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Antibody-mediated rejection (AMR) of solid organ
transplants (SOT) is characterized by damage triggered
by donor-specific antibodies (DSA) binding donor Class
I and II HLA (HLA-I and HLA-II) expressed on endothelial
cells. While F(ab0)2 portions of DSA cause cellular
activation and proliferation, Fc regions activate the
classical complement cascade, resulting in comple-
ment deposition and leukocyte recruitment, both
hallmark features of AMR. We characterized the ability
of an anti-C1s monoclonal antibody, TNT003, to inhibit
HLA antibody (HLA-Ab)-induced complement activa-
tion. Complement deposition induced by HLA-Ab was
evaluated using novel cell- and bead-based assays.
Human aortic endothelial cells (HAEC) were cultured
with HLA-Ab and human complement; production of
activated complement proteins was measured by flow
cytometry. Additionally, C3d depositionwasmeasured
on single antigen beads (SAB) mixed with HLA-Ab
and human complement. TNT003 inhibited HLA-Ab
mediated complement deposition on HAEC in a
concentration-dependent manner; C3a, C4a and C5a
anaphylatoxin production was also diminished by
TNT003. Finally, TNT003 blocked C3d deposition
induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-
specific antibodies on SAB. These data suggest TNT003
may be useful for modulating the effects of DSA, as
TNT003 inhibits complement deposition and split
product formation generated by HLA-I/II-Ab in vitro.

Abbreviations: AMR, antibody-mediated rejection; CBA,
cytometric bead array; CDC, complement-dependent
cytotoxicity; cPRA, calculated panel reactive antibody;
DSA, donor-specific antibodies; EBV, Epstein–Barr virus;
EC, endothelial cell; EPC, endothelial progenitor cell;
FcgR, Fc gamma receptor; HAEC, human aortic endothe-
lial cells; HLA-I, Class I human leukocyte antigen; HLA-II,
Class II human leukocyte antigen; HLA-Ab, human
leukocyte antigen antibody; HLAI-Ab, antibody specific
for Class I human leukocyte antigen; HLAII-Ab, antibody
specific for Class II human leukocyte antigen; HUVEC,
human umbilical vein endothelial cell; IFNg, interferon
gamma; IVIG, intravenous immunoglobulin; mAb,
monoclonal antibody; MAC, membrane attack complex;
MFI, median fluorescence intensity; SAB, single antigen
beads; TNFa, tumor necrosis factor alpha
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Introduction

The classical pathway of complement activation is induced

by C1 complex recognition of antibody-opsonized antigen.

Upon binding Fc, C1q undergoes a conformational change,

activating the associated C1r/C1s proteases. Active C1s is

responsible for cleavage of downstream complement

proteins, which form the convertases essential for comple-

ment pathway propagation and amplification. Additionally,

upon enzymatic cleavage of zymogens, soluble split

products known as anaphylatoxins are released, which

stimulate local cells and recruit leukocytes to inflammatory

sites. Lastly, terminal membrane attack complex (MAC) is

formed by complement protein polymerization, inducing

pores in the cell membrane, resulting in osmotic lysis of the

target (1,2). Increased activation of the classical complement

cascade is readily apparent in antibody-mediated rejection

(AMR) (cardiac, renal, and pancreatic), as the presence of

circulating immunoglobulin (Ig) and intragraft complement

deposition are important markers for diagnosing AMR (3–7).

While immunosuppressive regimens help to dampen

adaptive alloimmune responses against polymorphic HLA

proteins, roughly 20% of transplant patients still develop

posttransplant donor-specific antibodies (DSA), which sig-

nificantly impact graft loss, suggesting a need for additional

therapeutics (8–15). DSA binding to HLA on endothelial cells
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(EC) elicits a three-pronged response: first, EC become

activated, proliferate, migrate and express adhesion mole-

cules (16–19); second, the Fc of DSA serve as handles for

activated leukocytes to bind, enhancing leukocyte–endothe-

lial interactions and amplifying the process of extravasation

into the graft (20,21); lastly, the Fc region plays an additional

role in activating complement via the classical pathway,

resulting in the production of anaphylatoxins as well as split

product deposition on the EC surface. Complement activa-

tion may potentiate leukocyte infiltration in addition to

causing complement-mediated injury to the graft (22,23).

Recently, eculizumab, a humanized monoclonal antibody

(mAb) against complement protein C5, has been used to

ameliorate the effects of DSA-mediated complement

activation in both cardiac and renal AMR (24–29). By

blocking C5 activation, MAC formation and complement-

mediated injury are reduced (30). This intervention may

diminish terminal complement damage to the graft, and

current clinical trials (NCT01327573, NCT02013037 and

NCT01399593) are underway to determine the efficacy of

eculizumab in preventing allograft rejection. Alternatively,

others have suggested thatMAC formation rarely occurs on

endothelium, as EC express high amounts of complement

inhibitory receptors (31,32). Therefore, the early events in

complement activation, such as anaphylatoxin release and

complement split product deposition on the endothelium

(resulting in EC activation and leukocyte recruitment to the

graft), would still occur despite C5 blockade (22,23,33). In

this regard, others have reported that C5 inhibition is an

ineffective therapy for prevention of AMR (34–36),

highlighting the need for additional therapies to minimize

early DSA effects. In this study, we elucidate the ability of

TNT003, a mAb against active C1s, and a specific and

potent inhibitor of complement, to block HLA antibody

(HLA-Ab) induced complement activation in vitro. In both

cell- and bead-based assays, TNT003 inhibits complement

activation by HLA-Ab, as determined by its ability to prevent

both complement deposition and anaphylatoxin formation.

