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Abstract
We engineer a GPU implementation of a B-Tree that supports

concurrent queries (point, range, and successor) and updates

(insertions and deletions). Our B-tree outperforms the state

of the art, a GPU log-structured merge tree (LSM) and a

GPU sorted array. In particular, point and range queries are

significantly faster than in a GPU LSM (the GPU LSM does

not implement successor queries). Furthermore, B-Tree in-

sertions are also faster than LSM and sorted array insertions

unless insertions come in batches of more than roughly 100k.

Because we cache the upper levels of the tree, we achieve

lookup throughput that exceeds the DRAM bandwidth of the

GPU. We demonstrate that the key limiter of performance

on a GPU is contention and describe the design choices that

allow us to achieve this high performance.

CCS Concepts • Computing methodologies → Paral-
lel algorithms; • Computer systems organization →

Single instruction, multiple data.

Keywords b-tree, dynamic, mutable, data structures, GPU

1 Introduction
The toolbox of general-purpose GPU data structures is sparse.

Particularly challenging is the development of dynamic (mu-

table) data structures that can be built, queried, and updated

on the GPU. Until recently, the prevailing approaches for

dealing with mutability have been to update the data struc-

ture on the CPU or to rebuild the entire data structure from

scratch. Neither is ideal.
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B-Tree Sorted Array LSM

Insert/Delete O(logB n) O(n) O((logn)/B) amortized

Lookup O(logB n) O(logn) O(log2 n)
Count/Range O(logB n + L/B) O(logn + L/B) O(log2 n + L/B)

Table 1. Summary of the theoretical complexities for the

B-Tree, Sorted Array (SA), and LSM. B is the cache-line size,

n is the total number of items, and L is the number of items

returned (or counted) in a range (or count) query.

Only recently have dynamic GPU versions of four ba-

sic data structures been developed: hash tables [2], sparse

graphs with phased updates [14], quotient filters [12], and

log-structured merge trees (LSMs) [3]. LSMs provide one of

the most basic data-structural primitives, sometimes called

a key-value store and sometimes called a dictionary. Specif-

ically, an LSM is a data structure that supports key-value

lookups, successor and range queries, and updates (deletions

and insertions). This combination of operations, as imple-

mented by red-black trees, B-trees, LSMs or B
ϵ
-trees, is at

the core of many applications, from SQL databases [16, 31]

to NoSQL databases [8, 22] to the paging system of the Linux

kernel [28].

In this paper, we revisit the question of developing a mu-

table key-value store for the GPU. Specifically, we design,

implement, and evaluate a GPU-based dynamic B-Tree. The

B-Tree offers, in theory, a different update/query tradeoff

than the LSM. LSMs are known for their insertion perfor-

mance, but they have relatively worse query performance

than a B-Tree [6, 26].

Table 1 summarizes the standard theoretical analysis of in-

sert/delete, lookup, and count/range for n key-value pairs in

our B-Tree, in a sorted array (SA), and in the LSM. Searches

in GPU versions of these data structures are limited by GPU

main-memory performance. Here, we use the external mem-

ory model [1], where any access within a 32-word block of

memory counts as one access, for our analysis.
1

We find that, not surprisingly, our B-Tree implementation

outperforms the existing GPU LSM implementation by a

1
On the GPU, the external memory model corresponds to a model where a

warp-wide coalesced access (to 32 contiguous words in memory) costs the

same as a one-word access; this is a reasonable choice because, in practice,

a GPU warp that accesses 32 random words in memory incurs 32 times

as many transactions (and achieves 1/32 the bandwidth) as a warp that

accesses 32 coalesced words, to first order.

https://doi.org/10.1145/3293883.3295706
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speedup factor of 6.44x on query-only workloads. More sur-

prisingly, despite the theoretical predictions, we find that for

small- to medium-sized batch insertions (up to roughly 100k

elements per insertion), our B-Tree outperforms the LSM.

Why? The thread-centric design and use of bulk primitives

in the LSM means in practice that it takes a large amount of

work for the LSM to run at full efficiency; in contrast, our

warp-centric B-Tree design hits its peak at much smaller in-

sertion batch sizes. We believe that insertions up to this size

are critical for the success of the underlying data structure:

if the data structure only performs well on large batch sizes,

it will be less useful as a general-purpose data structure.

Our implementation addresses three major challenges for

an efficient GPU dynamic data structure: 1) achieving full

utilization of global memory bandwidth, which requires re-

ducing the required number of memory transactions, struc-

turing accesses as coalesced, and using on-chip caches where

possible; 2) full utilization of the thousands of available GPU

cores, which requires eliminating or at least minimizing re-

quired communication between GPU threads and branch

divergence within a SIMD instruction; and 3) careful design

of the data structure that both addresses the previous two

challenges and simultaneously achieves both mutability and

performance for queries and updates. Queries are the easier

problem, since they can run independently with no need

for synchronization or inter-thread communication. Updates

are much more challenging because of the need for synchro-

nization and communication.

To this list we add a fourth challenge, the most significant

challenge in this work: contention. A “standard” B-Tree, im-

plemented on a GPU, simply does not scale to thousands of

concurrent threads. Our design directly targets this bottle-

neck with its primary focus of high concurrency. The result

is a design and implementation that is a good fit for the GPU.

Our contributions in this work include:

1. A GPU-friendly, cache-aware design of the B-Tree

node data structure;

2. Awarp-cooperativework-sharing strategy that achieves

coalesced memory accesses, avoids branch divergence,

and allows neighboring threads to run different opera-

tions (e.g., queries, insertions, and deletions); and

3. Analysis that shows that contention is a critical lim-

iter to performance, which motivates three design deci-

sions that allow both high performance and mutability:

a. A proactive splitting strategy that correctly handles

node overflows while minimizing the number of

latched nodes during the split operation;

b. Level-wise links that allowmore concurrency during

updates, specifically during split operations; and

c. Restarts on split failure to alleviate contention and

avoid spinlocks.

