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LBNL{Report 38000Introduction to Chiral SymmetryVolker KochNuclear Science Division, Lawrence Berkeley National LaboratoryBerkeley, CA, 94720, U.S.A.December 13, 1995AbstractThese lectures are an attempt to a pedagogical introduction into the el-ementary concepts of chiral symmetry in nuclear physics. E�ective chiralmodels such as the linear and nonlinear sigma model will be discussed as wellas the essential ideas of chiral perturbation theory. Some applications to thephysics of ultrarelativistic heavy ion collisions will be presented.



1 IntroductionChiral symmetry is a symmetry of QCD in the limit of vanishing quark masses. We know,however, that the current quark masses are �nite. But compared with hadronic scales themasses of the two lightest quarks, up and down, are very small, so that chiral symmetrymay be considered an approximate symmetry of the strong interactions.Long before QCD was known to be the theory of strong interactions, phenomenologicalindications for the existence of chiral symmetry came from the study of the nuclear betadecay. There one �nds, that the weak coupling constants for the vector and axial-vectorhadronic-currents, CV and CA, did not (in case of CV ) or only slightly (25% in caseof CA) di�er from those for the leptonic counterparts. Consequently strong interaction`radiative' corrections to the weak vector and axial vector `charge' are absent. The sameis true for the more familiar case of the electric charge, and there we know that it is itsconservation, which protects it from radiative corrections. Analogously, we expect theweak vector and axial vector charge, or more generally, currents, to be conserved due tosome symmetry of the strong interaction. In case of the vector current, the underlyingsymmetry is the well known isospin symmetry of the strong interactions and thus thehadronic vector current is identi�ed with the isospin current. The identi�cation of theaxial current, on the other hand is not so straightforward. This is due to another, veryimportant and interesting feature of the strong interaction, namely that the symmetryassociated with the conserved axial vector current is `spontaneously broken'. By that, onemeans that while the Hamiltonian possesses the symmetry, its ground state does not. Animportant consequence of the spontaneous breakdown of a symmetry is the existence ofa massless mode, the so called Goldstone-boson. In our case, the Goldstone boson is thepion. If chiral symmetry were a perfect symmetry of QCD, the pion should be massless.Since chiral symmetry is only approximate, we expect the pion to have a �nite but small(compared to all other hadrons) mass. This is indeed the case!The fact that the pion is a Goldstone boson is of great practical importance. Lowenergy/temperature hadronic processes are dominated by pions and thus all observablescan be expressed as an expansion in pion masses and momenta. This is the basic idea ofchiral perturbation theory, which is very successful in describing threshold pion physics.At high temperatures and/or densities one expects to `restore' chiral symmetry. Bythat one means, that, unlike the ground state, the state at high temperature/densityposses the same symmetry as the Hamiltonian (the symmetry of the Hamiltonian ofcourse will not be changed). As a consequence of this so called `chiral restoration' weexpect the absence of any Goldstone modes and thus the pions, if still present, shouldbecome as massive as all other hadrons1. To create a system of restored chiral symmetry1If of course chiral restoration and decon�nement take place at the same temperature, as currentlattice gauge calculations suggest, the concept of hadrons in the restored phase may become meaningless.1



in the laboratory is one of the major goals of the ultra-relativistic heavy ion experiments.These lectures are intended to serve as an introduction into the ideas of chiral symme-try in particular for experimentalists interested or working in this �eld. Thus emphasiswill be put on the ideas and concepts rather than formalism. Consequently, most argu-ments presented will be heuristic and/or based on simple e�ective models. References willbe provided for those seeking more rigorous derivations.In the �rst section we will introduce some basic concepts of quantum �eld theory, whichare necessary to discuss the e�ect of symmetries on the dynamics. Then we will introducethe chiral symmetry transformations and derive some results, such as the Goldberger-Treiman relation. In the second section we will present the linear sigma model as the mostsimple e�ective chiral model. Using this rather intuitive model we will discuss explicitchiral symmetry breaking. As an application we will consider pion-nucleon scattering.The third section will be devoted to the so called nonlinear sigma model, which thenserves as a basis for the introduction into chiral perturbation theory. In the last sectionwe will give some examples for chiral symmetry in the physics of hot and dense matter.Preparing these lectures I have borrowed frommany sources. Those which I personallyfound most useful are listed at the end of this contribution. This is certainly a personalchoice as there are many other books and articles on subject available. If not statedotherwise, the conventions of Bjorken and Drell [1] are used for metric, gamma-matricesetc.
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2 Theory Primer2.1 Basics of quantum �eld theoryQuantum �eld theory is usually written down in the Lagrangian formulation (see e.g.the book of Bjorken and Drell [1]). Let's start out with what we know from classicalmechanics. There, one obtains the equations of motion from the Hamilton principle,where one requires that the variation of the action S = R dtL(q; _q; t) vanishes�S = 0 ) ddt @Ld _q � @L@q = 0 (1)Here S is called the action and L = T�V is the Lagrange-function. For example, Newtonsequations of motion for a particle in a potential V (q) derive fromL = 12m _q2 � V (q) (2)) m�q + @V@q = 0 , m�q = �@V@q = F (3)If one goes over to a �eld theory, the coordinates q are replaced by the �elds �(x) andthe velocities _q are replaced by the derivatives of the �eldsq ! �(x) (4)_q ! @��(x) � @�(x)@x� (5)and the Lagrange-function is given by the spatial integral over the Lagrangian density, L,or Lagrangian, as we shall call it from now onL = Z d3xL(�(x); @��(x); t) (6)S = Z dtL = Z d4xL(�(x); @��(x); t) (7)Lorentz invariance implies that the action S and thus the Lagrangian L transform likeLorentz-scalars. The equations of motion for the �elds are again obtained by requiringthat the variation of the action S vanishes. This variation is carried out by a variation ofthe �elds � ! � + �� (8)@�� ! @�� + �(@��) (9)3



with �(@��) = @�(� + ��)� @�� = @�(��) (10)Consequently,�S = Z d4xL(� + ��; @�� + �(@��))� L(�; @��)= Z d4xL(�; @��) + @L@��� + @L@(@���(@��) �L(�; @��)= Z d4x @L@���+ @L@(@��)@�(��) (11)where equ. (10) has been used. The derivatives of L with respect to the �elds are socalled functional derivatives, but for all practical purposes they just work like `normal'derivatives, where L is considered a function of the �elds �. Partial integration of thesecond term of equ. (11) �nally gives0 = �S = Z d4x @L@� � @�( @L@(@��))! (��) (12)which leads to the following equations of motion, since the variation �� are arbitrary@L@� � @�( @L@(@��)) = 0 (13)If we are dealing with more than one �eld, such as in case of pions, where we havethree di�erent charge states, the equations of motion have the same form as in equ.(13) only that the �elds carry now an additional index labeling the di�erent �elds underconsideration @L@�i � @�( @L@(@��i)) = 0 (14)As example let us consider the Lagrangian of a free boson and fermion �eld respectively.(i) free scalar bosons of mass m:LK:G: = 12(@��@��)� 12m2�2 (15)) @L@� = �m2� (16)) @�( @L@(@��i)) = @�@�� (17)4



Thus, according to equ. (14) the equation of motion is(@�@� +m2)� = (@2t �r2 +m2)� = 0 (18)which is just the well known Klein-Gordon equation for a free boson.(ii) free fermions of mass m LF:D: = � (i
�@� �m) (19)By using the conjugate �eld � in the equation of motion (14)) @L@ � = (i
�@� �m) (20)) @L@(@� � ) = 0 (21)we obtain the Dirac equation for  :(i
�@� �m) = 0 (22)whereas inserting  for �i in (14) leads to the conjugate Dirac equation� (i
�  @� +m) = 0 (23)2.2 SymmetriesOne of the big advantages of the Lagrangian formulation is that symmetries of the La-grangian lead to conserved quantities (currents). In classical mechanics we know thatsymmetries of the Lagrange function imply conserved quantities. For example, if the La-grange function is independent of space and time, momentum and energy are conserved,respectively.Let us assume that L is symmetric under a transformation of the �elds� �! � + �� (24)meaning L(� + ��) = L(�) (25)) 0 = L(� + ��)� L(�) = @L@��� + @L@(@��)�(@��) (26)5



where we have expanded the �rst term to leading order in ��. Using equ. (10) and theequation of motion (13) we have0 =  @� @L@�! �� + @L@(@��) (@���)= @�  @L@(@��)��! (27)so that J� = @L@(@��i)��i (28)is a conserved current, with @�J� = 0. In the last equation we have included the indicesfor possible di�erent �elds �i.As an example, let us discuss the case of a unitary transformation on the �elds, suchas e.g. an isospin rotation among pions. For obvious reasons unitary transformationsare the most common ones, and the chiral symmetry transformations also belong to thisclass. �i �! �i � i�aT aij�j (29)where � corresponds to the rotation angle and T aij is a matrix, usually called the generatorof the transformation (isospin matrix in case of isospin rotations). The index a indicatesthat there might be several generators associated with the symmetry transformation (incase of isospin rotations, we have three isospin matrices). Equation (29) corresponds tothe expansion for small angles of the general transformation~� �! e�i�aT̂a~� (30)where the vector on ~� indicates the several components of the �eld � such as �+, ��and �0. From equ. (28) and equ. (29) we �nd the following expression for the conservedcurrents Ja� = �i @L@(@��j) T ajk�k (31)where we have divided by the angle �a. This current is often referred to as a Noethercurrent, after E. Noether who �rst showed its existence2.2Note, that some of the Noether currents are not conserved on the quantum-level. In other word, notevery symmetry of the classical �eld theory has a quantum analog. If this is not the case one speaks ofanomalies. For a discussion of anomalies, see e.g. [15].6



