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The majority of women diagnosed with lymph node-negative breast cancer

are unnecessarily treated with damaging chemotherapeutics after surgical

resection. This highlights the importance of understanding and more accu-

rately predicting patient prognosis. In the present study, we define the tran-

scriptional networks regulating well-established prognostic gene expression

signatures. We find that the same set of transcriptional regulators consis-

tently lie upstream of both ‘prognosis’ and ‘proliferation’ gene signatures,

suggesting that a central transcriptional network underpins a shared phe-

notype within these signatures. Strikingly, the master transcriptional regu-

lators within this network predict recurrence risk for lymph node-negative

breast cancer better than currently used multigene prognostic assays, par-

ticularly in estrogen receptor-positive patients. Simultaneous examination

of p16INK4A expression, which predicts tumours that have bypassed cellular

senescence, revealed that intermediate levels of p16INK4A correlate with an

intact pRB pathway and improved survival. A combination of these master

transcriptional regulators and p16INK4A, termed the OncoMasTR score,

stratifies tumours based on their proliferative and senescence capacity,

facilitating a clearer delineation of lymph node-negative breast cancer

patients at high risk of recurrence, and thus requiring chemotherapy. Fur-

thermore, OncoMasTR accurately classifies over 60% of patients as ‘low

risk’, an improvement on existing prognostic assays, which has the poten-

tial to reduce overtreatment in early-stage patients. Taken together, the

present study provides new insights into the transcriptional regulation of

cellular proliferation in breast cancer and provides an opportunity to

enhance and streamline methods of predicting breast cancer prognosis.

Abbreviations

ChIP, chromatin immunoprecipitation; DMSF, distant metastasis-free survival; ER, estrogen receptor; HMEC, human mammary epithelial

cell; IHC, immunohistochemistry; LN, lymph node; MEF, mouse embryonic fibroblast; MTR, master transcriptional regulator; qPCR,

quantitative real-time PCR; RFS, recurrence-free survival; ROC, receiver operating characteristic; TMA, tissue microarray.
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Introduction

Accurately predicting patient prognosis in early-stage,

lymph node (LN) negative breast cancers is a major

challenge for clinicians. The widespread use of screen-

ing programmes means that increasing numbers of

women are being diagnosed at an early stage with the

disease [1]. In a positive testament to the early detec-

tion measures, only 10–30% of women with early-

stage, LN-negative disease will go on to develop a

recurrence after surgical resection [2,3]. However, the

corollary of this is that the majority of women diag-

nosed with early-stage breast cancer are unnecessarily

treated with chemotherapy [4]. Therefore, given the

debilitating nature of chemotherapy on patient health,

it is crucial to be able to more accurately delineate

LN-negative patients into those that require this treat-

ment, and the majority of patients who do not,

thereby eliminating unnessary treatment burden.

In the past 10–12 years, a number of studies have

defined so-called breast cancer ‘poor prognosis’ expres-

sion signatures, containing tens or even hundreds of

individual genes [5–13]. Several of these prognosis signa-
tures have been adopted in the clinic and proven useful

in terms of stratifying patients into lower and higher risk

groups [14,15]. Intriguingly, despite the ability of several

different signatures to predict breast cancer outcome,

there is little overlap between the genes [16,17]. This

raises the question: do these apparently disparate gene

sets represent a particular shared phenotypic contribu-

tion to tumour biology, and hence patient prognosis?

Previous studies have suggested that the underlying

biological principal driving the prognostic performance

of these markers is proliferation [16,18]. We hypothe-

sized that identifying the upstream master transcrip-

tional regulators (MTRs) of breast cancer poor

prognosis gene expression signatures would allow us to

better understand their phenotypic contribution to

tumour biology, and thus improve treatment recomen-

dations. Towards this goal, we identified a shared tran-

scriptional network upstream of two well-validated

breast cancer prognostic signatures: the 70-gene signa-

ture or ‘MammaPrint’ [10] and the ‘Genomic Grade’

signature [9]. Notably, the same MTRs were shared

between both signatures, suggesting that these prog-

nostic signatures represent a common tumour pheno-

type. Supporting this, we show that the normal role of

the upstream MTRs is to directly regulate the promot-

ers of a set of ‘core proliferation’ genes, many of

which are highly enriched within breast cancer

prognostic signatures. The levels of these MTRs in

breast tumours, together with p16INK4A, a key tumour

suppressor deregulated in tumours that have bypassed

the cellular senescence checkpoint, are strong predic-

tors of recurrence risk, and provide an improvement

upon currently used prognostics such as Ki67, and sur-

rogate estimates of the MammaPrint [10] and Onco-

type Dx [7] multigene signatures. Importantly, this

combination, called the ‘OncoMasTR score’, accu-

rately classifies increased numbers of patients in the

‘low risk’ group. Therefore, the present study provides

new insights into the transcriptional regulation of cel-

lular proliferation in breast cancer and stands to con-

tribute to reduction of overtreatment of patients with

early stage, LN-negative breast cancer.

Results

Delineating the transcriptional network of breast

cancer prognostic signatures identifies upstream

MTRs

To identify the MTRs upstream of breast cancer prog-

nosis gene signatures, we used a bioinformatic approach

called ARACNe [19,20]. This approach uses networks

constructed from gene expression datasets to infer direct

transcriptional interactions, without using survival

information. We applied ARACNe to three indepen-

dent, publicly available breast cancer gene-expression

datasets [11,21,22], and used the resulting interaction

networks to predict the upstream MTRs of two inde-

pendent breast cancer prognosis gene signatures: the

‘Genomic Grade [9] and ‘70-gene’ [10] signatures.

Remarkably, the results of these analyses were very sim-

ilar, with FOXM1, UHRF1, PTTG1, E2F1, MYBL2

and HMGB2 among the top ten scoring MTRs (Fig. 1A

and Table 1), suggesting that a central transcriptional

network underpins both prognostic signatures.