By targeting C1s, TNT003 blocks the initiation of the

classical pathway, resulting in little anaphylatoxin formation

and/or split product deposition, thereby inhibiting early

complement-mediated effects elicited by DSA.

Materials and Methods

Ethics statement

Informedwritten consent for use of the aortic tissue as an anatomical gift for

research was obtained by OneLegacy (a federally designated organ

procurement organization) at the time of organ donation from the next of

kin or authorized party. The use of the human aortic tissue for the research

described hereinwas approved by theOneLegacy Biomedical ReviewBoard

under the agreement #RS-02-10-2 and UCLA MTA2009-561.

Reagents

Monoclonal mouse anti-human C1s, or TNT003, was made as previously

described (37). TNT003, nonspecific isotype control antibody (Control,

IgG2a, #BE0085; BioXCell, West Lebanon, NH), anti-C5 (#A217; Quidel, San

Diego CA), and a nonspecific isotype control antibody (Control, IgG1,

#BE0083; BioXCell) were cleaved to produce F(ab0)2 fragments (F(ab0)2 Prep
Kit, #44988; Thermo Scientific, Rockford, IL), thereby removing any

nonspecific Fc-mediated effects of the inhibitor. Control F(ab0)2 antibodies

were used in assays at the same concentration as the highest dose of

TNT003. Single donor normal human serum (NHS) was used as source of

active complement (#IPLA-CSERS; Innovative Research, Novi, MI).

Monoclonal and polyclonal antibody sources

HLA-Ab came from two main sources. First, human monoclonal antibodies

(mAb), previously described and characterized (38,39), with varying HLA

specificities (A2, A2/28 and A3/11) were used at different concentrations.

Second, UCLA HLA reference sera and broadly reactive >80% PRA pooled

positive serum (PS), previously characterized by single antigen assays

(unpublished data, see ([40])), were chosen for specificities matching the

HLA type of cells used in subsequent experiments (see Tables S1–S3).

Human sera samples were heat inactivated at 568C for 30min, followed by

centrifugation at 9800g for 5min to clear protein aggregates.

Cells and culture conditions

Primary human aortic endothelial cells (HAEC) were isolated from the aortic

rings of deceased donors in accordancewithUCLA Institutional ReviewBoard

protocol (IRB00-01-023) and cultured as previously described (41,42). All

experimentswere performed usingHAEC fromat least three different donors

and between passages 4–8. For experiments requiring Class II human

leukocyte antigen (HLA-II) expression, HAEC were stimulated with tumor

necrosis factor alpha (TNF-a) (200U/mL) and interferongamma (IFN-g) (500U/

mL) for 48h to upregulate HLA-II molecules on the cell surface (Figure S1).

Epstein-Barr virus (EBV)-transformed human B cells expressing high levels of

HLA-II (Figure S1) were cultured in RPMI-1640 with 10% fetal calf serum

(FCS), 50U/mL antibiotics. All cells used in these studies were HLA-A, -B, -C,

-DR, -DQ typed at the UCLA Immunogenetics Center (UIC) by SSO and/or

SSP technologies (One Lambda, Canoga Park, CA) (see Table S1).

Flow cytometry

C4dwas detectedwith amousemAb specific for a neoepitope only revealed

upon C4b cleavage to C4c/d (#A215; Quidel). Goat anti-mouse IgG Fc-Alexa

Fluor 647 (AF647, #405322; BioLegend, San Diego, CA) was used to detect

C4d mAb binding. Goat anti-human IgG F(ab0)2-fluorescein isothyocyanate

(FITC) was used to detect human IgG bound to the surface of cells (#109-

096-170; Jackson ImmunoResearch, West Grove, PA). Mouse anti-HLA-I

W6/32 (hybridoma HB-95; ATCC, Manassas, VA) was conjugated to Pacific

Blue (PB, #P30013; LifeTech, San Diego, CA). CD46-phycoerythrin (PE)

(#352401), CD55-PE-Cy7 (#311314), CD59-FITC (#304706) and HLA-DR/

DQ/DP-AF647 (#361703) were from BioLegend. All cells were stained in

staining buffer (PBS with 2% FCS), acquired by LSRFortessa (BD, San

Diego, CA), and analyzed using FlowJo Software (TreeStar, Ashland, OR).

