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Abstract 
 

Mechanisms of visual attention, and their relationships to expectation and navigation, in 
the human brain 

 
by 

 
Sara Julia Katarina Slama 

 
Doctor of Philosophy in Neuroscience 

 
University of California, Berkeley 

 
Professor Robert T. Knight, Chair 

 
 
The amount of sensory input received by the human brain far surpasses its capacity for 
conscious processing. Attention serves to gate incoming inputs to enable the receiver to 
select aspects of the environment for further processing based on its relevance to 
higher-level goals. When attention is impaired, behavior goes awry, and this often has 
serious consequences. While it is clear that attentional processes are critical for 
humans’ ability to interact effectively with the environment, the lack of a clear and 
conclusive definition of attention itself has, at times, impeded research progress on 
attention in the neural and behavioral sciences. 
 
In this dissertation, I examine the construct of human attention from both empirical and 
theoretical standpoints. In Chapter 1, I provide an introduction to the concept of 
attention, including diverging definitions. I also articulate the urgency of obtaining a 
clearer understanding of the neurocognitive processes that support attention. Chapter 2 
presents an empirical study of a specific type of attention, known as visual search. The 
study uses rare intracranial recordings in humans to present evidence consistent with 
the view that visual search, a classical attention behavior, may need to be reinterpreted 
as navigation in visual space. In Chapter 3, I present a theoretical discussion of the 
distinctions and similarities between attention and expectation, including interpretational 
pitfalls in experimental designs aiming to directly compare the two. Chapter 4 provides 
closing thoughts with emphasis on future directions for this field of research. 
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Chapter 1 
 

Introduction: The brain, vision, attention, what it’s all good for, and how my 
graduate research fits into the story 
 
1.1. The brain and vision 
 
“Jo jo, jag vet, jag har ju varit på undersökning. Men, fast dom tog så många bilder så, 
int’ hitta dom nånting. Så, jag tänkte att dom får nu fortsätta att snurra på därinne, bäst 
dom vill. ” 

Karin Klåvus, konstnär, Närpes, Finland, 
i svar på min fars utsago att hans dotter 
studerar hjärnor i Amerika. 

 
“Yes yes, I know all about it. You see, I have been examined [neurologically]. But, even 
though they took so many pictures, they didn’t find anything at all. So I figured that, I’ll 
let them [the neurons] continue twirling about in there, as they wish.” 

Karin Klåvus, Artist, Närpes, Finland, upon 
learning that Michael Slama’s daughter studies 
brains in America. 

 
The adult human brain contains approximately 86 billion neurons (Azevedo et al., 2009). 
It measures about 14 cm from ear to ear, and 17 cm from forehead to inion. As early as 
the 5th century B.C., the Greek physician Hippocrates realized that the brain is 
responsible for implementing our sensory percepts, emotions, and thoughts (Kandel et 
al., 2013).  

Ever since the seminal work by two pioneers of neuroscience in the mid-20th 
century (Hubel & Wiesel, 1959; 1962; 1968), our understanding of the sense of vision 
has disproportionately informed our understanding of the brain. Because (1) the neural 
mechanisms of early visual cortex are relatively well understood, and (2) many neural 
computations generalize across cortical regions, the human visual system constitutes 
an excellent model for understanding brain function and the relevance of these 
mechanisms to disease (Yoon et al., 2013).  

The strides made in our understanding of the early visual pathways make it 
tempting to believe that vision is now “solved”. This belief is additionally fueled by 
advances in computer vision and artificial intelligence using architectures inspired by the 
human visual system (Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan & 
Zisserman, 2015; He et al., 2016). We may believe that we understand the mechanics 
of human vision since we can build machines whose visual behavior, to some extent, 
mimics that of humans. Yet it is important to recall that the human brain remains able to 
accomplish feats which machines cannot (Marcus, 2018). One example is object 
recognition generalized to different viewpoints (Pinto et al., 2011; DiCarlo et al., 2012; 
Marcus, 2018). It is also not true that we understand the mechanics of human vision, 
since even the function of cortical area V1 leaves much variance to be explained 
(Olshausen & Field, 2004). Finally, while most computational as well as neural models 
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of visual perception have a strictly feedforward architecture, a number of challenges to a 
simple serial model of vision have been raised over the past decades. One challenge 
lies in the fact that anatomical feedback projections to V1 greatly outnumber the number 
of feedforward projections (Felleman & Van Essen, 1991; Angelucci & Bullier, 2003). 

Attention stands out as one aspect of human visual perception where much work 
remains to be done. What is attention, anyway? 
 
1.2. Attention 
 
“Everyone knows what attention is.” 

William James (1890) 
 
“There is no such thing as attention.” 

Britt Anderson (2011) 
 
 
Psychologists and neuroscientists alike have struggled to agree on a consistent 
definition of attention. Many argue that William James’ definition from 1890 remains the 
clearest and most valid description of the phenomenon. He writes: “It is the taking 
possession of the mind, in clear and vivid form, of one out of what seem several 
simultaneously possible objects or trains of thought. Focalisation, concentration of 
consciousness are of its essence. It implies withdrawal from some things in order to 
deal effectively with others.” 

More recently, Chun and colleagues (2011) proposed an updated definition: 
“Given limited capacity to process competing options, attentional mechanisms select, 
modulate, and sustain focus on information most relevant for behavior.” Importantly, 
Chun et al. (2011) introduce a taxonomy of attention by proposing a division of the 
concept into several subcomponents. At the broadest level, this taxonomy divides 
attention into (1) attention directed towards the external world versus (2) attention 
directed internally towards thoughts. Chun et al. (2011) further subdivide attention by 
sensory modality (e.g., visual, auditory, tactile, olfactory, and cross-modal), and by the 
properties of the attentional process itself (e.g., sustained, feature-based, and 
object-based attention). The topic of Chapter 2  of this dissertation is a specific case of 
feature-based attention known as visual search .  

Another recent push toward greater precision in the definition of attention has 
been proposed by Summerfield and Egner (2009). They highlight the distinct conceptual 
meaning of attention  versus expectation . Attention, Summerfield & Egner argue, is a 
prioritization process that serves to select what is important (has “motivational 
relevance”) in the external environment. Expectation, they posit, is a prediction process 
pertaining to what the subject believes is going to happen next (“prior likelihood”). In 
their definition, expectation is neutral to the importance of the expected object. 
Summerfield and Egner (2009) observe that with the burgeoning field of predictive 
coding (Huang & Rao, 2011), there is a set of research experiments which - based on 
experimental design alone - could be interpreted as engendering either an attention or 
an expectation process. According to Summerfield and Egner, a number of classical 
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experiments in the attention literature should be reinterpreted as expectation  rather than 
attention  experiments, or potentially as encompassing a component of both processes. 
These include any classical experiments where a cue instructs a subject to attend to a 
given spatial location in anticipation of an upcoming target (for example the Posner 
cueing paradigm; Posner, 1980)  

This theoretical reinterpretation from attention to expectation  opens the door for a 
new field of research, which aims to characterize expectation  processes in equivalent 
amount of detail as attention processes have been characterized over the past 
decades. It appears that research results on expectation are beginning to parallel the 
very taxonomy of attention proposed by Chun et al. (2011), including expectation by 
sensory modality, spatial expectation, feature-based expectation (Summerfield & Egner, 
2016); object-based expectation (Jiang et al., 2016), etc. Unfortunately, this labor will in 
many cases be redundant to the work that has already been conducted in the more 
mature field of attention research. In light of Summerfield and Egner’s insights regarding 
the multiple processes elicited by common attention paradigms, a more fruitful way 
forward might be reinterpretation  rather than repetition of existing results in the attention 
literature. In Chapter 3  of this dissertation, I discuss a specific research study on 
object-based expectation (Jiang et al., 2016), and its interpretational pitfalls in 
comparison to the closely related field of object-based attention. 

While we may not yet fully understand how to characterize and subdivide the 
heterogeneous construct of attention, it is clear that the set of neural processes 
collectively referred to as attention are of immense practical importance to the everyday 
lives of the 7.35 billion people who live in the world.  Impairments in attention constitute 
some of the most debilitating symptoms of several brain disease, including: Alzheimer’s 
disease (Li et al., 2012), Parkinson disease (Yarnall et al., 2011), stroke (Corbetta & 
Shulman, 2011), schizophrenia (Morris et al., 2013), major depression (Marazziti et al., 
2010), and ADD/ADHD.  Healthy individuals are also affected by fluctuations in 
attentional function: Subclinical lapses in attention cause lost productivity in school and 
at the workplace, and driving distracted carries a further cost of lives lost as a direct 
result of deadly attention lapses.  

The annual cost of ADHD in the United States alone has been estimated to 
range between $143 and $266 billion (Doshi et al., 2012). This amounts to 
approximately 1% of the U.S. GDP of $19 trillion. In Europe, the cost of childhood 
ADHD alone, for the year 2010, was estimated at €2.5 billion euros ($2.8 billion). The 
total cost of all brain disorders was estimated at €798 billion ($890 billion, Olesen et al., 
2012), corresponding to nearly 5% of GDP in the European Union. These estimates are 
associated with large error bars. However, it is clear that they are a gross underestimate 
of the net cost of attention impairments in that they exclude all clinical impairments 
beyond ADHD, all subclinical attentional impairments, and mismanaged attention in 
healthy people. Estimates for the financial burden of ADHD and other attentional 
impairments are more sparse for developing countries, and the prevalence of formal 
diagnoses and treatment availability varies. It is clear, however, that the prevalence of 
the disability itself (ADHD), does not respect national borders (de Graaf et al., 2008). 
These estimates demonstrate that a lower bound on the financial burden of impaired 
attention is on the order of billions of dollars per year. 
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This dissertation represents two steps toward greater clarity in our understanding 
of human attentional processes. Chapter 2  is an empirical study, which suggests that 
some attentional processes may need to be reinterpreted as navigation behaviors. 
Chapter 3  is a theoretical discussion paper, highlighting pitfalls in interpreting 
experimental results aimed at disentangling expectation and attention.  
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Chapter 2  
 
Electrophysiological mechanisms of visual search in humans 
 
2.0. Foreword 
 
In this chapter, I describe the major experimental and data analysis work that I 
conducted during my PhD, providing novel results on the implementation of attention 
processes in the human brain. Richard Jimenez created the visualizations of electrode 
sites showing significant effects in Figures 2.11. and 2.15. I developed the statistical 
testing approach for identifying task-active and condition-selective electrode sites in 
collaboration with Sujayam Saha, based on previous work by Maris & Oostenveld 
(2007). Professor Robert Knight, Richard Jimenez, and I collaboratively conducted 
electrode localization of hundreds of electrodes by visual inspection: I am especially 
indebted to Professor Knight for this work, since it seems rare that a professor of his 
stature would be willing to sit down and do that kind of hard work with his mentees. I 
also owe thanks to Avgusta Shestyuk for advice regarding exploratory data analysis and 
data integrity checking, and to James Lubell for assistance with experiment 
programming. The data was collected at three sites around the world, and several 
researchers and clinicians contributed to that endeavor:  
 

1. Oslo University Hospital, Norway: Anne-Kristin Solbakk, Tor Endestad, & Pål G. 
Larsson. 

2. California Pacific Medical Center, San Francisco, USA: David King-Stephens, 
Kenneth D. Laxer, & Peter B. Weber. 

3. UC Irvine, USA: Jack J. Lin. 
 
Finally, I am infinitely grateful to the patients, who donated their time and data to make 
this research possible. 
 
2.1. Abstract 
 
Visual search is a fundamental human behavior, which has been proposed to include 
two component processes: inefficient search (Search) and efficient search (Pop-out). 
According to extant research, these two processes map onto two separable neural 
systems located in the frontal and parietal association cortices. In the present study, we 
use intracranial recordings from 23 participants to delineate the neural correlates of 
Search and Pop-out with an unprecedented combination of spatiotemporal resolution 
and coverage across cortical and subcortical structures. First, we demonstrate a role for 
the medial temporal lobe in visual search, on par with engagement in frontal and 
parietal association cortex. Second, we show a gradient of increasing engagement over 
anatomical space from dorsal to ventral lateral frontal cortex. Third, we replicate a 
previous study demonstrating nearly complete overlap in neural engagement across 
Search and Pop-out. We further demonstrate Pop-out selectivity (greater activity 
increases in Pop-out as compared to Search) in a distributed set of sites including 
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frontal cortex, contrary to the view that visual pop-out is implemented in low-level visual 
cortex or parietal cortex alone. Finally, we affirm a central role for the right lateral frontal 
cortex in Search. 
 
2.2. Introduction 
 
Visual search is is ubiquitous in everyday life, and is deployed in everything from driving 
to reading to airport security screening. Impairments in visual search ability have been 
documented in numerous brain disease including Alzheimer’s disease, Parkinson 
disease, stroke, schizophrenia, and ADHD. Visual search is widely considered a 
classical attention behavior (Treisman & Gelade,1980; Wolfe, 2014; 2018). Accordingly, 
some search processes are thought to require deliberate allocation of attention to 
individual putative search targets in a serial fashion (inefficient search, hereafter 
referred to as Search), with response times (RTs) increasing with the number of 
distractors in the search display. In other search processes, attention is thought to be 
automatically captured by a salient item in a display (efficient search, hereafter referred 
to as Pop-out), rendering search times independent of the number of distractors. 
Pop-out is thought to rely on preattentive visual perceptual mechanisms which scan the 
entire visual field in parallel (Treisman & Gelade, 1980; Julesz, 1981; Wolfe, 2018; but 
see Nakayama & Martini, 2011). Visual search experiments overall are viewed as 
well-parameterized attention  tasks. Depending on the design of the specific experiment, 
Search and Pop-out are thought to elicit attentive and pre-attentive processes, 
respectively.  
 