Next, we aimed to explore the possibility that the

levels of the prognosis-linked MTRs would provide a

more accurate prediction than measuring their down-

stream ‘passenger’ genes. We examined the association

of each individual MTR with patient survival in a

combined dataset of three published microarray stud-

ies representing the genome-wide mRNA expression of

457 LN-negative chemotherapy-na€ıve breast tumours

[11,21,23]. This revealed that high mRNA expression

levels of any of the six MTRs in breast tumours was

significantly associated with reduced recurrence-free

survival (RFS) time, whereas FOXM1, MYBL2,

UHRF1 and PTTG1 were better predictors of out-

come than the established prognostic marker Ki67

(Figs 1B and 2). Strikingly, a combination of just six

MTRs was more powerful at stratifying the patients

compared to the 61 genes within the ‘Poor Prognosis’

signature, which constitute the MammaPrint ‘70-gene
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Fig. 1. The transcriptional network of breast cancer prognosis genes. (A) Representative ARACNe network for the ‘Genomic Grade’

signature [9] showing the predicted upstream MTRs. The upstream MTRs are shown in red and the downstream ‘Genomic Grade’ genes

are shown in green. The Genomic grade genes predicted to be downstream of three or more MTRs are shown in the centre. (B) Kaplan–

Meier analyses of a combination of the six MTRs from (A), the proliferation marker Ki67, the 61 genes that constitute the ‘Mammaprint’

signature and the 97 genes that constitute the ‘Genomic Grade’ signature. The analysis was performed on LN-negative samples without

chemotherapy, in three microarray (n = 457) datasets combined [11,21,23]. (C) Representative immunohistochemical staining for the

indicated MTRs in low and high-risk tumours on a breast cancer TMA. Low-risk tumours were defined as those that did not recur within

the study timeframe, whereas high-risk tumours did recur. (D) Kaplan–Meier analyses of a combination of the four MTRs from (C), and Ki67

on TMA tumours from patients not treated with chemotherapy (n = 371). (E) Heat map illustrating the prognostic power of FOXM1, UHRF1,

HMGB2 and PTTG1 alone, these four MTRs combined, and Ki67, as shown in (D). The scale represents –log10 of the P values calculated

using the log-rank test.
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signature’ (Fig. 1B). Moreover, the 97 genes within the

‘Genomic Grade’ signature, which constitute the

‘Genomic Grade Index’, had only slightly better prog-

nostic capabilities than the six MTR genes. Taken

together, these comparisons suggest that just six

upstream MTRs provide superior, or at least similar,

prognostic information compared to the downstream

signatures they are predicted to regulate.

We next examined the protein levels of the MTRs

in an independent breast cancer patient cohort via

immunohistochemistry (IHC). Antibodies were screened

for all six MTRs and four identified that specifically rec-

ognized FOXM1, HMGB2, PTTG1 and UHRF1 (Opti-

mization data available on request). Tissue microarrays

(TMAs) representing 498 invasive breast tumours were

evaluated for the protein levels of each MTR (Fig. 1C).
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Fig. 2. MTR mRNA levels are associated

with poor patient survival in breast cancer.

Kaplan–Meier analysis of RFS for the six

MTRs in 457 LN-negative tumours in a

number of published microarray datasets

[11,21,23]. Patients were stratified into

two equal groups based on the expression

of each MTR and analyzed using the log-

rank test.

Table 1. Top ranking MTRs of the indicated expression signatures

as predicted by ARACNe analysis on three independent breast

cancer datasets [11,21,22].

Rank

Poor

prognosis

signature [10]

Genomic

grade

signature [9]

Core proliferation

signature

(identified in-house)

1 PTTG1 PTTG1 FOXM1

2 FOXM1 FOXM1 PTTG1

3 UHRF1 UHRF1 UHRF1

4 ATAD2 MYBL2 MYBL2

5 MYBL2 ATAD2 HMGB2

6 ZNF367 HMGB2 ATAD2

7 HMGB2 ZBTB20 E2F1

8 TCF19 E2F1 E2F8

9 E2F8 E2F8 ZNF367

10 E2F1 ZNF367 TCF19
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The stained TMAs were manually scored and analyzed

in relation to RFS for the 371 chemotherapy-untreated

tumours with information on all four MTRs

(Figs 1D and 3). The combination of all four MTRs

was more powerful at stratifying the patients in relation

to survival compared to existing prognostic indicators

such as Ki67 (Fig. 1D,E). These results indicate that

both mRNA and protein levels of the prognosis-linked

MTRs predict patient outcome in breast cancer.

Prognosis-linked MTRs bind the promoters of

proliferation genes

We next sought to understand the phenotypic contri-

bution of ‘poor prognosis’ expression signatures to

tumour biology, and to relate this to MTR function.

A gene ontology analysis of both the ‘Genomic Grade’

and ‘70-gene’ signatures confirmed that both are signif-

icantly enriched in genes encoding regulators of cell

growth and proliferation (Fig. 4A). This indicates that

the primary utility of these signatures is to simply

delineate the tumours with higher growth rates, as

reported previously [18,24]. This led us to speculate

that the prognosis-linked MTRs are simply upstream

transcriptional regulators of proliferation genes, even

in normal mammary epithelial cells.

We next set out to identify a cohort of ‘core prolifer-

ation’ genes that are highly expressed in actively grow-

ing mammary epithelial cells and whose expression is

down-regulated in senescent cells. We reasoned that a

strategy to combine the expression changes of serially

passaged human mammary epithelial cells (HMECs)

and mouse embryonic fibroblasts (MEFs) would allow

us to identify a set of ‘core proliferation’ genes, distinct

from those genes whose mRNA expression levels

change as a result of shifts in cell type. Therefore, we

isolated HMECs and MEFs and passaged them

towards cellular senescence, as characterized by an

increase in the levels of p16INK4A [25,26] and a

decrease in the levels of the proliferative marker gene

EZH2 [27]. A genome-wide mRNA expression analysis

identified four differentially expressed gene clusters

(Fig. 4B). The expression changes of representative

genes from each cluster were validated by quantitative

RT-PCR (Fig. 4C). Of particular interest were the

cluster 3 genes, which were down-regulated during

serial passaging of HMEC, but not MEF cells, and the

cluster 4 genes, which were down-regulated in both

HMEC and MEF cells. The cluster 3 genes included

several genes involved in mammary epithelial cell-spe-

cific processes, such as the luminal cytokeratin KRT19

and the tight junction protein CLDN3, consistent with
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Fig. 3. Kaplan–Meier

