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Abstract – Topological phases of matter are ubiquitous in crystals, but less is known about
their existence in amorphous systems, that lack long-range order. In this perspective, we review
the recent progress made on theoretically defining amorphous topological phases and the new
phenomenology that they can open. We revisit key experiments suggesting that amorphous topo-
logical phases exist in both solid-state and synthetic amorphous systems. We finish by discussing
the open questions in the field, that promises to significantly enlarge the set of materials and
synthetic systems benefiting from the robustness of topological matter.

Introduction. – The quantum Hall state, the first
topological phase ever observed, was discovered in crys-
talline heterostructures [1], even though its existence does
not require an underlying crystalline lattice. Indeed, a two
dimensional free electron gas under a perpendicular mag-
netic field displays Landau levels. Its associated metallic
topological edge states, and quantized conductance arise
in a confining potential, with no assumption of an un-
derlying crystalline lattice. The quantum Hall displays a
continuous translational invariance, and the correspond-
ing electron’s momentum p enters the parabolic disper-
sion relation p2/2m, with m being the electron’s mass. By
promoting m to the effective mass of the electron within
a medium, the parabolic dispersion and its correspond-
ing Landau levels can be thought of as arising from the
long-wavelength limit of a lattice tight-binding crystalline
model [2]. With this notion of translational invariance in
place, the condensed matter community discovered how
to dispose of magnetic fields to define topological states in
crystalline systems [3], establishing topological phases in
crystals of any dimension, irrespective of their insulating,
conducting or superconducting nature [4–6].

Topological phases do exist in the absence of long-range
periodicity, as we are not forced to regularize a continuum

(a)All authors contributed equally to the writing of the manuscript.
(b)adolfo.grushin@neel.cnrs.fr

theory using a periodic lattice. This observation is at the
heart of this perspective article. Our goal is to summarize
the recent progress made to understand how topological
phases emerge on the largest class of non-crystalline sys-
tems, amorphous systems [7–10]. Characterizing topol-
ogy in amorphous matter, without the convenience of
Bloch’s theorem, has lead to the emergence of new phe-
nomenology, unique to amorphous matter. Topology re-
mains largely unexplored in this class of solids, which may
offer different functionalities compared to crystals.

We start by discussing the main properties of amor-
phous and topological matter, followed by a review of the
progress made in combining these two fields. We finish
by summarizing the experimental status and offering some
perspectives on the main open questions. For a more tech-
nical review we refer the reader to Ref. [11].

Basic properties of amorphous matter. Amorphous
materials are defined by their lack of long-range order [12].
However, they display short- and even medium-range or-
der, as well defined nearest and next-to-nearest neighbour
distances, respectively (Fig. 1 (a-c)). The short range or-
der manifests itself as preferred bond lengths and angles,
peaked around the values of its crystalline counterpart.
Due to the short range order, amorphous materials have
a well defined coordination environment with a distinct
number of nearest neighbours. In solid state systems this
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is a result of the electronic configuration of the atoms in-
volved in bonding. Hence, amorphous solids remain lo-
cally ordered [12,13].

Elucidating the atomic structure of amorphous solids is
necessary to understand most of their electronic proper-
ties [12,14]. The disordered atomic positions in amorphous
solids result in diffuse rings in the diffraction pattern and
a lack of sharp Bragg peaks characteristic of crystalline
materials [12]. The absence of discrete crystalline symme-
try, in favour of local short range order and well defined
diffraction rings demonstrates that amorphous systems are
isotropic on average (see Fig. 1) [15–19]. Fluctuations of
the bond lengths account for the broadening of the rings.
The radii of the diffraction rings and their weight can be
used to determine the structure factor and estimate an av-
erage bond distance and coordination number of the amor-
phous structure [20, 21]. The absence of Bragg peaks in
the diffraction pattern, and thus the absence of long-range
order, determines which solids are amorphous.

Amorphous materials are commonplace in science and
technology [12]. Their applications range from common
objects such as window glass to technological devices like
computer memories or solar cells [22,23]. Amorphous ma-
terials are advantageous for technological applications as
they can be grown under less stringent conditions than
single crystals require. In solids state systems, they can
be grown in a range of compositions unlike typical crys-
talline compounds. Transitioning between the amorphous
to the crystalline state in a controlled and reversible man-
ner, for example using current or laser pulses [24], is a
useful and defining property of phase-change materials.
These are commonly used in computer memory-storage
devices [22, 23]. Additionally, amorphous materials play
a major role in fundamental science e.g. as coatings in
gravitational waves detectors at LIGO [25].