Putative medial temporal lobe engagement in Search and Pop-out 
The dominant model for the neural substrates of visual attention derives from human 
fMRI and PET studies as well as single-neuron research in non-human primates 
(Corbetta & Shulman, 2002). According to this framework, a bilateral dorsal network 
(the dorsal attention network, DAN) supports top-down attention, as deployed in Search. 
A right-lateralized ventral attention network (the ventral attention network, VAN) is 
implicated in bottom-up attention, as deployed in Pop-out  (Corbetta & Shulman, 2002; 
Corbetta, Patel & Shulman, 2008). While these two networks are anatomically distinct, 
the main nodes of both  networks are located in the frontal and parietal association 
cortices. 

A variant of this frontoparietal attention framework derives from non-invasive 
EEG recordings in humans (Li et al., 2010) and from single-neuron recordings in 
non-human primates (Buschman & Miller, 2007). This work focuses on the respective 
roles of the frontal and parietal association cortices in Search versus Pop-out. The 
central prediction that follows from these studies is that Search preferentially engages 
frontal cortex whereas Pop-out preferentially engages parietal cortex.  

A challenge to a pure frontoparietal model of visual search has recently been 
introduced in a series of publications in the non-human primate neuroscience field. 
These studies demonstrate that visual search of natural scenes rely extensively on 
medial temporal lobe (MTL) structures such as the entorhinal cortex (Killian et al., 2012; 
2015). The explanation, according to Killian and colleagues, is that visual search 
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belongs to the family of navigation  behaviors, not merely visual attention behaviors. In 
other words, they claim, visual search in primates can be conceptualized as navigation 
in visual space, analogous to navigation in physical space in rodents (Meister & Buffalo, 
2016). Consistent with this, a recent study examining single-neuron responses in the 
human hippocampus and amygdala reported that individual neurons in these regions 
reflect target detection processes during visual search in natural images (Wang et al., 
2018). 

A second reason to predict MTL engagement in visual search, and especially in 
the visual pop-out phenomenon, stems from its association with novelty detection. 
Hedwig von Restorff discovered the relationship between novelty and memory nearly 90 
years ago (von Restorff, 1933). Subsequent findings established that MTL memory 
structures are necessary for the detection and recollection of novel items (Knight, 1996; 
Parker et al., 1998). These findings raise the question of whether classical, 
well-parameterized experiments targeting Search and Pop-out also engage MTL 
structures.  

Direct evidence for MTL engagement in Search and Pop-out in humans is 
lacking. This may be due to a general neglect of the contributions of these structures to 
attention in the cognitive neuroscience literature. In addition, the reduced signal-to-noise 
ratio in the MTL in fMRI recordings in humans impairs researchers’ ability to draw 
conclusions about putative MTL involvement in various cognitive tasks. In this study, we 
address the question of MTL involvement in Search and Pop-out using direct 
intracranial recordings in humans. 

 
Do Search and Pop-out map neatly onto the frontal and parietal cortices, respectively? 
Returning to the question of Search and Pop-out as two separable perceptual 
processes, the idea that humans possess two visual systems goes back at least four 
decades (Treisman & Gelade, 1980; Julesz, 1981). These two putative perceptual 
systems have been proposed to map onto two distinct neural systems. Several models 
of the anatomical substrates for these two putative systems exist: I discuss three of 
these models below.  

First, a set of findings from non-invasive EEG in humans, and electrophysiology 
in primates, suggest that Pop-out is implemented in parietal cortex (Li et al., 2010; 
Buschman & Miller, 2007, but see Nobre et al., 2002). This is consistent with reported 
salience maps in area LIP in monkeys (Gottlieb et al., 1998) and a broader role for 
parietal cortex in detecting external visual stimuli, holding such information in memory, 
and generating motor action plans (Mangano et al., 2015; Xu, 2018; Regev et al., 2018; 
Martin et al., 2019). By contrast, prefrontal cortex (PFC), including FEF and lateral 
frontal cortex are implicated in Search (Leonards et al., 2000; Buschman & Miller, 2007; 
Rossi et al., 2007; Li et al., 2010). Consistent with this view, these areas have been 
shown to contain topographic visual maps (Kastner et al., 2007; Silver & Kastner, 2009; 
Mackey et al., 2017). 

Second, Corbetta’s and Shulman’s (2002; Corbetta et al., 2008) model of visual 
attention, as mentioned above, focuses on networks for goal-directed versus 
stimulus-driven attention, incorporating subregions of several cortical lobes. They 
propose that the DAN, which includes the intraparietal sulcus (IPs) and the frontal eye 
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fields (FEF), supports goal-directed attention as deployed in Search. According to 
Corbetta’s and Shulman’s framework, the VAN - including the temporoparietal junction 
(TPJ), parts of the middle frontal gyrus (MFG), inferior frontal gyrus (IFG), frontal 
operculum, and anterior insula - are involved in stimulus-driven attention as deployed in 
Pop-out. 

Third, at least two theoretical models exist for the implementation of Pop-out. 
One model claims that the central mechanism enabling the visual pop-out phenomenon 
is computation of salience in early visual cortex, most notably V1 (Zhaoping, 2002; 
Zhaoping & Dayan, 2006; Zhaoping, 2019). An opposing model claims that Pop-out is, 
instead, a top-down phenomenon. This gives rise to the prediction that there should be 
neural correlates of Pop-out in higher-order cortical areas such as frontal cortex 
(Hochstein & Ahissar, 2002), consistent with the observation that PFC lesions causes 
decreased EEG novelty responses in humans (Knight, 1984). 

As a fourth perspective, recent empirical evidence emphasizes the similarities 
rather than the differences between the tasks. Both fMRI work (Leonards et al., 2000) 
and a single intracranial study that has been conducted on the topic (Ossandon et al., 
2012) suggest that the networks supporting Search and Pop-out are remarkably similar, 
and centered on fronto-parietal regions including the DAN. Only minute, local 
differences such as greater activation in lateral frontal cortex in Search were observed 
(Leonards et al., 2000), perhaps reflecting increased working memory demands. The 
fact remains, however, that Search versus Pop-out engender robust behavioral 
differences, and the origin of these differences must reside somewhere in the brain. 

In the present study, we employ direct intracranial recordings of neural activity to 
map the anatomical sites at which Search and Pop-out converge and diverge in the 
human brain. Intracranial recording provides a method with improved spatiotemporal 
resolution compared to non-invasive neural recording methods in humans (Parvizi & 
Kastner, 2018). This superior temporal resolution enables us to observe and reject 
artifacts driven by RT differences across attention conditions, which may have 
confounded the results in previous studies using lower-resolution recording methods. 
We analyzed intracranially recorded voltage signals recorded from 1,321 
electrocorticography (ECoG) grid and stereoelectroencephalography (SEEG) depth 
electrodes in 23 patients with medically refractory epilepsy, each of whom were 
undergoing diagnostic recording in preparation for potential resective surgery. Across 
patients, the sensors captured extensive areas of cortex as well as the MTL and the 
amygdala. This combination of high spatiotemporal resolution and broad coverage 
makes this study uniquely positioned to document where and how these two modes of 
searching our visual environment differ. To the extent that the tasks differ, we ask in 
which regions of the brain this occurs, and assess to what extent these differences 
overlap with existing models of the implementation of Search and Pop-out in the brain. 

The patients completed a simple visual search task (Figure 2.10.a.), with two 
experimental conditions, Search and Pop-out. We focused on task-related activity 
increases, and condition-related modulations, in high-frequency activity (HFA; 80-150 
Hz). HFA has been shown to correlate both with the fMRI BOLD signal (Logothetis et 
al., 2001; Mukamel et al., 2005; Nir et al., 2007) and with multi-neuron activity (Ray et 
al., 2008; Ray & Maunsell, 2011). The findings demonstrate a robust role for the MTL in 
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Search and Pop-out, and highlight sub-regional differences within the PFC, including 
different activation profiles between superior and inferior lateral frontal cortex.  

 
2.3. Method 
 
Participants 
Thirty participants were enrolled in the study while undergoing treatment for medically 
refractory epilepsy at the Oslo University Hospital, Norway (N = 8), California Pacific 
Medical Center, USA (N = 7), and UC Irvine Medical Center, USA (N = 15). The 
Institutional Review Boards at each hospital as well as the Committee for Protection of 
Human Subjects at the University of California, Berkeley, approved the study 
procedures. Each patient provided written informed consent prior to participation. 
Electrode placement was determined solely by clinical needs. 

Seven patients’ datasets were excluded from the analyses. Two were excluded 
due to chance behavioral performance in the experiment. One was excluded for having 
fewer than 15 trials in one of the two experimental conditions, after applying trial 
exclusion criteria (see section Removal of epochs  below). Two patients were excluded 
for showing no task-related activity beyond primary sensory areas in the recordings (see 
section Task-active electrode selection: Identifying significant increases), and two 
patients were excluded for excessive high-frequency noise. 

Of the remaining 23 participants (35.04 ± 13.97 years; mean ± SD; 13 female), 
21 were right-handed, and 2 were ambidextrous (see Table 2.1., Appendix A). For the 
patients who participated in the U.S. (n = 17), twelve were native English speakers; two 
were native Spanish speakers; one was bilingual in English and Spanish; one was an 
ASL speaker; and one was a native Vietnamese speaker. All patients whose data was 
collected at the Oslo University Hospital (n = 6) were native Norwegian speakers. Task 
instructions were provided in the participant’s first language, either by the experimenters 
or with the help of a family member. Language was not a barrier to task comprehension 
in any of the subjects. All participants had normal or corrected to normal vision. 
 
Stimuli 
 
Participants completed a visual search task adapted from Li et al. (2010; 2013). The 
stimuli consisted of acute, isosceles triangles that were either red or green, and 
presented on a white background (Figure 2.10.a.) on a Windows laptop (15.6″ LCD 
screen). The stimuli were presented, and responses recorded, using E-Prime 2.0 
software (Psychology Software Tools, Sharpsburg, PA). 

The laptop was placed in front of participants at a viewing distance of 40-60 cm 
(approximately 16-24″). Each triangle had a base of 4.0 cm (3.8-5.7º visual angle) and a 
height of 4.5 cm (4.3-6.4º visual angle). On the stimulus display, the distance of each 
triangle from a central fixation cross was 6.0 cm (5.7-8.6º visual angle) horizontally and 
4.0 cm vertically  (3.8-5.7º visual angle), measured between the fixation cross and the 
center of each stimulus triangle.  

To synchronize the neural and behavioral recordings for subsequent analyses, 
analog channels transmitted stimulus onset and offset signals from the stimulus 
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computer to the neural recording hardware. At the hospitals in the U.S., a photodiode 
was used to detect light changes on the stimulus monitor, and at Oslo University 
Hospital, a TRS (“Tip, Ring, and Sleeve”, see: 
https://missionengineering.com/what-is-a-trs-cable/) connector transmitted an audio 
signal from the stimulus computer to the recording rig. 

Participants were instructed to locate a target triangle among four candidate 
triangles on the screen. The target triangle was defined by a color (red or green) and an 
orientation (1 of 8 orientations: 0º, 45º, 90º, 135º, 180º, 225º, 270º, or 315º). Patients 
indicated whether they found the target triangle on the left or right half of the screen by 
pressing the left versus right arrow key on the laptop keyboard, or the left versus right 
button of an external mouse, depending on the physical constraints of the recording 
room.  

The trial sequence started with a green fixation cross (1000 ms, Inter-Trial 
Interval ; notice that a 500-ms Baseline Interval  was a subset of this interval), followed 
by the fixation cross turning black (500 ms, Fixation Interval ). Next, the target triangle, 
which participants were required to hold in memory, was presented in the center of the 
screen (1000 ms, Sample Interval), followed by a fixation cross (500 ms, Working 
Memory Interval; Eimer, 2014), and ultimately the stimulus display consisting of four 
triangles including the target triangle (Stimulus Display Interval ). The trial was 
terminated after the response or, if the participant did not respond, after 2,000 ms. 

Each experiment included a total of 128 trials, divided into four blocks of 32 trials 
each. The task included two experimental conditions, Search and Pop-out. In Search, 
all four triangles had the same color (all red or all green), while in Pop-out, the target 
triangle had a different color than the three distractor triangles (red target with three 
green distractors, or green target with three red distractors). Half the trials (n=64) were 
Search trials. They were randomly interspersed with Pop-out trials, so that participants 
could not anticipate which condition an upcoming trial would belong to. Trial order was 
randomized separately for each participant.  
 
Behavior analysis 
 
The behavioral outcome measures were response accuracy (proportion correct) and 
response time (RT, ms). To compare behavioral performance between the two 
conditions, we computed a paired t -statistic between percent accuracy in the Pop-Out 
versus  Search conditions, excluding non-response (time-out, >2000 ms from stimulus 
onset) trials. We assessed significance using a permutation test, where we shuffled 
condition labels 100,000 times, and then we compared the t-statistics obtained in the 
permutation tests to the observed t-statistics. The p -value was computed as: (1 + 
number of permuted statistics more extreme than the observed statistic) / (1 + number 
of permutations). We calculated the same test to compare median RTs between the two 
conditions across subjects, including only correct-response trials. 
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Neural data acquisition 
 
Intracranial electrodes (ECoG or SEEG) were implanted for approximately one week in 
each patient to determine the epileptogenic focus. In eight patients, ECoG arrays, 
organized either in two-dimensional grids or one-dimensional strips, were placed on the 
cortical surface. In fifteen patients, SEEG depth electrodes, targeting subcortical 
structures, were implanted. A total of  1,321 electrodes were analyzed across the 23 
participants. 

