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Abstract

Strategies for Sharing Bottleneck Capacity among Buses and Cars
by

Sukran Ilgin Guler

Doctor of Philosophy in Engineering — Civil and Environmental Engineering

University of California, Berkeley
Michael J. Cassidy, Chair

In urban settings where space is at a premium, bus lanes can often only be created
via the conversion of existing general-use lanes. This can be politically infeasible in
cities where bus flows are low, because the converted lanes would be under-utilized
and thereby squander road space. The roadway bottlenecks would then as a result
create even greater delays and queuing for car traffic.

The present thesis explores novel ways in which buses and cars might share lanes
within select bottlenecks. Details of these shared-lane strategies vary, depending
upon a bottleneck’s local operating conditions. In all cases, cars would be inserted
into a shared lane in ways that impart few delays to the buses. These insertions would
allow for the unused space between buses to be used, lessening the damage otherwise
incurred by car traffic at bottlenecks. Hence, by reducing the car delay at bottlenecks
it may become feasible to deploy ordinary bus-lane conversions elsewhere throughout
a city’s road network. The ordinary lane conversions would enable buses to bypass
the car queues that still form at bottlenecks.

Analytical assessments unveil the wide range of bus flows for which these strategies in-
crease a bottleneck’s car-carrying capacity, in comparison to reserving one of its lanes
for buses only. Simulations of a real case study indicate that significant reductions in
car delays can result while increasing bus speeds as much as ordinary conversions.
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Chapter 1

Introduction

Bus agencies have long sought ways to provide better service to customers in a cost
efficient way. To this end, dedicated bus lanes have often been used to enable buses
to bypass car queues. This priority treatment can reduce the person hours traveled
on a road network, since buses typically have higher on-board occupancies than do
cars. And bus lanes can also help reduce variation in bus travel times which leads
to higher utility for bus users. Overall, prioritizing buses may induce modal shifts
from cars to buses which can reduce roadway congestion, the network’s total vehicle
hours traveled, total greenhouse gas emissions and perhaps even the number of traffic
accidents.

In urban settings where unused space is in short supply, a bus-lane installation
often entails the conversion of a general-use lane. If the converted lane is thereafter
fully or near-fully utilized by buses, cars as well as buses can benefit. This is because
segregating distinct vehicle classes into their own lanes can have a “smoothing effect”
on traffic by reducing the disruptive conflicts that would otherwise occur between
these classes. The network’s capacity to serve all of its vehicles can increase as a
result (Cassidy et al., 2009, 2010).

However, if the converted bus lane is underused due to low bus flows, then road
space that was formerly available to cars is now wasted. The converted lane will
invariably run through one or more roadway bottlenecks, and the under-used lane
will reduce the capacities of these bottlenecks to serve cars. The result will be greater
delays and queuing for those cars, and this unfavorable outcome can render a lane
conversion politically infeasible.

1.1 Dissertation Overview

In light of this, this thesis explores novel ways of converting lanes for bus use when
bus flows are low. The ideas entail ordinary bus-lane conversions over much of the
city’s road network. The ideas are novel in that the special treatments proposed
would link to these ordinary conversions, and would be deployed only at what we
shall call “critical bottlenecks”. Within a bottleneck of this kind, buses and cars



would share a lane in ways that preclude bus delays, while squandering little if any
of the bottleneck’s capacity to serve its cars. The sharing strategies would therefore
prioritize bus travel while limiting the resulting damage (i.e., the added delays and
queues) to car traffic. The details of how this sharing would occur depend upon a
bottleneck’s local operating conditions. Two types of operating conditions can be
accommodated.

Conditions of the first type arise when a bottleneck is active, meaning that it
is not itself affected by car queues from any other bottleneck further downstream.
The bottleneck may exist prior to the bus lane’s deployment, or arise only thereafter.
Either way, it is proposed that one of the bottleneck’s lanes be shared continuously
among cars and buses, as will be described in Section 3.1.

Conditions of the second type arise when a bottleneck that would otherwise be
engulfed in a queue from downstream instead becomes active when one of its lanes
is converted for bus-use only. In these cases, it is proposed that a bottleneck lane be
shared intermittently, as described in Section 3.2

Examples of locations where the strategies can be applied include: road inter-
sections, including signalized intersections; short-distance reductions in lanes, as can
occur at narrow bridges and tunnels; and bottlenecks that are formed by changes in
horizontal or vertical road alignments.

Excluded from the set of feasible locations are arterials with closely-spaced sig-
nalized intersections in series. This exclusion is not as serious as it may seem at first,
since bus-car sharing strategies for facilities of this kind have already been developed
(Viegas & Lu, 2001; Eichler & Daganzo, 2006).

1.1.1 Research Contributions

The first contribution of this dissertation is the identification of bus priority strategies
for low bus flows on isolated roadway bottlenecks. While strategies of this kind
have been developed for signalized arterials, this dissertation presents unique ideas
for facilities with bottlenecks that are sparse (such as expressways or arterials with
few, widely-spread signals). The dissertation also presents an evaluation method to
determine whether shared lanes or ordinary lane conversions should be used at critical
locations on these facilities.

The second contribution of this thesis is a systematic analysis of shared lane
strategies for isolated signalized intersections. While some of the ideas presented in
this thesis have been used at different sites, no systematic categorization of strategies
or analysis of the conditions under which these strategies are applicable has been
conducted.

This dissertation also provides recommendations on how to implement shared
lane strategies along a bus route. A methodology is developed that can be used
to systematically deploy shared lanes and ordinary bus lanes along the route. This
allows for a complete design of a proposed bus priority route with minimum negative
impacts on cars, regardless of different roadway facilities that is may run through.



Finally, this dissertation provides a proof of concept through a case study demon-
strating the potential benefits of these strategies and their applicability to the real
world. This case study also unveils how site specific details can be included in the
design.

1.1.2 Organization

The references mentioned in Section 1.1 and other relevant literature are described in
the following chapter. Details on how the proposed shared lane treatments would work
in real settings are given in Chapter 3. The conditions under which these treatments
are less damaging to cars than are ordinary lane conversions are theoretically explored
in Chapter 4. Practical considerations for deploying these ideas, and the outcomes
from a case study are presented in Chapter 5. Brief discussion on the need for field
experiments and future directions is offered in Chapter 6.



Chapter 2

Literature Review

The goal of bus priority strategies is to induce modal shifts from cars to buses
by increasing the attractiveness of buses. This shift means that more people are
carried using less road space, which can make urban transportation systems more
efficient and environmentally friendly. Treatments that provide bus priority are often
less expensive to implement than other investments in public transportation systems,
such as building rail systems. Bus priority strategies can be divided into two cate-
gories: those targeted to links (i.e., road segments) and those targeted to nodes (e.g.,
intersections). These strategies intend to decrease bus delays and increase on-time
performance of buses. It has been shown (e.g., Murray & Wu, 2003) that such im-
provements can significantly increase the perceived quality and attractiveness of bus
service. This chapter offers an overview of different bus priority strategies that have
been proposed by researchers and used by agencies, and describe how the strategies
can improve bus service. Section 2.1 describes strategies that are targeted at links and
Section 2.2 describes strategies that are targeted at nodes. A review of the present
gaps in the literature is provided in Section 2.3

2.1 Bus Priority Strategies Targeted to Links

The most common way of providing priority to buses on links is to designate a lane
for bus use only. In urban environments, where space is limited, this is typically done
by converting an existing general-use lane to bus-use only. When bus flows are high,
removing buses from the general stream of traffic can reduce the number of conflicting
maneuvers between cars and buses, which in turn can improve the travel speeds of
both modes. Also, the resulting induced modal shifts from cars to buses may further
decrease traffic congestion.

Dedicating a lane for buses is often combined with other features such as longer
stop spacing and stations with level access and prepayment to further decrease bus
travel times. Implementation of these strategies as a bundle is referred to as a bus
rapid transit (BRT) system. BRT strategies can vary in direction of flow of buses
(with- or contra- car flow), placement of the bus-lane (median or outside) and mix



of traffic allowed to use the bus-lane. A summary of different types of BRT systems
can be found in Miller et al. (2009) and Levinson et al. (2002, 2003).

