−κ, (6.45)
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where we have used that by [Aub82], ‖ψ‖∞ �suppψ S`(ψ), so mBMS(ψ)�suppψ S`(ψ).

By (6.36),∫
BU (T0)x0\E1

ψ(asεutx0)dµPS
x0

(t) ≤ ‖ψ‖∞µPS
x0

(BU(T0) \ E1)

�suppψ S`(ψ)µPS
x0

(BU(T0)x0)e−βR

�suppψ S`(ψ)µPS
x0

(BU(T0)x0)T−κ,

where we have again used that by [Aub82], ‖ψ‖∞ �suppψ S`(ψ). Combining the above

with (6.45) implies that

1

µPS
x0

(BU(T0))

∫
BU (T0)

ψ(asεutx0)dµPS
x0

(t)−mBMS(ψ)

�Γ,suppψ S`(ψ)T−κ

The lower bound is obtained similarly, as is shown in the proof of Theorem 1.2.2

in the next section.

6.3 Proof of Theorem 1.2.2

In this section, we will prove Theorem 1.2.2 using Theorem 6.1.3. We will use a

partition of unity argument for a cover of the intersection of BU(r)x with a fixed compact

set by small balls centered at PS-points. Assumption 1.1.2 is required.

We will need the following lemma.

Lemma 6.3.1. There exists an absolute constant c > 0 satisfying the following: for

x ∈ X, y ∈ Ux, ψ ∈ C∞c (X) supported on an admissible box of diameter smaller than

93



1, 0 < ρ < inj(y), f ∈ C∞c (BU(ρ)y) such that 0 ≤ f ≤ 1, and s > 0 which satisfies

ce−sε < ρ, we have

e(n−1−δΓ)s

∫
Ux

ψ(asuty)f(uty)dt�Γ,suppψ S`(ψ)µPS
y (BU(2ρ)y),

where ` ∈ N satisfies the conclusion of Lemma 3.4.4.

Proof. Assume that for 0 < ε0, ε1 < 1, ψ is supported on the admissible box BU(ε0)Pε1z

for z ∈ X. Without loss of generality, we may assume that ψ is non-negative. Fix y ∈ Ux.

For small η > 0, h ∈ Gη supp(ψ), and p ∈ P , let

ψη,+(h) := sup
w∈Gη

ψ(wh), Ψη,+(ph) :=

∫
Uph

ψη,+(utph)dt

and for upz ∈ BU(ε0)Pε1z let

Ψ̃η,+(upz) :=
1

µPS
pz (BU(ε0)pz)

Ψη,+(pz).

By choice of `, for any η > 0 and h ∈ Gη supp(ψ),

|ψη,+(h)− ψ(h)| � ηS`(ψ),

and

|ψ(z)| ≤ S∞,0(ψ)� S`(ψ),

where the implied constants depend on suppψ. Since the diameter of suppψ is smaller

than 1, we may assume that the implied constant in the above is absolute. Then, for any
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u ∈ U such that asuy = u′pz ∈ BU(ε0)Pε1z and 0 < η < 1, we have

∣∣∣Ψ̃η,+(asuy)
∣∣∣ =

∣∣∣∣ 1

µPS
pz (BU(ε0)pz)

∫
Upz

ψη,+(utpz)dt

∣∣∣∣
=
µLeb
pz (BU(ε0)pz)

µPS
pz (BU(ε0)pz)

S`(ψ)

� S`(ψ), (6.46)

where the implied constant depends only on suppψ.

For small η > 0 and uy ∈ BU(η + ε0)y, let

fη,+(uy) := sup
w∈BU (η)

f(wuy)

Using Lemma 6.2 and Lemma 6.5 from [MO15], we get that for some absolute

constant c > 0,

e(n−1−δΓ)s

∫
BU (ρ)y

ψ(asuty)f(uty)dt�
∫
U

Ψ̃cε,+(asuty)fce−sε,+(uty)dµPS
y (t)

≤
∫
BU (ρ+ce−sε)y

Ψ̃cε,+(asuty)dµPS
y (t),

where the implied constant is absolute. Then, by (6.46) we get

e(n−1−δΓ)s

∫
BU (ρ)y

ψ(asuty)f(uty)dt�suppψ µ
PS
y (BU(ρ+ ce−sε))S`(ψ)

≤ µPS
y (BU(2ρ))S`(ψ).

We are now ready to prove Theorem 1.2.2. For the reader’s convenience, we restate

that theorem below:
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Theorem 6.3.2. For any 0 < ε < 1 and s0 ≥ 1, there exist ` = `(Γ) ∈ N and κ =

κ(Γ, ε) > 0 satisfying: for every ψ ∈ C∞c (G/Γ), there exists c = c(Γ, suppψ) such that

for every x ∈ G/Γ that is (ε, s0)-Diophantine, and for all T such that T 1−ε/2 �Γ,suppψ s0,∣∣∣∣ 1

µPS
x (BU(T ))

∫
BU (T )

ψ(utx)dt−mBR(ψ)

∣∣∣∣ ≤ cS`(ψ)r−κ,

where S`(ψ) is the `-Sobolev norm .

Proof. We keep the notation of Chapter 4. By an argument similar to the proof of

Theorem 1.2.3, we may assume that ψ is supported on an admissible box. Because ψ is

compactly supported, we may also assume ψ ≥ 0.

Let β > 0 satisfy the conclusion of Theorem 4.0.1 for ε and s0. Let κ′ > 0, ` ∈ N

satisfy the conclusion of Theorem 6.1.3.

Since x is (ε, s0)-Diophantine, by Theorem 4.0.1, for T0 �Γ s0 and R ≥ R0, we

have

µPS
x0

(BU(T0)x0 ∩ X (R))� µPS
x0

(BU(T0)x0)e−βR, (6.47)

where

sε :=
ε

2
log T, x0 := a−sεx, and T0 = T 1− ε

2 . (6.48)

Observe that by (3.3), (3.10), and (3.11),

1

µPS
x (BU(T ))

∫
BU (T )

ψ(utx)dt =
e(n−1−δ)sε

µPS
x0

(BU(T0))

∫
BU (T0)

ψ(asεutx0)dt.

Fix R > R0 and define

Q0 := BU(T0)x0 ∩ C(R).
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Since for any R ≥ R0 the set C(R) is in the convex core of Hn/Γ,

Q0 ⊆ suppmBMS. (6.49)

Let ρ > 0 be smaller than half of the injectivity radius of Q0.

First, by Lemma 3.4.7, there exist {y : y ∈ I0} ⊆ Q0 and fy ∈ C∞c (BU(2ρ)y)

satisfying

S`(fy)� ρ−`+n−1 (6.50)

and ∑
y

fy = 1 on E1 :=
⋃
y∈I0

BU(ρ)y ⊇ Q0

and 0 outside of

E2 =
⋃
y∈I0

BU(2ρ)y.

By replacing references to Theorem 1.2.3 with references to Theorem 6.1.3, the

exact same argument as in the proof of Theorem 1.2.1 will establish that for T �Γ e
2R/ε

and

κ =
βε

2
, R =

κ log T

β
, ρ ≤ T−κ/α (6.51)

we get that if we assume without loss of generality that κ′ < 2β and also that T �Γ 1,

e(n−1−δΓ)sε

µPS
x0

(BU(T0)x0)

∫
utx0∈E1

ψ(asεutx0)dt−mBR(ψ)�Γ,suppψ S`(ψ)T−κ. (6.52)

We now want to bound the integral over BU(T0)x0 \E1. Using Lemma 3.4.7 again,

we may deduce that there exist {y : y ∈ I1} ⊆ BU(T0)x0 \ E1 and fy ∈ C∞c (BU(ρ/4)y)
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satisfying
∑
y∈I1

fy = 1 on
⋃
y∈I1

BU(ρ/8)y and 0 outside of

⋃
y∈I1

BU(ρ/4)y.

In particular, by the definition of E1, we have

E3 :=
⋃
y∈I1

BU(ρ/2)y ⊆ (BU(T0)x0 \Q0) ∪ (BU(T0 + ρ/2)x0 \BU(T0))x0.

Using Lemma 6.3.1, we arrive at

e(n−1−δΓ)sε

∫
BU (T0)\E1

ψ(asεutx0)dt

≤ e(n−1−δΓ)sε
∑
y∈I1

∫
BU (ρ/2)y

ψ(asεuty)fy(uty)dt

�
∑
y∈I1

S`(ψ)µPS
y (BU(ρ/2)y)

≤ S`(ψ)(µPS
x0

(BU(T0)x0 \Q0) + µPS
x0

((BU(T0 + ρ/2) \BU(T0))x0)).

Thus, by Theorem 5.0.1 there exists α = α(Γ) > 0 such that using equations (6.47),

(6.51), we arrive at

e(n−1−δΓ)sε

∫
BU (T0)\E1

ψ(asεutx0)dt

�Γ,suppψ S`(ψ)µPS
x0

(BU(T0)x0)
(
e−βR + ρα

)
�Γ,suppψ S`(ψ)µPS

x0
(BU(T0)x0)T−κ.

Using (6.52), we may now deduce

e(n−1−δΓ)sε

µPS
x0

(BU(T0)x0)

∫
BU (T0)

ψ(asεutx0)dt−mBR(ψ)�Γ,suppψ S`(ψ)T−κ.
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On the other hand, define

Q1 := BU(T0 − 2ρ)x0 ∩ C(R).

As before, according to Lemma 3.4.7, there exist {y : y ∈ I1} ⊆ Q1 and fy ∈ C∞c (BU(2ρ)y)

satisfying

S`(fy)� ρ−`+n−1

and ∑
y∈I1

fy = 1 on E4 :=
⋃
y∈I1

BU(ρ)y

and 0 outside of ⋃
y∈I1

BU(2ρ)y ⊆ BU(T0)x0. (6.53)

Hence, ∫
utx0∈BU (T0)x0

ψ(asεutx0)dt ≥
∑
y∈I1

∫
utx0∈BU (2ρ)y

ψ(asεutx0)fy(utx0)dt.

By Theorem 6.1.3 we have∫
utx0∈BU (T0)x0

ψ(asεutx0)dt ≥ µPS
x0

(BU(T0 − 2ρ))(mBR(ψ)− c2S`(ψ)e−κ
′sε/2),

and by Theorem 5.0.1 we arrive at

≥ µPS
x0

(BU(T0)) (1− c3(2ρ)α)
(
mBR(ψ)− c2S`(ψ)e−κ

′sε/2
)
.

Hence, (6.51) implies

e(n−1−δΓ)sε

µPS
x0

(BU(T0)x0)

∫
utx0∈E1

ψ(asεutx0)dt−mBR(ψ)�Γ,suppψ S`(ψ)T−κ.
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Remark. The dependence of T on suppψ in the previous proof arises from Theorem

6.1.3, through the quantity sε. Upon closer inspection, one can verify that this means T

depends on suppψ through the maximum height of elements in suppψ. In particular, we

may choose a larger compact set containing suppψ and have T depend on that compact

set, rather than suppψ specifically. J

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported

in part by the National Science and Engineering Research Council of Canada (NSERC)

PGSD3-502346-2017 during this work.
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Chapter 7

Duality between G/Γ and U\G

In this chapter, we begin the setup necessary to use the equidistribution results

obtained in previous chapters to understand the distribution of the orbits of a geomet-

rically finite subgroup Γ ⊆ SO(n, 1)◦ acting on U\G. Throughout the remainder of the

dissertation, we will assume that Assumption 1.1.2 holds.

The goal of this chapter is to prove the following proposition, which shows that

one can use equidistribution results of U orbits in G/Γ in order to study the distribution

of the points in xΓT for x ∈ U\G.

Recall that for x, y ∈ U\G, we defined

x ? y :=

√
1

2
‖Ψ(x)−1E1,n+1Ψ(y)‖, (7.1)

where E1,n+1 is the (n + 1) × (n + 1) matrix with one in the (1, n + 1)-entry and zeros

everywhere else.

Recall the Iwasawa decomposition G = SO(n, 1)◦ = U×A×K. Define a continuous
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section by Ψ : U\G→ AK by

Ψ(Ug) = ak,

where g = uak is the Iwasawa decomposition of g.

For ϕ ∈ Cc(U\G), define

Rϕ := max
y∈suppϕ

(x ? y), rϕ := min
y∈suppϕ

(x ? y). (7.2)

Proposition 7.0.1. Let η > 0, Ω ⊂ U\G be a compact set, ϕ ∈ C(Ω), and ψ ∈ C(BU(η))

be a non-negative function such that
∫
U
ψ = 1. Fix x ∈ U\G. Define F ∈ Cc(G/Γ) by

F (gΓ) :=
∑
γ∈Γ

ψ(u(gγ))ϕ(πU(gγ)).

