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ABSTRACT OF THE DISSERTATION

Some quantitative regularity theorems for the Navier-Stokes equations

by

Stanley Palasek

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Terence Chi-Shen Tao, Chair

Consider a velocity field u solving the incompressible Navier-Stokes equations on [0, T ]×Rd

(d ≥ 3) and satisfying ∥u(t)∥X ≤ A for all times, where the norm X is critical with respect

to the Navier-Stokes scaling. We prove several theorems to the effect that the regularity of

the solution can be controlled explicitly in terms of A, building upon Tao’s pioneering work

on the case d = 3, X = L3(R3). First we prove a generalization to the critical Lebesgue

space in any number of spatial dimensions (d ≥ 4, X = Ld(Rd)). Then we show a variety of

circumstances under which Tao’s bounds can be strengthened, including the case in which

the solution is nearly axisymmetric. For exactly axisymmetric solutions, we prove regularity

in terms of the weak norm X = L3,∞(R3) which implies effective bounds on approximately

self-similar behavior.
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CHAPTER 1

Introduction

In this dissertation we consider the incompressible Navier-Stokes equations in Rd, d ≥ 3,

∂tu− ν∆u+ u · ∇u+∇p = 0

div u = 0
(1.1)

which models the motion of an incompressible viscous fluid with velocity field u : [0, T ) ×

Rd → Rd and pressure field p : [0, T ) × Rd → R. The viscosity ν is a positive dimensional

parameter. We perform some standard reductions to transform (1.1) into a more analytically

convenient form. First one can normalize the viscosity to ν = 1 via the rescaling

u(t, x) 7→ νu(νt, x), p(t, x) 7→ ν2p(νt, x).

Then, upon projecting to the space of divergence-free vector fields using the Leray projection

P = 1−∆−1∇ div which eliminates the pressure term, we arrive at

∂tu−∆u+ P div u⊗ u = 0. (1.2)

Note that div u⊗u = u ·∇u by incompressibility; moreover one no longer needs to separately

impose div u = 0 as this condition is preserved by (1.2) (under very mild assumptions).

At times it will still be useful to refer to the pressure since it essentially captures the

nonlocal part of the nonlinearity. (1.1) implies that it satisfies the Poisson equation

−∆p = div div(u⊗ u).
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Assuming, as we often will, that u(t) ∈ Ld
x(Rd), this specifies1 a unique p ∈ L

d/2
x (Rd) ex-

pressible with the formula

p = −∆−1 div div(u⊗ u) = F−1

(
ξiξj
|ξ|2

ûiuj(ξ)

)
(1.3)

in which we employ the Einstein summation convention.

To motivate the delicate critical problems that will be our main focus, let us briefly review

some well-known classical results in the regularity theory for (1.2). Leray in his seminal paper

[35] proved local existence and uniqueness of “strong” solutions of (1.2) with finite energy

data u0 in the spaces Lp(R3), p > 3. He obtains as well quantitative lower bounds on the

norms’ divergence: if u is a strong solution blowing up at time T∗ > 0, meaning the solution

cannot be continued smoothly beyond time T∗, then

∥u(t)∥Lp
x(R3) ≥

c(p)

(T∗ − t)
1
2
− 3

2p

for t ∈ [0, T∗) (1.4)

for all p ∈ (3,∞], where c(p) is a positive constant. In fact, an analogous estimate holds for

solutions on Rd, d ≥ 3 for all p ∈ (d,∞].

Let us justify why one would expect this scale of spaces to be capable of detecting blowup

as in (1.4). It is straightforward to see that the space of solutions of (1.2) is invariant under

the group of transformations

u(t, x) 7→ uλ(t, x) := λu(λ2t, λx), λ > 0, (1.5)

which scale the spatial Lp norms according to

∥uλ∥Lp
x(Rd) = λ1−

d
p∥u∥Lp

x(Rd).

Taking λ ≫ 1 leads to a transformation which “zooms in” on the small scale behavior of

the solution; thus the Lp
x(Rd) norm is effective at controlling possible concentration at small

1Clearly the “normalized pressure” given by (1.3) differs from the original in (1.1) by a harmonic function
at every time. However, in the case that u is smooth and finite energy, this difference is just a constant
function (in space) for almost all time, as shown in [59, Lemma 4.1]. Thus for such solutions, there is no
loss of generality in assuming (1.3).
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scales as long as 1 − d
p
> 0, i.e., when p > d. In general, such function spaces X with the

homogeneity ∥uλ∥X = λa∥u∥X , a > 0, are referred to as “subcritical” with respect to the

natural scaling of the PDE.

On the other hand, when a < 0, the space X is referred to as “supercritical” and has

little chance of controlling small scale behavior of the solution. The most relevant example

is L∞
t L

2
x([0, T ]× Rd) when d ≥ 3 which is related to the energy equality

∥u(t)∥2L2
x(Rd) +

ˆ t

0

∥∇u(t′)∥2L2
x(Rd)dt

′ = ∥u(0)∥2L2
x(Rd) (1.6)

for strong solutions of (1.2). (1.6) is the only known coercive conservation law for Navier-

Stokes equations; hence all known a priori estimates correspond to spaces at most as strong

as E := L∞
t L

2
x ∩ L2

t Ḣ
1
x. Since the corresponding norm is supercritical (indeed, ∥uλ∥E =

λ
d
2
−1∥u∥E), (1.6) appears to be useless by itself for ruling out singular behavior.

The third case, a = 0, is the subject of the dissertation at hand. This corresponds to the

norm respecting the symmetry exactly and thus measuring the solution equally at all scales.

For instance, the energy space E introduced above is critical when d = 2, and Leray in his

classical work had already proved that strong solutions in R2 exist globally in time. More

generally, in Rd, d ≥ 2, there are a variety of commonly studied homogeneous critical spaces

which follow the inclusions

Ḣ
d
2
−1 ⊂ Ld ⊂ Ld,q ⊂ Ḃ

−1+ d
p

p,q ⊂ BMO−1 ⊂ B−1
∞,∞

where p, q ∈ (d,∞). (Of course this is not an exhaustive list, and there are inclusions as well

within the Ld,q and Ḃ
−1+ d

p
p,q scales.) Various delicate issues arise in the setting of the weakest

spaces in the chain, and in some cases even a satisfying local theory is lacking. For the

purpose of this dissertation we restrict our attention primarily to the Lebesgue and Lorentz

scales; the endpoint case Ld,∞ = Ld,w is also of particular interest due to its connection

blowup phenomena and will be the subject of Chapter 5.

Let us also mention the critical spacetime norms which make up the Prodi-Serrin-Ladyzhenskaya

3



scale,

Xp,q := Lp
tL

q
x, where

2

p
+
d

q
= 1, d < q ≤ ∞.

The relationship between p and q enforces criticality. We remark that (1.4) already implies

that if u blows up at t = T∗, then

∥u∥Xp,q([T∗−ϵ,T∗]×Rd) = ∞

with the (p, q) = (∞, d) case once again excluded. The stronger result coming from the

works of Prodi [49], Serrin [56], and Ladyzhenskaya [31] is that Xp,q is enough regularity to

ensure weak-strong uniqueness; in other words, if u1 and u2 are Leray-Hopf2 weak solutions

of (1.2) with the same initial data and u1 ∈ Xp,q, q > 3, then u1 = u2 and the solutions are

smooth.

The endpoint space Ld
x(Rd) is a glaring gap in the above classical picture. It should

be noted that local existence is known for data in Ld
x; however there is no lower bound on

the time of existence in terms of ∥u0∥Ld alone. Indeed, dimensional analysis considerations

appear to preclude such a lower bound. It is not clear at all that a bound on ∥u∥L∞
t Ld

x(Rd)

should control the regularity of the solution since the norm does not penalize concentrations

at small scales that agree with the PDE’s scaling.

One should also compare L∞
t L

d
x = X∞,d to the Prodi-Serrin-Ladyzhenskaya spaces Xp,q

for q > d in the following manner: if z0 ∈ [0,∞)×Rd is a putative blowup point, consider a

parabolic cylinder Q with radius r around z0. If u is bounded inXp,q with q > 3, p <∞, then

Xp,q(Q) can be made arbitrarily small by taking r small and using dominated convergence,

from which one can infer regularity in the interior of Q by standard arguments. On the

2The Leray-Hopf class is a commonly studied class of weak solutions obeying the additional property
that (1.6) holds as an inequality. Leray [35] proved the global existence of such weak solutions in R3

for all reasonable data, yet uniqueness in general remains a major unsolved problem (although there is
exciting recent progress [2]). The question of uniqueness of weak solutions to fluid equations is a completely
different side to the regularity question and has been intensively studied recently, including by the author
and collaborators [10, 11], but will not be in the scope of this dissertation.
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other hand, in X∞,3, this argument breaks down due to the L∞ norm. These considerations

suggest that in order to control the regularity of the solution in terms of an endpoint critical

norm, or to prove an analogue of (1.4) for Ld
x, nontrivial ideas are needed.

The breakthrough on this problem came in the paper of Escauriaza, Seregin, and Šverák

[22] which, as one consequence, implies that for a classical solution u of (1.2) blowing up at

time T∗,

lim sup
t ↑T∗

∥u(t)∥L3
x(R3) = ∞.

The lim sup was upgraded to a pointwise limit as t ↑ T∗ by Seregin [53] (which is still open

in the case d ≥ 4). The most important new tool in [22] was a backward uniqueness theorem

for the heat equation on the exterior of a ball, proved in their paper [21]. The idea is

as follows: one assumes by contradiction that u blows up at (t, x) = (0, 0) while ∥u(t)∥L3
x

stays bounded. The scaling symmetry defined in (1.5) allows one to construct a sequence

of rescaled solutions uk which obey the same L3 bound while zooming in in the singularity.

One can justify passing to a subsequence which converges weakly to another solution u∞;

furthermore u∞ can be shown to be non-trivial near the original singularity, while vanishing

far away from 0 at time t = 0. The backward uniqueness theorem for the heat equation,

applied to the vorticity ω = curlu, implies that ω vanishes away from x = 0 for all t ≤ 0.

From there a straightforward unique continuation argument proves that ω ≡ 0 everywhere,

which contradicts u∞ being nontrivial at (0, 0).

This argument, while very powerful, suffers from being fundamentally non-quantitative

due to the use of compactness. While it does abstractly imply3 the existence of some F :

[0,∞) → [0,∞) such that

∥u∥L∞
t,x([1/2,1]×R3) ≤ F (∥u∥L∞

t L3
x([0,1]×R3))

for all classical solutions u with ∥u∥L∞
t L3

x([0,1]×R3) < ∞, the growth rate of F is not at all

effective.

3This observation appears to be due to Hongjie Dong.
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Here we briefly survey the subsequent non-quantitative work that made use of the tech-

niques in [22]. Dong and Du have extended these results to dimensions d ≥ 4 in [19], which

will be discussed later in detail. The space L3
x has been weakened to the non-endpoint

Lorentz space L3,q
x , 3 < q <∞ by Phuc [48] and further to the negative order non-endpoint

Besov spaces B
−1+3/p
p,q , 3 < p, q < ∞ by Gallagher, Koch, and Planchon [25]. It should be

noted that this latter work takes a slightly different approach, following the concentration

compactness method of Kenig and Merle [27] which had been introduced into the Navier-

Stokes setting by Kenig and Koch [26]. The strongest qualitative result for solutions in R3

to date is due to Albritton and extends Seregin’s limt→T∗ theorem [53] to the negative order

Besov spaces from [25]. Ultimately all of these theorems are non-quantitative and rely on a

strategy similar to that of [22].

In 2019, Tao [60] gave the first effective bounds for solutions of (1.2) in R3 bounded in a

critical space. First, he showed that if u is a classical solution with

∥u∥L∞
t L3

x([0,T ]×R3) ≤ A

with A large, then one can explicitly control the subcritical norms of u as

∥∇ju(t)∥L∞
x
≤ t−

1
2
(1+j) exp exp exp(AOj(1)) (1.7)

for all j ≥ 0 and t ∈ [0, T ]. This is a quantitative version of Escauriaza, Seregin, and Šverák’s

theorem. Taking j = 0 and combining this with (1.4), it fills in the missing endpoint of (1.4)

(at least along a sequence of times): there exist tn ↑ T∗ such that

∥u(tn)∥L3
x(R3) ≥

(
log log log

T∗
T∗ − tn

)c

(1.8)

where c > 0 is an absolute constant.

Tao’s idea, which is the starting point of this dissertation, is similar in spirit to Escauri-

aza, Seregin, and Šverák’s argument in the contrapositive (to avoid proof-by-contradiction),

replacing qualitative tools including unique continuation theorems with their quantitative

6



analogues. The high-level strategy is as follows: one shows that if the solution concentrates

in a high frequency bubble, then the bubble must have been caused by a series of past

bubbles at various larger scales. If the solution has sufficient partial regularity, one can use

Carleman estimates to show that these previous bubbles lead to slight concentrations of

vorticity scattered throughout space, each of which contributes to the L3
x norm. The higher

the frequency of the initial bubble, the more scales must have had such contributions, which

produces the desired conclusion that singular behavior requires a large L3
x norm.

The results in [60] leave many questions open that have attracted significant attention

since; see [6] for a more detailed survey. First, once again for solutions bounded in L3(R3),

Barker and Prange [5] quantify the improvement in [53] toward a pointwise blowup rate of

the critical norm. They also prove that for Type I blowups, the norm diverges at least as fast

as a single logarithm (at the expense of double exponential dependence on the weaker norm

that stays bounded). By using tools related to spatial rather than Fourier concentration,

they are able to obtain results that are well localized in space. Barker [3] later proved a fully

localized blowup theorem using a truncation method.

Another interesting development [4] is that the lower bound (1.8) can be extended to a

slightly supercritical Orlicz norm on the order of L3/ log log log logL, following an observation

of Bulut [9].

To state the results of this dissertation, let us consider the general situation in which the

solution is assumed to be bounded uniformly in time as

∥u∥L∞([0,T ];X) ≤ A (1.9)

with A ≥ 2, say. The plan is to address three natural questions about solutions obeying this

bound:

1. Can analogues of (1.7) and (1.8) be proved in dimensions four and greater? The

argument in [60] breaks down in several substantial ways. The fundamental problem

is that the energy space is much weaker in high dimensions; thus the partial regularity

7



which plays an essential role is hard to come by. In Chapter 3 we are able to introduce

new quantitative approaches to partial regularity and unique continuation to answer

this question in the affirmative.

2. Can the triple exponential and logarithmic bounds in (1.7) and (1.8) be improved? Tao

conjectures in [60] that this might be possible by avoiding use of “annuli of regularity”

which are problematic due to being distributed sparsely over scales. Unfortunately,

while we cannot answer this question in generality, we can answer in the affirmative

if X = L3(R3) and u is axisymmetric. In Chapter 4 we prove the following: if either

(i) 3 < q < ∞ or (ii) u is axisymmetric and 2 < q ≤ 3, then with X = Lq(r1−
3
q dx),

where r2 = x21 + x22, the results (1.7) and (1.8) can be improved by one exponential

and logarithm (respectively).

3. Can X = L3(R3) be replaced by the weak Lebesgue norm? This question is very

relevant for understanding blowup, and is indeed a major open question in the field

(even the corresponding qualitative statement). Here we prove a quantitative theorem

in the axisymmetric case, which appears inaccessible by the method of [60] (see §5.1),

using instead Harnack-type inequalities and favorable parabolic equations obeyed by

components of axisymmetric solutions. This will be the subject of Chapter 5 and is

joint work with Wojciech Ożański.
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CHAPTER 2

Quantitative tools for analyzing critically bounded

solutions

2.1 Introduction

This chapter contains results that have appeared in the author’s work [46, 47]. The purpose

is to prove various estimates and other quantitative properties of solutions of (1.2) that obey

a bound of the form (1.9). These will be our main tools toward the regularity theorems in

Chapters 3, 4, and 5. There are two main goals that we pursue in the following sections:

(i) We wish to carry out energy estimates on the velocity fields and related quantities, even

when the critical space X is poorly suited for this purpose. For instance, if the spatial

dimension d is large and we are given only a bound on ∥u∥Ld
x
, then there is not nearly

enough spatial decay to control
´
Rd |u|2dx at any time; nonetheless, we would still like to

make use of energy estimates (for instance, for proving partial regularity). The solution

is to employ a Picard-esque decomposition of u into a “flat” part u♭ which represents

a finite number of interactions between different heat flows; and the residual “sharp”

part u♯. The former has essentially unlimited regularity in high integrability spaces,

while the latter has acceptable bounds in spaces with low integrability. Moreover the

latter solves a Navier-Stokes-like equation that is conducive for energy estimates. We

face similar issues in the case where X is a weighted norm, as in Chapter 4. This is

the subject of §2.3.
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(ii) We would like to locate regions in spacetime where the solution is regular, such that

both the size of the region and regularity of u inside are explicitly controlled in terms

of A. Such “partial regularity” results are used in several places in the main arguments

but most crucially to produce a region in which Carleman inequalities for the heat

equation (Appendix A.1) can be applied (in Chapters 3 and 4). The partial regularity

theorems presented in the sequel fall into three categories:

Epochs of regularity When d = 3, every time interval contains a subinterval whose

length we can bound from below in which the solution is well-controlled. This

was proved quantitatively in the X = L3
x(R3) case by Tao [60]. This property is

a consequence of energy conservation; in fact, a version for finite-energy solutions

was discovered originally by Leray [35].

CKN-type spacetime regularity Caffarelli-Kohn-Nirenberg famously proved [12]

that the d − 2-dimensional (parabolic) Hausdorff measure of the set of space-

time singularities is zero (the epochs of regularity property being a special case).

We prove quantitative realizations of this theorem based on the blowup procedure

in §2.4. This implies the existence of many thin regions of regularity for even the

high-dimensional Navier-Stokes equations which will be essential for our purposes.

“Away-from-the-axis” regularity A simple qualitative consequence of the CKN

theorem is that if the axisymmetric Navier-Stokes equations blow up, it may

happen only on the axis. In §2.5.3 we produce quantitative versions of this fact

in a somewhat more general setting, as well as in some weighted spaces (without

symmetry assumptions). The main tools are axisymmetric and weighted Bernstein

inequalities (§2.2.2).

We remark that several similar tools have appeared in Tao’s work on the X = L3
x case,

although they have been substantially extended for our purposes in this dissertation. For ex-

ample, the decomposition described in (i) has a predecessor in the decomposition ulin + unlin

10



appearing in [60].1 Tao also makes use of a three-dimensional “annuli of regularity” propo-

sition which is essentially a manifestation of Caffarelli-Kohn-Nirenberg partial regularity.

2.2 Preliminaries

2.2.1 Notation

The critical spaces X that are of interest often involve some parameter, for instance, the

dimension d ≥ 3 (Chapter 3) or the exponent q ∈ (2,∞) (Chapter 4). Since we are not par-

ticularly concerned with how the constants depend on these parameters, we use asymptotic

notation x ≲ y or x = O(y) to mean that there is a constant C = C(X) depending on the

choice of X such that |x| ≤ Cy. Indeed, many constants should be expected to deteriorate

as q ↓ 2, q ↓ 3, q ↑ ∞, or d ↑ ∞. As in [60], we fix a large constant C0 that may depend

as well on these parameters. With A as in (1.9), we define the hierarchy of large constants

Aj = ACj
0 .

Let us emphasize that no constants may depend on A or u.

We will occasionally write x ≤ y− or x+ ≤ y to mean x < y. This will make it possible

to abbreviate a collection of strict and non-strict inequalities. For example, x ≤ a, x ≤ b,

x < c can be written as x ≤ min(a, b, c−).

If I ⊂ R is a time interval, we use |I| to denote its length. If Ω ⊂ R3, |Ω| will denote its

three-dimensional Lebesgue measure. If x0 ∈ R3 and R > 0, we will write B(x0, R) to denote

the closed ball {x ∈ R3 : |x − x0| ≤ R}. If x ∈ R3, then r will denote the radial distance

in cylindrical coordinates, that is r :=
√
x21 + x22. For a specific point, say p ∈ R3, we will

write its radial coordinate as r(p) :=
√
p21 + p22. For 0 < r1 < r2, we define the cylindrical

shell S(r1, r2) := {x ∈ R3 : r1 ≤ r ≤ r2} along with the truncated versions S(r1, r2;M) :=

1In fact, similar decompositions have appeared in other contexts [14, 25, 1]. We thank an anonymous
referee for ARMA for bringing these references to our attention.
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{x ∈ S(r1, r2) : |x3| ≤M} and S(r1, r2;M1,M2) := {x ∈ S(r1, r2) :M1 ≤ |x3| ≤M2}.

We say a scalar-valued function is axisymmetric if its derivative in the spatial direction

(−x2, x1)t vanishes identically. We say a vector-valued function is axisymmetric if each

component is axisymmetric when the function is written in cylindrical coordinates around

the x3-axis.

When studying the nonlinearity of (1.2), we will use the symmetrized tensor product

u⊙ v :=
1

2
(u⊗ v + v ⊗ u)

for u, v ∈ R3, or in coordinates, (u ⊙ v)ij = 1
2
(uivj + ujvi). This allows the convenient

binomial expansion (u+ v)⊗ (u+ v) = u⊗ u+ 2u⊙ v + v ⊗ v.

For Ω ⊂ Rn and I ⊂ R, we will use the Lebesgue norms

∥f∥Lq
x(Ω) :=

(ˆ
Ω

|f(x)|qdx
)1/q

and

∥f∥Lp
tL

q
x(I×Ω) :=

(ˆ
I

∥f(t, ·)∥p
Lq
x(Ω)

dt

)1/p

with the usual modifications if p = ∞ or q = ∞.

For a Schwartz function f : R3 → Rn, we define the Fourier transform

f̂(ξ) =

ˆ
R3

e−ix·ξf(x)dx

and the Littlewood-Paley projection by the formula

P̂≤Nf(ξ) := φ(ξ/N)f̂(ξ)

where φ : R3 → R is a radial bump function supported in B(0, 1) such that φ ≡ 1 in

B(0, 1/2). Then let

PN := P≤N − P≤N/2, P>N := 1− P≤N , P̃N := P≤2N − P≤N/4.
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These all commute with other Fourier multipliers such as P, ∆ and et∆. Estimation of such

operators in the weighted spaces Xp
α;T is the subject of the next subsection.

When a summation is indexed with a capital letter such as N or M , it should be taken

to range over the dyadic integers 2Z. Thus we have the shorthand notation∑
N

f(N) :=
∑
N∈2Z

f(N),
∑

A≤N≤B

f(N) :=
∑

{N∈2Z:A≤N≤B}

f(N), etc.

2.2.2 Bernstein-type inequalities with axial symmetry and weights

If Ω ⊂ R3 and α ∈ R, we define the weighted space Xq
α;T (Ω) of smooth vector fields u :

[−T, 0]× Ω → R3 such that

∥u∥Xq
α;T (Ω) := ∥rαu∥L∞

t Lq
x([−T,0]×Ω) <∞.

For brevity we will set Xq
α;T := Xq

α;T (R3). The spaces become critical with respect to the

Navier-Stokes scaling when α = αq, where

αq := 1− 3

q
.

The case of interest, in which it is possible to improve the bounds compared to [60], is

either q ∈ (3,∞), or u is axisymmetric and q ∈ (2, 3]. (2.1)

See Chapter 4 for details.