At the Oslo University Hospital, ECoG and SEEG data were recorded using two 
64-channel NicoletOne (Natus Neuro Inc., Middleton, WI, USA) amplifiers (in four 
patients) and a 256-channel ATLAS (Neuralynx, Bozeman, MT, USA) digital acquisition 
system (in one patient). For the SEEG cases (n = 5), the exposed electrode diameter 
was 0.8 mm, and the center-to-center distance between electrodes was 3.5 mm. In four 
of these patients, the digitization rate was 512 Hz (NicoletOne system). In one patient, it 
was 16,000 Hz (ATLAS system). ECoG data were sampled at 1,024 Hz (NicoletOne 
system). The electrodes were manufactured by DIXI Medical (Besançon, France). 

At CPMC, ECoG data were recorded using a Nihon Kohden (Tokyo, Japan) 
Neurofax EEG-1200 digital acquisition system with 128/256-channel amplifier capacity. 
The digitization rate was 1,000 Hz. All five patients at this site were implanted with 
surface contacts (grids and strips). The electrodes were manufactured by the Ad-Tech 
Medical Instrument Corporation (Oak Creek, WI, USA). 

At UC Irvine Medical Center, data were recorded using a Nihon Kohden digital 
acquisition system with a 128/256-channel amplifier at a digitization rate of 1,000/5,000 
Hz, for both ECoG and SEEG cases. For the ten patients implanted with SEEG depth 
electrodes, the diameter of the electrode contacts was 0.9 mm, and the inter-electrode 
distance was 5.0 mm. The electrodes were manufactured by Integra Life Sciences 
(Plainsboro, NJ, USA).  

For all patients recorded with surface electrodes, the exposed electrode diameter 
was 2.3 mm. The inter-electrode spacing was 10.0 mm for all ECoG grids in all patients, 
except a single 8x8 high-density grid in one patient, where the center-to-center spacing 
was 4 mm.  
 
Anatomical reconstruction and visualization 
 
For electrode localization, we first segmented each patient’s preoperative T1-weighted 
MRI scan using Freesurfer 5.3.0 (Dale et al., 1999). Next, we fused the MRI image with 
a post-implantation CT scan using the Fieldtrip toolbox (Oostenveld et al., 2011; Stolk et 
al., 2018). To correct for the displacement of electrodes and brain tissue due to 
pressure changes related to the patient's craniotomy, electrodes were realigned to the 
preoperative cortical surface (Hermes et al. 2010, Dykstra et al., 2012). We inspected 
the individual fusions for maximal interlocking between the CT and MR visually for 
quality assurance. In the case of two patients, whose native-space MRIs were missing, 
we co-registered the post-implantation CT scans to the stereotaxic Colin-27 brain 
template (Collins et al., 1998).  

11 



For group-level visualization, surface-based normalizations were conducted 
using Freesurfer via cortical gyrification patterns, and volume-based normalizations 
through fusion to the Colin-27 brain via overall geometry patterns. By doing so, we 
linked patient brains to their template homologs, allowing accurate comparison of 
regions of interest (ROIs). In SEEG datasets, for which each physiological time-series 
was calculated using a bipolar montage between pairs of electrodes, we calculated the 
position of each electrode as the mid-point between the two original electrode locations 
(Burke et al., 2013; Jafarpour et al., 2019). To visualize electrodes showing task-related 
effects, we used FieldTrip and custom Matlab scripts.  
 
Assignment of electrode locations to anatomically defined regions of interest 
 
A neurologist (RTK) identified the locations of the individual electrodes based on 
inspection of the fused MR and CT images, displayed in the patient’s native space, 
using the BioImage Suite toolbox.  

We identified electrodes as belonging to one of the following eight broad ROIs 
(see Table 2.2., Appendix A): Frontal cortex (not including sensorimotor cortex), parietal 
cortex (not including sensorimotor cortex), sensorimotor cortex, temporal cortex, 
occipital cortex, cingulate cortex, medial temporal lobe (MTL), and amygdala. 
Sensorimotor cortex, which was engaged due to the behavioral response (a button 
press), was not of primary interest in this study, and was not further examined. We 
additionally examined activations in subregions of those ROIs that had greater than 50 
electrodes (Table 2.2., Appendix A). 

In frontal cortex (Table 2.3., Appendix A), we examined the following five 
subregions, defined by gyral and sulcal landmarks: (1) the superior frontal gyrus and 
sulcus, (2) the middle frontal gyrus, (3) the inferior frontal gyrus and sulcus, (4) the 
orbitofrontal cortex, and (5) the medial prefrontal cortex. 

In parietal cortex (Table 2.4., Appendix A), we separately examined activations 
in: (1) the superior parietal lobule including the intraparietal sulcus, (2) the inferior 
parietal lobule comprised of the supramarginal gyrus, angular gyrus, and 
temporoparietal junction, and (3) the precuneus.  

In temporal cortex (Table 2.5., Appendix A), we examined the following seven 
subregions: (1) the insula, (2) the superior temporal gyrus, (3) the superior temporal 
sulcus, (4) the middle temporal gyrus, (5) the inferior temporal gyrus including the 
middle temporal sulcus, (6) the ventral stream including the lingual and fusiform gyri, 
and (7) the temporal pole. 

In cingulate cortex (Table 2.6., Appendix A), we examined (1) the anterior 
cingulate cortex, (2) the midcingulate cortex, and (3) the posterior cingulate cortex. 

Finally, in the medial temporal lobe (Table 2.7., Appendix A), we examined the 
(1) the hippocampal formation (HF), including the hippocampus and subiculum, (2) 
parahippocampal cortex, and (3) entorhinal cortex, including perirhinal cortex. 
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Preprocessing of neural data 
 
We recorded the local field potential from a total of 503 ECoG and 818 SEEG 
electrodes in the 23 participants included in the final study sample. In subjects with an 
original sampling rate of 5,000 or 10,000 Hz, we resampled the signal to 1,000 Hz. The 
resulting datasets had sampling rates of 512, 1,000, or 1,024 Hz. To remove slow drift 
and high-frequency noise respectively, we high-pass filtered the signal at 1 Hz, and 
low-pass filtered it at 180 Hz. To remove line noise, we notch-filtered the signal at 60 Hz 
and harmonics for datasets recorded in the U.S., and at 50 Hz and harmonics for 
datasets recorded in Norway.  
 
Each recording was visually inspected by a neurologist (RTK) for epileptic activity or 
poor signal quality (such as detached electrodes or high-frequency noise). Electrodes 
that reflected signal from epileptic tissue or white matter, or were consistently noisy 
during the recording, were removed from the dataset: 16.3% of surface electrodes 
(which did not include white matter electrodes) and 55.4% of depth electrodes (which 
included white matter electrodes) were excluded. Temporal epochs that showed 
epileptic activity spread were removed across all electrodes. To remove remaining 
shared noise sources from the data in the surface (ECoG) datasets, we applied the 
common average reference (subtracting the point-by-point average signal of the 
preprocessed dataset from each time point of retained electrodes) to all grids within 
patient. In depth (SEEG) datasets, we applied a bipolar reference (pairwise subtraction 
of adjacent electrode time-series). 
 
Spectral decomposition  
 
We extracted the analytic amplitude of the HFA signal through three steps. First, we 
bandpass-filtered the time-series from the complete recording in each electrode 
between 80 and 150 Hz using a zero-phase FIR filter (mne.io.Raw.filter function from 
the MNE toolbox, https://martinos.org/mne/stable/generated/mne.io.Raw.html). We then 
computed the Hilbert transform of the filtered signal (mne.io.Raw.apply_hilbert function 
from the MNE toolbox) yielding a complex time-series, of which we took the absolute 
value to obtain the instantaneous analytic amplitude. Finally, we low-pass filtered the 
HFA analytic amplitude at 10 Hz to facilitate detection of temporal variation on a 
time-scale of approximately 100 ms, following Haller et al. (2018). 
 
Baseline normalization  
 
To examine the relationship between the behavioral and neural data, we segmented the 
full recording time-series into trial epochs, time-locked to the onset of the sample 
triangle (start of the Sample interval). A full trial epoch ranged from 1,050 ms before the 
onset of the sample triangle to 4,000 ms after. We defined the Baseline Interval as the 
first 500 ms of the trial, i.e., -1,050 to - 550 ms relative to the onset of the sample 
triangle. During the baseline, the participant watched a black fixation cross at the center 
of the monitor. We ended the trial epoch at 4,000 ms, because this captures the longest 
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trials plus a 500-ms period of response and post-response activity. To facilitate 
detection of task-related changes in neural activity, we normalized the HFA analytic 
amplitude to the neutral Baseline Interval, by computing an adapted z-score as follows: 
From each sample point of the full trial epoch, we subtracted the mean, and divided by 
the standard deviation, of the pooled baseline interval (across all included baseline 
epochs within condition and within each electrode).  

We then separated trials belonging to the Pop-Out versus Search condition, and 
conducted all subsequent analyses separately within each condition.  
 
Removal of epochs  
 
We excluded epochs from the dataset according to the following criteria: incorrect 
behavioral response, no response prior to trial timeout, epileptic activity or consistent 
noise in the raw time-series, RT outliers, and HFA activity outliers. RT outliers were 
defined as trials where the RT was more than 3 interquartile ranges (IQR, i.e., the 75th 
percentile - 25th percentile) lower than the 25th percentile or more than 3 IQR higher 
than the 75th percentile of the subject’s own RT. 

In order to minimize the number of trials with HFA signal artifacts in electrodes of 
interest, while maximizing the total number of trials retained across a patient’s dataset, 
we used a two-step approach for identifying HFA activity outliers. First, we computed 
the set of active electrodes (see section, Task-active electrode selection: Identifying 
significant increases and Figure 2.1. below) in each patient’s dataset prior to HFA outlier 
exclusion. Next, we excluded trials that showed a max-min range greater than 6 IQR 
above the 75th percentile (or greater than 6 IQR below the 25th percentile) in any one 
active electrode. Trials were excluded across each patient’s full dataset. The maximum 
number of trials that were excluded in any one patient based on this criterion was 8 
across the dataset, and 4 in any one condition. The smallest number of trials retained in 
any one subject and condition after all trial exclusion criteria was 21. Finally, we 
computed the set of active electrodes a second time, on the data where HFA outliers 
had been removed. The max-min range was selected as a metric of deviation in order to 
capture the time course shape of the most common HFA signal artifacts (rapid, 
high-amplitude modulations). The threshold of 6 IQR was chosen based on examination 
of two patients’ datasets, and then generalized across all patients. 
 
Task-active electrode selection: Identifying significant increases 
 
To select the subset of electrodes that showed task-relevant changes in HFA activity for 
further analyses, we used a permutation test approach adapted from Maris & 
Oostenveld (2007; Figure 2.1.). We considered an electrode that showed a significant 
task-related increase relative to baseline in either condition to be task-active. We also 
identified electrodes that showed task-related decreases using an equivalent procedure, 
but these effects are not the main focus of the current paper. To make the comparison, 
we selected two intervals (“task interval” below) of equal length to the baseline: (1) 
stimulus onset to 500 ms following stimulus onset, (2) 500 ms before response up to 
response. The significance calculation for each electrode was computed as follows: 
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(1) Baseline-normalize both baseline and task intervals as outlined in the section, 

Baseline normalization , above. 
(2) For both the baseline and task intervals, compute a one-sample t -test across 

trials at each time point. 
(3) Define a cluster as the set of t-statistics associated with any set of two or more 

consecutive significant time points (p < 0.05; see Figure 2.1., grey shaded area in 
the center panels depicting t -statistics). Select all clusters. 

