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Summary

Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited

tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called

the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the

other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary

based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed

tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous

algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data

acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR

outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition

mode has no advantage over the conventional equally angled mode in this context.
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Introduction

Electron tomography (ET) targets ultra-fine details such as sub-cellular and macromolecular

features. It uses a transmission electron microscope to collect data, and has generated a

number of important results (Arslan et al., 2005; Lucic et al., 2005; Al-Amoudi et al., 2007;

Robinson et al., 2007; Ben-Harush et al., 2010). Nanometer ET resolution is commonly

achieved. Conventional ET reconstructs a 3D object from a set of equally angled 2D

projections. To avoid the interpolation between polar coordinates and Cartesian coordinates,

Miao et al. (2005) described an equally sloped tomography (EST), which made use of a set

of equally sloped (ES) projections. In 2008, their team (Lee et al., 2008) used an EST

reconstruction algorithm to reconstruct the image from ES projections. The algorithm

iterates back and forth between Fourier and object spaces. In each iteration, the calculated

slices are updated with the experimentally measured slices in Fourier space and the physical

constraints are enforced in the object space. Recently, Scott et al. (2012) reported ET (using

EST method) at 2.4-angstrom resolution as “the experimental demonstration of a general ET

method that achieves atomic-scale resolution without initial assumptions about the sample

structure.”

Electron tomography is quite similar to X-ray computed tomography (CT), which

reconstructs an image from line integrals. Great efforts have been made towards

development of X-ray CT methods in the cases of incomplete and inaccurate data, especially

truncated, limited angular and few-view imaging geometries. These reconstruction

algorithms are generally in the state-of-the-art compressive sensing (CS) framework,

utilizing prior knowledge effectively and permitting accurate and stable reconstruction from

a more limited amount of raw data than requested by the classic Shannon sampling theory.

CS-inspired reconstruction algorithms can be roughly categorized into the following stages

(Wang et al., 2011): (1) The 1st stage: Candes’ total variation (TV) minimization method

and variants (initially used for MRI and later on tried out for CT) (Li and Santosa, ’96;

Jonsson et al., ’98; Candes and Tao, 2005; Landi and Piccolomini, 2005; Yu et al., 2005;

Candes et al., 2006, 2008; Block et al., 2007; Landi et al., 2008; Sidky and Pan, 2008; Yu

and Wang, 2009); (2) the 2nd stage: Soft-thresholding method adapted for X-ray CT to

guarantee the convergence (Daubechies et al., 2004; Yu and Wang, 2010; Liu et al., 2011;

Yu et al., 2011); and (3) the 3rd stage: Dictionary learning (DL) and non-local mean

methods being actively developed by our group and others (Kreutz-Delgado et al., 2003;

Gao et al., 2011; Lu et al., 2012; Xu et al., 2012; Zhao et al., 2012a,b).

For the 2nd stage algorithm, a pseudo inverse of the discrete difference transform was

constructed with a soft-thresholding technique to perform the L1 minimization of the total

difference. This method can be directly applied for few-view CT reconstruction, and showed

superior performance over the 1st generation TV method.

As far as the 3rd stage reconstruction is concerned, dictionary learning has proven to be

effective for extraction of sparsity. Recently, we combined dictionary learning and statistical

reconstruction for few-view low-dose X-ray CT (Xu et al., 2012), in which a sparse

constraint in terms of a redundant dictionary is incorporated into an objective function. The

dictionary can be either pre-determined before an image reconstruction task or adaptively
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defined during the reconstruction process. Then, an alternating minimization algorithm is

developed to minimize the objective function in a statistical iterative reconstruction

framework. Our approach has been evaluated with low-dose X-ray projections collected in

animal and human CT studies. Our results demonstrate that the DL approach can produce

better images than the filtered back-projection (FBP) and TV-minimization algorithms (Xu

et al., 2012).

In this study, we focus on the feasibility and merit of the dictionary learning approach for

ET. We compare the EST, OS-SART, and ADSIR in the ES data acquisition mode required

by the EST reconstruction. We also compare the ES and equally angled (EA) data

acquisition modes.

The rest of this paper is organized as follows. In the next section, the EST method reported

by Scott et al. (2012), the classic ordered-subset simultaneous algebraic reconstruction

technique (OS-SART), and an adaptive dictionary learning approach are briefly described

for the purpose of ET reconstruction. Then the numerical comparative studies will be

provided, followed by a discussion of relevant issues. Finally, concluding remarks are given.