We record Hölder’s inequality for Xq
α;T spaces, which is immediate from the standard

version for Lp spaces: assuming 1 ≤ p, q, r ≤ ∞, α, β, γ ∈ R, 1
p
= 1

q
+ 1

r
, and α = β + γ,

∥rαuv∥Xp
α;T

≤ ∥rβu∥Xq
β;T

∥rγv∥Xr
γ;T
.

The following proposition shows that Bernstein’s inequality for Fourier multipliers with

compactly supported symbols extends naturally to weighted Lp spaces such as Xp
α;T . When

working with u controlled in an Xq
αq ;T

space with q < 3 one runs into the difficulty that
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αq < 0. Proposition 2.1, as well as many of the estimates for other operators we will derive

from it, only hold when the weight on the left-hand side has a smaller power than the one

on the right (see Remark 2.2), so it is not clear how one would control the components of u

with frequency much larger than r−1. Fortunately, in the presence of axial symmetry we can

avoid these issues and prove a weighted Bernstein inequality which allows us to exchange

some integrability for negative powers of r.

Proposition 2.1. Let m be a Fourier multiplier supported in B(0, N) with |∇jm| ≤MN−j

for j = 0, 1, . . . , 100. If 1 ≤ q ≤ p ≤ ∞ and either

1. α > −2
p
, β < 2

q′
, and α ≤ β;

2. p = ∞, α = 0, and 0 ≤ β < 2
q′
; or

3. q = 1, β = 0, and −2
p
< α ≤ 0,

then we have

∥rαTmu∥Lp ≲MN
3
q
− 3

p
+β−α∥rβu∥Lq . (2.2)

If |u| is axisymmetric, then the conditions α ≤ β, β ≥ 0, and α ≤ 0 can be improved to

α ≤ β + 1
q
− 1

p
, β ≥ −1

q
, or α ≤ 1− 1

p
, respectively.

Proof. In this proof we make use of the standard non-weighted Bernstein inequalities proved,

for example, in [60, Lemma 2.1].

When establishing the case of the proposition in which |u| is axisymmetric, let us assume

for the moment that the symbol m is likewise axisymmetric.

We begin by rescaling x and m to make N = M = 1. Then it clearly suffices to show

that the operator T = rαTmr
−β is bounded from Lq(R3) to Lp(R3). To do so, we decompose

it into spatially localized pieces as

T =
∑
R,S

TR,S, TR,S = rαχRTmr
−βχS

14



where χ : R → [0,∞) is a smooth function such that the collection χR(x) = χ(r/R) over

R ∈ 2Z forms a partition of unity of R \ {0}. More specifically we may choose χR to be

supported in S(R
2
, 3R

2
). Then TR,S can be expressed as an integral operator TR,Sf(y) =´

R3 f(x)K(x, y)dx with the kernel

KR,S(x, y) = rαy r
−β
x χR(y)χS(x)m̂(x− y)

satisfying

|KR,S(x, y)| ≲ RαS−βχR(y)χS(x)⟨x− y⟩−50

where we let ⟨x⟩ = (1 + |x|2)1/2. Then, bounding the operator with Hölder’s inequality, we

have that for R, S such that max(R/S, S/R) ≥ 100,

∥TR,S∥Lq→L∞ ≲ ∥KR,S∥L∞
y Lq′

x

≲ RαS−β⟨max(R, S)⟩−50∥χS(x)⟨x3 − y3⟩−50∥
L∞
y Lq′

x

≲ RαS
−β+ 2

q′ ⟨max(R, S)⟩−50

and

∥TR,S∥L1→Lp ≲ ∥KR,S∥L∞
x Lp

y

≲ RαS−β⟨max(R, S)⟩−50∥χR(y)⟨x3 − y3⟩−50∥L∞
x Lp

y

≲ Rα+ 2
pS−β⟨max(R, S)⟩−50.

Then by interpolation, if p ≥ q, it follows that

∥TR,S∥Lq→Lp ≲ Rα+ 2
pS

−β+ 2
q′ ⟨max(R, S)⟩−50.

By essentially the same calculation, if 1/100 ≤ R/S ≤ 100, then

∥TR,S∥Lq→Lp ≲ R
α−β+ 2

p
+ 2

q′ .

Unfortunately this estimate is adequate only when R, S ≲ 1, so we separately consider the

case where R and S are comparable and R, S ≫ 1. Fix a ρ ∼ R1/10 that evenly divides R/4.
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Let v = r−βχSu. We need to find a spatial region that we can dilate slightly (as required

to use the localized Bernstein inequality, again see [60, Lemma 2.1]) without drastically

increasing the L∞ norm of Tmv. Suppose first we do not have such a region, that is

∥Tmv∥L∞(S(R
4
, 7R

4
)) ≥ 2∥Tmv∥L∞(S(R

4
+ρ, 7R

4
−ρ)) ≥ · · · ≥ 2

R
4ρ∥Tmv∥L∞(S(R

2
, 3R

2
)).

Then taking the left- and right-most ends of the inequality, the ordinary Bernstein inequality

implies

∥Tmv∥L∞(S(R
2
, 3R

2
)) ≤ 2−R1/2∥Tmv∥L∞ ≲ R−100∥v∥Lq .

It follows that

∥TR,Su∥L∞ ≲ R−50∥u∥Lq

which is an adequate estimate to proceed with the argument. Otherwise, there exists an

R0 ∈ [R
2
, 3R

4
] such that

∥Tmv∥L∞(S(R−R0−ρ,R+R0+ρ)) ≤
1

2
∥Tmv∥L∞(S(R−R0,R+R0)).

Let x0 be a point in the region S(R−R0, R +R0) such that

|Tmv(x0)| ≥
1

2
∥Tmv∥L∞(S(R−R0,R+R0)).

By composing with P≤10 and applying the local Bernstein inequality from [60], we have the

gradient estimate

∥∇Tmv∥L∞(S(R−R0− ρ
2
,R+R0+

ρ
2
)) ≲ ∥Tmv∥L∞(S(R−R0−ρ,R+R0+ρ)) + ρ−50∥v∥Lq

≲ ∥Tmv∥L∞(S(R−R0,R+R0)) +R−5∥v∥Lq .

Therefore, by the fundamental theorem of calculus,

|Tmv(x)| ≥
1

4
∥Tmv∥L∞(S(R−R0,R+R0))
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for all

x ∈ B
(
x0,

1

O(1)

∥Tmv∥L∞(S(R−R0,R+R0))

∥Tmv∥L∞(S(R−R0,R+R0)) +R−5∥v∥Lq

)
.

Importantly, since ρ ≫ 1 and the radius of this ball is less than 1, it is contained in S(R −

R0− ρ
2
, R+R0+

ρ
2
) where the gradient estimate holds. Without axial symmetry, this implies

∥Tmv∥Lq ≳ ∥Tmv∥L∞(S(R−R0,R+R0))

(
∥Tmv∥L∞(S(R−R0,R+R0))

∥Tmv∥L∞(S(R−R0,R+R0)) +R−5∥v∥Lq

)3/q

.

No matter which term in the denominator is larger, we conclude (using the ordinary Bernstein

inequality for Tm if the first is larger)

∥Tmv∥L∞(S(R−R0,R+R0)) ≲ ∥v∥Lq .

Now suppose |u|, and consequently |v|, is axisymmetric. Let T̃m be the operator with kernel

|K(x, y)|. Then by the triangle inequality, inside the same ball, we have the concentration

|T̃m(|v|)(x)| ≥
1

4
∥Tmv∥L∞(S(R−R0,R+R0)).

Thanks to the assumption that m is axisymmetric, one easily computes that T̃m(|v|) is as

well. Thus, the bound still holds inside the torus obtained by rotating the ball around the

x3-axis. (See Figure 2.1.) Note that within this torus, r ≳ R; therefore

∥T̃m(|v|)∥Lq ≳ ∥Tmv∥L∞(S(R−R0,R+R0))R
1/q

×
(

∥Tmv∥L∞(S(R−R0,R+R0))

∥Tmv∥L∞(S(R−R0,R+R0)) +R−5∥v∥Lq

)2/q

.

Once again, no matter which term in the denominator is larger, this implies

∥Tmv∥L∞(S(R
2
, 3R

2
)) ≲ R− 1

q ∥v∥Lq .

Since suppχR ⊂ S(R
2
, 3R

2
), it follows that

∥TR,Su∥L∞ ≲ Rα∥Tmr−βχSu∥L∞(S(R
2
, 3R

2
)) ≲ Rα−β∥u∥Lq ,

17



or

∥TR,Su∥L∞ ≲ Rα−β− 1
q ∥u∥Lq

in the presence of axial symmetry. By interpolating with the trivial inequality

∥TR,Su∥L1 ≲ Rα−β∥u∥L1 ,

we obtain, if q ≤ p,

∥TR,S∥Lq→Lp ≲ Rα−β

or

∥TR,S∥Lq→Lp ≲ Rα−β+ 1
p
− 1

q

in the presence of axial symmetry.

Finally, we can sum over R, S ∈ 2Z to obtain the desired estimate. Let χ̃S be a dilated

version of χS such that χSχ̃S = χS. Then

Tu =
∑

max(R/S,S/R)>100

TR,S(χ̃Su) +
∑

1/100≤R/S≤100

TR,S(χ̃Su)

where each x ∈ R3 lies in the support of boundedly many terms. This implies that without

axial symmetry,

∥Tu∥pLp ≲
∑
R

 ∑
{S :max(R/S,S/R)>100}

Rα+ 2
pS

−β+ 2
q′ ⟨max(R, S)⟩−100∥χ̃Su∥Lq

p

+
∑

1/100≤R/S≤100
max(R,S)≤1

(R
α−β+ 2

p
+ 2

q′ ∥u∥Lq)p +
∑

1/100≤R/S≤100
max(R,S)>1

(Rα−β∥χ̃Su∥Lq)p

with the suitable modification if p = ∞, in the sense that we are taking an ℓp(2Z) norm

in R. When p < ∞, the sums converge as geometric series and are bounded by ∥u∥pLq as

long as α > −2
p
, β < 2

q′
, and α < β. If p = ∞, the expression is similarly bounded as

18



x0

≳ 1

x3

S(R±R0)

(contains x0)
S(R± (R0 + ρ))

(control on ∇Tmv)

Figure 2.1: We locate a concentration point x0 inside the cylindrical shell S(R−R0, R+R0)

(delimited by the dashed lines) and, using the gradient estimate on Tmv which holds in the

region S(R−R0−ρ,R+R0+ρ) (delimited by the dotted lines), one can deduce a comparable

estimate holds within a ball which (in the most nontrivial case) has radius at least on the

order of 1. In the case of axial symmetry, we can infer from the pointwise lower bound in the

ball that the same lower bound holds within the solid torus obtained by rotating it around

the x3-axis.
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long as 0 ≤ α ≤ β < 2
q′
. If α = β, then summability of the last term follows from the

embedding ℓq(2Z) → ℓp(2Z) (using p ≥ q), and the fact that
∑

R≥1 ∥χ̃Ru∥qLq ≲ ∥u∥qLq . A

similar argument applies to the first term on the right-hand side in the case q = 1, β = 0.

In the case where |u| has axial symmetry, we carry out an analogous calculation and find

the same result except with the last condition relaxed to α ≤ β+ 1
q
− 1

p
thanks to the smaller

power of R in the last term.

Now we show how to remove the assumption that m is axisymmetric. Note that P≤10

does have an axisymmetric symbol; moreover P≤10Tm = Tm. Therefore if |u| is axisymmetric,

∥rαP≤10u∥Lp ≲ ∥rβu∥Lq

assuming p ≥ q, α > −2
p
, β < 2

q′
, and α ≤ β + 1

q
− 1

p
(with the appropriate adjustment in

the two endpoint cases). Then by the non-axisymmetric version of the theorem,

∥rαTmu∥Lp ≲ ∥rαP≤10u∥Lp

which yields the desired result. Note that we have α ≤ β + 1
q
− 1

p
< 2 − 1

q
− 1

p
≤ 2

p′
as

required.

Remark 2.2. Later in the chapter, most notably in the proof of Proposition 2.7, we will be

applying Proposition 2.1 in an iterative procedure which will lead to some laborious checking

of its hypotheses. The reader may find it illuminating to keep in mind some examples which

show why each one is necessary. For simplicity we take N = 1 and Tm = P1.

Since P1u is approximately constant on balls of radius O(1), when p < ∞, in order

for rαp|P1u|p to be integrable in such a ball centered on the x3-axis, we need αp > −2, or

α > −2
p
. Of course when p = ∞, there is no such integrability issue as long as α ≥ 0.

Next, let u = ϕ(x)/(r2 + ϵ2) where u is a bump function supported in B(0, 1). By the same
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uncertainty principle heuristic, one finds that ∥rαP1u∥Lp is comparable to log 1
ϵ
, but

∥rβu∥Lq ∼


ϵ
− 2

q′+β
, β < 2

q′

log1/q 1
ϵ
, β = 2

q′

1, β > 2
q′

.

By taking ϵ sufficiently small, we find that the proposition can hold only when either β < 2
q′
or

q = 1 and β = 0. Let u be a bump function supported in B(x0, 1) where r(x0) = R ≫ 1. Then

(2.2) asserts Rα ≲ Rβ. By taking R sufficiently large, we see α ≤ β. Similarly, consider a

smooth axisymmetric function supported in the annulus {x ∈ R3 : (r − R)2 + x23 < 1} where

R ≫ 1. Then (2.2) becomes Rα+ 1
p ≲ Rβ+ 1

q which necessitates α ≤ β + 1
q
− 1

p
.

As in [60], this Bernstein inequality can be localized to a region, at the cost of a global

term that can be made small by enlarging the region by a length ≫ N−1.

Proposition 2.3. Let m be a multiplier with suppm ⊂ B(0, N) such that

|∇jm| ≤MN−j

for j = 0, 1, . . . , 2K where K ≥ 100. Also let Ω ⊂ R3 be open and ΩA/N = {x ∈ R3 :

dist(x,Ω) < A/N}. Then

∥rα1Tmu∥Lp1 (Ω) ≲K MN
3
q1

− 3
p1

+β1−α1∥rβ1u∥Lq1 (ΩA/N )

+ A−KMr(Ω)α1−α2 |Ω|
1
p1

− 1
p2N

3
q2

− 3
p2

+β2−α2∥rβ2u∥Lq2 (R3)

(2.3)

if pi ≥ qi, p1 ≤ p2, α1 ≥ α2, αi > − 2
pi
, βi <

2
q′i
, and αi ≤ βi for i = 1, 2. Here r(Ω) denotes

sup{r : x ∈ Ω}.

If |u| is axisymmetric, the last condition can be weakened to αi ≤ βi +
1
qi
− 1

pi
. As in

Proposition 2.2, the result extends to the pi = ∞, αi = 0 and qi = 1, βi = 0 endpoints.

We refer to the second term on the right-hand side of (2.3) as the global term. Regardless

of what kind of Xp
α;T control is known for u, it is usually possible to make it negligible

provided the length scale of Ω is much smaller than N−1.
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Proof. Once again we can rescale to achieve N =M = 1. Observe by the triangle inequality

that it suffices to assume u is supported outside ΩA, since the part inside can be estimated

directly using (2.2). First one uses Hölder’s inequality to control the Lq1 norm by Lq2 , as

well as the trivial bound rα1 ≤ rα2r(Ω)α1−α2 . Adopting the notation from the proof of

Proposition 2.1, we are concerned with estimating convolutions in the form

TR,S(y) =

ˆ
R3

KR,S(x, y)u(x)dx,

but with the additional feature that y ∈ Ω and x /∈ ΩA, so |x − y| ≥ A. Therefore, the

estimate for the kernel can be improved to

|KR,S(x, y)| ≲K RαS−βχR(y)χS(x)⟨x− y⟩−50A−K

and one proceeds as in Proposition 2.1.

As a special case of Proposition 2.1, with m = e−t|ξ|2ψ(ξ/N), we get the heat estimate

∥rαet∆PN∇ju∥Lp ≲j e
−tN2/20N j+ 3

q
− 3

p
+β−α∥rβu∥Lq (2.4)

under the same assumptions on the parameters. Then summing over N ∈ 2Z,

∥rαet∆∇ju∥Lp ≲j t
− 1

2
(j+ 3

q
− 3

p
+β−α)∥rβu∥Lq . (2.5)

Let us prove one other local lemma in a similar spirit as Proposition 2.3.

Lemma 2.4. If N,K > 0, j ≥ 0, p ≤ q, 0 < r1 < r2, f ∈ C∞(Rd), and ϕ ∈ C∞
c (Rd) with

ϕ ≡ 1 in B(r2), then

∥PN∇jf∥Lp(B(r1)) ≲r1,r2,p,q,j,K,ϕ ∥PN(ϕ∇jf)∥Lp(B(r1)) +N−K∥f∥Lq(Rd).

Proof. With ψ(ξ) the Fourier multiplier for P1, we have

PN∇jf(x) =

ˆ
Rd

ψ̌(y)(ϕ∇jf)(x− y/N)dy +

ˆ
Rd\B(cN)

ψ̌(y)((1− ϕ)∇jf)(x− y/N)dy

as long as x is restricted to B(r1) and c is chosen sufficiently small compared to r2− r1. The

first term is exactly PN(ϕ∇jf)(x) and the second term is straightforward to estimate using

integration by parts, polynomial decay of ψ̌ and its derivatives, and Hölder’s inequality.
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Combining Lemma 2.2 with (1.2) and (1.9), the following bounds on the frequency-

localized vector fields are immediate.

Lemma 2.5. If u solves (1.2) on [−T, 0] and admits the bound (1.9), where either X =

Ld(Rd) or X = Xq
α;T with (2.1), then we have

∥∇jPNu∥L∞
t,x([−T,0]×Rd) ≲j AN

1+j, ∥∂tPNu∥L∞
t,x([−T,0]×Rd) ≲ A2N3

for all j ≥ 0, N > 0.

Proof. We focus on the Xp
α;T case since the proof is slightly less trivial. By (2.2),

|∇jPNu| ≲ N j+3/q+αq∥rαqu∥Lq ≲ AN1+j.

Applying PN to (1.2) and again using (2.2) and Hölder’s inequality,

|∂tPNu| ≤ ∥PNP div(u⊗ u)∥L∞
x
+ ∥PN∆u∥L∞

x

≲ N1+ 6
q
+2αq∥r2αqu⊗ u∥

L
q/2
x

+N2+ 3
q
+αq∥rαqu∥Lq

x

≲ A2N3.

Note that the weights satisfy the Bernstein inequality when q ≥ 3 because then αq ≥ 0, and

when 2 < q < 3 because then αq > −1
q
.

2.3 Picard decomposition

2.3.1 The Rd case

A difficulty of working in Ld
x is that while one would wish to make use of energy methods, the

solution does not have enough decay to be in any L2
x-based spaces. In the cases d = 3, 4 one

can avoid this problem by some manner of splitting u into one flow solving a linear equation

and another that solves a complementary nonlinear equation, see [13, 60]. For example, the

method in [60] of considering u(t) − e(t−t0)∆u(t0), i.e., removing the heat flow part of the
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evolution, leaves the remaining nonlinear flow in L∞
t L

p
x for p ∈ [d

2
, d]. Unfortunately when

d ≥ 5, this range excludes the important energy space L∞
t L

2
x.

In the general case d ≥ 3 we address this difficulty using the following decomposition of

u. We remark that decompositions based on a Picard-type iteration in the same spirit have

also appeared in [14, 25, 1]. The idea is essentially to subtract off a Picard iterate starting

from an initial condition u(t0). The critical bound (1.9) implies good subcritical estimates

on the iterate thanks to smoothing from the heat propagator, and one can show inductively

using Duhamel’s formula that the difference lies in lower integrability spaces including L∞
t L

2
x.

Moreover, the difference satisfies a Navier-Stokes-type equation which leads to estimates that

will be useful later.

Proposition 2.6. Suppose u is a classical solution of (1.2) on [−T, 0] with the bound (1.9).

Then for every T1 ∈ [0, T/2], there exist u♭ and u♯ such that the following hold:

• We have the decomposition

u = u♭ + u♯ on [−T1, 0].

• If d ≤ p ≤ ∞ and j ≥ 0, then

∥∇ju♭∥L∞
t Lp

x([−T1,0]×Rd) ≤ AOj(1)T
− 1

2
(1+j− d

p
)

1 , (2.6)

∥PNu
♭∥L∞

t,x([−T1,0]×Rd) ≤ AO(1)e−T1N2/O(1)T
− 1

2
1 . (2.7)

• If 1 ≤ p ≤ d and 1 < q <∞, then2

∥u♯∥L∞
t Lp

x([−T1,0]×Rd) ≤ AO(1)T
1
2
( d
p
−1)

1 , (2.8)

∥∇u∥
L2
t,x(Q(T

1
2
1 ))

+ ∥∇u♯∥L2
t,x([−T1,0]×Rd) ≤ AO(1)T

d
4
− 1

2
1 , (2.9)

∥∇u♯∥
Lq
tL

d
2
x ([−T1,0]×Rd)

≲q A
O(1)T

1
q

1 (2.10)

where Q(r) = [−r2, 0]×B(r).

2We thank an anonymous referee for JMFM for bringing (2.10) to our attention which allows a simplifi-
cation of the original argument.
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• u♯ solves

∂tu
♯ + P div(u♯ ⊗ u♯ + 2u♭ ⊙ u♯)−∆u♯ = f (2.11)

where f obeys estimates

∥∇jf∥L∞
t Lp

x([−T1,0]×Rd) ≤ AOj(1)T
− 1

2
(3+j− d

p
)

1 (2.12)

for d
2
≤ p ≤ ∞ and j ≥ 0.

Let us emphasize that different choices of the subinterval [−T1, 0] lead to entirely different

decompositions. In the sequel when we use this proposition, it will be made clear on which

interval the decomposition is taken.

Proof. Starting with

u♭0 := 0, u♯0 := u,

we inductively define for n ≥ 1

u♭n(t) := e(t−τn−1)∆un−1(τn−1)−
ˆ t

τn−1

e(t−t′)∆P div u♭n−1 ⊗ u♭n−1(t
′)dt′,

u♯n(t) := −
ˆ t

τn−1

e(t−t′)∆P div(u⊗ u− u♭n−1 ⊗ u♭n−1)(t
′)dt′

where we have chosen a sequence of O(1)-many times −2T1 < τ1 < τ2 < · · · < −T1 such that

τi − τi+1 = T1/O(1). We prove (2.6) on the shrinking time intervals [τn, 0] with u
♭ replaced

by u♭n by induction on n. For n = 0 it is trivial. Suppose the claim for some n − 1 ≥ 0.

Then, for t ∈ [τn, 0],

∥∇ju♭n(t)∥Lp
x(Rd) ≲ (t− τn−1)

− 1
2
(1+j− d

p
)A

+

ˆ t

τn−1

(t− t′)−
1
2∥u♭n−1(t

′)∥Lp
x(Rd)∥∇ju♭n−1(t

′)∥L∞
x (Rd)dt

′

which gives the desired bound. Then (2.7) follows similarly by induction using Duhamel’s

principle and a paraproduct decomposition.
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Next, it is convenient to decompose u♯n = u♯,1n + u♯,2n where

u♯,1(t) := −2

ˆ t

τn−1

e(t−t′)∆P div u♭n−1 ⊙ u♯n−1(t
′)dt′,

u♯,2(t) := −
ˆ t

τn−1

e(t−t′)∆P div u♯n−1 ⊗ u♯n−1(t
′)dt′.