(4) Compute the sum of t-values in each cluster. 
(5) Select the cluster with the largest sum of t -values (in both the baseline and the 

task intervals). 
(6) Subtract the largest sum of t -values in the baseline interval from the largest sum 

of t-values in the task interval, to obtain an observed statistic for the electrode. 
(7) Randomly permute the task versus baseline labels 1000 times, and repeat the 

calculations in steps 1-6 above. 
(8) Compute a p-value for each electrode as: (1 + number of permuted statistics 

larger than the observed statistic) / (1 + number of permutations). 
(9) An electrode with a p -value < 0.025 one-tailed (FDR-corrected across all 

electrodes in all subjects) in either of the two intervals in either condition was 
considered significant. We selected a cutoff of p  = 0.025 to Bonferroni-correct our 
threshold. We chose this cutoff because we computed increases and decreases 
as two separate, but parallel, one-tailed tests (see above). For physiological 
plausibility, we added a constraint that the duration of a cluster had to be, at a 
minimum, 50 ms. 
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Figure 2.1. Example electrode and condition (Search) that was task-selective both in the first 
considered interval (stimulus onset to 500 ms, Stimulus) and the second considered interval 
(-500 ms to response). A) Mean, z-scored HFA signal, time-locked to sample triangle onset (left 
panel), and to the response (right panel). On the left panel, the first vertical line shows the offset 
of the baseline time-period. The second line shows the onset of the sample triangle. The third 
line shows the offset of the sample triangle. The fourth line shows stimulus onset. The fifth line 
shows the offset (500 ms) of the first task interval. The dotted line shows the median RT. On the 
right panel, the dotted line shows the median stimulus onset time. The second line shows the 
start of the second task interval (-500 ms relative to response). The third line shows the RT, and 
the fourth line marks 500 ms after the response. Grey labels indicate intervals between vertical 
lines. Black labels refer to time points (the vertical lines themselves). ITI, Inter-Trial Interval; Fix., 
Fixation Interval; Sample, Sample Interval; WM, Working Memory Interval; Stimulus, Stimulus 
Display Interval; RT, Response Time. B) One-sample t-statistics corresponding to the mean 
HFA traces on top. Shaded areas indicate significant clusters. The area of these clusters were 
used as the statistics considered in the permutation test. C) -log(p) values corresponding to the 
t-statistics in (B). The grey horizontal line shows p = 0.05. Any points above this line were 
significantly greater than the pooled baseline used to z-score the mean signal, as shown in (A).  
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Significance-testing the anatomical distribution of task-selective effects 
 
We tested the distribution of task-active electrode sites for significant regional or 
hemispheric differences, using chi-square tests, according to the following approach: 
First, we tested if there were any regional differences in the distribution of task-active 
effects among the four broadly defined cortical lobes, cingulate cortex, MTL, and 
amygdala (Table 2.2., Appendix A). We similarly tested if there were differences 
between the subregions of the frontal cortex (Table 2.3., Appendix A), parietal cortex 
(Table 2.4., Appendix A), temporal cortex (Table 2.5., Appendix A), cingulate cortex 
(Table 2.6., Appendix A) and the MTL (Table 2.7., Appendix A), again using chi-square 
tests corrected for multiple comparisons using the FDR-correction. We did not examine 
subregion effects for the occipital lobe or the amygdala, due to comparatively low 
electrode counts in these regions. For any omnibus chi-square test (Tables 2-7) that 
was significant, we conducted follow-up pairwise chi-square tests to determine which 
ROIs or subregions were driving the overall effect. Any regions, for which the expected 
number of observations (electrodes) for either active or inactive status was less than 5, 
were excluded from the analysis. Specifically, the precuneus was excluded from the 
analysis of parietal subregions, and the temporal pole was excluded from the analysis of 
temporal subregions. 
 
Identification of electrodes showing condition-based effects 
 
We separately identified electrodes that showed greater activity increases in Pop-out 
than Search (“Pop-out electrodes”) and electrodes that showed greater activity 
increases in Search than in Pop-out (“Search electrodes”). To accomplish this, we used 
a very similar procedure (Figures 2.2. and 2.3.) to the one employed for identifying 
task-active electrodes, except for the following modifications: 
 

(1) We considered only electrodes that showed a significant task-related increase 
(see Task-active electrode selection: Identifying significant increases above). 

(2) We excluded any electrodes located in sensorimotor cortex (localized according 
to the procedure described in the section, Assignment of electrode locations to 
anatomically defined regions of interes t) due to potential confounding effects of 
the behavioral response being given by button press. For example, it is 
conceivable that patients pressed the button with greater force in the easier and 
more confident Pop-out than Search condition, giving rise to spurious 
condition-related effects. 

(3) Because we were interested in which electrodes showed a significantly larger 
increase  relative to baseline in one condition versus the other, we zero-clipped 
the signal prior to making the comparison (using the function numpy.clip()), so 
that all compared time points were greater than or equal to zero. Had we omitted 
this modification, we may have inadvertently identified electrodes as showing a 
pop-out effect when that effect was in fact driven by a temporary decrease  in the 
Search condition rather than an increase  in the Pop-out condition. 
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(4) Instead of computing a one-sample t-test to identify significant deviations from 0 
(step 2 in the task-active pipeline), we computed a two-sample t -test between the 
two conditions. 

(5) Instead of using two intervals as in the task-active pipeline, we considered a 
single interval: from stimulus onset to median RT across the two conditions. The 
reasons for this were that (i) we were no longer restricted to using a time interval 
of equal length to the baseline; (ii) we observed that most condition-related 
changes were of stimulus-related type; (iii) using the median RT as a cutoff 
seemed to be a reasonable choice in order to avoid undue bias in either direction 
by the selection of interval length. 
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Figure 2.2. Example electrode that showed a search-selective effect. A) Stacked single-trial 
HFA plot for the Pop-out condition, where the trials are ordered by RT so that the fastest trial is 
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on the bottom, and the slowest trial is on the top. Grey labels indicate intervals between vertical 
lines, similarly to Figure 2.1. ITI, Inter-Trial Interval; Fix., Fixation Interval; Sample, Sample 
Interval; WM, Working Memory Interval. B) RT distributions for this patient: The RTs can affect 
the condition-based comparison. C) Stacked single-trial plot for the Search condition. The figure 
format corresponds to (A). D) Mean HFA activity, z-scored to a pooled baseline, and locked to 
sample (left) and response (right). The red dashed line on the left panel shows the median RT in 
Pop-out. The black dashed line shows the median RT in Search. The solid black line between 
the dashed lines show the median RT across the two conditions. In the right panel, the dashed 
lines show the median RTs in the two conditions relative to the response (with Pop-out in red 
and Search in black). E) The same HFA activity is shown as in (D), but here it is zero-clipped, to 
facilitate comparison between increases only in each condition. F) The two-sample t-statistic 
between the two conditions over time. The shaded area shows a contiguous cluster of 
significant differences between the two conditions. G) p-values corresponding to the t-statistics 
in (F). The horizontal line shows p = 0.05. 
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Figure 2.3. Example electrode that showed a Pop-out selective effect. The figure layout 
corresponds to that of Figure 2.2. Consistent with the task-active selection pipeline, we 
computed two one-tailed t-tests, one in each direction, at a p-value threshold of 0.025 for each 
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direction. We FDR-corrected the p-values across all included electrodes (those showing a 
task-selective increase); and included a minimum duration cutoff of 50 ms, identically to in the 
task-active pipeline above. Electrodes that showed a significant effect in both directions (n=3) 
were not considered to show a condition-related effect, and were not  further analyzed. 
 
While different RT distributions between the two conditions are an integral feature of the 
task, specific artifactual condition differences in the neural data can occur as a result of 
these behavioral differences between the two conditions. This is consistent with 
observations made in a previous intracranial study on visual search (Ossandon et al., 
2012). We removed these artifactual effects through the following steps: 
 

(1) We simulated three response types, which we predicted to occur in the HFA 
signal (previously reported in Ossandon et al., 2012; Haller et al., 2018): (i) 
stimulus-related responses; (ii) sustained responses; and (iii) response-related 
responses. We then tested how these response-types would behave given a 
representative patient’s RT distributions in the two conditions in this task. See 
Figures 2.4-2.6. No artifacts driven by the known temporal characteristics of the 
ECoG/SEEG response (Ossandon et al., 2012; Haller et al., 2018, and simulated 
in Figures 2.5.-2.6.) are expected in the case of stimulus-related responses. 
Sustained-type responses can give rise to artifactual Search effects. 
Response-related responses can give rise to artifactual Pop-out or Search 
effects. 

(2) We visually compared electrode traces that had been automatically labeled as 
showing a Pop-out or Search effect (using the pipeline described above) to the 
simulated artifactual responses. In cases where the signal time course of the 
selected traces matched a prototypical artifact time course, we labeled this effect 
as false. See Figures 2.7.-2.9. for example electrodes, for which the 
condition-effect labels were removed using this method. 
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Figure 2.4. Simulated electrode showing stimulus-related HFA signal. A) Stacked single-trial 
plot for the simulated Pop-out condition, comparable to Figure 2.2.A. B) RT distributions for a 
representative patient, comparable to Figure 2.2.B. These RTs were used to generate the 
remaining figures in this plot (A, C-E). C) Stacked single-trial plot for the simulated Search 
condition, comparable to Figure 2.2.C. D) Mean of the single-trial traces, comparable to Figure 
2.2.D. The left panel shows stimulus-locked traces, and the right panel shows response-locked 
traces. a.u., arbitrary units. E) Difference (Diff.) between the mean traces in the two simulated 
conditions, comparable to the outcome of a two-sample t-test as in Figure 2.2.F. The two panels 
illustrate that, in a stimulus-related electrode in which the two conditions do not differ in their 
response, the mean signal in the Pop-out and Search conditions will only differ if locked to the 
response (right panel). This does not affect the outcome of the selection of condition-related 
effects, which is based on stimulus-locked mean traces.  
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Figure 2.5. Simulated electrode showing sustained HFA signal. The figure layout corresponds 
to that of Figure 2.4. This illustrates that in a sustained-response electrode, in which the 
simulated response is governed only by the presence or absence of the stimulus screen, the 
mean signal in the Pop-out and Search conditions will differ such that a spurious Search effect 
can occur late in the trial interval. Figure 2.7. shows an example from the data, which features 
this type of artifact.  
 

24 



 
Figure 2.6. Simulated electrode showing response-related HFA signal. The figure layout 
corresponds to that of Figure 2.4. This figure illustrates that, in a response-related electrode, in 
which the simulated response begins 500 ms before the button press and continues until the 
time of the button press, the mean signal in the Pop-out and Search conditions will differ such 
that a spurious Pop-out effect can occur early in the trial interval, while a spurious Search effect 
can occur late in the trial interval. Figures 2.8. and 2.9. show examples from the data, in which 
these types of artifacts occur. 
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Figure 2.7. Electrode with sustained response pattern showing artifactual Search effect. The 
figure layout corresponds to that of Figure 2.2. This figure shows an example of an electrode, 
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which was automatically identified as showing a Search effect, but where this effect was 
artifactual due to the sustained response pattern of the electrode and the shape of the RT 
distribution in this patient. This electrode was labeled as not showing a condition-based effect, 
based on visual inspection. The observed artifact corresponds to the simulated artifact in Figure 
2.5. 
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Figure 2.8. Electrode with response-related signal pattern showing artifactual Search effect. 
The figure layout corresponds to that of Figure 2.2. This figure shows an example of an 
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electrode, which was automatically identified as showing a Search effect, but where this effect 
was artifactual due to the response-related signal pattern of the electrode and the shape of the 
RT distribution in this patient: The response-locked panels on the right (D-E) show mean traces, 
which do not differ between conditions. This electrode was labeled as not showing a 
condition-based effect, based on visual inspection. The observed artifact corresponds to the 
simulated artifact in Figure 2.6. The shape of the t-statistic trace in the present figure (F) can be 
compared to the condition difference trace in Figure 2.6. 
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Figure 2.9. Electrode with response-related signal pattern showing artifactual Pop-out effect. 
The figure layout corresponds to that of Figure 2.2. This figure shows an example of an 
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electrode, which was automatically identified as showing a Pop-out effect, but where this effect 
was artifactual due to the response-related signal pattern of the electrode and the shape of the 
RT distribution in this patient: The response-locked panels on the right (D-E) show mean traces, 
which do not differ between conditions. Based on visual inspection, this electrode was labeled 
as not showing a condition-based effect. The observed artifact corresponds to the simulated 
artifact in Figure 2.6. 
 
2.4. Results 
 
Behavior 
 
Consistent with past studies using similar tasks (Buschman & Miller, 2007; Li et al., 
2010; Ossandon et al., 2012), subjects were more accurate (t (22) = 4.73, p < 0.001) 
and faster (showed faster RTs, t(22) = -14.06, p < 0.001) in Pop-out than in Search 
(Figure 2.10). The mean accuracy in the Pop-out condition was 96.0 % with a standard 
deviation of 3.9 %. The mean accuracy in the Search condition was 86.8 % with a 
standard deviation of 9.6 %. The mean RT (of the median RTs from each patient) in 
Pop-out was 680.2 ms with a standard deviation of 146.5 ms. The mean RT in Search 
was 964.8 ms with a standard deviation of 152.2 ms. 
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Figure 2.10. A) Visual search task adapted from Li et al. (2010). Patients searched for a target 
triangle (‘Sample’) of a given color and orientation. Upon locating the target triangle, they 
indicated its location on the left or right half of the screen by button press. ITI, Inter-Trial Interval; 
Fixation, Fixation Interval; Sample, Sample Interval; WM, Working Memory Interval; Stimulus, 
Stimulus Display Interval; RT, Response Time. B) Proportion correct responses in the Pop-out 
(red) and Search (black) condition across the 23 patients included in the study. Grey lines 
indicate individual subjects’ performance. C) RT histograms from all correct trials for all 
participants (N=23), showing the Pop-out (red) and Search (black) conditions. 
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Task-selective responses by anatomically defined regions of interest 
 
The total number of active sites, excluding electrodes implanted in sensorimotor cortex, 
was 363 out of 1,160, corresponding to 31% across the dataset (Table 2.2., Appendix 
A). Task-selective responses were detected in all considered brain regions, including all 
four lobes of the neocortex; the cingulate cortex; the medial temporal lobe; and the 
amygdala (Figure 2.11).  
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Figure 2.11. Task-selective electrode sites across the dataset (N=363 of 1,160). A) Task-active 
(green) and inactive (white) sites visualized on a common brain reconstruction (Colin-27). B) 
Example time courses from seven major regions of interest, and an example time course from 
an inactive electrode site. Pop-out time courses are plotted in red and Search time courses in 
black. The vertical red dashed line indicates the median RT in the Pop-out condition. The 
vertical black dashed line indicates the median RT in the Search condition. The various task 
epochs are indicated on the top left panel, and correspond to those shown in Figure 2.10.a: ITI, 
Inter-Trial Interval; Fix., Fixation Interval; Sam., Sample Interval; WM, Working Memory Interval; 
Stimulus, Stimulus Display Interval.  
 