Of course, a conserved current leads to a conserved chargeQ = Z d3xJ0(x); dd tQ = 0 (32)Finally, let us add a small symmetry breaking term to the LagrangianL = L0 + L1 (33)where L0 is symmetric with respect to a given symmetry transformation of the �eldsand L1 breaks this symmetry. Consequently, the variation of the Lagrangian L does notvanish as before but is given by �L = �L1 (34)Following the steps above, we can easily convince ourselves, that the variation of theLagrangian can still be expressed as the divergence of a current, which is given by equ.(28) or (31), in case of unitary transformations of the �elds. Thus we have�L = �L1 = @�J� (35)Since �L1 6= 0 the current J� is not conserved. Relation (35) nicely shows how thesymmetry breaking term of the Lagrangian is related to the non-conservation of thecurrent. It will also prove very useful when we later on introduce the slight breaking ofchiral symmetry due to the �nite quark masses.2.2.1 Example: Massless fermionsAs an example for the Noether current, let us consider the Lagrangian of two 
avors ofmassless fermions. Since we will only discuss transformations on the fermions, the resultswill be directly applicable to massless QCD.The Lagrangian is given by (see eq. (19))L = i � j@= j (36)where the index `j` refers to the two di�erent 
avors, let's say `up' and `down', and @= isthe usual shorthand for @�
�.(i) Consider the following transformation�V :  �! e�i ~�2 ~� ' (1� i~�2 ~�) (37)7



where ~� refers to the Pauli - (Iso)spin- matrices, and where we have switched to a iso-spinor notation for the fermions,  = (u; d). The conjugate �eld, � transforms under �Vas follows � �! e+i ~�2 ~� � ' (1 + i~�2 ~�) � (38)and, hence, the Lagrangian is invariant under �Vi � @= �! i � @= � i~� � i@=~�2 � � ~�2 i@= != i � @= (39)Following equ. (31) the associated conserved current isV a� = � 
� � a2  (40)and is often referred to as the `vector-current'.(ii) Next consider the transformation�A :  �! e�i
5 ~�2 ~� = (1� i
5~�2 ~�) (41)) � �! e�i
5 ~�2 ~� � ' (1� i
5~�2 ~�) � (42)where we have made use of the anti-commutation relations of the gamma matrices, specif-ically, 
0
5 = �
5
0. The Lagrangian transforms under �A as followsi � @= �! i � @= � i~� � i@�
�
5~�2  + � 
5~�2 i@�
�  ! (43)= i � @= (44)where the second term vanishes because 
5 anti-commutes with 
�. Thus the Lagrangianis also invariant under �A with the conserved `axial - vector' currentAa� = � 
�
5 �2 (45)In summary, the Lagrangian of massless fermions, and, hence, massless QCD, is invariantunder both transformations, �V and �A3 symmetry is what is meant by chiral symmetry4.3Note, that the above Lagrangian is also invariant under the operations  ! exp(�i�) and  !exp(�i
5�) . The �rst operation is related to the conservation of the baryon number while the secondsymmetry is broken on the quantum level. This is referred to as the U(1) axial anomaly, which is realbreaking of the symmetry in contrast to the spontaneous breaking discussed below (see e.g. [15]).4Often, people talk about `chiral' symmetry but actually only refer to the axial transformation �A.This is due to its special role is plays, since it is spontaneously broken in the ground state.8



The chiral symmetry is often referred to by its group structure as the SU(2)V � SU(2)Asymmetry.Now let us see, what happens if we introduce a mass term.�L = �m ( �  ) (46)From the above, �L is obviously invariant under the vector transformations �V but notunder �A �A : m ( �  ) �! �  � 2i~� � ~�2
5 ! (47)Thus, �A is not a good symmetry, if the fermions (quarks) have a �nite mass. But as longas the masses are small compared to the relevant scale of the theory one may treat �A asan approximate symmetry, in the sense, that predictions based under the assumption ofthe symmetry should be reasonably close to the actual results5.In case of QCD we know that the masses of the light quarks are about 5 � 10MeVwhereas the relevant energy scale given by �QCD ' 200MeV is considerably larger. We,therefore, expect that �A should be an approximate symmetry and that the axial currentshould be approximately (partially) conserved. This slight symmetry breaking due to thequark masses is the basis of the so called Partial Conserved Axial Current hypothesis(PCAC). Furthermore, as long as the symmetry breaking is small, one would also expect,that its e�ect can be described in a perturbative approach. This is carried out in asystematic fashion in the framework of chiral perturbation theory.2.3 Chiral Symmetry and PCAC2.3.1 Chiral transformation of mesonsIn order to develop a better feeling for the meaning of the symmetry transformations �Vand �A, let us �nd out pions and rho-mesons transform under these operations. To thisend, let us consider combinations of quark �elds, which carry the quantum numbers ofthe mesons under consideration. This should give us the correct transformation properties:pion-like state: ~� � i � ~�
5 ; sigma-like state: � � �  rho-like state: ~�� � � ~�
� ; a1-like state: ~a1� � � ~�
�
5 5A wheel which is slightly bent and thus not perfectly invariant under rotations, can for most practicalpurposes still be considered as being round, as long as the bending is small compared to the radius ofthe wheel. 9



(i) vector transformations �V , see eqs. (37,38):�i : i � �i
5 �! i � �i
5 +�j � � �i
5 �j2  � � �j2 �i
5 �= i � �i
5 + i�j�ijk � 
5�k (48)where we have used the commutation relation between the � matrices [�i; �j] = 2i�ijk�k.In terms of pions this can be written as~� �! ~� + ~�� ~� (49)which is nothing else than an isospin rotation, namely the isospin direction of the pion isrotated by �. The same result one obtains for the � - meson~� �! ~� + ~�� ~� (50)Consequently, the vector-transformation �V can be identi�ed with the isospin rotationsand the conserved vector current with the isospin current, which we know to be conservedin strong interactions.(i) axial transformations �A, see eqs. (41,42):�i : i � �i
5 �! i � �i
5 +�j � � �i
5
5 �j2  + � 
5 �j2 �i
5 �= i � �i
5 +�i �  (51)where we have made use of the anti-commutation relation of the � matrices f�i; �jg = 2�ijand of 
5
5 = 1. In terms of the mesons this reads:~� �! ~� + ~�� (52)The pion and the sigma-meson are obviously rotated into each other under the axialtransformations �A. Similarly the rho rotates into the a1~�� �! ~�� + ~�� ~a1� (53)Above we just have convinced ourselves that �A is a symmetry of the QCD Hamiltonian.Naively, this would imply, that states which can be rotated into each other by this sym-metry operation should have the same Eigenvalues, i.e the same masses. This, however,is clearly not the case, since m� = 770MeV and ma1 = 1260MeV. We certainly do notexpect that the slight symmetry breaking due to the �nite current quark masses is respon-sible for this splitting. This should lead to mass di�erences which are small comparedto the masses themselves. In case of the � and a1, however, the mass di�erence is of thesame order as the mass of the �. The resolution to this problem will be the spontaneousbreakdown of the axial symmetry. Before we discuss what is meant by that, let us �rstconvince ourselves, that the axial vector is conserved to a good approximation, so thatthe axial symmetry must be present somehow.10



2.3.2 Pion decay and PCACLet us �rst consider the weak decay of the pion. In the simple Fermi theory the weakinteraction Hamiltonian is of the current-current type, where both currents are a sumof axial and vector currents, as we have de�ned them above (see e.g. [2]). Because ofparity, the weak decay of the pion is controlled by the matrix element of the axial currentbetween the vacuum and the pion < 0jA�j� >. This matrix element must be proportionalto the pion momentum, because this is the only vector around< 0jAa�(x)j�b(q) >= if�q��abe�iq�x (54)and the proportionality constant f� = 93MeV is determined from experiment6. Let usnow take the divergence of equ. (54)< 0j@�Aa�(x)j�b(q) >= �f�q2�abe�iq�x = �f�m2��abe�iq�x (55)To the extent, that the pion mass is small compared to hadronic scales, the axial currentis approximately conserved. Or in other words, the smallness of the pion mass is directlyrelated to the partial conservation of the axial current, i.e. to the fact that the axialtransformation is an approximate symmetry of QCD. In the literature the above relation(55) is often referred to as the PCAC relation. The above relations (54,55) also suggest,that the axial current carried by a pion isA�� = f�@��(x) (56)or that the divergence of the axial-vector current can be identi�ed with the pion �eld (upto a constant). Here �(x) is the pion �eld. Sometimes this relation between pion �eldand axial current is also referred to as the PCAC relation.2.3.3 Goldberger-Treiman relationThere is more evidence for the conservation of the axial current. Let us consider the axialcurrent of a nucleon. This is simply given by (see equ. (45))AN� = ga � N 
�
5 �2  N (57)where  N = (proton; neutron) is now an isospinor representing proton and neutron. Thefactor ga = 1:25, is due to the fact, that the axial current of the nucleon is renormalized6The are several de�nitions of f� around, depending on whether factors of 2, p2 are present in equ.(54). 11