Similarly to crystals, amorphous materials can be insu-
lators, semiconductors, metals, and superconductors [12].
Amorphous oxides used in glassware, such as silicon oxide
or lead glass, are century-old insulators. Amorphous semi-
conductors, such as silicon or germanium, have also been
extensively studied, due to their possible use in electronic
devices [13]. Amorphous metals are exceptionally hard
and can display unique magnetic properties [26]. Amor-
phous superconductors can also be synthesised [27], as
conventional superconductivity is robust to disorder, an
observation known as Anderson’s theorem [28]. Remark-
ably, the critical superconducting temperature has been
observed to be higher in several amorphous materials com-
pared to their crystalline counterpart (Fig. 1(d)).

The existence and robustness of topological phases
poses the natural question of whether they can be realized
in amorphous systems. Before reviewing how topological
amorphous phases were first achieved [7–10] and extended,
we revisit the main properties of topological phases.

Basic properties of topological matter. The discovery
of the quantum Hall effect and its quantized Hall conduc-

tance [29–31] introduced the field of topological matter;
phases of matter characterized by their metallic boundary
states and quantized responses to external fields, which
are robust against impurities and local perturbations [32].
The quantum Hall effect is an example of a strong topo-
logical insulator [4,5], phases of matter where the bound-
ary states are protected by local symmetries. These sym-
metries are the time reversal-, particle hole-, and chiral
symmetry, the latter being the product of the other two.
These three symmetries can be combined in ten different
ways, defining the Altland-Zirnbauer classification of first
quantized free fermion Hamiltonians [33,34], leading to the
full classification of strong topological insulators and su-
perconductors [35–39]. There are five non-trivial Altland-
Zirnbauer classes, classes that can host topological phases,
in every dimension, each defined by a topological invari-
ant, either integer valued Chern or winding numbers or
a Z2 invariant [37], characterizing the phase. Two states
are defined to be in the same topological phase if they
can be adiabatically perturbed into one another smoothly
without closing the conduction gap and not breaking the
underlying symmetries, while keeping the number of or-
bitals fixed during the process.

Translational invariance in crystal lattices allows use of
Bloch’s theorem to define crystal momentum, simplifying
the characterization of the topological phases and yielding
closed-form momentum-space expressions of the topologi-
cal invariants. For example, the Chern number [40] char-
acterizing the quantum Hall phase in two dimensions (2D)
is evaluated as the integral of the Berry curvature [41] over
the first Brillouin zone.

Electronic topological phases extend beyond strong
topological insulators and superconductors, including
weak [42–44]– and crystalline [45]– topological insulators,
and topological metals [6]. Weak topological insulators
can be constructed by stacking strong topological insula-
tors, giving rise to symmetry protected surface states per-
pendicular to the stacking direction. Crystalline (point
group) symmetries, including rotations and reflections,
can protect topological states called higher order topo-
logical insulators which host symmetry protected states
on those surfaces which are invariant under the crystalline
symmetry. Crystalline symmetries simplify how to iden-
tify topological phases, through the concept of symmetry
indicators [46–49]– eigenvalues of point group operators
whose products determine topological invariants.

Although translation invariance simplifies describing
and classifying topological phases, it is not necessary for
their existence. For example, strong topology is protected
by local symmetries, irrespective of the lattice details.
Non-trivial topology only requires the existence of a mo-
bility gap, and not a spectral gap. However, characterizing
topological phases of matter far from the crystalline limit,
notably for non-crystalline lattices, requires new tools, as
the known momentum space expressions for topological in-
variants are no longer applicable. We describe these tools
and the models introduced to study amorphous topologi-
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Figure 1: (a) Crystalline lattice and corresponding structure
factor with sharp Bragg peaks. (b) Amorphous lattices with
local order result in broad diffraction rings. (c) Quasicrystals
break translational invariance but retain long range order, re-
sulting in sharp Bragg peaks. (d) Local Chern marker of the 2D
threefold-coordinated Weaire-Thorpe model [50]. The bulk av-
erage equals −1, indicating a nontrivial Chern insulator phase.
(e) Configuration-averaged spectral gap, Eg, of a 2D quantum
spin Hall model on a structurally disordered trigonal lattice
as a function of disorder strength σ and spin-orbit coupling
λ. The quantum spin Hall (QSH) and normal insulator (NI)
phases are labelled according to the value of the spin Bott
index. Adapted from Ref. [51]. (f) Superconducting critical
temperature of different amorphous and crystalline solids [52].

cal matter next.