immunohistochemical analysis of FOXM1,

UHRF1, PTTG1 and HMGB2 on breast

cancer TMAs. Kaplan–Meier estimates of

RFS for each MTR in 371 breast tumour

samples. Patients were stratified into two

groups using thresholds specific to each

MTR. P values are calculated using the

log-rank test. Only samples with

information for all four MTRs are included

in the analysis.
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the fact that the proportion of luminal and myoepithe-

lial cells shifts during serial passaging of HMEC cells

[28]. This suggests that many of the genes within

cluster 3 were down-regulated independently of the

progressive decrease in proliferation rate. Consistent

with this idea, a gene ontology analysis for each of the

four gene clusters revealed the greatest enrichment of

functional categories linked to cell cycle and prolifera-

tion in cluster 4 (Fig. 4D). Strikingly, an ARACNe

analysis aimed at predicting the upstream regulators of

the cluster 4 or ‘core proliferation’ genes identified the

prognosis-linked MTRs, FOXM1, PTTG1, UHRF1,

MYBL2, HMGB2 and E2F1 as key upstream regula-

tors (Fig. 4E and Table 1). This confirms that the pri-

mary power of the ‘Genomic Grade’ and ‘70-gene’

prognostic signatures is to indicate tumours with high

levels of ‘core proliferation’ genes and thus, higher

growth rates.

Next, we aimed to confirm that the normal role of

the prognosis-linked MTRs is to directly bind to the

promoters of the ‘core proliferation’ genes. Chromatin

immunoprecipitation (ChIP) followed by quantitative

real-time PCR (qPCR) confirmed the direct binding of

four of the MTRs (FOXM1, MYBL2, E2F1 and

HMGB2) to the promoters of core proliferation genes

in HMEC-TERT cells (Fig. 5A). To gain a broader

view on MTR binding throughout the genome, we per-

formed ChIP followed by high-throughput sequencing

(ChIP-seq) on HMEC-TERT cells for E2F1, MYBL2

and FOXM1. All three MTRs primarily associate with

the promoters of the cluster 4 ‘core proliferation’ genes

and, to a lesser extent, some cluster 3 genes (Fig. 5B).

The ChIP-seq tracks were aligned together with RNA-

Seq performed on proliferating (passage 2) and

nonproliferating (passage 14) HMECs, and three repre-

sentative genes; CCNB1, UBE2C and CENPA, as well

as a negative control, KRT2, are represented (Fig. 5C).

The co-binding of FOXM1, E2F1 and MYBL2 on

their downstream target genes is analogous to the mode

of action of core pluripotency transcription factors in

embryonic stem cells [29] and suggests that the progno-

sis-linked MTRs synergize to drive the expression of

genes required for proliferation.

We were unable to assess the genome-wide binding

patterns of PTTG1 or UHRF1 because of a lack of

ChIP-grade antibodies. However, the fact that PTTG1

has been reported to have a role in the transcriptional

activation of cell cycle genes [30,31] supports our A-

RACNe predictions. On the other hand, UHRF1 is

generally considered to be a transcriptional repressor,

being required for the maintenance of DNA methyla-

tion during cell division [32]. Therefore, UHRF1 is

unlikely to directly regulate core proliferation genes,

and is more likely to be a co-regulated proliferative

gene. Supporting this possibility, E2F1, MYBL2 and

FOXM1 also co-bind the promoter of the UHRF1

gene in HMEC-TERT cells (data not shown).

Predicting tumours that have bypassed cellular

senescence

We next aimed to develop a gauge of tumours that

had bypassed the cellular senescence checkpoint and to

determine whether this could help further refine breast

cancer prognosis predictions. Accordingly, we exam-

ined whether deregulated levels of CDKN2A mRNA

(the gene which encodes p16INK4A) correlated with

genetic perturbation of the cellular senescence check-

point. Analysis of 463 samples in The Cancer Genome

Atlas breast cancer dataset [33] revealed that reduced

levels of CDKN2A mRNA correlated with deletion of

the CDKN2A gene (Fig. 6A). However, interestingly,

increased CDKN2A mRNA levels correlated with dele-

tion of the RB1 gene, as reported previously [34–37].
The fact that both very low or high levels of CDKN2A

mRNA correlate with genetic perturbation of the pRB

pathway raised the previously unanticipated possibility

that cancers with intermediate p16INK4A levels would

tend to have a better prognosis.

We next evaluated the prognostic potential of mea-

suring intermediate or ‘moderate’ levels of p16INK4A,

both at the mRNA (Fig. 6B) and protein levels

Fig. 4. Prognosis-linked MTRs are predicted to regulate proliferative genes. (A) The top five gene ontology terms identified for the Genomic

Grade (top) and ‘70 gene’ Poor Prognosis (bottom) gene signatures. The red line indicates a P value of 0.05, calculated using t-test statistics

via the DAVID tool. (B) Transcriptomic profiling experiments in growing and senescent HMEC and MEF cultures were aligned to identify

genes expressed at consistently high levels in proliferating cells from different lineage types; the so-called ‘core-proliferative’ genes. The

heat-map analyses depict all genes up- or down-regulated by more than two-fold in growing versus senescent HMECs, and the

corresponding change in MEFs (cluster 1 = 58 genes; cluster 2 = 193 genes; cluster 3 = 184 genes; cluster 4 = 214 genes). Cluster 4

represents a ‘core proliferation’ signature comprised of the genes whose mRNA levels are most significantly and consistently down-

regulated during serial passaging of both HMECs and MEFs cells. (C) Quantitative real-time PCR validation of the mRNA expression level

changes of representative genes from each of the four clusters shown in (B). (D) The top five gene ontology terms identified for each of the

four gene clusters from (B). The red line indicates a P value of 0.05. (E) ARACNe network analysis for upstream MTRs of the ‘core

proliferation’ signature. The predicted MTRs are shown in red and the core proliferation genes are shown in blue.
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(Fig. 6C–E). Breast tumours with moderate CDKN2A

mRNA levels correlated with improved RFS (Fig. 6B)

in the combined microarray dataset of 457 LN-nega-

tive breast cancer patients [11,21,23]. By contrast,

tumours with either very low or very high CDKN2A

mRNA levels correlated with shorter RFS. A TMA

stained for p16INK4A confirmed the same trend at the

protein level, whereby tumours with either very high

or very low p16INK4A correlated with both shorter

recurrence-free and breast cancer-specific survival

(Fig. 6C–E). Based on these observations, it is likely

that the breast cancers with moderate levels of

CDKN2A mRNA and p16INK4A protein are enriched

in cells that have an intact pRB pathway, have not

bypassed the cellular senescence checkpoint, have a

lower proliferative rate and thus have a more favor-

able prognosis.