by 25%, as seen in the weak beta decay of the neutron. Since the nucleon has a largemass MN , we do not expect that its axial current is conserved, and indeed by using thefree Dirac equation for the nulceon one can show that@�AN� = igaMN � N
5� N 6= 0 (58)which vanishes only in case of vanishing nucleon mass. We know, however, that thenucleon interacts strongly with the pion. Therefore, let us assume that the total axialcurrent is the sum of the nucleon and the pion contribution. Using the PCAC-relation(56) and equ. (57) we haveA� = ga � N
�
5 �2 N + f�@��(x) (59)If we require, that the total current is conserved, @�A� = 0, we obtain@�@�� = �ga iMNf� � N
5� N (60)where we have used (58). This is nothing else but a Klein Gordon equation for a masslessboson (pion) coupled to the nucleon. Hence, requiring the conservation of the total axialcurrent immediately leads us to predict that the pion should be massless. This is exactlywhat we also concluded from the weak pion decay. If we now allow for a �nite pion mass,which is equivalent to requiring that the divergence of the axial current is consistent withthe PCAC result (55), then we arrive at the Klein Gordon equation for a pion coupled tothe nucleon �@�@� +m2��� = �ga iMNf� � N
5� N (61)where the pion-nucleon coupling constant is given byg�NN = gaMNf� ' 12:5 (62)This is to be compared with the value for the pion-nucleon coupling as extracted e.g. frompion-nucleon scattering experimentsgexp�NN = 13:4 (63)which is in remarkeble close agreement, considering the fact, that equ. (62) relates thestrong-interaction pion-nucleon coupling g�NN with quantities extracted from the weakinteraction, namely ga and f�. Of course, the reason why this works is that there is somesymmetry, namely chiral symmetry, at play, which allows to connect semingly di�erentpieces of physics. Equation (62) is usually called the Goldberger-Treiman relation.12



2.3.4 Spontaneous breakdown of chiral symmetryThere appears to be some contradiction: On the one hand the meson mass sepctrum doesnot re
ect the axial-vector symmetry. On the other hand, the weak pion decay seemsto be consistent with a (partially) conserved axial-vector current. Also the success ofthe Goldberger-Treiman relation indicates that the axial-vector current is conserved and,hence, that the axial transformation �A is a symmetry of the strong interactions.The solution to this puzzle is, that the axial-vector symmetry is spontaneously broken.What does one mean by that? One speaks of a spontaneously broken symmetry, if asymmetry of the Hamiltonian is not realized in the ground state.This is best illustrated in a classical mechanics analog. In �g. 1 we have two rotation-ally invariant potentials (`interactions'). In (a) the ground state is right in the middle,and the potential plus ground state are still invariant under rotations. In (b), on theother hand, the ground state is at a �nite distance away from the center. The point atthe center is a local maximum of the potential and thus unstable. If we put a little ball inthe middle, it will roll down somewhere and �nd its groundstate some place in the valleywhich represents the true minimum of the potential. By picking one point in this valley(i.e picking the ground state), the rotational symmetry is obviously broken. Potential plusgroundstate are not symmetric anymore. The symmetry has been broken spontaneouslyby choosing a certain direction to be the groundstate. However, e�ects of the symmetryare still present. Moving the ball around in the valley (rotational excitations) does notcost any energy, whereas radial excitations do cost energy.Let us now use this mechanics analogy in order to understand what the spontaneousbreakdown of the axial-vector symmetry of the strong interaction means. Assume, thatthe e�ective QCD-hamiltonian at zero temperature has a form similar to that depicted in�g. 1(b), where the (x,y)-coordinates are replaced by (�; ~�)-�elds. The spacial rotationsare then the mechanics analog of the axial-vector rotation �A, which rotates ~� into � (seeequ. (52)). Since the ground state is not in the center but a some �nite distance awayfrom it, one of the �elds will have a �nite expectation value. This can only be the �-�eld,because it carries the quantum numbers of the vacuum. In the quark language, this meanswe expect to have a �nite scalar quark condensate < �qq >6= 0. In this picture, pionicexcitation correspond to small 'rotations' away from the ground-state along the valley,which do not cost any energy. Consequently the mass of the pion should be zero. In otherwords, due to the spontaneous breakdown of chiral symmetry, we predict a vanishing pionmass. Excitations in the �-direction correspond to radial excitations and therefore aremassive.This scenario is in perfect agreement with what we have found above. The sponta-neous breakdown of the axial-vector symmetry leads to di�erent masses of the pion andsigma. However, since the interaction itself is still symmetric, pions become massless,which is exactly what we �nd from the PCAC relation, provided that the axial current13
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Figure 1: E�ective potentials. (a) No spontaneous breaking of symmetry. (b) Spontaneousbreaking of symmetry. 14



is perfectly conserved. Thus the mesonic mass spectrum as well as the PCAC{ and theGoldberger-Treiman relation are consistent with a spontaneous breakdown of the axial-vector symmetry �A. The pion appears as a massless mode (Goldstone boson) as a resultof the symmetry of the interaction.Incidentally, the assumption of a spontaneously broken axial-vector symmetry also ex-plains the mass di�erence between the �- and a1 meson and one predicts that ma1 = p2m�in good agreement with the measured masses. The derivation of this result, however, istoo involved to be presented here and the interested reader is referred to the literature[3, 4].One expects, that at high temperature/densities the �nite expectation value of thescalar quark condensate melts away resulting in a system, where chiral symmetry is notspontaneously broken anymore. In this, as it is often called, chirally restored phasepion/sigma as well as rho/a1, if they exist7, should be degenerate and the pion looses itsidentity as a Goldstone boson, i.e. it will become massive. The e�ective interaction inthis phase would then have a shape similar to �g 1(a). It is one of the major goals of theultrarelativistic heavy ion program to create and identify a macroscopic sample of thisphase in the laboratory.In the following section we will construct a chiral invariant Lagrangian, the so called`Linear-sigma-model', in order to see how the concept of spontaneous breakdown of chiralsymmetry is realized in the framework of a simple model. We will also discuss how toincoorporate the e�ect of the �nite quark masses leading to the explicit breaking of chiralsymmetry.
7If decon�nement and chiral restoration occur at the same temperature, it may become meaninglessto talk about mesons above the critical temperature.15



3 Linear sigma-model3.1 Chiral limitIn this section we will construct a simple chirally invariant model involving pions and nu-cleons, the so called linear sigma - model. This model was �rst introduced by Gell-Mannand Levy in 1960 [5], long before QCD was known to be the theory of the strong interac-tion. In order to construct such a model, we have to write down a Lagrangian which is aLorentz-scalar and which is invariant under the vector- and axial-vector transformations,�V and �A.In the previous section, we have shown, that the pion transforms under �V and �A as(52). �V : �i �! �i + �ijk�j�k �A : �i �! �i +�i� (64)Similarly one can also show, that the �-�eld transforms like�V : � �! � �A : � �! � ��i�i (65)Since �V is simply an isospin rotation, the squares of the �elds are invariant under thistransformation �V : �2 �! �2; �2 �! �2 (66)whereas under �A they transform like�A : �2 �! �2 � 2��i�i; �2 �! �2 + 2��i�i (67)However, the combination (�2+�2) is invariant under both transformations, �V and �A(�2 + �2) �V ;�A�! (�2 + �2) (68)Since this combination is also a Lorentz-scalar, we can build a chirally invariant La-grangian around this structure:� Pion-nucleon interaction:The standard pion nucleon interaction involves a pseudo-scalar combination of thenucleon �eld multiplied by the pion �eld:g� �i � 
5~� � ~� (69)where from now on we denote the pion-nucleon coupling constant simply by g�.Under the chiral transformations this transforms exactly like �2, because the term16



involving the nucleon has the same quantum numbers as the pion. Chiral invariancerequires that there must be another term, which transforms like �2, in order to havethe invariant structure (68). The simplest choice is a term of the form,g� � �  � � (70)so that the interaction term between nucleons and the mesons is�L = �g� h( � 
5~� )~� + ( �  )�i (71)� Nucleon mass term:We know that an explicit nucleon mass term breaks chiral invariance (see section2.2.1 ). The nucleon mass is also too large to be simply a result of the small explicitchiral symmetry breaking as re
ected in the PCAC relation (55). The simplest8way to give the nucleon a mass without breaking chiral symmetry, is to exploit thecoupling of the nucleon to the �-�eld (70), which has the structure of a nucleonmass term. This, however, requires that the �-�eld as a �nite vacuum expectationvalue, < � >= �0 = f� (72)where choice of �0 = f� is dictated by the Goldberger-Treiman relation (62) inthe limit of ga = 1. A �nite vacuum expectation value for the �-�eld immediatelyimplies, that chiral symmetry will be spontaneously broken, as discussed in the lastsection. In order for our model to generate such an expectation value, we have tointroduce a potential for the sigma �eld, which has its minimum at � = f�. Thisbrings us to the next ingredient of our model.� Pion - sigma potential:The potential, which generates the vacuum expectation value of the � �eld has tobe a function of the invariant structure (68) in order to be chirally invariant. Thesimplest choice is: V = V (�2 + �2) = �4 �(�2 + �2)� f��2 (73)This potential, which is plotted in �g. (2) (see also �g. (1) for a three-dimensionalview ) indeed has its minimum at � = f� for � = 0. Due to its shape, it is oftenreferred to as the `Mexican - hat - potential'.8Actually one can allow for an explicit nucleon mass term if one also includes the chiral partner ofthe nucleon, which is believed to be the N�(1535). This is an interesting alternative approach which isdiscussed in detail in ref. [6] 17
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σπfFigure 2: Potential of linear sigma-model� Kinetic energy terms:Finally we have to add kinetic energy terms for the nucleons and the mesons whichhave the form i � @= and 12(@��@��+@��@��), respectively. Both are chirally invari-ant. The �rst term is just the Lagrangian of free mass less fermions, which we haveshown to be invariant. The second term again has the invariant structure (68).Putting everything together, the Lagrangian of the linear sigma-model reads (remem-ber that the potential V enters with a minus-sign into the Lagrangian):LL:S: = i � @= � g� � � 
5~� ~� + �  ����4 �(�2 + �2)� f��2 + 12@��@�� + 12@��@�� (74)What are the properties of this model? Let us start with the ground state. As alreadymentioned, in the ground state the � - �eld has a �nite expectation value, whereas thepion has none, because of parity. Furthermore, the nucleon obtains its mass from itsinteraction with the sigma �eld. But what are the masses of the � and � - mesons? There18