Method

Equally Sloped Tomography

Electron tomography provides projection images of the specimen being imaged. A beam of

electrons is shot towards the specimen, and scattered and unscattered electrons emerging

from the specimen are then collected by magnetic lenses and focused to form an interference

pattern, which constitutes the projection image (Frank, ’92). In the ideal imaging condition,

the projection images are formed by the integration of the 3D information of the specimen

along the direction of the electron beam. The data acquisition process of ET can be modeled

as the following linear system (Frank, 2006)

(1)

where p represents projections, f represents an electron image, and W is a measurement

matrix. The image reconstruction is to solve f from data p for a given system matrix W.

Because ET works in parallel-beam geometry, we can reconstruct a 3D image volume slice

by slice.

In the noise free case, when the parallel projections are collected from a 180° coverage, the

system (1) is well posed and a good image can be easily reconstructed. However, the ET

usually suffers from the so-called limited angle problem, typically over a tilt range of ±60 or

70° in small increments, which causes the “missing wedge” artifacts (Frank, ’92).

In EST, the pseudopolar fast Fourier transform (PPFFT) and its inversion/adjoint algorithms

are used to perform a fast Fourier transform for an object on a Cartesian grid. As a result, a

Fourier slice is on a pseudopolar grid for tomographic reconstruction. To accommodate

PPFFT and inversion/adjoint PPFFT, equally sloped projections are acquired by changing

the angle with equal slop increments.
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In the published experiments (Scott et al., 2012), the tilt angles (θ) were determined by

(2)

with N = 32 or 64 for a tilt range of ±72.6°. For more detailed EST reconstruction method,

please refer to (Miao et al., 2005; Lee et al., 2008; Scott et al., 2012).

Ordered-Subset Simultaneous Algebraic Reconstruction

When projection data are incomplete or noisy, the iterative reconstruction method is

desirable to generate higher quality results than the filtered backprojection algorithm.

Advanced iterative methods attract increasingly more attention because of their robustness

against the experimental conditions in ET (Fernandez, 2012). OS-SART (Wang and Jiang,

2004) is a widely used iterative reconstruction algorithm to solve Equation (1) with

guaranteed convergence (Wang and Jiang, 2004).

When an algebraic reconstruction method is employed, the image f can be discretized as a

vector f = (fj) ∈ RJ×1 (1 ≤ j ≤ J), where J is the number of pixels. Accordingly, p = (pi) ∈

RI×1 is a vector as well, where pi is the ray-sum associated with the ith ray and I is the

number of rays. Then, we have

(3)

where Wi represents the ith row of W, wi,j is the contribution of the jth pixel to the ith ray-

sum. The pseudo-codes for the OS-SART are as follow:

Initialization: k = 0; Initialize f̂0 with an estimate image; suppose that there are Nviews

views. {T0, T1, …, TL-1} is a partition of the set of views {1, 2, …, Nview}, where L is the

number of subsets of views.

While stopping criteria are not satisfied:

Update the current image

(4)

where m = k mod L ∈ {0, 1, … L−1}, i ∈ Tm means the ith ray in Tm.

Dictionary Learning-Based Reconstruction

Dictionary learning is effective for sparse representation. Recently, Xu et al. (2012)

developed global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive

dictionary-based statistical iterative reconstruction (ADSIR) for low-dose CT. The GDSIR

requires a set of training images, which are often times not available. This is particularly the
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case of ET when samples to be studied are unknown. Hence, in this study we focus on

ADSIR as an example of a highly versatile implementation of dictionary learning.

Let a vector f̂ ∈ RJ×1 represent an image of JH × JW = J pixels. A dictionary is a matrix D ∈

RN×K (N « K) whose column dk ∈ RN×1 (k = 1, 2, …, K) is called an atom. Further,

 (s = 1, 2, …, S) is a matrix to extract a  patch from the

image f̂, and  is the number of patches in a training set.

A patch Esf̂ is expected to be exactly or approximately represented as a sparse linear

combination of the atoms in the dictionary D; that is

(5)

where ε ≥ 0 is a small error bound, and the representation vector αs ∈ RK×1 has few nonzero

entries, e.g., ∥αs∥ « N « K with ∥·∥0 being the l0-norm.

The image reconstruction process using ADSIR is equivalent to solving the following

optimization problem (Xu et al., 2012):

(6)

where τi is the statistical weight for the ith X-ray path, λ is a regularization parameter,

 is a Lagrange multiplier, and α ∈ RK×S with αs ∈ RK×1. Although the statistical

model is used to construct the likelihood to derive the first term in Equation (6) (Xu et al.,

2012), it should be pointed out that the final version of the first term of Equation (6) can be

viewed as a position-dependent weighting version of least square for data discrepancy,

which is a variant of the conventional SART reconstruction. Meanwhile, the first term of

Equation (6) can be simplified to the conventional data fidelity term  if we

assume the detected photon numbers are the same at all the detector cells.