Theory of amorphous topological matter. –

Overview. There are a variety of amorphous models
displaying topological phases, ranging from strong topo-
logical states to spatial-symmetry-protected topological
phases. Amorphous strong topological states include 2D
Chern insulators in class A [7–10, 50, 53–56], 2D and 3D
time-reversal invariant topological insulators in class AII
[7,51,55,57–59], and 2D time-reversal breaking topological
superconductors in class D [60,61]. Amorphous structures
also support phases a priori protected by crystalline sym-
metries, such as 2D reflection-symmetry-protected topo-
logical insulators [62], 2D and 3D higher-order topological
insulators [63–65], 2D and 3D obstructed insulators [66],
and 3D topological metals [67]. While structural disorder
is detrimental to some of these states, it can also induce

nontrivial phases when starting from a trivial crystalline
state [51,64,67], and it can give rise to new phenomenology
intrinsically associated with amorphous topological mat-
ter and phase transitions [55,56,62,66,67].

A common starting point is a crystalline tight bind-
ing Hamiltonian known to host a topologically nontriv-
ial phase. The hopping terms are generalized to ac-
count for arbitrary angles and distances between sites.
For example the angular dependence can be modelled us-
ing the Slater-Koster parametrization [68], and the rea-
dial dependence can be accounted for by an exponen-
tial [7, 55, 56, 61–64, 67, 69] or polynomial [51] decay with
the radial distance. There are several ways to introduce
structural disorder, including lattices with uncorrelated
random sites [7,55,56,60–64,67,69], more realistic models
which preserve the local coordination number [8,50,53,66],
and lattices with controllable deviations from the crys-
talline limit [9, 10,51,64].

Characterizing topology without translational symmetry.
Among the different methods to characterize topological

phases far from translationally invariant limits topologi-
cal markers are a wide-spread tool. Topological marker
is a unifying term that includes the local markers [70–77],
the spectral localizers [78–81], the nonlocal (spin) Bott in-
dices [67,82–90], and similar generalizations of the winding
of the quadrupole and octupole moment [63,64]. Markers
characterizing the two-dimensional quantum Hall phase
are especially well explored, including the local Chern
marker [70, 71] and the nonlocal Bott index [84]. The
local Chern marker [70, 71] is the Fourier transform of
the Chern character. For a crystalline lattice it quan-
tizes to the Chern number at each lattice point. For non-
crystalline lattices quantization requires averaging over a
large enough region, where the size of the region is model
dependent [71,74], (see Fig. 1(d)). The chiral and Chern-
Simons markers [74] are local markers analogous to the
Chern marker in odd dimensions. The chiral marker char-
acterizes the Z invariant topological phases with chiral
symmetry, whilst the Chern-Simons marker characterizes
Z2 invariant phases with either time reversal or particle-
hole symmetry, depending on the dimension. Besides the
topological markers, there also exist single k-point for-
mulas to determine the Chern and spin Chern numbers
[91,92].

Topological states often display a characteristic trans-
port or electromagnetic response, such as quantized longi-
tudinal conductance, the Hall conductivity, and the Wit-
ten effect [69, 93–95], which can also be used to char-
acterize the topological phase. The local markers in
Refs. [76,96] is for example based on the local Hall conduc-
tivity measured in the bulk of the system. Alternatively,
the scattering matrix can determine topological indices
without relying on the Hamiltonian eigenstates [97].