We claim the bound in (2.8) for u♯n, specifically in the range max( d
n+1

, 1) ≤ p < d and on the

time interval [τn, 0]. Thus we will obtain the desired result by taking n large depending on

d. Note that the p = d case is immediate from (1.9) and (2.6). As a base case, we consider

n = 1 for which u♯,11 = 0. For u♯,21 ,

∥u♯,21 (t)∥Lp
x(Rd) ≲

ˆ t

τn−1

(t− t′)−
1
2
(3− d

p
)∥u(t′)∥2Ld

x(Rd)dt
′

which yields the desired result using (1.9) assuming d
2
≤ p < d. Now assume the desired

inequality for some n− 1 ≥ 1. Then

∥u♯,1(t)∥Lp
x(Rd) ≲

ˆ t

τn−1

(t− t′)−
1
2
(1+ d

s
+ d

r
− d

p
)∥u♭n−1(t

′)∥Ls
x(Rd)∥u♯n−1(t

′)∥Lr
x(Rd)dt

′,

assuming 1
p
≤ 1

s
+ 1

r
. This is integrable in time, and furthermore we can apply (2.6) and

(2.8), by taking r = dp
d−p

and s = d, and assuming additionally that max( d
n+1

, 1) ≤ p < d
2
.

If instead we take r = d
2
and 1

s
= max(1

p
− 2

d
, 0), we obtain the same result but instead for

d
3
≤ p < d. Combining these, we have the full range of p. Next we consider u♯,2. With

1
r
= 1

2
(1
d
+ 1

p
)− ϵ,

∥u♯,2n (t)∥Lp
x(Rd) ≲

ˆ t

τn−1

(t− t′)−1+ϵd∥u♯n−1(t
′)∥2Lr

x(Rd)dt
′

implies the desired bound upon taking ϵ sufficiently small depending on p and d. (2.6)-(2.9)

therefore hold upon setting u♭, u♯ := u♭d, u
♯
d.

One readily computes (2.11) with f = P div(u♭d−1 ⊗ u♭d−1 − u♭d ⊗ u♭d). Then (2.12) follows

by Hölder’s inequality and (2.6). Multiplying (2.11) by u♯ and integrating over Rd, we have

d

dt

ˆ
Rd

|u♯|2

2
dx = −

ˆ
Rd

|∇u♯|2 −
ˆ
Rd

u♯ · (u♯ · ∇u♭) + u♯ · f
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and therefore we can apply (2.8), (2.6), and (2.12) to find

∥∇u♯∥L2
t,x([−T1,0]×Rd) ≲ ∥u♯∥L∞

t L2
x([−T1,0]×Rd) + ∥u♯∥L∞

t L2
x([−T1,0]×Rd)∥∇u♭∥L∞

t,x([−T1,0]×Rd)

+ ∥u♯∥L∞
t L1

x([−T1,0]×Rd)∥f∥L∞
t,x([−T1,0]×Rd)

which proves (2.9).

Finally, we note that

(∂t −∆)∇u♯ = −∇P div(u⊗ u− u♭d−1 ⊗ u♭d−1).

Thus by (2.5) and maximal regularity for the heat equation,

∥∇u♯∥
Lq
tL

d
2
x ([−T1,0]×Rd)

≲q T
− 1

2
+ 1

q

1 ∥u♯(−T1)∥
L

d
2
x (Rd)

+ ∥u⊗ u− u♭d−1 ⊗ u♭d−1∥
Lq
tL

d
2
x ([−T1,0]×Rd)

.

We conclude (2.10) by (2.6), (1.9), and Hölder’s inequality.

2.3.2 The axisymmetric case

A similar decomposition is necessary for solutions bounded instead in the Xq
α;T scale. (See

§2.2.2 for definitions.) As in the Rd case we begin by defining for t ∈ [−T, 0]

u♭0 = 0, u♯0 = u.

Let Tn = (1
2
+ 2−n)T . Then for n ≥ 1 and t ∈ [−Tn, 0], we iteratively define

u♭n(t) = e(t+Tn)∆u(−Tn)−
ˆ t

−Tn

e(t−t′)∆P div u♭n−1 ⊗ u♭n−1(t
′)dt′

u♯n(t) = −
ˆ t

−Tn

e(t−t′)∆P div(u⊗ u− u♭n−1 ⊗ u♭n−1)(t
′)dt′.

By Duhamel’s principle applied to the Navier-Stokes on [−Tn, 0] we see that for every n,

these functions sum to u.

Proposition 2.7. Assume u is a classical solution of (1.2) on [−T, 0]×R3 satisfying (1.9)

with X = Xq
α;T and (2.1). Then we have the following.
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1. For n = 1, 2, 3, . . . and t ∈ [−T
2
, 0], u admits the decomposition

u = u♭n + u♯n. (2.13)

2. If p ≥ q and either

q > 3 and − 2

p
< α ≤ αq

or

u is axisymmetric, 2 < q ≤ 3, and − 2

p
< α ≤ αq +

1

q
− 1

p
,

then u♭n satisfies the bound

∥∇ju♭n∥Xp
α;T/2

≲n T
(α−αp−j)/2AOn(1). (2.14)

These bounds continue to hold at the p = ∞, α = 0 endpoint. For N ≥ T−1/2, there

are also the frequency-localized estimates

∥PNu
♭
n∥Xq

αq ;T/2
≲n e

−TN2/On(1)AOn(1) (2.15)

and

∥PNu
♭
n∥X∞

0;T/2
≲n e

−TN2/On(1)NAOn(1). (2.16)

3. If q ∈ (2,∞) and p0 ∈ (1, 3), for any n sufficiently large depending on q and p0,

∥u♯n∥Xp
0;T/2

≲n T
−αp/2AOn(1) (2.17)

for all p ∈ [p0, 3).

Remark 2.8. A useful observation for Chapter 5 is that Proposition 2.7 still holds when the

weighted Lp norm X is replaced with its weak Lp counterpart (see Chapter 5 for definitions),

except at the endpoints p = q and α = αq (resp. α = αq +
1
q
− 1

p
) without (resp. with) axial
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symmetry. The reason is that we can easily extend the weighted Bernstein inequality using

the Lorentz space version of Young’s inequality. Indeed, if Proposition 2.1 gives some bound

∥rαTm∥Lp ≲ ∥P≤10u∥Lq+ϵ

(note that in the notation of Proposition 2.1 we have TmP≤10 = Tm) then with K the convo-

lution kernel for P≤10,

∥P≤10u∥Lq+ϵ ≲ ∥K∥L1+O(ϵ)∥u∥Lq,∞ ≲ ∥u∥Lq,∞ .

This ϵ > 0 causes the endpoints to fail, and is necessary because of the failure of ∥f ∗ g∥Lp ≲

∥f∥L1∥g∥Lp,∞.

Given Bernstein’s inequality, one arrives at estimates for the heat propagator and the

proof of Proposition 2.7 can proceed without substantial modification.

Proof. To prove (2.14), we claim slightly more strongly that under the stated conditions on

p, q, n, and α,

∥∇ju♭n∥Xp
α;Tn+1

≲j T
(α−αp−j)/2AOn(1)

where Tn = (1
2
+ 2−n)T as above. For u♭1, this is immediate from (1.9) and (2.5). Suppose

we have the desired inequality for some u♭n−1, n− 1 ≥ 1. From the triangle inequality,

∥∇ju♭n∥Xp
α;Tn+1

≲ ∥∇je(t+Tn)∆u(−Tn)∥Xp
α;Tn+1

+

ˆ t

−Tn

∥rα∇je(t−t′)∆P div u♭n−1 ⊗ u♭n−1(t
′)∥Lp

x(R3)dt
′.

The first term is estimated in the same way as u♭1. For the second term, by Hölder’s inequality

and (2.5),

∥∇je(t−t′)∆P div u♭n−1 ⊗ u♭n−1∥Xp
α;Tn

≲ (t− t′)−
1
2∥∇j(u♭n−1 ⊗ u♭n−1)∥Xp

α;Tn

≲ (t− t′)−
1
2

∑
i1+i2=j

(
∥∇i1u♭n−1∥X2p

α/2;Tn

∥∇i2u♭n−1∥X2p
α/2;Tn

)
.
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The claimed conditions on p and α are closed under the operation of doubling p and halving

α, so we achieve the desired bound on u♭n upon integrating in time.

Now let us address the frequency-localized estimates. We remark that (2.14) can also

be proven by estimating PNu
♭
n and summing in N , but this is less straightforward than the

above method in some endpoint cases.

The n = 1 case of (2.15) is immediate from (2.4), and indeed it is true for all N ≥ c1T
−1/2

(with a constant depending on c1). Suppose that for some n− 1 ≥ 1 we have the following

version of (2.15) with a slightly wider time interval,

∥PNu
♭
n−1∥Xq

αq ;Tn
≲ e−N2T/On(1)AOn(1),

for all N ≥ c1T
−1/2. Then for N ≥ 1000c1 and t ∈ [−Tn+1, 0], by (2.4) and (1.9),

∥rαqPNu
♭
n(t)∥Lq

x(R3) ≲ e−N2T/On(1)A

+

ˆ t

−Tn

e−(t−t′)N2/20N2∥r2αq P̃N(u
♭
n−1 ⊗ u♭n−1)(t

′)∥
L
q/2
x
.

Integrating in time, taking a paraproduct decomposition of the nonlinearity, and applying

Hölder’s inequality, the iterative estimate on PNu
♭
n−1, and (2.14), the second term becomes

∥P̃N(P>N/100u
♭
n−1 ⊗ u♭n−1 + P≤N/100u

♭
n−1 ⊗ P>N/100u

♭
n−1)∥Xq/2

2αq ;Tn

≲
∑

N ′>N/100

e−(N ′)2T/On(1)AOn(1)

≲ e−N2T/On(1)AOn(1).

Then (2.15) follows by induction on n. Note that in order to obtain (2.15) for a particular

n and all N ≥ T−1/2, one needs to take c1 sufficiently small depending on n, since the

permissible range for N shrinks by a factor of 1000 at each step (due to the frequency

overlap of the Littlewood-Paley projections). Thus the constant in (2.15) depends on n.

From here, (2.16) is immediate. Indeed, by (2.2) and (2.15),

∥PNu
♭
n∥X∞

0;T/2
= ∥P̃NPNu

♭
n∥X∞

0;T/2
≲ N∥PNu

♭
n∥Xq

αq ;T/2
≲n e

−N2T/On(1)NAOn(1).
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Now we turn to estimating u♯n. The desired estimate (2.17) is an immediate consequence

of the following more general assertion: if max
(
1, q

n+1

)
≤ p ≤ ∞, and either

3 < q <∞, αp < α < 2min
( 1
p′
, αq

)
, 1 ≤ n ≤ q

or

u is axisymmetric, 2 < q ≤ 3, αp < α < min

(
2

p′
, (n+ 1)

(
1− 2

q

)
− 1

p

)
then

∥u♯n∥Xp
α;T/2

≲n T
(α−αp)/2AOn(1). (2.18)

It is straightforward to see that by taking α = 0 and letting n be large depending on q, these

conditions reduce to (4.1) and the hypotheses of (2.17). To prove (2.18), let us decompose

u♯n = u♯,1n + u♯,2n where

u♯,1n (t) = −
ˆ t

−Tn

e(t−t′)∆P div u♯n−1 ⊗ u♯n−1(t
′)dt′,

u♯,2n (t) = −2

ˆ t

−Tn

e(t−t′)∆P div u♭n−1 ⊙ u♯n−1(t
′)dt′

and claim that for 3 < q < ∞, on the slightly larger interval [−Tn, 0], we have the desired

bound for u♯,1n n ≥ 1, if

p ≥ q

2n
, αp < α < 2min

(
1

p′
, 2αq

)
and for u♯,2n if

p ≥ q

n+ 1
, −2

p
< α < 2min

(
1

p′
, αq

)
.

The desired result (2.18) will follow by taking the intersection of these two conditions. The

base cases where n = 1 are immediate from (2.5), Hölder’s inequality, and (1.9) (in fact,

u♯,21 ≡ 0). On the other hand, the induction on n involves fairly complicated relations

between the parameters; thus the reader may find it elucidating to refer to Examples 2.9
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and 2.10 which provide concrete examples of the iteration in the q > 3 and q ≤ 3 cases

respectively.

To induct, we assume (2.18) holds for the u♯,1 part for some n − 1 ≥ 1. By (2.2) and

Hölder’s inequality, for t ∈ [−Tn, 0],

∥rαu♯,1n (t)∥Lp
x
≲
ˆ t

−Tn

(t− t′)−
1
2
(1+ 6

s
− 3

p
+2β−α)∥r2βu♯n−1 ⊗ u♯n−1(t

′)∥
L
s/2
x
dt

≲ T
1
2
(α−αp)AOn(1)

assuming there exists an s ∈ [2,∞] and β ∈ R such that

α ≤ 2β,
1

p
≤ 2

s
≤ 1, α > −2

p
, β < 1− 2

s

which are required for Bernstein’s inequality,

6

s
− 3

p
+ 2β − α < 1

which is required to integrate in time, and

1

s
≤ n

q
, αs < β < 2min

(
αq,

1

s′

)
which are needed so that u♯n−1 ∈ Xs

β;Tn−1
. Letting β = 1 − 2

s
− ϵ for a positive ϵ which we

will take to be as small as needed depending on the other parameters, the conditions on s

reduce to

max
( 1

2p
,
3

q
− 1

2

)
≤ 1

s
≤ min

(1
2
,
2− α

4
−, α− αp

2
,
n

q

)
which one can check is a nonempty interval if in addition to the relations on p, q, n, α in the

hypothesis, we assume

α ≥ max
(
1− 2

p
,
6

q
− 3

p

)
. (2.19)

Next we let β = αs + ϵ and the conditions on s become

max
( 1

2p
,
2

q
− 1

3
+
)
≤ 1

s
≤ min

(1
2
,
2− α

6
,
n

q

)
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which is nonempty and intersects with [0, 1] under the hypotheses, along with the additional

assumption

α ≤ 2− 3

p
. (2.20)

Then it is easy to see that as long as q ≥ 3, either (2.19) or (2.20) must be true. This

completes the estimate of u♯,1n . Next we have by (2.5) and Holder, for t ∈ [−Tn, 0],

∥rαu♯,2n (t)∥Lp
x
≲
ˆ t

−Tn

(t− t′)−
1
2
(1+ 3

s
− 3

p
+β−α)dt′∥u♭n−1∥X q̃

0;Tn

∥u♯n−1∥
X

sq̃
q̃−s
β;Tn

which implies the desired bound if there exist q̃, s, and β such that

α ≤ β,
1

p
≤ 1

s
, α > −2

p
, β < 2− 2

s

for Bernstein,

3

s
− 3

p
+ β − α < 1

to integrate in time, and

1

q̃
≤ 1

q
, 0 ≤ 1

s
− 1

q̃
≤ min

(
1,
n

q

)
, 1− 3

s
+

3

q̃
< β < 2min

(
αq, 1−

1

s
+

1

q̃

)
to make u♭n−1 ∈ X q̃

0;Tn−1
and u♯n−1 ∈ X

sq̃
q̃−s

β;Tn−1
. It suffices to use 1

q̃
= max(1

s
− n

q
, 0). Let us

first take β = α. One can compute that the conditions on s reduce to

α > 1− 3n

q
(2.21)

and

max
(1
p
,
1− α

3
+
)
≤ 1

s
≤ min

(
1− α

2
−, 1

3
+

1

p
−, n+ 1

q

)
which is a nonempty interval intersecting with [0, 1], assuming (2.21) and the original hy-

potheses on p, q, α, n. Now let us instead take β = 1 − 3n
q
+ ϵ. Then the conditions reduce

to

α ≤ 1− 3n

q
, max

(1
p
,
n

q

)
≤ 1

s
≤ min

(1
2
+

3n

2q
−, α

3
+

1

p
+
n

q
−, n+ 1

q

)
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and one can verify that this is a nonempty interval intersecting with [0, 1] if (2.21) fails.

Thus there always exists a suitable s.

Next consider the case with 2 < q ≤ 3 and u axisymmetric. In the same manner as

above, we actually prove the bound for the nth iterate on the slightly larger time interval

[−Tn, 0]. As a base for the induction we have

∥u♯1∥Xp
α;T1

≲
ˆ t

−T1

(t− t′)−
1
2
(2+αp−α)∥r2αqu⊗ u(t′)∥

L
q/2
x
dt′ ≲ T

1
2
(α−αp)A2

assuming p ≥ q
2
, −2

p
< α ≤ 2− 4

q
− 1

p
, and 3

p
+α > 1, all of which follow from the assumptions.

Next suppose we have the desired estimate for some u♯n−1, n − 1 ≥ 1. Proceeding as in

the q > 3 case, the result follows for u♯,1 if there exists an s ∈ [2,∞] and β ∈ R such that

α ≤ 2β +
2

s
− 1

p
,

1

p
≤ 2

s
, α > −2

p
, β < 1− 2

s

for the axisymmetric Bernstein inequality,

6

s
− 3

p
+ 2β − α < 1

to integrate in time, and

1

s
≤ n

q
, β <

2

s′
, αs < β < n

(
1− 2

q

)
− 1

s

so that we have the same bound for u♯n−1. First we let β = αs + ϵ for a sufficiently small

(depending on α, q, n, etc.) ϵ > 0. With the given conditions on α, p, n, these constraints

reduce to

max

(
1

p
, 1− n

(
1− 2

q

)
+, 0+

)
≤ 2

s
≤ min

(
1− 1

2

(
α +

1

p

)
,
2n

q
, 1

)
which one can verify is a nonempty interval if we assume additionally that

α ≤ 2− 3

p
. (2.22)

Next we instead take β = 1
2

(
α + 1

p

)
− 1

s
, and the conditions reduce to

max

(
1

2p
,
1

4

(
2− α− 1

p

)
+

)
≤ 1

s
≤ min

(
1− 1

2

(1
p
+ α

)
−, 1

4

(
1 +

2

p

)
−, n

q
,
1

2

)
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which is a nonempty interval assuming α > −1
p
. Clearly if this fails, then instead we can

conclude by (2.22).

Next, we have

∥rαu♯,2n (t)∥Lp
x
≲
ˆ t

−Tn

(t− t′)
− 1

2
(2+ 3

s1
+ 2

s2
− 3

p
− 2

q
+β−α)∥rβu♯n−1(t

′)∥Ls1
x

× ∥r1−
2
q
− 1

s2 u♭n−1(t
′)∥Ls2

x
dt′

which can be estimated if there exist s1, s2, and β such that

1

p
≤ 1

s1
+

1

s2
, −2

p
< α ≤ 1 + β +

1

s1
− 1

p
− 2

q
, β < 1 +

2

q
− 2

s1
− 1

s2

for (2.2),

β − α +
3

s1
+

2

s2
<

3

p
+

2

q

for integrability in time,

1

s1
≤ n

q
, β <

2

s′1
, αs1 < β ≤ n

(
1− 2

q

)
− 1

s1

to control u♯n−1, and

1

s2
≤ 1

q
, − 1

s2
< 1− 2

q

to control u♭n−1. First we take β = αs1 + ϵ, and the conditions reduce to the existence of s1

and s2 such that

1

p
− 1

s1
≤ 1

s2
≤ min

(
1

2

(
α− 1 +

3

p
+

2

q

)
−, 1

q

)
which one computes is nonempty and intersects [0, 1] assuming s1 satisfies

1

2
max

(
1

p
+,

1

p′
− α+,

2

p
, 2− (n+ 1)

(
1− 2

q

))
≤ 1

s1
+

1

q
≤ min

(
1− 1

2

(
α +

1

p

)
,
n+ 1

q

)
.

Such an s1 exists in [0, 1] assuming

α ≤ min
(
2− 3

q
, 2− 2

q
− 1

p

)
(2.23)
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in addition to the given assumptions.

Next we instead take β = α− 1 + 2
q
− 1

s1
+ 1

p
. The conditions on 1

s2
reduce to

max
(
0,

1

p
− 1

s1

)
≤ 1

s2
≤ min

(
2− α− 1

p
− 1

s1
−, 1

2
+

1

p
− 1

s1
,
1

q

)
which can be satisfied, along with the other constraints, as long as

max
(
0,

1

p
− 1

q
, 1− 1

q
− α

2
− 1

2p
+
)
≤ 1

s1
≤ min

(
1,

1

2
+

1

p
−, 2− α− 1

p
−, n

q

)
.

There exists such an s1 if, along with the given assumptions, we have

α > 2max
(
0, 1− n

q

)
− 2

q
− 1

p
.

One computes that if this constraint fails, then instead we have (2.23).

For the reader’s convenience, we provide two examples of the iteration for estimating u♯n

in Proposition 2.7. In these special cases, it becomes routine to verify the many conditions

at each step such as the hypotheses of Proposition 2.1. Moreover, one can more easily see

how the iteration successively makes progress from (1.9) toward the claimed estimates.

Let us assume the more straightforward bounds (2.14) and the n = 1 case of (2.18)

which follows directly from (1.9). In fact, in this case the upper bound required on α can be

weakened slightly to α ≤ 2αq since there is no u♯,21 contribution.

Example 2.9 (q > 3 case). Let u be as in Proposition 2.7. By rescaling, we may assume

T = 1. With q = 8, let us prove ∥u♯3∥X2
0;1/2

≲ AO(1). We will make use of the estimates

∥u♯1∥X4
1/4+ϵ;3/4

≲ A2, ∥u♭n∥Xp
0;Tn+1

≲ A2n−1

for p ≥ 8. We can fix, say, ϵ = 1/100. Putting the first bound into Duhamel’s principle

using (2.5) and Hölder’s inequality, for t ∈ [−3/4, 0],

∥r4ϵu♯,12 (t)∥L3
x
≲
ˆ t

−3/4

(t− t′)−1+ϵ∥r
1
2
+2ϵu♯1 ⊗ u♯1(t

′)∥L2
x
dt′ ≲ A4.
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Similarly for u♯,22 ,

∥r4ϵu♯,22 (t)∥L3
x
≲
ˆ t

−3/4

(t− t′)−
5
8
+ 3

2
ϵ∥r

1
4
+ϵu♯1 ⊙ u♭1(t

′)∥L3
x
dt′ ≲ A3.

so in total we have

∥u♯2∥X3
4ϵ;3/4

≲ A4.

Again applying this with Duhamel’s formula and Hölder’s inequality, for t ∈ [−5/8, 0],

∥u♯,13 (t)∥L2
x
≲
ˆ t

−5/8

(t− t′)−
3
4
−4ϵ∥r8ϵu♯2 ⊗ u♯2(t

′)∥
L
3/2
x
dt′ ≲ A8.