Then, for some c = c(x,Ω) > 0,∫
BU

(√
T−c
Rϕ
−η

) F (utΨ(x)Γ)dt ≤
∑
γ∈ΓT

ϕ(xγ) ≤
∫
BU

(√
T+c
rϕ

+η
) F (utΨ(x)Γ)dt.

Observe that

gΨ(Ug)−1 ∈ U.

Therefore, for any g, h ∈ G,

Ψ(Uh)gΨ(Uhg)−1 = (hΨ(Uh)−1)−1(hgΨ(Uhg)−1) ∈ U.

Hence, for any x ∈ U\G, we can define

ux(g) := ucx(g) = Ψ(x)gΨ(xg)−1 ∈ U. (7.3)

It satisfies

ce(utg) = ce(g) + t, ce(asg) = esce(g) (7.4)
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and for any x ∈ U\G,

cx(g) = ce(Ψ(x)g). (7.5)

Observe that (7.5) implies that

ce(hg) = ce(h) + ce(Ψ(Uh)g) = ce(h) + cUh(g). (7.6)

Note that for g ∈ G,

g = ue(g)Ψ(Ug).

That is, ue(g) is the U component of the Iwasawa decomposition of G, and Ψ(Ug) is the

AK component.

Lemma 7.0.2. For any compact Ω ⊂ U\G and x ∈ U\G there exist c = c(Ω, x) > 0 such

that for any xg ∈ Ω and T > c, we have

1. If ‖g‖ ≤ T , then ux(g) ∈ BU

(√
T+c
x?xg

)
.

2. If ‖g‖ ≥ T , then ux(g) 6∈ BU

(√
T−c
x?xg

)
.

Proof. We have g = Ψ(x)−1ux(g)Ψ(xg). For t := cx(g) we get

g = Ψ(x)−1ux(g)Ψ(xg)

= Ψ(x)−1

I +


0 t 0

0 0 tT

0 0 0

+ ‖t‖2E1,n+1

Ψ(y)
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Denote

c1 := max
y∈Ω

{∥∥Ψ(x)−1Ψ(y)
∥∥} ,

c2 := max
y∈Ω,‖t‖≤1



∥∥∥∥∥∥∥∥∥∥∥∥
Ψ(x)−1


0 t 0

0 0 tT

0 0 0

Ψ(y)

∥∥∥∥∥∥∥∥∥∥∥∥


.

Then, c1 and c2 are functions of x and Ω. By the triangle inequality,

‖g‖ ≤ ‖t‖2(x ? xg)2 + ‖Ψ(x)−1Ψ(xg)‖+

∥∥∥∥∥∥∥∥∥∥∥∥
Ψ(x)−1


0 t 0

0 0 tT

0 0 0

Ψ(xg)

∥∥∥∥∥∥∥∥∥∥∥∥
≤ ‖t‖2(x ? xg)2 + c1 + c2‖t‖.

In a similar way

‖g‖ ≥ ‖t‖2(x ? xg)2 − ‖Ψ(x)−1Ψ(xg)‖ −

∥∥∥∥∥∥∥∥∥∥∥∥
Ψ(x)−1


0 t 0

0 0 tT

0 0 0

Ψ(xg)

∥∥∥∥∥∥∥∥∥∥∥∥
≥ ‖t‖2(x ? xg)2 − c1 − c2‖t‖.

We conclude that for any g ∈ Ω,

∣∣‖g‖ − (x ? xg)2 ‖t‖2
∣∣ ≤ c1 + c2 ‖t‖ . (7.7)

Assume ‖g‖ ≥ T ≥ c1. Then, by (7.7)

0 ≤ (x ? xg)2 ‖t‖2 + c2 ‖t‖+ (c1 − T ).
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Using the quadratic formula, we may deduce that the right hand side of the above equation

is equal to zero when

‖t‖ =
−c2 ±

√
c2

2 + 4(T − c1)(x ? xg)2

2(x ? xg)2

Since (x ? xg)2 and ‖t‖ are non-negative, it follows that

‖t‖ ≥ −c2 +
√
c2

2 + 4(T − c1)(x ? xg)2

2(x ? xg)2

Using the inequality
√
a± b ≥

√
a−
√
b, we arrive at

‖t‖ ≥
√
T

x ? xg
− c2 + c1x ? xg

(x ? xg)2

A similar computation shows that ‖g‖ ≤ T implies

‖t‖ ≤
√
T

x ? xg
+
c2 + c1x ? xg

(x ? xg)2
.

Letting c be the maximum of c2+c1x?xg
(x?xg)2 for g ∈ Ω completes the proof.

Lemma 7.0.3. Let ϕ ∈ Cc(U\G) and suppose that ψ ∈ Cc(U) satisfies

∫
U

ψ = 1.

Define

f(g) = ψ(u(g))ϕ(πU(g)).

Then for every g ∈ G,

ϕ(πU(g)) =

∫
supp(ψ)u(g)−1

f(utg)dt.
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Proof. By the definition of ψ,

ϕ(πU(g)) = ϕ(πU(g))

∫
supp(ψ)

ψ(ut)dt

= ϕ(πU(g))

∫
u(g)−1 supp(ψ)

ψ(u(g)ut)dt.

Since πU(utg) = πU(g), we have

ϕ(πU(g)) =

∫
u(g)−1 supp(ψ)

ψ(u(utg))ϕ(πU(utg))dt

=

∫
u(g)−1 supp(ψ)

f(utg)dt

We are now ready to prove Proposition 7.0.1.

Proof of Proposition 7.0.1. Without loss of generality, we may assume that ϕ ≥ 0. Define

f : G→ R by

f(g) = ψ(u(g))ϕ(πU(g)).

By Lemma 7.0.3, for every g ∈ G,

ϕ(πU(g)) =

∫
u(g)−1BU (η)

f(utg)dt. (7.8)

By Lemma 7.0.2, there exist c > 0 depending on Ω and x such that for all T ≥ c,

if γ ∈ ΓT and xγ ∈ Ω, then

ux(γ)−1BU(η) ⊆ BU

(√
T + c

x ? xγ
+ η

)
. (7.9)
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Observe also that since supp(ψ) ⊆ BU(η), if ut 6∈ ux(γ)−1BU(η), then

f(utΨ(x)γ) = ψ(utu(Ψ(x)γ))ϕ(πU(Ψ(x)γ)) = 0.

Thus, using (7.6) and Lemma 7.0.3, for γ ∈ ΓT with xγ ∈ Ω, we have that

ϕ(xγ) =

∫
u(Ψ(x)γ)−1BU (η)

f(utΨ(x)γ)dt

=

∫
ux(γ)−1BU (η)

f(utΨ(x)γ)dt

=

∫
BU

(√
T+c
x?xγ

+η
) f(utΨ(x)γ)dt. (7.10)

Note that

F (gΓ) :=
∑
γ∈Γ

f(gγ)

Thus, from (7.10), for r = rϕ := min
y∈suppϕ

(x ? y), we obtain

∑
γ∈ΓT

ϕ(xγ) ≤
∑
γ∈ΓT

∫
BU

(√
T+c
r

+η
) f(utΨ(x)γ)dt

≤
∫
BU

(√
T+c
r

+η
) F (utΨ(x)Γ)dt.

To obtain a lower bound, we must control the terms arising from γ ∈ Γ \ΓT in the

definition of F . Note that by Lemma 7.0.2, if γ ∈ (Γ \ ΓT ) and xγ ∈ Ω, then we see that

ux(γ)−1BU(η) ∩BU

(√
T − c
x ? xγ

− η

)
= ∅. (7.11)

Thus, similarly to the above, we obtain

∑
γ∈ΓT

ϕ(xγ) =
∑
γ∈ΓT

∫
BU

(√
T−c
x?xg

−η
) f(utΨ(x)γ)dt

≥
∑
γ∈ΓT

∫
BU

(√
T−c
R
−η

) f(utΨ(x)γ)dt,
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where R = Rϕ := max
y∈suppϕ

(x ? y), completing the proof.

Lemma 7.0.4. Let ϕ ∈ Cc(U\G) and F be as defined in Proposition 7.0.1. Then,

mBR(F ) =

∫
P

ϕ(πU(p))dν(p) (7.12)

Proof. By the definition of F and the assumption that
∫
U
ψ = 1, by the product structure

of the BR measure in (3.23), we obtain

mBR(F ) =

∫
G

ψ(u(g))ϕ(πU(g))dm̃BR(g)

=

∫
P

∫
U

ψ(utu(p))ϕ(πU(p))dtdν(p)

=

∫
P

ϕ(πU(p))dν(p).

7.1 A “Nice” Partition of ϕ

In the later sections, we will require a partition of ϕ, say into ϕ1, . . . , ϕk, so that

for each i, Rϕi and rϕi are close. In this section, we construct such a partition.

For a set H ⊆ G, let

B(H, r) = {g ∈ G : d(g,H) ≤ r},

where d is the Riemannian metric on G. That is, B(H, r) is the r-thickening of H

with respect to d. For h ∈ G, we denote B({h}, r) by B(h, r) (in this case we get the

Riemannian ball around the point h).
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For H ⊆ G, denote by

inj(H)

the infimum over all r > 0 satisfying that for every h ∈ H,

πΓ|B(h,r) : B(h, r)→ G/Γ

is injective.

Lemma 7.1.1. Fix x ∈ U\G. For a compact set H ⊆ G, there exists 0 < η0 = η(H) <

inj(H), β = β(H) > 1 so that for any 0 < η < η0 and ϕ ∈ Cc(U\G) with suppϕ ⊂

πU(B(h, η)) for some h ∈ H, we have that

Rϕ

rϕ
− 1 ≤ ‖Ψ(x)−1‖βη.

Proof. Since B(H, 1) is a compact set, by [EW11, Lemma 9.12], there exist constants

0 < η0 = η(H) < inj(H), β = β(H) > 1, such that η0 < 1 and for all g, h ∈ B(H, 1) with

d(g, h) ≤ η0,

β−1‖g − h‖ ≤ d(g, h) ≤ β‖g − h‖. (7.13)

Therefore, for any h ∈ H, we have

B(h, η) ⊆ {g ∈ G : ‖g − h‖ ≤ βη}.

Note that for any g ∈ G,

E1,n+1Ψ(πU(g)) = E1,n+1g.
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Thus, if ‖g − h‖ < βη, then

∥∥Ψ(x)−1E1,n+1Ψ(πU(g))
∥∥ =

∥∥Ψ(x)−1E1,n+1g
∥∥

≤
∥∥Ψ(x)−1E1,n+1h

∥∥+
∥∥Ψ(x)−1E1,n+1(g − h)

∥∥
≤
∥∥Ψ(x)−1E1,n+1Ψ(πU(h))

∥∥+ βη
∥∥Ψ(x)−1

∥∥ ,
and similarly

∥∥Ψ(x)−1E1,n+1Ψ(πU(g))
∥∥ ≥ ∥∥Ψ(x)−1E1,n+1Ψ(πU(h))

∥∥− βη ∥∥Ψ(x)−1
∥∥ .

Thus, it follows from (7.1) that for

R = max
y∈πU (B(h,η))

(x ? y), r = min
y∈πU (B(h,η))

(x ? y),

we have

R− r ≤ 2β‖Ψ(x)−1‖η.

Since r is bounded below by a constant depending on H, this implies that(
R

r

)
− 1�H ‖Ψ(x)−1‖η.

Corollary 7.1.2. Fix x ∈ U\G and ϕ ∈ Cc(U\G). Let η0 = η0(Ψ(suppϕ)) be as in

Lemma 7.1.1. For any 0 < η < η0, there exist some k and ϕ1, . . . , ϕk ∈ Cc(U\G) so that

k∑
i=1

ϕi = ϕ and
Rϕi

rϕi
− 1�Γ,suppϕ η.

Moreover, if ϕ ∈ C∞c (U\G), then we also have ϕi ∈ C∞c (U\G), and

k∑
i=1

S`(ϕi)�`,suppϕ η
−`+n(n+1)/4S`(ϕ). (7.14)
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Proof. For the first case (only assuming ϕ ∈ Cc(U\G), cover Ψ(suppϕ) with balls of

radius η, and let σ1, . . . , σk be a partition of unity subordinate to this cover. Defining

ϕi = ϕ · (σi ◦Ψ)

yields functions with the desired property, by Lemma 7.1.1.