To improve the performance of the ADSIR method (Xu et al., 2012), here we use the

ordered-subset technique and update the dictionary every Ninterval iterations. The detailed

description of ADSIR and the selection of the parameters can be found in (Xu et al., 2012).

The sparse level  is the number ofatoms involved in representing a patch, which is

empirically determined according to the complexity of an image to be reconstructed and the

property of the dictionary. The pseudo-codes for the new ADSIR are listed below.

Choose λ, ε, ;

Initialize f̂0 (zero image or the reconstructed image by other algorithms), D0 (trained from

the extracted sets from f̂0), α0, and k=0; Suppose that there are Nviews. {T0, T1, …, TL-1} is

a partition of a set of views {1, 2, …, Nview}, L is the number of subsets of views.

While the stopping criteria are not satisfied:

1. For m=0, 1, …, L−1
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(7)

2. f̂k+1 = f̂k, k=k+1;

3. If k mod Ninterval=0

Extract patches from f̂k to form a training set.

Construct a dictionary Dk from the training set.

Else

Dk=Dk-1;

4. Represent f̂k with a sparse αk in terms of the dictionary Dk using the orthogonal

matching pursuit (OMP) method.

Output the final reconstruction.

Simulation Results and Discussions

In June, 2012, Dr Miao, the corresponding author of (Scott et al., 2012), made available to

us the following items used in (Scott et al., 2012):

• A 121 × 121 × 121 phantom of 0.5 Å voxel size (shown in Fig. 1);

• 55 and 69 projections (−72.6° to 72.6° in an “equally sloped tomography” setting);

• Both loose and tight supports of the model;

• EST reconstructed results from 55 ES projections with loose support after 500

iterations.

Because the current study is to investigate electron tomography for atom-level imaging, the

phantom provided by Dr Miao is a most suitable choice to mimic atoms. The maximum

value of the original phantom is 1.61 × 105, while the maximum value of the EST

reconstruction from 55 projections is 2.79 × 107. This implies that the scale of Dr Miao’s

EST results is inconsistent with the original phantom. During the course of the review

process of this paper, we noticed that Dr Miao’s group has published the corresponding

software on their group’s webpage (http://www.physics.ucla.edu/research/imaging/EST/

index.htm) and the scale problem has been corrected. Hence, we repeated their numerical

simulations with updated results for comparison and analysis.

To explore the effectiveness of the reconstruction algorithms with fewer views, assuming

the same scanning range (−72.6° to 72.6°), 31 projections in an “equally sloped

tomography” setting were also simulated. Therefore, the 3D phantom was reconstructed

from 69/55/31 ES and equally angled (EA) projections using EST (not applicable to EA

projections), OS-SART and ADSIR.
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In our experiments, each view was set to be a subset. The loose support was assumed for all

the reconstruction methods. For the EST, the reconstruction parameters were set to be the

same as those used in (Scott et al., 2012). The loose support was used in the first 500

iterations in the EST algorithm. Then, a tight support was determined based on the

intermediate result. Using the tight support, the EST algorithm was run another 500

iterations to obtain the final 3D image. For the OS-SART, 200 iterations were used. For the

ADSIR, the result obtained by the OS-SART after 100 iterations was set as the initial image.

The final result was obtained after 100 ADSIR iterations with Ninterval=10. The parameters

for the ADSIR were chosen as λ=0.1, ε=5.0×10−6, , N=64 and K=256. To ensure the

redundancy, the number of atoms K in a dictionary should be much greater than that of

pixels in a patch, which means K » N. In the image processing field, it has been proved that

K=4N is sufficient (Xu et al., 2012). If N is too small, the atoms cannot capture the typical

features of the trained image. The greater the patch size N, the more computational cost is

required. In practical applications, N=64 is an optimized parameter.

To compare the results quantitatively, the results were evaluated using two indices. One is

the root mean square error (RMSE),

(8)

where f = (fj) ∈ RJ×1 represents a reconstructed image, and  is the

reference phantom. The other is the image quality assessment index for structural similarity

(SSIM) (Wang et al., 2004), which is shown to be consistent with visual perception. The

closer it is to 1, the higher the structural similarity.

Comparison of Reconstruction Methods

The RMSE and SSIM (the averaged SSIM values for all slices) indices of EST, OS-SART

and ADSIR results are listed in Table I. Figure 2 plots the profiles of RMSE and SSIM in

Table I for comparison of the EST, OS-SART and ADSIR methods. From the above

quantitative comparisons, we can see that the performance of OS-SART is comparable to

the EST, and the ADSIR outperforms the EST and OS-SART especially when fewer

projections were used. The ADSIR reconstructed higher quality images than the EST and

OS-SART from 31 projections. When the number of views was reduced from 69 to 31, the

reconstructed image quality by the ADSIR decreased much less than that by the EST and

OS-SART. In other words, ADSIR is more robust than the EST and OS-SART.