Topological phases can be detected by the presence of
anomalous boundary states in the local density of states
calculated with open boundary conditions [4, 5]. Neural
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networks can also detect non-trivial topology, by efficiently
learning features associated with topology from for exam-
ple the wavefunctions [57], and the flow of the entangle-
ment spectrum [98]. Other approaches include the effec-
tive Hamiltonian [50, 99], symmetry indicators [50], and
the structural spillage [100], which take advantage of the
gap closing and band inversion in a topological phase tran-
sition. The effective Hamiltonian Heff is defined as the in-
verse of the Green’s function of the system projected into
plane waves [50,99]. If the spectral gap of the total Hamil-
tonian closes, so does the spectral gap of Heff , allowing the
detection of topological phase transitions. Therefore, one
can construct topological invariants defined in terms of
Heff , which only change when the full Hamiltonian under-
goes a phase transition. Some amorphous models display
average local symmetries which are used to construct sym-
metry indicators based on the symmetry properties of the
filled states [50]. The structural spillage is a topological
indicator that measures the amount of band inversion be-
tween an amorphous system and a crystal [100], where the
knowledge of the topological state of the crystal is used to
determine the topology of the amorphous system.

Amorphous models with strong topology. The Chern
insulator was the first amorphous topological phase to be
characterized [7, 9, 10, 50, 53, 54]. Ref. [7] introduced a
random lattice implementation of a model that displays
a Chern insulator phase on a square lattice. The ran-
dom lattice exhibits a gapped topological phase charac-
terized by a nontrivial Bott index, edge states, and a
quantized longitudinal conductance, which are all hall-
marks of a Chern insulator, where the nontrivial phase
is separated from trivial atomic insulators by bulk gap
closings. There exists a similar random lattice implemen-
tation of a quantum Hall state, but in the presence of a
magnetic field [101]. The three- and fourfold-coordinated
Weaire-Thorpe amorphous lattices [13] with complex in-
trasite hoppings [50], provide a more realistic model for
covalently-bonded amorphous solids. The local symme-
tries of these models makes it possible to compute sym-
metry indicators analogous to the ones defined for crystals
[102]. These symmetry indicators predict a Chern insu-
lator phase, which is confirmed by the presence of edge
states, the nontrivial local Chern marker, (see Fig. 1(d)),
and the effective Hamiltonian [50]. Amorphous Chern
insulators are also present in artificial systems, such as
mechanical metamaterials [8], gyromagnetic photonic lat-
tices [9, 10, 103, 104], and magnetic impurities on the sur-
face of topological insulators [53]. The Chern insulator
phase also survives in an atomic liquid, defined via tight-
binding molecular dynamics, which not only lacks long-
range order, but has thermally moving atoms [54]. Under
an external magnetic field, Ref. [105] realized the quantum
Hall effect arising from Landau levels in a system whose
microscopic lattice is amorphous.

Amorphous quantum spin Hall insulators [7, 51, 58, 59,
98, 106] are characterized by a nonzero spin Bott index

and edge states carrying a quantized 2e2/h conductance.
Ref. [7] realized a quantum spin Hall phase by placing
the Bernevig-Hughes-Zhang model [107] on a random lat-
tice. Ref. [98] studied a similar model and calculated its
topological phase diagram using a neural network algo-
rithm that learns the flow of the entanglement spectrum.
Refs. [58, 59] performed a realistic modelling of amor-
phous monolayer Bismuth using density functional theory,
showing that the topology of the crystal survives in the
amorphous structure. Based on both tight-binding and
density functional theory calculations, Ref. [100] showed
that the amorphous Bismuth bilayer remains topologi-
cal, as indicated by the structural spillage and the con-
ductance. Ref. [51] demonstrated a structural-disorder-
induced quantum spin Hall phase, constructing a phase
diagram as a function of spin-orbit coupling and disor-
der strength, by modelling the disorder by Gaussian de-
viations from an initial triangular lattice. For a range
of parameters where the initial crystal is a trivial insula-
tor, the disorder decreases the bulk gap and favours the
topological phase (see Fig. 1(e)), as happens in the onsite-
disorder-driven topological Anderson insulators [108,109].