Now, assume that ϕ ∈ C∞c (U\G). We must be more careful in order to control

Sobolev norms. By Lemma 3.4.7, for 0 < η ≤ η0, there exist h1, . . . , hk ∈ Ψ(suppϕ) and

σ1, . . . , σk ∈ C∞c (B(hi, η)) with

k∑
i=1

σi = 1 on Ψ(suppϕ) and = 0 outside B(Ψ(suppϕ), η) (7.15)

and such that
k∑
i=1

S`(σi)�n,suppϕ η
−`+n(n+1)/4. (7.16)

Define

ϕi = ϕ · (σi ◦Ψ).

Then, by Lemma 7.1.1,

Rϕi

rϕi
− 1�suppϕ ‖Ψ(x)−1‖η.

Since Ψ is smooth, by Lemmas 3.4.5 and 3.4.6,

S`(ϕi)�` S`(ϕ)S`(σi ◦Ψ)

�`,Ψ S`(ϕ)S`(σi). (7.17)

From (7.16) and (7.17), we conclude that

k∑
i=1

S`(ϕi)�`,n,suppϕ,Ψ η−`+n(n+1)/4S`(ϕ).
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7.2 Comparing the PS Measure of the Balls Arising

in Proposition 7.0.1

The purpose of Proposition 7.0.1 is to enable the use of the equidistribution theo-

rems. However, in order to deduce useful bounds from this, we must show that

µPS
x

(√
T − c
Rϕ

− η

)
and µPS

x

(√
T + c

rϕ
+ η

)

are close to each other if Rϕ and rϕ are close. The necessary machinery to do this is

proven in the appendix, namely the following:

Corollary 7.2.1. There exists a constant α = α(Γ) > 0 satisfying the following: let

0 < ε ≤ 1 and let s0 ≥ 1. There exists T0 = T0(Γ, s0) > 0 so that for every (ε, s0)-

Diophantine point x ∈ G/Γ, all T > 2T0 + 1, and all ξ > 0,

µPS
x (BU((1 + 2ξ)T ))− µPS

x (BU(T ))�Γ

(
ξ +

T0

T − T0

)α
µPS
x (BU(T )). (7.18)

In particular, if x− ∈ Λr(Γ), there exists T0 = T0(x) > 0 so that for all T ≥ 2T0 + 1 and

all ξ > 0, (10.19) holds.

We now interpret the above in a form that will be most convenient for our proofs.

Note that the implied constant below depends on x through the initial time in Corollary

7.2.1, and it can be made uniform over a compact set or over all points with the same

Diophantine properties. However, this level of detail is not necessary for our results.
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Lemma 7.2.2. Let α = α(Γ) > 0 be as in Corollary 7.2.1. For every x ∈ G/Γ with

x− ∈ Λr(Γ), c > 0, 0 < η ≤ 1, and 0 < r+ < ` < r− satisfying

r+

r−
< 1 + η,

there exists T0 = T0(x, r+, r−) > 0 such that for any T > T0,∣∣∣∣∣µPS
x

(
BU

(√
T ± c
r±

± η

))
− µPS

x

(
BU

(√
T

`

))∣∣∣∣∣
�Γ,x

(
η +

c+ 1√
T

)α
µPS
x

(
BU

(√
T

`

))

Proof. First, observe that by Corollary 7.2.1, there exists T1 = T1(x) so that for all

T ≥ 2T1 + 1 and all ξ > 0,

µPS
x (BU(T + ξ))− µPS

x (BU(T ))

µPS
x (BU(T ))

�Γ

(
ξ +

T1

T − T1

)α
�Γ

(
ξ +

T1

T

)α
. (7.19)

This follows immediately from the fact that

µPS
x (BU(T + ξ)) ≤ µPS

x (BU(1 + 2ξ)T ).

Thus, if we assume that T is sufficiently large so that
√
T/` ≥ 2T1 + 1 (and note

that this condition can be taken to rely on r− rather than on ` specifically), and note that

by the assumption,

1 ≤ `

r+

≤ 1 + η,
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we see from (7.19) that

µPS
x

(
BU

(√
T + c

r+

+ η

))
− µPS

x

(
BU

(√
T

`

))

�Γ

(
r−1

+ (
√
T + c) + η − `−1

√
T

`−1
√
T

+
T1

`−1
√
T

)α

µPS
x

(
BU

(√
T

`

))

�Γ

(
`r−1

+ (
√
T + c) + `η −

√
T + T1√

T

)α

µPS
x

(
BU

(√
T

`

))

�Γ

(
(1 + η)(

√
T + c) + `η −

√
T + T1√

T

)α

µPS
x

(
BU

(√
T

`

))

�Γ

(
η +

c+ η`+ T1√
T

)α
µPS
x

(
BU

(√
T

`

))

�Γ,x

(
η +

c+ η`+ 1√
T

)α
µPS
x

(
BU

(√
T

`

))

Note that the implied constant depends on x because we have absorbed the constant T1.

Now, choose T0 ≥ T1 so that T ≥ T0 implies √̀
T
< 1 (a condition which depends on x

and r− in this case), which implies the claim because we may then absorb this term into

the η term.

The second case can be shown in a similar way, with the choice of T0 depending

on x and r+ there.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Distribution of orbits of geometrically finite

groups acting on null vectors”, arXiv:2009.11968. The dissertation author was one of the

primary investigators and authors of this paper.
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Chapter 8

Proofs of Orbit Distribution

Theorems

In this chapter, we prove the main results about the distributions of orbits of Γ

acting on U\G.

8.1 Proof of Theorem 1.3.2

This section is dedicated to the proof of Theorem 1.3.2, which is restated below for

convenience. Note that we do not require Assumption 1.1.2 here (that is only necessary

for quantitative bounds).

Theorem 8.1.1. Let Γ be geometrically finite. For any ϕ ∈ Cc(U\G) and every x ∈ U\G
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such that Ψ(x)− ∈ Λr(Γ), ∑
γ∈ΓT

ϕ(xγ) ∼ I(ϕ, T, x).

We will need the following lemma. Theorem 1.3.2 will then follow by a partition

of unity argument.

Lemma 8.1.2. Let ϕ ∈ Cc(U\G) and let x ∈ U\G be such that Ψ(x)− ∈ Λr(Γ). Let

R = Rϕ and r = rϕ be as in (7.2). Let η > 0, and suppose that R
r
< 1 + η and that

BU(η)Ψ(suppϕ) injects into G/Γ.

Then for any ε > 0, there exists T1 = T1(x, η, ϕ) > 0 such that for all T ≥ T1,∣∣∣∣∣∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

∣∣∣∣∣
�Γ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))[(
η +

c+ 1√
T

)α ∫
P

ϕ(πU(p))dν(p) + ε

]
, (8.1)

where α = α(Γ) is from Lemma 7.2.2, and c = c(x, suppϕ) > 0 is as in Proposition 7.0.1.

Remark. Note that T1 depends on η through a non-canonical choice of bump function ψ,

as seen in the proof. When we apply this lemma to a partition of unity, the same ψ will

be used for each part. J

Proof. Let ψ ∈ C(BU(η)) be a non-negative function such that
∫
U
ψ = 1. Let F and

c = c(x, suppϕ) > 0 be as in the statement of Proposition 7.0.1 for this ψ, and let ε > 0.
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By Theorem 1.1.1, there exists T1 = T1(x, ψ, ϕ) such that for T ≥ T1,

µPS
Ψ(x)Γ

(
BU

(√
T + c

R
− η

))(
mBR(F )− ε

)
(8.2)

≤
∑
γ∈ΓT

ϕ(xγ)

≤ µPS
Ψ(x)Γ

(
BU

(√
T + c

r
+ η

))(
mBR(F ) + ε

)
. (8.3)

By combining the above with Lemma 7.2.2 (usingR, r, and ` = x?y for y ∈ suppϕ),

we see that there exist constants c0 = c0(Γ, x) and T2 = T2(Γ, x, suppϕ) > 0 such that

for T ≥ T2 and any y ∈ suppϕ,

(
1− c0

(
η +

c+ 1√
T

)α)(
mBR(F )− ε

)
≤ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ) (8.4)

≤
(

1 + c0

(
η +

c+ 1√
T

)α)(
mBR(F ) + ε

)
.

By Lemma 7.0.4, mBR(F ) =
∫
P
ϕ(πU(p))dν(p), and so by (8.4), for any y ∈ suppϕ,

we obtain that ∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣
�Γ

(
η +

c+ 1√
T

)α ∫
P

ϕ(πU(p))dν(p) + ε.
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Since the above holds for any y ∈ suppϕ, by bounding

∑
γ∈ΓT

ϕ(xγ)− µPS
Ψ(x)Γ

(
BU

(√
T

r

))∫
P

ϕ(πU(p))dν(p).

≤
∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

≤
∑
γ∈ΓT

ϕ(xγ)− µPS
Ψ(x)Γ

(
BU

(√
T

R

))∫
P

ϕ(πU(p))dν(p),

we obtain ∣∣∣∣∣∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

∣∣∣∣∣
�Γ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))[(
η +

c+ 1√
T

)α ∫
P

ϕ(πU(p))dν(p) + ε

]
.

We are now ready to prove Theorem 1.3.2.

Proof of Theorem 1.3.2. By Corollary 7.1.2, there exists η0 = η0(Ψ(suppϕ)) > 0 so that

for every 0 < η < η0, there exists {ϕi : 1 ≤ i ≤ k} that are a partition of ϕ, i.e.,

ϕ =
k∑
i=1

ϕi

so that all the ϕi are supported on a small neighborhood of suppϕ, which we denote by

B, and each ϕi satisfies the assumptions of Lemma 8.1.2.

For any 1 ≤ i ≤ k let,

Ri = Rϕi , ri = rϕi

as in (7.2).
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Note that

R := max
y∈B

(x ? y), r := min
y∈B

(x ? y)

satisfy R ≥ Ri ≥ ri ≥ r for any i.

Fix ε > 0. By Lemma 8.1.2, there exists T1 > 0 (depending on the ϕi’s, x, η, and

ε) such that for all T ≥ T1 and for each i,∣∣∣∣∣∑
γ∈ΓT

ϕi(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? y

))
ϕi(πU(p))dν(p)

∣∣∣∣∣
�Γ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))[(
η +

c+ 1√
T

)α ∫
P

ϕi(πU(p))dν(p) +
ε

k

]
.

Summing over i, we obtain∣∣∣∣∣∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? y

))
ϕ(πU(p))dν(p)

∣∣∣∣∣
�Γ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))[(
ηα +

√
c√
T

)∫
P

ϕ(πU(p))dν(p) + ε

]
. (8.5)

Recall that

I(ϕ, T, x) :=

∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? y

))
ϕ(πU(p))dν(p).

By Corollary 10.1.4, there exists σ = σ(Γ) > 0 so that for any y ∈ suppϕ,

µPS
Ψ(x)Γ

(
BU

(√
T
r

))
µPS

Ψ(x)Γ

(
BU

(√
T

x?y

)) �Γ

(
R

r

)σ
.

Thus, from (8.5), we obtain∣∣∣∣∣∣
∑
γ∈ΓT

ϕ(xγ)

I(ϕ, T, x)
− 1

∣∣∣∣∣∣
�Γ

(
R

r

)σ
ν(ϕ ◦ πU)−1

[(
η +

c+ 1√
T

)α ∫
P

ϕ(πU(p))dν(p) + ε

]
.
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Since η and ε can be chosen arbitrarily small, the claim follows.

We will now deduce Corollary 1.3.3 using the shadow lemma, Proposition 3.2.1.

Proof of Corollary 1.3.3. Since Ψ(x)− ∈ Λr(Γ), there exists r = r(x) ≥ 0 such that

BU(r)Ψ(x)Γ ∩ suppmBMS 6= ∅.

Let w ∈ BU(r)Ψ(x)Γ ∩ suppmBMS ⊆ G/Γ. Then for any T ≥ 0,

µPS
w (BU(T − r)) ≤ µPS

Ψ(x)Γ(BU(T )) ≤ µPS
w (BU(T + r)).

Thus, by Proposition 3.2.1, there exists λ = λ(Γ) > 1 such that for all T ≥ 0,

λ−1(T − r)δΓ ≤ µPS
Ψ(x)Γ(BU(T )) ≤ λ(T + r)δΓ .