BRT systems have been studied as early as 1975 (Levinson et al., 1975). That work
provides guidelines on efficient bus operation on streets by examining implementation
of different BRT systems that exist around the world. Early studies focused on
quantifying the increase in bus speeds and decrease in bus travel times that result
from dedicating a lane for bus use only. Typically, these studies were conducted
using a mix of data from field experiments or simulations (e.g., Tanaboriboon &
Toonim, 1983; Rouphail, 1984; Shalaby & Soberman, 1994; Surprenant-Legault & El-
Geneidy, 2011). While these studies verify that BRT systems can decrease bus travel
times, the magnitude of these benefits and the conditions for which these benefits
are realized varies greatly. Tanaboriboon & Toonim (1983) theoretically analyzed
four different bus route options for implementation of a BRT system and observed
that bus travel times decreased on all routes. The authors also observed that the
coefficient of variation of the bus travel times decreased as well, implying that the
reliability of bus service increases by implementing dedicated lanes. A similar result
was found in Surprenant-Legault & El-Geneidy (2011) which evaluated changes in
bus speeds using data from a field implementation of a BRT corridor in Montreal,
Canada collected with automated vehicle location systems. Additionally this study
found that the increase in bus speeds leads to an increase in user satisfaction with
buses. Rouphail (1984) evaluated different bus priority strategies, including dedicated
bus lanes using data from a simulation model of Chicago, and also conducted a field
experiment to verify the findings. The author concluded that the simulated increase
in bus speeds was comparable to the field test, verifying the evaluative power of the
simulation tool. Lastly, in a field experiment conducted in Toronto, Canada, Shalaby
& Soberman (1994) assessed the changes in bus travel times on different segments
of an arterial on which a BRT system was implemented. The authors observed that
travel times decreased for buses only on previously congested segments of the roadway;,
and there were no travel time benefits to buses on other segments.

Later studies focused on the effects of BRT systems on both cars and buses (i.e,
Shalaby, 1999; Japson & Ferreira, 2000; Currie et al., 2007; Arasan & Vedagiri, 2010;
Cassidy et al., 2010). Using various methods (such as simulation or theoretical eval-
uation), these studies often conclude that it is difficult to justify the implementation
of BRT systems if the effects on car traffic are also considered. Using a simulation of
Toronto, Canada, Shalaby (1999) analyzed the changes in car and bus speeds after
a BRT system (including a dedicated lane for buses) was implemented. The work
found that the BRT system increased bus speeds and reduced the car speeds. Even
though the reduction in car speeds is more than the increase in bus speeds, the overall
bus travel times still exceed that of cars due to buses having lower cruising speeds
and long dwell times at stops. However, a mode shift from buses to cars was still
observed after the implementation of the BRT lane. Japson & Ferreira (2000) used
a combination of theoretical analysis and simulation to identify the minimum flow of
buses needed to justify dedicated bus lanes in terms of reducing total person hours



traveled. Depending on the occupancy of the bus and the car demand, these values
ranged between 17 buses/hour to 300 buses/hour. Currie et al. (2007) developed an
theoretical methodology to evaluate optimal road space allocation for cars and buses.
This study also included a simulation to assess changes in travel time and reliability
for buses, and changes in travel time for cars along with models to predict mode shifts
and economic impacts. Based on a small-scale example, the authors concluded that
often priority for buses is hard to justify when car demands are high (greater than 500
vph/lane) and bus headways are large (greater than 5 minutes). Arasan & Vedagiri
(2010) developed a simulation of Chennai, India to study the effects of a BRT system
on heterogeneous traffic. The authors determined that for cars to remain operating
at an acceptable level of service (C), a volume to capacity ratio of approximately
0.55 and a road space allocation of 34% (for a 3 lane roadway) for buses would be
needed. Finally, theoretical analysis conducted in Cassidy et al. (2010) showed that it
is possible to reduce total VHT by segregating bus and car traffic on circular beltways
when the smoothing effect is considered. However the analysis assumed that bus de-
mand is fairly high and was further idealized in that it ignored many complications
of real-world traffic such as driver behaviour.

Several other studies evaluated the effects of dedicated bus lanes at a network-
wide level, as compared to only evaluating changes on a BRT route. Waterson et al.
(2003) created a theoretical methodology to evaluate the effect of bus priority on a
network. This methodology included determination of an order in which travelers
respond to the changes on the roadway (e.g., modal shifts, rerouting etc.) and using
these assumptions to develop a simulation framework. Testing this on a small network,
the authors confirmed that the findings of this framework followed intuition that as
the length of the dedicated bus lane becomes longer, the penalty to cars increases.
However, the authors also found unexpected results, including that after a certain
initial bus route length (around 3 kms) traffic congestion outside of the dedicated bus
lane region becomes so severe that bus service also becomes slower as compared to
there being no priority treatment. Liu et al. (2006) integrated demand and supply
side transportation simulation models, and simulated this combined model on a real
life network to evaluate the effects of dedicated bus lanes. The authors concluded
that even after accounting for route changes among cars that may result from the
implementation of dedicated bus lanes, the total travel times in the network increase
due to the reduction of car capacity on the BRT route. Mesbah et al. (2008) combined
an optimization model, a traffic assignment model and a mode share model to develop
a methodology for optimally assigning road space to buses. That work found that
only when there exists high car demands can dedicating a lane for buses help decrease
total travel times on the network. This phenomena occurs by inducing mode shifts
from cars to buses, which in turn can also reduce car congestion.

To decrease the negative effects that dedicated bus lanes have on cars, other
bus priority strategies on links have allowed buses and cars to share a lane. One
proposed treatment, termed queue jumper lanes, allows buses to use right turn bays
at signalized intersections to bypass car queues. Nowlin & Fitzpatrick (1997) used



simulation to predict that, when combined with signal priority for buses, queue jumper
lanes can be effective in increasing bus speeds by 5 to 15 km/hr. Zhou & Gan (2005)
also theoretically evaluated different signal priority options, bus stop locations and
car congestion levels using simulation and found that queue jumper lanes alone were
not as effective in increasing bus speeds as if signal priority was also provided.

In one proposed treatment for an arterial with possibly many signalized intersec-
tions, cars would be periodically prohibited from entering lane segments in advance
of an arriving bus (Viegas & Lu, 2001, 2004). The restricted segments might span
several blocks at any one time; and the span would move forward with the bus as it
progresses along its route. Car drivers are alerted to these intermittent restrictions
by means of electronic signs, signals and other devices. Cars already occupying the
lane at the time of its intermittent restriction may remain in that lane, and the lane
segments are re-opened to all cars in the immediate wake of a passing bus. Field
experiments in Lisbon, Portugal showed that the strategy increased bus speeds by
15 to 25%, as compared to the mixing of buses and cars (Viegas et al., 2007). A
variation of intermittent bus lanes was also field tested in Melbourne, Australia in
2001 (Currie & Lai, 2008). Even though travel time improvements to buses were
observed in Melbourne as well, the authors found that these improvements were not
as significant as in the case of Lisbon. Both Viegas et al. (2007) and Currie & Lai
(2008) concluded that driver compliance with the intermittent bus lane restrictions
was high and also that intermittent sharing strategies improved bus service without
significantly degrading car traffic. Sakamoto et al. (2007) also field tested the idea
of allowing cars to use a bus priority lane when buses are not present in Shizuoka,
Japan. These authors not only observed reduced travel times for buses, but also a
reduction in car congestion. This phenomenan was explained by an induced mode
shift from cars to buses, shifting of departure times to out of the peak period and
changes in car routes that arise. Yang & Wang (2009) conducted a simulation anal-
ysis of intermittent bus lanes. The authors found that intermittent or dedicated bus
lanes both decrease bus travel times. However, the negative effects on adjacent car
traffic is lower for intermittent bus lanes and this effect is more pronounced when bus
headways are large.

In a variation on intermittent bus lanes termed Bus Lanes with Intermittent Pri-
ority (BLIPs), cars are required to vacate an intermittently restricted lane segment
in advance of the approaching bus (Eichler & Daganzo, 2006). In this strategy, one
or more blocks downstream of a bus current location are designated for bus use only,
essentially creating a “cocoon” of empty space that travels with the bus as it moves
along the arterial. On blocks where no bus is present, cars are allowed to use the
intermittent lane, which can increase the total discharge flow through signalized inter-
sections. Theoretical study found that the application of BLIPs reduces the interac-
tion between buses and cars which can significantly reduce delays to buses. However,
this comes at the cost of increasing average car density, which in congested traffic
corresponds to lower speed and increased delays, as compared to using no bus lane.
More recently, Chiabaut et al. (2012) theoretically analyzed the capacity of BLIPs



while also taking into account capacity drops that might arise at the first signalized
intersection of an arterial where BLIPs are implemented. This capacity drop arises
due to merging and acceleration of lane-changing vehicles. Even after taking into
account the reduced capacities, the authors conclude that this activation effect can
be negated if the signalized arterial on which BLIPs are implemented is long enough
(6 or more intersections). Beyond this length, travel time benefits to buses will be
observed with the implementation of BLIPs.