Amorphous structures also display 3D time-reversal-
invariant topological insulators [7, 57, 69]. Ref. [7] de-
scribed a 3D random lattice model with exponentially-
decaying hoppings that, for appropriate onsite energy
M and range of the hopping r0, displays surface states.
Ref. [69] further characterized the r0 −M phase diagram
of the same model, and found that the phase with surface
states features the Witten effect—due to the axion electro-
magnetic term in the action, a magnetic monopole binds
a half-odd integer electric charge, forming a dyon [93–95].
Moreover, Ref. [57] studied a discrete random lattice typi-
cal of quantum percolation theory: a 3D cubic lattice with
nearest neighbor hoppings whose sites are occupied with
a given probability p, which controls the number and size
of vacancies. The analysis of the zero-energy wavefunc-
tions with a convolutional neural network show that the
topological insulator survives until p ∼ 0.5.

Finally, Refs. [60, 61] have reported gapped time-
reversal-breaking 2D amorphous topological superconduc-
tors in class D. Ref. [60] studied a Shiba glass, an en-
semble of randomly distributed magnetic moments on a
gapped superconducting surface with Rashba spin-orbit
coupling. Analogously to the topological superconducting
phases induced by the subgap Yu-Shiba-Rusinov states in
periodic arrays of magnetic atoms [110–112], the random
Shiba glass effectively realizes a 2D px + ipy chiral topo-
logical superconductor with nontrivial Chern number and
quantized thermal conductance [60]. In contrast to the
long-range pairing in this system, Ref. [61] has realised
this topological superconductor in 2D Dirac models with
local pairing when implemented not only in random lat-
tices, but also in quasicrystalline and fractal lattices.

Spatial-symmetry-protected topological amorphous mod-
els. Amorphous systems support and induce topological
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phases beyond strong topological states, including systems
protected by spatial symmetries. [62–64, 66, 67]. The ap-
pearance of these phases is related to the concept of sta-
tistical topological insulators [113–116], which are spectral
insulators protected by an average symmetry. They dis-
play gapless boundary states pinned to the critical point
of a topological phase transition, and protected from lo-
calization by the average symmetry.

Based on this idea, Ref. [62] has classified all 2D amor-
phous statistical topological insulators protected by the
average continuous rotation and reflection symmetries
present in amorphous matter. Unlike in crystals, where
reflection-symmetry-protected topological insulators dis-
play edge states only on the boundaries respecting the
symmetry, their amorphous counterparts show delocalized
boundary states at all edge terminations. Furthermore,
they are characterized by a bulk Z2 topological invariant
that can be defined from the effective Hamiltonian.

Higher order topological insulators are another ex-
ample of topological insulators protected by combina-
tions of crystalline and discrete onsite symmetries, whose
amorphous counterparts have also been reported [63–65].
First, Ref. [63] showed that a 2D (3D) chiral-symmetry-
protected higher order topological insulator with 0D cor-
ner states is robust against bulk structural disorder as long
as the boundaries remain crystalline, as indicated by the
quantized quadrupolar (octupolar) moment. Ref. [117]
extended these chiral-symmetry-protected higher order
topological insulators to fully amorphous lattices, and
demonstrated that they can be induced from a trivial state
by varying the density of sites. Then, Ref. [64] realized
a structural-disorder-induced 3D higher order topologi-
cal insulator with chiral hinge modes, characterized by a
quantized longitudinal conductance 2e2/h and a quantized
winding number of the quadrupole moment with respect
to an applied magnetic flux.

Obstructed atomic insulators are a class of insulators
that are topologically trivial, in the sense of being de-
scribed by exponentially localized and symmetric wave-
functions, but are not adiabatically connected to the triv-
ial atomic limit [118–124]. The simplest example is the
half-filled inversion-symmetric Su-Schrieffer-Heeger chain
[125]. These examples suggest that an average Peierls-
like dimerization can give rise to obstructed phases, which
has been exploited by Ref. [66] to realize amorphous ob-
structed insulators. Ref. [66] suggested that phase-change
materials, whose amorphous form can exhibit an aver-
age dimerization characterized by a double-peak struc-
ture in the three-particle correlation function [126], can
controllably realize an obstructed amorphous phase. The
main experimental signature of amorphous obstructed in-
sulators, which differentiates them from their crystalline
counterparts, is the appearance of a flatband of fractional
charges at all terminations, not only at the corners.