The proportions of active electrodes differed significantly between these areas, (6, N2χ  
= 1,160) = 41.84, p  < .001 (Figures 2.11. and 2.12.). The occipital lobe, with the most 
limited coverage (17 electrodes), showed the strongest activation profile (65%), as 
expected given the visual nature of the task. The proportion active electrodes in the 
occipital lobe was significantly larger than in the temporal lobe, (1, N = 386) = 14.70,2χ  
p < .001 (FDR-corrected); and the cingulate cortex, (1, N = 163) = 9.54, p = .0082χ  
(FDR-corrected).  
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B) 

 
Figure 2.12. Distribution of task-active sites across the major ROIs. A) Proportion active 
electrodes by ROI. Bar height shows proportion active electrodes for a given ROI across the 
dataset. Circle height shows proportion active electrodes for individual subjects, who had 
coverage in that ROI. Circle area is proportional to the number of considered electrodes in that 
subject. Black asterisks indicate a significant pairwise comparison (p < 0.05). B) Effect sizes of 
pairwise comparisons between the major ROIs, corresponding to the pairwise chi-square test 
statistics reported. The effect sizes are illustrated as the log odds ratio between the ROI on the 
y-axis (indicating rows, on the left) versus the ROI on the x-axis (indicating columns, at the 
bottom): The proportion active electrodes in the ROI on the y-axis is always larger than the 
corresponding ROI on the x-axis. Statistics with an asterisk indicate a significant pairwise 
chi-square test. 
 

Parietal cortex, extensively implicated in visual attention tasks, showed 44% 
active electrodes (Tables 2.2. and 2.4.; Figures 2.11. and 2.12.). The proportion active 
electrodes in parietal cortex was significantly larger than in the temporal lobe, (1, N =2χ  
449) = 16.16, p < .001 (FDR-corrected) and the cingulate cortex, (1, N = 226) = 7.24,2χ  
p = .025 (FDR-corrected). We further examined three subregions of parietal cortex: the 
precuneus, the inferior parietal lobule (IPL), and the superior parietal lobule (SPL). In 
the precuneus, six of eight electrodes (75%) were active; due to the low electrode 
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count, we did not further analyze this proportion. We compared the proportion active 
electrodes between the IPL (33% or 18/55 electrodes) and SPL (65% or 11/17 
electrodes), and found a significantly greater proportion of active electrodes in SPL, 2χ
(1, N = 72) = 4.27, p = .039. The log odds ratio of this effect was 1.33. We note, 
however, that all SPL electrodes were derived from a single subject and the right 
hemisphere alone. 

In prefrontal cortex (PFC; Tables 2.2. and 2.3.; Figures 2.11.-2.12.), 36% of 
electrodes were active. This proportion was significantly larger than in the temporal 
lobe, (1, N = 821) = 20.28, p  < .001 (FDR-corrected), but did not differ significantly2χ  
from parietal sites. The proportion active electrodes were not uniformly distributed 
across frontal cortex, (4, N = 452) = 23.85, p  < .001 (FDR-corrected; Figure 2.13.). In2χ  
lateral PFC, we observed a gradient of increasing activations from superior to inferior 
frontal gyri. In the superior frontal gyrus (SFG), we observed a proportional activation 
rate of 31%. In the middle frontal gyrus (MFG), 43% of electrodes were active. In the 
inferior frontal gyrus (IFG), the activation rate was 53%, with a larger proportion located 
in the left hemisphere (68% activation in the left hemisphere vs. 48% in the right 
hemisphere). The proportion active electrodes in IFG was significantly larger than that in 
SFG, (1, N = 202) = 8.92, p  = .009 (FDR-corrected). We observed proportionally2χ  
fewer task-related increases in OFC (19%) in spite of extensive coverage (75 
electrodes). This proportion was significantly smaller than that in IFG, (1, N = 148) =2χ  
17.96, p < .001 (FDR-corrected), and MFG, (1, N = 211) = 11.32, p = .0042χ  
(FDR-corrected). In medial PFC (mPFC), 31% (12/39) of electrodes were active. This 
proportion did not differ significantly from other frontal subregions. 
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B) 

 
Figure 2.13. Distribution of task-active sites across subregions of frontal cortex. The layout of 
the figure corresponds to that of Figure 2.12. A) Proportion active electrodes by frontal 
subregion. B) Effect sizes of pairwise comparisons between frontal subregions.  

 
The MTL (Tables 2.2. and 2.7., Appendix A; Figures 2.11. and 2.12.) showed a 

proportional activation profile at 41% (24/58 electrodes), which is indistinguishable from 
frontal cortex. Similarly to frontal cortex, this proportion was significantly larger than that 
in temporal cortex, (1, N = 427) = 9.86, p = .008 (FDR-corrected). We detected no2χ  
significant sub-regional differences within the MTL. In the hippocampus, we observed 
41% (9/22) active electrodes. In parahippocampal cortex, 32% (7/22) of electrodes were 
active. Eight of fourteen (57%) entorhinal cortex electrodes were active. 

The amygdala (Table 2.2., Appendix A; Figures 2.11.-2.12.) showed 37% active 
electrodes (14/38). This proportion did not differ significantly from the other ROIs. 

The cingulate cortex (Tables 2.2. and 2.6., Appendix A; Figures 2.11.-2.12.) was 
engaged only at 25% in spite of extensive coverage (37/146 electrodes). This proportion 
was significantly smaller than that in the occipital and parietal cortices, as reported 
above. An omnibus chi-square test for significant regional differences between cingulate 
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subregions was significant, (1, N = 146) = 7.12, p = .047 (FDR-corrected); however,2χ  
the follow-up pairwise chi-square tests were not significant. We observed 33% (9/27) 
and 35% (18/52) active electrodes in the posterior (PCC) and midcingulate cortex 
(MCC), respectively. In the anterior cingulate cortex (ACC), we found only 15% active 
electrodes in spite of extensive coverage (10/67). 

Temporal lobe engagement (Tables 2.2. and 2.5., Appendix A; Figures 2.11., 
2.12., and 2.14.) was comparatively low, at 21% (79/369 electrodes). The proportion 
active electrodes in temporal cortex was significantly smaller than that in occipital, 
frontal, and parietal cortices, as well as the MTL, as reported above. Within the temporal 
lobe, we observed a gradient of increasing activations from dorsal to ventral areas 
(Figure 2.14.). This observation is consistent with the view that the ventral stream is 
central for object detection while lateral temporal cortex would not be expected to be 
engaged in visual search. The ventral stream areas (comprised of the lingual and 
fusiform gyri) showed 41% active electrodes (18/44). This proportion was significantly 
larger than that in STG, (1, N = 88) = 10.24, p = .010 (FDR-corrected), and STS 2χ 2χ
(1, N = 126) = 13.51, p = .004 (FDR-corrected). The STG and STS showed only 9% and 
11% active electrodes, respectively, in spite of extensive coverage in both areas (4/44 
electrodes in STG and 9/82 electrodes in STS). The MTG showed 20% (16/79) active 
electrodes; ITG showed 22% active electrodes (13/59). In the insula, 26% (12/46) of 
electrodes were active. Of 15 electrodes localized to the temporal pole, 7 were active 
(47%); we did not consider the temporal pole in significance testing, due to low 
electrode count. 
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B) 

 
Figure 2.14. Distribution of task-active sites across subregions of temporal cortex. The layout of 
the figure corresponds to that of Figure 2.12. A) Proportion active electrodes by temporal 
subregion. B) Effect sizes of pairwise comparisons between temporal subregions. 

 
In sum, occipital, frontal, parietal cortex showed an elevated proportion active 

electrodes compared to temporal cortex. The MTL showed a proportional activation rate 
on par with that in frontal and parietal cortex. As illustrated in Figures 2.12.-2.14., none 
of these effects were driven by a single, anomalous subject. 
 
Condition-selective anatomical sites 
 
Among the 363 electrodes which showed task-related increases outside of sensorimotor 
areas (Table 2.2., Appendix A, and Figure 2.15.), 30 sites (8.3%; 13 of 23 patients) 
showed condition-related modulations ( Pop-out > Search  or Search > Pop-out ). 
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Figure 2.15. Condition-selective electrode sites. A) Pop-out (red) and Search-selective (black) 
sites are shown, along with task-active (green) sites for which the two conditions did not differ. 
The brain template (Colin-27) is identical to that shown in Figure 2.11. B) Example time courses 
of electrode sites that showed a significant Pop-out selective effect. The mean signal in Pop-out 
is plotted in red, and Search in black. C) Example time courses of electrode sites that showed a 
significant Search-selective effect. Colors of traces are the same as in (B). 

 
This proportion of condition modulations is slightly smaller than previously 

reported (Ossandon et al., 2012), possibly owing to different methods and thresholds for 
determining statistical significance, as well as our explicit exclusion of condition 
modulations arising from specific RT-related artifacts (see Method section, and below, 
for more details). Condition-related effects were found in all four cortical lobes as well as 
cingulate cortex. Because of the small number of sites showing condition-related 
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modulations and their wide anatomical distribution, we do not statistically test these 
effects as a function of region, but rather report their observed anatomical locations 
directly.  

Electrodes showing greater activity increases in the Pop-out than Search 
condition (n = 19 electrodes; 10 patients) were found in the parietal lobe (n = 4 
electrodes; 4 patients; SPL, IPL, and SMG); frontal lobe (n=8 electrodes; 5 patients; 
SFG, SFS, MFG, IFG, OFC); temporal lobe (n=6 electrodes; 4 patients; MTG, ITG, 
insula, and fusiform gyrus), and occipital lobe (n=1 electrode; lateral occipital cortex). 

Electrodes showing greater activity increases in the Search than the Pop-out 
condition (n = 11 electrodes; 5 patients) were predominantly found in frontal cortex (9 
electrodes; 4 patients). Of these frontal Search sites, all but one (mPFC) were found in 
lateral frontal cortex. The remaining two Search electrodes (N=2 patients) were in 
cingulate cortex (ACC and mid-cingulate cortex). 

We removed specific artifactual condition differences, which occurred as a result 
of the different RTs distributions in the two conditions (see Method for details). 
Consistent with our simulations (Figures 2.4.-2.6.), we observed three types of artifacts 
in the data: (1) spurious Search effects in electrodes with sustained activity (Figure 
2.7.); (2) spurious Search effects in electrodes with response-related activity (Figure 
2.8.); and (3) spurious Pop-out effects in electrodes with response-related activity 
(Figure 2.9.). We observed 14 electrodes showing the first type of artifact, located in all 
four cortical lobes, as well as the MTL and amygdala. Six electrodes showed the 
second type of artifact; these were located in frontal, occipital, and temporal cortex. 
Fifteen electrodes were characterized by the third type of artifact, and were found in 
frontal, parietal, and temporal cortex, as well as the cingulate cortex and MTL. It is worth 
noting that the total proportion of condition effects automatically detected in this study 
prior to artifact exclusion (65/363 electrodes or 17.9%) are consistent with those 
previously reported by Ossandon et al. (2012); Ossandon and colleagues also mention 
the presence of RT-related artifacts in their observed condition differences, but do not 
explicitly exclude them by type. 

In sum, we found condition differences between Pop-out and Search at 
equivalent rates as those previously reported. Pop-out effects were found in all four 
cortical lobes, including frontal cortex. Search effects were found in lateral frontal cortex 
and cingulate cortex. 
 
2.5. Discussion 
 
We used intracranial neural recordings with high spatiotemporal resolution in humans to 
document two hitherto unknown properties of the visual search network in humans: 
First, there are marked regional differences in prefrontal engagement in this task, 
including an increasing gradient of activations from superior to inferior lateral frontal 
cortex. Second, the medial temporal lobe is engaged on par with the frontoparietal 
cortices in this classical attention task. We discuss these findings below. 
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Behavior results 
 
Consistent with past research examining the neural correlates of serial search and 
pop-out, we observed faster RTs and higher accuracy in the Pop-out than the Search 
condition (Li et al., 2010; Ossandon et al., 2012; Yan et al., 2016). Moreover, the 
distributions of RTs in the two conditions were similar to those previously reported 
(Figure 2.b.; Buschman & Miller, 2007; Li et al., 2010; Ossandon et al., 2012) 
 
Cortical distribution of task-active sites 
 
Strong activation profile in visual areas. Across cortical areas, we observed the 
strongest activation profile in the occipital lobe (Figure 2.11) as would be expected in a 
visual experiment. Similarly, we observed strong activation in the ventral stream (Figure 
2.14.), consistent with its role in low-level vision and object detection (DiCarlo & Cox, 
2007; DiCarlo et al., 2012). 

Fronto-parietal network engagement. Beyond visual cortex, the frontal and 
parietal cortices were robustly active, as predicted by fronto-parietal models of attention 
allocation in both Pop-out and Search (Corbetta & Shulman, 2002; Buschman & Miller, 
2007; Li et al., 2010; and Ossandon et al., 2012). The robust parietal activations in the 
SPL and IPL (areas adjacent to the IPs), which we observed, were certainly also 
expected (Gottlieb et al., 1998; Silver et al., 2005; Silver & Kastner, 2009; Li et al., 
2010). 