2 Background and Previous Work
2.1 Graphics Processing Units
Graphics Processing Units (GPUs) feature several streaming

multiprocessors (SMs), each with its own dedicated local re-

sources (such as L1 cache, a manually managed cache called

shared memory, and registers). A group of threads is called

a thread-block, and each is assigned to one of the SMs. All

resident thread-blocks on an SM share the local resources

available for that SM. The assignment of thread-blocks to

SMs is done by the hardware and the programmer has no ex-

plicit control over it. All SMs, and hence all available threads

on the GPU, have access to some globally shared resources

such as the L2 cache and the DRAM global memory.
In reality, not all resident threads on an SM are actually ex-

ecuted in parallel. Each SM executes instructions for a group

of 32 threads, a warp, in a single-instruction-multiple-data

(SIMD) fashion. All memory transactions are performed in

units of 128 bytes where each thread within a warp fetches 4

consecutive bytes. As a result, in order to achieve an efficient

GPU program, programmers should consider the following

two criteria for a warp’s threads: 1) avoid discrepancy be-

tween neighboring threads’ instructions, 2) minimize the

number of memory transactions required to access each

thread’s data. The former is usually achieved by avoiding

branch divergence and load imbalance across threads, while

the latter is usually achieved when consecutive threads ac-

cess consecutive memory addresses (a coalesced access). Un-
fortunately, it is not always possible to achieve such design

criteria and depending on the application, programmers have

devised different strategies to avoid performance penalties

caused by diverging from the mentioned preferences. In the

context of concurrent data structures, each thread within a

warp may have a different task to pursue (insertion, deletion,

or search), while each thread may have to access an arbitrar-

ily positioned part of the memory (uncoalesced access). To

address these two problems, Ashkiani et al. proposed a Warp

Cooperative Work Sharing (WCWS) strategy [2]: indepen-

dent operations are still assigned to each thread (per-thread

work assignment), but all threads within a warp cooperate

with each each other to process in parallel (per-warp pro-

cessing). By doing so, threads cooperate with each other in

both memory accesses and executed instructions, resulting

in more coalesced accesses and reduced branch divergence.

While traditionally, communications between threads are

done either through the shared memory (if within the same

thread-block), or the global memory (among all threads), ad-

ditionally utilizing high-bandwidth, low-latency warp-wide

communication between threads may enable higher perfor-

mance overall; threads within a warp can communicate with

each other through voting (e.g., ballots) or reading the con-

tent of another thread’s registers (e.g., shuffles).
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The NVIDIA TITAN V GPU (an instance of NVIDIA’s

“Volta” microarchitecture) has 80 SMs and 64 thread pro-

cessors per SM for a maximum of 5120 resident warps. It

contains a 6 MB L2 cache, a 10 MB L1 cache distributed

across SMs, and a global memory (DRAM) throughput of

625.8 GB/s.

2.2 B-Tree
Key-value stores are fundamental to most branches of com-

puting. Assuming all keys in the data structure are unique, a

key-value store implements the following operations:

Insert(k,v): Adds (k,v) to the set of key-value pairs (or

replace the value if such key already existed).

Delete(k): Removes any pair (k, ∗) from the set.

Lookup(k): Returns the pair (k, ∗) in set, or ⊥ if no such

pair exists.

Range(k1,k2): Returns all pairs (k, ∗) in set, where k1 ≤
k ≤ k2.

Successor(k): returns the pair (k ′, ∗) where k ′ is the

smallest key greater than k , or ⊥ if no such k ′ exists.

When the set of key-value pairs is small, in-memory solutions

such as balanced search trees are typically used.When data is

too large to fit into memory—and for a GPU, when the main

body of the data structure only fits into global DRAM—such

data structures as B-Trees, LSMs, and B
ϵ
-trees are used. B-

Trees are optimized for query performance. The ubiquitous

B-Tree as described by Comer [9] was introduced by Bayer

and McCreight [5] to handle scenarios where records exceed

the size of the mainmemory and disk operations are required.

Therefore, a B-Tree is structured in a way such that each

node has a size of a disk block, intermediate nodes contain

pointers and separators (pivots) that guide the tree traversal,
and leaf nodes contain keys and records (values). For a tree

of fanout B, each intermediate node in the tree can have at

most B children and must have at least B/2 children, except

for the root, which can have as few as two children.

During insertion into a B-Tree, a tree node is split when-

ever it overflows and nodes are merged to handle underflows.

For a B-Tree that stores N keys, the tree will have a height of

O(logB N ), which is shallower than a balanced binary tree,

which has height Θ(log
2
N ). This difference in height is the

basis for the difference between the I/O costs of searches in

B-trees and in sorted arrays given in Table 1.

2.3 Previous Work
Splitting. A major challenge for concurrent updates on the

B-Tree is splitting an overflowing tree node, where updates

to the overflowing node, its new sibling (new child to the

parent), and the parent are required to be done atomically.

This requires locking two tree nodes on different levels (the

new sibling doesn’t need to be locked as no pointers to it exist

yet), which bottlenecks the updating process, particularly

at the root and upper tree nodes. Moreover, splitting could

propagate up the tree (when the parent node is full), thus

requiring locking more nodes on different levels.

Graefe [13] surveyed the different locking techniques that

are typically used on CPUs. Latch coupling and B-link-trees

are two different approaches to maintain consistency of the

B-Tree during split operations without causing concurrency

bottlenecks. In latch coupling, a thread releases a node’s latch

only after it acquires the next node’s latch. For splitting with

a latch coupling strategy, in addition to latching the next

node, the parent node is unlatched only if the lower node is

not full, guaranteeing that subsequent split operations will

successfully complete.

Another approach to splitting is to proactively split nodes

during a thread’s root-to-leaf traversal. Proactive splitting

avoids concurrency bottlenecks but may lead to unnecessary

splits, and it may be challenging to extend it to variable-

length records.

The B-link-tree [24] relaxes the constraints of a B-Tree and

divides the split operation into two steps: splitting the node

and updating the parent. In between these two steps the B-

Tree is in an intermediate tree state where the parent doesn’t

have information about the new node but the split node

and its new sibling are linked. Linking nodes requires the

addition of a high key and a pointer in recently split nodes

to their neighbor nodes, and during traversals, threads are

required to check the high key at each node to determine if

level-wise traversal is required. Good performance requires

that updating the parent with a pointer to its new child

should be done quickly to avoid traversing long linked lists

and to improve traversal performance.