2.2 Bus Priority Strategies Targeted to Nodes

Buses that travel through signalized arterials often experience significant additional
delays at those intersections. A common solution to give priority to buses at these
locations is to use transit signal priority (TSP) strategies. This can be done either
passively (on a pre-determined schedule) or actively (in real time). Passive priority
is achieved typically by changing the signal settings, such as cycle length, green time
and offsets, on a pre-determined schedule so to improve bus operations. This is typi-
cally achieved by having shorter cycle lengths to minimize bus delays at intersections,
longer green times for bus travel directions and offsets between consecutive signals
which are optimized for the speed of buses (instead of the speed of cars). Skabardo-
nis (2000) developed theoretical formulations for optimizing passive transit priority
strategies and confirmed through simulation that these strategies decreased bus travel
times, especially when bus headways were small and predictable. However, passive
strategies are often not effective because it is difficult to accurately predict traffic
conditions and bus arrival times at a signalized intersection.

Active strategies, on the other hand, require that real-time bus arrival times to a
signalized intersection be known or predicted with high accuracy. Based on when the
bus will arrive to a given intersection, different strategies such as phase extension,
phase advance, phase insertion or phase rotation can be used to minimize the bus
delay (FHWA, 2008). These strategies change the signal phase in the advance of
an arriving bus to ensure that the bus has a higher probability of encountering a
green phase. Various studies have analyzed the impacts of transit signal priority
on the performance of buses and cars (Al-Sahili & Taylor, 1996; Balke et al., 2000;
Skabardonis, 2000; Mcleod & Hounsell, 2003; Ahn & Rakha, 2006). This research
was often conducted through simulation, and only a few present results from field
experiments. Overall, the reported level of benefit to buses under this type of priority
varies. However, these studies tend to be site specific, and often the benefits to
buses are observed only when these strategies are used along with BRT systems with
dedicated bus lanes, which also could include longer stop spacing and stations with
level access and prepayment. These studies also evaluated the effects of transit signal
priority on car queues and delays. These results often show that when providing
priority to buses cars experience additional queuing and delays.

The studies mentioned above (whether or not they are combined with BRT sys-
tems) assume that buses travel the entire length of the arterial without exiting at an



intermediate intersection. When this is not the case, bus delays can occur if buses
maneuver into car lanes to perform their exit maneuvers due to conflicts that arise
between the buses and cars. This problem has been addressed by means of mid-block
pre-signals. These devices halt cars in their lanes when an approaching bus needs to
maneuver through those lanes (Wu & Hounsell, 1998). Wu & Hounsell (1998) also
developed analytical formulas to quantify the bus delay savings when pre-signals are
used. Other uses of pre-signals also exist in the literature. Stein (1961) analyzed
the use of pre-signals to negate the time lost at signalized intersections due to the
bounded acceleration of vehicles. That work shows that if there are only cars in a
traffic stream, approximately 4 seconds of additional green time can be gained at
intersections with the use of this type of pre-signals. More recent work has explored
the use of pre-signals to increase intersection capacity by resolving these and other
types of vehicular conflicts that would otherwise occur at the signalized intersection
downstream (Xuan et al., 2011).

2.3 Gaps in the Literature: Moving to Shared
Lanes on Bottlenecks

Although ideas for intermittent bus lanes have been proposed and field tested for
low bus flows, these strategies focus solely on signalized arterial streets and not on
the application of shared lanes on unsignalized roadways such as expressways. The
strategies also do not address bus turning maneuvers and instead assume that buses
travel straight through the arterial. While pre-signals have been used to solve some
bus turning conflicts, a systematic study of pre-signals for all possible bus-car conflicts
is absent from the literature.

The present ideas borrow from the above studies. For example, some of the
treatments proposed herein entail the use of intermittent lane-use restrictions and
pre-signals. Yet the ideas presented in this dissertation are distinct, in part because
they are exclusively targeted to select bottlenecks in a road network. The ideas are
therefore well suited to networks where bottlenecks are relatively infrequent, as com-
pared to signalized arterials with bottlenecks (intersections) at short block lengths.
Suitable facilities include urban or suburban expressways, as well as the sparse road
networks that are common in cities throughout the developing world. Or, the ideas
might be deployed at a limited number of especially problematic bottlenecks in a
dense urban network.!

By targeting the proposed treatments to bottlenecks, I argue that it is often
possible to eliminate, or nearly eliminate bus delays while maintaining high discharge

L As cases in point, the present ideas were born of efforts to design a next-generation bus rapid
transit system for the developing city of Amman, Jordan (Guler & Cassidy, 2010). In addition, it was
surprising to learn that one of the ideas (see Figure 4.3(a)) is presently deployed at a single signalized
intersection near downtown London (see the citation for GoogleMaps (n.d.) in the reference section
of this manuscript).



flows for car traffic. Higher car flows will, of course, limit the delays to cars (e.g.
Wattleworth & Berry, 1965; Banks, 1991; Newell, 1993; Cassidy, 2003; Daganzo &
Geroliminis, 2008). Moreover, the ideas can be deployed at relatively modest cost
because information and control technologies are needed only at the select bottlenecks
and not throughout the city’s road network.

On the downside, the ordinary lane conversions that are located away from the
bottlenecks which allow buses to jump the queues formed at the bottlenecks (see again
Chapter 1) will still be under-utilized. The resulting waste of road space will cause car
queues to expand faster and further over the network. This can become problematic
if the expanded queues spill-over to junctions upstream and impede access or egress
at those locations (see Daganzo, 2007). This should be considered when deploying
special-use lanes of any kind. Fortunately, analysis techniques have been developed
for this purpose (see Daganzo & Cassidy, 2008).
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Chapter 3

Shared Lane Strategies

The proposed shared-lane treatments for bottlenecks are explored here. To fix
ideas, first bottlenecks of fixed capacities will be examined. Bottlenecks with time
varying capacities (e.g., signalized intersections) require additional considerations that
will be described later in Chapter 4.

Without loss of generality, it will be assumed that vehicles travel on the right-
hand-side of the road, as in the U.S., for example; and that the median lane is to
be converted: for shared use within critical bottlenecks; and for the exclusive use of
buses elsewhere in the network.

3.1 Type 1 Conditions: Active Bottleneck

This corresponds to situations where the bottleneck is either active even before the
provision of a special lane for buses, or becomes active after this provision. Consider
the middle link of length ¢ shown in Figure 3.1(a). It has L,, lanes and an average
queue discharge flow in each (i.e., an average capacity per lane) of s,. For simplicity,
assume that the upstream and downstream links each have L lanes with queue dis-
charge flow s in each. Suppose that L-s > L, s, and that car demand for the middle
link exceeds L, - s, as well. Thus in the absence of any queue that has spilled-over
from a downstream bottleneck, the middle link is an active bottleneck, and this could
be true whether or not L = L,,.

It is proposed that the link upstream of the bottleneck include a converted lane for
the exclusive use of buses, shown with dark shading in Figure 3.1(a). The exclusivity
of that lane would end near the bottleneck’s entrance. The portion of the lane down-
stream would be continuously shared by both buses and cars over the bottleneck’s
length, ¢, as shown with light shading in the figure. Buses may thereafter enter an
exclusive lane downstream: an ordinary conversion could be resumed somewhere on
the downstream link if car queues arise there due to other bottlenecks, as shown by
the resumption of dark shading in the figure. (The figure depicts a worst-case sce-
nario in that the link immediately downstream of the critical bottleneck: presumably
holds a car queue that spills-over from a further downstream bottleneck so that it is

11
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necessary to re-install an ordinary lane conversion; and does not itself widen, e.g. to
L+ 1 lanes.) In contrast, cars in the bottleneck’s shared lane would diverge into lane
2, also as shown in Figure 3.1(a). In many instances, this shared-lane treatment can
increase the discharge flows of cars through a bottleneck without delaying buses, as
explained below.

When L = L, as in Figure 3.1(a), and when car demand is sufficiently high, car
queues will form in the lanes labeled 2 through L starting at the bottleneck’s down-
stream end, labeled x5. The queue forms there because cars in the bottleneck’s L, —1
regular lanes are required to merge into L —2 lanes; see again Figure 3.1(a). Once that
queue expands upstream, and assuming that ¢ is of appreciable length, car drivers
approaching the bottleneck in lane 2 will be motivated to use the (lightly-shaded)
continuously shared lane to improve their speeds: notice that speeds in the contin-
uously shared lane will be relatively high, commensurate with un-queued, capacity
flows.! Thus, the occasional arriving bus would join the stream of un-queued cars and
traverse the bottleneck in the continuously shared lane without encountering delay.
An additional benefit of this shared-lane treatment is that the bottleneck’s L, — 1
regular lanes can be used for queue storage over length ¢. This reduces the chance of
queues spilling over to other bottlenecks upstream, especially if ¢ is large as might be
the case for a bridge or a tunnel.