Regional differences within prefrontal cortex. The lateral convexity of the human 
PFC is known to be involved in working memory and controlled attention (Knight et al., 
1995; Curtis & D'Esposito, 2003). It is specifically thought to be required for holding 
representations of sensory stimuli in mind over short periods of time (seconds) while 
competing distractor items are considered and discarded. This is necessary in the 
Search condition of the present experiment, and possibly also in the Pop-out condition 
albeit to a lesser extent. It therefore comes as no surprise that we observed robust 
activation across the lateral frontal lobe (Figure 2.13.).  

Importantly, we observe differences in the proportional activation across 
subregions of lateral frontal cortex, whereby the IFG was most strongly active, followed 
by MFG and SFG, in a gradient of decreasing activation from ventral to dorsal 
subregions. These observations may be interpreted from the perspective of preferential 
engagement of the ventral attention network in this experiment (Corbetta & Shulman, 
2002; Corbetta et al., 2008), though it is not clear why the aggregate activations across 
both conditions should show this pattern. From the perspective of a working memory 
role for lateral frontal cortex, several hypotheses exist for the functional specialization of 
its subregions (reviewed in Curtis & D'Esposito, 2003). Some theories make a 
“material-specific” distinction whereby dorsal subregions are involved in the 
maintenance of spatial information, while ventral subregions are responsible for the 
maintenance of object-related information. Other models make a “process-specific” 
distinction whereby dorsal subregions support higher-order control functions like 
manipulation of items in working memory, while ventral subregions are engaged in 
“simpler” operations, such as encoding and retrieval of items into and from memory. Our 
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data cannot disentangle these propositions. It does, however, suggest that a dichotomy 
between dorsal and ventral subregions of lateral frontal cortex does not capture the 
complexity of prefrontal function, as we observe a continuum of increasing activity from 
the superior to middle to inferior frontal gyri in this classical visual search task. 

We observed proportionally less activation in the OFC region (Figure 2.13.), 
consistent with a vast set of work documenting different roles for the lateral frontal 
cortex versus OFC in behavior (reviewed in Hartikainen & Knight, 2003), along with a 
prominent role for ventral frontal regions in the default mode network (Shulman et al., 
1997; Raichle et al., 2001; Raichle, 2015). Hence, we might expect to find decreases 
rather than increases in the OFC in this task (Ossandon et al., 2011; Raccah et al., 
2018). Lateral temporal cortex (STG and STS), also a component of the default mode 
network, similarly showed a very low proportional activation rate in our data (Figure 
2.14.). 

The medial temporal lobe is engaged on par with frontal and parietal cortex. We 
observed robust MTL activation during the search interval (Figure 2.11.) in this 
experiment: The proportion active electrodes in the MTL was indistinguishable from the 
frontal and parietal cortices. We detected active electrode sites in entorhinal cortex, 
hippocampus and, to a lesser extent, the parahippocampal cortex. This result is 
consistent with previous work demonstrating a role for the entorhinal grid cell system in 
free-viewing of natural scenes in stationary macaques (Killian et al., 2012; Killian et al., 
2015) as well as evidence demonstrating visual working memory impairment in patients 
with MTL lesions when verbal rehearsal strategies are prevented (Olson et al., 2006). 
To the best of our knowledge, this is the first time that MTL engagement, including 
hippocampus and entorhinal cortex, has been demonstrated in stationary humans 
performing a controlled, classical visual search paradigm. One previous study has 
reported individual target-selective cells in the human hippocampus and amygdala while 
searching a display of naturalistic images (Wang et al., 2018), but no equivalent result 
has been reported that includes the entorhinal cortex in a classical Search versus 
Pop-out paradigm. The implication of our findings is that visual attention researchers 
now need to add MTL structures to the well-known cortical ROIs, such as the IPs, FEF, 
and dlPFC, for disentangling the mechanisms that enable top-down and bottom-up 
visual attention in visual search. Additionally, classical “attention” effects in serial search 
and pop-out may need to be re-examined through through the lens of viewing these 
search behaviors as navigation behaviors in visual space.  

Adjacent to the MTL, we observed an activation rate of 37% in the amygdala. 
This effect may be driven by its role in detecting novelty and salience (Rutishauser et 
al., 2006); the observation that its activity is modulated by visual fixations in free-viewing 
natural images (Minxha et al., 2017); and its role in a broader limbic network including 
the MTL. 

In sum, this work confirms a central role for the frontoparietal attention network in 
visual search. In addition, we observe prominent regional differences within the PFC, 
highlighting a clear division of labor between OFC versus lateral PFC, and a graded 
activation profile across lateral PFC. Moreover, we provide evidence for a central role 
for the MTL, including the entorhinal cortex and the amygdala, in this classical Search 
versus Pop-out paradigm. The implementation of visual search in humans appears to 
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engage widely distributed brain regions: It is not merely the purview of a few isolated 
regions in the parietal and frontal cortices as previously reported. 
 
Condition-selective effects 
 
Most task-active sites are equally engaged in Pop-out and Search. We find that the vast 
majority of task-active sites do not show significant condition modulations, consistent 
with past research documenting a largely overlapping network of regions in the frontal 
and parietal cortices, which are engaged in both tasks (Leonards et al., 2000; Ossandon 
et al., 2012; and Katsuki & Constantinidis, 2014). Beyond shared mechanisms in the 
frontoparietal attention network, it makes sense that the two tasks share large amounts 
of neural infrastructure for shared subprocesses of the visual search task, including 
low-level feature detection (edges and colors), object detection, decision-making 
(whether to select the left or right response), motor planning, etc. We nonetheless 
detected a sparse, yet robust, set of condition-selective sites, the anatomical 
distributions of which are noteworthy. We describe these below. 

Search-selective sites are concentrated in lateral frontal cortex. Consistent with a 
framework that proposes that frontal cortex has a critical role in facilitating Search as 
opposed to Pop-out, (Li et al., 2010; Buschman & Miller, 2007), we find 
Search-selective sites exclusively in the frontal and cingulate cortices. Specifically, the 
majority of Search-selective electrodes were located in lateral frontal cortex. While the 
number of electrodes (n=9) showing significant search-selective effects were few, they 
occurred across several patients (N=4), and the effects were among the largest we 
observed in this dataset (see Figure 2.15.c). 

This result is consistent with numerous past studies, reporting increased lateral 
frontal cortex engagement in Search but not Pop-out across a range of recording 
modalities. fMRI studies have shown increased BOLD signal in regions of lateral frontal 
cortex in Search tasks relative to Pop-out (SFS: Leonards et al., 2000; MFG and IFG: 
Anderson et al., 2007; 2010). Other fMRI work have shown a more general role for 
lateral frontal cortex (MFG) in guiding top-down visual attention (Gazzaley et al., 2007).  

In a macaque lesion study, Rossi et al. (2007) showed that ablating the lateral 
surface of right PFC impaired search performance in a difficult search condition, in 
which the search cue was often switched across trials, but not in a color pop-out similar 
to the present study. Partially convergent evidence was reported by Iba and Sawaguchi 
(2003), who found that a muscimol injection to dlPFC of rhesus macaques caused an 
equal impairment to a conjunction (difficult) and pop-out search.  

TMS studies have, similarly, demonstrated a causal role for dlPFC in enabling 
performance in Search, but not Pop-out, in humans (Kalla et al., 2009). One of these 
TMS studies was conducted on an identical Search and Pop-out paradigm as the one 
employed in the present study (Yan et al., 2016). 

A plausible functional explanation for this preferential engagement of lateral 
frontal cortex in Search is its greater demands on working memory as compared to 
Pop-out. Indeed, Anderson and colleagues (2010), used a joint working memory (verbal 
and spatial) and visual search paradigm to demonstrate that the right MFG and IFG 
were engaged both in working memory and serial search. They also showed that, on a 
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behavioral level, simultaneous engagement in a working memory task, impaired serial 
search performance. Hence, our results, which show sparse but robust preferential 
engagement of the lateral frontal cortex in Search, fit into a broader body of literature. 
This body of research converges to demonstrate that Search places greater demands 
on working memory, and that these greater working memory demands are reflected in 
increased neural activity in lateral frontal cortex. 

Pop-out selective sites are distributed across the cortical hierarchy, and include 
lateral frontal cortex. A number of brain regions have been claimed to be the most 
critical area for visual pop-out. Several empirical studies highlight a central role for 
parietal cortex, especially areas adjacent to the IPs (Gottlieb et al., 1998; Buschman & 
Miller, 2007; Li et al., 2010; Wardak et al., 2010; and Yan et al., 2016).  

In contrast, a prominent computational theory (Zhaoping, 2002; Zhaoping & 
Dayan, 2006; Zhaoping, 2019) and related neural evidence from macaques (Yan et al., 
2018), emphasizes the importance of early salience computations in primary visual 
cortex (V1). Zhaoping’s theory does incorporate the possibility of feedback from 
higher-order visual areas, such as V2, V3, V4, and IT cortex (Zhaoping, 2019). It does 
not, however, include any putative involvement of higher-order cortical areas, such as 
the parietal or frontal cortices. It should be noted that salience maps have been 
observed in several cortical areas beyond V1, including: area V4 in the occipital lobe 
(Burrows & Moore, 2009), area LIP in parietal cortex (Gottlieb et al., 1998), and the FEF 
in the frontal lobe (Thompson & Bichot, 2005). Visual salience effects have also been 
reported in subcortical regions including the pulvinar nucleus of the thalamus (Robinson 
& Petersen, 1992), and the superior colliculus (White et al., 2017). 

In sharp contrast to these bottom-up theories, which depict visual pop-out as 
reflecting anatomically early detection of visual salience, Hochstein and Ahissar (2002), 
proposed the Reverse Hierarchy Theory (RHT) for vision. According to this theory, the 
visual pop-out phenomenon should be implemented in high-order cortical areas such as 
frontal cortex, where large receptive fields can account for the broad spread of visual 
attention necessary for parallel detection of a salient object. This is consistent with 
viewing Pop-out as a high-level object detection task (Hochstein & Ahissar 2002; see 
also Nakayama & Martini, 2011), wherein the pop-out effect is invariant to object size on 
the retina, unlike the view of Pop-out as detection of low-level feature anomalies based 
on lateral inhibition in V1 (Zhaoping, 2002; Zhaoping & Dayan, 2006; Zhaoping, 2019). 
Consistent with RHT, two macaque studies using fMRI and single-neuron recordings 
respectively, have reported lateral frontal cortex responses to visual pop-out (Wardak et 
al., 2010 using fMRI; Katsuki & Constantinidis, 2012 using single-neuron recordings). 

Finally, a theory for cortical engagement in visual pop-out has been proposed by 
Corbetta & Shulman (2002), and extended by Corbetta et al. (2008). This theory 
proposes that bottom-up capture of attention by a salient stimulus, as in visual pop-out, 
is accomplished by a distributed network of cortical regions, notably all in the right 
hemisphere, including the TPJ as well as parts of the MFG, IFG, frontal operculum and 
anterior insula (the right-lateralized ventral attention network, VAN). 

Our data reveals a distributed set of sites selective for Pop-out, in partial 
agreement with each of the extant theories. We observed several Pop-out selective 
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sites in the parietal lobe as predicted by past research (though not all were adjacent to 
the IPs). A single electrode site in the occipital lobe was selective for Pop-out; we refrain 
from interpreting this result in light of the limited coverage in this area. Temporal lobe 
pop-out selectivity can be understood from the perspective of the importance of ventral 
temporal regions for object detection (DiCarlo & Cox, 2007; DiCarlo et al., 2012). 
Similarly, Pop-out selectivity in ventral temporal cortex has previously been observed in 
other color pop-out paradigms (Wardak et al., 2010; Ossandon et al., 2012).  

Our most striking finding is the presence of Pop-out selective sites in frontal 
cortex. These sites were detected not merely in areas at or near the FEF, which has a 
known role in detecting salience and planning eye movements, but also in lateral frontal 
cortex and OFC. This result is consistent with the view that top-down processing has a 
prominent role in implementing visual pop-out (Hochstein & Ahissar, 2002; Nakayama & 
Martini, 2011). It is inconsistent with a view of visual pop-out as exclusively 
implemented in V1 and adjacent occipital lobe areas (Zhaoping, 2002; Zhaoping & 
Dayan, 2006; Zhaoping, 2019), and suggests that such theories need to be substantially 
expanded. Our result may explain Iba and Sawaguchi’s (2003) observation that a 
muscimol injection to dlPFC of monkeys caused impairments in both pop-out and serial 
search. Future causal investigations of the role of lateral frontal cortex in Pop-out and 
Search may find differential impairment in the two conditions if the sites of the 
temporary lesion or stimulation is selected with greater anatomical precision within 
dlPFC than has been possible in the past. Furthermore, our result is consistent with two 
previous functional studies in macaques which also reported the presence of Pop-out 
selective sites in lateral frontal cortex (Wardak et al., 2010; Katsuki & Constantinidis, 
2012). To the best of our knowledge, this is the first time that such sites have been 
detected in humans. 

Finally, while our data is consistent with the view that Pop-out is implemented in 
a distributed set of sites across cortex, they do not fit neatly with the framework 
espousing a right-lateralized ventral attention network for salience-driven orienting of 
attention (Corbetta & Shulman, 2002; Corbetta et al., 2008), since we also observe 
robust Pop-out selective effects in the left hemisphere (Figure 2.15.). In sum, our results 
are at odds with any exclusivist claims about regional engagement in Pop-out, such as 
the view that Pop-out is solely a bottom-up phenomenon, which does not require frontal 
cortex. We have demonstrated that the known presence of salience maps in low-level 
visual regions, as well as parietal cortex and the frontal eye fields, is not mutually 
exclusive with the simultaneous rapid engagement of a high-level cognitive region, the 
lateral frontal cortex, in visual pop-out. 
 