Next we have

∥u♯,12 (t)∥
L
8/3
x

≲
ˆ t

−3/4

(t− t′)−
15
16

−ϵ∥r
1
2
+2ϵu♯1 ⊗ u♯1(t

′)∥L2
x
dt′ ≲ A4

and

∥u♯,22 (t)∥
L
8/3
x

≲
ˆ t

−3/4

(t− t′)−
5
8
− ϵ

2∥r
1
4
+ϵu♯1 ⊙ u♭1(t

′)∥
L
8/3
x
dt′

≲ ∥r
1
4
+ϵu♯1∥X4

1/4+ϵ;3/4
∥u♭1∥X8

0;3/4
≲ A3

so

∥u♯2∥X8/3
0;3/4

≲ A4.

Finally,

∥u♯,23 (t)∥L2
x
≲
ˆ t

−5/8

(t− t′)−
1
2∥u♯2 ⊙ u♭2(t

′)∥L2
x
dt′ ≲ ∥u♯2∥X8/3

0;5/8

∥u♭2∥X8
0;5/8

≲ A6.

In conclusion,

∥u♯3∥X2
0;1/2

≲ A8.

The argument can be schematized as follows:
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X3
4ϵ;3/4

X8
5/8;1 X4

1/4+ϵ;3/4 X2
0;1/2

X
8/3
0;3/4

u♯0 = u u♯1 u♯2 u♯3

The arrows indicate that we used that u♯n−1 is in one space to prove that u♯n is in the

next space, and each column corresponds to a particular n. The main point of the iteration

when q > 3 is to prove estimates in lower integrability spaces. One can see that the iteration

makes progress by using the quadratic nonlinearity to reduce the exponent at each step. The

bottleneck in doing so is the u♯,2 contribution because of the limited range of p for which

(2.14) holds.

Example 2.10 (2 < q ≤ 3 axisymmetric case). Now we let q = 5/2 and set out to prove

∥u♯3∥X3/2
0;1/2

≲ AO(1). We will assume the estimates

∥u♯1∥X3
ϵ;3/4

≲ A2, ∥u♭1∥X∞
1/5;3/4

≲ A, ∥u♭2∥X5/2
−1/5;5/8

A2

again for some fixed small ϵ > 0. For t ∈ [−3/4, 0],

∥r4ϵu♯,12 (t)∥L3
x
≲
ˆ t

−3/4

(t− t′)−1+ϵ∥r2ϵu♯1 ⊗ u♯1(t
′)∥

L
3/2
x
dt′ ≲ A4

and

∥r4ϵu♯,2(t)∥L3
x
≲
ˆ t

−3/4

(t− t′)−
1
10

+ 3
2
ϵ∥r

1
5
+ϵu♯1 ⊙ u♭1(t

′)∥L3
x
dt′

≲ ∥rϵu♯1∥X3
ϵ;3/4

∥u♭1∥X∞
1/5;3/4

≲ A3

which imply

∥u♯2∥X3
4ϵ;3/4

≲ A4.

Similarly,

∥r
1
5
+4ϵu♯,12 (t)∥

L
15/4
x

≲
ˆ t

−3/4

(t− t′)−1+ϵ∥r2ϵu♯1 ⊗ u♯1(t
′)∥

L
3/2
x
dt′ ≲ A4
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and

∥r
1
5
+4ϵu♯,22 (t)∥

L
15/4
x

≲
ˆ t

−3/4

(t− t′)−
3
5
+ 3

2
ϵ∥r

1
5
+ϵu♯1 ⊙ u♭1(t

′)∥L3
x
dt′

≲ ∥u♯1∥X3
ϵ;3/4

∥u♭1∥X∞
1/5;3/4

≲ A3

which imply

∥u♯2∥X15/4
1/5+4ϵ;3/4

≲ A4.

Finally, for t ∈ [−5/8, 0],

∥u♯,13 (t)∥
L
3/2
x

≲
ˆ t

−5/8

(t− t′)−
1
2
−ϵ∥r2ϵu♯2 ⊗ u♯2(t

′)∥
L
3/2
x
dt′ ≲ A8

and

∥u♯,23 (t)∥
L
3/2
x

≲
ˆ t

−5/8

(t− t′)−
1
2
−2ϵ∥r4ϵu♯2 ⊙ u♭2∥L3/2

x
≲ ∥u♯2∥X15/4

1/5+4ϵ;5/8

∥u♭2∥X5/2
−1/5;5/8

≲ A6

which imply

∥u♯3∥X3/2
0;1/2

≲ A8.

Below is the strategy of the iteration.

X3
4ϵ;3/4

X
5/2
−1/2;1 X3

ϵ;3/4 X
3/2
0;1/2

X
15/4
1/5+4ϵ;3/4

u♯0 = u u♯1 u♯2 u♯3

Here in the q < 3 case, the main issue is that we require an estimate with α = 0, but we are

only given (1.9) which has αq < 0. The iteration above exploits the fact that (2.2) allows

one to increase the power α at the cost of increasing the integrability exponent. We can pay

this cost thanks to the exponent halving coming from the quadratic nonlinearity and Hölder’s

inequality.
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2.4 Blowup procedure

We will make use of three slightly different consequences of the local energy equality for

(1.2). The second is an extension of Lemma 2.2 in [19], now with the dependence on A made

explicit. Define the local scale-invariant quantities

C(R, z0) := R− d
2
− 1

d+3
+1∥u∥

L
2(d+3)/(d+1)
t,x (Q(z0,R))

and

D(R, z0) := R− d
2
− 1

d+3
+1∥p∥1/2

L
(d+3)/(d+1)
t,x (Q(z0,R))

.

Here we use the standard notation for a parabolic cylinder,

Q(z, r) := [t− r2, t]×B(x, r)

where r > 0 and z = (t, x) is a point in spacetime. For brevity, if Q = Q(z0, R), we write

C(Q) in place of C(R, z0). These quantities appear in [19], although here we have defined

them slightly differently so they are 1-homogeneous in u.

Lemma 2.11. Let u be a smooth solution of (1.2) satisfying (1.9) with X = Ld(Rd) on

[−T, 0], r > 0, and I ⊂ [−T, 0]. Then we have

sup
I

ˆ
B(r)

|u|2dx+
ˆ
I

ˆ
B(r)

|∇u|2dxdt ≤ AO(1)rd−4|I|, (2.24)

∥u∥L∞
t L2

x(Q(z0,r/2)) + ∥∇u∥L2
t,x(Q(z0,r/2)) ≲ r

d
2
−1(C(r, z0) +D(r, z0))A

1/2, (2.25)

and, for t0 ≤ t ≤ t0 + 10r2,

ˆ
Q(z0,r/2)

|u(t)|2

2
dx−

ˆ
Q(z0,r/2)

|u(t0)|2

2
dx

≲ ∥∇u∥L2
t,x(Q(z0,r))A

2r
d
2
−1 +D(r, z0)Ar

d−2.

(2.26)

40



Proof. All three estimates are elementary applications of the local energy equality

d

dt

ˆ
Rd

|u|2

2
ψdx+

ˆ
Rd

|∇u|2ψdx =

ˆ
Rd

|u|2

2
(∂tψ +∆ψ + u · ∇ψ) + pu · ∇ψdx,

along with Hölder’s inequality, (1.9), integration by parts, and the Calderón-Zygmund esti-

mate for the pressure.

The following proposition is closely related to Proposition 3.1 in [19]. Their method of

proof is by contradiction and uses a compactness argument to find suitable values η and ϵ.

Thus such an approach does not give any information on how they depend on A or u more

broadly.3

Proposition 2.12. Let u be a smooth solution of (1.2) satisfying (1.9) with X = Ld(Rd).

Then for any ϵ ≤ A−d3, if z0 ∈ [−T/2, 0]× Rd, ρ ≤ T/4, and

C(ρ, z0) +D(ρ, z0) ≤ ϵ,

then

C(r, z1) +D(r, z1) ≤ ϵAO(1)

for any z1 ∈ Q(z0, ρ/2) and r ∈ (0, ρ/2).

As in [19], Proposition 2.12 is obtained by iteratively applying Lemma 2.13 below. The

point is that given a lower bound C(r, z1)+D(r, z1) > ϵ in a small cylinder, the lemma implies

the same lower bound in a cylinder dilated by a factor of A. This step can be iterated until

it yields a cylinder Q′ that is comparable in length to Q(z0, ρ), the ratio depending on A.

Since Q′ can be smaller than Q(z0, ρ), the scaling factors in the definition of C and D lead

to the loss of AO(1).

3Unfortunately the proof in [19] also appears to be incorrect, as pointed out in a subsequent paper by
Dong and Wang [20]. The author is grateful to an anonymous referee for JMFM for bringing this to our
attention. Let us emphasize that the results presented here do not rely at all on the lemma in [19] containing
the error.
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Lemma 2.13. Let ϵ, u, ρ, and z0 be as in Proposition 2.12. Then, with η = A−1,

C(ρ, z0) +D(ρ, z0) ≤ ϵ, (2.27)

implies

C(ηρ, z0) +D(ηρ, z0) ≤ ϵ. (2.28)

Proof. We translate and rescale so that z0 = 0 and ρ = 1. By (2.25),

∥u∥L∞
t L2

x(Q( 1
2
)) + ∥∇u∥L2

t,x(Q( 1
2
)) ≲ ϵA

1
2 . (2.29)

Fix the large frequency scale N = ϵ−
1
d . By interpolation and Lemma 2.3,

∥P>Nu∥
L
2+ 4

d+1
t,x (Q(η))

≤
∑
M>N

∥PMu∥
d+1
d+3

L2
tL

2 d+3
d+1

x (Q(η))

∥PMu∥
2

d+3

L∞
t L

2 d+3
d+1

x (Q(η))

≲
∑
M>N

(M− 3
d+3∥PM∇u∥L2

t,x(Q( 1
4
)) +M−100d3)

d+1
d+3

× (M
d

d+3∥PMu∥L∞
t L2

x(Q( 1
4
)) +M−100d3)

2
d+3 .

Fix a spatial cutoff φ ∈ C∞
c (B(1/2)) with φ ≡ 1 in B(1/3). By Lemma 2.4, Plancherel, and

(2.29), ∑
M>N

∥PMu∥2L∞
t L2

x(Q( 1
4
))
≲
∑
M>N

(
∥PM(φu)∥2

L∞
t L2

x(Q( 1
4
))
+M−100d3A2

)
≲ (ϵ2 +N−100d3)A2

and by the same reasoning∑
M>N

∥PM∇u∥2
L2
t,x(Q( 1

4
))
≲ (ϵ2 +N−100d3)A2.

Therefore, by Hölder’s inequality, the main term is∑
M>N

M− 1
d+3∥PM∇u∥

d+1
d+3

L2
t,x(Q( 1

4
))
∥PMu∥

2
d+3

L∞
t L2

x(Q( 1
4
))

≲ N− 1
d+3

(∑
M>N

∥PM∇u∥2
Lt,x(Q( 1

4
))

) 1
2

d+1
d+3
(∑

M>N

∥PMu∥2L∞
t L2

x(Q( 1
4
))

) 1
d+3

≲ N− 1
d+3 ϵ+N−50d2A.
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The remaining terms all involve the small global Bernstein error and can be estimated

similarly to find

∥P>Nu∥
L
2+ 4

d+1
t,x (Q(η))

≲ N− 1
d+3 ϵ+N−50d2A ≲ C−1

0 η
2+d

2+ 4
d+1

−1
ϵ.

To study the low frequencies, let ϕ ∈ C∞
c (Q(1/2)) be a spacetime cutoff function sat-

isfying ϕ ≡ 1 in Q(1/3). Using Duhamel’s formula we decompose u into local and global

parts,

ul(t) := e(t+1)∆((ϕu)(−1))−
ˆ t

−1

e(t−t′)∆ div(ϕ(u⊗ u+ p Id))(t′)dt′, ug := u− ul.

By Hölder, Lemma 2.2, (2.5), (2.29), fractional integration, and (2.27),

∥P≤Nu
l∥

L
2+ 4

d+1
t,x (Q(η))

≲ η
d+2

2+ 4
d+1 ∥e(t+1)∆((ϕu)(−1))∥L∞

t,x([−η2,0]×Rd)

+N
d
2
+ 1

d+3
−2

∥∥∥∥ˆ t

−1

e(t−t′)∆ div(ϕ(u⊗ u+ p Id))(t′)dt′
∥∥∥∥
L
2+ 4

d+1
t L

d(d+3)

d2−5
x ([−η2,0]×Rd)

≲ η
d+2

2+ 4
d+1 ϵA

1
2 +N

d
2
+ 1

d+3
−1ϵ2 ≲ C−1

0 η
2+d

2+ 4
d+1

−1
ϵ.

Next observe that P≤Nu
g solves the heat equation in Q(1/3) so by Hölder’s inequality and

well-known parabolic theory,

∥P≤Nu
g∥

L
2+ 4

d+1
t,x (Q(η))

≲ η
d+2

2+ 4
d+1 ∥P≤Nu

g∥L∞
t,x(Q(η)) ≲ η

d+2

2+ 4
d+1 ∥P≤Nu

g∥
L
2+ 4

d+1
t,x (Q( 1

4
))
.

Clearly P≤Nu
g = u−P>Nu−P≤Nu

l. The first piece can be estimated using (2.27), while the

other two we have already addressed. (Note that the estimates are unaffected by changing

the domain to Q(1
4
) except for the heat propagator part of P≤Nu

l; however even the worse

bound ϵA
1
2 without the improvement from using Hölder on Q(η) suffices.) In total,

C(η) ≲ C−1
0 ϵ.

Next we consider the pressure. From the decomposition

P>Np = ∆−1 div divP>N

(
2P≤N/5u⊙ P>N/5u+ (P>N/5u)

⊗2
)
=: Π1 +Π2,
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we have

∥Π1∥
L
1+ 2

d+1
t,x (Q(η))

≲ ∥P≤N/5u∥
L
2+ 4

d+1
t,x (Q(2η))

∥P>N/5u∥
L
2+ 4

d+1
t,x (Q(2η))

+ (ηN)−50d2A2

by Lemma 2.3 and (1.9). By the same calculations by which we estimated C above and the

large choice of N , this implies

∥Π1∥
L
1+ 2

d+1
t,x (Q(η))

≲ C−2
0 η

d+2

1+ 2
d+1

−2
ϵ2.

For the other term we have

∥Π2∥
L
1+ 2

d+1
t,x (Q(η))

≲ ∥P>N/5u∥2
L
2+ 4

d+1
t,x (Q( 1

5
))
+N−50d2A2 ≲ C−2

0 η
d+2

1+ 2
d+1

−2
ϵ2

again by Lemma 2.3 and the calculations above.

Next we turn to the low frequencies. With φ ∈ C∞
c (Q(1

5
)) a new spacetime cutoff

satisfying φ ≡ 1 in Q(1
6
), define

pl := −N div div(φu⊗ u), pg := p− pl

where N is the Newton potential. To estimate the local contribution we employ the para-

product decomposition

P≤Np
l = −N div divP≤N

(
φ(P≤5Nu)

⊗2 +
∑

N ′∼N ′′
max(N ′,N ′′)>5N

φPN ′u⊗ PN ′′u

)
=: Π3 +Π4.

The calculations above imply that P≤Nu can be decomposed as v + w where

∥v∥Lq
t,x(Q( 1

5
)) ≤ C−1

0 η−
9
10 ϵ, ∥w∥

L
2+ 4

d+1
t,x (Q( 1

5
))
≤ C−1

0 η
d+2

2+ 4
d+1

−1
ϵ

for any q ≥ 1. (For example, let w be the nonlinear part of P≤Nu
l and v the rest.) Thus,

using the Calderón-Zygmund estimate for N ,

∥Π3∥
L
1+ 2

d+1
t,x (Q(η))

≲ η
d+2

1+ 2
d+1

− 1
10∥φv ⊗ v∥L2q

t,x([−η2,0]×Rd) + η
d+2

2+ 4
d+1 ∥φv ⊙ w∥

L
2+ 4

d+1
t,x ([−η2,0]×Rd)

+ ∥φw ⊗ w∥
L
1+ 2

d+1
t,x ([−η2,0]×Rd)

≲ C−2
0 η

d+2

1+ 2
d+1

−2
ϵ2
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where q is taken large but finite to avoid the unboundedness of N div div at the endpoint.

By the calculations for P>Nu,

∥Π4∥
L
1+ 2

d+1
t,x (Q(η))

≲
∑
N ′≳N

(N ′)−
2

d+3 ϵ2 + (N ′)−100d2A2 ≤ C−2
0 η

d+2

1+ 2
d+1

−2
ϵ2.

Finally, observe that P≤Np
g is harmonic in Q(1

6
). Therefore

∥P≤Np
g∥

L
1+ 2

d+1
t,x (Q(η))

≲ η
d

1+ 2
d+1 ∥P≤Np

g∥
L
1+ 2

d+1
t L∞

x (Q(η))
≲ η

d

1+ 2
d+1 ∥P≤Np

g∥
L
1+ 2

d+1
t,x (Q( 1

6
))
.

Then the decomposition P≤Np
g = p − P>Np − P≤Np

l along with the above estimates and

(2.27) implies the desired bound. This completes the estimate of D(η).

2.5 Partial regularity

2.5.1 Epochs of regularity

An essential step in some of our arguments, for instance the proof of Proposition 4.6, consists

of using a Carleman inequality (Proposition A.3) to show that concentrations of the solution

near x = 0 imply additional concentration in regions far from the x3-axis. Since the Carleman

estimate demands some pointwise regularity of the solution, it is important that it be applied

within an “epoch of regularity” which we construct in three dimensions in Proposition 2.15

for solutions bounded in the spaces Xq
α;T with (2.1). This is an extension of Proposition

3.1(iii) in [60] which we state first (for solutions in a slightly weaker space than the original,

but without introducing any new difficulties for the reasons mentioned in Remark 2.8).

Proposition 2.14. Let u : [t0 − T, t0]× R3 → R3 be a classical solution of (1.2) satisfying

(1.9) with X = L3,∞(R3). Then for any interval I in [t0 − T/2, t0], there is a subinterval

I ′ ⊂ I with |I ′| ≳ A−O(1)|I| such that

∥∇ju∥L∞
t,x(I×R3) ≲ AO(1)|I|−(j+1)/2.

45



This only differs from the corresponding statement in [60] in the L3 norm being weak,

but it is easy to see that the proof holds without substantial modification.

On the other hand, additional effort is needed to handle the axial cases.

Proposition 2.15. Proposition 2.14 holds as well with X = Xq
α;T and (2.1).

Proof. By shifting time and rescaling, we may assume that I = [0, 1] and [−1, 1] ⊂ [t0−T, t0].

For n sufficiently large, (2.17) implies that

∥u♯n∥L∞
t Lp

x([−1/2,1]×R3) ≲p A
O(1)

for all p ∈ [min(q′, q
2
), 3). By differentiating the definition of u♯n in time, we see that it

satisfies

∂tu
♯
n + P div(u⊗ u− u♭n−1 ⊗ u♭n−1)−∆u♯n = 0.

Thus, defining

E0(t) :=
1

2

ˆ
R3

|u♯n(x, t)|2dx, E1(t) :=
1

2

ˆ
R3

|∇u♯n(x, t)|2dx,

we have the equality

d

dt
E0(t) +

ˆ
R3

u♯n · div(u⊗ u− u♭n−1 ⊗ u♭n−1 − u♯n ⊗ u♯n)dx+ 2E1(t) = 0,

using the fact that div u♯n = 0 and therefore
´
u♯n ·div u♯n⊗u♯n = 0. Then integrating in time,

using (2.17) with p = 2, expanding the product u ⊗ u − u♯n ⊗ u♯n = 2u♭n ⊙ u♯n + u♭n ⊗ u♭n,

integrating by parts, and applying Young’s inequality,

ˆ 1

− 1
2

E1(t)dt = AO(1) +

ˆ 1

− 1
2

ˆ
R3

(
∇u♯n : u♭n ⊙ u♯n −

1

2
u♯n · div(u♭n ⊗ u♭n − u♭n−1 ⊗ u♭n−1

)
dxdt

≤ AO(1) +
1

2

ˆ 1

− 1
2

E1(t)dt+ 2

ˆ 1

− 1
2

ˆ
R3

(
8|u♭n ⊙ u♯n|2

+
1

2
|u♯n||div(u♭n ⊗ u♭n − u♭n−1 ⊗ u♭n−1)|

)
dxdt.
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Therefore, by Holder’s inequality,
ˆ 1

− 1
2

E1(t)dt ≲ AO(1) + ∥u♭n∥2L∞
t,x([−

1
2
,1]×R3)

∥u♯n∥2L∞
t L2

x([− 1
2
,1]×R3)

+
(
∥u♭n−1∥L∞

t L2p
x ([− 1

2
,1]×R3) + ∥u♭n∥L∞

t L2p
x ([− 1

2
,1]×R3)

)2
∥u♯n∥L∞

t Lp′
x ([− 1

2
,1]×R3)

≲ AO(1).

(2.30)

The above inequality is consistent with the hypotheses of (2.14) and (2.17) if we take p =

max(q, q
q−2

). Plancherel’s theorem then implies∑
N

N2∥PNu
♯
n∥2L2

tL
2
x([− 1

2
,1]×R3)

≲ AO(1) (2.31)

and then by Sobolev embedding,

∥u♯n∥L2
tL

6
x([− 1

2
,1]×R3) ≲ AO(1). (2.32)

Next, using the equation satisfied by u♯n, integration by parts and the identity u♯n−1 =

u♯n + u♭n − u♭n−1, we have

d

dt
E1 = −

ˆ
R3

|∇2u♯n|2 +
ˆ
R3

∆u♯n · div(u
♯
n−1 ⊗ u♯n−1 + 2u♭n−1 ⊙ u♯n−1)

= −
ˆ
R3

|∇2u♯n|2 +
ˆ
R3

∆u♯n · div(u♯n ⊗ u♯n + 2u♭n ⊙ u♯n)

+

ˆ
R3

u♯n ·∆div(u♭n−1 + u♭n)⊙ (u♭n − u♭n−1).

Note that for a vector field u, |∇2u|2 denotes the quantity ∂ijuk∂ijuk. By Hölder’s inequality,

Sobolev embedding, interpolation, and Gagliardo-Nirenberg,

∥div u♯n ⊗ u♯n∥L2
x(R3) ≲ ∥u♯n∥L6

x(R3)∥∇u♯n∥L3
x(R3) ≲ ∥∇u♯n∥

3/2

L2
x(R3)∥∇u

♯
n∥

1/2

L6
x(R3)

≲ E1(t)
3/4∥∇2u♯n∥

1/2

L2
x(R3).

By Hölder’s inequality, (2.14), and (2.17),

∥div u♭n ⊙ u♯n∥L2
x(R3) ≲ ∥∇u♭n∥L∞

x (R3)∥u♯n∥L2
x(R3) + ∥u♭n∥L∞

x (R3)∥∇u♯n∥L2
x(R3)

≲ AO(1)(1 + E1(t)
1/2)
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and

∥∆div(u♭n−1 + u♭n)⊙ (u♭n − u♭n−1)∥Lp
x(R3) ≲ AO(1)

where again p = max(q, q
q−2

). Combining these estimates for the nonlinearity with Young’s

inequality, Hölder’s inequality, and (2.17),

d

dt
E1 = −1

2

ˆ
R3

|∇2u♯n|2 +O(E1(t)
3/2∥∇2u♯n∥L2

x(R3) + AO(1)(1 + E1(t)))

≤ −1

4

ˆ
R3

|∇2u♯n|2 +O(E1(t)
3 + AO(1)(1 + E1(t)).