When L,, < L, the treatment would be slightly different, as shown in Figure 3.1(b).
Traffic would be freely-flowing through the length of the bottleneck, ¢, since the queue
would now form at the bottleneck’s upstream end near the location labeled x;. Since
car drivers would therefore not enjoy a speed advantage by entering the continuously
shared lane, they would likely leave that lane underutilized. The resulting waste of
bottleneck capacity would exacerbate car queuing and delay. It is therefore proposed
that cars arriving in lane 2 be fed into the shared lane (e.g. via pavement markings)
as in Figure 3.1(b). These cars would be fed back into lane 2 after having traversed
the bottleneck.

3.2 Type 2 Conditions: Congested Bottlenecks

This corresponds to the case when the bottleneck is engulfed in a queue from down-
stream. Suppose now that the bottlenecks in Figures 3.1(a) and 3.1(b) were engulfed
in car queues that had spilled-over from locations downstream. Converting a bot-
tleneck lane for the exclusive use of buses would be ill-advised if such action would
constrain car flows to the point of starving the downstream queues. (This could
further diminish car flows through the network.) Sharing a lane continuously, as
previously described, could also be objectionable if that would mean that buses are
delayed by traversing the shared-lane segment at slow, queued speeds. However, if

'If the bottleneck’s length, ¢, is short, drivers might lack motivation to travel in the shared lane.
The lane could be underused as a result. In these cases, a policeman could be stationed at z; and
direct suitable traffic quantities into the shared lane.
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¢ is short, these delays could be small and judged to be acceptable.? In this case, a
continuously shared lane as described above can be used.

When /7 is large, it is proposed that the lightly-shaded lane segments of Fig-
ures 3.1(a) and 3.1(b) be made available to cars on an intermittent basis, and only
when no bus is on the scene. The lane would be closed to cars in advance of each ar-
riving bus by means of electronic signs, signals and possibly mast arms. Each periodic
restriction could be activated at such time that a bus would arrive to the intermittent
shared-lane segment when its car queues had nearly vanished. The bus would then
traverse the intermittently shared lane and enter the exclusive bus lane downstream,
free of delay. Cars would be re-admitted to the shared-lane in the immediate wake of
the passing bus.

2Discussion on the magnitude of the bus delays that might result from this treatment can be
found in Section 4.2
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Chapter 4

Domains of Application

In this Chapter the bottleneck capacities for serving car traffic via the use of
shared lanes is compared against the car-carrying capacities when a bottleneck’s lane
is converted for the exclusive use of buses. Car-carrying capacity is of major concern
since the bus demand would be fully served by the bottleneck when either treatment
option is used there. The comparisons will now also include cases in which the
bottleneck is formed by a signalized intersection. Outcomes unveil the broad range
of conditions under which a shared lane is the superior treatment option.

4.1 Active Bottlenecks: Continuous Sharing ver-
sus Exclusive Bus Lane

Consider first an active bottleneck with L = L,, lanes, as previously shown in Fig-
ure 3.1(a) is considered. Suppose for now that one of the bottleneck lanes were to
be turned-over to buses exclusively. (see Figure 4.1) In this case, the head of the car
queue would reside at the location labeled z; in the figure. The car-carrying capacity
there, Q(z1), would be given by:

Qz1) = (Lp — 1) - sp. (4.1)

Suppose now instead that the bottleneck were to operate with a continuously
shared lane. In this second case, the head of the car queue would now form at
the downstream end of the bottleneck, either at location z; or zj, as labeled in
Figure 3.1(a). Whether the queue’s head resides at one location or the other will
depend upon the magnitude of the capacity available to cars as they perform their
merging maneuvers at the bottleneck’s downstream end. If we assume that cars take
up all the capacity of the shared lane unused by buses, the flow cars on that lane will
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Figure 4.1. Exclusive Bus Lane Conversion at a Critical Bottleneck when L = L,

be s, — qy - p, where g, is the flow (demand) of buses, p is the car equivalence of a bus
(p & 2).! Therefore the bottleneck’s car-carrying capacity can be expressed as:

Q(za) =sp —qp-p+minfa- (L, — 1) - s,; (L —2) - 5], (4.2)

where o is the percentage of the flow that can be sent from x5 retained on the critical
bottleneck’s outer lanes (2-L,,) when cars merge into one less lane (L — 2) at location
Ty, 0 <a <1

Consideration of Figure 3.1(a) shows that the last terms of (4.2) recognize that
the constraint on this flow in the remaining (i.e., car) lanes is the smaller of what can
be sent from x5, or received at x5 .2

From (4.1) and (4.2), the upper bounds on bus flow, g, for which a bottleneck’s
car-carrying capacity is greater with a shared lane than with an exclusive lane con-
version is found. These bounds can be expressed as:

qb<sn.[1—(Ln;1)~(1—Oé)] ifl_Ln1—1<a§% (4.3a)
(L=2)-5—(Ln—=2) 50 . (L—2)s
Q@ < 5 if a> (Lo —1) -0 (4.3b)

1One could consider sending even higher car flow to xj by allowing some cars to merge with
the stream of cars diverging from Lane 1, i.e., by sending the merging cars through the dotted oval
in Figure 3.1(a). This merging would have to be controlled so that car queues in Lane 1 are kept
small. Expanded queues in Lane 1 would not only delay buses, but could disincentivize car drivers
from entering the lane near location x1. Furthermore, drivers might have to be coerced into merging
through the dotted oval in the figure, since they may have little incentive to do so on their own.
Though this kind of control might be feasible, the benefits may be modest when weighed against
the complexities of the strategy required to realize any gains. Benefits would be especially small for
sy, close to s.

2Further consideration of (4.2) and Figure 3.1(a) shows that the car-carrying capacity at location
1, Ly - sy, will not constrain car flows in cases when a < 1.
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Note that (4.3a) holds for cases when « is relatively small (as specified by its limits
shown above), and that (4.3b) holds otherwise.

For illustration, (4.3a) is analyzed parametrically for a range of s, and several
choices of (relatively small) a. The resulting upper bounds on g, are shown in Fig-
ure 4.2(a) for the fixed values of L = L,,, s and p specified in the figure’s caption.
Note how the bounds increase with increasing s,. This is because higher lane ca-
pacities in the bottleneck make it possible to insert more cars into the shared lane,
even as ¢, increases. Note too how these bounds exhibit comparatively large jumps
when « increases. When merging maneuvers in the vicinity of z, are less damaging to
capacity (see again Figure 3.1(a)), the shared-lane treatment enjoys greater domain
of application. Control technologies to smooth-out merging (e.g., metering lights)
might therefore be worth considering in certain instances.

The curves in Figure 4.2(a) also highlight the limits on « for which (4.3a) is valid.
The limits arise because « is a function of s,,. For example, the dashed, upper curve
in the figure reveals that for the inputs used in this assessment, o must exceed 0.75
when s,, > 1550 cars/hour /lane.

Figure 4.2(b) displays the upper bounds on ¢, when « is large enough to satisfy
the inequality in (4.3a). The figure shows that the upper bound: is high for small s,
and diminishes as s, increases. Thus it is seen that when the capacity of bottleneck
lanes 2 — L,, is already high, allowing cars to share the remaining lane makes sense
only when that lane would otherwise be substantially under-used by buses.

Overall, the analysis indicates that a shared lane enjoys a broad domain of appli-
cation. Consider even the case when « is large and when s,, &~ 1700 cars/hour/lane,
meaning that the lane capacity in the bottleneck is only about 6% lower than that of
the link downstream. In this case, Figure 4.2(b) shows that the continuously shared
lane is still beneficial to cars when ¢, &~ 100 buses/hour. Bus flows greater than this
typically occur only in the larger cities of the world.

Consider now the subcase with L,, < L, as in Figure 3.1(b).In this scenario there
seem to be numerous situations in which a continuously shared lane can bring higher
bottleneck capacities for cars. Since in this case « = 1 (i.e, there is no merging at the
bottleneck’s downstream end), from (4.2) and (4.1) it is found that:

Sn
qy < ? (44)

Equation 4.4 confirms that greater opportunities exist to fill a shared lane with
cars when its s, is large, even in the presence of relatively high bus flows.

4.1.1 Special Case: Signalized Intersections with Type 1
Conditions

Consider the homogeneous intersection approach labeled 1 in Figure 4.3(a). Assume

for now that all buses on that approach execute left turn movements at the intersection

and therefore traverse the entire approach in their own (median) lane. Accommodat-
ing buses that perform other movements will be considered momentarily. It is further
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Figure 4.2. Upper bounds on ¢, such that higher car-carrying capacity is achieved
by continuously shared lanes for Type 1 conditions when: (a) capacity is constrained
at x5 ; and (b) capacity is constrained at z3 (L, = L =4, s = 1800 and p = 2).
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assumed that the approach is controlled by a so-called split phase, so that in every
cycle all of the approach’s movements are served in a single, unopposed phase (i.e.,
split from the opposing approach). The equations to follow can be readily altered to
accommodate other signal designs.