Development of an ‘OncoMasTR score’ that

predicts outcome better than current prognostic

tests

We next developed a scoring system combining the

mRNA expression levels of prognosis-linked MTRs

with those of CDKN2A, termed the ‘OncoMasTR RNA

score’, and compared this with estimates of other clini-

cally utilized multigene prognostic assays. We analyzed

LN-negative, chemotherapy-untreated patients from

each of three individual microarray datasets [11,21,23],

as well as a combination of all three (Fig. 7A). This

revealed that OncoMasTR compared favourably with

surrogate estimations of both the MammaPrint and

Oncotype Dx signatures, using low/high categories for

comparison with the former, and low/moderate/high

categories for comparison with the latter. Although the

MammaPrint 70-gene signature performed best in the

dataset composed of samples used in its derivation

[10,11], the OncoMasTR RNA score outperformed esti-

mates of both the MammaPrint and Oncotype Dx

assays, on the other two datasets and also overall when

all three datasets were combined. We also developed an

‘OncoMasTR IHC score’, based on the protein levels of

p16INK4A protein and the four prognosis-linked MTRs,

and tested this on the cohort of 371 chemotherapy-

untreated patients described previously. The inclusion

of p16INK4A provided a striking improvement upon

prognosis-linked MTRs alone in terms of the ability to

predict patient survival on all patients, as well as on a

LN-negative subcohort (Fig. 7B).

For a prognostic test to be clinically useful, it

should provide additional prognostic information,

independent of standard clinicopathological variables.

Therefore, we also performed multivariate analysis on

the OncoMasTR RNA and protein scores using Cox

proportional hazard models. This confirmed that the

OncoMasTR score contributes significant information

in predicting RFS, on top of a standard clinicopatho-

logical variable model, at both mRNA (Table 2) and

protein (Table 3) levels. This was also the case in the

LN-negative patient cohort. The added prognostic

value of the OncoMasTR scores on top of the stan-

dard clinical model is superior to all other prognostic

indicators, including Ki67, the 70-gene signature

(MammaPrint) and the 21-gene signature (Oncotype

Dx). Furthermore, the OncoMasTR RNA score was

found to provide significant additional prognostic

information to a model comprising the standard clini-

cal variables together with the 21-gene Oncotype Dx

signature (Table 4). This suggests that the OncoM-

asTR score can provide additional clinical utility on

top of that provided by the Oncotype Dx panel.

The OncoMasTR score accurately predicts

outcome for ER-positive, LN-negative patients

To further evaluate the potential clinical utility of the

OncoMasTR score within the patient population most

likely to require it, we examined its prognostic power

on 366 estrogen receptor (ER)-positive, LN-negative

patients from the combined microarray dataset

described earlier [11,21,23], reflecting the inclusion cri-

teria for the Oncotype Dx assay. Remarkably, the On-

Fig. 5. Prognosis-linked MTRs co-bind proliferative genes. (A) Validation of MTR binding to genes within the ‘core proliferation’ signature by

ChIP-qPCR. Precipitated DNA was analyzed by qPCR using primers directed towards the promoters of the indicated genes. Anti-HA

antibody was used as a negative control ChIP and the b-ACTB and CHD5 promoters were included as negative control promoters. The ChIP

enrichments are presented as the percentage of protein bound normalized to input. The error bars indicate the SD of three technical

replicates. (B) Heat-map representations showing ChIP-seq data for FOXM1, MYBL2 and E2F1 in HMEC-TERT cells. The binding at the

promoters of genes from cluster 4 and, to a lesser extent, cluster 3 is indicated for the FOXM1 (red), MYBL2 (green) and E2F1 (blue)

MTRs. The region between –2 and +2 kb of the transcriptional start site (TSS) of all the cluster 1–4 genes is shown for comparison. (C)

Representative ChIP-seq tracks at the indicated genes in HMEC-TERT cells showing ChIP-seq enrichment on the y-axis. RNA-seq data from

both low and high passage HMECs is also depicted for each gene (top), showing reads per kilobase per million (RKPM). The KRT2 gene is

included as a negative control.
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coMasTR RNA score outperformed surrogate esti-

mates of both the MammaPrint (low/high groups),

and Oncotype Dx (low/mod/high groups) assays in

this patient cohort (Fig. 7C,D).

With the aim of addressing one of the major issues

with the Oncotype Dx assay, namely the high propor-

tion of ‘intermediate risk’ patients with no clear

treatment guidelines [38], we performed a comparative

analysis of population distribution and recurrence risk

on the ER-positive, LN-negative cohort as above

(n = 366), using distant metastasis-free survival

(DMFS) as an endpoint (Table 5). This revealed that

the OncoMasTR RNA score was capable of classifying

an increased proportion of patients as low risk in this

cohort: 69.3% compared to 36.2% for the Oncotype

Dx 21-gene signature and 31.8% for the MammaPrint

70-gene signature. This is almost double what is

classified as low risk using other platforms. Rates of
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Fig. 6. p16INK4A levels are indicative the genetic status of the p16-pRB pathway and predict patient outcome. (A) Correlations of the mRNA

expression levels of CDKN2A with gene copy number alterations (CNA) in the RB1 and CDKN2A gene loci using the GISTIC tool on data

from 463 breast cancers from The Cancer Genome Atlas [33]. (B) Kaplan–Meier analyses of CDKN2A mRNA in LN-negative breast cancers,

without adjuvant chemotherapy on the combined (n = 457) microarray dataset [11,21,23]. The samples were stratified into three groups

based on CDKN2A mRNA expression levels, cut at the 33rd and 66th percentile (left). Additionally, the low and high expression groups

were combined and compared with the moderate expression group (right). Chi-squared values and P values were calculated using a log-rank

test. (C) Representative immunohistochemical stainings for p16 protein levels on low and high risk tumours (as in Fig. 1C). Note, that the

tumours from patients 1–4 were stained for FOXM1, HMGB2, UHRF1 and PTTG1 in Fig. 1C. (D) Kaplan–Meier analyses based on p16

protein levels on tumours taken from patients not treated with chemotherapy (n = 371) from the TMA cohort using RFS data as the output.