Finally, there are amorphous generalizations of Weyl
semimetals, dubbed a topological amorphous metal [67].
In crystals their topological charge can be measured by

the Chern number of a surface enclosing the node in mo-
mentum space [6]. Ref. [67] defined the amorphous coun-
terpart based on a known time-reversal-breaking two-band
Weyl semimetal model defined on a random lattice. The
topological amorphous metal is signaled by the nonzero
Bott index and Hall conductivity in the planes perpendic-
ular to the Weyl node separation in the crystal, and by the
boundary states at these planes. Furthermore, in contrast
to its crystalline version, the topological amorphous metal
displays diffusive metallic behaviour.

Amorphous topological phase transitions. The critical
theory of topological quantum phase transitions has been
extensively studied for disordered systems, especially for
the quantum Hall plateau transitions [127,128]. The stan-
dard theory postulates that the transition is of the Ander-
son localization type, characterized by a two-parameter
scaling and a diverging localization length with univer-
sal critical exponent ν. However, recent theoretical and
numerical works point to a marginal scaling with non-
universal effective critical exponents, which could explain
the model-dependence of ν [129,130].

Motivated by the different nature of the disorder and
of the driving parameter of the transition, Refs. [55, 56]
numerically analyzed amorphous systems. In particular,
they considered both continuum 2D random geometries as
well as discrete (square and triangular) 2D lattices with
randomly occupied sites, as studied in percolation the-
ory. In their models, a Chern insulator in class D appears
above a critical density, dependent on the parameters of
the Hamiltonian. They examined the critical scaling of
both the Chern number and the conductance, as well as
the conductance distribution curves. While their analy-
sis is compatible with the standard two-parameter scaling
form, the localization length critical exponent ν is highly
non-universal. The exponents interpolate between a ge-
ometric classical percolation transition [131] and a stan-
dard Anderson localization transition [128]. While these
differences with standard theory of disordered systems re-
main to be fully understood, it is possible that changing
the density of sites introduces a variable length scale that
modifies the range of the geometric correlations in the sys-
tem, which are believed to affect the critical exponents of
the transition [132–136].

Strongly interacting amorphous topological models.
All the above phases concern amorphous but non-
interacting systems. The first step towards topologi-
cal amorphous many-body systems was taken by Pro-
dan [137], who defined toric code models, which display
topological order with anyonic excitations, in random tri-
angulations. The groundstate degeneracy and anyonic ex-
citation survive amorphization, even if some commutation
relations of the Hamiltonian terms are modified.

Electron-electron interactions could also lead to many-
body amorphous topological phases. However, identifying
these phases is challenging due to the lack of local topo-
logical markers for interacting systems. Ref. [138] circum-
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Figure 2: (a) A mechanical amorphous Chern insulator. Cou-
pled gyroscopes excited at the edge result in a chiral edge mode.
Adapted from [142]. (b) A photonic amorphous Chern insula-
tor with excited chiral edge modes. Adapted from [143]. (c)
ARPES spectrum of amorphous Bi2Se3 showing well-defined
dispersive features crossing the bulk gap. These midgap states
(−0.2 > E − EF > −0.6) are two-dimensional and spin-
polarized (d). The switch in polarization at E − EF < −0.6
and E − EF > −0.2 is consistent with bulk states. Adapted
from [144].

vented this issue by solving an amorphous Chern insulator
model [7] with strong Hubbard interactions using a par-
ton construction. Fractionalizing the electron into a neu-
tral fermion f and a charged boson b lead to a mean-field
phase diagram with a phase displaying protected electri-
cally neutral chiral edge modes of f , dubbed the fraction-
alized amorphous Chern insulator. Recently, it was shown
that the Kitaev spin-liquid is exactly solvable in a three-
fold coordinated amorphous lattice [139], which survives
even if the lattice is not fully amorphous [140]. Contrary
to the Kitaev Honeycomb model [141], which realizes a
gapless spin-liquid, the amorphous model groundstate is a
gapped chiral spin-liquid, featuring chiral majorana edge
modes. This opens the tantalising possibility to engineer-
ing disorder, for example by focused-ion beam irradiation,
to induce a chiral quantum spin-liquid without magnetic
fields [140].

Experimental status of amorphous topological
matter. – Amorphous topological matter has been ex-
perimentally studied in both synthetic and solid-state sys-
tems. The first experimental observation was reported in
a mechanical system of coupled gyroscopes [8]. Later on,

the observation of spin-momentum locked surface states
was reported in an amorphous electronic system [144], as
well as topological edge states in an amorphous photonic
lattices [143,145,146].