As a further starting point, assume for now that the median lane on Approach 1
is converted for the exclusive use of buses over its entire length (see Figure 4.4). The
approach’s car-carrying capacity (measured at the location labeled x] in the figure)
would be:

Qi) =% (L1 —1)-s, (4.5)

where C'is the fixed cycle length of the intersection’s traffic signal, G is its fixed green
time displayed to approach 1, and L; is the number of general use (i.e., car) lanes on
that approach. This car-carrying capacity can be achieved only if the bus demand
does not exceed what could be served by one exclusive bus lane; i.e., ¢, - p < % - 8.

Suppose now instead that the lightly-shaded lane segment in Figure 4.3(a) is to
be continuously shared by both buses and cars on Approach 1. This shared segment
would extend for a distance, ¢;, such that (G; can be saturated by buses and cars
when demand for either is sufficiently high. Once again, each arriving bus would mix
with cars in the lightly-shaded segment. After passing through the intersection, left-
turning buses and cars would enter their designated lanes on the receiving approach,
labeled Approach 2 in the figure. Note that the darkly-shaded exclusive bus lane
could resume on Approach 2, should the need arise.?

By terminating the median lane’s exclusivity short of the intersection, bus delays
will increase modestly because buses stopped during a red phase may find themselves
queued behind cars. Though this would postpone bus entries into the intersection,
each entry will occur during the very next green, much as it would had the exclusive
lane spanned the entire approach.

Now the case in which some buses moving on Approach 1 travel straight through
or turn right at the intersection, while others turn left will be considered. Buses still
arrive in their (darkly-shaded) exclusive lane, but near the intersection some move
into other lanes conducive to their impending movements.

Pre-signals can be used to eliminate the vehicular conflicts that would otherwise
arise as these buses maneuver through streams of cars; see Figure 4.3(b). Cars would
be periodically halted at the pre-signal to enable each arriving bus to maneuver into
a suitable lane. The approach’s car-carrying capacity with the set-up shown in the
figure becomes the minimum of the car flow that be discharged by: the pre-signal at
the location labeled z7; and the intersection’s traffic signal at the location z]. These
flows are given by:

3The converted lane should resume a sufficient distance downstream of the intersection so that
Approach 2 can hold the queue sent from another approach (e.g., Approach 4) while that queue is
served by the diminished number of lanes at around z3; see Figure 4.3(a). In some circumstances,
there may be need to re-order the sequence of signal phases so that queues sent from distinct
approaches do not collide in a single cycle.
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Approach 2

Figure 4.4. Exclusive bus lane conversion at a signalized intersection

Q(z7)=0—¢q-Rps)-(Ly—1)-s where ¢, - Rpsg <1 (4.6a)
G
Qay) = ?1 Li-s—q-p, (4.6b)

where Rpg is the duration that cars are stopped by the pre-signal for each arrival of
a through-moving or right-turning bus.*

Equation 4.6b is idealized in that the rate, Q(z]), would not be achieved if the
voids in car traffic created by the pre-signal were to propagate through the intersec-
tion. This state of affairs might arise when the pre-signal interrupts car flows while at
the same time the intersection’s traffic signal downstream displays a green for those
cars. In these instances, it might be advisable to use the pre-signal to first halt buses
instead, until the intersection’s signal turns red. The pre-signal would then halt the
cars, thereby enabling the bus(es) to maneuver into suitable lanes without conflicts.
Buses impeded in this fashion would experience a delay equal to about one-half the

41t is conservatively assumed that bus arrival is deterministic and that cars are stopped for each
individually arriving bus. Fluctuations in bus arrivals can increase the capacity at the pre-signal if
multiple buses can be made to pass the pre-signal in batched fashion.
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signal cycle length, but the capacity given in (4.6b) could then be realized in more
cases.’

Of the two equations above, (4.6a) becomes the more constraining when cars
are halted frequently by arriving buses. An upper bound on ¢, that precludes this
constraint from occurring is found by setting Q(z7) in (4.6b) less than Q(x7) in
(4.6a). It is thus found that:

oo S =) - 1) (4.7)

s (Li—1)-Rps—p

There are cases when the continuously shared lane shown in Figures 4.3(a) and
(b) is still the superior option, even when the pre-signal starves the downstream
intersection of car flow, such that Q(z7) > Q(z7). An upper bound on g, for these
cases is found by comparing (4.6a) to (4.5), giving:

1—- G

B < h SC : (4.8)

It is further required that ¢, not exceed the capacity of a single lane, giving an
upper bound of:

qy < — - —. (49)

The bounds given by (4.7)-(4.9) are displayed in Figure 4.5 for a range of %
and the fixed inputs specified in the figure’s caption.® The figure’s lightly shaded
region denotes the combinations of ¢, and % for which car flow is constrained by
the intersection’s traffic signal; i.e., the approach’s car-carrying capacity is Q(z7),
as given in (4.6b). As % increases, the pre-signal becomes more prone to starving
the downstream intersection of car flow, meaning that the constraint on this flow
can become Q(z7 ) as given in (4.6a). Cases in which a shared lane is still preferred
to running an exclusive bus lane over the entire approach lie in the figure’s darkly
shaded region. In these cases, one can reduce the & so that Q(z]) = Q(z7) and the
extra green at the intersection can be given to other approaches without penalizing
cars on Approach 1. Therefore, both the light and darkly shaded regions denote the
domains of application of pre-signals.

5Delaying select buses as described above could still, in some instances, produce voids in car traffic
that pass through the intersection and thereby waste capacity. However, this would only occur if
the green time for the approach (e.g., Approach 1) is long. Kinematic wave analysis (Lighthill &
Whitham, 1955) shows that the problem need not arise for % < 0.45.

SNote that the value of Rpg is conservative and includes the start-up lost time of cars at the
pre-signal.
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Figure 4.5. Upper bounds on ¢, such that higher car-carrying capacity is achieved
by continuously shared lanes with pre-signals (L; = 2, s = 1800 cars/hour, Rpg = 10
sec and p = 2)

4.2 Congested Bottlenecks: Intermittent Sharing
versus Exclusive Bus Lane

Consider now a congested bottleneck, such that the middle link in Figure 3.1(a) or
3.1(b) is engulfed in a queue from downstream. Suppose first that the link’s median
lane is given over for the exclusive use of buses. The queued (i.e., constrained) flow
downstream of the link is gz per lane. With its exclusive bus lane, the middle link
could become a critical bottleneck, such that the head of a new car queue would form
at location x;. The downstream queue would therefore be starved of flow, which
would diminish car flow through the system. The capacity of what would now be a
critical bottleneck is given by (4.1).

However, it is also possible that an exclusive bus-lane conversion would not con-
strain the middle link’s flow below ¢4 per lane (e.g., if g4 is small). In that case, the
constrained flow that departs the middle link would simply be:

Qzs) = (L —1)-qa. (4.10)

From (4.1) and (4.10) the upper bound on ¢, for which (4.10) governs and the
exclusive conversion does not starve the downstream queue can be determined:

(Lp, —1) - s,
L-1
If (4.11) holds, the exclusive conversion does no damage. Otherwise, the damage
by the conversion can be lessened by instead sharing the middle link’s median lane
between cars and buses. Recall that this sharing could be done continuously if ¢ is
short. Assuming that the fundamental diagram for a lane of the critical bottleneck

qa < (4.11)
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is as in Figure 4.6 and a geometry of the critical bottleneck as in Figure 3.1(a), the
average delay that a bus would encounter (dj) from traveling on the median lane
mixed with cars can be found using kinematic wave theory:

o, (wkj—ga-(L-1) 1
dy = 0 ( P U). (4.12)

where k;, w and v are as shown in the figure. The bus delay for a critical bottleneck’s

geometry as shown in Figure 3.1(b) can be found in a similar manner, again by using
kinematic wave theory.

Flow (veh/hr)

[0
E)

W=15 km/h

V km/h

> density (veh/km)
50

Figure 4.6. Fundamental diagram for the critical bottleneck

For illustration, Figure 4.7 shows the bus delay as found in (4.12) versus the
length of the critical bottleneck for three different values of ¢4. Using a figure of this
kind, city officials can decide whether to use continuous or intermittent sharing on a
congested bottleneck, depending on the level of bus delay they deem acceptable.