(2.33)

From (2.30), there exists a time t1 ∈ [0, 1
2
] such that E1(t1) ≲ AO(1). A continuity argument

then implies that there is an absolute constant C such that within the interval I0 = [t1, t1 +

A−C ], we have E1(t) ≤ AC . More generally we define the truncated intervals Ij = [t1 +

j
10
A−C , t1 + A−C ]. Along with (2.33), this implies

ˆ
I0

ˆ
R3

|∇2u♯n|2dxdt ≲ AO(1). (2.34)

Using this along with the bound on E1 within the Gagliardo-Nirenberg inequality

∥u♯n∥L∞
x (R3) ≲ ∥∇u♯n∥

1/2

L2
x(R3)∥∇

2u♯n∥
1/2

L2
x(R3),

then applying Hölder’s inequality in time and (2.14), yield

∥u∥L4
tL

∞
x (I0×R3) ≤ ∥u♭n∥L4

tL
∞
x (I0×R3) + ∥u♯n∥L4

tL
∞
x (I0×R3) ≲ AO(1).

Duhamel’s principle on I0, (2.5), and Young’s inequality give

∥u∥L8
tL

∞
x (I1×R3) ≲ ∥e(t−t1)∆u(t1)∥L8

tL
∞
x (I1×R3) +

∥∥∥∥ˆ t

t1

(t− t′)−
1
2∥u(t′)∥2L∞

x (R3)dt
′
∥∥∥∥
L8
t (I1)

≲ AO(1),

where we truncate the time interval to I1 so the heat propagator in the linear term stays

away from the initial time. Bootstrapping and truncating the interval one more time in the

same manner, we arrive at

∥u∥L∞
t,x(I2×R3) ≲ AO(1). (2.35)
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We also have, by (2.34) and Sobolev embedding,

∥∇u♯n∥L2
tL

6
x(I0×R3) ≲ ∥∇2u♯n∥L2

tL
2
x(I0×R3) ≲ AO(1) (2.36)

which we apply to the Duhamel formula

∇u(t) = e(t−t1− 1
5
A−C)∆∇u(t1 +

1

5
A−C)−

ˆ t

t1+
1
5
A−C

e−(t−t′)∆∇P div u⊗ u(t′)dt′

for t ∈ I2. Using (2.5), (2.35), and (2.14) and assuming t ∈ I3,

∥∇u(t)∥L∞
x
≲ AO(1) +

ˆ t

t1+
1
5
A−C

(t− t′)−3/4∥u · ∇u♯n(t′)∥L6
x

+ (t− t′)−1/2∥u · ∇u♭n(t′)∥L∞
x
dt′

≲ AO(1)

(
1 +

ˆ t

t1

(t− t′)−3/4∥∇u♯n(t′)∥L6
x
dt′
)

and therefore

∥∇u∥L4
tL

∞
x (I3×R3) ≲ AO(1)

by fractional integration and (2.36). Finally, for t ∈ I4, by this and (2.35),

∥∇u(t)∥L∞
x (R3) ≲ AO(1) +

ˆ t

t1+
3
10

A−C

(t− t′)−1/2∥u∥L∞
t,x(I3×R3)∥∇u(t′)∥L∞

x (R3)dt
′

and so

∥∇u∥L∞
t,x(I4×R3) ≲ AO(1) (2.37)

again by Young’s inequality.

The estimates (2.35) and (2.37) imply regularity of the coefficients of the vorticity equa-

tion in I4 × R3 and therefore the estimates for ω and ∇ω follow by (4.17) and parabolic

regularity.
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2.5.2 Annuli and slices of regularity

The first application of Proposition 2.12 is that the smallness of C and D implies good

pointwise bounds on the solution. We state Proposition 2.16 as a more quantitative variant

of Theorem 4.1 in [19].

Proposition 2.16. Let u, z0, and ρ be as in Proposition 2.12 and suppose that for every

z1 ∈ Q(z0, ρ1/2), ρ ∈ (0, ρ1/2) we have

C(ρ, z1) +D(ρ, z1) ≤ ϵ ≤ A−1
1 .

Then, for j = 0, 1, 2,

∥∇ju∥L∞
t,x(Q(z0,ρ1/4)) ≤ AO(1)ϵ1/O(1)ρ−1−j

1 .

Proof. Let us normalize ρ1 = 1 and z0 = 0. By the argument in the proof of Theorem 4.1 in

[19] using the bound on p coming from (1.9), one finds

∥u∥L∞
t,x(Q(1/3)) ≤ AO(1)ϵ1/O(1). (2.38)

We may bootstrap the estimates for higher derivatives using Duhamel’s formula. Let us

fix a decreasing sequence of O(1)-many lengths 1
3
> r1 > r2 > r3 > · · · > 1

4
satisfying

rn − rn+1 = 1/O(1). For a frequency N ≫ 1 to be specified, (2.38), (2.6), Lemma 2.3, and

Duhamel’s formula for (1.2) starting from t = −1/3 imply

∥PNu∥L∞
t,x(Q(r1)) ≲ e−N2/O(1)NA+N−1AO(1)ϵ1/O(1) +N−50A2.

Clearly with N large enough, the first term (from the linear propagator) is negligible com-

pared to the third (the global contribution to Bernstein). Therefore, again by Duhamel’s

50



formula, (2.38), and a paraproduct decomposition of PN(u⊗ u),

∥PNu∥L∞
t,x(Q(r2)) ≲ e−N2/O(1)NA+N−1∥P≲Nu⊙ P∼Nu∥L∞

tx(Q(r1))

+N−1
∑
N ′≳N

∥PN ′u∥2L∞
tx(Q(r1))

+N−49A2

≲ N−1(AO(1)ϵ1/O(1) +N−49A)(N−1AO(1)ϵ1/O(1) +N−50A2)

+N−1
∑
N ′≳N

((N ′)−1AO(1)ϵ1/O(1) + (N ′)−50A2) +N−50NA2

≲ N−2AO(1)ϵ1/O(1) +N−49AO(1).

Thus, once again by Duhamel’s formula and (2.5), for any N0 > 0,

∥∇u∥L∞
t,x(Q(r3)) ≲ N0∥u∥L∞

t,x(Q(1/3)) +N−48
0 A+

∑
N>N0

(N∥PNu∥L∞
t,x(Q(r2)) +N−48A)

≤ N0A
O(1)ϵ1/O(1) +N−48

0 AO(1).

By taking N0 to be a suitable power of ϵ−1, we arrive at

∥∇u∥L∞
t,x(Q(r3)) ≤ AO(1)ϵ1/O(1).

Proceeding in the same way, one can obtain the higher order estimates as well.

Taking Propositions 2.12 and 2.16 together, we obtain the useful fact that if C(Q) +

D(Q) ≤ A−1
1 , then we have good pointwise bounds for u in Q/2. (Clearly we may also

replace Q/2 with, say, 9Q/10 by trivially modifying the proofs.) As an application, we prove

the first partial regularity result. As discussed in more depth in §3.3, by letting the region of

regularity expand in space (as opposed to taking, say, Q0 × Rd−k for some small Q0 ⊂ Rk),

we obtain better estimates upon iterating unique continuation. We remark that we do not

claim this to be the optimal result; indeed one should expect that regular regions exist that

are unconstrained in up to three of the d+ 2 parabolic dimensions, (cf. epochs of regularity

when d = 3 which are unbounded in all three spatial dimensions). In this case, the region is

unbounded in only one spatial dimension, i.e., radially toward θ.
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Proposition 2.17 (Slices of regularity). Assume u is smooth and satisfies (1.2) and (1.9)

with X = Ld(Rd) on [−T, 0], z0 ∈ [−T/2, 0]×Rd, and R2 ≤ T/4. Then there exist a direction

θ ∈ Sd−1 and a time interval I ⊂ [t0 −R2, t0] with |I| = A−2
2 R2 such that within the slice

S = I × {x ∈ Rd : dist(x, x0 + R+θ) ≤ 10A−1
2 |(x− x0) · θ|, |x− x0| ≥ 20R} ⊂ [−T, 0]× Rd,

for j = 0, 1, 2, we have

∥∇ju∥L∞
t,x(S)

≤ A−1
1

(
R

A2

)−1−j

.

Proof. We normalize R = 1 and z0 = 0, then apply Proposition 2.6 on the interval [−2, 0].

Let S0 be the collection of all spacetime regions of the form

I × {x ∈ Rd : dist(x, x0 + R+θ) ≤ 20A−1
2 |(x− x0) · θ|, |x− x0| ≥ 10}

ranging over all θ ∈ Sd−1 and I = [−10A−2
2 k,−10A−2

2 (k − 1)] where k ∈ [1, A2
2/10] ∩ N.

Clearly we may find a disjoint subcollection S1 containing ≳ Ad+1
2 such slices. We seek to

find one where we can apply Propositions 2.12 and 2.16. To find a region where D is small,

observe that by the Calderón-Zygmund estimate for div div /∆, Hölder’s inequality, Sobolev

embedding, and (2.9),

∥∆−1 div div u♯ ⊗ u♯∥
L1
tL

d
d−2
x ([−1,0]×Rd)

≲ ∥u♯∥2
L2
tL

2d
d−2
x ([−1,0]×Rd)

≤ AO(1).

By interpolation with the L∞
t L

d
2
x bound from (2.8),

∥∆−1 div div u♯ ⊗ u♯∥L2
t,x([−1,0]×Rd) ≤ AO(1).

As a result, of the ≳ Ad+1
2 slices in S1, at least 99% must have

∥∆−1 div div u♯ ⊗ u♯∥L2
t,x(S)

≤ A1A
− d+1

2
2 .

Using (2.6) and Hölder’s inequality, it is easy to see that the same can be said for u♭ ⊙ u♯

and u♭ ⊗ u♭. Let S2 ⊂ S1 be the collection of all such slices. Combining these estimates and

applying Hölder’s inequality, we have

D(Q) ≤ A1A
− 3

4
2 (2.39)
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for every parabolic cylinder Q ⊂ S of length ∼ A−1
2 and every S ∈ S2. By the same argument

along with (2.9), most of the S ∈ S2 satisfy

∥∇u♯∥L2
t,x(S)

≤ A1A
− d+1

2
2 , (2.40)

so in fact the family S3 of slices satisfying both (2.39) and (2.40) has #(S3) ≥ C−1
0 Ad+1

2 .

Each of these slices occupies one of ∼ A2
2 time intervals, so by the pigeonhole principle, there

is an interval I = [t0, t0 +A−2
2 ] which contains at least C−2

0 Ad−1
2 slices in S3. By (1.9), there

must be one of these slices S0 such that

∥u(t0)∥Ld
x(S0,x) ≲ A

−1+ 1
d

2 A

where S0,x ⊂ Rd is the projection of S0 to the spatial components. Then by Hölder’s

inequality, for every ball of length A−1
2 inside S0,x,

∥u(t0)∥L2
x(B) ≲ A

− d
2
+ 1

d
2 A.

By (2.26), (2.39), and (2.40), for any Q ⊂ S0 of length A2/2,

∥u∥L∞
t L2

x(Q/2) ≤ A
− d

2
+ 5

8
2 A1.

Note that the bound (2.40) on u♯ can be restricted to any such Q ⊂ S0 and extended to the

full solution u using (2.6) and Hölder’s inequality. We conclude from the above and the local

Gagliardo-Nirenberg inequality (see e.g., Lemma 2.1 in [19]) that

C(Q) ≲ A
d
2
−1

2

(
∥∇u∥

d
d+3

L2
t,x(Q)

∥u∥
3

d+3

L∞
t L2

x(Q) + ∥u∥L∞
t L2

x(Q)

)
≤ A1A

− 3
8

2

for any Q ⊂ S0 of length A2/2. This along with (2.39) leads to the claimed bounds by

Propositions 2.12 and 2.16.

The next proposition should be compared to Proposition 3.1(vi) in [60]. In the case

d ≥ 4 it will be necessary locate even wider annuli where the solution enjoys good subcritical

bounds, at the expense of needing to search a larger range of length scales. Note that in
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[60] a key ingredient of the proof is the bounded total speed property which is unavailable in

high dimensions. For this reason we proceed in the manner of Barker and Prange who use

an ϵ-regularity criterion to find quantitative annuli of regularity; see [5, Section 6].

Proposition 2.18 (Annuli of regularity). Let u be a smooth solution of (1.2) satisfying (1.9)

on [−10, 0]. For any R0 ≥ 2, there exists a scale R ∈ [R0, R
exp(A4)
0 ] such that for j = 0, 1, 2,

∥∇ju∥L∞
t,x([−1,0]×{R≤|x|≤R2A4}) ≤ A

−1/O(1)
4 .

Proof. Since, by (1.9),

ˆ
[−10,0]×{R0≤|x|≤R

expA4
0 }

(|u|d + |p|d/2)dxdt ≤ AO(1),

the pigeonhole principle implies that there exists R in the desired range such that

ˆ
[−10,0]×{R/10≤|x|≤10R2A4}

(|u|d + |p|d/2)dxdt ≤ A
− 1

2
4

and therefore, by Hölder’s inequality, for every parabolic cylinder Q ⊂ [−10, 0] × {R/10 ≤

|x| ≤ 10R2A4},

∥u∥
L
2+ 4

d+1
t,x (Q)

+ ∥p∥
L
1+ 2

d+1
t,x (Q)

≲ A
− 1

2
4 .

This implies that the region [−1, 0] × {R ≤ |x| ≤ R2A4} can be covered by a collection of

cylinders Qj/2 such that Qj ⊂ [−10, 0]×{R/10 ≤ |x| ≤ 10R2A4} and C(Qj)+D(Qj) ≲ A
− 1

2
4 .

Successively applying Propositions 2.12 and 2.16 in all the Qj yields the desired bounds.

2.5.3 Regularity away from the axis

The following appeared in [41] refining a result in [46]. One can heuristically justify that

these are likely the sharp pointwise bounds for critically bounded axisymmetric solutions,

perhaps up to the ϵ power loss far from the axis.
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Proposition 2.19 (Pointwise bounds away from the axis). Let u solve (1.2) on [0, 1] satis-

fying (1.9) with X = L3,∞. Then for every ϵ ∈ (0, 4/15), we have

|∇ju| ≤
(
r−1−j + r−

1
3
+ϵ
)
AOϵ,j(1)

for each t ∈ [1/2, 1]. We also have

∥u∥Lp({r≥1}) ≤ AOp(1)

for each such t, and p ∈ (3,∞].

Proof. We first pick any α ∈ (1/3− ϵ/2, 1/3) and c = c(j) > 0 sufficiently small so that

(1− α + j)c < ϵ/2 and c < α/(1− α). (2.41)

We also pick n = n(j) ∈ N sufficiently large so that

n ≥ (2 + j)

(
1 +

1

c

)
(2.42)

We set tk := 1/2 − (1/2)k and we define a sequence of regions {x ∈ Rd : r ≥ R/2} = Ω1 ⊃

Ω2 ⊃ · · · ⊃ Ωn = {x ∈ Rd : r ≥ R} such that dist(Ωi,Ωi+1) ≥ R/2n.

Given such a sequence of times we now consider the corresponding Picard iterates u♭k,

u♯k, for k ∈ {0, 1, . . . , n}.

Step 1. We show that

∥PNu
♭
k(t)∥L∞({r≥R/2}), ∥PNu

♯
k(t)∥L∞({r≥R/2}) ≲ R−αN1−αAOk(1) (2.43)

for all α ∈ [0, 1
3
), R > 0 and t ∈ [tk, 1], k ≥ 0.

In fact, we first observe that Lemma 2.2 gives that

∥rαPNu(t)∥∞ ≲ N1−α∥u(t)∥L3,∞ ≲ N1−αAO(1). (2.44)
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Thus, since the first inequality above is valid for any axisymmetric function, it remains to

note that the second inequality is also valid for each u♭k, u
♯
k, on [tk, 1], k ≥ 0. Indeed, the

case k = 0 follows trivially, while the inductive step follows by applying Young’s inequality

(5.21) for weak Lp spaces, and Hölder’s inequality (5.20) for Lorentz spaces

∥u♭k(t)∥L3,∞ ≲ ∥Ψ(t− tk)∥1∥u(tk)∥L3,∞ +

ˆ t

tk

∥∇Ψ(t− t′)∥1∥(u♭k−1 ⊗ u♭k−1)(t
′)∥L3/2,∞dt′

≤ CkA+ Ck∥u♭k−1∥2L∞([tk−1,1];L3,∞)

ˆ t

tk

(t− t′)−
1
2dt′ ≤ AOk(1)

for t ∈ [tk, 1], as required, where we also used the heat kernel bounds (5.18).

Step 2. We show that the inequality from Step 1 can be improved for u♯k for large k, namely

∥PNu
♯
k∥L∞([ 1

2
,1]×{r≥R}) ≤ NAOk(1)((RN)−(k−1)α +N−(k−1)) (2.45)

for every k ≥ 1 and N ∈ 2N ∩ [100k max(1, R−1),∞).

We will show that,

Xk,N ≤ N− 4
5AOk(1)((RN)−(k−1)α +N−(k−1)), (2.46)

for k ≥ 1 and N ≥ 100k max(1, R−1), using induction with respect to k, where

Xk,N := ∥PNu
♯
k∥L∞([tk+1,1];L5/3(Ωk))

.

Then (2.45) follows by the local Bernstein inequality (2.3).

As for the base case k = 1 we note that (2.5) gives that

∥PNu
♯
1(t)∥5/3 ≲

ˆ t

t1

∥PNe
(t−t′)∆P div(u⊗ u)(t′)∥5/3dt′

≲
ˆ t

t1

e−(t−t′)N2/O(1)N
6
5∥(u⊗ u)(t′)∥

L
3
2 ,∞dt′

≲ N
6
5∥e−tN2/O(1)∥L1(t1,1)∥u∥2L3,∞
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for t ∈ [t1, 1]. Thus

X1,N ≤ ∥PNu
♯
1∥L∞([t2,1];L5/3) ≤ N− 4

5AO(1), (2.47)

due to Hölder’s inequality for Lorentz spaces (5.20).

As for the inductive step, we use the Duhamel formula for u♯k and the local Bernstein

inequality (2.3) to obtain

∥PNu
♯
k(t)∥L5/3(Ωk)

≲
ˆ t

tk

∥PNe
(t−t′)∆P div(u⊗ u− u♭k−1 ⊗ u♭k−1)∥L5/3(Ωk)

dt′

≤
ˆ t

tk

Ne−(t−t′)N2/O(1)dt′
(
∥PN(u⊗ u− u♭k−1 ⊗ u♭k−1)∥L∞([tk,1];L5/3(Ωk−1))

+(NR)−(k−1)α∥PN(u⊗ u− u♭k−1 ⊗ u♭k−1)∥L∞([tk,1];L5/3)

)
≲ N−1

(
∥PN(u⊗ u− u♭k−1 ⊗ u♭k−1)∥L∞([tk,1];L5/3(Ωk−1))

+N
1
5 (NR)−(k−1)αAO(1)

)
,

where we used the weak L3 bound (5.4) and Lemma 2.2 for the u⊗ u term and (2.6) for the

u♭k−1 ⊗ u♭k−1 term. Thus we can use the paraproduct decomposition in the first term on the

right-hand side to obtain

Xk,N ≲ N−1∥Y1 + · · ·+ Y5∥L∞([tk,1];L5/3(Ωk−1))
+N− 4

5 (NR)−(k−1)αAOk(1), (2.48)

where

Y1 := 2
∑
N ′∼N

PN ′u♯k−1 ⊙ P≤N/100u
♯
k−1,

Y2 :=
∑

N1∼N2≳N

PN1u
♯
k−1 ⊗ PN2u

♯
k−1,

Y3 :=
∑

N1∼N2≳N

PN1u
♭
k−1 ⊗ PN2u

♯
k−1,

Y4 := 2
∑
N ′∼N

PN ′u♭k−1 ⊙ P≤N/100u
♯
k−1,

Y5 := 2
∑
N ′∼N

P≤N/100u
♭
k−1 ⊙ PN ′u♯k−1.
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Using (2.43),

∥Y1∥L∞([tk,1];L5/3(Ωk−1))
≲
∑
N ′∼N

Xk−1,N ′

∑
N ′≲N

R−α(N ′)1−αAOk(1)

≲ R−αN1−αAOk(1)
∑
N ′∼N

Xk−1,N ′

and

∥Y2∥L∞([tk,1];L5/3(Ωk−1))
≲ R−αAOk(1)

∑
N ′≳N

(N ′)1−αXk−1,N ′ .

Moreover, the frequency-localized bounds (2.5) for u♭k−1 give that

∥Y3∥L∞([tk,1];L5/3(Ωk−1))
≲ AOk(1)

∑
N ′≳N

e−(N ′)2/Ok(1)N ′Xk−1,N ′ ,

and (2.8), as well as boundedness of P≤N/100 on L5/3 give that

∥Y4∥L∞([tk,1];L5/3(Ωk−1))
≲ AOk(1)

∑
N ′∼N

e−(N ′)2/Ok(1)N ′ ≲ e−N2/Ok(1)AOk(1).

Finally, using boundedness of P≤N/100 on L∞ and (2.6) we obtain

∥Y5∥L∞([tk,1];L5/3(Ωk−1))
≲ AOk(1)

∑
N ′∼N

Xk−1,N ′ .

Combining these estimates into (2.48), we have shown

Xk,N ≤ AOk(1)

((RN)−α +N−1)
∑
N ′∼N

Xk−1,N ′ +N−1R−α
∑
N ′≳N

(N ′)1−αXk−1,N ′

+N−1
∑
N ′≳N

e−(N ′)2/Ok(1)N ′Xk−1,N ′ +N− 4
5 (NR)−(k−1)α +N−1e−N2/Ok(1)

 .

(2.49)

Since the upper bounds on Xk−1,N ′ provided by the inductive assumption (2.46) are

comparable for all N ′ ∼ N , up to constants depending only on k, we thus obtain that∑
N ′∼N

Xk−1,N ′ ≤ AOk(1)N− 4
5

(
(RN)−α(k−2) +N−k−2

)
,

R−α
∑
N ′≳N

(N ′)1−αXk−1,N ′ ≤ AOk(1)R−α
∑
N ′≳N

(N ′)1−α− 4
5

(
(RN ′)−α(k−2) + (N ′)−(k−2)

)
≤ AOk(1)N

1
5

(
(RN)−α(k−1) +N−(k−1)

)
,

58



where, in the last line we used the fact that (k−1)(1−α)−4/5 < 0 for any k ≥ 2. A similar

estimate for
∑

N ′≳N e−(N ′)2/Ok(1)N ′Xk−1,N ′ now allows us to deduce from (2.49) that

Xk,N ≤ N− 4
5AOk(1)((RN)−(k−1)α +N−(k−1)),

as required.

Step 3. We prove the claim.