For every y ∈ suppϕ, we therefore have that for all T ≥ 2r,

T δΓ/2

(x ? y)δΓ
�Γ,x µ

PS
Ψ(x)Γ

( √
T

x ? y

)
�Γ,x

T δΓ/2

(x ? y)δΓ
. (8.6)

By Theorem 1.3.2, there exists T0 = T0(x, ϕ) such that for T ≥ T0,∣∣∣∣∣∣
∑
γ∈ΓT

ϕ(xγ)

I(ϕ, T, x)
− 1

∣∣∣∣∣∣ ≤ 1/2.

Then

1

µPS
Ψ(x)Γ

(√
T

x?y

) ∑
γ∈ΓT

ϕ(xγ) ≤ 2

µPS
Ψ(x)Γ

(√
T

x?y

)I(ϕ, T, x)
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so by (8.6), we obtain

1

T δΓ/2

∑
γ∈ΓT

ϕ(xγ)�Γ,x
1

T δΓ/2

∫
P

µPS
Ψ(x)Γ

( √
T

x ? πU(p)

)
ϕ(πU(p))dν(p)

�Γ,x
1

T δΓ/2

∫
P

T δΓ/2

(x ? πU(p))δΓ
ϕ(πU(p))dν(p)

�Γ,x

∫
P

ϕ(πU(p))

(x ? πU(p))δΓ
dν(p). (8.7)

The lower bound is very similar.

8.2 Proof of Theorem 1.3.5

In this section, we prove Theorem 1.3.5, restated below for convenience. Recall

that for x ∈ U\G and a compact set H ⊂ U\G, let

R(H, x) := max
y,z∈H

x ? y

x ? z
.

Theorem 8.2.1. Assume that Assumption 1.1.2 holds. For any 0 < ε < 1, there exist

` = `(Γ) ∈ N and κ = κ(Γ, ε) satisfying: for every x ∈ U\G such that Ψ(x)Γ is ε-

Diophantine and every compact Ω ⊂ G, there exists T0 = T0(x,Ω) so that for every T ≥

T0, there exists η = η(T, `, κ, n,Ω) > 0 such that if ϕ ∈ C∞c (U\G) with Ψ(suppϕ) ⊆ Ω

and satisfies R(suppϕ, x)− 1 < η, then for every y ∈ suppϕ,∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣�Γ,Ω,x S`(ϕ)T−κ.

Proof. Fix x ∈ U\G such that Ψ(x)Γ is ε-Diophantine. Let 0 < η1 = η1(Ω) < 1 be such

that for all g ∈ Ω,

πΓ|B(g,η1) : B(g, η1)→ G/Γ
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is injective, where B(g, η1) = {h ∈ G : ‖g − h‖ ≤ η1}. Let 0 < η < η1. Then if

Ψ(suppϕ) ⊂ Ω ⊂ G, we have that

B := BU(η)Ψ(suppϕ)

injects into G/Γ. Let R = Rϕ, r = rϕ as in (7.2). We are assuming that

R(suppϕ, x)− 1 =
R

r
− 1 < η. (8.8)

We will find T0 = T0(x,Ω) as in the statement of the theorem, and choose η depending

on T ≥ T0 later.

According to Lemma 3.4.1(2), there exists ψ : U → R such that suppψ = BU(η)

and ∫
U

ψ = 1, S`(ψ)� η−`+n−1. (8.9)

We can now use Proposition 7.0.1 with the above ψ and ϕ to get an expression

that we can estimate using the effective equidistribution theorem, Theorem 1.2.2.

Let F and c = c(Ω, x) be as in Proposition 7.0.1 for ψ, ϕ. There exists `, κ′, c2 =

c2(Γ, suppψ, x) as in the statement of Theorem 1.2.2 and T1 = T1(x,Ω) ≥ c such that for

all T ≥ T0,

µPS
Ψ(x)Γ

(
BU

(√
T + c

R
− η

))(
mBR(F )− c2S`(F )T−κ

′
)

(8.10)

≤
∑
γ∈ΓT

ϕ(xγ)

≤ µPS
Ψ(x)Γ

(
BU

(√
T + c

r
+ η

))(
mBR(F ) + c2S`(F )T−κ

′
)
. (8.11)
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We now need to express mBR(F ) and S`(F ) in terms of ϕ, and to compare the PS

measures of the balls arising in (8.10) and (8.11).

Let y ∈ suppϕ. Note that, by assumption, r ≤ x ? y ≤ R. Hence, we may use

Lemma 7.2.2 to deduce∣∣∣∣∣µPS
Ψ(x)Γ

(
BU

(√
T ± c
r±

± η

))
− µPS

Ψ(x)Γ

(
BU

( √
T

x ? y

))∣∣∣∣∣
�Γ,x

(
η +

c+ 1√
T

)α
µPS

Ψ(x)Γ

(
BU

( √
T

x ? y

))

According to Lemma 7.0.4, we have

mBR(F ) =

∫
P

ϕ(πU(p))dν(p).

Combining the above with (8.10) and (8.11) implies that, for some c0 = c0(Γ, x),

(
1− c0

(
η +

c+ 1√
T

)α)(∫
P

ϕ(πU(p))dν(p)− c2S`(F )T−κ
′
)

≤ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ) (8.12)

≤
(

1 + c0

(
η +

c+ 1√
T

)α)(∫
P

ϕ(πU(p))dν(p) + c2S`(F )T−κ
′
)
.

We are left to find S`(F ). Since B 7→ BΓ is injective and f is supported on B,

using Lemma 3.4.1(1), Lemma 3.4.6, and (8.9), we have

S`(F ) = S` (f)

�n S`(ψ)S` (ϕ ◦ πU)

�n,Γ η
−`+n−1S`(ϕ). (8.13)
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Finally, we need to put this all together. Combining (8.12) and (8.13), for any

y ∈ suppϕ, we obtain that∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣
�Γ,x

(
η +

c+ 1√
T

)α ∫
P

ϕ(πU(p))dν(p) + η−`+n−1S`(ϕ)T−κ
′

�Γ,Ω,x

[(
η + T−1/2

)α
+ η−`+n−1T−κ

′
]
S`(ϕ). (8.14)

Choose ρ sufficiently small so that

(`− n+ 1)ρ < κ′/2.

Let η = T−ρ, for T ≥ T0(x,Ω) = max{T1, T2}. Let

κ = min{ρα, α/2, κ′/2}.

Then we conclude that

∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣
�Γ,Ω,x T

−κS`(ϕ).

8.3 Proof of Theorem 1.3.4

In this section, we will use a partition of unity argument and the previous section

to establish Theorem 1.3.4, which is restated below for convenience.
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Theorem 8.3.1. Assume that Assumption 1.1.2 holds. For any 0 < ε < 1, there exist

` = `(Γ) ∈ N and κ = κ(Γ, ε) satisfying: for every ϕ ∈ C∞c (U\G) and for every x ∈ U\G

such that Ψ(x)Γ is ε-Diophantine, and for all T �Γ,suppϕ,x 1,∣∣∣∣∣∣
∑

γ∈ΓT
ϕ(xγ)∫

P
µPS

Ψ(x)Γ

(
BU

( √
T

x?πU (p)

))
ϕ(πU(p))dν(p)

− 1

∣∣∣∣∣∣
�Γ,suppϕ,x T

−κ (1 + S`(ϕ)ν(ϕ ◦ πU)−1
)
.

We begin by interpreting (8.14) in another form, as in the following lemma. This

form will be easier to work with when using a partition of unity. Note that the main idea

here is that for ϕ of small support and for any y ∈ suppϕ, x ? y is very close to both R

and r.

For H ⊆ U\G compact and x ∈ U\G, define

RH = max
y∈H

x ? y and rH = min
y∈H

x ? y.

Lemma 8.3.2. Let Ω ⊆ G be a compact set, let x ∈ U\G be such that Ψ(x)Γ is ε-

Diophantine, let ϕ ∈ C∞c (U\G) with Ψ(suppϕ) ⊂ Ω, and let η > 0 be smaller than the

injectivity radius of Ω. Let R = RπU (Ω) and r = rπU (Ω). Then for T �Γ,Ω,x 1,∣∣∣∣∣∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

∣∣∣∣∣
�Γ,Ω,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))(
η + T−1/2

)α ∫
P

ϕ(πU(p))dν(p)

+ µPS
Ψ(x)Γ

(
BU

(√
T

r

))
η−`+(n−1)/2S`(ϕ)T−κ

′
.
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Proof. Following the arguments in the proof of Theorem 8.2.1 (more explicitly, the com-

putations leading to (8.14)), one may deduce that for T �Γ,Ω,x 1,∣∣∣∣∣∣ 1

µPS
Ψ(x)Γ

(
BU

(√
T

x?y

)) ∑
γ∈ΓT

ϕ(xγ)−
∫
P

ϕ(πU(p))dν(p)

∣∣∣∣∣∣
�Γ,Ω,x

[(
η + T−1/2

)α
+ η−`+(n−1)/2T−κ

′
]
S`(ϕ).

Therefore, we may conclude

− µPS
Ψ(x)Γ

(
BU

(√
T

R

))[(
η + T−1/2

)α ∫
P

ϕ(πU(p))dν(p)− η−`+(n−1)/2S`(ϕ)T−κ
′
]

�Γ,suppϕ,x

∑
γ∈ΓT

ϕ(xγ)− µPS
Ψ(x)Γ

(
BU

(√
T

R

))∫
P

ϕ(πU(p))dν(p)

≤
∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

≤
∑
γ∈ΓT

ϕ(xγ)− µPS
Ψ(x)Γ

(
BU

(√
T

r

))∫
P

ϕ(πU(p))dν(p)

� µPS
Ψ(x)Γ

(
BU

(√
T

r

))[(
η + T−1/2

)α ∫
P

ϕ(πU(p))dν(p) + η−`+(n−1)/2S`(ϕ)T−κ
′
]
,

where the implied constant in the last line depends on Γ, suppϕ, and x.

Proof of Theorem 1.3.4. Step 1: Use an appropriate partition of ϕ.

By Corollary 7.1.2, there exists a partition ϕ1, . . . , ϕk of ϕ satisfying Lemma 8.3.2

with Ω = Ψ(suppϕ) and

k∑
i=1

S`(ϕi)�`,suppϕ η
−`+n(n+1)/4S`(ϕ). (8.15)
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Thus, by Lemma 8.3.2, we have that for each ϕi,∣∣∣∣∣∑
γ∈ΓT

ϕi(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕi(πU(p))dν(p)

∣∣∣∣∣
�Γ,suppϕ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

ri

))
· (8.16)[(

η + T−1/2
)α ∫

P

ϕi(πU(p))dν(p) + η−`+(n−1)/2S`(ϕi)T
−κ′
]
.

Let

r = min{r1, . . . , rk}.

Summing over i, using (8.15), and noting that η < 1 yields∣∣∣∣∣∑
γ∈ΓT

ϕ(xγ)−
∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p)

∣∣∣∣∣
�Γ,suppϕ,x µ

PS
Ψ(x)Γ

(
BU

(√
T

r

))(
η + T−1/2

)α ∫
P

ϕ(πU(p))dν(p)

+ µPS
Ψ(x)Γ

(
BU

(√
T

r

))
η−2`+(n2+3n−2)/4S`(ϕ)T−κ

′
. (8.17)

Step 2: Putting it together.

Recall

I(ϕ, T, x) :=

∫
P

µPS
Ψ(x)Γ

(
BU

( √
T

x ? πU(p)

))
ϕ(πU(p))dν(p).

Let

R = Rϕ := max
y∈suppϕ

x ? y.
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By Corollary 10.1.4, we have that there exists σ = σ(Γ) > 0 so that

µPS
Ψ(x)Γ

(
BU

(√
T
r

))
I(ϕ, T, x)

≤
µPS

Ψ(x)Γ

(
BU

(√
T
r

))
µPS

Ψ(x)Γ

(
BU

(√
T
R

))
ν(ϕ ◦ πU)

�Γ

(
R

r

)σ
ν(ϕ ◦ πU)−1

�Γ,suppϕ,x ν(ϕ ◦ πU)−1, (8.18)

where the last line follows because (R/r)σ is simply a constant depending on suppϕ,Γ,

and x.