Cell-based complement assays

EBV B cells or HAEC (5� 104cells/well, 96-well plate) were incubated with

HLA-Ab (30min, 48C). Serum from sensitized individuals, as a source of HLA-

Ab,was incubatedwith cells in a 1mL:1000 cells ratio, aspreviously determined

by EC cross-match assays. Unbound antibody was washed away, and NHS

(source of complement, final concentration 25%) containing inhibitor (TNT003

or anti-C5) or control antibody (nonspecific IgG2a or IgG1, respectively) was

added to cells (30min room temperature [RT]). Cells were pelleted,

supernatants were saved for analysis of anaphylatoxin production, and cells

were washed in staining buffer twice, followed by the addition of conjugated

antibody cocktails for 30min on ice. Cells were then washed, resuspended in

staining buffer, and acquired by flow cytometry as above. Supernatants were
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analyzed for C3a,C4a, andC5a using the humananaphylatoxin cytometric bead

array (CBA) kit (#561418; BD) per manufacturer’s protocol.

Complement detection: Bead-based assays

The C3d bead-based Luminex assay to detect complement activation

induced by HLA-Ab was performed according to manufacturer’s protocol

(Immucor, Stamford, CT). Briefly, heat inactivated human sera were

incubated with Lifecodes LSA Class I and II single antigen beads (SAB) in

Whatman 96-well filter plates (30min, RT, shaking 220 rpm). NHS (final

concentration of 37.5%) was added as a source of complement to the

samples, and incubated for 30min (RT, shaking). Plates were washed five

times with the provided wash buffer, and stained with anti-C3d-PE (30min,

RT, shaking, 200 rpm). Plates were washed twice, followed by sample

resuspension in wash buffer, and acquisition using Luminex technology

(Luminex100, Luminex, Austin, TX). Clinically validated sera (negative serum

[NS] without HLA-Ab; pooled PS, with greater than 80% calculated panel

reactive antibody [cPRA]) were used as controls for complement activation

(Figure S2). To determine TNT003 ability to block C3d deposition, various

amounts of TNT003 or control mAbwere titrated into NHS before addition to

the C3d reaction. C1q binding to HLA-Ab was measured using the C1q

Screen assay (One Lambda). Briefly, patient sera were incubated with C1q

and SAB in the presence of TNT003, and C1q binding was detected using a

C1q-PE antibody, and acquired by Luminex.

Cardiac transplant patient sera

UCLA has a large, well characterized, cardiac transplant patient cohort. This

IRB-approved study (IRB#01-08-015-21) comprised a retrospective cohort

design of over 200 consented cardiac allograft recipients, from the period of

01/2009–12/2013. From this group, we selected adult patient samples (�18

years old), which contained donor specific antibodies (DSA MFI> 1000,

n¼ 51 of 145 adult samples). Of these 51 samples, 36 had date-matched

allograft biopsies, 10 of which scored positive for AMR (Table S4). These 10

individual patient sera samples were analyzed for their capacity to induce

complement activation using the high-throughput bead-based C3d assay

(Immucor, (43)). Diagnosis of AMR was based on the histological and

immunohistochemical criteria independent of serology, consistent with the

2013 ISHLTWorking Formulation (pAMR) (5). Diagnostic criteria for ACR are

previously outlined (44,45).

Statistical analyses

The significance of TNT003 inhibition, as compared to control, was

determined using a paired Student’s t-test. Data are represented as

mean�SEM. Linear regression analysis was performed to determine

significance of concentration-dependent inhibition of complement activation

by TNT003. The threshold for statistical significance was p� 0.05, and, due

to the study’s novel nature aswell as small number of subjects, no correction

for multiple comparisons was made. In plots, the following symbols are

used: ns¼ not significant (p> 0.05); � for p< 0.05; �� for p< 0.01; ��� for

p< 0.001 and ���� for p< 0.0001. Statistical analyses were performed using

STATA Software (Release 13; StataCorp, College Station, TX) and Graphpad

Software (V6; Prism, La Jolla, CA).

Results

TNT003 inhibits HLA-Ab induced complement
activation on endothelial cells
Few groups have demonstrated in vitro detection of

complement activation by HLA-Ab binding to the surface

of EC (46,47). To determine if HLA-Ab bound to HAECwere

capable of fixing complement, we incubated HLA-A2þ

HAEC (EC3, 4 or 6, see Table S1) with HLA-A2 mAb in the

presence of NHS as a source of complement. The levels of

human IgG bound to the surface of the cells increased

proportionally to the amount of mAb added (Figure 1A).

Additionally, the level of antibody bound correlated with the

amount of activated complement, as detected by C4d

staining on the surface of the cell (Figure 1B). TNT003 was

added in a concentration-dependent manner to establish

the effective concentration for use in further cell-based

assays. Increased quantities of TNT003 did not alter HLA-

Ab binding to the surface of HAEC (Figure 1C), but caused a

decrease in C4d deposition (Figure 1D). We noted a sharp

slope in effectiveness of TNT003 between 5 and 10mg/mL,

most likely due to inhibitor saturation of complement C1s in

the system. Of note, experiments performed with incuba-

tion of TNT003 with HAECþHLA-Ab, prior to addition of

NHS, did not significantly impair TNT003 blockade of C4d

deposition (data not shown) suggesting no temporal

restrictions on TNT003 function.