are no explicit mass terms for the �- and �-�elds in the Lagrangian (74), but, as withthe nucleon, there could be some coupling to the expectation value of the � �eld, whichgives rise to mass terms. From the structure of the potential (see �gs (2) and (1)) as wellas from our discussion of the spontaneous breakdown of chiral symmetry, we expect thepion to be massless and the �-meson to become massive. In order to verify that, let usexpand the potential (73) for small 
uctuations around the ground state.� = �0 + (��); � = (��) (75)Actually, it is these 
uctuations ((��); (��)), which are to be be identi�ed with theobserved particles (�- and �- meson). Since a bosonic mass term is quadratic in the �elds(see Lagrangian (15)), let us expand the potential up to quadratic order in the 
uctuations(��) (��). Expanding around a minimum, the linear order vanishes, and we have:V (�; �) = �f2�(��)2 +O(�3) (76)where we have used that �0 = f�. Comparing with the Lagrangian of a free boson weidentify the mass of the sigma to be (remember that L = T � V )m2� = �f2� 6= 0 (77)We �nd no mass term for the pion in agreement with our expectation, that the pionshould be the massless Goldstone boson of the spontaneously broken chiral symmetry.In summary, the properties of the ground state of the linear sigma-model are:< � > = �0 = f� (78)< � > = 0 (79)MN = g��0 = g�f� (80)m2� = �f2� 6= 0 (81)m� = 0 (82)Before we conclude this section, let us calculate the conserved axial current and check,if the PCAC-relation is satis�ed in our model. The in�nitesimal axial transformations ofthe nucleon, pion and sigma �elds are given by (see (41), (64) and (65)) �!  � i
5� a2 �a (83)�i �! �i +�a�i;a� (84)� �! � ��a�a (85)19



Comparing with the general form (29) for unitary transformations, we �nd that the gen-erator of the axial transformation T a act on the �elds in the following wayT a = 
5 � a2 �a (86)T a�j = i��a;j (87)T a� = �i�a (88)Using the expression for the conserved current (31) the conserved axial current is givenby Aa� = � 
� � a2  � �a@�� + �@��a (89)In order to check the PCAC-relation, we again expand the �elds around the groundstate (see eq. (75))Aa� = � 
� � a2  � (��a)@�(��) + (��)@�(��a) + f�@�(��a) (90)where we have used that �0 = f�. Since the PCAC-relation involves the matrix element< 0jAa�j�j > only the last term of (90) contributes. The other terms would require eithernucleons or sigma-mesons in the �nal or initial state. Thus, as far as the PCAC relationis concerned, the axial current reduces to ((��) = �)Aa�(x)PCAC = f�@��(x) (91)in agreement with the PCAC-results eq. (56).3.2 Explicit breaking of chiral symmetrySo far we have assumed that the axial-vector symmetry is a perfect symmetry of thestrong interactions. From our discussion in section 2.2.1 we know, however, that thesmall but �nite current quark masses of the up and down quark break the axial-vectorsymmetry explicitly. This explicit breaking of the symmetry should not be confused withthe spontaneous breakdown, we have discussed before. In case of a spontaneous breakingof a symmetry the Hamiltonian is still symmetric, whereas in case of an explicit breaking,already the Hamiltonian is not symmetric.One may wonder if the whole concept of spontaneous symmetry breaking makes anysense if already the Hamiltonian is not symmetric. The answer to that, again, dependson the scales involved. If the explicit symmetry breaking is small, i.e. if the quark massesare small compared to to relevant energy scale of QCD, as we believe they are, then itwill be sensible to apply the notion of a spontaneously broken symmetry.20



To illustrate that, let us again utilize our little mechanics analogy, which we havedeveloped in the previous section. An explicit symmetry breaking would imply thatboth potentials of �gure (1) are not invariant under rotation. This could for instancebe achieved by slightly tilting them towards, say, the x-direction. As a result, also theground state of potential (a) is away from the center (x; y = 0). But the dislocation issmall compared to that due to the spontaneous breaking. Furthermore, as long as thepotentials are tilted only slightly, rotational excitation (pions) in potential (b) are stillconsiderably softer than the radial ones (sigma-mesons). So in this sense, we expect thee�ect due to the spontaneous breakdown of chiral symmetry to dominate the dynamics,as long as the explicit breaking is small. In the linear sigma-model, the mass scalegenerated by the spontaneous breakdown is the nucleon mass, whereas that generated bythe explicit breakdown will be the mass of the pion, as we shall see. Thus, indeed theexplicit breaking is small, and our picture, developed under the assumption of perfectaxial-vector symmetry, will survive the introduction of the explicit breaking to a verygood approximation.After these remarks let us now introduce a symmetry breaking term into the linearsigma-model. In QCD, we know, that the symmetry is explicitly broken by a quarkmass-term �LX�SB = �m�qq (92)where the subscript X�SB stands for explicit chiral symmetry breaking. If we identify,as we have done before, the scalar quark-�eld combination �qq with the � �eld, this wouldsuggest the following symmetry breaking term in the sigma-model�LSB = �� (93)where � is the symmetry breaking parameter. This term clearly is not invariant under theaxial transformation �A but preserves the vector symmetry �V . Including this term, thepotential V (73) now has the formV (�; �) = �4 �(�2 + �2)� v0�2 � �� (94)where we now have replaced f� of eq. (73) by a general parameter v0, which in limit of� ! 0 will go to f�. The e�ect of the symmetry breaking term is to tilt the potentialslightly towards the positive � direction, and thus to break the symmetry (see �g. (3)).What are the consequences of this additional term? First of all, the minimum hasshifted slightly. If we require that the value of the new minimum is still f� in order topreserve the Goldberger-Treiman relation, we �nd for the parameter v0 to leading orderin � v0 = f� � �2�f2� (95)21
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πFigure 3: Potential of linear sigma-model with explicit symmetry breakingAlso the mass of the sigma is slightly changedm2� = @2V@�2 ������0 = 2�f� + �f� (96)But most importantly, the pion now acquires a �nite massm2� = @2V@�2 ������0 = �f� 6= 0 (97)which �xes the parameter � � = f�m2� (98)Thus, the square of the pion mass is directly proportional to the symmetry breakingparameter � as we would have expected it from our previous discussion.Due to our choice of �0 = f�, the nucleon mass is not changed, which, however, doesnot mean that there is no contribution to the nucleon mass from the explicit symmetry22



breaking. If we split the nucleon mass into a contribution from the symmetric part of thepotential (� v0) and one from the symmetry breaking term (� �),MN = g��0 = g� (v0 + �2�f2� ) (99)we �nd that the contribution from the symmetry breaking, which is often referred to asthe pion-nucleon sigma-term9, is given by��N = �MX�SBN = g� �2�f2� ' g�f�m2�m2� (100)As we shall see below, the pion-nucleon sigma-term can be measured in pion-nucleonscattering experiments and its is currently believed to be [7] ��N (0) = 35 � 5MeV.Since chiral symmetry is now explicitly broken, the axial-vector current is not con-served anymore. The functional form of the axial current is the same, however, as in thesymmetric case, eq. (89), because the symmetry breaking term (93) does not involve anyderivatives (see equ. (31)). Its divergence is related to the variation of the symmetrybreaking term in the Lagrangian, as shown at the end of section 2.2.@�Aa� = � �(�) = �f�m2��a (101)which leads directly to the PCAC relation (55). Here �(�) denotes the variation of the�-�eld with respect to the axial-vector transformation �A, not the 
uctuation around theground state. As in equ. (31) the angel �a has been divided out.The main e�ect of the explicit chiral symmetry breaking was to give the pion a mass.But we can utilize the symmetry breaking further to derive10 some rather useful relationsbetween expectation values of the scalar quark operator �qq and measurable quantities likef�, m�, and ��N .When we introduced the symmetry breaking term into our model, we had requiredthat it has the same transformation properties under the chiral transformations as theQCD-symmetry breaking term. The overall strength of the symmetry breaking, � we thenadjusted to reproduce the ground state properties, namely the pion mass. Therefore, itseems reasonable to expect, that that the vacuum expectation value of the symmetrybreaking terms in QCD (92) and in the e�ective model (93) are the same.< 0j �� j0 > = < 0j �m�qqj0 > (102)9This de�nition of the pion-nucleon sigma term should be taken with some care. For a rigorousde�nition see e.g. [7, 8]. In the framework of the sigma-model, this de�nition, however, is correct toleading order in �.10These `derivations' are merely heuristic, but I feel they nicely demonstrate the physics which is goingon. For a rigorous derivation see e.g. [8]. 23