From (8.17) and (8.18), we obtain that∣∣∣∣∣∣
∑
γ∈ΓT

ϕ(xγ)

I(ϕ, T, x)
− 1

∣∣∣∣∣∣�Γ,suppϕ,x

µPS
Ψ(x)Γ

(
BU

(√
T
r

))
I(ϕ, T, x)

√
T + c

(
η + T−1/2

)α ∫
P

ϕ(πU(p))dν(p)

+
µPS

Ψ(x)Γ

(
BU

(√
T
r

))
I(ϕ, T, x)

η−2`+(n2+3n−2)/4S`(ϕ)T−κ
′

�Γ,suppϕ,x

√
T + c

(
η + T−1/2

)α
+ ν(ϕ ◦ πU)−1η−2`+(n2+3n−2)/4S`(ϕ)T−κ

′

�Γ,suppϕ,x

√
T + c

(
η + T−1/2

)α
+
η−2`+(n2+3n−2)/4S`(ϕ)T−κ

′

ν(ϕ ◦ πU)

�Γ,suppϕ,x T
−κ (1 + S`(ϕ)ν(ϕ ◦ πU)−1

)
, (8.19)

where (8.19) follows by choosing η = T−ρ, where ρ = 1 if 2`− n2+3n−2
4

< 0, and

ρ =
κ′

4`− n+ 1− 1
2
n(n+ 1)

otherwise, and letting

κ = min{ρα, α/2, κ′/2}.
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Remark. Note that the implied dependence on x is quite explicit. It arises from sup-

pressing the factors Rϕ, rϕ, ‖Ψ(x)−1‖, and c throughout the argument. Specifically, c is

suppressed in the use of Lemma 8.3.2, and rϕ, Rϕ are suppressed in (8.19). Note that

these constants depend on x and suppϕ through the ? operation, as can be seen from

the definitions and the proof of Lemma 7.0.2, and they can also be computed explicitly

if desired. The factor of ‖Ψ(x)−1‖ is suppressed in the construction of the partition in

Corollary 7.1.2. The implied constant from Theorem 1.2.2 also depends on x through the

explicit Diophantine behaviour of x, i.e. the (ε, s0). J

Remark. The suppressed constants Rϕ, rϕ, c, and ‖Ψ(x)−1‖ mentioned in the previous

remark are continuous functions of x by definition of ?. This will be used in the next

section. J

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Distribution of orbits of geometrically finite

groups acting on null vectors”, arXiv:2009.11968. The dissertation author was one of the

primary investigators and authors of this paper.
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Chapter 9

Applications

Let V be a manifold on which G acts smoothly and transitively from the right, so

that V may be identified with H\G for some closed subgroup H of G that is the stabilizer

of a point v0 ∈ V . Let σ : H\G→ V be the identification

σ(Hg) = v0 · g. (9.1)

Note that σ is smooth because G acts smoothly.

Assume further that U ⊆ H ⊆ UM . In particular, πU(H) is compact in U\G

(recall from Chapter 3 that πU : G→ U\G is the quotient map). Define θ : U\G→ H\G

by

θ(Ug) = Hg. (9.2)

We will now show that θ is smooth. Since U is closed, πU : G → U\G is a smooth

submersion. Thus, θ is smooth if and only if θ ◦ πU is smooth. Since θ ◦ πU = πH , the

quotient map from G→ H\G, it is smooth, which establishes the smoothness of θ.
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For v, u ∈ V , let x, y ∈ U\G be such that u = σ(θ(x)), v = σ(θ(y)). We may define

v ? u = x ? y.

This is well-defined because UM stabilizes E1,n+1, and H ⊆ UM (see (1.4) for the defini-

tion of ? on U\G).

Recall the definition of Ψ : U\G→ G from Chapter 7:

Ψ(Ug) = ak,

where g = uak is the Iwasawa decomposition of g.

Definition 9.0.1. A vector v ∈ V is called ε-Diophantine if there exists x ∈ U\G

such that v = v0 · x and Ψ(x)Γ is ε-Diophantine. Such x is called an ε-Diophantine

representative of v. J

Remark. Note that for any g ∈ G, g− ∈ Λr(Γ) if and only if (umg)− ∈ Λr(Γ) for all

um ∈ UM , since UM does not change g−. Thus, for v ∈ V, we may define the notation

v− ∈ Λr(Γ)

if for any representative Ψ(x), Ψ(x)− ∈ Λr(Γ). Note also that since C0 is M invariant and

A commutes with M , the definition of v being ε-Diophantine is independent of the choice

of a representative x ∈ U\G. J

Observe that ν uniquely defines a measure on U\G by ν(ϕ◦πU) for any continuous

function ϕ defined on U\G. One can use the push-forward of this measure to H\G and
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the identification of V with H\G to uniquely define a measure on V . Denote this measure

by ν̄.

Corollary 9.0.2. For any 0 < ε < 1, there exist ` = `(Γ) ∈ N and κ = κ(Γ, ε) satisfying:

for every ϕ ∈ C∞c (V ) and ε-Diophantine v ∈ V with Diophantine representative x ∈ U\G

(i.e., v0x = v), and T �Γ,suppϕ,v 1,∣∣∣∣∣∣
∑

γ∈ΓT
ϕ(vγ)∫

P
µPS

Ψ(x)Γ

(
BU

(√
T

v?u

))
ϕ(u)dν(u)

− 1

∣∣∣∣∣∣�Γ,suppϕ,x T
−κ (1 + S`(ϕ)ν(ϕ)−1

)
.

Proof. Let `′ satisfy the conclusion of Theorem 1.3.4 and ` satisfy the conclusion of Lemma

3.4.6 for `′.

Recall the definitions of σ : H\G → V in (9.1) and θ : U\G → H\G in (9.2).

Define ϕ ∈ C∞c (U\G) by

ϕ = ϕ ◦ σ ◦ θ.

Let x ∈ U\G be an ε-Diophantine representative of v. In particular, note that

σ(θ(x)) = σ(HΨ(x)) = v. Then, since

ϕ(xγ) = ϕ(σ(θ(x)) · γ) = ϕ(v · γ),

by Theorem 1.3.4, for T �Γ,suppϕ,ε,x 1,

T−κ
(
1 + S`(ϕ)ν(ϕ ◦ πU)−1

)
�Γ,suppϕ,x T

−κ

∣∣∣∣∣∣
∑

γ∈ΓT
ϕ(xγ)∫

P
µPS

Ψ(x)Γ

(
BU

( √
T

x?πU (p)

))
ϕ(πU(p))dν(p)

− 1

∣∣∣∣∣∣
�Γ,suppϕ,x T

−κ

∣∣∣∣∣∣
∑

γ∈ΓT
ϕ(vγ)∫

P
µPS

Ψ(x)Γ

(
BU

(√
T

v?u

))
ϕ(u)dν(u)

− 1

∣∣∣∣∣∣ .
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Note that the dependence of T on x is through ε, s0 such that x is (ε, s0)-Diophantine,

and by Remark , this is in fact independent of the choice of Diophantine representative x

of v. By Remark , the dependence on x in the implied constant in the above inequality can

be made uniform over all representatives of v, as they vary by elements in M , a compact

set. Thus, both dependencies on x can be replaced by dependence on v.

Observe that ϕ can be viewed as a function on U\H ×H\G ∼= U\G by

ϕ(y, x) = idU\H(y) · (ϕ ◦ σ)(x).

Therefore, Lemma 3.4.1 and Lemma 3.4.6 imply

S`′(ϕ)�H S`′(idU\H)S`′(ϕ ◦ σ)�H,σ,suppϕ S`(ϕ),

where the Sobolev norm of idU\H is finite since we are assuming U\H is compact.

In a similar way, one may deduce the following from Corollary 1.3.3 (see Remark

for the notation v− ∈ Λr(Γ)):

Corollary 9.0.3. Assume that Γ is convex cocompact. For any ϕ ∈ Cc(V ) and every

v ∈ V with v− ∈ Λ(Γ), as T →∞,

1

T δΓ/2

∑
γ∈ΓT

ϕ(vγ) �
∫
P

ϕ(u)

(v ? u)δΓ
dν(u),

where the implied constant depends on v and Γ.
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9.1 Identification with Null Vectors

Let G act on Rn+1 by right matrix multiplication, and let

V = en+1G \ {0}.

To better understand the set V , note that the representation of SO(n, 1) we are using is

SO(n, 1) = {A ∈ SLn+1(R) : AJAT = J},

where

J =


0 0 1

0 −In−1 0

1 0 0

 .

Let P be such that

J ′ :=

−In 0

0 1

 = PJP T .

Then V P is the upper half of the “light cone” in the standard representation of SO(n, 1).

In particular, this consists of null vectors of

Q′(x1, . . . , xn+1) = x2
n+1 − x2

1 − · · · − x2
n

with xn+1 > 0. In our case, V consists of null vectors of

Q(x1, . . . , xn+1) = 2x1xn+1 − x2
2 − · · · − x2

n.

Proposition 9.1.1. Let Γ be convex cocompact. For any ϕ ∈ Cc(V ) and every v ∈ V

with v− ∈ Λ(Γ), as T →∞, we have that

1

T δΓ/2

∑
γ∈ΓT

ϕ(vγ) �
∫
V

ϕ(u)
dν(u)

(‖v‖2 ‖u‖2)δΓ/2
,
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where the implied constant depends on v and Γ.

The measure ν is described more explicitly in (9.8), below.

Let

en+1 = (0, . . . , 0, 1) ∈ Rn+1.

Then

StabG(en+1) = UM, (9.3)

and hence

A×M\K ∼= UM\G ∼= V (9.4)

via right matrix multiplication

UMg 7→ en+1g.

We will now interpret Corollary 9.0.2 in this setting. We start by understanding

the measure ν.

We view V as (M\K)× R+, via the “polar decomposition” of v ∈ V ,

v = ‖v‖2en+1k = en+1a− log ‖v‖2k, (9.5)

where R+ = {r ∈ R : r > 0} and ‖ · ‖2 denotes the Euclidean norm on V . We may also

identify M\K with ∂(Hn) via

Mk 7→ w−o k. (9.6)

Thus, given v ∈ V , (9.5) and (9.6) uniquely determine a pair (a− log ‖v‖2 ,Mk) ∈

A×M\K, or equivalently, a pair (a− log ‖v‖2 , w
−
o k) ∈ A× ∂(Hn).
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Viewing ∂(Hn) as M\K as in (9.6), we may in turn identify this with Sn ⊆ Rn+1

via

w−o k 7→ en+1k.

Thus, νo uniquely determines a measure νo on Sn ∩ V via

dνo(en+1k) = dνo(w
−
o k). (9.7)

Then, since K stabilizes o and M stabilizes wo, ν can be described from (3.21): if

s = β(a− log ‖v‖2k)−(o, a− log ‖v‖2k(o)) = log ‖v‖2,

dν(v) := dν(a− log ‖v‖2k)

= e
δΓβ(a− log ‖v‖2

k)− (o,a− log ‖v‖2k(o))
dνo(w

−
o a− log ‖v‖2k)ds

= eδΓsdνo(w
−
o k)ds

= ‖v‖δΓ−1
2 dνo(en+1k)d‖v‖2.

For v ∈ V , define

v− := en+1k ∈ Sn,

where v corresponds to (a− log ‖v‖2 ,Mk) ∈ A×M\K. Then we have

dν(v) = ‖v‖δΓ−1
2 dνo(v

−)d‖v‖2. (9.8)

As discussed in the previous section, v ? u may be computed by the formula in

(1.4) for any choice of representatives of v and u in U\G. In particular, if

v = ‖v‖2en+1kv, u = ‖u‖2en+1ku,
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then

v ? u =

√
1

2
‖v‖2‖u‖2 max

1≤i,j≤n+1
|(k−1

v )i,1(ku)n+1,j|,

where ki,j denotes the (i, j) entry of k. In particular

v ? u �
√
‖v‖2 ‖u‖2.

Putting this together with Corollary 9.0.3 yields the proposition.

9.2 Wedge Products

The previous example can be generalized to
∧j Rn+1 for any 1 ≤ j ≤ n. Fix j,

and let

W =

j∧
Rn+1, and v0 = v0(j) = en−j+1 ∧ · · · ∧ en+1,

with G acting on W by right multiplication. Then,

Staben−j+1∧···∧en+1 = U ·Mj

for some Mj ⊆M . Define

V = v0G \ {0}.

Fix a norm on V which is invariant under K such that ‖v0‖ = 1.

Since any v ∈ V can be written as

v = v0a− log‖v‖k,
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where k ∈ Mj\K, in a similar way to the construction in the previous section, one can

show that if a− log ‖v‖k ∈ UP and can be written as uamv ∈ UAMŨ , then

dν(v) = ‖v‖δΓ−1 dνo(v
−)d ‖v‖ dm,

where v− := w−o k, and dm is the push forward of the probability Haar measure on Mj\M .

dν(v) is zero if a− log ‖v‖k 6∈ UP , because the original measure ν is supported on P .