Given that high levels of a human HLA-A2 mAb were

capable of inducing complement activation, it was of

Figure 1: TNT003 inhibits monoclonal HLA–Ab induced

complement deposition. Increasing quantities of HLA-A2 mAb

were incubatedwith HLA-A2þHAEC in the presence of 25%NHS,

followed by quantification of IgG (A) and C4d (B) levels by flow

cytometry. Additionally, TNT003 or control was added to NHS

before addition to HAECþHLA-A2mAb, followed by quantification

of IgG (C) and C4d (D) levels. HLA-A2mAbwas added in increasing

concentrations (circles—5mg/mL; triangles—2.5mg/mL; squares—

1.25mg/mL; diamonds—0.625mg/mL), and control antibody (‘‘C’’)

was used at the same dose of the highest quantity of TNT003

(20mg/mL). Data are presented as median fluorescence intensity

(MFI) of IgGorC4dstaining on the cell surface froma representative

of three separate experiments.

TNT003 Blocks HLA-Ab Complement Activation
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interest to see whether HLA-Ab against HLA-I (HLAI-Ab) or

HLA-II (HLAII-Ab) present in sensitized human sera at

physiological levels were able to activate complement in a

similar manner. We incubated HAEC with sera containing

HLA-Ab of matching specificities (see Table S1). Sera

containing specific HLAI-Ab bound resting EC in a HLA-I-

restricted manner, and the amount of IgG bound correlated

with increased C4d deposition on the cell surface

(Figure 2A). Despite increased binding of IgG compared

to negative serum without HLA-Ab (NS), some sera were

incapable of inducing C4d deposition (S1, see Figure 2A). In

order to evaluate HLAII-Ab-dependent complement activa-

tion, we stimulated HAEC with TNF-a and IFN-g to

upregulate HLA-II, as resting HAEC do not express HLA-II

(Figure S1, ([48–51])). Again, sera with greater levels of

HLAII-Ab resulted in higher levels of IgG bound to HAEC,

and exhibited increased quantities of C4d deposition

(Figure 2B). Of the sera which bound HAEC and induced

complement over that of NS, we analyzed the ability of

TNT003 to block this complement activation. TNT003 did

not interfere with HLA-Ab recognition of HLA-I, but

inhibited complement deposition induced by various sera

on different primary HAEC (Figures 2C and D). Additionally,

TNT003 did not alter HLA-Ab recognition of HLA-II, and

again significantly inhibited HLAII-Ab induced complement

deposition to below background levels (Figures 2E and F).

To demonstrate that this activity was specific to HLA and

complement as well as translatable to all cell types, we

tested TNT003 inhibition of the classical complement

pathway using HLA-typed EBV-transformed human B cells

as a source of HLA antigen.Of note, TNT003was capable of

inhibiting both HLAI-Ab- and HLAII-Ab-mediated comple-

ment activation on the surface of B cells (Figure S3).

Inhibiting activation of the classical pathway at the level of

C1s should result in decreased complement deposition

on the cell surface, as well as minimize production of

anaphylatoxins. Importantly, these anaphylatoxins are noted

chemoattractants, and have been shown both in vitro and

in vivo to exacerbate rejection through leukocyte recruitment

and modulation (2,52–55). We demonstrated that, upon

complement activation byHLA-Abbound toHAEC, the levels

of C4a, C3a and C5a were decreased in the presence of

TNT003 (Figures 3A–C), though not significantly. However,

Figure 2: Complement activation by HLAI-Ab and HLAII-Ab is blocked by TNT003. Quantification of IgG binding (solid bars) and C4d

deposition (hashed bars) on resting (A) or TNF-a/IFN-g-stimulated (B) HAEC induced by UCLA HLA reference sera containing HLA-Ab with

HLA-I (A) or HLA-II (B) specificities (see Tables S1–S3). Data are presented asMFI of IgG andC4d, and are a representation of three separate

experiments. Strengths of HLA-Ab (SABMFI) against relevant HLA-I/II alleles are indicated below each serum. IgG and C4dweremeasured

when resting (C, D) or TNF-a/IFN-g-stimulated (E, F). HAEC with disparate alleles were incubated with different UCLA HLA reference sera.

Each point indicates a unique pairing of HLA-I/II expressing HAEC with a serum of matching HLA-Ab specificity. TNT003 and control were

added at a concentration of 10mg/mL.

Thomas et al
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as complement deposition on EC is not as robust as on

B cells, possibly due to increased levels of complement

inhibitory proteins CD46 and CD55 (Figure S1), we added

a pooled positive sera (PS) containing HLA-Ab to B cells in

the presence of complement, and measured anaphylatoxin

levels. Production of all three anaphylatoxins was inhibited

in the presenceofTNT003 (Figures3D–F). Collectively, these

data suggest that when complement activation is robust,

blockade of C1s activation would be valuable in ameliorating

early DSA-induced complement-mediated effects. Detailed

analysis of one reaction with strong complement induction

on the surface of HAEC shows that TNT003 inhibits

progressive activation of the complement cascade, as C4d

deposition and anaphylatoxin formation are all abrogated

with the addition of TNT003 (Figure 4).