If we insert for � = m2�f� and use < 0j�j0 >= f� we arrive at the so called Gell-Mann {Oakes { Renner (GOR) relation [9, 8]m2�f2� = �mu +md2 < 0j�uu+ �ddj0 > (103)where we have written out explicitly the average quark mass, m, and the quark operator�qq. The GOR relation is extremely useful, since it relates the quark condensate with f�and/or the pion mass with the current-quark mass.Similarly, but less convincingly, one can argue, that the contribution to the nucleonmass due to chiral symmetry breaking, ��N , is the expectation value of the symmetrybreaking Hamiltonian �HX�SB = ��LX�SB between nucleon states. This leads to theexact expression of the pion-nucleon sigma-term in terms of QCD variables [7, 10]��N = mu +md2 < N j�uu+ �ddjN > (104)This relation will turn out to be very helpful in order to estimate the change of the chiralcondensate in nuclear matter at �nite density.
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3.3 S-wave pion-nucleon scatteringIn order to see how chiral symmetry a�ects the dynamics, let us, as an example, studypion-nucleon scattering in the sigma-model. Let us begin by introducing some notation.
p

q q’

N p’

π π

NThe invariant scattering amplitude T (q; q0) is commonly decomposed into a scalar anda vector part11 (see �g. (3.3) for the notation of momenta)T (q; q0) = A(s; t) + 12
�(q� + q0�)B(s; t) (105)where (s; t) are the usual Mandelstam variables, and q and q0 denote the incoming andoutgoing pion - four-momenta. The relativistic scattering amplitude is related to the morefamiliar scattering amplitude in the center of mass frame, F(~q; ~q0) by�+F�0 = MN4�ps �u(p; s)Tu(p0; s0) (106)Here � are Pauli-spinors for the nucleon representing spin and isospin and u(p; s) standfor a relativistic spinors for a nucleon of momentum p.The scattering amplitude can be decomposed into isospin-even and -odd components12Tab = T+�ab + 12[�a; �b]T� (107)where the indices a; b refer to the isospin.In the discussion of pion-nucleon scattering instead of (s,t) one usually uses the in-variant variables [7] � = s� u4MN (108)�B = � 12MN q�q0� = 14MN (t� q2 � q02) (109)11For details see e.g. the appendix of [11].12Notice, that the isospin-odd amplitude is the negative of what in the literature is commonly calledthe iso-vector amplitude whereas the isospin-even amplitude is identical to the so called isoscalar one (see[11]). 25



The spin-averaged, non-spin-
ip (s = s0), forward scattering (p = p0) amplitude, whichwill be most relevant for the aspects of chiral symmetry, is usually denoted by D and isgiven in terms of the above variables byD � 12Xs �u(p; s)Tu(p; s) = A+ �B (110)Finally, if one wants to extract e�ects due to explicit chiral symmetry breaking, one bestanalyses the so called subtracted amplitude�D = D �DPV = D � g2�MN �2B�2B � �2 (111)Now let us calculate the pion-nucleon scattering amplitude in the sigma- model. Attree level the diagrams shown in �g. (4) contribute to the amplitude. The �rst twoprocesses represent the the simple absorption and re-emission of the pion by the nucleon.Provided, that there is a coupling between pion and nucleon, one would have writtendown these diagrams immediately, without any knowledge of chiral symmetry. The thirddiagram (c), which involves the exchange of a sigma-meson, is a direct result of chiralsymmetry, and, as well shall see, is crucial in order to give the correct value for theamplitude.
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σFigure 4: Diagrams contributing to the pion-nucleon scattering amplitude Tab.In the following, we will restrict ourselves to the forward scattering amplitudes, i.e.q = q0 and p = p0. Using standard Feynman-rules (see e.g. [1]), the above diagrams canbe evaluated in a straightforward fashion. For diagram (a) we obtain�u(p)T (a)ab u(p)= g2��u(p)�a
5 (p+ q)�
� +m(p+ q)2 �m2 �b
5u(p)= �u(p) �(�ab + 12[�a; �b])(�g2� q�
�s�m2 )� (112)26



where we have used that 
5
� = �
�
5, 
25 = 1, �a�b = �ab + 12[�a; �b], and the Diracequation (p�
��m)u(p) = 0. Obviously, diagram (a) contributes only to the vector pieceof the amplitude, B, and the isospin-even and -odd amplitudes are the sameB+(a) = B�(a) = � g2�s�M2N (113)The contribution of the crossed or u-channel ( diagram (b)) one obtains by replacings ! u (114)(�a�b) ! (�b�a) (115)q ! �q (116)with the result B+(b) = g2�u�M2N = �B�(b) (117)Here isospin-even and -odd amplitudes have the opposite sign.It is instructive to calculate the scattering amplitude resulting from the �rst twodiagrams only. If we didn't know about chiral symmetry, and, hence, the existence ofthe �-exchange diagram, this is what we would naively obtain. At threshold (~q = 0), thecombined amplitudes are �B+(a)+(b) = � g2�MN 0B@ 11 � m2�4M2N 1CA (118)�B�(a)+(b) = g2� m�2M2N 0B@ 11� m2�4M2N 1CA (119)Using equations (105, 106) the resulting s-wave isospin-even and isospin-odd scatteringscattering length, which is related to the scattering amplitude D (110) at threshold bya� = 14�(1 + m�MN )D�at threshold (120)would be a+0 ((a) + (b)) = � g�4�f�(1 + m�MN ) (1 +O( m2�M2N )) ' �1:4m�1� (121)a�0 ((a) + (b)) = m�8�f2�(1 + m�MN ) (1 +O(m2�M2N )) ' 0:078m�1� (122)27



where we have made of the Goldberger-Treiman relation g�f� = MN . This is to becompared with the experimental values of [11]a+0 (exp) = �0:010(3)m�1� a�0 (exp) = 0:091(2)m�1� (123)While we �nd reasonable agreement for the isospin-odd amplitude, the isospin evenamplitude is o� by two orders of magnitude! A di�erent choice of the pion-nucleoncoupling g� would not �x the problem, but just shift it from one amplitude to the other.Before we evaluate the remaining diagram (c), let us point out that in the chiral limit,i.e. m� = 0, the isospin-odd amplitude vanishes.In order to evaluate the �-exchange diagram, we need to extract the pion-sigma cou-pling from our Lagrangian. This is done by expanding the potential V (73) up to thirdpower in the �eld 
uctuations ((��) and (��)). The terms proportional to � (��)2(��)then give the desired coupling.�L��� = ��f�(��)2(��) (124)The resulting amplitude is then given by�u(p)T (c)ab u(p) = �g� 2�f�t�m2� �ab (125)It only contributes to the scalar part of the amplitude, A, and only in the isospin-evenchannel. Using 2�f2� = m2� �m2� (see eqs. (96, 97) ) we �ndA+(c) = �g�f� m2� �m2�m2� � t = g�f�  1 � t�m2�t�m2�! (126)To leading order, the contribution to the s-wave scattering lengths of diagram (c) isa+0 ((c)) = g�4�f�(1 + m�MN )(1 +O(m2�M2N )) (127)a�0 ((c)) = 0 (128)Thus, to leading order, the contribution of the �-exchange diagram (c) exactly cancels thatof the nucleon-pole diagrams ((a) and (b)) and the total isospin-even scattering lengthvanishes a+0 = 0 +O(m2�M2N ; m2�m2� ) (129)in much better agreement with experiment. The cancelation between the large individualcontributions to the isospin-even amplitude is a direct consequence of chiral symmetry,28



which required the �-exchange diagram. In the chiral limit, this cancelation is perfect, i.e.the isospin-even scattering amplitude vanishes identically, because the corrections � m�are zero in this case.Furthermore, since the third diagram (c) does not contribute to the isospin-odd am-plitude, the good agreement found above still holds. In other words, with the `help' ofchiral symmetry both amplitudes are reproduced well.Putting all terms together the isospin-even amplitude D+ is given in terms of thevariables � and �B D+(�; �B) = A+ + �B+= g�f� �2�2B � �2 + g�f�  1 � t�m2�t�m2�!= g�f� �2B�2B � �2 � g�f� t�m2�t�m2� (130)Here the �rst term in the second line is the contribution form diagrams (a) and (b) andthe other two term are from diagram (c). At threshold, where � = m�, �B = � m2�2MN , andt = 0 this reduces to D+at threshold = �g�f�  m2�4M2N �m2� + m2�m2�! (131)As already pointed out, to leading order (� m0�) or in the chiral limit, this amplitudevanishes, as a result chiral symmetry. However the contribution next to leading order� m2� involve also the mass of the �-meson, which has not yet been clearly identi�edin experiment. In the sigma-model, this mass essentially is a free parameter, since itis directly proportional to the coupling �. Since � gives the strength of the invariantpotential V , chiral symmetry considerations will not determine this parameter. Thus,aside from the very important �nding, that the isospin-even scattering length should besmall, the linear sigma-model as no predictive power for the actual small value of thescattering length13Notice, that although D is the spin averaged, forward (t = 0) scattering amplitude,we can obviously study it an any value of �, t or equivalently � and �B. A kinematicalpoint of particular interest is the so called Cheng-Dashen point, given by� = 0; t = 2m� ! �B = 0 (132)13In the framework of chiral perturbation theory, the value of the isospin-even amplitude is essentiallyregarded as an input to �x the parameters of the expansion. There are attempts to relate the value ofthe scattering length to contributions from the Delta [12]. In this approach, the problem is shifted to thedetermination of an unknown o�-shell parameter appearing in the Delta-propagator.29