If judged necessary, the sharing in the middle link could be done in intermittent
fashion. With this intermittent treatment, the middle link’s flow would be:

Qaz) = (L=1)-qd = L gy (4.13)

where the second term represents the fraction of the shared lane’s capacity that is

unavailable for car flow. Thus from (4.13) and (4.1), the the upper bound on g, for
which intermittent sharing makes sense is obtained:

qb<sn-(qd-(L—l)—sn-(Ln—l)' (4.14)

dd - p
For illustration, Figure 4.8 displays these bounds for a range of ¢; and with other
inputs specified in the figure’s caption. Note how the bounds increase with increasing
qq- This is because lower flow constraints from downstream enable more cars to

discharge from the critical bottleneck with an intermittently shared lane.
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4.2.1 Special Case: Signalized Intersections with Type II
Conditions

Intermittent lanes along with pre-signals can be readily applied to intersection ap-
proaches. For illustration, refer to Figure 4.3(a) and imagine that its northbound
lanes on Approach 2 are engulfed by queues from downstream. Further suppose that
the lightly-shaded lane segment on Approach 1 is intermittently shared. Car queues
would therefore be cleared of that lightly-shaded segment prior to any bus entering
it. These periodic restrictions could diminish the car-carrying capacity of Approach
4 since cars in its three through-moving lanes have to merge into 2 lanes on Approach
2. The car-carrying capacity of Approach 4 would then be given in equations com-

parable to those of (4.6). The upper bounds on ¢, for Approach 1 would again be
defined by (4.7)-(4.9).
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Chapter 5

Implementation Issues

So far the work has focused on theoretical analysis of shared lanes implemented at
isolated locations. Discussion in Section 5.1 will relax the assumption of isolated
locations and focus on the deployment of shared lanes at the level of an entire bus
route. Simulation is used in Section 5.2 to assess the savings in car delays that would
be realized by deploying shared lanes in select bottlenecks of a real highway network.
Further practical issues are discussed in Section 5.3.

5.1 Route-Level Considerations

Consider a bus route that passes through a series of N critical bottlenecks, like the one
shown in Figure 5.1. The strategies of Section 4 can be applied to all the bottlenecks
of the route as its bottlenecks become active or engulfed in queues. An operator
needs to know which lane-sharing strategies are to be deployed at each bottleneck,
so that each bottleneck is equipped with the suitable instrumentation, lane striping,
etc. To this end, the following discussion presents an example of how to make these
determinations.

At the start of a rush, a continuously shared bus lane could be deployed within
each of these bottlenecks to maximize their car-carrying capacities. Car queues that
form at any of the bottlenecks would initially be small, local affairs. However, the
queues could grow long at a rapid pace because a lane on each of the route’s N
links would have been converted to bus-use only. Since these converted lanes would
be underutilized (the g, is small), the road looses space for storing queued cars (see
Daganzo & Cassidy, 2008).

Hence, the goal is to determine which critical bottlenecks become engulfed in
queues from downstream. These would have to be equipped with suitable infrastruc-
ture (e.g. control and information technologies) to facilitate other bus-lane treatments
during their engulfment periods. It is not essential to predict these periods precisely.
These would surely vary from one day to the next due to random variations, and would
therefore be determined each day via real-time measurements. Coarse predictions us-
ing kinematic wave theory (Lighthill & Whitham, 1955; Richard, 1956; Newell, 1993;
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Daganzo, 1995; Daganzo & Cassidy, 2008) would therefore suffice. For simplicity, one
might assume that the physical length of each bottleneck, ¢, is negligible relative to
that of the total route.

The analysis would proceed through time. Each time a downstream queue is
predicted to engulf a bottleneck, its capacity would be assessed under other bus
lane treatment options in the ways previously described. Thus, comparison of (4.1)
and (4.10) would determine the suitability of replacing the bottleneck’s continuously
shared lane with an exclusive conversion. If this replacement would starve the down-
stream queue of flow, the suitability of instead using an intermittently shared lane for
the engulfment period would be determined by comparing (4.13). Once the type(s)
of treatment for the bottleneck are selected and its resulting capacity estimated, the
kinematic wave analysis would continue. Assessments would end when all bottleneck
queues dissipate at the end of the rush.

5.2 Case Study

The implementation of these strategies on a planned bus rapid transit network in
Amman, Jordan is now discussed. This planned BRT route goes through many
major bottleneck locations within the urban core of the city. While at some of these
locations the city is looking to invest in new infrastructure (e.g. building new lanes) to
give priority to buses, at many others priority will be given by converting an existing
car lane for the exclusive use of buses. The case study location reflects the latter case.

Consider the portion of road network in Amman shown in Figure 5.2(a). The bus
route labeled 1 (shown with solid arrows) runs through Junction II, where the two
median lanes pass beneath a traffic circle, while the two outside lanes form an at-
grade junction with that circle. The route continues through a signalized intersection,
labeled Junction I, where buses turn left. Route 2 on the network runs in the opposite
directions, as shown by dashed arrows in the figure.

If an existing car lane is converted for the exclusive use of buses southbound cars
on Route 1 will be forced to use only one lane at junction II, see Figure 5.2(b).
When demand is high this will cause the queues to grow and potentially spillover to a
nearby signalized intersection that exists just to the north of junction II. At junction
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I, dedicating a lane for bus use only will force left-turning cars to discharge from the
signal using only one lane (since only one lane will be available to receive left-turning
cars downstream). This is especially problematic since field observations at this site
show that the southbound car demand is greater for left-turning movements than for
through-moving or right-turning movements. If the left-turn queue grows long, it can
also block through-moving cars at junction I, further reducing car discharge from the
signal.

The proposed treatment for Route 1 is shown in Figure 5.3(a). It is proposed
that the bus lane’s exclusivity be terminated at the location labeled “A”. The lightly-
shaded downstream portion of the median lane would operate as an intermittently
shared lane, such that cars turning left at Junction I would enjoy periodic access
to that segment. The intermittently shared lane will be terminated at location “B”,
allowing cars from the traffic circle at Junction II to merge into the median lane. Left-
turning buses and cars would eventually enter their designated lanes at the location
labeled “C”. Transient car queues may form at this location each cycle as cars merge
into their single designated lane, and buses would incur modest additional delays as
a result.

On Route 2, converting an existing car lane for the exclusive use of buses will
reduce car capacities by 50% for westbound through-moving and left-turning cars at
junction I leading to longer queues, see Figure 5.2(b). The queue of cars formed as
a result could also block the free right-turn lane, reducing the flow of right-turning
cars. Hence all cars travelling through junction I will experience increased delays.
If a car lane is converted to an excusive bus lane at junction II, only one lane will
remain available for through-moving cars, halving the capacity for that movement.
This could cause queues to grow and spill over to junction I, further inhibiting car
operations also at the latter location.

The proposed treatment for Route 2 is shown in Figure 5.3(b). It does not entail
the use of shared lanes. Rather, a pre-signal accompanies the termination of an
exclusive bus lane at the location labeled “D”, and the exclusive bus lane is resumed
at location “E”. Though this treatment is not novel (i.e., it is akin to those already
used in London), its impacts on cars is assessed nonetheless, since this kind of analysis
appears to be absent from the literature.

5.2.1 Simulation Models and Inputs

The benefits of the proposed strategies were measured as the average delay savings
to cars when compared to using exclusive bus lanes that would run through the
entire case-study site. Since the lane-changing behavior of drivers can lead to lower
discharge flows from the bottlenecks than theoretically predicted, the benefits of these
strategies may be over predicted if obtained via deterministic models. The predictions
were therefore generated using the Aimsun microscopic, stochastic simulation model
(AIMSUN;, 2010.) in an effort to realistically represent car lane-changing behavior on
the network. The existing geometry of the case-study site and the car speeds were
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known. Assumptions were made in regard to driver behavior (e.g., acceleration rate,
reaction time, etc.). The predictions of the Aimsun model were compared against
the macroscopic and deterministic Cell Transmission Model (CTM) (Daganzo, 1995)
which is a good approximation of kinematic wave theory (Lighthill & Whitham,
1955). This CTM model is easier to build, and requires less input data. As will be
shown, the two simulation models predict delays that are qualitatively similar, though
the numeric values predicted by each simulation model differ somewhat. Also, it is
important to note that when the CTM model predicts that a benefit will be gained
from using shared lanes, the Aimsun model predicts this as well. This suggests
that when impacts cannot be determined directly from field experiments and when
creating a detailed microscopic simulation is too costly, the CTM method can be used
to provide insights into operation. For example, the CTM can still unveil cases in
which it would be beneficial to implement shared lanes instead of exclusive bus lanes.

Table 5.1. Inputs to the simulation models
Peak southbound demand from the overpass on Route 1 (cars/hour) | 500
Off-peak southbound demand from the overpass on Route 1 | 300

(cars/hour)
Percentage of southbound cars on route 1 turning left at junction I | 66
Cycle length for signal at junction I (sec) 120

Green time for southbound left-turning cars on Route 1 at junction | 42
I signal (sec)
Green time for westbound cars on Route 2 at junction I signal (sec) | 20

Simulations were performed for an array of scenarios. Each simulation was com-
posed of a 1-hour peak (of varying demand for southbound and westbound cars on
Routes 1 and 2, respectively) followed by 4 hours of off-peak traffic (with a fixed
demand of 500 southbound cars/hour for Route 1 and 400 westbound cars/hour for
Route 2 which are commensurate with present-day levels). Other inputs to the analy-
sis are listed in Table 5.1. Even though the signal at junction I is currently actuated,
it was observed that during peak hours the duration of the green times and cycle
lengths were very nearly constant. Therefore, the signal was modeled as a pre-timed
one.