Early lock releasing techniques were used by Lehman

and Yao [24] to provide more concurrency. The merging of

nodes to reduce the tree height after deletions was presented

by Lanin and Shasha [23] and Sagiv [33]. Latch coupling was

used in B-link-trees by Jaluta et al. [17] along with recovery

techniques.

GPU work. While many previous GPU projects have tar-

geted B-Trees and similar data structures that support the

same operations (Table 2), few support incremental updates,

those that do typically have poor update rates, and many can-

not even build the B-Tree on the GPU. No previous work has

competitive performance on both queries and updates. Fix

et al. [11] was among the first to build a GPU B-Tree but only

used the GPU to accelerate searches. The work most directly

on point is from Kaczmarski [19], who specifically targets the

bulk-update problem with a combined CPU-GPU approach

that contains optimizations beyond rebuilding the entire data

structures; Huang et al. [15], who extend Kaczmarski’s work

but with non-clustered indexes that would be poorly suited

for range queries; and Shahvarani and Jacobsen [34], who

focus their work on high query rates using large fanouts, but

with poor insertion performance. Their work proposed a hy-

brid CPU-GPU B-Tree to handle scenarios where the tree size
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Work Usage Data structure notes

YHFL+ [40] Grid files for multidimensional database queries. Built on CPU.

KCSS+ [20] Index search for databases using binary tree optimized for architecture. Inefficient parallelism: only run one tree-building thread

per half warp. Updates require complete rebuild.

FWS [11] Processing B+ tree queries for databases. Built on CPU.

LWL [29] Construct R-trees by parallelizing sorting and packing stages. Tree traversal based

on BFS.

GPU-built trees have poor range query performance. Up-

dates require complete rebuild.

BGTM+ [4] Single- and multi-GPU range queries for List of Clusters and Sparse Spatial

Selection indexing approaches.

Built on CPU.

SKN [35] Compute range queries by constructing Cartesian tree and finding least common

ancestors.

Updates require complete rebuild.

KKN [21] R-tree traversal for spatial data. Sequential search between nodes, parallel search

within each node.

Built on CPU.

YZG [41] R-tree construction and querying for geospatial data. Compares performance of

trees constructed on GPU and CPU.

GPU-built trees have poor range query performance. Up-

dates require complete rebuild.

LYWZ [27] Range query processing for moving objects using query buffers, hashing, and

matrices to calculate and track distances between objects.

Process stream of data instead of building data structure.

LSOJ [25] Spatial range queries for moving objects using grid indexing, quad trees, and

intermediate bitmap data structures.

Only works on databases with evenly distributed objects.

Updates require complete rebuild.

ALFA+ [3] First dynamic general-purpose dictionary data structure for the GPU based on

the Log Structured Merge tree (LSM).

High insertion rates, but primarily for large insertions;

competitive query performance.

SJ [34] Large trees that don’t fit on aGPU’smemory, with emphasis on query performance.

GPU is used to speed up query performance.

Built and updated on CPU.

YLPZ [39] Phased queries and updates on the GPU. State-of-the art query throughput. Less efficient update

throughput.

Table 2. Chronological summary of previous work on dictionary data structures that support point and range query on GPUs.

exceeds the GPU memory size. They focus on high search

throughput using GPUs; insertions are done in parallel on

the CPU. (Our work does not target B-Trees larger than the

GPU memory capacity.). In concurrent work, Yan et al. [39]

propose a novel B-Tree structure where the tree is divided

into key and child regions. The key region contains keys

of the regular B-Tree laid out in memory in a breadth-first

order. The child region is a prefix-sum array of each node’s

first child (which is small enough to fit inside the cache).

Moreover, they offer two optimizations: partial sorting of

queries to achieve coalesced memory access, and grouping

of queries while reducing the number of useless comparisons

within a warp to minimize the warp execution time. With

these design decisions they achieve state-of-the-art query

performance at the expense of a higher cost to maintain the

B-Tree structure when updating. Our work offers a different

tradeoff between query and update performance.

The GPU LSM [3] takes a different approach to provide

a dynamic GPU data structure that supports the same op-

erations as the B-Tree. The GPU LSM is a hierarchy of dic-

tionaries, each with a capacity of b2i , where i represents
the level and b represents the batch size. It derives from the

Cache Oblivious Lookahead Array (COLA), where each dic-

tionary is represented using a sorted array of elements, with

updates modifying the small dictionary. Once a dictionary

reaches its capacity, it is merged with the next larger one.

Updates are done using two primitives, sort and merge, each

of which can be done efficiently on GPUs. For queries, the

search starts at the smallest dictionary and proceeds along

{Key, Value}0 {Key, Value}1 ….. {Key, Value}14 Link{Min, Ptr}

{Pivot, Ptr}0 ….. Link{Min, Ptr}{Pivot, Ptr}1 {Pivot, Ptr}14Intermediate Node

Leaf Node

Figure 1. B-Link-Tree (with B = 3) schematic (top). Our

B-Tree (with B = 15) node structure (bottom). A tree node

contains 15 pivot-pointer (or key-value) pairs. A pointer to

the node’s child is represented by the child’s offset. The last

pair in a node represents the right sibling minimum value

and its pointer. The minimum of the right sibling serves as a

high key for the node.

the hierarchy of dictionaries. GPU LSM performance gen-

erally depends on the batch size, where larger batch sizes

improve the performance.

We compare our performance to the GPU LSM and GPU

sorted array performance in Section 5.

3 Design Decisions
In our design we assume 32-bit keys, values, pivots (separa-

tors), and offsets (pointers). We use the most significant bit

of each of the node’s entries to distinguish leaves from inter-

mediate nodes and to mark locked (latched) nodes. Figure 1
shows a schematic of our B-Tree’s node structure. Offsets
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are used to identify the next tree node during traversal by

simply multiplying the offset by the size of the tree node.