At this kinematical point , the subtracted amplitude �D (111) is directly related with thepion-nucleon sigma-term ��N [7]�D(� = 0; t = 2m�) = ��Nf2� (133)In the sigma-model we �nd for the subtracted amplitude to leading order in the pionmass �D(� = 0; t = 2m�) = �g�f� m2�m2� = ��Nf2� (134)where we have used the expression for the sigma-term, derived above (100) from the con-tribution of the explicit chiral symmetry breaking to the nucleon mass. Notice, althoughthe Cheng-Dashen point is in an unphysical region, it can nevertheless be reached via dis-persion relation techniques, and, thus, the sigma-term can be extracted from pion-nucleonscattering data. For a detailed discussion, see ref. [7].
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4 Nonlinear sigma-modelOne of the disturbing features of the linear sigma-model is the existence of the �-�eld,because it cannot really be identi�ed with any existing particle. Furthermore, at lowenergies and temperatures one would expect that excitations in the �-direction shouldbe much smaller than pionic ones, which in the chiral limit are massless (see �g. (1)).This is supported by our results for the pion-nucleon scattering, where in the �nal resultthe mass of the sigma-meson only showed up in next to leading order corrections, whichvanish in the chiral limit.Let us, therefore, remove the �-meson as a dynamical �eld by sending its mass toin�nity. Formally this can be achieved by assuming an in�nitely large coupling � in thelinear sigma-model. As a consequence the mexican hat potential gets in�nitely steep inthe sigma-direction (see �g. (4) ). This con�nes the dynamics to the circle, de�ned bythe minimum of the potential. �2 + �2 = f2� (135)
σ, π=0)V(σ, π=0) V(

f σπfσπThis additional condition removes one degree of freedom, which close to the groundstate, where < � >= f�, is the sigma �eld, and we are left with pionic excitations only.Because of the above constraint (135), the dynamics is now restricted to rotation on theso called chiral circle (actually it is a sphere). Therefore, the �elds can be expressed interms of angles ~�, �(x) = f� cos(�(x)f� ) = f� +O(�2)~�(x) = f��̂ sin(�(x)f� ) = ~�(x) +O(�3) (136)31



which to leading order can be identi�ed with the pion �eld. Here, � = q~�~�. Clearly,this ansatz ful�lls the constraint (135). Equivalently, one can chose a complex notationfor the �elds, as it is commonly done in the literatureU(x) = ei ~�~�(x)f� = cos(�(x)f� ) + i~��̂ sin(�(x)f� ) = 1f� (� + i~�~�) (137)where U represents a unitary (2� 2) matrix. The constraint (135) is then equivalent to12tr(U+U) = 1f� (�2 + �2) = 1 (138)Since chiral symmetry, or more precisely axial-vector symmetry, corresponds to a symme-try with respect to rotation around the chiral circle, all structures of the formtr(U+U); tr(@�U+@�U) : : : (139)are invariant. Already at this point it becomes obvious that we eventually will need somescheme, which tells us which structures to include and which ones not. This will lead usto the ideas of chiral perturbation theory in the following section.Let us continue by rewriting the Lagrangian of the linear sigma-model (74) in termsof the new variables U or �. After a little algebra we �nd that the kinetic energy term ofthe mesons is given by 12@��@�� = f�4 tr(@�U+@�U) (140)Next, we realize that nucleon-meson coupling term can be written as�g� � �  � + � 
5~� ~�� = �g� � "f�  cos( �f� ) + i
5~� �̂ sin( �f� )!# = �g� � �f�ei
5 ~�~�(x)f� � = �g�f� � �� (141)where we have de�ned � � ei
5 ~� ~�(x)2f� (142)If we now rede�ne the nucleon �elds W = � (143)) � W =  +�+
0 f
0;
5g=0=  +
0� = � � (144)32



the interaction term (141) can be simply written as�g�f� � �� = �g�f� � W W = �MN � W W (145)where we have used the Goldberger-Treiman relation (62). In terms of the new �elds, W , the entire interaction term as been reduced to the nucleon mass term. If we wantto identify the nucleons with the rede�ned �elds  W we also have to rewrite the nucleonkinetic energy term in terms of those �elds.� i@= = � W�+i@=�+ W (146)Since � is space-dependent through the �elds �(x), the derivative also acts on �, givingrise to additional terms. After some straightforward algebra, one �nds� W�+i@=�+ W = � W (i@=+ 
�V� + 
�
5A�) W (147)with V� = 12 h�+@�� + �@��+i (148)A� = i2 h�+@�� � �@��+i (149)� = ei ~� ~�(x)2f� ) U = �� (150)We do not need to transform the potential of the linear sigma-model, V (�; �), sinceit vanishes on the chiral circle due to the constraint condition (135). Putting everythingtogether, the Lagrangian of the nonlinear sigma-model, which is often referred to as theWeinberg-Lagrangian, reads in the above variablesLW = � (i@=+ 
�V� + 
�
5A� �MN ) + f�4 tr(@�U+@�U) (151)were we have dropped the subscript from the nucleon �elds. Clearly, this Lagrangiandepends nonlinearly on the �elds ~�. It is instructive to expand the Lagrangian for small
uctuations �=f� around the ground state. This givesLW ' � (i@=�MN ) + 12(@�~�)2+ 12f� ( � 
�
5~� )@�~�� 14f2� ( � 
�~� ) � �~�� (@�~�)� (152)where ~� is now to be identi�ed with the pion. Comparing with the linear sigma-model, the�-�eld has disappeared and the coupling between nucleons and pions has been changed to33



a pseudo-vector-one, involving the derivatives (momenta) of the pion-�eld. In addition,an explicit isovector coupling-term has emerged. From this Lagrangian it is immediatelyclear that the s-wave pion nucleon scattering amplitudes vanishes in the chiral limit,because all couplings involve the pion four-momentum, which at threshold is zero in caseof massless pions. Thus, the important cancelation between the nucleon pole-diagramsand the �-exchange diagram, which we found in the linear sigma-model, has been movedinto the derivative coupling of the pion through the above transformations.On the level of the expanded Lagrangian (152), the explicit breaking of chiral symme-try is introduced by an explicit pion mass term. Consequently corrections to the scatteringlengths due to the nucleon pole diagrams should be of the order ofm2�, since two derivativecouplings are involved. However, the coupling �L = � 14f2� ( � 
�~� ) � �~� � (@�~�)�, whichcontributes to �rst order to the isospin-odd amplitude, should give rise to a term � m�f2�in agreement with our previous �ndings (122). Not too surprisingly one �nds, that theabove Lagrangian gives exactly the same results for the scattering-length as the linearsigma-model, except, that correction � 1m2� are absent, because we have assumed that themass of the �-meson is in�nite. However, the full Lagrangian (151) would give rise tomany more terms, if we expand to higher orders in the �elds �, which then would lead toloops etc. How to control these corrections in a systematic fashion will be the subject ofthe following section, where we discuss the ideas of chiral perturbation theory.
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5 Basic ideas of Chiral Perturbation TheoryIn the previous sections we were concerned with the most simple chiral Lagrangian inorder to see how chiral symmetry enters into the dynamics. As we have already pointedout, many more chirally invariant terms terms can be included into the Lagrangian andthus we need some scheme which tells what to include and what not. This scheme isprovided by chiral perturbation theory.Roughly speaking, the essential idea of chiral perturbation theory is to realize that atlow energies the dynamics should be controlled by the lightest particles, the pions, and thesymmetries of QCD, chiral symmetry. Therefore, s-matrix elements, i.e. scattering am-plitudes, should be expandable in a Taylor-series of the pion-momenta and masses, whichis also consistent with chiral symmetry. This scheme will be valid until one encounters aresonance, such as the �-meson, which corresponds to a singularity of the s-matrix. Prac-tically speaking, above the resonance, a Breit-Wigner distribution cannot be expanded ina Taylor series.It is not too surprising that such a scheme works. Imagine, we did not know anythingabout QED. We still could go ahead and parameterize the, say, electron-proton scatteringamplitude in powers of the momentum transfer t. In this case the Taylor coe�cientswould be related to the total charge, the charge radius etc. With this information wecould write down an e�ective proton-electron Lagrangian, where the couplings are �xedby the above Taylor-coe�cients, namely the charge and the charge- radius. This e�ectivetheory will, of course, reproduce the results of QED up to the order, which has been �xedby experiment. It is in this sense, the e�ective Lagrangian, obtained in chiral perturbationtheory, should be understood; namely as a method of writing s-matrix elements to a givenorder in pion-momentum/mass. And to the order considered, the the e�ective Lagrangianobtained with chiral-perturbation theory should be equivalent with QCD [13, 14].It should be stressed, that chiral perturbation theory is not a perturbation theory inthe usual sense, i.e., it is not a perturbation theory in the QCD-coupling constant. In thisrespect, it is actually a nonperturbative method, since it takes already in�nitely manyorder of the QCD coupling constant in order to generate a pion. Instead, as alreadypointed out, Chiral perturbation theory is an expansion of the s-matrix elements in termsof pion-momenta/masses.From the above arguments one could get the impression, that chiral perturbationtheory has no predictive power, since it represents simply a power expansion of measuredscattering amplitudes. Although this may true in some cases, one could easily imaginethat one �xes the e�ective Lagrangian from some experiments and then is able to calculateother observables. For example, imagine that the e�ective pion-nucleon interaction hasbeen �xed from pion nucleon-scattering experiments. This interaction can then be usedto calculate e.g. the photo-production of pions.35