In vitro diagnostic assessment of TNT003
Currently, Luminex-based technology is used to detect

HLA-Ab in patient sera. New assays are available for

prediction of complement binding and/or activating DSA,

such as the C1qScreen assay from One Lambda (56–59),

and more recently a C3d deposition assay from Immu-

cor (43), which detects physiological activation of human

complement. C3d deposited on the surface of the beads is

detected by a PE-conjugated C3d mAb and acquired using

Luminex. Thus,we used the C3d assay as anothermeasure

of complement induction by HLA-Ab. Three UCLA HLA

reference serawith broadHLA-I specificities (single antigen

MFI> 1000 was scored positive; see Table S2), contained

complement fixing antibodies indicated by increased C3d

deposition over NS (Figure 5A). Each serum contained a

Figure 3: TNT003decreases early anaphylatoxin formation.Supernatants fromcomplement deposition experimentswere analyzed for

split product formation using CBA technology, a flow-based bead array specific for human anaphylatoxin quantification. C4a (A), C3a (B), and

C5a (C) productionweremeasured from reactions of PS (>80%PRApooled positive serum) binding toHAEC, and addition of complement in

the presence of control or TNT003 (10mg/mL). Additionally, the same assay was performed with EBV-transformed B cells as the source of

HLA-I/II, and anaphylatoxin formation was assayed (D–F).

Figure 4: TNT003 inhibition of HLA-Ab-mediated complement

activation results in decreased levels of early split products.

Examination of HLA-Ab binding (IgG) and complement induction

(C4d, C4a, C3a, andC5a), by PS (>80%PRApooled positive serum)

on EC7, in the presence of control or TNT003. Fold change was

calculated by dividing the variable value (control or TNT003) by the

control value. The dashed line at y¼1 is indicative of baseline

values as per normalization to control.

TNT003 Blocks HLA-Ab Complement Activation
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different number of allele-specific HLA-Ab capable of

inducing C3d, as expected due to their varying specific-

ities (determined by SAB testing, see Table S2). To

determine the concentration of TNT003 required for

complement inhibition, we titrated TNT003 into C3d

reactions using pooled HLA-I-specific sera (S10, S11, and

S12) as a source of HLA-Ab induction of C3d. Deposition

by pooled HLA-I-specific sera was significantly inhibited

by TNT003 in a concentration-dependent manner

(R2¼0.55, p<0.0001, Figure 5B). Additionally, we

performed the assay using three HLA-II-specific sera

(see Table S3), and showed similar induction of C3d

deposition (Figure 5C). Complement activation by pooled

HLA-II-specific sera (S7, S13, and S14) was also

significantly decreased in the presence of TNT003

(R2¼ 0.63, p< 0.0001, Figure 5D). Notably, the required

concentration of TNT003 for inhibition of HLA-Ab-induced

complement activation was greater in bead-based assays

(25mg/mL) than cell-based assays (10mg/mL). This is

most likely due to the increased quantity of available C1s

in the bead assay, as well as greater antigen density and

lack of complement inhibitory receptors on the surface of

beads compared to cells, all requiring larger quantities of

TNT003 to block complement activation.

Figure 5: HLA-Ab induction of C3d is inhibited by TNT003 in a novel Luminex-based assay. (A) Three UCLAHLA reference sera (S10,

S11, and S12; see Table S2) containingHLA-Ab specific for HLA-I were analyzed for C3d deposition on beads expressingHLA-I recombinant

antigens. Bead analysiswas subset into either those negative for single antigen (SAB�, closed circles), or positive for single antigen (SABþ,

open circles,MFI>1000). Fold C3d induced by each allelewas determined by dividing the beadMFI of the serumsample by the beadMFI of

the NS sample, to account for background complement activation on each individual bead, i.e. MFI(sample)/MFI(NS)¼Fold C3d. (B) S10, S11,

and S12were combined in equal volumes to create a pooledHLA-I specific serum, and TNT003was added to the C3d reaction; control (‘‘C’’)

antibodywas added in the same amount as the highest TNT003 concentration. Beads positive for C3d in the presenceof control (fold change

C3d�2, n¼30) were analyzed for inhibition of C3d in response to a TNT003 concentration curve. (C) In addition, three sera with HLA-Ab

against HLA-II (S7, S13, and S14; see Table S3) were analyzed for C3d deposition on SAB expressing HLA-II antigens. (D) For TNT003

inhibition of HLAII-Ab, combination of S7, S13, and S14 made a pooled HLA-II specific serum which was tested for C3d deposition in the

presence of TNT003; beads with a fold change C3d�2 (n¼16) were evaluated for TNT003 inhibition. Dashed line at y¼1 is indicative

of baseline C3d deposition.

Thomas et al
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TNT003 inhibits complement induced by
AMR-associated DSA
We next sought to determine whether AMR-associated

DSA from cardiac transplant recipients could induce

complement activation on the C3d platform, and whether

this deposition was blocked by TNT003. We found 10

patients in the UCLA cardiac cohort who had biopsy-proven

AMR and a date-matched serum sample positive for DSA

(Table S4). Of these 10 patients, 3 had HLAI-Ab that

activated complement, and all had HLAII-Ab that were

capable of inducing complement activation, as measured

by C3d deposition. In addition, TNT003 substantially

abrogated complement deposition induced by AMR-

associated DSA from these 10 cardiac transplant patients

(Figures 6A and B). Moreover, TNT003 blockade of

complement activation was equally efficient at blocking

complement deposition by both HLAI-Ab and HLAII-Ab

(Figure 6C).