We use the same structure for internal B-Tree nodes and

leaves. All key-value pairs are stored in leaf nodes; internal

nodes store pivot-offset pairs, where the offset points to

another node in the tree. Each node in our B-Tree stores 15

key-value or key-offset pairs (Section 3.1), and an additional

pair containing a pointer to its right sibling and theminimum

key of its right sibling (Section 3.2).

Reading a tree node is not blocked by any other operation

(Section 3.3). When we insert into the tree and must split,

we use proactive splitting (Sections 2.3 and 3.4) with restarts

on failures (Section 3.5). We use a simple write latch per

node to prevent concurrent modifications to the same node.

When an insertion into a node causes a split, we first move

half of the leaf (or intermediate) node’s key-values (or pivot-

offsets) to a new node, then insert a pivot-offset pair into

a parent node. We use a warp-cooperative work-sharing

strategy (Section 3.6) where work is generated per thread

but performed per warp.

The remainder of this section discusses the details, moti-

vations, and implications of these design decisions.

3.1 Choice of B
To maximize memory throughput, each of our B-Tree nodes

is the size of a cache line, which is 128 bytes on NVIDIA

GPUs. Thus a warp of 32 threads can read a tree node (cache

line) in a coalesced manner. Each tree level is a linked list

(we motivate this decision in Section 3.2) to allow for more

concurrency, specifically during insertion. The overhead for

making each tree level a linked list is 8 bytes divided equally

between a pointer to the node’s right sibling and the right

sibling’s minimum key. The remaining 120 bytes are used

to store either pivot-pointer pairs for intermediate nodes

or key-value pairs for leaf nodes; therefore our B-Tree has

B = 15. Figure 1 illustrates the tree node structure.

3.2 B-Link-Tree
Adding new items to a B-Tree may require splitting a node,

which in turn requires changing nodes on at least two levels

of the tree. Traditional implementations exclusively lock a

safe path during an insertion traversal. On a GPU, such locks

rapidly bottleneck any tree traversal, particularly at the root

and upper tree nodes. We eliminate the need for an exclusive

lock, allowing other warps to concurrently read, by adopting

the side-link strategy of the B-Link tree [24]. In a B-Link tree,

each node stores a link to its right neighbor as well as storing

the right neighbor’s minimum key, i.e., each tree level is a

linked list. With this additional information, we no longer

must lock the upper node in the split. Why?

We traditionally exclusively lock (at least) both the upper

and lower node to handle the case where a split operation

and a read operation are concurrent. The split divides the

lower node into two nodes then updates the parent node with

the information about the new node. If a read occurs after

the lower-node division but before the upper-node update, it

may not find the right path down the tree. However, the side

link solves this problem: if the read occurs after the lower-

node division and the item is not in the left lower node, the

read operation traverses the side link to find the new right

lower node.

Maintaining the level-wise links is simple. During a split

operation, the right tree node gets the side-link data from

the original node, and the left node’s side link points to the

right node and also stores the minimum key or separator of

the right node.

In our GPU implementation, the addition of the side link

itself does not solve the concurrency problem, but together

with a proactive splitting strategy (Section 3.4), it improves

concurrency.

3.3 Decoupled Read and Write Modes
A complementary decision to the previous one is to decouple

reads and writes. In other words, our design has only one

latch type: an exclusive write latch, only required when

modifying a node’s content, during inserting or deleting

a key-value or separator-offset pair. Any warp starts the

tree traversal for any update operation in read mode; reads

require no latches. But once a warp decides to switch from

read mode to write mode, an additional read is required after

latching the node. The additional read is required to ensure

we have the most recent node content as other warps might

have subsequently modified the contents of the node.

3.4 Proactive Splitting
Splitting a tree node is required whenever the node becomes

full, and in the most extreme case the splitting process will

propagate up the tree all the way to its root. The traditional

approach to splitting is latch coupling, which involves exclu-

sively locking a subtree starting at a “safe” node that guaran-

tees that any future splits will not propagate further up the

tree. Latch coupling disallows both reads and writes in this

subtree. This strategy significantly bottlenecks GPU perfor-

mance by limiting concurrency; exclusively locking (or even

write-only locking) an entire subtree idles any thread that

accesses (or modifies) that subtree. This loss of concurrency

results in unacceptably low performance.

Instead we use a proactive splitting strategy. Proactive

splitting, together with the side links of a B-Link-Tree (Sec-

tion 3.2), maximizes concurrency: with them, we both limit

node modifications to only two tree levels and also allow

concurrent reads of these nodes.

During insertions, a node is split whenever it is full. We

begin by reading a node; if that node is full, we begin the

splitting process. To further reduce the time we need to

latch the upper tree node, we process the first splitting stage

without latching the upper node. But, before committing the

changes to the split node and its new sibling, we must latch
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the parent. Then we check if the parent, which will now

gain an additional child, has subsequently become full (the

high level of concurrency makes this a distinct possibility).

We handle this case with a restart, as we describe in the

next subsection. It is the combination of side links, proactive

splitting, and restarts that together allow our implementation

to achieve high levels of concurrency.

3.5 Restarts Instead of Spinlocks
Traditionally, threads in a B-Tree that encounter a locked

latch spin until that latch is available (a spinlock). GPU soft-

ware transactional memory techniques [37, 38] provide the

same functionality of fine-grained synchronization, but we

opt for lightweight latches embedded in our B-Tree’s nodes.

We further tune our synchronization technique using the

fact that only writes requires latches (Sections 3.2 and 3.3).

Moreover, in our design, we generally replace spinlocks with

restarting the operation from the node’s last-known par-

ent or the root. The restart has a similar effect to backoff

locking [36], where a spinlocking thread does meaningless

work to temporarily relieve contention over the atomic unit;

this is useful when DRAM operations are not slow and

atomic operations are fast so that the backoff window is

small. ElTantawy and Aamodt [10] showed that an adaptive

backoff improves the performance even further, since small

backoff delay may increase spinning overheads while a large

backoff delay may throttle warps more than necessary. From

our experiments we find that spinlocks on high-contention

nodes—specifically, full and leaf nodes during insertions—

reduce the amount of resident warps that can make progress.