We first consider the case R ≥ 100n/c, and we note that, by (2.43)

∥PN≤Rc∇ju♯n∥L∞
t,x([

1
2
,1]×{r≥R}) ≤

∑
N≤Rc

AOn(1)N1−α+jR−α ≤ AOn(1)R−α+(1−α+j)c ≤ AOn(1)R− 1
3
+ε,

where we used the choice of α > 1/3− ϵ/2 and the first property of our choice (2.41) of c in

the last inequality. On the other hand for N > Rc we can use (2.45) with k = n to obtain

arbitrarily fast decay in N . Comparing the terms on the right-hand side of (2.45) we see

that N−(n−2) dominates (RN)−(n−2)α if and only if N ≤ Rα/(1−α), which allows us to apply

the decomposition

∥PN>Rc∇ju♯n∥L∞
t,x([

1
2
,1]×{r≥R}) ≤

∑
Rc<N≤Rα/(1−α)

AOn(1)N−n+2+j

+
∑

N>Rα/(1−α)

AOn(1)N1+j(RN)−(n−1)α

≤ AOn(1)Rc(−n+2+j)

≤ AOn(1)R−1−j.

where we used the second property of our choice (2.41) of c in the second inequality, and the

choice (2.42) of n in the last inequality.

We now suppose that R ≤ 100n/c. The low frequencies can be estimated directly from

59



the weak L3 bound (5.4),

∥P≤1002n/cR−1∇ju∥L∞
t,x([

1
2
,1]×{r≥R}) ≲n,c A

O(1)R−1−j.

On the other hand, for N > 1002n/cR−1 we have in particular N > Rα/(1−α), which shows

that the dominant term on the right-hand side of (2.45) is (RN)−(n−2)α, and so

∥P>1002n/cR−1∇ju♯n(t)∥L∞({r≥R}) ≤
∑

N>1002n/cR−1

N1+jAOn(1)(RN)−(n−1)α ≤ AOn(1)R−1−j

for every t ∈ [1/2, 1], as desired. As for the estimate for u♭ we use (2.6) to obtain

∥∇ju♭n∥L∞({r≥R}) ≤ R−1/3+ϵ∥r1/3−ϵ∇ju♭n∥∞ ≲ϵ R
−1/3+ϵAOϵ,j(1),

as needed.

The estimate for ∥u∥Lp({r≥1}) follows by an Lp analogue of Step 1, as well as applying the

Xk,N estimates (2.46) in the Lp variant of Step 3.

We prove an axial version of Proposition 2.19. We do not attempt to be as precise because

the bound is sure to deteriorate near the thresholds of (2.1), and it will not be necessary for

the application in Chapter 4.

Proposition 2.20. Suppose u is a classical solution of (1.2) obeying (1.9) with X = Xq
α;T

and (2.1). If T ′ ∈ [0, T/2] and R ≥ (T ′)1/2, then in the region

Ω = {(t, x) ∈ [t0 − T ′, t0]× R3 : r ≥ R},

we have

∥∇ju∥L∞
t,x(Ω) ≲ (T ′)−

j+1
2

(
R2

T ′

)−1/Oj(1)

AO(1).

for j ≥ 0.

Proof. The strategy of the proof is similar to that of Proposition 2.19. Let us shift time and

rescale to achieve t0 = 0 and T ′ = 1. First we note that by (2.2), (2.14), and (1.9), if q > 3
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and f is either u♭n or u♯n, we have

R1− 3
q ∥PNf∥L∞

t,x([−1/2,0]×{r≥R/10}) ≲ ∥r1−
3
qPNf∥L∞

t,x([−1/2,0]×R3) ≲ N
3
qAOn(1)

and if instead q ≤ 3 and u is axisymmetric, then

R1− 2
q ∥PNf∥L∞

t,x([−1/2,0]×{r≥R/10}) ≲ ∥r1−
2
qPNf∥L∞

t,x([−1/2,0]×R3) ≲ N
2
qAOn(1).

Let us therefore define γq =
3
q
in the former case and γq =

2
q
in the latter so that we always

have

∥PNu
♭
n∥L∞

t,x([−1/2,0]×{r≥R/10}), ∥PNu
♯
n∥L∞

t,x([−1/2,0]×{r≥R/10}) ≲ NγqR−1+γqAOn(1). (2.50)

Importantly, in either case, γq < 1. The point is that while staying uniformly away from

the x3-axis, this is a subcritical estimate and we can iteratively improve it with Duhamel’s

principle. Let us begin with a straightforward application of (2.4), Hölder’s inequality, and

(1.9) to obtain, for t ∈ [−1/2, 0],

∥r2αqPNu
♯
1(t)∥Lq/2

x (R3)
≤
ˆ t

−1/2

∥r2αqPNe
(t−t′)∆P div(u⊗ u)(t′)∥

L
3/2
x (R3)

dt′

≲
ˆ t

−1/2

e−(t−t′)N2/20N∥r2αqu⊗ u∥
L
q/2
x (R3)

dt′

≲ N−1A2.

Next, we have

PNu
♯
n(t) =

ˆ t

−1/2

PNe
(t−t′)∆ div P̃N(u

♯
n−1 ⊗ u♯n−1 + 2u♯n−1 ⊙ u♭n−1)dt

′.

By (2.3), for t ∈ [−1/2, 0], we have

∥r2αqPNu
♯
n(t)∥Lq/2

x (r≥( 1
2
−2−n)R)

≲n N
−1∥r2αq(Y1 + Y2 + Y3 + Y4 + Y5)∥Lq/2

x (r≥( 1
2
−2−(n−1))R)

+ (NR)−50N−1∥r2αq(u♯n−1 ⊗ u♯n−1 + 2u♯n−1 ⊙ u♭n−1)∥Lq/2
x (R3)
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where we decompose PN(u
♯
n−1 ⊗ u♯n−1 + 2u♯n−1 ⊙ u♭n−1) with the paraproducts

Y1 = 2
∑
N ′∼N

PN ′u♯n−1 ⊙ P≤N/100u
♯
n−1

Y2 =
∑

N1∼N2≳N

PN1u
♯
n−1 ⊗ PN2u

♯
n−1

Y3 =
∑

N1∼N2≳N

PN1u
♭
n−1 ⊗ PN2u

♯
n−1

Y4 = 2
∑
N ′∼N

PN ′u♭n−1 ⊙ P≤N/100u
♯
n−1

Y5 = 2
∑
N ′∼N

P≤N/100u
♭
n−1 ⊙ PN ′u♯n−1

By Hölder’s inequality, (2.14), and (1.9), the global Bernstein term is bounded by (NR)−50N−1AOn(1).

Let Ωn = [−1/2, 0]×{r ≥ (1
2
−2−n)R}. Assuming N ≳n,c R

c, where c > 0 is a small constant

depending on q, by Hölder’s inequality, (2.2), (2.14), (1.9), (2.50), (2.15), and (2.16),

∥r2αqY1∥L∞
t L

q/2
x (Ωn−1)

≲
∑
N ′∼N

∥r2αqPN ′u♯n−1∥L∞
t L

q/2
x (Ωn−1)

×
∑
N ′≲n

AOn(1)N ′ max(N ′R, 1)−1+γq

≲ AOn(1)NγqR−1+γq
∑
N ′∼N

∥r2αqPN ′u♯n−1∥L∞
t L

q/2
x (Ωn−1)

,

∥r2αqY2∥L∞
t L

q/2
x (Ωn−1)

≲
∑

N1∼N2≳N

AOn(1)N
γq
1 R

−1+γq∥r2αqPN2u
♯
n−1∥L∞

t L
q/2
x (Ωn−1)

,

∥r2αqY3∥L∞
t L

q/2
x (Ωn−1)

≲
∑

N1∼N2≳N

e−N2
1 /On(1)N1A

On(1)∥r2αqPN2u
♯
n−1∥L∞

t L
q/2
x (Ωn−1)

,

∥r2αqY4∥L∞
t L

q/2
x (Ωn−1)

≲
∑
N ′∼N

∥PN ′u♭n−1∥Xq
αq ;1

∥P≲Nu
♯
n−1∥Xq

αq ;1

≲ e−N2/On(1)AOn(1),
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and

∥r2αqY5∥L∞
t L

q/2
x (Ωn−1)

≲
∑
N ′≲N

e−(N ′)2/On(1)N ′AOn(1)
∑
N ′∼N

∥r2αqPN ′u♯n−1∥L∞
t L

q/2
x (Ωn−1)

≲ AOn(1)
∑
N ′∼N

∥r2αqPN ′u♯n−1∥L∞
t L

q/2
x (Ωn−1)

.

In total,

∥r2αqPNu
♯
n∥L∞

t L
q/2
x (Ωn)

≲ AOn(1)((NR)1−γq +N)−1
∑
N ′∼N

∥r2αqPNu
♯
n−1∥L∞

t L
q/2
x (Ωn−1)

+R−1+γqN−1AOn(1)
∑
N1≳N

N
γq
1 ∥r2αqPN1u

♯
n−1∥L∞

t L
q/2
x (Ωn−1)

+N−1AOn(1)e−N2/On(1).

Iteratively applying this, we find

∥r2αqPNu
♯
n∥Xq/2

2αq ;1
(r≥R/2)

≲n A
On(1)N−1min((NR)1−γq , N)−n+1, (2.51)

noting that the assumption N ≳n,c R
c implies

e−N2/On(1) ≲ ((NR)1−γq , N)−n+1.

In order to make use of (2.51), we take the Littlewood-Paley decomposition of ∇ju♯n and

apply (2.2) and (2.3) to find

∥∇ju♯n∥L∞
t,x(Ω) ≲ ∥P≤R−1∇ju♯n∥X∞

0;1
+

∑
R−1<N≲n,cRc

N j∥PNu
♯
n∥L∞

t,x(Ω)

+
∑

N≳n,cRc

(
N2+j∥PNu

♯
n∥Xq/2

2αq ;1
(r≥R/2)

+ (NR)−50N1+j∥PNu
♯
n∥Xq

αq ;1

)
.

Thanks to (2.2), (2.14), and (1.9), the first term is bounded by R−1−jAOn(1). The global

Bernstein term is estimated the same way, and summing the geometric series, we obtain

the bound AOn(1)R−40. For the intermediate frequency term, we apply (4.13) and sum the

geometric series to find∑
R−1<N≲n,cRc

N j∥PNu
♯
n∥L∞

t,x(Ω) ≲n,c A
On(1)R−1+γq+(γq+j)c.
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For the high frequency term, we have to split the sum once again depending on how the

minimum is attained in (2.51).

∑
N≳n,cRc

N2+j∥PNu
♯
n∥Xq/2

2αq ;1
(r≥R/2)

≲
∑

Rc≲n,cN≲R
1
γq

−1

AOn(1)N j−n+2

+
∑

N≳R
1
γq

−1

AOn(1)N1+j(NR)−(1−γq)(n−1)

≲n,c A
On(1)R

min( 1
γq

−1,c)(j−n+2)

where j = 0, 1, 2, 3, assuming n > 10/(1 − γq) in order to make the series summable. By

taking n and c−1 sufficiently large depending on q, all the powers on R can be made uniformly

negative, that is to say

∥∇ju♯n∥L∞
t,x(Ω) ≲ AOn(1)R−1/On(1).

Moreover, by essentially the same argument we used for (2.50), we have

∥∇ju♭n∥L∞
t,x(Ω) ≲ AOn(1)R−(1−γq).

Since u = u♭n + u♯n and γq < 1, this proves the estimates for ∇ju.
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CHAPTER 3

Regularity in dimensions four and higher

3.1 Introduction

The contents of this chapter appeared in the author’s paper [47]. We prove a quantitative

blowup rate analogous to (1.7) for d ≥ 4, answering a question of Tao, see Remark 1.6 in [60].

As in [60], we assume for convenience that u is a classical solution, meaning it is smooth with

derivatives in L∞
t L

2
x([0, T ]× Rd). Since our results depend quantitatively on only ∥u∥L∞

t Ld
x
,

they can in principle be extended, for instance to the Leray-Hopf class as in [22].

Theorem 3.1. Suppose u is a classical solution of (1.2) that blows up at t = T∗ and d ≥ 4.

Then

lim sup
t ↑T∗

∥u(t)∥Ld
x(Rd)

(log log log log 1
T∗−t

)c
= ∞

for a constant c = c(d) > 0 depending only on the dimension.

This is a straightforward consequence of our other main theorem which asserts that a

solution satisfying the critical bound (1.9) with

X := Ld
x(Rd)

is regular; in particular we can quantify its subcritical norms in terms of A. Let us take A

to be at least 2.

Theorem 3.2. If u is a classical solution of (1.2) on [0, T ] satisfying (1.9) with d ≥ 4, then

∥∇ju(t)∥L∞
x (Rd) ≤ exp exp exp exp(AC)t−

1+j
2
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for t ∈ (0, T ], where C = C(j, d) depends only on j ≥ 0 and the dimension.

Remark 3.3. Using ideas from [46], particularly Proposition 8, it is possible to improve the

bounds in Theorems 3.1 and 3.2 if some mild symmetry assumptions are made on u. For

example, suppose u is axisymmetric1 about the x3, x4, . . . , xd-plane. When d = 4, one log

and one exp can be removed from Theorems 3.1 and 3.2 respectively. When d ≥ 5, we may

remove two logs and two exps. In the latter case, in the proof of Proposition 3.7, we find

the desired concentration at length scale ℓ = A−O(1) using the slightly improved energy bound

(2.10), while when d = 4, we resort to pigeonholing the energy over AO(1)-many length scales

which yields an ℓ as small as exp(−AO(1)). An argument similar to Proposition 8 in [46]

allows one to avoid losing additional exponentials when locating annuli of regularity as in

Proposition 2.18.

Let us summarize why the approach in [60] breaks down in greater than three dimensions.

The first set of difficulties arises when one would use the “bounded total speed” property,

i.e., control on ∥u∥L1
tL

∞
x
, see Proposition 3.1(ii) in [60]. One expects (for example, based on

the heuristics following Proposition 9.1 in [59]) that this property fails when d ≥ 4. In other

words, one cannot expect any kind of “speed limit” for elements convected by u. Instead,

we derive a procedure to propagate concentrations of the velocity and pressure from fine to

coarse scales, encapsulated in Proposition 2.12, which is a quantitative version of Lemma 3.2

in [19]. From this we can extract several important results including an ϵ-regularity criterion

(Proposition 2.16) and the backward-propagation lemma (Proposition 3.4).

The second and more significant challenge in high dimensions is due to the lack of quan-

titative epochs of regularity as in Proposition 3.1(iii) in [60]. In the qualitative analysis,

it suffices to use epochs of regularity for which one has absolutely no lower bound on the

length, nor any explicit upper bound on |u|, |∇u|, etc. (For example, see the use of Proposi-

1By this we mean the following: when regarded in the coordinate system which consists of polar coordinates
(r, θ) in the x1, x2-plane and Cartesian coordinates in the rest, we have u(x) = Rθ(u(R−θx)) where Rθ

denotes counterclockwise rotation by θ in the x1, x2-plane.
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tion 2.4 in the proof of Proposition 5.3 in [19].) This becomes a problem when one needs to

propagate concentrations of vorticity through space and into a distant annulus of regularity,

as the width of the time interval on which one has regularity determines the lower bound

one can extract from unique continuation for the heat equation. We will remedy this by

substituting spacetime partial regularity in place of epochs of regularity. This creates some

new difficulties; first that when one propagates a high frequency concentration of the solu-

tion backward in time, a priori there is no guarantee that the resulting concentration has

any of its L2
t,x mass inside the regular region. There is a particular fractal arrangement of

concentrations in spacetime which is consistent with this obstruction; indeed the objective

of Proposition 3.7 is to locate a scale where we may rule it out.

The second difficulty faced when propagating the vorticity using only spacetime partial

regularity is the following: the usual Carleman inequality for unique continuation has as

its domain a large ball in space (compared to the length of the time interval); however we

wish to propagate the vorticity for a great distance through a thin spacetime slice. We are

able to accomplish this without the bounds suffering too badly (losing only one additional

exponential compared to the d = 3 case) by repeatedly applying the Carleman inequality in a

series of moving and expanding balls lying in an expanding slice of spacetime. We show that

the iteration of unique continuation accelerates exponentially away from the initial vorticity

concentration. The positive feedback loop this creates is essential for arriving at the claimed

bounds, as unique continuation through a uniformly thin slice would lead to an unbounded

number of logarithms and exponentials in Theorems 3.1 and 3.2.

3.2 High dimensional back propagation

Next we prove a high-dimensional analogue of Proposition 3.1(v) in [60]. The proof given

there is obtained by iterating a lemma for very short back-propagation, with the bounded

total speed property (Proposition 3.1(ii) in [60]) preventing the sequence of concentrations
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from traveling too far through space. Although the bounded total speed is unlikely to hold

when d ≥ 4, Proposition 2.12 is a suitable replacement.

Proposition 3.4. Suppose u is smooth and satisfies (1.2) and (1.9) with X = Ld(Rd) on

[−T, 0] where T ≥ 100. If N0 ≥ 10A1 and

|PN0u(0)| ≥ A−1
1 N0,

then there exist z1 ∈ [−1,−A−1
2 ]×B(A2) and N1 ∈ [A−1

2 , A2] such that

|PN1u(z1)| ≥ A−1
2 .

Proof. Using Lemma 2.5 to deduce that there must be a parabolic cylinder about z = 0

where we still have the lower bound on |PN0u|, we have

A−1
1 N0r

(d+1)(d+2)
2(d+3) ≤ ∥PN0u∥

L
2+ 4

d+1
t,x (Q(r))

≲ ∥u∥
L
2+ 4

d+1
t,x (Q(A3

1r))
+ A−50

1 r
(d+1)(d+2)

2(d+3)
−1A

with r = A−2
1 N−1

0 , using Lemma 2.3. Rearranging, this implies

C(A1N
−1
0 , 0) ≥ A−3d

1 . (3.1)

Because N0 ≥ 10A1, we can apply Proposition 2.12 in the contrapositive to find

C(1, 0) +D(1, 0) ≥ A−4d
1 .

Suppose first that C(1, 0) ≥ 1
2
A−4d

1 . Using some large parameter M to be specified, we split

u into three pieces to estimate C(0, 1): low frequencies

∥P<M−1u∥
L
2+ 4

d+1
t,x (Q(1))

≲ ∥P<M−1u∥L∞
t,x([−1,0]×Rd) ≲

A

M
,

intermediate frequencies

∥PM−1≤ ·≤Mu∥
L
2+ 4

d+1
t,x (Q(1))

≲ log(M) max
M−1≤N≤M

∥PNu∥
L
2+ 4

d+1
t,x (Q(1))

,
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and high frequencies

∥P>Mu∥
L
2+ 4

d+1
t,x (Q(1))

≲
∑
N>M

(
∥PNu

♭∥L∞
t,x([−1,0]×Rd))

+N
d

d+3∥PNu
♯∥1−

2
d+3

L2
t,x([−1,0]×Rd)

∥PNu
♯∥

2
d+3

L∞
t L2

x([−1,0]×Rd)

)
.

Here we have used the decomposition from Proposition 2.6 on, say, [−2, 0]×Rd followed by

Lemma 2.3 and Hölder’s inequality in space and interpolation in time. For the first term,

by (2.7),

∑
N>M

∥PNu
♭∥L∞

t,x([−1,0]×Rd) ≲M−50AO(1).

For the second, by Hölder’s inequality, Plancherel, (2.8), and (2.9),

∑
N>M

N− 1
d+3 (N∥PNu

♯∥L2
t,x([−1,0]×Rd))

1− 2
d+3∥PNu

♯∥
2

d+3

L∞
t L2

x([−1,0]×Rd)

≲M− 1
d+3

(∑
N

N2∥PNu
♯∥2L2

t,x([−1,0]×Rd)

) 1
2
− 1

d+3
(∑

N

∥PNu
♯∥2L∞

t L2
x([−1,0]×Rd)

) 1
d+3

≤M− 1
d+3AO(1).

Combining the above estimates, we conclude

1

2
A−4d

1 ≤ C(1, 0) ≲
A

M
+ log(M) max

M−1≤N≤M
∥PNu∥L∞

t,x(Q(1)) +M− 1
d+3AO(1).

With M = A
O(1)
1 , we obtain z1 ∈ Q(1) and N1 ∈ [A−1

2 , A2] such that

|PN1u(z1)| ≥ A
−O(1)
1 .

Suppose instead that D(1, 0) ≥ 1
2
A−4d

1 . By Hölder’s inequality, Lemma 2.3, and (1.9), also

using the fact that p = −∆−1 div div(u⊗ u), we have

∥P<10M−1p∥
L
1+ 2

d+1
t,x (Q(1))

≲ ∥P<10M−1p∥L∞
t,x(Rd) ≲M−2A2.
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To handle the intermediate and high frequencies, we use the paraproduct decomposition

P≥10M−1(u⊗ u) = P≥10M−1

(
2(P<M−1u)⊙ (PM−1≤ ·≤Mu) + 2u⊙ (P>Mu) + (PM−1≤ ·≤Mu)

⊗2
)

= Π1 +Π2 +Π3.

For the first term, by Hölder’s inequality, Lemma 2.2, and (1.9),

∥∆−1 div div Π1∥
L
1+ 2

d+1
t,x (Q(1))

≲ ∥P<M−1u∥L∞
t,x([−1,0]×Rd)∥PM−1≤ ·≤Mu∥L∞

t Ld
x([−1,0]×Rd)

≲ A2M−1.

Next, by Proposition 2.6, Hölder’s inequality, (1.9), (2.7), and estimating P>Mu
♯ using

Plancherel and (2.9) as above, we have

∥∆−1 div div Π2∥
L
1+ 2

d+1
t,x (Q(1))

≲ A
(
∥P>Mu

♭∥L∞
t,x([−1,0]×Rd) + ∥P>Mu

♯∥
L
2+ 4

d+1
t,x ([−1,0]×Rd)

)
≲M− 1

d+3AO(1).

Finally, by Hölder’s inequality, Lemma 2.3, and (1.9),

∥∆−1 div div Π3∥
L
1+ 2

d+1
t,x (Q(1))

≲ ∥PM−1≤ ·≤Mu∥2
L
2+ 4

d+1
t,x ([−1,0]×B(M2))

+M−50A2.

In total,

1

2
A−4d

1 ≤ D(0, 1) ≲M− 1
2A+M− 1

2(d+3)AO(1) + log(M) max
N∈[M−1,M ]

∥PNu∥L∞
t,x(Q[−1,0]×B(M2)).

Once again with M = A
O(1)
1 , we obtain N1 and z1 with the claimed properties. Finally we

address the possibility that this t1 falls in [−A−1
2 , 0] instead of the desired interval. By the

fundamental theorem of calculus and Lemma 2.5,

|PN1u(t1 − A−1
2 , x1)| ≥ A

−O(1)
3 −O(N3

1A
2A−1

2 )

which implies we can redefine t1 to be in [−1,−A−1
2 ] while maintaining the lower bound on

|PN1u|.
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3.3 Iterated unique continuation

Clearly the Carleman inequality Proposition A.3 is incompatible with the geometry of Propo-

sition 2.17 since B(r) would have to be contained in the thin slice in order to guarantee (A.2),

while simultaneously we need r2 ≫ t0 in order for the first error term to be suppressed.

Instead we iteratively apply the Carleman inequality outward in space, starting near the

vertex of the slice. The point is that as the iteration proceeds, the center for the Carleman

inequality moves further in the θ direction, so r can be taken to be larger, which makes the

Carleman inequality stronger. Thus combining Propositions 2.17 and 3.5 leads to a feedback

loop which leads to substantially better estimates; specifically, only ∼ log(R2/R1) iterations

of Proposition A.3 (by way of Lemma 3.6) are needed2 to propagate a concentration from

length scale R1 to R2.