Moreover, by earlier reasoning, v ?u is well defined and, as in the previous section,

we have that

v ? u �
√
‖v‖ ‖u‖.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Distribution of orbits of geometrically finite

groups acting on null vectors”, arXiv:2009.11968. The dissertation author was one of the

primary investigators and authors of this paper.
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Chapter 10

Appendix: Friendliness of the PS

Measure

This chapter is dedicated to the technical details of the proof of Proposition 5.0.4.

From the starting point of the fact that the PS density νo is friendly by [DFSU20], we will

show that the PS measures µPS
x satisfy a stronger condition than just that of friendliness,

thanks to the shadow lemma.

For simplicity, in this chapter, we work in the Poincaré ball models of hyperbolic

geometry Dn, instead of Hn. Recall that Dn and Hn are isometric via the Cayley transform.

Denote by dE the Euclidean metric on Rm. For a subset S ⊆ Rm and ξ > 0, let

N (S, ξ) = {x ∈ Rm : dE(x, S) ≤ ξ}.
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For v ∈ Rm and r > 0, let

B(v, r) = {u ∈ Rm : dE(u, v) ≤ r}

be the Euclidean ball of radius r around v.

Definition 10.0.1. Let µ be a measure defined on Rm.

1. µ is called Federer (respectively, doubling) if for any c > 1, there exists k1 > 0

such that for all v ∈ supp(µ) and 0 < η ≤ 1 (respectively, η > 0),

µ(B(v, cη)) ≤ k1µ(B(v, η)).

2. µ is called decaying and nonplanar if there exist α, c2 > 0 such that for all

v ∈ suppµ, ξ > 0, 0 < η ≤ 1, and every affine hyperplane L ⊆ Rn,

µ(N (L, ξ ‖dL‖µ,B(v,η)) ∩B(v, η)) ≤ c2ξ
αµ(B(v, η)),

where

‖dL‖µ,B(v,η) := sup {d(y, L) : y ∈ B(v, η) ∩ suppµ} .

3. µ is called friendly if it is Federer, decaying, and nonplanar.

J

Theorem 10.0.2. [DFSU20, Theorem 1.9] Assume Γ is geometrically finite and Zariski

dense. Then the PS-densities {νx}x∈Dn are friendly. Moreover, in this case, the constants

in Definition 10.0.1 only depend on Γ.
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Note that, as in [DFSU20, Definition 1.1(1.3)], using closed thickenings, one obtains

Definition 10.0.1(2) by combining the separate definitions of decaying and of nonplanar

from [DFSU20]. The above result for the case when Γ is convex cocompact was proved

in [SU40, Theorem 2].

In the case that all cusps have maximal rank (which vacuously includes the case

of convex cocompact Γ), a stronger statement holds, see §10.3.

Because of the shadow lemma, Proposition 3.2.1, we will see that the leafwise PS

measures {µPS
x } satisfy a stronger condition than that of friendliness. In general, our

proofs take the following form: we will begin by proving a statement for νo, then for µPS
x

when x+ ∈ Λ(Γ), and then finally a nicer statement for x ∈ suppmBMS will be obtained

by a flowing argument.

The next lemma and subsequent corollaries are necessary to move between these

measures.

As in §3.1, we fix o ∈ Dn.

For any x ∈ Dn define the Gromov distance at x of ξ, η ∈ ∂Dn by

dx(ξ, η) = exp

(
−1

2
βξ(x, y)− 1

2
βη(x, y)

)
,

where y is on the ray joining ξ and η. For any x ∈ Dn, ξ ∈ ∂Dn, and r > 0 let

Bx(ξ, r) := {η ∈ ∂Dn : dx(ξ, η) ≤ r} .

For v ∈ T1(Dn), denote by Prv− : Uv → ∂Dn \ {v−} the projection w 7→ w+.
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The next lemma follows from §1.6 in [Kai90], and [Sch04, Lemma 2.5, Theorem

3.4].

Lemma 10.0.3. There exist constants α0 > 0, c > 1 such that for all g ∈ G and

0 < η ≤ α0, we have

Bπ(g)

(
g+, c−1η

)
⊆ Prg− (BU (η) g) ⊆ Bπ(g)

(
g+, cη

)
.

According to [DSU17, Lemma 3.5.1] for any ξ, η ∈ ∂Dn

do(ξ, η) =
1

2
dE(ξ, η). (10.1)

Using the triangle inequality on the hyperbolic distance and the definition of the Buse-

mann function, one can show that for any x ∈ Dn and ξ, η ∈ ∂Dn

e−d(o,x) ≤ dx(ξ, η)

do(ξ, η)
≤ ed(o,x). (10.2)

The following is a direct corollary of (10.1), (10.2), and Lemma 10.0.3.

Corollary 10.0.4. There exist constants α0 > 0, c > 1 such that for all g ∈ G and

0 < η ≤ α0, we have

B
(
g+, c−1e−d(o,π(g))η

)
⊆ Prg− (BU (η) g) ⊆ B

(
g+, ced(o,π(g))η

)
.

The next corollary will be necessary to obtain a nonplanarity result for µPS
x . It

follows from Corollary 10.0.4 by covering the hyperplane with small balls using the fact

that η ≤ 1 to uniformly bound the d(o, π(g′))’s with d(o, π(g)), where g′ is the center of

one of the balls in this cover.
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Corollary 10.0.5. Let α0 be as in Corollary 10.0.4. There exists a constant c > 1 so

that for every g ∈ G, every 0 < ξ < η ≤ α0, and every hyperplane L in Rn−1, there exists

a hyperplane L′ in ∂(Hn) so that

N
(
L′, c−1e−d(o,π(g))ξ

)
∩B

(
g+, c−1e−d(o,π(g))η

)
⊆ Prg− (N (L, ξ) ∩BU(η)g)

⊆ N
(
L′, ced(o,π(g))ξ

)
∩B

(
g+, ced(o,π(g))η

)

10.1 The PS Measure is Federer

In this section, we prove more specific Federer statements for νo and µPS
x .

Lemma 10.1.1. There exists a constant σ ≥ δΓ depending only on Γ such that for any

λ ∈ Λ(Γ), η > 0 and c ≥ 1, we have that

νo(B(λ, cη))�Γ c
σνo(B(λ, η)).

Proof. We will prove this for the balls Bo(λ, cη), and Bo(λ, η) using the Gromov distance.

It then immediately follows for the Euclidean balls B(λ, cη) and B(λ, η) by the Federer

condition and (10.1).

Let {λt}t≥0 be a geodesic ray joining o to λ. By the shadow lemma for νo, [SV95,

Theorem 2] (see also [Sch04, Theorem 3.2]), we have that for any η > 0,

ηδΓe(k(λ− log η)−δΓ)d(π(C0),λ− log η) �Γ νo (Bo (λ, η))

�Γ η
δΓe(k(λ− log η)−δΓ)d(π(C0),λ− log η). (10.3)
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Here, k(λ− log η) denotes the rank of the cusp that λ− log η lies in; if it is in π(C0), it is defined

to be zero. (Recall the definition of C0 from §3.2.) Note also that we have absorbed a

constant depending on diam π(C0) (hence only on Γ) in order to write the distance from

π(C0) rather than from the fixed reference point o.

It follows from (10.3) that it is enough to show that for some σ ≥ δΓ,

νo (Bo (λ, cη))�Γ (cη)δΓe(k(λ− log cη)−δΓ)d(π(C0),λ− log cη)

�Γ c
σηδΓe(k(λ− log η)−δΓ)d(π(C0),λ− log η)

�Γ c
σνo (Bo (λ, η)) .

Equivalently, it is enough to show that

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η) (10.4)

�Γ (σ − δΓ) log c.

Case 1: Assume k(λ− log cη) ≤ k(λ− log η).

Then

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (k(λ− log η)− δΓ)(d(π(C0), λ− log cη)− d(π(C0), λ− log η))

≤ (k(λ− log η)− δΓ) log c

≤ (n− 1− δΓ) log c.

Case 2: k(λ− log cη) > k(λ− log η) and k(λ− log η) = 0.
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Then, d(π(C0), λ− log η) = 0 and

0 < d(π(C0), λ− log cη) ≤ d(π(C0), λ− log η) + d(λ− log η, λ− log cη) ≤ log c.

Therefore,

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δΓ)d((π(C0), λ− log cη)

≤ (k(λ− log cη)− δΓ) log c

≤ (n− 1− δΓ) log c.

Case 3: Assume k(λ− log cη) > k(λ− log η) and k(λ− log η) > 0. In particular, λ− log η

and λ− log cη are in two different cusps, and hence there exists 1 < r < c such that

λ− log rη ∈ π(C0). Then,

d(π(C0), λ− log η) ≤ d(λ− log rη, λ− log η) ≤ log r ≤ log c

d(π(C0), λ− log cη) ≤ d(λ− log rη, λ− log cη) ≤ log(c/r) ≤ log c

Note that since k(λ− log cη) ≥ 2, we have δΓ > 1, because δΓ > k/2, where k is the maximal

cusp rank. We arrive at

(k(λ− log η)− δΓ)d(π(C0), λ− log η) ≥ (1− δΓ)d(π(C0), λ− log η)

≥ (1− δΓ) log c

(k(λ− log cη)− δΓ)d(π(C0, λ− log cη) ≤ (n− 1− δΓ)d(π(C0), λ− log cη)

≤ (n− 1− δΓ) log c.
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It follows that

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (n− 1− δΓ) log c− (1− δΓ) log c

≤ (n− 2) log c.

Thus, choosing

σ = max{n− 1− δΓ, n− 2}+ δΓ

completes the proof.

When c < 1, we obtain a similar result, with a slightly more involved argument.

Lemma 10.1.2. There exists a constant σ > 0 depending only on Γ such that for any

λ ∈ Λ(Γ), η > 0 and 0 < c < 1, we have that

νo(B(λ, cη))�Γ c
σνo(B(λ, η)).

Proof. The proof is extremely similar to that of Lemma 10.1.1.

By the shadow lemma, as in the proof of Lemma 10.1.1, it is enough to show that

for some σ > 0,

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η) (10.5)

�Γ (δΓ − σ)| log c|.

Case 1: Assume k(λ− log cη) ≤ k(λ− log η).
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Then

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δΓ)(d(π(C0), λ− log η)− d(π(C0), λ− log cη))

≤ |k(λ− log η)− δΓ|| log c|

Let k be the maximal cusp rank. Since |k − δΓ| < δΓ, we get that

σ := δΓ − |k − δΓ| > 0

satisfies the claim.

Case 2: k(λ− log cη) > k(λ− log η) and k(λ− log η) = 0.

Then, d(π(C0), λ− log η) = 0 and

0 < d(π(C0), λ− log cη) ≤ d(π(C0), λ− log η) + d(λ− log η, λ− log cη) ≤ | log c|.

Therefore,

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δΓ)d(π(C0), λ− log cη)

≤ |k(λ− log cη)− δΓ|| log c|,

and the claim follows as in Case 1.
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Case 3: Assume k(λ− log cη) > k(λ− log η) and k(λ− log η) > 0. In particular, λ− log η

and λ− log cη are in two different cusps, and hence there exists c < r < 1 such that

λ− log rη ∈ π(C0). Then since r < 1,

d(π(C0), λ− log η) ≤ d(λ− log rη, λ− log η) ≤ | log r| (10.6)

d(π(C0), λ− log cη) ≤ d(λ− log rη, λ− log cη) ≤ log(r/c) (10.7)

Note that since k(λ− log cη) ≥ 2, we have δΓ > 1. By (10.6) and (10.7), we arrive at

(k(λ− log η)− δΓ)d(π(C0), λ− log η) ≥ (1− δΓ)d(π(C0), λ− log η) (10.8)

≥ (δΓ − 1) log c (10.9)

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη) ≤ max{0, log(r/c)(k(λ− log cη)− δΓ)}

We now have two cases. First, assume that log(r/c)(k(λ− log cη) − δΓ) ≤ 0. Then

k(λ− log cη)− δΓ ≤ 0, so by (10.8), we have that

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ −(δΓ − 1) log c

= (δΓ − 1)| log c|

Now, assume that log(r/c)(k(λ− log cη) − δΓ) > 0, i.e. that k(λ− log cη) − δΓ > 0.