Moreover, restarts improve memory throughput and inser-

tion rates. For a B-Tree of size 2
16
, we find that restarts

improve the throughput by a factor of 6.39x over spinlocks,

while backoff improves the performance by a factor of only

1.47x.

We use spinlocks in three cases: (1) during the second stage

of splitting a node that modifies the node’s parent, (2) during

traversal of side links (after latching a leaf node), and (3)

during the deletion of key-value pair from a leaf node. More

commonly, we restart traversal. We restart from the node’s

last-known parent if we fail to latch a leaf node or a full

leaf (or intermediate) node. Another scenario for restarting

from the last-known parent node is when we detect that

the last-known parent is not the true parent, as the true

parent might be the new sibling of the last-known parent

after splitting. After restarting with the last-known parent

as the current node, we find the true parent using side-link

traversal. We restart from the root if the split operation

requires information that is unknown. Since we don’t keep

track of the grandparent node, the unknown information

is either 1) the grandparent node when the parent node is

full or 2) the parent node when the current node became full

after a restart to detect the true parent. We find that restart

overhead becomes less significant as the tree size grows and

that restarts increase our insertion throughput. We note that

using a spinlock, specifically when latching a parent node

during splitting of its child, guarantees that at least one warp

will make progress.

3.6 Warp Cooperative Work Sharing Strategy
We expect that the predominant use of our B-Tree will be

in scenarios where the GPU is running many threads and

each thread potentially generates a single access (a query,

an insert, or a delete) into the B-Tree. Consequently, our

abstraction supports inputting work from threads. However,

we process work with entire warps in an approach first pro-

posed for dynamic GPU hash tables [2]. In the common case,

32 threads in a warp each have an individual piece of work,

but the entire warp serializes those 32 pieces of work in

a queue, working on one at a time. This strategy has two

clear benefits: avoiding thread divergence within a warp and

achieving coalesced memory accesses while reading or writ-

ing a tree node. A third benefit is alleviating the need for load

balancing. Although the path from the root of the tree to the

leaves in a B-Tree is a uniform one, the insertion process will

be an irregular task based on the thread’s path. In particular,

the irregularity comes from the additional process of node

splitting. Because WCWS leverages the entire warp to do

these irregular tasks, it avoids any need to load-balance work

across threads.

4 Implementation
With the exception of a bulk-build scenario, all of our im-

plementations follow the warp cooperative work sharing

strategy (WCWS). In WCWS each thread has its own as-

signment, either an update (insertion or deletion) or a query

(lookup, range, or successor). A warp cooperates on perform-

ing each of its 32 threads’ tasks using warp-wide instructions.

With our design decision for B, each thread in the warp reads
one item in the tree node. Even-lane threads read keys (or

pivots), and odd-lane threads read values (or offsets); the last

two threads read the node’s high key and its right-sibling

offset.

In all of our operations, we leverage CUDA’s intrawarp

communication instructions in two ways. (1) ballot per-

forms a reduction-and-broadcast operation over a predicate.

The predicate is usually a comparison between a key (or a

pivot) and each thread’s key. ballot is always followed by

a ffs instruction (i.e., find first set bit) to determine the first

lane that satisfies the ballot predicate. (2) shfl (“shuffle”)

broadcasts a variable to all threads in a warp.

Algorithm 1 shows the general pattern in a warp coop-

erative work sharing algorithm, which we use as the entry

point in our simultaneous query and update algorithm. We

now discuss the implementations of the various operations

that we support, omitting intrawarp communication details.
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Algorithm 1 Warp Cooperative Work Sharing Algorithm.

1: procedureWCWS(Tree btree, Pair pairs, Task tasks)

2: is_active← true

3: thread_pair← pairs[threadIdx]

4: thread_task← tasks[threadIdx]

5: while work_queue← ballot(is_active) do
6: current_lane← ffs(work_queue)

7: current_pair← shfl(thread_pair, current_lane)

8: current_task← shfl(thread_task, current_lane)

9: performTask(current_task, current_pair, btree)

10: if laneId = current_lane then
11: is_active← false

12: end if
13: end while
14: end procedure

4.1 Insertion
4.1.1 Bulk-Build
The bulk build operation constructs a B-Tree directly from a

bulk input of key-value pairs. We start by sorting the input

pairs with CUB’s [30] sort-by-key primitive. Then we start

building the tree bottom-up. To avoid splitting after a bulk-

build process, we fill each of the tree nodes with only 8

pairs of either key-values or pivot-offset. We reserve the

zeroth node as the root. The remainder of the tree nodes are

organized in a left-to-right level-wise order starting from the

leaf nodes. We assign each tree node to a warp. Each warp is

only responsible for loading the required 8 key-value pairs if

the node is a leaf. Since we already know the structure of the

tree, we can easily determine the current node height and

the indices of its children for intermediate nodes. We also

avoid the complexity of merging nodes that are underfull

and allow underfull nodes to exist in the constructed tree.

4.1.2 Incremental Insertion
In incremental insertion, a thread has a new key-value pair

that must be added to the appropriate leaf node. This op-

eration requires tree traversal and split operations when

needed. Algorithm 2 summarizes the incremental insertion

algorithm. A warp traverses the tree starting from the root

(line 2). The most significant bit in any node’s first entry

identifies whether it is a leaf or an intermediate node. If we

reach a leaf or a full node, then the current node must be

modified; we attempt to latch it (line 13). As we detailed

in Section 3.5, if we cannot acquire the lock, we restart the

insertion process from the node’s parent instead of spinning

(line 15).

Latches. Each tree node has a one-bit lock (the most signifi-

cant bit in the second node entry), which we try to change

using an atomicOr. Out of a warp’s 32 threads, only the sec-

ond thread acquires the latch for the warp. If the atomicOr
function returns a value where the most significant bit is one,

then the latch failed. A zero indicates that we successfully

latched the node. Due to the weak memory behavior on a

GPU, latching a node using only an atomic call guarantees

serialization over the latch, but not the tree nodes themselves.

Algorithm 2 Incremental Insertion.