TNT003 blocks complement activation upstream of
other complement inhibitors
C4d deposits on the endothelium of graft tissue are a noted

histological marker of HLA-Ab-induced complement activa-

tion during AMR (5). Current therapies targeted at

minimizing complement-mediated damage to the graft

aim to block complement protein activation (27), specifically

monoclonals directed against C5, which inhibit C5a

production and MAC formation (30). It was of interest to

compare the ability of TNT003 and an anti-C5 antibody to

block early complement activation. As HLA-Ab-mediated

complement activation is more robust when using B cells

as a source of HLA antigen, we analyzed PS-induced cell

surface deposition and anaphylatoxin production on EBV-

transformed B cells in the presence of both complement

inhibiting mAbs. Neither inhibitor interfered with antibody

recognition of HLA-I/II (Figure 7A). TNT003 prevented C4d

deposition (Figure 7B), as well as C4a and C3a production

(Figures 7C and D) more effectively than a murine

neutralizing mAb to C5 (anti-C5). However, there was no

difference between TNT003 and anti-C5 with respect to

decreased C5a production (Figure 7E). Similar results were

obtained using HAEC as sources of HLA-I/II (Figure S4),

albeit activation was less robust, as aforementioned

(Figure 3 and Figure S1). Therefore, in this context,

TNT003 is more effective than anti-C5 at inhibiting HLA-

Ab induced early complement activation.

Discussion

The incidence of clinically evident AMR in solid organ

transplants (SOT) patients is 10–15% (60). The presence of

DSA prior to transplant, or development of de novo DSA,

negatively impact graft survival (61). DSA mediate injury to

the graft via three different mechanisms: (1) F(ab0)2-
dependent ligation of HLA molecules on the surface of

donor EC, triggering cellular activation and proliferation (16–

19); (2) Fc-dependent recruitment of activated leuko-

cytes (20,21) and (3) C1q binding of Fc in antibody-antigen

complexeswith subsequent complement activation (22,23).

Complement protein C4d deposition, as well as leukocytic

infiltrate are common pathological findings in AMR biop-

sies (3,6,7,45). Recent studies have demonstrated that

presence of complement-fixing DSA predisposes patients

to allograft rejection (62–64). As such, therapies targeted

to reduce both complement damage and leukocytic

infiltrate would be of value for treating episodes of AMR.

The data presented herein highlight the definitive role

of an anti-C1s monoclonal, TNT003, in blocking early

complement activation in vitro induced by HLA-Ab on the

Figure 6: TNT003 inhibits complement activation by AMR-associated DSA in a C3d bead-based assay. DSAþ sera from 10 cardiac

transplant patients with AMRþ biopsies were analyzed for C3d deposition. Three patients with DSA against HLA-I (A, n¼5) and 10 patients

with DSA against HLA-II (B, n¼15)were analyzed for C3d activation in the presence of control or TNT003 (25mg/mL). Each point represents

an allele recognized by DSA, and the dashed line at y¼1 is indicative of baseline C3d deposition. Fold change was calculated as in Figure 5.

(C) Percent inhibition of C3d by TNT003 was calculated for HLA-I and HLA-II-specific DSA. Percent inhibition was determined as follows:

[Fold C3d(control)�Fold C3d(TNT003)]/[Fold C3d(control)]�100.
y
Additionally, this beadwas identified as a severe outlier (over three interquartile

ranges beyond the 75th percentile) and was removed from the data testing significance for the remaining beads.
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endothelial surface, the barrier between donor and

recipient. We demonstrate HLAI/II-Ab recognize and bind

HLA-I/II expressed on the surface of HAEC, and are

capable of activating human complement, resulting in

soluble anaphylatoxin production as well as complement

protein deposition on the surface of HAEC, B cells and

SAB. TNT003 inhibits HLAI/II-Ab-mediated complement

activation in a concentration-dependent manner, blocking

complement deposition at the cell surface and reducing

anaphylatoxin levels (Figures 1–4). Importantly, these

findings were verified using DSAþ sera from cardiac

transplant recipients undergoing AMR.