Proposition 3.5 (Iterated unique continuation Carleman inequality). Suppose T1 > 0,

0 < η ≤ C−1
0 , and u is smooth on S with

∥∇ju∥L∞
t,x(S)

≤ (ηT1)
−1− j

2 , |Lu| ≤ |u|
C0ηT1

+
|∇u|

(C0ηT1)
1
2

∀(t, x) ∈ S (3.2)

for j = 0, 1, where, for some direction θ ∈ Sd−1,

S = [−ηT1, 0]× {x ∈ Rd : |x| > 10T
1
2
1 , dist(x,R+θ) ≤ η|x · θ|}.

Moreover, assume that for every t ∈ [−ηT1, 0], we have

ˆ
B(R0θ,η5R0)

|u(t)|2dx ≥ ϵT
d
2
−2

1

2If instead one were to iterate the Carleman inequality through a region of the form Q0 ×Rd−k for some
small Q0 ⊂ Rk, one would need a number of iterations on the order of R2/R1. This would lead to an extra
exponential in the vorticity lower bound, which would in turn require us to ensure a much smaller error
when the backward uniqueness Carleman inequality is applied in the proof of Proposition 3.8. It would be
necessary then to find a much larger annulus of regularity in Proposition 2.18 which would result (rather
unsatisfyingly) in tower exponential bounds in Theorem 3.2.
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where 20T
1
2
1 ≤ R0 ≤ η−2T

1
2
1 and ϵ ≤ η8. Then for every t ∈ [−ηT1/2, 0] and R ≥ 2R0, we

have

ˆ
B(Rθ,η5R)

|u(t)|2dx ≥ ϵ(R/R0)η
−4

T
d
2
−2

1 .

Given the following lemma, Proposition 3.5 will follow by iteration.

Lemma 3.6. Assume u, T1, and η are as in Proposition 3.5 and that there is some R ≥ 20T
1
2
1

and a ∈ (1
2
, 1) such that for every t ∈ [−aT1, 0],

ˆ
B(Rθ,η5R)

|u(t)|2dx ≥ ϵ0T
d
2
−2

1

where

ϵ0 ≤ min(η8, (R2/T1)
−50dη, e−2000dη4R2/T1).

Then for every t ∈ [−aT1 + 2η5R2 log−1 1
ϵ0
, 0],

ˆ
B(R′θ,η5R′)

|u(t)|2dx ≥ ϵη
−2

0 T
d
2
−2

1

where R′ := (1 + η3)R.

Proof of Proposition 3.5. Let us normalize T1 = 1. One iterates Lemma 3.6 on the time

intervals [−ak, 0] for k = 0, 1, . . . , n, where n = ⌈log1+η3(R/R0)⌉. Specifically, the kth

application of the lemma is centered at the point Rkθ ∈ Rd and uses the lower bound ϵk,

where

ϵk = ϵη
−2k

, Rk = R0(1 + η3)k, ak = η − 2
k∑

i=0

η5R2
i log

−1 1

ϵi
.

One computes that

ak = η − 2η5R2
0 log

−1 1

ϵ

k∑
i=0

(η + η4)2i ≥ η − 4η5R2
0 log

−1 1

ϵ
.
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Recall that R0 ≤ η−2 and ϵ ≤ η8. Thus, with η sufficiently small, ak ≥ η
2
so the claimed

bound holds on [−η
2
, 0]. The final lower bound resulting from the iteration is given by

ϵn = ϵη
−2⌈log

1+η3
(R/R0)⌉

≥ ϵη
−2(R/R0)

log η−2

log(1+η3)
.

With η sufficiently small, we have log η−2

log(1+η3)
≤ η−

7
2 and η−2 ≤ (R/R0)

η−
1
2 , using that R ≥ 2R0.

Thus ϵn ≥ ϵ(R/R0)η
−4

as claimed.

Proof of Lemma 3.6. Again, we rescale so that T1 = 1. Fix any t′ ∈ [−a+2η5R2 log−1 1
ϵ0
, 0].

We apply Proposition A.3 to the function

(t, x) 7→ u(t′ − t, x+R′θ)

on the time interval [0, Tc] with the parameters

Tc = min(η/2, η5R2), r = η2R, t0 = η5R2 log−1 1

ϵ0
, t1 = η15R2 log−1 1

ϵ0
.

Clearly (3.2) implies (A.2) is satisfied. Consider the three terms in the Carleman inequality

which takes the form Z ≤ X+Y . For the left-hand side, since B(R′θ, η2R/2) ⊃ B(Rθ, η5R),

Z ≳ t0T
−1
c

ˆ
B(R′θ,η2R/2)

|u|2e−|x−R′θ|2/4t0dx ≳ max(η4R2, 1) log−1
( 1

ϵ0

)
ϵ
1+η5/4
0 ≥ ϵ20,

using that η and ϵ0 are small, R ≥ 20, and η ≥ ϵ
1
8
0 . Next, by (3.2),

X ≤ ϵ
η−1/1000
0 η2+2dRd

which is negligible compared to Z due to the constraint η ≤ C−1
0 . For the remaining term

in the Carleman inequality,

Y ≤ ϵ−η−2

0

ˆ
|x−R′θ|≤η2R

|u(t′, x)|2e−|x−R′θ|2/4t1dx.

By (3.2), the contribution to this term from the region where |x− R′θ| > η5R′ is negligible

compared to Z:

ϵ−η−2

0

ˆ
η6R′<|x−R′θ|≤η2R

|u(t′, x)|2e−|x−R′θ|2/4t1dx ≲ η2d−2Rdϵ
η−3/4−η−2

0 ≪ ϵ20,

using that ϵ0 ≤ R−100dη. Thus Z is bounded by the contribution to Y from B(R′θ, η6R′)

which proves the lemma.
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3.4 Main propositions

Next we proceed to the main propositions which will lead to the theorems claimed in this

chapter. The philosophy is similar to [60] but will face additional obstacles in higher dimen-

sions without quantitative epochs of regularity. As a result, given a spacetime point where

u has a high frequency concentration, it is far from clear that the vorticity lower bound

implied by Proposition 3.4 intersects at all with a spacetime region where the solution is

regular, let alone an entire epoch I×Rd as in the three-dimensional case. From a qualitative

perspective, since ω is locally L2
t,x and the measure of the spacetime set where |∇ju| ≲ ℓ−1−j

shrinks to zero as ℓ → 0, there must be some small ℓ and cylinders Q′ ⊂⊂ Q of length ∼ ℓ

such that |∇ju| ≲ ℓ−1−j holds in Q while
´
Q′ |ω|2dxdt is bounded from below (see Figure

3.1). The problem is that in order to prove a quantitative theorem, we need an effective

lower bound on this ℓ.

As one sees in the proof of Proposition 3.7, the worst-case scenario is that at each small

scale ℓ, there are ∼ ℓ−d+2 parabolic cylinders of length ∼ ℓ where
´
|ω|2dxdt ≳ ℓd−2, and in

the complement the solution obeys |∇ju| ≲ ℓ−1−j. At each scale, this fractal configuration

is consistent with the energy inequality. We rule out this scenario in dimensions d ≥ 5 by

applying the improved energy bound (2.10) at a sufficiently small scale ℓ = A−C . In d = 4

we cannot quite use this improvement and are forced to take ℓ as small as exp(−AC). Here

the idea is that each scale ℓ contributes roughly a fixed amount to the energy. A significant

fraction of the contribution comes from the frequencies around ℓ−1, so by summing over

many scales we can contradict this scenario.

Note that the exponential smallness of ℓ when d = 4 does not affect the final estimates

because it contributes in parallel with exponentials appearing at other points in the argu-

ment.3

3It is conceivable that the d ≥ 5 case can be handled using the same energy pigeonholing approach,
although it is less straightforward because of the spatial overlaps of the concentrations caused by the fact
that Q′ is a factor δ smaller than Q. As a result ℓ would depend exponentially on δ−1 which would cause
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Proposition 3.7 (Backward propagation into a regular region). Suppose u is a classical

solution of (1.2) on [t0−T, t0] satisfying (1.9) with X = Ld(Rd), and that there are x0 ∈ Rd

and N0 > 0 such that at the point z0 = (t0, x0),

|PN0u(z0)| ≥ A−1
1 N0.

Then for any T1 ∈ [A2
1N

−2
0 , T/100], there exist ℓ > 0 and Q = Q(z′0, ℓ/2) ⊂ [−T1,−A−1

2 T1]×

B(A3T
1
2
1 ) such that

∥∇ju∥L∞
t,x(Q) ≤ A−1

2 ℓ−j−1 (3.3)

for j = 0, 1, 2 and

∥ω∥L2
t,x(Q

′) ≥ A
−O(1)
3 (δℓ)

d
2
+1T−1

1 (3.4)

where Q′ = Q(z′0 − (ℓ2/8, 0), δℓ). We may take δ = A−1
4 and ℓ such that

ℓ ∈ [exp(−A4), A
−1
4 ], d = 4,

ℓ = A−2d−1
4 , d ≥ 5.

(3.5)

Proof. Without loss of generality we may let z0 = 0 and T1 = 1. Let us begin with the case

d ≥ 5. By Proposition 3.4, there exists a point z1 ∈ [−1,−A−1
2 ] × B(A2) and a frequency

N1 ∈ [A−1
2 , A2] such that

|PN1u(z1)| ≥ A−1
2 .

Combining this with Lemma 2.5, we find that the lower bound persists in a parabolic cylinder:

|PN1u(z)| ≳ A−1
2 , ∀z ∈ Q(z1, A

−4
2 ). (3.6)

problems in the proof of Proposition 3.8, as the smallness of δ is necessary to create favorable geometry for
the Carleman estimates. It is preferable for other reasons to have ℓ depend polynomially on A; for example
see Remark 3.3.
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t0 − T1

z0

Prop. 3.4

Q(z1, A
−4
2 T

1
2
1 )

(|PN1u| is bounded below)

z1

I ×B(A3T
1
2
1 )

(ω concentration)
ℓ

δℓ

Q′ ⊂ Q

Figure 3.1: We schematize some key steps in the proof of Proposition 3.7. The high frequency

concentration at z0 is propagated backward in time to z1. The concentration of PN1u persists

in a parabolic cylinder (red) which we convert into a lower bound on ∥ω∥L2
t,x

(blue). The

objective is to locate a small cylinder Q such that u obeys subcritical bounds in the interior

and the vorticity concentrates on a smaller subcylinder Q′.
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We apply Proposition 2.6 on [t1 − 2A−4
2 , t1] to obtain a decomposition u = u♭ + u♯. Let I be

the contraction of the time interval [t1−A−4
2 , t1] by a factor of 1

5
about its center. By (2.10),

Hölder’s inequality, and (2.6),

∥∇u∥
L

d
2
t,x(5I×B(2A3))

≤ A
O(1)
3 . (3.7)

Defining the vorticity ω := dv where d is the exterior derivative on Rd and v is the covelocity

field of u, we apply the codifferential δ to obtain −∆v = δω. Thus we have a version of the

Biot-Savart law,

v = −∆−1δω.

It follows from (3.6) and Lemma 2.3 that for all t ∈ I,

A
−O(1)
2 ≲ ∥PN1∆

−1δω(t)∥L2
x(B(A3/2))

≲ N−1
1 ∥ω(t)∥L2

x(B(A3)) + (A3N1)
−50dN−1

1 (∥∇u♯∥L2
x(Rd) + A

d
2
3 ∥∇u♭∥L∞

x (Rd)).

Taking the L2
t (I) norm, bounding the u♯ global error term with (2.9), and the u♭ term with

(2.6), we obtain

∥ω∥L2
t,x(I×B(A3)) ≥ A

−O(1)
2 . (3.8)

Consider the collection of parabolic cylinders

C0 := {Q(z, ℓ) : z ∈ ((δℓ)2Z× (δℓZ)d) ∩ (2I ×B(2A3))}

of which there are ∼ A−5
2 Ad

3(δℓ)
−d−2. (Once again 2I denotes dilation of the interval about

its center.) We seek to understand in which cylinders u is regular. By the Lp-boundedness

of div div /∆, Hölder’s inequality, Sobolev embedding, and (2.9),

∥∆−1 div div u♯ ⊗ u♯∥
L1
tL

d
d−2
x ([t1−A−4

2 ,t1]×Rd)
≲ ∥u♯∥2

L2
tL

2d
d−2
x ([t1−A−4

2 ,t1]×Rd)

≤ A
O(1)
2 .

By interpolation with the L∞
t L

d
2
x bound coming from (2.8),

∥∆−1 div div u♯ ⊗ u♯∥L2
t,x([t1−A−4

2 ,t1]×Rd) ≤ A
O(1)
2 .
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Using this, (1.9), and (2.9),

∑
Q∈C0

(
∥∇u♯∥2L2

t,x(Q) + ∥∆−1 div div u♯ ⊗ u♯∥2L2
t,x(Q) + ∥u∥dLd

t,x

)
≤ δ−d−2A

O(1)
2 , (3.9)

since the sets in C0 can overlap up to O(δ−d−2) times. Define

C1 :=
{
Q ∈ C0 : max

(
∥∇u♯∥L2

t,x(Q), ∥∆−1 div div u♯ ⊗ u♯∥L2
t,x(Q), ∥u∥

d/2

Ld
t,x(Q)

)
> A−1

3 ℓ
d
2
−1
}
.

From (3.9), we clearly have

#(C1) ≤ δ−d−2ℓ2−dA2
3A

O(1)
2 ≤ 1

100
#(C0).

Consider an arbitrary Q0 = I0 ×B0 ∈ C0 \ C1. Additionally using (2.6) and (2.8), we have

∥p∥L2
t,x(Q0) ≤ A−1

3 ℓ
d
2
−1 + ∥∆−1 div div(2u♯ ⊙ u♭ + u♭ ⊗ u♭)∥L2

t,x(Q0)

≲ A−1
3 ℓ

d
2
−1 + ℓ

d
2A

O(1)
2 .

Then by Hölder’s inequality

D(Q0) ≲ A−1
3 + ℓA

O(1)
2 ≲ A−1

3 . (3.10)

Next we address C(Q0). Let I1/10 be the first 1
10

of the interval I0. Using again that

Q0 ∈ C0 \ C1,
ˆ
I1/10

∥u∥dLd
x(B)dt ≤ A−2

3 ℓd−2

and so by the pigeonhole principle and Hölder’s inequality, there exists a τ0 ∈ I1/10 such that

∥u(τ0)∥L2
x(B0) ≲ ℓ

d
2
−1∥u(τ0)∥Ld

x(B0) ≲ A
− 2

d
3 ℓ

d
2
− 4

d .

With this we can apply (2.26), (3.10), and the fact that Q0 /∈ C1 (along with Hölder’s

inequality and (2.6) for the u♭ part) to obtain

∥u∥L∞
t L2

x(3Q0/4) ≲ A
− 2

d
3 ℓ

d
2
− 4

d + A
− 1

2
3 ℓ

d
2
−1A+ A

O(1)
2 ℓ

d
2 .
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A bound for ∥∇u∥L2
t,x(3Q0/4) similarly follows from the definition of C1 and (2.6). Then by

Gagliardo-Nirenberg interpolation,

C(3Q0/4) ≲ A
− 2

d
3 A+ ℓA

O(1)
2 .

With this and (3.10), we arrive at (3.3) in Q0/2 by Propositions 2.12 and 5.1.

For every Q = Q(z, ℓ) ∈ C0, let Q′ := Q(z − (ℓ2/8, 0), δℓ). Since {Q′ : Q ∈ C0} covers

I ×B(R), (3.8) implies

∑
Q∈C0

∥ω∥2L2
t,x(Q

′) ≥ 2A−1
3 .

There are two cases. First, suppose

∑
Q∈C0\C1

∥ω∥2L2
t,x(Q

′) ≥ A−1
3 .

By the pigeonhole principle, since the family C0 \ C1 has cardinality AO(1)
3 (δℓ)−d−2, there is a

Q ∈ C0 \ C1 such that

∥ω∥L2
t,x(Q

′) ≥ A
−O(1)
3 (δℓ)

d
2
+1. (3.11)

This pair Q,Q′ satisfies the conclusion of the proposition. In the other case,

∑
Q∈C1

∥ω∥2L2
t,x(Q

′) ≥ A−1
3 . (3.12)

If so, we seek to derive a contradiction with (3.7). We compare the lower bound (3.12) with

∥ω∥2L2
t,x(Q

′) ≤ AO(1)(δℓ)d−2

from (2.24), and the fact that C1 contains at most A3
3δ

−d−2ℓ−d+2 cylinders. Indeed, defining

the family of disjoint cylinders

C2 := {Q′ : Q ∈ C1, ∥ω∥2L2
t,x(Q

′) > A−5
3 δd+2ℓd−2},
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we have, using that the contracted cylinders {Q′}Q∈C0 are disjoint,

A−1
3 ≤

∑
Q∈C1

∥ω∥2L2
t,x(Q

′) ≤ #(C2)AO(1)(δℓ)d−2 +#(C1 \ C2)A−5
3 δd+2ℓd−2.

It follows that

#(C2) ≥ A−2
3 (δℓ)−d+2. (3.13)

For all Q′ ∈ C2 and p ≥ 2, by Hölder’s inequality,

∥ω∥
L

d
2
t,x(Q

′)
≳ A

− 5
2

3 ℓ
4
d δ2+

4
d .

Summing over C2,

∥ω∥
L

d
2
t,x(2I×B(2A3))

≥ A
−O(1)
3 ℓ

8
d
−2δ

8
d . (3.14)

With ℓ sufficiently small as in (3.5), this is in contradiction with (3.7).

Next consider the case d = 4. We define

C3 :=
{
Q ∈ C0 : ∥∇ju∥L∞

t,x(Q/2) ≤ A−1
2 ℓ−j−1 for j = 0, 1, 2

}
.

There are two cases: first, suppose
⋃

Q∈C0\C3 5Q projected to the time axis does not cover I.

Then there exists an interval I ′ ⊂ I of length ℓ2 such that

∥∇ju∥L∞
t,x(I

′×B(A3)) ≤ A−1
2 ℓ−j−1

for j = 0, 1, 2. The existence of a large slab of regularity makes this case relatively straight-

foward so we argue briefly. One appeals once again to (3.6) and repeats the calculations

leading to (3.8); however now when we take the L2
t norm of the Bernstein inequality it is

only over I ′ which yields the lower bound ∥ω∥L2
t,x(I

′×B(A3)) ≥ A
−O(1)
2 ℓ. Analogous to the

definition of C0, we partition a slight dilation of I ′ ×B(A3) into overlapping parabolic cylin-

ders of length ℓ offset by length δℓ. Using the regularity assumed within I ′ and applying

the pigeonhole principle to the vorticity lower bound, it is clear that there exist Q and Q′

obeying (3.3) and (3.4).
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Otherwise, suppose
⋃

Q∈C0\C3 5Q when projected to the time axis does cover I. Then we

may take a C4 ⊂ C0 \ C3 such that the projections of {5Q}Q∈C4 form a subcover which is

minimal in the sense that no more than two intersect at once. It follows that

#(C4) ≥ A
−O(1)
2 ℓ−2.

Due to our definition of C3, for every Q ∈ C4, applying Propositions 2.12 and 5.1 in the

converse yields

C(Q) +D(Q) > A
−O(1)
2 .

By the argument from the proof of Proposition 3.4, there exist N ∈ [A−1
3 ℓ−1, A3ℓ

−1] and

z ∈ A3Q such that

|PNu(z)| ≥ A−1
3 ℓ−1.

It follows by Lemmas 2.5 and 2.3, as well as Hölder, (2.6), and (2.9) to estimate the global

Bernstein error, that

∥PN∇u∥L2
t,x(A

2
3Q) ≥ A

−O(1)
3 ℓ.

Using Hölder’s inequality and (2.7), one computes that the contribution from u♭ is negligible

thanks to the smallness of ℓ. (Note that we continue to refer to the decomposition obtained

by applying Proposition 2.6 on [t1 − 2A−4
2 , t1].) By the properties of C4, particularly the at

most A
O(1)
3 -fold boundedness of the overlap, we obtain∑

N∈[A−1
3 ℓ−1,A3ℓ−1]

∥PN∇u♯∥2L2
t,x(2I×Rd) ≥ A

−O(1)
3 . (3.15)

On the other hand, by Plancherel and (2.9),∑
N

∥PN∇u♯∥2L2
t,x(I×Rd) ≤ A

O(1)
2 .

If (3.15) holds for all ℓ ∈ [exp(−A4), A
−1
4 ], we reach a contradiction by summing over a

geometric sequence of scales in this range. Thus the proposition is satisfied by fixing ℓ to be

any scale for which (3.15) fails.
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t0

t0 − T1

Q/2

z′

Q′

I slice of

regularity

propagation of ∥ω∥L2
x

using Prop. A.3

|x| = R (R/T
1
2
1 )

2A4T
1
2
1

annulus of

regularity

backward

uniqueness

Figure 3.2: In the proof of Proposition 3.8 we begin with a vorticity concentration in a

parabolic cylinder Q′, which in turned is contained in a Q/2 where u possesses subcritical

bounds. We use Proposition A.3 to propagate the vorticity lower bound into a slice of

regularity obtained from Proposition 2.17. Then we iteratively apply Proposition A.3 to

locate a vorticity concentration in a distant annulus where u is regular. In this annulus we

may apply a backward uniqueness Carleman inequality to conclude the existence of a ∥u∥Ld
x

concentration at the final time.

Having obtained a suitable vorticity concentration within a cylinder where the solution

is regular, we need only to propagate this lower bound back to time t0 using a series of

Carleman inequalities. For every scale T1 between N
−2
0 and T , this scheme leads to a triple-

exponentially small amount of L3
x mass at t0. Summing over log(TN2

0 )-many geometrically

separated scales and comparing the result to (1.9), we will conclude the following.

Proposition 3.8 (Propagation forward to the final time). Suppose u, z0, and N0 are as in

Proposition 3.7. Then

TN2
0 ≤ exp exp exp exp(A6).

Proof. Let us once again fix an arbitrary T1 ∈ [A2
1N

−2
0 , T/100]. For now, we normalize z0 = 0

82



and T1 = 1. We continue to use the notation of Proposition 3.7 and its proof; in particular

let us take Q and Q′ satisfying the the conclusion. Let z′ := (t′, x′) be the center of Q′. We

apply Proposition 2.17 centered at z′ + (100(δℓ)2, 0) (i.e., shifted forward in time) at length

scale R = δℓ. This yields a slice of regularity which, by rotating, we may assume has θ = e1.