1: procedure insert(Tree btree, Pair pair)
2: current← parent← btree.root

3: repeat
4: while pair.key ≥ current.link_min do
5: current← current.link_ptr

6: end while
7: if current is full then
8: if current = parent and current is not root then
9: current← parent← btree.root

10: end if
11: end if
12: if current is full or current is leaf then
13: if tryLatch(current) = failed then
14: current← parent

15: continue
16: end if
17: link_used← false

18: while pair.key ≥ current.link_min do
19: if current is full then
20: releaseLatch(current)

21: link_used← true

22: current← parent

23: break
24: end if
25: releaseLatch(current)

26: current← current.link_ptr

27: acquireLatch(current)

28: end while
29: if link_used then
30: continue
31: end if
32: end if
33: if current is full then
34: result← trySplitAndUpdateParent(current, parent)

35: if result = success and current is not leaf then
36: releaseLatch(current)

37: else if result = parent full or unknown then
38: releaseLatch(current)

39: current← parent

40: continue
41: end if
42: end if
43: if current is leaf then
44: insertPair(pair, current)

45: releaseLatch(current)

46: else if current is intermediate then
47: current← getNext(pair.key, current)

48: end if
49: until current is leaf
50: end procedure

Load and store instructions could be reordered around the

atomic call. Therefore, we must add a global memory fence

both after acquiring a latch and before releasing a latch. This

fence guarantees that all writes to global memory before

the fence are observed by all other threads before the fence.

We also must use the volatile keyword to bypass the L1

cache to avoid reading stale tree nodes from the L1 cache.

The memory fences and the L1 cache bypass degrade perfor-

mance, but are necessary to ensure correctness. For example,

building a B-Tree that contains 2
16
keys is on average 1.77x

faster, averaged over successful runs, if memory fences and

the L1 cache bypass are not used. All reported results for

insertions in Section 5 use both memory fences and a L1

cache bypass.

Using side links. After we read a node (line 4), and after

we latch it (if it is a leaf or a full node) (line 18), we check

if the key is less than the node’s high key; this is the usual
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case. However, the key may now be larger than the high key;

for instance, another insert may split the current node after

the read but before the latch. In these cases, we traverse to

the next node on this level using the side link. Using a shfl
instruction, we broadcast the right sibling node offset to all

threads in the warp and continue the insertion process from

this node. In case when the node is full and the side link

is used, we restart the process from the last-known parent

(line 30).

Splitting. If the latched node is full, and we never traversed
side links (i.e., we know the parent node), we begin the

splitting process (line 34). We perform the first stage of the

split without latching the parent or creating the new node.

We prepare new pairs for the now-half-full node and its new

sibling. Then we latch the parent and check if the parent is

the current true parent of the node. It may not be if another

warp has subsequently split the last-known parent and the

new true parent is the new sibling; if that is the case, we

restart the process from the last-known parent (line 40). If we

detect that the parent is full, we restart the process from the

root of the tree (line 9). If the splitting succeeds, we detect

which of the new nodes is our next node and move to that

node.

Inserting the new pair. If the node is a leaf node, we move

pairs in the node to create space for the new pair, then write

the node changes back to memory (line 44).

4.2 Search
Searching the tree for a value (Algorithm 3) is much simpler

than insertion. A warp simply traverses the tree by compar-

ing the lookup key and the intermediate-node pivots using a

warp-wide comparison. The warp then determines the lane

that contains the next pivot and hops to the next node. Once

the warp reaches the leaf node, a second warp-wide com-

parison of the key and the leaf node keys determines if the

key exists in the tree (in which case the associated value is

returned), or if the key doesn’t exist in the tree.

4.3 Deletion
In deletion, a warp first traverses the tree to find the deleted

key. Once it reaches the leaf, it latches the tree node and

reads the leaf again, since between the time of traversal and

latching, other warps might have deleted keys from the node.

Once a warp latches the leaf node, a warp-wide comparison

locates the key. The deleting warp shuffles down higher keys

and their associated values, if any, two spots to overwrite the

deleted key-value pair. Similar to insertion, memory fences

are required for latching, but since in our deletion we don’t

modify intermediate nodes, we can avoid using the keyword

volatile and take advantage of the L1 cache when reading

intermediate nodes. But for reads andwrites to leaf nodes, we

use custom PTX read (ld.global.relaxed.sys.u32) and
write (st.global.relaxed.sys.u32) functions to bypass

Algorithm 3 Lookup, range, successor, and delete.

1: procedureQueryOrDelete(Tree btree, Key key, Key key_upper_bound, Result

result, Operation operation)

2: current← parent← btree.root

3: result← NOT_FOUND

4: repeat
5: if current is intermediate then
6: current← getNext(key, current)

7: else if current is leaf then
8: switch operation do
9: case lookup:
10: result← getValue(key, value)

11: break
12: case delete:
13: latchNode(current)

14: volatileReadNode(current)

15: current← deleteKey(key, current)

16: volatileWriteNode(current)

17: break
18: case range:
19: while true do
20: result += inRange(key, key_upper_bound, current)

21: if key_upper_bound < current.link_min then
22: break
23: end if
24: current← current.link_ptr

25: end while
26: break
27: case successor:
28: while result = NOT_FOUND do
29: result← getNextValidPair(key, current)

30: current← current.link_ptr

31: end while
32: break
33: end switch
34: end if
35: until current is leaf
36: end procedure

the L1 cache. We avoid merging underfull tree nodes, as it

slows down the deletion process without a corresponding

gain in search performance. A high-level description of the

algorithm is shown in Algorithm 3.

4.4 Range Query
Given a pair of upper/lower bounds, a warp first traverses

the tree searching for the location of the lower bound. Once

the location is determined, the warp uses the side links to

perform level-wise traversals until it locates the upper-bound

key. During this side traversal, all key-value pairs belonging

to the range are written back to global memory. The counter

that keeps track of the pairs within the range could be used

to provide a count query, which is faster since no global

memory writes are required. The range query (or count)

algorithm is similar to the point query algorithm with the

lookup key as the lower bound, with the addition of both link

traversal and writing back the in-range pairs (or the count).

The amount of work required to perform a Range(k1,k2) is
directly dependent on the range length (i.e., k2 − k1). A high-

level description of the algorithm is shown in Algorithm 3.