Our codes were developed on a PC with i5 CPU 760 and 4 GB RAM. The average

computational times were recorded for one slice and one loop of the OS-SART (0.61 s) and

the ADSIR (10.57 s for dictionary learning, 15.15 s for the other steps) with 55 projections.

Although the computational cost of the ADSIR is high, it should not be a bottleneck for

practical applications because graphics processing unit (GPU) and other hardware-based

high-performance computing technologies are being developed.
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Comparison of Data Acquisition Modes

As we discussed in Subsection Equally Sloped Tomography, the ES data acquisition mode is

required by the EST reconstruction method. In this subsection, the ES and EA data

acquisition modes will be compared in the context of OS-SART and ADSIR reconstruction

methods.

Figure 3 plots the profiles of RMSE and SSIM in Table I for comparison of the ES and EA

data acquisition modes. It can be seen that the results from the ES mode are very similar to

the results from the EA mode when using OS-SART and ADSIR reconstruction methods.

This implies that the ES data acquisition mode has no advantage over the EA data

acquisition mode.

Indeed, it is well known that straight-ray tomography (such as X-ray CT and ET) could not

benefit from ES sampling relative to EA sampling. The former is less even than the latter

(see Fig. 4). In the ES mode, because N in Formula (2) is usually selected as a power of 2 for

fast Fourier transform, in most cases the samplings are uneven. For example, we can get 107

relatively even views located in a tilt range of ±72.6° from Formula (2) with N=64. In order

to get 69 views, 67 uneven views were picked and the other two views at −72.6° and 72.6°

were added. In fact, it is the EA sampling that is popular in practice (Natterer and

Wubbeling, 2001), even for missing wedge problems.

With proper constraints or prior knowledge, the missing wedge problem can be addressed to

various degrees, which has been widely used for many years. This improvement is irrelevant

to the ES strategy. Clearly, the EST method is a combination of the linogram method and

some routine iterative reconstruction techniques (enhancing object support and positivity).

As confirmed in (Averbuch et al., 2008), “Edholm and Herman contributed the fundamental

insight that there was a continuum transform that could be discretized compatibly, provided

one thinks in terms of slopes rather than angles.” Excluding the well-known iterative

enhancement of popular constraints, EST is essentially the same as the linogram method

published two decades ago (Edholm and Herman, ’87). Mathematical results were proved in

(Edholm and Herman, ’87) to appropriately parameterize the image and Fourier spaces for

computational benefits.

Conclusions

While equally sloped sampling avoids some interpolation, its sampling geometry is not

symmetric, being disadvantageous relative to equiangular sampling. As shown in this work,

equally sloped sampling does not contribute to refining image quality nor alleviating the

missing wedge problem. As confirmed in (Averbuch et al., 2008), equally sloped sampling

is the same as the linogram sampling method published before (Edholm and Herman, ’87).

In conclusion, we evaluated the EST with ADSIR and an OS-SART assuming the same data

model used in (Scott et al., 2012). Our results show that (I) OS-SART is comparable to EST,

and ADSIR outperforms EST and OS-SART; (II) the equally sloped projection data

acquisition mode has no advantage over the conventional equally angled mode when using
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OS-SART and ADSIR algorithms. These results can provide a valuable reference in the

field of straight-ray tomography including but not limited to ET and CT.
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Fig. 1.
Original phantom images. While the top row shows a 3D view, the bottom row shows three

central slices in a display window [0, 105].
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Fig. 2.
Plots of RMSE and SSIM in Table I for comparison of the EST, OS-SART, and ADSIR

methods.
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Fig. 3.
Plots of RMSE and SSIM in Table I for comparison of the ES and EA data acquisition

modes.
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Fig. 4.
Illustration of equally sloped and equally angled acquisition modes. The projection

directions are marked with short lines.
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Table I

Quantitative analysis on OS-SART and ADSIR

Equally sloped acquisition mode Equally angled acquisition mode

Views # Reconstruction methods RMSE SSIM RMSE SSIM

69 EST 749.8 0.9935 N/A N/A

OS-SART 615.0 0.9923 608.6 0.9923

ADSIR 386.8 0.9962 388.3 0.9960

55 EST 966.8 0.9905 N/A N/A

OS-SART 819.9 0.9883 833.8 0.9878

ADSIR 395.5 0.9960 399.9 0.9960

31 EST 1840.4 0.9694 N/A N/A

OS-SART 1719.4 0.9627 1716.2 0.9629

ADSIR 550.8 0.9936 564.9 0.9935
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