Despite the few experimental observations of topological
states in amorphous matter, amorphous phases of topo-
logical matter have been frequently studied. In solid state
systems, amorphous phases of topological materials have
been studied both before and after the discovery of the
quantum spin Hall effect [147]. However experimental
studies of amorphous materials did not address the sur-
vival of topological properties. For example, phase-change
materials have been studied extensively, with GeSb2Te4

being one of the most widely studied representative [24].
Interestingly, GeSb2Te4is also a topological insulator in its
crystalline phase [148]. Amorphous Bi2Se3 has also been
studied long before it was predicted to be a 3D topologi-
cal insulator in its crystalline form [149]. Amorphous and
structurally disordered counterparts of crystalline topolog-
ical materials have provided materials systems that show
large spin-orbit torque efficiencies [150,151], but the exis-
tence and role of topological surface states have not been
explored. Skyrmions, which have topologically distinct
spin textures, have also been observed in amorphous sys-
tems [152].

Using fixed-coordination amorphous structures of cou-
pled gyroscopes, generated from different point sets such
as hyperuniform or jammed, Mitchell, et al. [8,153] showed
the existence of a mechanical amorphous Chern insulator
with chiral, propogating edge modes, Fig. 2(a). The au-
thors used d.c. motors that interacted via a magnetic
interaction, finding that the local connectivity, which is
predictive of the global density of states, is crucial for the
existence of topological states in amorphous systems. Sim-
ilar findings were reported in photonic systems [143,145].
By placing an amorphous arrangement of gyromagnetic
rods into a waveguide and biasing them with a magnetic
field, the authors observe photonic topological edge states
Fig. 2(b). Interestingly, topological states exist while the
system has short range order, and disappear at the glass-
to-liquid transition [143]. Moreover, lattice disorder [146]
enhances light confinement increasing the generation rate
of correlated photon pairs by an order of magnitude com-
pared to periodic topological platforms.

Regarding electronic materials, physical vapor deposi-
tion (PVD) is a particularly useful growth technique for
amorphous materials and has been found to make amor-
phous materials which are not available by liquid quench-
ing. PVD has several advantages since it allows to con-
trol a variety of different properties, such as the substrate
temperature, growth rate (which affects the time absorbed
atoms have to diffuse to ideal positions), irradiation, and
chemical dopants to frustrate crystallization. Modifying
the substrate temperature enables the growth of amor-
phous films with different local ordering and produces
what is called an ”ideal glass” [154,155].

Growth conditions are critical for achieving high quality
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amorphous films, especially amorphous topological mate-
rials. Growing the amorphous phase of a known topolog-
ical crystal does not always preserve topological proper-
ties. Several groups have grown amorphous counterparts
of known crystalline topological insulators finding no ev-
idence for topological surface states, but rather a highly
insulating, localized state [156,157]. First-principles calcu-
lations indicate that the local environment plays an impor-
tant role in the electronic structure in three dimensional
solids [158]. If the disorder associated with the new atomic
positions (new atomic environment) closes the mobility
gap, the system can be trivial. These subtleties might ex-
plain why some amorphous versions of known crystalline
topological insulators do not display evidence for a topo-
logical bulk. Controlling the growth conditions may en-
able tuning of the local amorphous structure. For exam-
ple, by controlling the growth rate, atoms can be deposited
with enough time to diffuse to their preferred neighbour
(based on the chemistry of elements involved) before the
next monolayer is deposited. This leads to a well defined
local environment and subsequent electronic structure.