Then it follows from (10.7) that

(k(λ− log cη)− δΓ)d(π(C0), λ− log cη)− (k(λ− log η)− δΓ)d(π(C0), λ− log η)

≤ (k(λ− log cη)− δΓ) log(r/c)− (δΓ − 1) log r. (10.10)
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Now, consider two further cases: k(λ− log cη)− δΓ > δΓ − 1 or k(λ− log cη)− δΓ ≤ δΓ − 1. In

the first case, (10.10) is bounded above by

(δΓ − 1) log(r/c)− (δΓ − 1) log r = −(δΓ − 1) log c = (δΓ − 1)| log c|.

In the second case, note that (10.10) is equal to

(k − 2δΓ + 1) log r − (k(λ− log cη − δΓ) log c,

and our assumption implies that the first term is negative. Thus, an upper bound is

−(k(λ− log cη − δΓ) log c = (k(λ− log cη − δΓ)| log c| ≤ (k − δΓ)| log c|,

where k is the maximal cusp rank, as before. Note that k − δΓ < δΓ because δΓ > 2k

always holds.

Thus, choosing

σ = min{δΓ − |k − δΓ|, 1}

completes the proof.

Using Lemma 10.0.3, we obtain the following quantitative Federer-like statement

for
{
µPS
x

}
x+∈Λ(Γ)

:

Corollary 10.1.3. There exists constants σ1 = σ1(Γ) ≥ δΓ, σ2 = σ2(Γ) > 0 which satisfy

the following: let x ∈ G be such that x+ ∈ Λ(Γ). Then for c > 0 and η �Γ c
−1e− height(x),

we have that

µPS
x (BU(cη))�Γ max{cσ1 , cσ2}e2(δΓ+σ1) height(x)µPS

x (BU(η)).
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Proof. Fix g ∈ G which satisfies x = gΓ and height(x) = d(π(C0), π(g)). By (3.19), inj(x)

and height(x) are related, so that for η �Γ c
−1 height(x),

µPS
g (BU(cη)) = µPS

x (BU(cη)).

For any 0 < η ≤ 1 and ut ∈ BU(η), we have that

|β(utg)+(o, utg(o))| ≤ d(u−1
t (o), g(o))

≤ d(u−1
t (o), o) + d(o, g(o))

≤ 2 diam(BU(1)π(C0)) + height(x).

The above gives a bound on the Busemann function for the following when η ≤ 1:

e−δΓ height(x)νo(Prg−(BU(η)))

�Γ µ
PS
g (BU(η)) =

∫
t∈BU (η)

eδΓβ(utg)
+ (o,utg(o))dνo((utg)+) (10.11)

�Γ e
δΓ height(x)νo (Prg−(BU(η))) . (10.12)

Assume c ≥ 1. By Lemma 10.0.3 and Lemma 10.1.1, we have that

νo(B(g+, η)) = νo(B(g+, (c̃eheight(x)c̃−1e− height(x)η))

�Γ (c̃eheight(x))σ1νo(B(g+, c̃e− height(x)η)). (10.13)

Let c̃ > 1 be as in Corollary 10.0.4. Then as long as

η ≤ c̃−1c−1e− height(x),
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we have the following:

µPS
g (BU(cη))�Γ e

δΓ height(x)νo(Prg−(BU(cη)) by (10.12)

�Γ e
δΓ height(x)νo(B(g+, c̃eheight(x)cη)) by Corollary 10.0.4

�Γ c
σe(δΓ+σ1) height(x)νo(B(g+, η)) by Lemma 10.1.1

�Γ c
σ1e(δΓ+2σ1) height(x)νo(B(g+, c̃−1e− height(x)η) by (10.13)

�Γ c
σ1e(δΓ+2σ1) height(x)νo(Prg−(BU(η))) by Corollary 10.0.4

�Γ c
σ1e2(δΓ+σ1) height(x)µPS

g (BU(η)) by (10.11),

which completes the proof in this case.

The case 0 < c < 1 can be shown in a similar way using Lemma 10.1.2.

When x ∈ suppmBMS, a flowing argument with {a−s : s ≥ 0} allows us to remove

the restriction that η must be small in a way that depends on height(x). More precisely,

we obtain:

Corollary 10.1.4. If Γ is geometrically finite and Zariski dense, then for any x ∈

suppmBMS, the measure µPS
x is doubling, and the constants only depend on Γ. More

precisely, there exist constants σ1 = σ1(Γ) ≥ δΓ, σ2 = σ2(Γ) > 0 such that for every c > 0,

every x ∈ suppmBMS and every T > 0,

µPS
x (BU(cT ))�Γ max{cσ1 , cσ2}µPS

x (BU(T )).

Proof. On a geometrically finite quotient, there exists a compact set Ω0 ⊂ X such that

for every x ∈ X with x− ∈ Λr(Γ), there exists a sequence sn →∞ such that a−snx ∈ Ω0.
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Because Ω0 depends only on Γ, the height of any point in Ω0 is bounded by a

constant depending only on Γ. Thus, by Corollary 10.1.3, for all x ∈ Ω0∩suppmBMS with

x− ∈ Λr(Γ) and for all η �Γ c
−1, we have that

µPS
x (BU(cη))�Γ max{cσ1 , cσ2}µPS

x (BU(η)). (10.14)

Now, fix x ∈ suppmBMS with x− ∈ Λr(Γ). Let T ≥ 0, and let s > 0 be sufficiently

large so that e−sT �Γ c
−1 and a−sx ∈ Ω0. Then

µPS
x (BU(cT )) = eδΓsµPS

a−sx(BU(ce−sT ))

�Γ max{cσ1 , cσ2}eδΓsµPS
a−sx(BU(e−sT )) by (10.14)

�Γ max{cσ1 , cσ2}µPS
a−sx(BU(T )),

so the result holds for x− ∈ Λr(Γ).

Since x 7→ µPS
x is continuous (see Lemma 3.1.1) and the set of x with x− ∈ Λr(Γ)

is dense in the set of points y ∈ X which satisfy y− ∈ Λ(Γ), the result then follows for all

x ∈ suppmBMS.

10.2 Non-planarity of the PS Measure

For a subset S ⊆ Rn−1 and ξ > 0, let

NU(S, ξ) = {ut ∈ U : ∃s ∈ S such that ‖t− s‖ < ξ}.

In the following, we use the shadow lemma for νo to obtain a stronger version of

nonplanarity than that in Definition 10.0.1. From this, we will see that the PS measures
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when Γ is geometrically finite satisfy friendly-like properties. We will obtain stronger

estimates for certain hyperplanes that are in the boundary of a ball centered at a BMS

point.

Theorem 10.2.1. There exist θ = θ(Γ) ≥ 1, α = α(Γ) > 0 which satisfy the following.

For any w ∈ Hn, λ ∈ Λ(Γ), 0 < η ≤ 1, and ξ > 0, we have

νw(N (L, ξ) ∩B(λ, η))�Γ e
2δΓd(o,w) ξ

α

ηθ
νw(B(λ, η)).

Proof. First, we show the result for o.

According to [DFSU20, Lemma 3.8] there exists β > 0 such that for any η > 0,

and any affine hyperplane L ⊂ Rn we have

νo(N (L, η))�Γ η
β. (10.15)

For λ ∈ Λ(Γ) and for t ∈ R, let λt be the unit speed geodesic ray from o to λ. It

follows from the shadow lemma for νo (see [SV95, Theorem 2], also [Sch04, Theorem 3.2])

that for any η > 0, we have

νo (Bo (λ, η))�Γ η
δΓe(k(λ− log η)−δΓ)d(o,λ− log η)

where k(λ− log η) is the rank of the cusp containing λ− log η (see §3.2). It follows from the

fact that k(λ− log η) ≥ 0 and d(o, λ− log η) ≤ − log η, that

νo (Bo (λ, η))�Γ η
2δΓ .
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Since νo is Federer (by Theorem 10.0.2), using (10.1) we arrive at the same bound for

Euclidean balls (with the implied constant changing):

νo (B (λ, η))�Γ η
2δΓ . (10.16)

Note that by the definition of ‖dL‖νo,B(λ,η),

B(λ, η) ∩ supp νo ⊂ N
(
L, ‖dL‖νo,B(λ,η)

)
.

It then follows from (10.15) and (10.16) that

ηδΓ �Γ

(
‖dL‖νo,B(λ,η)

)β
.

Hence

‖dL‖νo,B(λ,η) �Γ η
2δΓ/β. (10.17)

According to Theorem 10.0.2, the PS density is friendly. In particular, it is decay-

ing and nonplanar, so there exists α > 0 such that for all λ ∈ Λ(Γ), 0 < η ≤ 1, ξ > 0, an

affine hyperplane L ⊂ Rn, and B = B(λ, η), we have

νo(N (L, ξ ‖dL‖B) ∩B)�Γ ξ
ανo(B). (10.18)

The claim now follows for o from (10.17) and (10.18) by taking θ = 2δΓ/β.

Second, we show the result for a general w ∈ Hn. Note that

e−δΓd(o,w) �Γ e
−δΓβλ(w,o) �Γ e

δΓd(o,w).
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Thus, using this and the fact that {νw}w∈Hn is a conformal density satisfying (3.7), we

arrive at

νw(N (L, ξηθ) ∩B(λ, η))�Γ e
δΓd(o,w)νo(N (L, ξηθ) ∩B(λ, η))

�Γ e
δΓd(o,w)ξανo(B(λ, η))

�Γ e
2δΓd(o,w)ξανw(B(λ, η))

Last, note that by taking ξ = η1−θ, we conclude that θ ≥ 1.

Proposition 10.2.2. Let Γ be geometrically finite. There exist constants α = α(Γ) >

0, ω = ω(Γ) ≥ 0, and θ = θ(Γ) > α satisfying the following: for any x ∈ G/Γ with

x+ ∈ Λ(Γ), and for every ξ > 0 and 0 < η �Γ e− height(x), we have that for every

hyperplane L,

µPS
x (NU(L, ξ) ∩BU(η))�Γ e

ω height(x) ξ
α

ηθ
µPS
x (BU(η)).

Proof. Let α = α(Γ), θ = θ(Γ) > 0 satisfy the conclusion of Theorem 10.2.1, and c′ >

1 satisfy the conclusion of Corollary 10.0.4. Fix g ∈ G which satisfies x = gΓ and

height(x) = d(π(C0), π(g)).

By the same argument as in the proof of Corollary 10.1.3 to bound the Busemann

function when η ≤ 1, we obtain

e−δΓ height(x)νo (Prg−(N (L, ξ)x ∩BU(η)x))

�Γ µ
PS
g (N (L, ξ) ∩BU(η)) =

∫
t∈N (L,ξ)∩BU (η)

eδΓβ(utg)
+ (o,utg(o))dνo((utg)+)

�Γ e
δΓ height(x)νo (Prg−(N (L, ξ)x ∩BU(η)x))
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Thus, for η �Γ e
− height(x) (so that ced(o,π(x))η ≤ 1 below, and we stay within the

injectivity radius at x, using (3.19)), we have that

µPS
x (NU(L, ξ) ∩BU(η))

�Γ e
δΓ height(x)νo (Prg−(N (L, ξ) ∩BU(η)))

�Γ e
δΓ height(x)νo

(
N (L′, ced(o,π(x))ξ) ∩B

(
g+, ced(o,π(x))η

))
by Corollary 10.0.5

�Γ e
δΓ height(x)

(
ξ(ced(o,π(x)))1−θ

ηθ

)α
νo
(
B
(
g+, ced(o,π(x))η

))
by Theorem 10.2.1

�Γ e
δΓ height(x)

(
ξ(ed(o,π(x)))1−θ

ηθ

)α
ed(o,π(x))σνo(B(g+, η)) by Lemma 10.1.1

�Γ e
δΓ height(x)

(
ξ(ed(o,π(x)))1−θ

ηθ

)α
e2d(o,π(x))σνo(B(g+, c−1e−d(o,π(x)η)) by Corollary 10.0.4

�Γ e
2δΓ height(x)+(σ+(1−θ)α)d(o,π(x))

(
ξ

ηθ

)α
µPS
x (BU(η))

�Γ e
(2δΓ+σ+(1−θ)α) height(x)

(
ξ

ηθ

)α
µPS
x (BU(η))

�Γ e
ω height(x) ξ

α

ηθ′
µPS
x (BU(η)),

where

ω = max{2δΓ + σ + (1− θ)α, 0}, θ′ = θα.