To be speci�c, let us discuss the case of pure pionic interaction, i.e. without anynucleons. As pointed out in the previous section, chiral invariance requires that thee�ective Lagrangian has to be build from structures involving U+U (138) such astr(@�U+@�U); tr(@�U+@�U)tr(@�U+@�U); tr[(@�U+@�U)2]; : : : (153)Furthermore, each U = ei ~�~�(x)f� contains any power of the pion-�eld �, which may give riseto loops etc. To specify, which of the above terms should be included into the e�ectiveLagrangian and how much each term should be expanded in terms of the pion �eld, onehas to count the powers of pion momenta contributing to the desired process (scatteringamplitude).Consider a given Feynman-diagram contributing to the scattering amplitude. It willhave a certain number L of loops, a certain number Vi of vertices of type i involving diderivatives of the pion �eld an a certain number of internal lines Ip. The power D of thepion momentum q, this diagram will have at the end, can be determined as follows:� each loop involves an integral over the internal momenta R d4q � q4� each internal pion line corresponds to a pion propagator, and thus contributes as 1q2� each vertex Vi involving di derivatives of the pion �eld, contributes like qdiConsequently, the total power of q, qD is given byD = 4L � 2IP +Xi Vidi (154)This can be simpli�ed by using the general relation between the numbers of loops, internallines and vertices of a given diagramL = Ip �Xi Vi + 1 (155)to give D = 2 + 2L+Xi Vi(di � 2) (156)With this formula we can determine to which order of the Taylor expansion of the scat-tering amplitude a given diagram contributes.In order to see how this counting rule leads to an e�ective Lagrangian of a givenorder, we best study the simple example of pion-pion scattering. Since U+U = 1 does not36



Figure 5: Leading order diagram for �-� scattering.contribute to the dynamics, the simplest contribution to the e�ective Lagrangian is givenby L2 = f�4 tr(@�U+@�U) (157)where the subscript denotes the number of derivatives involved. Since we are discussingpion-pion scattering, we have to expand at least up to fourth order in the pion �elds,L2 = 12(@��)2 + 16f2� h(�@��)2 � �2(@��@��)i+O(�6) (158)where the second term contributes to the pion-pion scattering amplitude. Although thisterm has two contributions, for the purposes of power counting, the second term may beconsidered as one vertex function, because both contributions have the same number ofderivatives. Thus, to lowest order, we have just one diagram, which is shown in �g. (5).It has no loops, L = 0, and the vertex function carries two derivatives of the pion �eld.Using the above counting rule (156), the order of this diagram is D = 4.We can easily convince ourselves that there are no more terms contributing to thisorder. Including terms into the Lagrangian with four derivatives of the pions �eld such ase.g. tr[(@�U+@�U)2] immediately leads to D � 6. Also expanding the above Lagrangian(157) up to sixth order in the pion �eld leads to D � 6, because two of the pion �elds haveto be combined into a loop, since we are only considering a process with four externalpions.Obviously, the order of the e�ective Lagrangian depends on the process under con-sideration. Whereas a term involving six pion �elds contributes to the order D � 6 topion-pion scattering, it would contribute to order D = 4 to a process with three initialand three �nal pions. Of course, having realized, that we are actually parameterizings-matrix elements, this is not such a surprise.As already mentioned, to order D = 6 we have contributions from di�erent sources.First of all, form higher derivative terms in the Lagrangian and secondly, from the ex-pansion to higher order in the pion �elds, giving rise to loops. The beauty of chiral37



perturbation theory is, that the e�ects of loops can be systematically be absorbed intorenormalized couplings and masses. For details see e.g [15].By now, the astute reader will have asked himself: How do I know, that a momentumis small, or in other words, what is the expansion scale? There are several answers on themarket. Georgi [16] argues, based on renormalization arguments, that the scale should be4�f� � 1GeV, whereas others argue [17, 15], that the mass of the lowest lying resonanceshould give the scale, since this is the energy, where the entire game seizes to work.This seems to be a reasonable argument and, assuming that there is no �-meson of mass� 500MeV, the mass of the �-meson should provide a reasonable benchmark.So far we have worked in the chiral limit, i.e. assuming that the pion mass vanishes.The explicit breaking of chiral symmetry is introduced by terms of the form � tr(U++U)and and the simplest symmetry breaking is�LX�SB = f2� m2�4 tr(U+ + U) ' 4� 12m2��2 +O(�4) (159)which to leading order in the pion-�elds corresponds to a pion mass-term (the constantterm does not contribute to the dynamics). Again, one can have many symmetry breakingterm involving the above structure, such astr(U+ + U); tr(@�U+@�U)tr(U+ + U) : : : (160)so that an ordering scheme is necessary. Therefore, in the realistic case of explicit chiralsymmetry breaking, the scattering amplitudes are not only expanded in terms of the pionmomenta but also in terms of the pion masses. The counting-rule is the same as givenabove (156), where di now gives the number of derivatives and pion masses of a givenvertex of type i. The total e�ective Lagrangian for pion-pion scattering to order D = 4is then given byL(4)2 = 12(@��)2 + 12m2��2 16f2� h(~� � @�~�)2 � �2(@�~� � @�~�)i+ m2�24f2� (~� � ~�)2 (161)In principle the `adjustable' parameters of this Lagrangian are the pion-mass and thepion-decay constant, which have to be �xed to the experimental values.The resulting pion-pion scattering length and volumes are then given by [18]a00 = 7m�32�f2� ; a20 = � m�16�f2� ; a11 = 124�f2�m� (162)where the subscript denotes the angular momentum and the superscript the isospin ofthe amplitude. As shown in table (1) [15], the leading order results agree reasonably wellwith experiment and are improved by the next to leading order corrections. Apparently38



Experiment Lowest Order First Two Ordersa00m� 0:26 � 0:05 0:16 0:20a20m� �0:028� 0:012 �0:045 �0:041a11m3� 0:038 � 0:002 0:030 0:036Table 1: Pion-pion scattering lengthwe do not �nd perfect agreement with experiment even for the s-wave scattering lengths,although already to leading order we haven taken into account terms quadratic in themomenta, so that higher orders in the pion momentum will not improve the situation.However, remember, that we not only expand in terms of the pion momenta, but also, asa result of the explicit symmetry breaking, in terms of the pion mass, which in principlecan contribute to any order to the s-wave scattering length.As already pointed out in the beginning of this section, chiral perturbation theory, ormore precisely, the expansion in momenta breaks down, once we get close to a resonance.This one easily understands by looking at the Breit-Wigner formula for the scatteringamplitude involving a resonance.f(E) � �=2ER � E � i�=2 (163)For energies, which are small compared to the resonance energy, E � ER this amplitudemay be expanded in terms of a power series and the concept of chiral perturbation theoryworks well f(E) � �=2ER  1 + E + i�=2ER + : : :! ; E � ER (164)However, once we get close to the resonance-energy, we need to expand to higher andhigher order until at E � ER the power-series in E seizes to converge. To be speci�c,we expect that in the the isovector p-wave channel, which is dominated by the �-mesonresonance, the chiral perturbation expansion should fail for energies E � m�.Finally, let us include the nucleons into the chiral counting. Naively, one would think,that this should destroy the entire concept, because the nucleon has a large mass, which isof the order of the expansion scale. However, since at low energies the scattering amplitudemay also be calculated in a nonrelativistic framework, we do not expect the nucleon massto enter directly, but, to leading order, only via the kinetic energy � p22MN , which is smallcompared to that of the pion at the same momentum. Therefore, chiral perturbationtheory should also work with nucleons present (for details see. [19]). The above argument39



can be formalized by realizing that the nucleon only enters the amplitudes through thenucleon propagator (see e.g. the results of section (3.3)). At low momenta, the nucleonpropagator contributing to diagram (a) of �g. (4) can be written as
�(p� + q�) +MN(p + q)2 �M2N ' 
0MN +MN2MN q = �q (1 +O( qMN )) (165)where � = 
0MN +MN2MN =  1 00 0 ! (166)projects on positive energy states. Hence, to leading order, each nucleon propagatorcontributes like 1q to the power of pion momentum of the scattering amplitude. This leadsto the following counting rule, which now also includes the nucleons [19]D = 2 + 2L� 12EN +Xi Vi(di + 12ni � 2) (167)Here the notation is as in equ. (156) and EN denotes the number of external nucleonlines and ni the number of nucleon �elds of vertex i, which is typically ni = 2.For the simple nucleon-pole diagram using pseudovector coupling we thus would have:L = 0, EN = 2, d = 1, n = 2 such that, d + 12n� 2 = 0 and, D = 1.On top of the expansion in terms of pion-momenta and pion masses, from equ. (165)we, therefore, also have an expansion in the velocity of the nucleons v � qMN . This iscarried out in a systematic fashion in the so called Heavy-Baryon Chiral-PerturbationTheory, as introduced by Jenkins and Manohar [20]. This approach essentially corre-sponds to a systematic nonrelativistic expansion for the nucleon wave-function, on thebasis that the nucleon (baryon) is heavy compared to the momenta involved. We shouldmention, that the e�ect of the nucleon can also be included in a fully covariant fashionas discussed by Gasser et al. [21].Including the nucleon gives rise to additional structures which explicitly break thechiral symmetry, such as�L = a tr(U+ + U) �  ' a(1� �22f2� ) �  (168)To leading order, this is just a contribution to the nucleon mass, which allows us toidentify the coe�cient a with the sigma-term ��N (100)�L = ���N tr(U+ + U) �  ' ���N �  + ��N2f2� �  �2 (169)40