The complement-dependent cytotoxicity (CDC) assay, a

traditional cell-based assay, is used in histocompatibility

labs for delineating HLA-Ab specificity (65). However, the

assay does not discriminate complement activating HLA-

Ab fromotherHLA-Ab, as the use of rabbit complement and

human lymphocytes artificially enhances lysis (66), and

several groups have suggested cell lysis is not the major

mechanism of graft damage, nor the most accurate read-

out of HLA-Ab-mediated complement activation in vitro

(67,68). Studies utilizing human complement and/or EC

in vitro have endeavored to discern better markers of early

complement activation (69,70). Watanabe and Scornik (71)

demonstrated HLA-Ab-mediated human complement de-

position on the surface of lymphocytes by detection of

multiple complement proteins, but concluded that C3b

was the most specific determinant of activation. AlMahri

et al (46) established detection of HLA-Ab-mediated

complement induction by C3d staining on the surface

of endothelial progenitor cells (EPC) and lymphocytes

by flow cytometry. Similarly, another study showed that

sera containing HLAI/II-Ab can bind to IFN-g-treated
human umbilical vein endothelial cells (HUVEC) and deposit

C4d and polyC9 (47). In this work, we have established an

in vitro system using serum from sensitized individuals,

primary HAEC, and human complement in order to

ascertain HLA-specific inducible complement deposition

by flow cytometry. We show that sera with specificity

to HLA-I and/or HLA-II are capable of inducing human

complement activation on HAEC frommultiple donors with

disparate HLA alleles, as detected by C4d (Table S1 and

Figure 2). Furthermore, we show that increased levels of

HLA-I/II bound by HLAI/II-Ab on the surface of the cell lead

to a concomitant increase in complement activation,

consistent with other reports suggesting that complement

fixing capacity is a function of antibody titer in serum (72).

Notably, antibody concentration and characteristics (includ-

ing affinity, subclass, and glycosylation), as well as antigen

density are important indicators of the potential for

complement activation, as modulation of these factors

alter detectable levels of C4d complement activation (73).

For instance, we observed the levels of C4d mediated by

Figure 7: TNT003 blocks early complement activation more significantly than anti-C5 treatment. Pooled positive serum (PS) with

cPRA>80%wasmixed with three HLA-disparate EBV-immortalized B cells lines in the presence of control (IgG2a or IgG1, open circles) or

inhibitor (TNT003 or anti-C5, filled circles) (10mg/mL). IgG (A) and C4d (B) were measured by flow cytometry, whereas anaphylatoxins C3a

(C), C4a (D), and C5a (E) were measured by CBA technology. DD values were determined as follows: (valuesample/valueNS)¼Dsample;

DD
sample¼Dsample(inhibitor)/averageDsample(control).
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purified high affinity HLA-I monoclonal antibodies were

greater than those elicited by the admixture of sub-

classes and high and low affinity HLA-I/II polyclonal

antibodies present in alloserum, further highlighting the

multifaceted dynamics of HLA-Ab-induced complement

activation.

The complement activation-dependent anaphylatoxins,

C3a and C5a, are mediators of leukocyte activation and

migration (74–78). Work determining the importance of

these anaphylatoxins in the field of transplant rejection has

elucidated effects of direct activation of lymphocytes and

endothelium, inducing proliferation and changes in vascular

permeability, respectively (79–84). Additionally, anaphyla-

toxin activation of antigen-presenting cells modulates the T

cell repertoire (85,86). In short, the presence of these

anaphylatoxins heavily influences alloimmunity. A treat-

ment, which minimizes the inflammatory milieu, reducing

cellular activation, and reshaping adaptive immune re-

sponses would be ideal for preventing transplant rejection.

Recently, TNT003 was demonstrated to inhibit anaphyla-

toxin (C4a, C3a and C5a) production in the context of cold

agglutinin disease (37). Our data also show TNT003 is

capable of decreasing anaphylatoxin production induced by

HLA-Ab, with significant blockade of C4a, further curtailing

the production of the potent immunomodulators C3a and

C5a. Due to the amplifying nature of the classical

complement pathway, inhibition at the beginning of the

cascade impacts early mediators more sharply than those

components further downstream. To this end, it would not

be surprising to find less severe histological findings

(endothelial swelling and leukocytic infiltrate) in biopsies

from patients undergoing treatment with a humanized

version of TNT003.

The SAB array, which detects HLA-Ab specificity in a high-

throughput manner, was a revolutionary technological

breakthrough, leading to personalized diagnostics and

patient care in the field of transplant medicine (87). Over

the past decade, these technologies have developed

further with the advent of assays that seek to stratify

DSA based on pathogenicity, such as the C1qScreen.

Multiple groups have reported C1qþDSAþ are predictive of

allograft damage and subsequent loss in SOT (62,64,88,89).

Our studies demonstrate the ability of a new Luminex-

based assay from Immucor to detect the functional capacity

of HLA-Ab to activate the classical complement pathway by

measuring C3d deposition (43,90). This assay provides a

physiological setting, as human complement is allowed to

interact with HLA-Ab Fc, and if steric hindrance allows (91),

activate intact C1 complex, leading to downstream

deposition of C3d. We show that sera from highly

sensitized individuals and DSA from cardiac transplant

patients with biopsy-proven AMR activated complement in

this assay. Notably, TNT003 strongly reduces this allele-

specific complement induction in vitro, further establishing

TNT003 as an effective inhibitor of early classical comple-

ment activation.