The samples were stratified into three groups based on p16 protein expression levels (left). Additionally, the negative and high expression

groups were combined and compared with the moderate expression group (right). Chi-squared values and P values were calculated using

the log-rank test. (E) Kaplan–Meier analyses as in (D), using breast cancer specific survival as the endpoint.
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distant metastasis in the low risk groups were compa-

rable for OncoMasTR RNA score (13.9%) and the

Oncotype Dx 21-gene signature (13%) and slightly

lower for the MammaPrint 70-gene signature (11.3%).

However, it should be noted that this dataset contains

some of the training samples for the 70-gene signature.

To further examine the sensitivity and specificity of

the OncoMasTR score, and to rule out any potential

issues with the microarray probe set data, we

performed a TaqMan-based qRT-PCR analysis of the

six MTRs and CDKN2A/p16 on 151 ER-positive, LN-

negative tumours untreated by chemotherapy, which

matched the TMA cohort used previously (Fig. 8). To

identify the optimum threshold for binary classifica-

tion, and to minimize any reduction in accuracy as a

result of the increase in the size of the low risk group,

we carried out a receiver operating characteristic

(ROC) analysis, revealing that the OncoMasTR RNA
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Fig. 7. The OncoMasTR score outperforms estimates of currently used multigene prognostic assays. (A) Heat maps illustrating the

prognostic value of CDKN2A alone, six MTRs combined, OncoMasTR RNA score, 70-gene signature, 21-gene signature and Ki67 by Kaplan–

Meier analysis on LN-negative, chemotherapy-untreated samples in the combined (n = 457) microarray dataset [11,21,23]. The 70-gene and

21-gene signature predicted risk groups were estimated based on gene expression data using the genefu package in the R-software. The

scale represents �log10 of the P values calculated using log-rank test. Both low/moderate/high and low/high splits were used to facilitate

comparison to existing the prognostic signatures. (B) Kaplan–Meier analyses of the combined score of the protein levels of four MTRs

(FOXM1, UHRF1, HMGB2 and PTTG1) and p16, termed the OncoMasTR IHC score, in all samples not treated with chemotherapy (left;

n = 371) and LN-negative chemotherapy-untreated samples (right; n = 214) from the TMA cohort using RFS data. The prognostic values of

the four MTRs alone, p16 alone, the OncoMasTR IHC score, and Ki67 are shown as a heat map based on the �log10 of P values calculated

using the log-rank test. (C) Kaplan–Meier analyses of the OncoMasTR RNA score (six MTRs and CDKN2A) in comparison with the 21-gene

signature, using a low/moderate/high split, on the subset of ER-positive, LN-negative patients who did not receive adjuvant chemotherapy

(n = 366), from the combined microarray dataset [11,21,23]. (D) Kaplan-Meier analyses as in C, but in comparison with the 70-gene

signature, using a low/high split.
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score had a sensitivity/specificity of 0.67/0.74 for pre-

dicting RFS and 0.82/0.73 for predicting DMFS. The

area under the curve values were 0.697 and 0.798 for

RFS and DMFS, respectively, comparing favourably

to published values for other prognostic tests such as

Oncotype Dx [39]. Finally, using these thresholds, we

carried out survival analysis on this cohort, which

classified 67% of patients as ‘low risk’ with an impres-

sively low recurrence rate of 3% at 5 years. No

patients categorized as ‘low risk’ by the OncoMasTR

score experienced a distant metastasis event within

5 years. Although the chosen threshold will need to be

validated in an independent patient cohort, these

results suggest that the OncoMasTR score holds

enormous promise for improving the stratification of

patients diagnosed with ER-positive LN-negative

breast cancer, who need not be unnecessarily treated

with damaging chemotherapeutics after surgical

resection.

Discussion

The decision of whether or not to subject women diag-

nosed with LN-negative breast cancer to chemotherapy

is a major challenge in the clinic. Indeed, in accor-

dance with current guidelines, the majority diagnosed

are unnecessarily treated with chemotherapy after sur-

gery. In the present study, we provide a strategy to

better distinguish the 10–30% of women requiring

aggressive adjuvant chemotherapy from the majority

who need no further treatment [2,3]. We developed a

scoring system, called ‘OncoMasTR’, which outper-

forms currently used multigene prognostic assays. This

scoring system is based on the expression of several

prognosis-linked MTRs, which we show act upstream

of proliferation genes, and p16INK4A, for which we

show that intermediate, as opposed to high or low,

levels in tumours are indicative of better patient prog-

nosis. Importantly, OncoMasTR stands to provide a

better delineation of the LN-negative breast cancer

patients requiring chemotherapy, and performs excep-

tionally well in ER-positive, LN-negative patients, a

subgroup in which it is particularly difficult to identify

women at high risk of recurrence, who would therefore

be most likely to require chemotherapy.

The deconvolution of transcriptional networks is

crucial for our understanding of normal cell biology

and disease pathogenesis, which frequently results

from perturbed transcriptional programming [40]. In

the present study, we observed that identical transcrip-

tion factors are predicted to function as upstream

MTRs of independent breast cancer prognostic signa-

tures. This suggests that these signatures represent sim-

ilar tumour characteristics. Indeed, the significant

enrichment of functional terms related to cell growth

Table 2. Multivariate Cox regression analysis using a standard

clinical variable model based on data from three published

microarray studies [11,21,23]. Clinical variables used: age

(≥ 50 years), nodal status, tumour size (≥ 2 cm), tumour grade (> 1),

treatment (endocrine therapy) and ER status. LR, likelihood ratio.