For each set of inputs, a simulation was run for the treatments shown in Figure 5.3
and again for a treatment in which the median lane is given over for the exclusive use
of buses throughout the network (Figure 5.2(b)) using both the Aimsun and CTM
simulation methods. In both methods, the small car delay caused due to merging at
location C on Route 1 (Figure 5.3(a)) and due to merging at location E on Route 2
(Figure 5.3(b)) were assumed to be negligible.

The schematic of the CTM for both Route 1 and Route 2 are shown in Figure 5.4,
and the assumed triangular fundamental diagram for the CTM is shown in Figure 5.5.
A bus demand of ¢, = 12 buses/hour was used for all routes, which is the bus flows
that are initially expected to be seen in the Amman BRT network. Also, to observe
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how an increase in bus demand would affect the predicted benefits, a bus demand of
¢» = 20 buses/hour was simulated. As a result, it was seen that the findings of the
case study is robust to a small increase in bus demand.

Bus Lane

Left Turn

Tunnel Upstream Car Lane

Upstream Car Lane Through

Overpass

(a)

Bus Lane Left Turn and Through

-

Upstream Car Lane Right Turn

(b)

Figure 5.4. Schematic of cell transmission model (not to scale) on (a)Route 1 ; and
(b) Route 2

Flow (veh/hr)

1800 |

60 km/h

density (veh/mi)

Figure 5.5. Fundamental Diagram used for Cell Transmission Model

5.2.2 Predictions for Route 1

Figures 5.6(a) and (b) shows the delay savings for Route 1 by using shared lanes
as predicted by Aimsun and CTM, respectively. These results are averages across
all cars over the entire 5-hour simulation period and are given for various peak-hour
demands. The delay savings are significant. For example, for present-day peak-hour
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car demand, (900/hour) and for ¢, projected in the short run (12 buses/hour) the
average savings is predicted to be 5 min/cars while bus delays are nearly eliminated.
Of course the average savings to those cars that travel during the peak is much larger
than the value given above.

Significant savings in car delays would persist even if bus flows were to increase in
the future. For example, a curve that is nearly identical to the one shown Figure 5.6
applies for g, = 20 buses/hour.

The average delay savings of shared lanes increase as car demand increases with
both methods of assessment. At lower car demand values, when the system is not
much congested, the average delay savings predicted by both methods are very close
to each other. As congestion in the system increases, the microscopic simulation
still predicts high delays, but not as high as the CTM. In the microscopic simulation
when the system is very congested, some of the cars that arrive from the overpass and
that wish to turn left at junction I cannot easily find acceptable gaps to merge into
the left-turning lane. These cars end up queuing in the left-hand through lane, very
near to the intersection, until an acceptable gap becomes available. Through-moving
cars maneuver around these queued cars and discharge through the intersection (with
minimal delay) using the right-hand through lane. However, in the CTM these left-
turning cars force their way into the left-turn lane; this leads to increased queue
lengths which block the through-moving cars. Also, in the microscopic simulation,
when left-turning cars cannot merge into the left-turn lane after a reasonable amount
of time they simply abandon their left-turn maneuver and continue through the in-
tersection, further reducing the average delays that are recorded (These cars may still
have great delays). This causes the CTM to predict slightly higher delays than the
microscopic simulation at these high demands.

5.2.3 Predictions for Route 2

Predicted outcomes for Route 2 are shown in Figures 5.7(a) and (b). Their curves
present the car delay savings versus the fraction of westbound cars that turn right
at Junction I. The bold curve presents predictions for the present-day rush hour car
demand of 1500 northbound cars/hour. For the present-day turning percentage (0.7),
both simulations predict that implementing the ideas will save cars an average delay
of about 2 minutes/vehicle while nearly eliminating bus delays. The second route did
not afford opportunity to reduce car delays via shared lanes. The savings obtained
via the proposed treatments are substantial nonetheless. It is predicted that cars
would continue to enjoy delay savings, though more modest, even if peak-hour car
demand were to diminish in the future. Once again it is found that if bus flows were
to increase to ¢, = 20 buses/hour, the savings would be almost identical to those
shown in Figure 5.7.

From Figure 5.7 it can be seen that with both simulation methods the benefits of
using shared lanes grow as demand increases and shrinks as the right-turn percentage
of cars increases. This makes, sense since increasing right-turn cars decreases the

34



—_
N

—_ =
S N

Average delay savings (minutes)

S N B~ N

700 800 900 1000 1100 1200 1300
Southbound peak demand (cars per hour)

(a)

Average delay savings (minutes)

700 800 900 1000 1100 1200 1300

Southbound peak demand (cars per hour)
(b)
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left-turn and through-moving car demand which in turn reduces the delay of left-turn
and through-moving cars, especially in the case when exclusive bus lanes are used.
However as the right-turn percentage of cars gets too high, demand of right-turning
cars exceeds the right-turn lane’s capacity. In turn, the right-turning car queue grows
longer and blocks the left-turning and through-moving cars as well. Therefore, with
either exclusive bus lanes or shared bus lanes the predicted average delays start to
increase at high right-turn percentages. Microscopic simulation predicts that the
increase in average car delays when shared lanes are implemented is less then when
exclusive bus lanes are implemented. Hence with the Aimsun model, the average
delay savings level off generally at values slightly higher than zero at high right-turn
percentages. However, the CTM predicts that the increase in average car delays
at high right-turn percentages is similar for exclusive bus lane or shared bus lane
implementations. Therefore in the CTM model the average car delay savings stay at
zero. It is also interesting to note that the shared lanes never perform worse than
exclusive bus lanes in terms of car delays, and hence during off-peak periods shared
lane strategies could still be used.

5.3 Technical Details

The technology requirements for deploying shared lanes would be relatively modest.
The technologies used for pre-signals have long been developed and proven in the field.
Continuously shared lanes would need similarly small levels of investment. Perhaps
little more would be needed than suitable signing and pavement markings along with
retractable traffic cones for separating the shared lane from its adjacent regular-use
ones. One might additionally consider the use of semaphores to meter merging near
the upstream and downstream ends of the bottleneck; see again Figure 3.1(a).

Intermittently shared lanes would likely require greater investments in infrastruc-
ture. For example, to restrain cars from entering the shared lane at suitable times,
the system would rely on estimates of bus arrival times (e.g., using on-board GPS)
and the durations required to flush the shared lane of its car queue (e.g., based upon
real-time measurements of the congested flow downstream). Car entries might be re-
strained via changeable message signs and traffic signals. Or, automated mast arms
and even police presence might be required to ensure driver compliance.

Compliance is an important issue. It would influence not only the required levels
of investment in technologies, but also the very efficacy of the ideas. The matter is
therefore discussed further in Chapter 6.
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Chapter 6

Conclusions

This section presents a summary of the major findings of this dissertation and provides
thoughts on possible future research directions.

6.1 Dissertation Findings

This dissertation has presented ideas for providing priority travel to buses while lim-
iting any resulting damage to car traffic. The treatments are deployed only at key
capacity constrained locations, called critical bottlenecks, which limits both the costs
of deployment and the complexities of operation. Specific details depend in part on
the bottleneck’s local operating conditions, but all treatment options seek to seam-
lessly insert cars between buses to minimize waste of bottleneck capacity. The mod-
els indicate that the treatments can produce higher car-carrying capacities for wide
ranges of bus demand. This thesis also looks at applying these theoretical ideas to
real transportation networks. An exact recipe for implementing shared lanes at a case
study location in Amman, Jordan was designed. Simulation analyses conducted on
this case study site unveiled the benefits of these strategies in terms of delay savings
to cars.

This dissertation has shown that even if low bus flows are expected, which often
arises in developing areas with limited public transportation service, it is possible to
provide priority to buses without imparting large disbenefits to cars. These strategies
can be implemented with very little additional infrastructure investment. However the
effectiveness of the strategies depend on driver compliance. Lack of driver compliance
not only could deem these strategies infeasible, but could also lead to concerns about
the safety of their operation. Drivers changing lanes where they should not, or not
yielding for buses at the shared lane entrance points could lead to confusion, or even
crashes. However, Currie & Lai (2008) reported that during the field experiments
conducted for intermittent lanes in Melbourne, Australia no increase in accidents
was observed. While reporting some initial confusion among drivers in the field
experiment of intermittent lanes in Shizuoka, Japan, Sakamoto et al. (2007) stated
that the drivers were behaving as expected by the end of the experiment (which
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lasted 5 days). The authors also reported that as a result of a survey conducted on
residents who live close to field experiment site, the dissatisfaction rate was only 10%.
The findings of these two field experiments that test ideas similar to those presented
here give the author hope that the proposed ideas could be made to work without
increasing the number of accidents and with high public acceptance rates. Therefore,
the author believes that these strategies can help improve the political feasibility of
bus rapid transit systems in many urban environments.