4.5 Successor Query
Given a key, to find its successor we first perform a point

query to locate the key. Then we check if any larger key

exists in the current leaf. If the key was the last valid key in
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the node, we perform level-wise traversals using side links

to find the first valid key. Since in deletion we do not merge

tree nodes, the warp might need to perform more than one

traversal. A high-level description of the algorithm is shown

in Algorithm 3.

5 Results
In this section we compare our B-Tree implementation

2
to a

GPU sorted array (GPU SA) and a GPU LSM. GPU LSM and

GPU SA implementations are from Ashkiani et al. [3]. The

GPU LSM implementation uses CUB [30] in its sort primitive

and moderngpu
3
in its merge primitive. We run all of our

experiments on an NVIDIA TITAN V (Volta) GPU with 12

GB DRAM and an Intel Xeon CPU E5-2637.

For all of our experiments we used 32-bit keys and values.

We reserved the most significant bit of keys for locking and

identifying leaves and intermediate nodes.

At a high level, all B-Tree operations have throughput

proportional to the height of the tree. Because of the large

fanout of a B-Tree, this means that for most B-Tree sizes of

interest (large enough to make a B-Tree worthwhile at all,

small enough to fit into GPU memory), the B-Tree’s height is

constant and we thus essentially have constant throughput.

This makes the B-Tree’s performance much more predictable

than the LSM (e.g., Figure 2).

For rates or throughputs, all “mean” or “average” results

in this section are harmonic means.

5.1 Insertion
Baseline B-Tree. Our baseline B-Tree implementation is

most similar to the B-Tree of Rodeh [32]. In the baseline

implementation we used latch coupling and a proactive split-

ting strategy. The baseline B-Tree branching factor was 16.

As discussed in Section 3.2, with the GPU’s high level of con-

currency, latch coupling will severely bottleneck any tree

traversal. We see the effect of using latch coupling and its

exclusive latches in the resulting insertion throughput of

0.166 MKey/s. Our design decisions allow us to make much

better use of the thousands of active warps on the GPU,

achieving an average insertion throughput of 182.9 MKey/s,

more than three orders of magnitude greater than the base-

line.

Bulk-build vs. incremental update. We investigate the

advantage of incremental update over complete rebuild of

the B-Tree. Figure 3 compares the time required to bulk-build

a B-Tree of sizem from scratch vs. inserting a batch of size 2
i

into a B-Tree of sizem − 2i . As the batch size decreases, we

see the advantage of incremental insertion over bulk-rebuild.

For example, once the tree size reaches 3.15 million keys,

inserting a batch of 2
18
(262k) elements into the tree has a

2
Our implementation is available at https://github.com/owensgroup/
GpuBTree.
3
Moderngpu is available at https://github.com/moderngpu/moderngpu.

batch size B-Tree GPU LSM GPU SA

2
16

168.0 61.5 44.9

2
17

139.7 121.3 87.6

2
18

171.7 218.6 160.6

2
19

190.3 402.5 292.6

2
20

205.1 685.9 543.0

2
21

211.9 1103.8 907.5

2
22

223.0 1603.1 1472.7

Mean 182.9 202.6 149.1

Table 3. Mean rates (in MKey/s) for different batch-sized

insertions into the B-Tree, GPU LSM and GPU SA.

clear advantage over rebuilding the tree. As the batch size

gets larger, the tree size at which updating the tree is more

efficient than rebuilding the tree from scratch grows, which

is expected since a bulk-build only requires a sort (which

is done efficiently on the GPU) and writing the tree nodes.

We note that the throughput of bulk-build is on average

3124.32 MKey/s.

Incremental updates. To evaluate batched incremental up-

dates for B-Tree, GPU LSM, or GPU SA we build all possible

data structure sizes incrementally using batches of size b.
The mean of all insertion rates for a given b is reported in Ta-

ble 3. For smaller batch sizes b ≤ 2
17
we find that although a

GPU LSM is optimized for insertions and should be theoreti-

cally faster than a B-Tree, our B-Tree is faster with a speedup

factor of 2.73x and 1.15x for b = 2
16
and b = 2

17
respectively.

Why? The GPU LSM uses sort and merge primitives that

perform better for large bulk inputs. On the other hand, our

B-Tree uses a warp-centric approach that allows us to reach

higher performance for smaller batches. Similarly, GPU SA

reaches almost the same throughput as our B-Tree when us-

ing a batch size of b = 2
18
. Our B-Tree is {3.74x, 1.59x} faster

than the GPU SA for batch sizes of {2
16, 217} respectively. As

theory predicts, as the batch size increases, GPU LSM and

GPU SA start to outperform our B-Tree, reaching speedup

factors of 2.12x and 1.54x for a batch size of b = 2
19

and

speedup factors of 7.19x and 6.6x for a batch size of 2
22
. We

note that for batch sizes of b = 2
19
and b = 2

22
, if the B-Tree

size exceeds 6.82 and 57.67 million keys respectively, an en-

tire rebuild for the B-Tree will be the right choice to handle

the update. A bulk rebuild of {6.82, 57.67} MKeys trees takes

{2.25, 17.11} ms, yielding an effective insertion throughput of

{116.16, 245.17} MKey/s for batch sizes of {2
19, 222}.

5.2 Search
Search is where our B-Tree shows large improvements over

GPU LSM and GPU SA. Our B-Tree throughput is almost

constant over a wide range of tree sizes. Figure 2a shows the

throughput of search queries for trees with different sizes.

For GPU LSM and GPU SA, we run the same experiments as

we did for the updates, where we construct the data structure

using different batch sizes for different sizes. In all of the

https://github.com/owensgroup/GpuBTree
https://github.com/owensgroup/GpuBTree
https://github.com/moderngpu/moderngpu
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Figure 2. Search, range, and successor query rates for different batch size operations applied to the GPU LSM, the GPU SA,

and our B-Tree. In each query we search for all keys existing in the tree. Point query throughput for the B-Tree is a function of

its height, which makes its throughput constant over a large range of tree sizes. A tree of height = 8 starts when the number

of keys is ≈ 18m all the way up to a theoretical 15
8 × 15 ≈ 38b. For the range query, the expected range length is 8. On average,

our B-Tree is 6.44x and 3x faster than GPU LSM, and GPU SA, respectively in search queries, and 3x faster than GPU LSM in

range query.
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experiments we search for all elements in the data structure.