Variable

All patients

(n = 567)

Node-negative

patients (n = 410)

LR-Dv2a P value LR-Dv2a P value

Lo/Med/Hi

FOXM1 24.14 < 0.001 26.59 < 0.001

E2F1 25.28 < 0.001 15.56 < 0.001

HMGB2 10.89 < 0.001 7.47 0.006

MYBL2 25.43 < 0.001 15.91 < 0.001

PTTG1 12.37 < 0.001 10.16 0.001

UHRF1 22.71 < 0.001 17.61 < 0.001

CDKN2A 2.23 0.135 13.82 < 0.001

6MTR 33.8 < 0.001 20.27 < 0.001

OncoMasTR RNA score 43.87 < 0.001 44.04 < 0.001

21-gene 29.02 < 0.001 38.03 < 0.001

Ki-67 8.3 0.004 7.45 0.006

Lo/Hi

6MTR 23.82 < 0.001 29.32 < 0.001

OncoMasTR RNA score 29.62 < 0.001 32.20 < 0.001

70-gene 30.20 < 0.001 28.88 < 0.001

Ki-67 5.52 0.018 8.99 0.003

aAdded prognostic value of each variable is represented by change

in the LR-Dv2 value from the model of only clinical variables to the

model of clinical variable + marker in the three combined micro-

array datasets.

Table 3. Multivariate Cox regression analysis using a standard

clinical variable model in TMAs. Clinical variables used: age

(≥ 50 years), nodal status, tumour size (≥ 2 cm), tumour grade

(> 1), treatment (endocrine therapy, radiotherapy), ER and HER2

status. LR, likelihood ratio.

Variable

All patients

(n = 254)

Node-negative

patients (n = 166)

LR-Dv2a P value LR-Dv2a P value

Lo/Hi

FOXM1 0.09 0.763 0.78 0.378

HMGB2 0.04 0.834 1.67 0.197

PTTG1 4.72 0.030 0.74 0.390

UHRF1 4.08 0.043 0.35 0.552

p16 8.02 0.005 7.62 0.006

4 MTRs 11.24 < 0.001 0.89 0.344

OncoMasTR IHC Score 23.74 < 0.001 9.92 0.002

Ki67 2.82 0.093 3.24 0.072

aAdded prognostic value of each variable is represented by change

in the LR-Dv2 value from the model of only clinical variables to the

model of clinical variable + marker in the TMA dataset.
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and proliferation within both signatures, together with

the fact that several of the MTRs co-bind the promot-

ers of genes within our ‘core proliferation’ signature,

indicates that the signatures mainly reflect a prolifera-

tive phenotype. Additional tumour phenotypes, such

as metastasis or angiogenesis, would provide addi-

tional prognostic information [41]. Thus, identifying

the MTRs of breast cancer ‘metastatic’ and ‘angio-

genic’ gene signatures may further refine the OncoM-

asTR score.

The bypass of cellular senescence has generally been

considered as a pre-requisite for the formation of inva-

sive tumours [42]. However, evidence exists that some

tumours can retain the ability to engage the cellular

senescence response, subsequent to cytotoxic therapy

[43–45], the inactivation of a driving oncogene such as

c-Myc [46] or the reactivation of p53 [47,48]. The infer-

ence is that those tumours rendered incapable of activa-

tion of the cellular senescence checkpoint would thus

confer a worse prognosis on patients. This concept is

consistent with our demonstration that high levels of

proliferative MTRs combined with aberrantly high or

low levels of p16INK4A, both indicative of an abrogated

p16INK4A-pRB-E2F pathway, correlate with poor out-

comes for the patient. In particular, we show that high

levels of p16INK4A correlate with deletion of the RB1

gene, which encodes the pRB protein, whereas low lev-

els of p16INK4A correlates with deletion of the

CDKN2A gene locus. Both cases result in inactivation

of the p16INK4A-pRB-E2F pathway. Previous studies of

p16INK4A expression in relation to breast cancer prog-

nosis have reported conflicting results. For example,

although high p16INK4A expression was found to be

associated with poor prognosis in some patient cohorts

[49–53], other studies found that it was associated with

improved outcome [54]. However, these studies divided

the patients into just two groups: low versus high

p16INK4A. In our analysis, we instead used a three-

group stratification, providing a clear delineation of the

association between p16INK4A expression and breast

cancer prognosis; specifically, that tumours with either

very high or very low p16INK4A are likely to reflect a

poor prognosis for the patient, whereas intermediate

levels correlate with better prognosis.

In conclusion, measuring the levels of prognosis-

linked MTRs and p16INK4A, known as the OncoM-

asTR score, is very powerful as a prognostic signature

in breast cancer. This is most likely a result of its abil-

ity to identify those tumours with high growth rates

that have also bypassed the cellular senescence check-

point. Significantly, the OncoMasTR score classifies a

higher proportion of ER-positive, LN-negative breast

cancer patients as ‘low risk’ in the cohorts that we

have examined, thereby reducing the number of

patients in the ambiguous ‘intermediate’ group and

potentially avoiding overtreatment of patients. Given

the universal importance of proliferation and senes-

cence regulation in cancer progression, we suggest that

this approach may also prove useful in other cancer

types. It will be important to evaluate the OncoM-

asTR score on a prospective patient cohort to deter-

mine its potential as a prognostic assay for early-stage

breast cancer, and to determine whether this combina-

tion of factors could prove prognostic in other cancer

types.

Table 4. Multivariate Cox regression analysis using a clinical

variable model including the 21-gene signature based on data from

three published microarray studies [11,21,23]. Clinical variables

used: age (≥ 50 years), nodal status, tumour size (≥ 2 cm), tumour

grade (> 1), treatment (endocrine therapy), ER status and 21-gene

signature. LR, likelihood ratio.