Conclusions 
 
The present study documents two previously unreported, putative neural mechanisms 
subserving visual search in humans. First, lateral PFC engagement shows regional 
differences with greater activation in inferior than superior regions, and clearly 
diminished proportional activation in OFC. Second, we establish a central role for the 
medial temporal lobe - including the hippocampus, entorhinal cortex, and amygdala - in 
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visual search in humans. This study therefore represents a major step towards a more 
complete understanding of the neural mechanisms enabling this fundamental 
perceptual behavior. 
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Chapter 3 
 
How Does Expectation Shape Object-Based Attentional Selection? 
 
3.0. Foreword 
 
In this chapter, I provide a theoretical contribution to our understanding of attention and 
expectation, and the extent to which these two constructs converge. The overarching 
question asked here is “Is expectation attention?”  The chapter is based on the following 
publication: 
Slama, S. J. K., & Helfrich, R. F. (2017). How Does Expectation Shape Object-Based 
Attentional Selection? The Journal of Neuroscience, 37 (17), 4427–4429. 
https://doi.org/10.1523/jneurosci.0414-17.2017 
 
I am grateful to my co-author Randolph, who helped me navigate this business of 
publishing a paper. I am further indebted to my advisor, Bob, for supporting my 
publishing this paper despite the resulting time away from my main research.  
 
Finally, I am grateful to the following highly insightful people. Each of these individuals, 
in large and small ways, inspired me to think better: Falk Lieder, Jesse Livezey, Robert 
Nishihara, Sebastian Musslick, Jacob Miller, and Rika Antonova.  
 
3.1. How Does Expectation Shape Object-Based Attentional Selection? 
 
In 1984, Duncan (1984) demonstrated that visual attention prioritizes whole objects: 
subjects performed better when reporting two features on the same object than when 
reporting one feature from each of two adjacent objects. This marked the beginning of 
the field of object-based attention research (Egly et al., 1994). Later studies showed that 
the neural (fMRI) representation of multiple attributes belonging to a target object is 
enhanced relative to those of a control object (O’Craven et al., 1999), and that 
object-based attention has a temporal dimension in sampling the target and control 
objects at different frequencies (Fiebelkorn et al., 2013).  

The view of attention as a homogeneous construct has recently been called into 
question. Attention is now viewed as an umbrella term for multiple subprocesses 
[feature-based attention (Treisman and Gelade 1980); spatial attention (Posner, 1980); 
top-down vs bottom-up attention (Buschman and Miller, 2007); and sustained attention 
(Rosenberg et al., 2016)]. Object-based attention (Egly et al., 1994), as described 
above, is one of these subprocesses. This heterogeneity in the attention literature has 
prompted a number of scientists (Chun et al., 2011) to advocate for taxonomizing the 
construct to facilitate greater precision in future research. 

In a series of recent articles, Summerfield and Egner (2009, 2016) propose that 
not only is the attention literature heterogeneous in consisting of multiple 
subcomponents, but that some experiments designed to investigate attention may 
confound attention itself with the conceptually distinct construct of expectation. 
Summerfield and Egner (2009, 2016) postulate that expectation is driven by information 
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about the probability of an upcoming event while attention is driven by information about 
its relevance. In contrast to the straightforward conceptual difference between attention 
and expectation, the difference in experimental design required to induce each of these 
two cognitive processes is subtle. In both attention and expectation experiments, a cue 
provides information about an upcoming target with some probability, and the presence 
of this cue facilitates performance (Summerfield and Egner, 2016). Summerfield and 
Egner (2009, 2016) argue that if the cue provides information about the probability of 
occurrence of an upcoming event and the task of the subject is simply to indicate 
whether the event occurred, then the experiment elicits a neurocognitive expectation 
process. If the experiment is instead designed so that the cue indicates which of 
multiple dimensions is task relevant and the task of the subject is to respond to some 
feature within the relevant dimension, then the experiment elicits an attention 
mechanism (Summerfield and Egner, 2009; 2016). Summerfield and Egner (2009, 
2016) further speculate that expectation and attention might rely on distinct neural 
mechanisms: an expected event in many cases results in decreased neural processing, 
while an attended event results in increased processing (Summerfield and Egner, 
2009). This recasting of portions of the attention literature as expectation enables 
interpretation of experimental results from the perspective of predictive coding, a 
computational theory of how the brain facilitates perception from sensation by 
minimizing the prediction error between expected and received sensory input (Huang 
and Rao, 2011). 

If the central claim by Summerfield and Egner (2009, 2016), that a subtle 
adaptation to existing attention experiments induces a distinct but parallel process to 
attention, is correct, then this raises the question of whether expectation, like attention, 
is also a heterogeneous construct. This theory creates the opportunity to branch out 
new expectation subfields in parallel to the more mature subdomains of attention 
research (e.g., feature based; spatial; top-down vs bottom-up; object-based; and 
sustained expectation). The field of feature-based expectation has already been 
introduced (Summerfield and Egner, 2016). Another possible new subfield could be 
object-based expectation, paralleling the existing field of object-based attention (Jiang 
et al., 2016). An open question within this proposed framework is whether the 
expectation statuses of individual features interact to form object-level expectation. 

In a recent article in The Journal of Neuroscience, Jiang et al. (2016) used a 
computational model to simulate three competing models for how expectations about 
one object feature affects expectations about another (Jiang et al., 2016, their Fig. 3), 
as follows: (1) expectations do not spread from one object feature to the other; (2) a 
prediction error in one feature spreads to the other feature to render the whole object 
unexpected (the reconciliation hypothesis); and (3) the expectation status of one feature 
repels the expectation status of the other feature, thereby promoting the perceptual 
inference that the two features belong to separate objects (the segregation hypothesis). 

The authors performed a behavioral experiment in which subjects were 
presented with a cloud of moving dots, which were either red or green (color dimension) 
and were moving either up or down (motion dimension; Jiang et al., 2016, their Fig. 1a). 
A trial-by-trial auditory cue generated an expectation of the upcoming feature values 
with 75% validity: the timbre signaled the upcoming color, and the pitch direction 
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signaled the upcoming motion direction. When subjects were instructed to allocate 
sustained attention to one feature (color), the trial-by-trial expectation cue was 
associated with a behavioral benefit in response times not only to the attended feature, 
but also to the unattended feature (motion; Jiang et al., 2016, their Fig. 1c). This effect 
was interpreted as evidence for cross-feature spread of expectation in support of the 
reconciliation hypothesis. 

To examine the neural substrates of this effect, Jiang et al. (2016) performed the 
same experiment using fMRI. They analyzed their data using intersubject multivoxel 
pattern analysis (for review, see Haxby et al., 2014), comparing the voxel-by-voxel 
pattern of activation between conditions in different regions of the brain. In one analysis, 
a linear support vector machine classifier was trained to distinguish activity patterns in 
early visual cortex resulting from two conditions in which expectation was consistent 
(color and motion both expected vs color and motion both unexpected). In a second 
analysis, the same classifier was trained to distinguish between two conditions where 
expectation was inconsistent between features (color expected and motion unexpected 
vs color unexpected and motion expected). The classifier showed greater accuracy 
when separating the two consistent conditions than when separating the two 
inconsistent conditions (Jiang et al., 2016, their Fig. 4f,g). This result matched the 
predictions of the reconciliation hypothesis and neither of the alternative hypotheses 
(Jiang et al., 2016, their Fig. 4a– c). The authors concluded that objects are the unit of 
selection, not only for attention, but also for expectation. 

In considering the behavior results, readers with a psychology background 
will note an analog in the classical Stroop (1935) and Simon effects (Simon and 
Wolf, 1963): performance on experimental tasks that require subjects to keep track of a 
conjunction of inconsistent features is worse than performance on tasks that require 
subjects to keep track of only a single feature. These behavioral effects indicating 
interference by inconsistent feature conditions are common in the psychology literature 
and need not be interpreted as object-level perceptual selection. 

In considering the fMRI results, we note that, to use a relative comparison of the 
performance of two classifiers to draw conclusions about brain function, the two 
classifiers must have an equal chance at separating the data, aside from the hypothesis 
to be tested. If we assume that early visual cortex contains neural ensembles that 
separately encode color and motion, then, from a predictive coding perspective (Rao 
and Ballard, 1999; Alink et al., 2010), the color ensemble will be highly active when the 
color is unexpected and the motion ensemble will be highly active when the motion 
direction is unexpected. The classifier for the two consistent conditions must then 
separate the state of cortex in which both ensembles are highly active from the state in 
which neither ensemble is highly active. This could in principle reduce to a comparison 
as to whether visual cortex is active versus inactive. The classifier for the inconsistent 
conditions, however, must separate the two intermediate states where the color 
ensemble is highly active and the motion ensemble is not from the state where the 
motion ensemble is highly active and the color ensemble is not. This would entail 
learning to separate complex spatiotemporal patterns of activity in the motion and color 
ensembles, a task that is more difficult than separating high from low activity. This 
scenario could explain the result of the classifier comparison without making inferences 
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about cross-feature spread of expectation in early visual cortex. Therefore, the 
presented conclusion may not be the only interpretation of these data. 

A simple control could have resolved this issue: the inclusion of a second object, 
such as an additional spatially separate cloud of dots. Experiments on object-level 
spread of attention (Duncan, 1984; Egly et al., 1994; O’Craven et al., 1999; Fiebelkorn 
et al., 2013) typically include a control object for the purpose of demonstrating that 
attention does not spread there. A control object would provide a stronger test of the 
three hypotheses: no spread to a control object would support the object-based 
interpretation, but, without a control object, the results are difficult to interpret. For 
instance, they might indicate spatial spread of expectation. 

Future experiments on object-based expectation would further benefit from 
considering the role of time, a feature that has recently started to gain traction in the 
attention literature (Buschman & Kastner, 2015; Denison et al., 2017). From the 
perspective of a perceptual decision-making framework (Kayser et al., 2010), it is 
possible that probability- and relevance-driven selection interact over the time course of 
a perceptual decision. It is known that object-based attention alternates between 
a cued and uncued location on the same object at a faster frequency (8 Hz) than 
between a cued location on one object and an uncued location on a different object (4 
Hz; Fiebelkorn et al., 2013). Rhythmic sampling on subsecond timescales has also 
been demonstrated for spatial attention (Landau & Fries, 2012), raising the possibility 
that rhythmic brain activity may support multiple forms of attention. One hypothesis is 
that expectation may align the phase of ongoing rhythmic attentional sampling to 
optimize cortical excitability at the time of an expected event. Neural oscillations may 
disentangle these rapid endogenous prioritization processes during feature integration 
(Helfrich & Knight, 2016). Delineating the spatiotemporal progression of these rapid 
mechanisms will necessitate the use of recording methods with greater temporal 
resolution than fMRI, such as electroencephalography, magnetoencephalography, and 
electrocorticography. In the meantime, the present study (Jiang et al., 2016) is a step in 
the right direction toward understanding the multiple processes that are collectively 
called attention. 
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Chapter 4 
 
Closing remarks 
 
4.1. Conclusions 
 
This dissertation asked two overarching questions pertaining to the broad construct of 
attention: In Chapter 2 , I asked: ‘Is attention navigation?’ In Chapter 3 , I asked ‘Is 
expectation attention?’ In response to the first question, this dissertation work provides 
evidence consistent with the view that one attentional behavior, visual search, has a 
navigation component; this is based on the robust observed MTL activations. The 
answer to the second question is ‘maybe’. To find out, we need to create experiments 
that truly disentangle attentional prioritization processes from purely predictive 
processes without confounds pertaining to the type of attention or expectation elicited.  
 
4.2. Alternative analysis approaches 
 
In Chapter 2 , I applied a cluster-based permutation test approach to identify 
task-selective electrodes and condition-based effects. The starting point was a simple 
100-ms threshold of significant activity increases. In addition to the arbitrary selection of 
a duration threshold, this approach was very sensitive to filtering choices. I used a 
machine learning approach (time-resolved logistic regression classifier; Figure 4.1.), to 
demonstrate that task-relevant information still remained at “inactive” electrode sites 
when using the100-ms cutoff method.  
 
A) 
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B) 

 
C) 
 

 
Figure 4.1. Decoding performance over time of Search vs. Pop-out for one patient. Decoding 
was conducted using a logistic regression analysis at each time-step with the HFA signal across 
electrodes as the predictors, and attention condition as the outcome. Performance (ordinate 
axis) was evaluated using the ROC-AUC metric (Receiver Operating Characteristic, Area Under 
the Curve). A) Classification performance using all electrodes. B) Classification performance 
including only “active” electrodes according to an early task-selective criterion (100 ms 
consecutive significance). C) Classification performance including only “passive electrodes” 
according to the same criterion. This analysis demonstrated that there was remaining 
information about the experimental conditions in electrodes, which had previously been 
excluded as not being task-active (“passive”), thereby motivating a less stringent pipeline. 
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This helped motivate the need for a more sensitive detection algorithm for task-active 
electrodes. The cluster-based permutation test, which I adapted from Maris & 
Oostenveld (2007) in collaboration with Sujayam Saha, was a substantial improvement 
over the 100 ms threshold, as it was able to detect brief but consistent activity 
increases. Nevertheless, if I were to start my dissertation work from the beginning 
today, I might take a different approach.  