We now show that much better estimates hold when the hyperplane is on the

boundary of the ball. This is because the quantity ‖dL‖νo,B(λ,η) (for λ ∈ Λ(Γ), 0 < η ≤ 1

and L a hyperplane) can be bounded below by the radius of the ball.

We say that a hyperplane L is on the boundary of a closed ball B if

∅ 6= L ∩B ⊆ ∂(B).
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Below, we obtain estimates for the PS measure of small neighbourhoods of hyperplanes

on the boundary of a ball centered at a BMS point. Though not written here, estimates

also hold when the center of the ball is a PS point but not a BMS point, as long as the

ball is sufficiently small (bounded by η �Γ e
− height(x)).

We caution the reader that the estimates below hold only for hyperplanes on

the boundary of such a ball; to obtain such estimates for general hyperplanes, absolute

friendliness of the PS density is necessary. By [DFSU20, Theorem 1.9], this is satisfied

if and only if all cusps of Hn/Γ have maximal rank. This case is discussed in the next

section.

Lemma 10.2.3. There exists a constant α = α(Γ) > 0 satisfying the following: for all

λ ∈ Λ(Γ), ξ > 0, 0 < η ≤ 1, and every hyperplane L that is on the boundary of B(λ, η),

we have that

νo(N (L, ξ) ∩B(λ, η))�Γ

(
ξ

η

)α
νo(B(λ, η)).

Proof. By [DFSU20, Theorem 1.9], νo is friendly when Γ is geometrically finite. In par-

ticular, this means that there exists α = α(Γ) > 0 such that for all λ ∈ Λ(Γ), ξ > 0,

0 < η ≤ 1, and every affine hyperplane L ⊆ ∂(Hn),

νo(N (L, ξ ‖dL‖νo,B(λ,η)) ∩B(λ, η))�Γ ξ
ανo(B(λ, η)),

where

‖dL‖νo,B(λ,η) := sup {d(y, L) : y ∈ B(λ, η) ∩ Λ(Γ)} .
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Since λ ∈ Λ(Γ), for any L that is on the boundary of B(λ, η), we have that

‖dL‖νo,B(λ,η) ≥ η/2.

Thus, for any L that is on the boundary of B(λ, η), we have

νo(N (ξη/2) ∩B(λ, η))�Γ ξ
ανo(B(λ, η)).

Replacing ξ with 2ξη−1 then implies that for every such L,

νo(N (L, ξ) ∩B(λ, η))�Γ

(
ξ

η

)α
νo(B(λ, η)),

as desired.

It is of critical importance that the exponents on ξ and η match in Lemma 10.2.3.

This is the key improvement obtained when the hyperplane is on the boundary. It enables

us to flow with a−s for s > 0 to obtain estimates for large balls centered at BMS points

that do not have a height factor appearing:

Corollary 10.2.4. Let α = α(Γ) > 0 be as in Lemma 10.2.3. For every x ∈ suppmBMS,

every η, ξ > 0, and every hyperplane L in the boundary of BU(η)x, we have

µPS
x (NU(L, ξ) ∩BU(η))�Γ

(
ξ

η

)α
µPS
x (BU(η)).

Proof. Since the radial limit points are dense in the all the limit points, using the conti-

nuity of the PS-measure, we may assume that x− ∈ Λr(Γ).

We will first prove that there exists a constant c = c(Γ) > 0 so that for all

x ∈ suppmBMS ∩ C0 with x− ∈ Λr(Γ), ξ > 0, η satisfying

0 < η ≤ c−1,
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and every hyperplane L in the boundary of BU(η)x, the inequality in the statement is

satisfied.

By Corollaries 10.0.4 and 10.0.5, there exists a constant c = c(Γ) > 0 so that for

any 0 < η ≤ c−1 and x ∈ suppmBMS ∩ C0, writing x = gΓ, we have

µPS
x (NU(L, ξ) ∩BU(η)) = µPS

g (NU(L, ξ) ∩BU(η))

�Γ νo (Prg−(N (L, ξ) ∩BU(η)))

�Γ νo
(
N (L′, cξ) ∩B

(
g+, cη

))
by Corollary 10.0.5

�Γ

(
ξ

η

)α
νo(B(g+, cη)) by Lemma 10.2.3

�Γ

(
ξ

η

)α
νo(B(g+, c−1η)) by Lemma 10.1.1/10.1.2

�Γ

(
ξ

η

)α
µPS
x (BU(η)) by Corollary 10.0.4,

where L′ is a hyperplane in the boundary obtained from the projection of L.

Now, let x ∈ suppmBMS with x− ∈ Λr(Γ) and let η > 0. Since a−sx has accumu-

lation points in C0, there exists s > 0 so that e−sη < c−1 and a−sx ∈ C0. By the first step

of the proof, we then have that

µPS
x (NU(L, ξ) ∩BU(η))

µPS
x (BU(η))

=
µPS
a−sx(NU(L, e−sξ) ∩BU(e−sη))

µPS
a−sx(BU(e−sη))

�Γ

(
e−sξ

e−sη

)α
=

(
ξ

η

)α
.

Proposition 10.2.5. Let α = α(Γ) > 0 be as in Corollary 10.2.4. Then for all x ∈
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suppmBMS, T > 0, and 0 < ε ≤ 1, we have that

µPS
x (BU((1 + 2ε)T ))− µPS

x (BU(T ))�Γ ε
αµPS

x (BU(T )).

Proof. By the geometry of (BU((1+2ε)T )−BU(T ))x, there exists a constant m depending

only on n and hyperplanes L1, . . . , Lm in the boundary of BU((1 + ε)T )x so that

(BU((1 + 2ε)T )−BU(T ))x ⊆
m⋃
i=1

NU(Li, εT ) ∩BU((1 + 2ε)T )x.

Then by Corollary 10.2.4, we have that

µPS
x (BU((1 + 2ε)T ))− µPS

x (BU(T ))

≤
m∑
i=1

µPS
x (NU(Li, εT ) ∩BU((1 + 2ε)T ))

�Γ

(
εT

(1 + 2ε)T

)α
µPS
x (BU((1 + 2ε)T ))

�Γ ε
αµPS

x (BU(T )) by Corollary 10.1.4

We can obtain estimates for all (ε, s0)-Diophantine points for balls that are suf-

ficiently large (in a way that is uniform and linear in s0). In fact, for any compact set

Ω ⊆ G/Γ, there exists a T0 = T0(Ω) satisfying the statement below for all x ∈ Ω with

x− ∈ Λ(Γ), see e.g. [MO16, Lemma 3.3]. Thus, the statement below could take many

forms and this is not as strong as possible; we simply write it in a way that is useful for

our setting.
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Corollary 10.2.6. Let α = α(Γ) > 0 be as in Proposition 10.2.5, let 0 < ε ≤ 1 and

let s0 ≥ 1. There exists T0 = T0(Γ, s0) > 0 so that for every (ε, s0)-Diophantine point

x ∈ G/Γ, all T > 2T0 + 1, and all ξ > 0,

µPS
x (BU((1 + 2ξ)T ))− µPS

x (BU(T ))�Γ

(
ξ +

T0

T − T0

)α
µPS
x (BU(T )). (10.19)

In particular, if x− ∈ Λr(Γ), there exists T0 = T0(x) > 0 so that for all T ≥ 2T0 + 1 and

all ξ > 0, (10.19) holds.

Proof. By Lemma 3.2.5, there exists T0 = T0(Γ, s0) > 0 (in fact, it is linear in s0) so that

for every (ε, s0)-Diophantine point x, there exists

y ∈ BU(T0)x ∩ suppmBMS.

For T ≥ T0, we have

BU(T − T0)y ⊆ BU(T )x ⊆ BU(T + T0)y.

In particular,

BU((1 + 2ξ)T )x ⊆ BU((1 + 2ξ)(T + T0))y

and

BU(T − T0)y ⊆ BU(T )x. (10.20)
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Now assume that T ≥ 2T0 + 1 so that we may use Proposition 10.2.5 below:

µPS
x (BU(1 + 2ξ)T )− µPS

x (BU(T ))

≤ µPS
y (BU(1 + 2ξ)(T + T0))− µPS

y (BU(T − T0))

≤ µPS
y

(
BU

(
(1 + 2ξ)

(
1 +

2T0

T − T0

)
(T − T0)

))
− µPS

y (BU(T − T0))

�Γ

(
ξ +

T0

T − T0

+
ξ

T − T0

)α
µPS
y (BU(T − T0)) by Proposition 10.2.5

�Γ

(
ξ +

T0

T − T0

+
ξ

T − T0

)α
µPS
x (BU(T )) by (10.20)

Since T ≥ 2T0 + 1,

ξ

T − T0

≤ ξ,

and it can be absorbed into the ξ term, completing the proof.

Note also that a similar argument can imply a bound for µPS
x (BU(T + ξ)) −

µPS
x (BU(T )), however the presence of the T0 term (which may be bounded by �Γ s0)

means that this actually yields a (somewhat superficially) worse result in the proofs of

the effective equidistribution theorems, requiring T to be larger for the theorems to hold.

For this reason, we do not use this result there, and instead use Theorem 5.0.1.

10.3 Absolute Friendliness of the PS Measure

When all cusps are of maximal rank, the PS measure is absolutely friendly, and

stronger results hold. Note that if Γ is convex cocompact, then there are no cusps, so this

additional assumption is vacuously true.
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Definition 10.3.1. Let µ be a measure defined on Rm.

1. µ is called absolutely decaying (respectively, globally absolutely decaying) if

there exist α, c2 > 0 such that for all v ∈ suppµ, all 0 < ξ < η ≤ 1 (respectively,

0 < ξ < η), and every affine hyperplane L ⊆ Rn,

µ(N (L, ξ) ∩B(v, η)) ≤ c2

(
ξ

η

)α
µ(B(v, η)).

2. µ is called absolutely friendly (respectively, globally friendly) if it is Federer

(respectively, doubling) and absolutely decaying (respectively, globally absolutely

decaying).

J

It is easy to see that if a measure µ is globally friendly, then it is also absolutely

friendly.

According to [SU40, Theorem 2] if Γ is convex cocompact or [DFSU20, Theorem

1.12] if Γ is geometrically finite, νo is absolutely friendly if and only if all cusps have

maximal rank.

Theorem 10.3.2. Assume that Γ is Zariski dense and either convex cocompact or geomet-

rically finite with all cusps having maximal rank. Then the PS-measures
{
µPS
x

}
x−∈Λ(Γ)

are

globally friendly, and the constants in Definition 10.3.1 only depend on Γ (in particular,

they do not depend on x).

This follows by a flowing argument, similar to the results for x ∈ suppmBMS proven

before. The key difference is observed by contrasting Definition 10.3.1(1) with Theorem
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10.2.1: when the powers of ξ, η match, a flowing argument may be used for BMS points.

When they do not match, one introduces a power corresponding to how far one flows with

a−s.

Corollary 10.3.3. Assume that Γ is Zariski dense and either convex cocompact or geo-

metrically finite with all cusps having maximal rank. There exists 0 < α = α(Γ) < 1 such

that for any x ∈ suppmBMS, T > 0, and 0 < ξ ≤ T , we have

µPS
x (BU(T + ξ))

µPS
x (BU(T ))

− 1�Γ

(
ξ

T

)α
.

Proof. Let c1 = c1(Γ), c2 = c2(Γ) > 0 and α = α(Γ) > 0 satisfy the conclusion of

Definition 10.3.1 for µPS
x and k = 2.

It follows from the geometry of BU(ξ + η)x−BU(η)x that there exist L1, . . . , Lm,

where m only depends on n, such that

BU(ξ + T )x−BU(T )x ⊆
m⋃
i=1

NU(Li, 2ξ).

Then, by Definition 10.3.1, we have

µPS
x (BU(ξ + T ))

µPS
x (BU(T ))

− 1 =
µPS
x (BU(ξ + T )−BU(T ))

µPS
x (BU(T ))

≤ mc2

(
ξ

T

)α
µPS
x (BU (ξ + T ))

µPS
x (BU(T ))

≤ mc1c2

(
ξ

T

)α
.
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This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Effective equidistribution of horospherical flows

in infinite volume rank one homogeneous spaces”, arXiv:2007.03135. The dissertation

author was one of the primary investigators and authors of this paper, and was supported

in part by the National Science and Engineering Research Council of Canada (NSERC)

PGSD3-502346-2017 during this work.

This chapter contains material from the following, which has been submitted for

publication: N. Tamam, J. M. Warren, “Distribution of orbits of geometrically finite
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