Variable

All patients

(n = 570)

Node-negative

patients (n = 413)

LR-Dv2a P value LR-Dv2a P value

Lo/Hi

6MTR 6.02 0.014 5.45 0.019

OncoMasTR RNA score 9.92 0.002 7.11 0.008

Lo/Med/Hi

6MTR 12.68 < 0.001 2.28 0.131

OncoMasTR RNA score 18.56 < 0.001 14.88 < 0.001

aAdded prognostic value of each variable is represented by change

in the LR-Dv2 value from the model of clinical variables + 21-gene

signature to the model of clinical variable + 21-gene signa-

ture + marker in the three combined microarray datasets.

Table 5. Comparison of OncoMasTR score to estimates of the

Oncotype Dx and Mammaprint prognostic assays in 366 ER-

positive, LN-negative breast tumours, untreated by chemotherapy,

based on data from three published microarray studies [11,21,23].

Predictor

Risk group

Low (%) Intermediate (%) High (%)

OncoMasTR

% Population 69.3 – 30.7

% DMFS (at 5 years) 8.4 – 29.7

% DMFS (at 10 years) 13.9 36.9

21-gene (Oncotype Dx)

% Population 36.2 23.8 40.1

% DMFS (at 5 years) 8.4 3.5 27.6

% DMFS (at 10 years) 13 10.5 34.5

70-gene (Mammaprint)

% Population 31.8 – 68.2

% DMFS (at 5 years) 5.2 – 19.4

% DMFS (at 10 years) 11.3 25.5
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Materials and methods

Cell culture

Primary HMEC cells were grown as described previously

[25]. HMEC-TERT cells were immortalized at passage 2

using a pBABE-hTERT-hygro construct. MEFs were

derived from embryonic day 13.5 C57BL6 mouse embryos

and maintained in DMEM media supplemented with 10%

(v/v) FBS (HyClone, Logan, UT, USA), 100 U�mL–1 peni-

cillin and 100 U�mL�1 streptomycin (Gibco, Gaithersburg,

MD, USA).

RNA sequencing

Total RNA was extracted from proliferating and senescent

HMECs using the RNeasy kit (Qiagen, Valancia, CA,

USA). Polyadenylated RNA species were enriched from

5 lg of total RNA, and sequencing libraries were prepared

from this PolyA+ RNA from two independent HMEC lines

using the TruSeq Sample Prep kit (Illumina, Inc., San

Diego, CA, USA). Libraries were used for cluster genera-

tion and sequencing analysis using the Genome Analyzer II

(Illumina) in accordance with the manufacturer’s instruc-

tions. Reads were trimmed to 42 bp to remove low-quality

nucleotides and were mapped to the human genome (hg19)

with the Burrows–Wheeler sequence alignment tool [55].

TOPHAT [56] was used for splice-aware mapping to the tran-

scriptome. Reads were summarized for each transcript and

fed into DESeq for normalization and calculation of

mRNA fold changes.

Microarray analysis

Total RNA was extracted from proliferating and senescent

MEFs using the RNeasy kit (Qiagen). For each time-point,

RNA was prepared from three independent MEF lines and

subsequently pooled. Cy3-labeled cRNA, for use with a

custom-designed 44k microarray (Agilent Technologies

Inc., Santa Clara, CA, USA), was prepared and hybridized

in accordance with the manufacturer’s instructions. Micro-

arrays were scanned using Agilent’s DNA microarray scan-

ner and data were analyzed as described previously [57].

Microarray dataset mining

Gene ontology analysis was carried out using the DAVID

Bioinformatics Resource (http://david.abcc.ncifcrf.gov).

The processed publicly available breast cancer microarray
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Fig. 8. Prognostic power of the

OncoMasTR score as measured by

TaqMan qRT-PCR in ER-positive, LN-

negative patients. (A) ROC curves for the

OncoMasTR RNA score (six MTRs and

CDKN2A) in ER-positive, LN-negative

patients who did not receive adjuvant

chemotherapy, as measured by Taqman-

based qRT-PCR (n = 151). RFS is used as

the endpoint. Kaplan–Meier analyses for

this cohort are shown beneath. (B) ROC

curves and Kaplan–Meier analyses as

shown in (A), with DMSF as the endpoint.
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datasets were downloaded from Rosetta Inpharmatics [11]

and GEO (GSE6532 and GSE3494) [21,23]. The datasets

were normalized as described in the original publications.

Within each dataset, the expression data of each gene was

divided at the median into two groups, or at the 33rd and

66th percentile into three groups, for comparison with the

two and three risk groups of Mammaprint and Oncotype

Dx respectively. Once the samples have been dichotomized,

the gene expression data are no longer used, allowing com-

parisons across different datasets/platforms, as described

previously [58]. To generate a combined MTR score, the

gene expression values for each of the six genes were

divided at the median, given a score of 1 or 2 based on the

expression level, and the sum of these scores was then

divided, as above, to create two or three groups. CDKN2A

gene expression was divided into three groups (low, moder-

ate and high) at the 33rd and 66th percentile. The moderate

group was given a score of 1 and the low and high groups

were combined and given a score of 2, corresponding to

the fact that both very low and high levels of CDKN2A

mRNA correlate with genetic perturbation of the pRB

pathway. To generate the OncoMasTR RNA score, the

combined MTR score and the CDKN2A score were

summed together and the final scores were divided into two

or three groups. The genefu package in R was used to esti-

mate the risk groups which approximate the Oncotype Dx

assay (based on a 21-gene signature), the MammaPrint

assay (based on a 70-gene signature) and the Genomic

Grade Index (based on a 97-gene signature).

Real-time quantitative PCR

For validation of microarray experiments, total RNA was

extracted from cells using the RNeasy kit (Qiagen) in

accordance with the manufacturerʼs instructions, and 1 lg
of total RNA was used to generate cDNA using the Taq-

Man Reverse Transcription kit (Applied Biosystems, Foster

City, CA, USA). Relative mRNA expression levels were

determined using the SYBR Green I detection chemistry

(Applied Biosystems) on an ABI Prism 7500 Fast RT-PCR

System. RPLPO was used as a control gene for normaliza-

tion and the generation of ΔCt values. For Taqman qRT-

PCR analysis on FFPE breast tumours, RNA was

extracted using the RNeasy FFPE kit (Qiagen), and 2 lg
of total RNA was used to generate cDNA using the Super-

Script VILO cDNA Synthesis Kit (Applied Biosystems).