The next to leading term in the above expression is an attractive interaction betweenpion and nucleon, which contributes to the order D = 2 to the amplitude. This termby itself is quite large and would lead to a wrong prediction for the s-wave pion-nucleonamplitude. However, there are additional terms contributing to the same order, which inthe heavy-fermion expansion comes from the nucleon-pole diagrams. The coe�cients ofthese terms then need to be chosen such, that the resulting scattering length acquire thesmall value observed in experiment [22].
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6 ApplicationsIn this last section, we want to discuss a few applications of chiral symmetry relevantfor the physics of dense and hot matter. First we brie
y address the issue of in mediummasses of pions and kaons. Then we will discuss the temperature and density dependenceof the quark condensate. We will conclude with some general remarks on the propertiesof vector mesons in matter.6.1 Pion and kaon masses in dense matterChanges of the pion mass in the nuclear medium should show up in the iso-scalar pions-wave optical potential. To leading order in the density this is related to the s-waveiso-scalar scattering-length a+0 by [11]2!U = �4�(1 + m�MN ) a+0 � (170)where ! is the pion energy. Since the s-wave iso-scalar scattering length is small, as aresult of chiral symmetry, and slightly repulsive, we predict a small increase of the pionmass in the nuclear medium, which at nuclear matter amounts to �m� ' 5MeV . Onearrives at the same result by evaluating the e�ective Lagrangian, as obtained from chiralperturbation theory, at �nite density [23, 22]. This is not surprising since the s-waveiso-scalar amplitude is used to �x the relevant couplings.In case of the kaons, which can also be understood as Goldstone bosons of an extendedSU(3) � SU(3) chiral symmetry, some interesting features occur. Chiral perturbationtheory predicts a repulsive s-wave scattering length for K+-nucleon scattering and a largeattractive one for K� [24, 23]. Using the above relation for the optical potential (170) thisled to speculations about a possible s-wave kaon condensate in dense matter [24, 25] withrather interesting implications for the structure and stability of neutron stars [26, 27].Experimentally, however, one �nds that the iso-scalar s-wave scattering length for theK� is repulsive, calling into question the results from chiral perturbation theory. Theresolution to this puzzle is the presence of the �(1405) resonance just below the kaon-nucleon threshold. This resonance, which has not been taken into account in the chiralperturbation analysis, gives a large repulsive contribution to the scattering amplitude atthreshold. Does that mean, that chiral perturbation theory failed? Yes and no. Yes,because, as already pointed out, it is not able to generate any resonances and thus leadsto bad predictions in the neighborhood of the resonance14. No, because it predicts a14Lee et al. [28] have attempted to include the �(1405) as an explicit state in a chiral perturbationtheory analyses of the kaon-nucleon scattering length. While this approach may be a reasonable thing todo phenomenologically, it appears to be beyond the original philosophy of chiral perturbation theory.42



strong attraction between the proton and the K�, which, if iterated to in�nite order cangenerate the �(1405)-resonance as a bound state in the continuum [29]( in the continuum,because the �(1405) decays into ��).This situation is well known from nuclear physics. The proton-neutron scatteringlength in the deuteron channel is repulsive although the proton-neutron interaction isattractive. The reason is, that in this channel a bound state can be formed, the deuteron,which gives rise to a strong repulsive contribution to the scattering amplitude at threshold.To carry this analogy further, we know that in nuclear matter the deuteron has dis-appeared, essentially due to Pauli-blocking, revealing the true, attractive nature of thenuclear interaction. As a result we have an attractive mean �eld potential for the nucle-ons. Similarly, one can argue [30], that the �(1405), if it is a K�-proton bound state,should eventually disappear, resulting in an attractive s-wave optical potential for the K�in nuclear matter. Indeed, an analysis of K� atoms [31], shows, that the optical potentialturns attractive already at rather low densities � � 0:5�0. Extrapolated to nuclear mat-ter density the extracted optical potential would be as deep as �200MeV, in reasonableagreement with the predictions from chiral perturbation theory.6.2 Change of the quark-condensate in hot and dense matter6.2.1 Temperature dependenceOne of the applications of chiral perturbation theory relevant to the physics of hot anddense matter, is the calculation of the temperature dependence of the quark condensate.Here we just want derive the leading order result. A detailed discussion, which includesalso higher order corrections can be found in ref. [32]. The basic idea, is to realize thatthe operator of the quark-condensate, �qq, enters into the QCD-Lagrangian via the quarkmass term. Thus, we may write the QCD-Hamiltonian asH = H0 +mq�qq (171)The quark condensate at �nite temperature is then given by the following statistical sum< �qq >T= Pi < ij�qq e�H=tji >Pi < ije�H=T ji > (172)Since @H=@mq = �qq this can be written as< �qq >T= T @@mq lnZ(mq) (173)where the partition function Z is given by Z = Pi < ije�H=T ji >.43



In chiral perturbation theory we do not calculate the partition function of QCD, butrather that of the e�ective Lagrangian. To make contact with the above relations, weutilize the Gell-Mann Oakes Renner relation (103). To leading order in the pion mass thederivative with respect to the quark mass, therefore, can be written as@@mq = �< 0j�qqj0 >f2� @@m2� (174)Next to leading order contributions arise, among others, from the quark-mass dependenceof the vacuum condensate.To leading order the partition function is simply given by that of a noninteractingpion gas ln Z = ln Z0 + ln Z��gas = ln Z0 + 3(2�)3 Z d3p ln(1� exp(�E=T )) (175)where Z0 stands for the vacuum contribution, which we, of course, cannot calculate inchiral perturbation theory, since we are only concerned about 
uctuation around thatvacuum. Thus the temperature dependence of the quark condensate in the chiral limit isgiven by < �qq >T = < 0j�qqj0 > � < 0j�qqj0 >f2� @@m2�Z��gas�����m�!0= < 0j�qqj0 > (1 � T 28f2� ) (176)Thus to leading order, the quark condensate drops like � T 2, i.e. at low temperaturesthe change in the condensate is small.Corrections include the e�ect of pion interactions, which in the chiral limit are pro-portional to the pion momentum and thus contribute to higher orders in the temperature.Including contributions up to three loops, one �nds see e.g. [32]< �qq >T< �qq >0 = 1� c1  T 28f2� !� c2  T 28f2� !2 � c3  T 28f2� !3 ln(�qT ) +O(T 8) (177)For Nf 
avors of massless quarks the coe�cients are given in the chiral limit byc1 = 23N2f � 1Nf c2 = 29N2f � 1N2f c3 = 827(N2f + 1)Nf (178)The scale �q can be �xed from pion scattering data to be �q = 470 � 110MeV. In�g. (6) we show the temperature dependence of the quark-condensate as predicted by44
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All we need to know is the matrix element of �qq between nucleon states. This matrixelement, however, enters into the pion-nucleon sigma-term (104)< N j�qqjN >= ��Nmq = ��N < �qq >0m2�f2� (180)where we also have made use of the GOR-relation (103), namely mq = m2�f2�<�qq>0 . Thuswe predict, that the quark condensate drops linearly with density, as compared to thequadratic temperature dependence found above< �qq >�=< �qq >0 (1 � ��Nm2�f2� �+ : : :) (181)Corrections to higher order in density arrise, among others, from nuclear binding e�ects.These have been estimated by Brockmann [35] to be at most of the order of 15 % fordenities up to twice nuclear-matter density. Assuming a value for the sigma term of��N ' 45MeV we �nd that the condensate has dropped by about 35 % at nuclear matterdensity < �qq >�=< �qq >0 (1 � 0:35 ��0 ) (182)Thus, �nite density is very e�cient in reducing the quark condensate and we shouldexpect that any in medium modi�cation due to a dropping quark condensate shouldalready be observable at nuclear matter density. The above �ndings also suggest, thatchiral restoration, i.e. the vanishing of the quark-condensate, is best achieved in heavyion collisions at bombarding energies, which still lead to full stopping of the nuclei.6.3 Masses of vector mesonsFinally, let us brie
y discuss what chiral symmetry tells us about the masses of vectormesons in the medium. Vector mesons, such as the �-meson, are of particular interest,because they decay into dileptons. Therefore, possible changes of their masses in mediumare accessible to experiment.Using current algebra and PCAC, Dey et al. [36] could show, that at �nite temperaturethe mass of the rho-meson does not change to order T 2. Instead to order T 2 the vector-correlation function gets an admixture from the axial-vector correlation functionCV (T ) = (1 � �)CV (T = 0) + �CA(T = 0) (183)with � = T 26f2� . The imaginary part of this vector-correlation function is directly related tothe dilepton-production cross-section. As depicted in �g. (7), the above result, therefore,46
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7 Appendix: Useful referencesThis is a selection of references, which the author found useful in preparing these lectures.It is by no means a complete representation of the available literature.1. D.K. Campbell, 'Chiral symmetry, pions and nuclei',in 'Nuclear Physics with Heavy Ions and Mesons', Volume 2, Editors: Balian, Rhoand Ripka, (Les Houches XXX, 1977),North Holland.Comment: Very nice introduction to chiral symmetry.2. H. Georgi, 'Weak Interactions and modern Particle Physics',Benjamin / Cummings, 1984Comment: Good introduction to the idea of chiral pert. theory, sometimes a littlebrief.3. J.J. Sakurai, 'Currents and Fields',Chicago Univ. Press, 1969Comment: Nice little book about current algebra etc. These are lecture notes and,therefore, rather explicit.4. De Alfaro, Fubini, Furlan and Rosseti, 'Currents in hadron Physics',North Holland, 1973.Comment: The current algebra `bible'. Contains everything up to 1973 (no chiralpert. theory).5. U. Meissner, 'Recent developments in chiral perturbation theory',Rep. Prog. Phys. 56 (1993) 903Comment: Good review about the technical aspects of chiral pert. theory.6. H. Leutwyler, 'Principles of Chiral Perturbation Theory'Lectures from 'Hadrons 94" workshop, Gramado, RS, Brasil, hep-ph/9406283Comment: Very nice review about the conceptual aspects of chiral perturbationtheory. Somewhat complementary to that of Meissner.
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