The average search throughputs for the {B-Tree, GPU LSM,

GPU SA} are {1020.27, 158.44, 335.17} MQuery/s respectively.

5.3 Deletion
Given a B-Tree of sizem, we measure the time required to

delete x% of the key-value pairs in the data structure. In prac-

tice, deletion is essentially a tree traversal with an additional
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Figure 4.Deletion time for different percentages of the num-

ber of key-value pairs in the tree.

writeback. We present the results in Figure 4 for deletion per-

centages between 10% and 50%. Throughput for a deletion

percentage of 10% is 570.64 MDeletion/s. For the remain-

ing deletion percentages, throughput is between 581.78 and

583.35 MDeletion/s. Taking advantage of the L1 cache for

intermediate nodes (Section 4.3) speeds up deletion rates by

a factor of 2.4x.
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5.4 Range Query
Figure 2b shows the throughput of a B-Tree range query and

a GPU LSM one; we see similar trends as in other search

queries. We performed a range query with an expected range

length of 8. GPU LSM results are generated for different batch

sizes. Our B-Tree’s average range query has roughly three

times the throughput as the GPU LSM’s (502.28 MQuery/s

vs. 166.02 MQuery/s).

5.5 Successor Query
For successor queries, we benchmarked different sized B-

Trees. In each tree we searched for the successor of each key

in the tree. The average throughput for a successor query

is 783.13 MQuery/s. The GPU LSM does not currently im-

plement this operation, although the LSM data structure is

well-suited to support it.

5.6 Concurrent Benchmark
Benchmark setup. To evaluate concurrent updates and queries
we define an update ratio α , where 0 ≤ α ≤ 1, such that

we perform α updates and 1 − α queries. For any given α
we divide the update and query ratios equally between the

different supported update and query operations. We start

our benchmark on a tree of size n, and when deletion and

insertion ratios are equal, the tree size remains the same

for each experiment. For simplicity, we perform the same

number of operations as the tree size. We randomly assign

each thread an operation to perform.

Semantics. We support concurrent operations, which guar-

antees that all pre-existing keys in the tree will be included

in the results of the batch of operations, as long as they are

not updated within the batch. However, results of operations

on keys that are updated within the batch will be dependent

on the hardware scheduling of blocks and switching between

warps. For instance, a batch may contain an insert, a delete,

and a query of a key that is already stored in the data struc-

ture. All three of these operations will complete but the order

in which they will complete is undefined. Many applications

may choose to address this with phased operations, where

changes to the data structure (insertions, deletions) are in

different batches than queries into it. Strictly serial seman-

tics, however, are incompatible with our implementation of

the B-Tree.

Results. Figure 5 shows the results for this benchmark. We

note that for correctness, bypassing the L1 cache is required

for all of the operations for this benchmark, which reduces

the achieved throughput compared to the phased-query oper-

ations of Figure 2. Moreover, additional costs for concurrent

operations are: 1) intrawarp communications to determine

the inputs for each of the different operations, and 2) main-

tenance of a work-queue (using an extra intrawarp com-

munication) to track the progress of each of the different
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diffreent B-Tree sizes.

Volta V100 Kepler K80

L1 data Size 32–128 KiB 16–48 KiB

Line Size 32 B 128 B

Hit latency 28 cycles 35 cycles

Update policy non-LRU non-LRU

L2 data Size 6,144 KiB 1,536 KiB

Line size 64 B 32 B

Hit latency ∼193 cycles ∼200 cycles

Table 4. Summary of memory hierarchy microbenchmark-

ing results [18] on the Volta and Kepler architectures.

operations. Since all of the B-Tree operations are a function

of only the tree height, performance is similar for different

α ratios {0.2, 0.6, 1.0}, which achieve an average throughput

of {247.67, 257.25, 237.79} MOp/s respectively.

5.7 Cache Utilization
Because of the importance of caching in our results, we

contrast the memory systems in the Volta and Kepler GPU

architectures, whose characteristics are summarized in Ta-

ble 4. We profiled our point query kernel on a TITAN V GPU

and a TESLA K40c GPU. Figure 6 plots different memory

hierarchy levels’ throughput and hit rates. A 2.6x-larger L1

data cache on Volta improves the hit rate by an average factor

of 1.47, which in turn improves the total memory throughput

and allows it to even exceed the DRAM peak bandwidth. On

average, for search queries, Volta’s L2 cache throughput is

4.5x faster than the K40c, achieved DRAM throughput is

4x faster, and total throughput is 6.2x faster, for a memory

system whose DRAM has only 2.27x the peak throughput.
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Figure 6. Throughput (top) and hit rates (bottom) for the

different memory hierarchy levels during search queries.

Upper-level tree nodes of the B-Tree are cached throughput

the memory hierarchy, thus achieving high hit rates in L1

and L2 caches, and allowing the total throughput of our

B-Tree to exceed the peak DRAM bandwidth on Volta.

6 Conclusion
The focus of this work is not the design of a novel data

structure for GPUs. Instead, we show how careful design

decisions with respect to a classic B-Tree data structure allow

the B-Tree to support high-performance queries, insertions,

and deletions on the GPU.While memory and computational

efficiency are important aspects of our implementation, the

principle reason for our high performance is a design that is

focused on achieving maximum concurrency by reducing or

eliminating contention.

Since all nodes have size of at least 128 bytes, by using

31-bit offsets we can theoretically support up to 2
38
bytes

of storage (much larger than current GPU memories). How-

ever, limiting keys to 31 bits can be a restricting factor for

some (where larger keys are required). In the future, we will

focus on allowing wider key spans, either by separating the

lock-bit from the rest of the key (sacrifices performance),

or through a hierarchical structure and grouping a set of

elements together so that they share the same key (e.g., like

in quotient filters [7] or lifted B-trees [42]).
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