Current therapies are used in combination to treat the

multi-faceted pathophysiology of AMR, as there appears

to be no clear panacea (92,93). Traditional interventions,

such as plasmapheresis and intravenous immunoglobulin

(IVIG), are used to decrease antibody levels and inhibit

antibody function, respectively (94,95). Newer targeted

therapies have focused on modulating complement

proteins directly. C1-INH, an endogenous pleiotropic

protein involved in many processes, including inactivation

of C1s, is currently being tested in clinical trials

(NCT01147302 and NCT01134510) for its efficacy in

preventing AMR (96). Also available is the C5 mAb

eculizumab (NCT01327573 and NCT01399593), which

has received notice for equivocal ability to treat rejec-

tion (24,25,34–36). Blockade of C5, although potentially

useful in minimizing complement effects during rejection,

also prevents activation of the terminal complement

cascade, theoretically decreasing MAC-mediated patho-

gen clearance induced by all pathways of complement (1).

As SOT patients are already on immunosuppressive

regimens (97), reducing mechanisms of pathogen clear-

ance may not be ideal. TNT003 specifically targets the

classical complement pathway, potentially minimizing

damage to the allograft by blocking the formation of the

early products of HLA-Ab induced complement activation.

This may decrease endothelial activation and diminish

leukocyte recruitment to allograft tissue, thereby blocking

the feed-forward pathogenic loop of AMR. Moreover, as

TNT003 is specific for active C1s, and effective when

incubated with HLA-Ab prior to complement introduction,

as well as in the presence of complement, one could

deduce a humanized version of TNT003 would provide

therapeutic help whether administered prophylactically or

during active rejection.

As efficient as TNT003 is at blocking classical complement

activation, it does not inhibit the effects of HLA-Ab binding

to graft endothelium. Ligation of HLA-I/II on endothelium

activates multiple signaling networks and induces cyto-

skeletal remodeling and vascular permeability, which lead

to architectural changes in the vasculature of the graft. Also

of note, HLA-Ab still mediate Fc gamma receptor (FcgR)-
mediated effects, including enhanced rolling and tethering

of leukocytes to endothelium. Furthermore, as TNT003

blocks C1s activation, but not C1q binding (Figure S5), C1q

may bindHLA-Ab Fc, creating another theoretical handle for

C1qR-mediated leukocyte engagement. Therefore, a hu-

manized version of TNT003 used in combination with

modalities that minimize circulating DSA may be the most

effective method of reducing endothelial activation, leuko-

cyte recruitment, and graft failure.
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Figure S1: Surface expression of HLA-I/II and comple-
ment inhibitory receptors on cells. HAEC, either resting
or stimulated for 48 h with TNF-a/IFN-g, or resting EBV-

immortalized B cells weremeasured for expression of HLA-

I (A), HLA-II (B), CD46 (C), CD55 (D), and CD59 (E). Resting

or TNF-a/IFN-g stimulated HLA-A2þ HAEC or HLA-A2þ B

cells were incubated with 1mg/mL of HLA-A2 mAb in the

presence of NHS. IgG (F) and C4d (G) levels were

measured.

Figure S2: HLA-Ab induce C3d deposition in a concen-
tration-dependent manner. Clinically validated negative

(no HLA-Ab, NS) or positive (PRA >80%, PS) serum was
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analyzed using theC3d assay. Depositionwasmeasured on

HLA-I (A) or HLA-II (B) single antigen beads. Broadly

reactive HLA-I (C) or HLA-II (D) specific sera (see Tables S2

and S3, respectively) were diluted to measure the effect of

antibody titer on C3d deposition in the Luminex based C3d

assay.

Figure S3: TNT003 inhibits HLA-Ab-induced comple-
ment deposition on the surface of B cells. UCLA HLA

reference sera (see Tables S2 and S3) were incubated with

EBV-immortalized B cells in the presence of 25%NHS, and

C4d levels were measured by flow cytometry. Each dot

represents a reaction which contains a unique cell:sera

pairing. All reactions activated complement over that

induced by NS.

Figure S4: TNT003 blocks early complement activation
more significantly than anti-C5 treatment on HAEC.
Serawithmultiple specificitiesweremixedwith TNF-a/IFN-
g stimulated HAEC in the presence of control antibody

(IgG2a or IgG1, open circles) or inhibitor (TNT003 or anti-C5,

filled circles). IgG (A) and C4d (B) were measured by flow

cytometry, whereas anaphylatoxins C3a (C), C4a (D) and

C5a (E) were measured by CBA technology. DD values

were determined as follows: (valuesample/valueNS)¼
Dsample; D

D sample¼Dsample(inhibitor)/averageDsample(control).

Figure S5: TNT003 does not block C1q recognition of
HLA-Ab. TNT003 or control (‘‘C,’’ 100mg/mL) was titrated

into the C1qScreen assaywith a clinical positive serum (PS)

as a source of HLA-Ab. C1q positivity was recorded as

MFI> 1000, and measured on both HLA-I (A, n¼ 50) and

HLA-II (B, n¼ 13) SAB.

Table S1: Cell typing and sera for in vitro experiments.

Table S2: UCLA HLA reference sera: HLA-I Luminex

values.

Table S3: UCLA HLA reference sera: HLA-II Luminex

values.

Table S4: Cardiac transplant patient DSA and biopsy data.

TNT003 Blocks HLA-Ab Complement Activation
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