First, the experiment includes intervals beyond the “neutral” baseline and the 
task interval of interest, where patients actively search for a target. These other intervals 
could be exploited to obtain a richer characterization of the time courses of the HFA 
responses at various sites. For example, an electrode that shows an activity increase 
only during the search interval, should perhaps not be viewed as equivalent to an 
electrode that responds to the search display and  the sample triangle, or an electrode 
that responds to the search display, sample triangle, and a color change in the fixation 
cross. Hence, in a future analysis, it may be of interest to featurize the task in greater 
detail, and use a regression approach, perhaps complemented by dimensionality 
reduction and clustering, to obtain a richer description of the response profiles in the 
dataset. 

Second, the cluster-based permutation test alone is not well-suited to handling 
condition differences with different response times, as discussed in the Method section 
of Chapter 2 . A simple solution, which I experimented with, is to compare average 
activity on a single-trial basis between the search display onset and the response. 
However, this can give rise to other artifactual condition differences in electrodes with 
equivalent response profiles between the two conditions: For example, consider an 
electrode site with sharp stimulus-locked responses in both conditions. Such a site 
would be labeled as showing a Pop-out effect simply as a consequence of the shorter 
trials over which we would be averaging with a mean-based approach. In Chapter 2, I 
explicitly simulate several types of artifacts that occur with the cluster-based pipeline, 
and exclude these artifacts based on visual inspection. A more objective approach to 
obtain equivalent results would be to use some variant of dynamic time warping to align 
the signals in the two conditions prior to computing condition differences. Dynamic 
time-warping itself is prone to overfitting, since it allows remapping of each individual 
time point. A more appropriate approach might be to apply various constraints to the 
types of alignment allowed by the algorithm: I have conducted some early explorations 
of linear time-warping (Williams et al., 2019) for this purpose and, in a future analysis, 
this may become my preferred method.  

Third, the choice of re-referencing can highly affect the results of intracranial 
analyses including, at worst, injecting activity patterns from one area into another, 
thereby giving rise to misleading conclusions (Ludovic Bellier, personal communication). 
If I were to start over, I would compare the effects of different referencing schemes on 
my data, and thereby ascertain that the conclusions do not depend on a single 
referencing scheme. 
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4.3. Immediate follow-up to the current work 
 
In Chapter 2 , I describe insights gained from a first set of analyses of an extremely rich 
dataset of intracranial recordings. This same dataset can be used to ask many more 
questions. I describe my immediate analysis plans for the data below.  

First, I will investigate potential lateralization effects in the existing results. There 
are reasons to believe that both the cortical (Corbetta et al. 2002; 2008; 2011) and 
medial temporal lobe (Jacobs et al., 2010; Miller et al., 2018) effects would be 
right-lateralized given the spatial component of the task.  

Second, I will investigate onset times across the cortical hierarchy within the 
pop-out condition. This would provide a richer understanding of activity propagation in 
this fascinating mode of searching the visual environment: Does it begin from the top 
(i.e., frontal cortex)? From the bottom (i.e., visual and parietal cortex)? Or might it 
originate in a subcortical source, such as the medial temporal lobe or thalamic nuclei?  

Third, I will investigate the anatomical distribution of HFA decreases across 
cortex. Early exploratory analyses show robust decreases in several areas. Based on 
previous work, I predict that these decreases will overlap with the default mode network 
(Ossandon et al., 2011). A competing theory, however, suggests that cortical activity 
decreases occur in a more distributed network of regions, and includes local decrease 
effects with complex spectrotemporal response profiles (Ramot et al., 2012). A third line 
of work suggests that frontal HFA decreases may play a precise role in implementing 
temporal prediction of upcoming stimuli (Durschmid et al., 2018). This interpretation 
may be relevant to the search task employed in Chapter 2, where the Search condition 
is believed to elicit a serial visual process that unfolds over time as participants inspect 
and reject candidate objects as distractors. This serial process may engender temporal 
prediction mechanisms in the brain.  
 
4.4. Broader questions to guide future work 
 
Following the current work, a number of future directions would be exciting for myself or 
others to explore. One direction is that of learning how to search visual space during 
development, and how potential interactions between search and reward might play into 
that process. Perhaps learning how to search visual space can be understood from the 
perspective of a reinforcement learning framework. 

Another interesting future set of experiments could involve parametrically varying 
the search task on a continuum between search (locating an object in space based on 
its features) and object identification (being able to name an object based on its 
features) to assess whether the neural processes responsible for object localization 
versus object identification also form a continuum (Nakayama & Martini, 2011). 

Search processes occur in many domains beyond vision. Numerous algorithms 
are known in computer science and AI for efficiently searching space depending on 
various constraints of the space and the task. It would be interesting to explore to what 
extent known search algorithms might be able to explain search behavior in the vision 
and navigation domains, and to what extent such search behavior maps onto more 
abstract domains such as internal search of memory (e.g.,  Kanerva, 2009). 
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Relatedly, the relationship between visual search and navigation, which is 
gaining increasing favor in the literature (Meister & Buffalo, 2016), may offer a path 
toward bridging the roles of the MTL in navigation versus in memory for abstract 
concepts. This framework may pave the way toward a concrete approach to 
investigating the cognitive map (Tolman, 1948; Schiller et al., 2015). This direction 
seems especially promising in light of a parallel literature that is beginning to document 
relationships between eye movements and non-visual cognition (Benedek et al., 2017). 

These, and many more directions of investigation, hold a great deal of promise 
for improving our understanding of search and its broader role in human cognition. 

 
“[...] ‘tis as ‘tis, why it might have been worse, and I feel my thanks accordingly. ” 

Far From the Madding Crowd by Thomas Hardy (1874) 
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Appendices 
 
Appendix A: Tables 
 
Table 2.1. Participant information. 
SID  Sex Age Ha. SEEG/ 

ECoG 
He. ROIs Number 

included 
(implanted) 
contacts 

Number 
active 
contacts 

Number 
included 
(compl.) 
trials 
Pop-Out 

Number 
included. 
(compl.) 
trials 
Search 

S1 F 28 R ECoG R+L T, MTL 22 (22) 5 57 (64) 53 (64) 

S2 F 63 R SEEG R+L T, F, 
MTL, 
cing., 
amy. 

51 (128) 19 48 (64) 43 (64) 

S3 M 27 R SEEG R+L F, P, T, 
MTL, 
amy. 

40 (101) 7 51 (64) 50 (64) 

S4 F 34 R SEEG R+L F, T, 
MTL, 
cing., 
amy. 

61 (126) 18 48 (67) 38 (61) 

S5 M 35 R SEEG R F, cing. 36 (79) 17 58 (64) 42 (64) 

S6 M 52 R SEEG R F, P, 
cing. 

75 (128) 33 40 (50) 38 (46) 

S7 F 23 R ECoG R+L F, T 54 (72) 17 59 (64) 56 (64) 

S8 F 36 R ECoG R+L F, P, 
cing. 

48 (48) 20 56 (64) 52 (64) 

S9 M 32 R ECoG R+L F, T, 
MTL, 
cing. 

53 (64) 12 49 (64) 33 (64) 

S10 F 69 R ECoG R+L F, P, T, 
MTL 

35 (39) 11 59 (64) 29 (64) 

S11 M 25 A ECoG R+L F, P, T, 
MTL, 
cing. 

59 (80) 11 53 (64) 42 (64) 

S12 F 21 R ECoG R+L F, P, 
cing. 

107 (120) 47 57 (64) 49 (64) 
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S13 F 58 R SEEG R+L F, T, 
MTL, 
cing., 
amy. 

53 (122) 35 57 (64) 50 (64) 

S14 M 34 A SEEG R+L F, T, 
MTL, 
cing., 
amy. 

37 (113) 5 62 (64) 60 (64) 

S15 F 22 R SEEG R+L F, T,  
cing. 

65 (148) 30 42 (64) 30 (64) 

S16 M 41 R SEEG R+L F, T, 
MTL, 
cing., 
amy. 

49 (142) 11 51 (64) 38 (64) 

S17 F 32 R SEEG R+L F, T, 
MTL, 
ACC, 
amy. 

35 (91) 8 54 (64) 31 (64) 

S18 F 26 R ECoG L P, T, O, 
MTL 

125 (156) 33 58 (64) 45 (64) 

S19 M 23 R SEEG R+L F, T, 
cing. 

78 (160) 37 61 (64) 60 (64) 

S20 F 50 R SEEG R+L F, T, 
MTL, 
cing. 

31 (106) 9 34 (64) 21 (64) 

S21 M 27 R SEEG R+L F, T, 
cing., 
amy. 

68 (120) 15 48 (64) 38 (64) 

S22 M 23 R SEEG R F, T, O,  
MTL, 
cing., 
amy. 

42 (90) 13 44 (64) 36 (64) 

S23 F 25 R SEEG R+L F, T, 
MTL, 
cing.,  
amy. 

97 (180) 42 56 (64) 43 (64) 

Table header: SID, subject ID; Ha., handedness; He., hemispheric coverage; ROIs, coverage by 
ROI; Number included (compl.) trials, number included (completed) trials.  
Sex: F, female; M, male. Handedness: R, right; L, left; A, ambidextrous. Hemispheric coverage: 
R, right; L, left; R + L, right and left hemispheres. Coverage by ROI: F, frontal; P, parietal; T, 
temporal; O, occipital; MTL, medial temporal lobe; cing., cingulate; amy., amygdala.   
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Table 2.2. Distribution of task-selective effects, by large cortical ROIs. 
Anatomical ROI Percent active electrodes (active/included) 

 left right total 

Frontal cortex 44% 31% 36% 

(75/171) (88/281) (163/452) 

Parietal cortex 44% 43% 44% 

(12/27) (23/53) (35/80) 

Temporal cortex 20% 23% 21% 

(46/227) (33/142) (79/369) 

Occipital cortex 73% 50% 65% 

(8/11) (3/6) (11/17) 

Cingulate cortex 22% 28% 25% 

(16/72) (21/74) (37/146) 

Medial temporal lobe 48% 33% 41% 

(15/31) (9/27) (24/58) 

Amygdala 27% 43% 37% 

(4/15) (10/23) (14/38) 

Sensorimotor cortex 66% 45% 56% 

(57/87) (33/74) (90/161) 

Total 36% 32% 34% 

(233/641) (220/680) (453/1321) 

Total excluding 
sensorimotor cortex 

32% 31% 31% 

(176/554) (187/606) (363/1160) 
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Table 2.3. Distribution of task-selective effects within frontal (non-motor) cortex. 
Frontal ROI Percent active electrodes (active/included) 

 left right total 

Superior frontal 
gyrus and sulcus 

29% 32% 31% 

(12/42) (28/87) (40/129) 

Middle frontal gyrus 55% 33% 43% 

(32/58) (26/78) (58/136) 

Inferior frontal gyrus 
and sulcus 

68% 46% 53% 

(17/25) (22/48) (39/73) 

Orbitofrontal cortex 19% 19% 19% 

(6/32) (8/43) (14/75) 

Medial prefrontal 
cortex 

57% 16% 31% 

(8/14) (4/25) (12/39) 

Total 44% 
(75/171) 

31% 
(88/281) 

36% 
(163/452) 
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Table 2.4. Distribution of task-selective effects within parietal (non-motor) cortex. 
Parietal ROI Percent active electrodes (active/included) 

 left right total 

Superior parietal 
lobule 

0% 65% 65% 

(0/0) (11/17) (11/17) 

Inferior parietal 
lobule 

38% 29% 33% 

(9/24) (9/31) (18/55) 

Precuneus 100% 60% 75% 

(3/3) (3/5) (6/8) 

Total 44% 43% 44% 

(12/27) (23/53) (35/80) 
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Table 2.5. Distribution of task-selective effects within temporal cortex. 
Temporal region of 
interest 

Percent active electrodes (active/included) 

 left right total 

Insula 15% 35% 26% 

(3/20) (9/26) (12/46) 

Superior temporal 
gyrus 

9% 11% 9% 

(3/35) (1/9) (4/44) 

Superior temporal 
sulcus 

9% 13% 11% 

(4/44) (5/38) (9/82) 

Middle temporal gyrus 20% 21% 20% 

(10/50) (6/29) (16/79) 

Inferior temporal gyrus 23% 21% 22% 

(8/35) (5/24) (13/59) 

Ventral stream 42% 38% 41% 

(13/31) (5/13) (18/44) 

Temporal pole 42% 67% 47% 

(5/12) (2/3) (7/15) 

Total 20% 23% 21% 

(46/227) (33/142) (79/369) 
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Table 2.6. Distribution of task-selective effects within cingulate cortex. 
Cingulate ROI Percent active electrodes (active/included) 

 left right total 

Anterior cingulate 
cortex 

18% 12% 15% 

(6/33) (4/34) (10/67) 

Midcingulate cortex 26% 44% 35% 

(7/27) (11/25) (18/52) 

Posterior cingulate 
cortex 

25% 40% 33% 

(3/12) (6/15) (9/27) 

Total 22% 28% 25% 

(16/72) (21/74) (37/146) 
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Table 2.7. Distribution of task-selective effects within the medial temporal lobe. 
MTL ROI Percent active electrodes (active/included) 

 left right total 

Hippocampus 38% 44% 41% 

(5/13) (4/9) (9/22) 

Parahippocampal 
cortex 

50% 10% 32% 

(6/12) (1/10) (7/22) 

Entorhinal cortex 67% 50% 57% 

 (4/6) (4/8) (8/14) 

Total 48% 33% 41% 

 (15/31) (9/27) (24/58) 
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