Optimized probes for each gene were assayed on TaqMan

Low-Density Array cards in accordance with the manufac-

turerʼs instructions. The primer/probe sequences used are

available upon request.

ChIP and ChIP-sequencing

ChIP and ChIP-seq analyses were performed as described

previously [59]. Briefly, for ChIP-seq, DNA from two inde-

pendent ChIP experiments was pooled and sequencing

libraries generated using the ChIP-seq Sample Prep Kit

(Illumina). DNA libraries were sequenced using the Gen-

ome Analyzer II (Illumina) in accordance with the manu-

facturerʼs instructions. Mapping of sequence reads to the

human genome (hg19) was performed using BOWTIE [60].

Peak detection was performed using the Model-based

Analysis for ChIP-Seq (MACS) software [61] and input DNA

was used as a control for normalization.

ARACNe analysis

Breast cancer transcriptional networks were supplied by

Andrea Califano (Columbia University, New York, NY,

USA) and generated by ARACNe [19], using published

breast cancer datasets [11,21,23]. The prognosis gene signa-

tures used can be found in the relevant publications

[7,9,10]. The larger 231-gene signature from which the 70-

gene MammaPrint signature was derived [10], as well as

the larger 207-gene list from which the 97-gene Genomic

Grade Index was derived [9], were used as input for the A-

RACNe algorithm to identify the common transcriptional

regulators driving the expression of the genes in these sig-

natures.

Statistical analysis

Kaplan–Meier survival curves were used for survival analy-

sis and chi-squared and P values were calculated using the

log-rank test. Multivariate Cox proportional hazards analy-

sis was used to evaluate the prognostic value of genes and

combined scores and generate hazard ratios. The contribu-

tion of each marker was assessed by the change in likeli-

hood ratio (LR-Chi, d.f. = 1). P < 0.05 was considered

statistically significant. The primary clinical endpoints used

for analysis were RFS and DMFS. The ROC curves were

generated using the R-package pROC (http://web.exp-

asy.org/pROC). The response vector was DMFS events at

10 years and the predictor was the ‘6MTR:CDKN2A’

score. The 95% confidence intervals were computed with

2000 stratified bootstrap replicates. All statistical analysis

was carried out using R (http://cran.r-project.org/; version

2.15.0). Heatmaps were created using MATRIX2PNG (http://

chibi.ubc.ca/matrix2png).

TMA patient cohort

The TMA used in the present study was derived from a

reference cohort of 498 consecutive invasive breast cancer

cases diagnosed at the Department of Pathology, Malmo

University Hospital, Malmo, Sweden, between 1988 and

1992, and has been described previously [62]. In brief, the

median age was 65 years (range 27–96 years) and median

follow-up time regarding disease-specific and overall

survival was 11 years (range 0–17 years). Patients with
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recurrent disease and previous systemic therapies were

excluded. Two hundred and sixty-three patients were dead

at the last follow-up, 90 of whom were classified as breast

cancer-specific deaths. Of the total cohort of 498 patients,

23 patients received chemotherapy, 208 patients received

radiotherapy and 161 patients received hormone therapy.

Tissue cores (1 mm) from areas representative of invasive

cancer were extracted from donor blocks and arrayed in

duplicate. The present study was approved by the Ethics

Committee at Lund University and Malmo University

Hospital.

IHC and TMA analysis

TMA slides were stained using the LabVision IHC kit

(LabVision, Newmarket, UK) as described previously [63].

The primary antibodies used were rabbit polyconal

HMGB2 (dilution 1 : 1500; Abcam, Cambridge, MA,

USA), mouse monoclonal UHRF1 (dilution 1 : 1000;

Clone28/ICBP90; BD Biosciences, Clontech, Palo Alto,

CA, USA), rabbit polyclonal PTTG1 (dilution 1 : 500; In-

vitrogen, Carlsbad, CA, USA), rabbit polyclonal FOXM1

(dilution 1 : 300; C20; Santa Cruz, CA, USA) and mouse

monoclonal p16 (dilution 1 : 5000; Clone JC8). Slides were

scanned at 9 20 magnification using a ScanScope XT slide

scanner (Aperio Technologies, Vista, CA, USA). TMA

staining of tumour cells was evaluated by a pathologist on

the basis of intensity as negative (0), weak (1), moderate (2)

and strong (3), as well as percentage on a scale of 0–6
(0 = 0–1%; 1 = 1–10%; 2 = 10–25%: 3 = 25–50%; 4 = 50–
75%; 5 = 75–90%; 6 = 90–100%). Staining for the factors

HMGB2 and UHRF1 was predominantly nuclear, whereas

PTTG1, FOXM1 and p16INK4A stained both the nuclear

and cytoplasmic compartments and were scored accord-

ingly. For UHRF1, PTTG1 and p16INK4A, the percentage

of positive tumour nuclei was the most significant variable

in relation to outcome and was used in all further analysis.

For HMGB2, a modified Allred score (intensity plus per-

centage) was used and, for FOXM1, the percentage of

cytoplasmic positivity within tumour cells was the most sig-

nificant variable, and was used for further analysis. For

analysis of the four MTRs, a threshold for positivity was

applied independently for each variable, to create a binary

score with low (0) and high (1) expression. For p16, the

‘negative’ (0% positivity) and ‘high’ (> 50% positivity)

expression groups were combined (score = 1) and com-

pared with the ‘moderate’ group (score = 0).

To generate a combined MTR score at the protein

level, the sum of the binary scores for all four MTRs was

generated. Tumours with high expression of > 1 MTR

were classified as having a high MTR score. To generate

the combined 4MTR + p16 score (OncoMasTR IHC

score), the binary 4MTR score was combined with the

binary p16 score, and divided into two groups with a

threshold of > 2.
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