6.2 Future Research Directions

There are several assumptions made in this dissertation which could be relaxed in
the future to provide more accurate insights into the use of shared lanes. These
assumptions will be explained and proposals for relaxing them will be presented in
the following sections.

6.2.1 Perfect Driver Compliance

All of the models and analyses assume that drivers perfectly comply with the regula-
tions required for sharing lanes. Thus, the outcomes presented here may be viewed as
upper bounds on what the shared-lane treatments can achieve. In cities characterized
by undisciplined drivers, compliance might be achieved through coercion; e.g., signals
might be augmented with retractable mast arms, enforcement could be stringent and
fines for violations steep. It is therefore suspected that the ideas could be made to
work in most any city. Still, verification of this conjecture is sorely needed.

This could come via field experiments. It might suffice, at least initially, to con-
duct these experiments on small portions of networks, like the portion analyzed via
simulation in the case study. Lessons learned might dictate that the treatments be
modified or that the prescribed domains of application be scaled downward. In any
event, success in small-scale tests might be leveraged to eventually realize broader,
city-scale deployments. Appendix A presents an example of how these ideas could be
tested in the field without permanent changes to the roadway, including the minimum
amount of data that needs to be collected. In this way, the benefits of these strategies
could be verified before investing in costly infrastructure.

The author remains hopeful that cities can be found where decision-makers are
amenable to field tests of the proposed ideas. The world’s rapid urbanization and
the attendant problems of congestion dictate that these ideas and others like them
receive a chance to succeed.

6.2.2 Merging

This work assumes that the percentage of capacity retained after cars merge into one
less lane with shared-lanes is unknown, and this value is used as a parameter («) in
the determination of the domains of application in Section 4. However there is need
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to estimate realistic values for this input. While a site specific value for a can be
estimated through field experiments, theoretical merging models currently present in
the literature can also be used to determine a feasible range for this parameter. One
such approach can be found in Leclercq et al. (2012) which estimates the capacity
drop at merges. Even if the actual value for o cannot be estimated, a tighter bound
on the value can be determined, which would lead to tighter domains of application
of shared lanes.

6.2.3 Transit Signal Priority at Signalized Intersections

The current work assumes that buses are not provided additional priority at signal-
ized intersections above that provided by shared lanes (with or without pre-signals).
However, the addition of priority schemes (such as active transit signal priority)
could significantly change the analysis. Along with improving average bus speeds,
TSP could also benefit cars traveling in the same direction as the bus since they will
be mixed with buses. A detailed analysis could determine how the addition of TSP
can affect both shared lanes and ordinary bus conversion strategies, and if it would
lead to a larger or smaller domain of application of shared lanes.

Also, in some cases providing transit signal priority could negatively affect the
operation of the pre-signal since coordination is necessary between the pre-signal and
the main signal to ensure that green time for cars is not wasted at the main signal.
This would require constraints in the operation of the main signal which ensures that
while providing priority to the bus, the car operation is not made worst off. Ideas
from Christofa & Skabardonis (2011); Xuan et al. (2011) can be used and synthesized
to develop such transit signal priority strategies at consecutive signals that minimize
the negative effects on cars.

6.2.4 Demand

The analysis assumes that the demand for buses and cars is fixed. However, especially
with the improvement in the bus service, mode shifts from cars to buses are likely
to occur. This could lead to reduced car congestion, which would result in lower car
delays. However, the higher bus demands might lead to more frequent bus service.
If these effects are included, the domains of application of shared bus lanes could be
much different than predicted in this paper. An algorithm to systematically analyze
these conflicting effects could make the results of this dissertation more accurate.
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Appendix A

Future Work: Description of Field
Experiments

Here an overview of field tests that can be conducted on the case study site are
presented. The goal of this appendix is to provide readers with ideas on how shared
lanes can be tested in simple and relatively inexpensive ways without posing risks to
travelers. These experiments would enable quantification of the effectiveness of the
proposed strategies in real settings. This knowledge could then guide decision-makers
in their ultimate choices of bus-lane design.

How experiments could be carried on Route 1 is described first. The experimental
design for Route 2 is described thereafter. The experiments could be conducted for
both routes simultaneously. Or, the tests could be separately conducted for each
route on separate days. In either case, experiments for each route would ideally be
performed over multiple days during the peak hours. A single bus (or similarly large
vehicle) would be needed for these experiments. This vehicle would cycle through the
test site at H-minute headways.

A.1 Routel

The car demand is highest for this route during the afternoon rush from 5:00 to 6:00
pm, meaning that experiments should be conducted during periods that span this
hour. Traffic cones could be used at the locations shown in Figure A.1(a) to emulate
the presence of an exclusive bus lane on the southbound approach to junction II. The
physical length of this faux bus-lane could be relatively small; 300 ft or so would
suffice. Only the bus would be permitted entry into this faux lane (at its upstream
end). Entry could be controlled by means of a mast arm, perhaps operated by the
bus driver via an on-board remote or manually by a police officer.

Traffic cones starting a short distance (100 ft or so) downstream of location A
would be used along the length of the intermittent bus lane to separate it from
adjacent car lanes. The cones would continue until location B, for a distance of
approximately 1200 feet. The periodic prohibition for cars at location A could be
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emulated with the aid of a police officer. Whenever the officer sees an approaching
southbound bus, the officer would stop cars from entering the median lane until
the end of the next green for southbound left turning cars'. Once the bus enters
the intermittent bus lane, the police officer would allow left turning cars (only) to
follow behind the bus. Signage designating the intermittent lane for left turning cars
only would be required; and the control enacted by the police officer could easily be
automated if the strategy were to be adopted permanently.

The resumption of the exclusive bus lane downstream of junction I in the east-
bound direction would again be emulated with the use of traffic cones. This faux bus
lane would be started a short distance downstream of the junction I, at a distance
of approximately 200 feet, and continue for a nominal distance of 300 ft or so. Once
again, only the bus would be permitted entry into this faux lane (at its upstream
end), perhaps via a mast arm and an on-board remote.

A.1.1 Data to be Collected During the Experiment

The queue discharge flows of southbound cars at both junction I and junction IT would
be collected using video cameras. The sampled discharge rates would be compared
against those that presently occur at the junctions in the absence of any bus priority
strategies. Again, it is expected that these comparisons will unveil only small differ-
ences. It would also be useful to measure the discharge rates at both locations- at
least for a few cycles - that occur when the median lane is completely closed; again
to verify the damage that would be done to cars by extending the bus lane over the
entire westbound approach.

An observer on-board the bus will measure the time it takes to travel from the
downstream end of the faux bus lane to junction I during each trip to verify that only
modest bus delays would arise from these strategies.

A.2 Route2

The car demand is highest for this route during the morning rush from 7:30 to 8:30
am. Thus, experiments for this route would occur during these times (and possibly
others). Traffic cones could be used at the locations shown in Figure A.1(b) to
emulate the presence of a static bus lane on the westbound approach to junction I.
The physical length of this faux bus lane and its other features could be as described
in Section A.1.

The pre-signal at location D in Figure A.1(b) could be emulated with the aid of
a police officer. The bus driver would voluntarily halt upon arriving to that location
(via the faux bus lane). In the presence of the stopped bus, the police office would
wait for the traffic signal at junction I to turn green for westbound traffic. The officer

I This is approximately how long it will take for the car queue in the intermittent lane to clear
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Figure A.1. Field experiment design for the Amman network: (a) Route 1; and (b)
Route 2.
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would then instruct the cars stuck in the upstream portion of the queue to remain
stopped - but just long enough to allow the bus to move forward undisturbed.

A.2.1 Data to be Collected During the Experiment

The queue discharge flows of westbound cars at junction I could be collected using
video cameras. (Car delays for any demand levels can be assessed once these discharge
rates are field-estimated). The sampled discharge rates would be compared against
those that presently occur at junction I in the absence of any bus priority strategies.
It is expected that these comparisons will unveil only small differences. It would
also be useful to measure the westbound discharge rates - at least for a few cycles
- that occur when the median lane is closed at junction I. This would verify the
extreme damage that would be done to cars by extending the bus lane over the entire
westbound approach.

Finally, an observer on-board the bus (possibly the driver) would measure the time
required for the bus to travel from the pre-signal to junction I during each trip. It is
expected that these data will confirm that the proposed strategy of using a pre-signal
will impart only modest delays to buses.

Videos would also be taken of queued cars to estimate both: i) the speed of
kinematic waves that travel through car queues; and ii) the jam density of stopped
cars. These estimates would further assist in predicting the physical extents of car
queues once some lanes have been given over to buses.
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