Focusing on electronic systems, the first demonstration
of topological properties in an amorphous solid-state sys-
tem was inspired by a known crystalline topological in-
sulator. Bi2Se3 is a textbook topological insulator with
quintuple layers separated by a van der Waals gap. Us-
ing PVD, Corbae, et al. [144] grew amorphous Bi2Se3 thin
films with short and medium range order (next-to-nearest
neighbours) as well as no van der Waals gap. In transport
measurements, the films showed an increased bulk resis-
tance that was largely temperature independent, and the
weak-antilocalization effect resulting from quantum inter-
ference in two dimensions in the presence of spin orbit
coupling. Using, ARPES/SARPES the authors showed
that two dimensional surface states cross the bulk elec-
tronic gap and are spin polarized. The spin polariza-
tion switches multiple times as a function of binding en-
ergy matching the spin resolved spectral function from an
amorphous topological model. These results contrast data
taken on nanocrystalline samples which show a lack of dis-
person in ARPES and an insulating resistivity, consistent
with earlier works [159]. Amorphous Bi2Se3 in this study
possesses a local environment similar to the crystal, as
seen in Raman measurements, suggesting that by preserv-
ing a similar local environment to that of the crystal the
topological bulk mobility gap is not closed preserving the
topological nature. In contrast, the atomic environemnt
at grain boundaries in nanocrystalline systems is quite dis-
ordered, providing a possible explanation for the absence
of topological features.

Looking forward, developing a workflow from growth
to measurement will help the experimental observation
of amorphous topological states in the solid state. In-
situ measurement capabilities greatly enable spectroscopic
meausurements, as they do not require thin film capping.
Scanning tunneling microscopy (STM) can directly mea-
sure the electronic and real space structure. Combined

with ARPES and transport, STM would be invaluable to
discover amorphous topological materials and shed light
on the nature of grain boundaries in polycrystalline [160]
and nanocrystalline systems. Nano-ARPES is also promis-
ing as beam sizes scale down to the order of hundreds of
nanometers.

Perspective and open questions. – The growing
field of topological phases in amorphous matter is an op-
portunity to establish a deeper understanding of topolog-
ical phases and the systems that host them. In particu-
lar, the quest to define real-space topological markers and
invariants to characterize topological phases is an ongo-
ing quest. Defining topological indicators that signal non-
crystalline topological metals remains an open question.
Specifically, generalizations of Weyl semimetals to amor-
phous systems that respect time-reversal symmetry can-
not be described by the Bott index or the Chern marker,
and thus require the development of new tools.

An important open question is the lack of experimental
evidence for solids that are both amorphous and topolog-
ical, relating to the theoretical challenge of how to effi-
ciently find them. The field would benefit from a textbook
amorphous topological material, where topology is unam-
biguously confirmed by combining different experiments.
However, we lack a criterion with which to establish a
hierarchy of amorphous materials where to find topolog-
ical phases. Currently, we draw from criteria applicable
to crystals, such as large spin-orbit coupling. However,
this methodology precludes reaching the major milestone
of finding materials that are only topological when grown
amorphous, and that are otherwise trivial crystals. Ma-
terial candidates include amorphous Sb2Se3, hosting rich
electronic properties as pressure changes the local envi-
ronment [161], and BiTeI, predicted to host a structural
topological phase transition [162]. A promising possibility
is to integrate methods such as the structural spillage and
symmetry indicators, with realistic molecular dynamics
predictions based on first principle calculations. Develop-
ing these may establish a pipeline to manufacture candi-
date material databases which can guide experiments.

A related open problem is the prediction of an amor-
phous topological superconductor beyond toy models.
Such an achievement could widen the search for platforms
useful for topological quantum computing. While topo-
logical superconductivity has been found by assuming a
finite pairing [60, 61] its appearance in a self-consistent
calculation is yet to be demonstrated. Engineering the
interactions to obtain a self-consistent topological ground
state is a nontrivial problem since Anderson’s theorem [28]
is strictly applicable only to conventional s-wave pairing.

The search for novel topological phases and phe-
nomenology should also incorporate phenomena familiar
from crystals. Amorphous topological states have for
example not been fully explored in amorphous interact-
ing [11,137–139], driven, or non-hermitian systems [163].

Our focus on amorphous systems has necessarily left
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aside other non-crystalline solids. Disordered crystals, al-
loys, quasicrystals, fractals, and moiré heterostructures all
present exciting opportunities to apply and extend numer-
ous concepts presented here.

In summary, amorphous solids are central to fundamen-
tal science and technology. If we aim to establish a full
theory of topological matter that is technologically useful
it seems unavoidable to consider amorphous materials as
the largest subset of non-crystalline solids. We are con-
fident that research in this direction will bring a deeper
understanding of condensed matter, as well as novel and
interesting phenomenology.
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