Specifically, there is an I ⊂ [t′ + 99(δℓ)2, t′ + 100(δℓ)2] of length (δℓ)2A−2
2 such that within

S := I × {x ∈ Rd : dist(x, x′ + R+e1) ≤ 10A−1
2 |x1 − x′1|, |x− x′| > 20δℓ},

we have for j = 0, 1, 2

∥∇ju∥L∞
t,x(S)

≤ A−1
1 (δℓ/A2)

−1−j. (3.16)

Let t′′ ∈ I be arbitrary. In order to propagate vorticity concentration into this cone, we

apply Proposition A.3 to the function

(t, x) 7→ ω(t′′ − t, x+ x′ + 50δℓe1)

on the interval [0, C0(δℓ)
2] with t0 = 75(δℓ)2, t1 = (A−2

3 δ3ℓ)2, and r = ℓ/2. The differential

inequality (A.2) for ω is clear from the coordinate form of the vorticity equation

∂tωij −∆ωij + u · ∇ωij + (∂iuk)ωkj − (∂juk)ωik = 0,

combined with the estimates in (3.3). Considering each the terms in the Carleman inequality

which takes the form Z ≤ X + Y , by (3.4) the left-hand side obeys

Z ≥ A
−O(1)
3 (δℓ)d

while for the first term on the right-hand side,

X ≤ e−1/O(δ2)ℓd−4.

The latter is negligible compared to the former given (3.5); thus the Carleman inequality

becomes

ˆ
B(x′+50δℓe1,ℓ/2)

|ω(t′′)|2e−|x−x′−50δℓe1|2/4t1dx ≥ ℓd exp(−δ−3).
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Finally we narrow the domain of integration using the fact that the contribution from outside

B(x′ + 50δℓe1, A
−1
3 δℓ) is negligible compared to the left-hand side which follows from (3.3)

and (3.5). This yields

ˆ
B(x′+50δℓe1,A

−1
3 δℓ)

|ω(t′′)|2dx ≥ exp(−A5
4) (3.17)

for every t′′ ∈ I.

Next we apply Proposition 2.18 to find an R ∈ [A4, exp exp(A4)] such that

∥∇ju∥L∞
t,x([−1,0]×{|x|∈[R,R2A4 ]}) ≤ A

−1/O(1)
4 (3.18)

for j = 0, 1, 2. Then define x∗ = x′ +100Re1 and let τ = sup I. We apply Proposition 3.5 to

the function

(t, x) 7→ ω(t+ τ, x+ x′)

on the interval [0, 4(δℓ)2] with R0 = 50δℓ, η = A−3
2 , and ϵ = e−A6

4 to find

ˆ
B(x∗,A

−1
3 R)

|ω(t)|2dx ≥ e−RA4 (3.19)

for every t ∈ [τ − e−3A4 , τ ]. Note that the initial lower bound follows from (3.17) and that

we have (3.2) thanks to (3.16) and the vorticity equation.

Next we propagate this concentration forward in time using a Carleman inequality for

backward uniqueness, see Proposition 4.2 in [60] (the extension of which to higher dimensions

was proved in [46], Proposition 9). In particular, by applying it to the function (t, x) 7→

ω(−t, x) on the interval [0, 1] with r− = 5R and r+ = R2A4/10, we have Z ≤ X + Y where

Z ≳ e−(5R2)A4 ,

X ≲ e−R5A4

ˆ 0

−1

ˆ
5R≤|x|≤R2A4/10

e2|x|
2/C0(|ω|2 + |∇ω|2)dxdt,

Y ≤ eR
10A4

ˆ
5R≤|x|≤r+

|ω(0, x)|2dx.
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(Note that this and all subsequent applications of Carleman inequalities are valid because

(A.2) is implied by (3.18) and the vorticity equation.) Thus there are two cases:

ˆ
5R≤|x|≤R2A4/10

|ω(0, x)|2dx ≥ e−R20A4 (3.20)

and

ˆ 0

−1

ˆ
5R≤|x|≤R2A4/10

e2|x|
2/C0(|ω|2 + |∇ω|2)dxdt ≥ eR

A4 . (3.21)

First assuming (3.21), we essentially follow the proof of Theorem 5.1 in [60]. By the pigeon-

hole principle, there exists an R′ ∈ [5R,R2A4/10] such that

ˆ 0

−1

ˆ
R′≤|x|≤2R′

(|ω|2 + |∇ω|2)dxdt ≥ e−4(R′)2/C0 .

By (3.18), the contribution to the left-hand side from the time interval [−e−(R′)2 , 0] is neg-

ligible compared to the right so essentially the same lower bound holds with the integral

evaluated on [−1,−e−(R′)2 ]. We apply the pigeonhole principle, now in time, to find a

T0 ∈ [e−(R′)2 , 1] in this time interval such that

ˆ −T0

−2T0

ˆ
R′≤|x|≤2R′

(|ω|2 + |∇ω|2)dxdt ≥ e−(R′)2 .

Having obtained length and time scales where the vorticity concentrates, we cover the annulus

{R′ ≤ |x| ≤ 2R′} by O(R′/T
1
2
0 )

d balls of radius T
1
2
0 . The pigeonhole principle then provides

an x0 ∈ {R′ ≤ |x| ≤ 2R′} such that

ˆ
Q((−T0,x0),T

1/2
0 )

(|ω|2 + |∇ω|2)dxdt ≥ e−O(R′)2 .

Finally we may apply Proposition A.3 on [0, 1000dT0] to the function

(t, x) 7→ ω(−t, x+ x0)

with t0 = T0, t1 = C−3
0 T0, and r = C0R

′T
1
2
0 . The Carleman inequality becomes

e−O(R′)2 ≤ e−C0(R′)2T
d
2
0 + eO(C2

0 (R
′)2)

ˆ
B(x0,C0R′T

1
2
0 )

|ω(0, x)|2e−C3
0 |x−x0|2/4T0dx.
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With a sufficiently large choice of C0, the first term on the right-hand side is negligible

compared the the left. Moreover, the contribution to the second term on the right from

outside B(x0, R
′/2) is also negligible by (3.18). Thus

ˆ
B(x0,R′/2)

|ω(0, x)|2dx ≥ e−C3
0 (R

′)2 .

In both cases (3.20) and (3.21), we can thus conclude
ˆ
2R≤|x|≤R2A4/4

|ω(0, x)|2dx ≥ exp(− exp exp(2A4)).

Now let us fix an x∗ ∈ {2R ≤ |x| ≤ R2A4/4} where

|ω(0, x∗)| ≥ exp(− exp exp(3A4)).

By repeating the simple mollification argument from [60] to convert the concentration of

vorticity into the critical space, we obtain
ˆ
A4T

1
2
1 ≤|x|≤exp exp(3A4)T

1
2
1

|u(0, x)|ddx ≥ exp(− exp expA5).

At this point we undo the original rescaling so that T1 is explicit. This estimate can be

summed over geometrically separated scales T1 ∈ [A2
1N

−2
0 , T/100] to conclude

ˆ
Rd

|u(0, x)|ddx ≥ exp(− exp expA5) log(TN
2
0 )

which implies the result when compared to the upper bound (1.9).

3.5 Proof of Theorems 3.1 and 3.2

As in [60], Theorem 3.1 is obtained easily from Theorem 3.2 combined with, say, Leray’s

blowup criterion.

Proof of Theorem 3.2. We increase A so that A ≥ C0 and rescale so that t = 1. By Propo-

sitions 3.7 and 3.8 in the converse, we have that

∥PNu∥L∞
t,x([

1
2
,1]×Rd) ≤ A−1

1 N (3.22)
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for all

N ≥ N∗ := 2 exp exp exp exp(A6).

Starting with the decomposition u = u♭+u♯ on [0, 1] and differentiating to reach ω = ω♭+ω♯,

we define the enstrophy-type quantities

En(t) :=

ˆ
Rd

|∇nω♯(t)|2

2
dx

and compute

E ′
0(t) = −

ˆ
Rd

|∇ω♯|2dx−
ˆ
Rd

ω♯ · ⟨∇u♯, ω♯⟩dx

−
ˆ
Rd

ω♯ · (⟨∇u♯, ω♭⟩+ ⟨∇u♭, ω♯⟩+ u♯ · ∇ω♭ − f)dx

= −X1 +X2 +X3.

Here we have defined ⟨∇u, ω⟩ij := (∂iuk)ωkj − (∂juk)ωik for a vector field u and 2-form ω so

that we may represent the Lie derivative as Luω = ⟨∇u, ω⟩+ u · ∇ω.

Clearly X1 ≥ 0. By Littlewood-Paley decomposition and Plancherel we have

X2(t) = −
∑

N1,N2,N3

ˆ
Rd

PN1ω
♯ · ⟨∇PN2u

♯, PN3ω
♯⟩dx

≲
∑

N1∼N2≳N3

∥PN1ω
♯∥L2

x(Rd)∥PN2ω
♯∥L2

x(Rd)∥PN3ω
♯∥L∞

x (Rd).

Applying Lemma 2.5 and (3.22) for N3 smaller or larger than N∗ respectively, we arrive at

X2(t) ≲
∑
N1

∥PN1ω
♯(t)∥2L2

x(Rd)(A
O(1)N2

∗ + A−1
1 N2

1 )

≲ ∥∇u♯(t)∥2L2
x(Rd)A

O(1)N2
∗ + A−1

1 X1.

By Hölder’s inequality, (2.6), (2.8), and (2.12), we have for t ∈ [1
2
, 1]

X3(t) ≤ (∥∇u♯(t)∥2L2
x
+ 1)AO(1).
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Integrating in time using (2.9) and Gronwall’s inequality, we find that for any 1
2
≤ t1 ≤ t2 ≤ 1,

E0(t2)− E0(t1) ≤ N2
∗A

O(1).

At the same time, by (2.9), there exists a t0 ∈ [1/2, 3/4] such that E0(t0) ≤ AO(1). Thus

sup
t∈[ 3

4
,1]

E0 + 2

ˆ t

3
4

E1(t)dt ≤ N2
∗A

O(1). (3.23)

Next we compute using (2.11)

E ′
n(t) = −Y1 + Y2 + Y3 + Y4 + Y5

where

Y1(t) =

ˆ
Rd

|∇n+1ω♯|2,

Y2(t) = −
n∑

k=0

(
n

k

)ˆ
Rd

∇nω♯ · ⟨∇∇n−ku♯,∇kω♯⟩dx,

Y3(t) = −
n∑

k=1

(
n

k

)ˆ
Rd

∇nω♯ · (∇ku♯ · ∇∇n−kω♯)dx,

Y4(t) = −
n∑

k=1

(
n

k

) ˆ
Rd

∇nω♯ · (∇ku♭ · ∇∇n−kω♯)dx

Y5(t) = −
ˆ
Rd

∇nω♯ · ∇n(⟨∇u♯, ω♭⟩+ ⟨∇u♭, ω♯⟩ − u♯ · ∇ω♭ − curl f)dx.

We then take the Littlewood-Paley decompositions and estimate

Y2(t) = −
n∑

k=0

(
n

k

) ∑
N1,N2,N3

ˆ
Rd

∇nPN1ω
♯ · ⟨∇∇n−kPN3u

♯,∇kPN2ω
♯⟩dx

≤ I + II

where we decompose based on whether the top order derivatives that fall on the high fre-
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quency factors. Specifically, by Hölder, Lemma 2.2, (1.9), and (3.22),

I ≲n

n∑
k=0

∑
N1∼N2≳N3

∥∇nPN1ω
♯∥L2

x(Rd)∥∇kPN2ω
♯∥L2

x(Rd)∥∇n−k+1PN3u
♯∥L∞

x (Rd)

≲
n∑

k=0

∑
N1∼N2

∥∇nPN1ω
♯∥L2

x(Rd)∥∇kPN2ω
♯∥L2

x(Rd)(A
O(1)Nn−k+2

∗ + A−1
1 Nn−k+2

1 )

≲
n∑

k=0

AO(1)Nn−k+2
∗ Ek(t)

1
2En(t)

1
2 + A−1

1 Y1(t),

and

II ≲n

n−1∑
k=1

∑
N1∼N2≳N3

∥∇kPN1ω
♯∥L2

x(Rd)∥∇n−kPN2ω
♯∥L2

x(Rd)∥∇nPN3ω
♯∥L∞

x (Rd)

≲
n−1∑
k=1

∑
N1∼N2

∥∇kPN1ω
♯∥L2

x(Rd)∥∇n−kPN2ω
♯∥L2

x(Rd)(A
O(1)Nn+2

∗ + A−1
1 Nn+2

1 )

≲
n−1∑
k=1

AO(1)Nn+2
∗ Ek(t)

1
2En−k(t)

1
2 + A−1

1 Y1(t).

Next, Y3(t) contains essentially the same terms and admits the same bounds (note crucially

the exclusion of k = 0 by incompressiblity). By Cauchy-Schwarz and (2.6),

Y4(t) ≲n

n∑
k=1

AO(1)En(t)
1
2En−k+1(t)

1
2 .

Finally, by (2.6), (2.8), (2.12), and integration by parts,

Y5(t) ≲n A
O(1)En(t)

1
2

(
1 +

n∑
k=0

Ek(t)
1
2

)
+ AO(1).

In total, combining some terms with Young’s inequality,

E ′
n(t) ≤ AOn(1)N2

∗En(t) +N2n+2
∗

n−1∑
k=0

Ek(t) + AOn(1).

Inductively applying Gronwall’s inequality (at each step using the pigeonhole principle to

find an initial time), starting with (3.23) as a base case, implies

sup
t∈[tn,1]

ˆ
Rd

|∇nω♯(t)|2dx+
ˆ 1

tn

ˆ
Rd

|∇n+1ω♯(t)|2dxdt ≤ NOn(1)
∗

for an increasing sequence tn ∈ [1
2
, 1]. The claimed L∞

t,x estimates are immediate by (2.6)

and Sobolev embedding, taking n sufficiently large depending on d.
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CHAPTER 4

Regularity for approximately axisymmetric solutions

4.1 Introduction

This chapter contains results that appeared in the author’s paper [46]. We will be concerned

with solutions of (1.2) satisfying the critical bound

∥u∥X := ∥r1−
3
qu∥Lq

x(R3) ≤ A

where u and q fall into one of two cases:

either q ∈ (3,∞), or u is axisymmetric and q ∈ (2, 3]. (4.1)

These conditions have already been mentioned in §2.2.2 but we repeat them for convenience.

In fact the assumption of axial symmetry (when q ∈ (2, 3]) can be weakened to |u| being

comparable to an axisymmetric function. In other words, it suffices that there exist f :

R×R3 → [0,∞) and C > 0 such that f is axisymmetric and C−1f ≤ |u| ≤ Cf . Indeed, we

will only invoke the axial symmetry assumption by way of Propositions 2.1 and 2.3. This is

in contrast with the bulk of the literature on the axisymmetric Navier-Stokes equations in

which one takes advantage of the special structures coming from this symmetry; Chapter 5

is an example, for instance by making use of the very favorable PDE (5.11) solved by ruθ.

Without loss of generality, let us take A ≥ 2. Then we have the following theorems,

which mirror those in [60] but offer improvements of the quantitative bounds.

Theorem 4.1. If u : [0, T ] × R3 → R3 is a classical solution of (1.2) satisfying (1.9) with
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X = Xq
α;T and (4.1), then it satisfies the bounds

|∇j
xu(t, x)| ≤ exp exp(AOj(1))t−

j+1
2

for t ∈ (0, T ], x ∈ R3, and j ≥ 0.

Theorem 4.2. Let u : [0, T∗) × R3 → R3 be a classical solution to (1.2) which blows up at

time t = T∗. If u and q satisfy (4.1), then

lim sup
t↑T∗

∥r1−
3
qu(t)∥Lq

x(R3)

(log log 1
T∗−t

)c
= +∞

for a constant c > 0 depending only on q.

Let us emphasize that in the case q ∈ (3,∞), we do not assume any symmetry on u.

We also wish to stress that here r is not the distance to the origin, but the distance to the

x3-axis. When q > 3, it should be possible to extend these arguments even to the case where

r is replaced with, say, |x1|. However we choose instead to work in the axial setting in order

to make the results comparable to other regularity theorems in the literature.

One noteworthy special case of Theorems 4.1 and 4.2 is when q = 3, which is the end-

point of the famous Prodi-Serrin-Ladyzhenskaya scale. By assuming additionally that u is

axisymmetric, we obtain the same result as [60] but with one fewer exp or log in the es-

timates. Also notable is that when q gets large, we approach the the well-known criterion

from [28] and [15] cited above, but without needing to assume any kind of symmetry on u.

Unfortunately, it seems unlikely that this result can be extended all the way to q = ∞ using

these techniques. Not only do many of the estimates in this chapter degenerate as q → ∞,

but L∞-based critical spaces seem to be out of reach of these quantitative methods since

the argument relies on locating concentrations in many different spacial regions which then

contribute additively to the critical norm. (See Proposition 4.6.)

On the other hand, it seems likely that the q = 2 case is achievable, although we expect

Proposition 2.19 to fail at this endpoint and pigeonholing would again be necessary to apply

91



the Carleman estimates. Thus one may have to settle for triple exponential and logarithmic

bounds. We can justify this as follows. Although all the conditions defined by (1.9) and

(4.1) are critical with respect to the Navier-Stokes scaling, we claim that when q = 3 or

q = 2 with u axisymmetric, the criticality is homogeneous in the sense that the norms

measure all concentrations of the solution identically everywhere in space; on the other

hand, if, say, r1−
3
qu ∈ L∞

t L
q
x where q > 3 or u is axisymmetric and q > 2, the norm becomes

subcritical far from the x3-axis and supercritical near it. (The opposite would be true if

q < 3 or q < 2 respectively.) This explains why we can handle these cases without gaining

a third exp or log; indeed, by working sufficiently far from the axis, we can guarantee that

the velocity and its derivatives are suitably small compared to the scale of the spacetime

region. One can see this phenomenon concretely by considering a concentration of PNu at

an x0 ∈ R3 which lies a distance r0 from the axis. (Refer to Section 2.2.1 for the definition of

Littlewood-Paley projections.) Using the same heuristic for (1.2) from [59, p. 67], u behaves

essentially as a solution to the heat equation unless the advection term in (1.2) dominates

the viscosity, which happens when |PNu(x0)| ≫ N . By the uncertainty principle, such a

concentration must occupy a length scale of at least N−1. In the case that N ≫ r−1
0 , the

ball B(x0, N
−1) does not intersect the x3-axis and therefore, roughly speaking, it contributes

at least (r0N)1−
3
q to the critial norm ∥r1−

3
qu∥L∞

t Lq
x
. Thus by assuming (1.9) with q > 3, we

expect to be able to rule out nonlinear effects with amplitude much larger than r−1
0 . If we

assume axial symmetry and N ≫ r−1
0 , then this concentration exists not just in B(x0, N

−1)

but also in the torus obtained by rotating this ball around the x3-axis; thus the contribution

to ∥r1−
3
qu∥L∞

t Lq
x
can be strengthened to (r0N)1−

2
q , and we only need q > 2 to reach the same

conclusion. These heuristics are formalized in the proofs of Propositions 2.1 and 2.19.

In order to work in these weighted spaces, we employ the decomposition u = u♭ + u♯

detailed in §2.3. The overall strategy is analogous to [60]. An essential new element is the

observation that far from the x3-axis, the solution is regular enough to use a Carleman in-

equality to propagate concentration forward in time (Proposition 2.19). We then prove a
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backward uniqueness-type Carleman inequality with geometry suited for use with Proposi-

tion 2.19. It becomes necessary to work in cylindrical regions where r and z are localized,

rather than annular regions as in [60], and in the appendix we prove a backward uniqueness

Carleman inequality suited to such a region.

4.2 Axisymmetric back propagation

The “bounded total speed property” (see [59]) is useful for iterating the back propagation—

although, as we saw in Chapter 3, there are alternatives. Proposition 4.3 is an extension of

the version that appears in [60].

Proposition 4.3. Let u solve (1.2) on [t0 − T, t0]×R3 with (1.9), X = Xq
α;T . For any time

interval I ⊂ [t0 − T/2, t0], we have

∥u∥L1
tL

∞
x (I×R3) ≲ AO(1)|I|1/2. (4.2)

Proof. By symmetries we may assume without loss of generality that I = [0, 1]. Once again

we let n be sufficiently large so that

∥u♯n∥L∞
t Lp

x([−1/2,1]×R3) ≲p A
O(1)

for all p ∈ [q′, 3).

From the equation for u♯ we have

PNu
♯
n(t) = −

ˆ t

−1/2

PNe
(t−t′)∆P div P̃N(u⊗ u− u♭n−1 ⊗ u♭n−1)(t

′)dt′

and so

∥PNu
♯
n∥L1

tL
∞
x ([−1/2,1]×R3)

≲

∥∥∥∥ˆ t

−1/2

Ne−N2(t−t′)/20∥P̃N(u⊗ u− u♭n−1 ⊗ u♭n−1)(t
′)∥L∞

x (R3)dt
′
∥∥∥∥
L1
t ([−1/2,1])

≲ N−1∥P̃N(u⊗ u− u♭n−1 ⊗ u♭n−1)∥L1
tL

∞
x ([−1/2,1]×R3).
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We split u⊗ u = u♯n ⊗ u♯n + 2u♭n ⊙ u♯n + u♭n ⊗ u♭n and estimate, by (2.2) and (2.14),

∥P̃N(u
♭
n ⊗ u♭n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ ∥u♭n∥2L∞

t,x([−1/2,1]×R3) ≲ AO(1)

and similarly for u♭n−1 ⊗ u♭n−1. By (2.2), Hölder’s inequality in time, and (2.32),

∥P̃N(u
♭
n ⊙ u♯n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ N1/2∥P̃N(u

♭
n ⊙ u♯n)∥L1

tL
6
x([−1/2,1]×R3)

≲ N1/2∥u♭n∥L∞
t,x([−1/2,1]×R3)∥u♯n∥L2

tL
6
x([−1/2,1]×R3)

≲ AO(1)N1/2.

Finally, we decompose u♯n = P≤Nu
♯
n+P>Nu

♯
n and estimate the three terms that appear when

u♯n ⊗ u♯n is expanded. By (2.2) and Hölder’s inequality,

∥P̃N(P≤Nu
♯
n ⊗ P≤Nu

♯
n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ ∥P≤Nu

♯
n∥2L2

tL
∞
x ([−1/2,1]×R3),

∥P̃N(P≤Nu
♯
n ⊙ P>Nu

♯
n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ N3/2∥P≤Nu

♯
n ⊙ P>Nu

♯
n∥L1

tL
2
x([−1/2,1]×R3)

≲ N3/2∥P≤Nu
♯
n∥L2

tL
∞
x ([−1/2,1]×R3)

× ∥P>Nu
♯
n∥L2

tL
2
x([−1/2,1]×R3),

∥P̃N(P>Nu
♯
n ⊗ P>Nu

♯
n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ N3∥P>Nu

♯
n ⊗ P>Nu

♯
n∥L1

tL
1
x([−1/2,1]×R3)

≲ N3∥P>Nu
♯
n∥2L2

tL
2
x([−1/2,1]×R3).

In total, by Young’s inequality,

∥P̃N(u
♯
n ⊗ u♯n)∥L1

tL
∞
x ([−1/2,1]×R3) ≲ ∥P≤Nu

♯
n∥2L2

tL
∞
x ([−1/2,1]×R3)

+N3∥P>Nu
♯
n∥2L2

tL
2
x([−1/2,1]×R3).

Inserting this into the estimate for u♯n,

∥PNu
♯
n∥L1

tL
∞
x ([−1/2,1]×R3) ≲ N−1∥P≤Nu

♯
n∥2L2

tL
∞
x ([−1/2,1]×R3)

+N2∥P>Nu
♯
n∥2L2

tL
2
x([−1/2,1]×R3) + AO(1)(N−1 +N−1/2).

(4.3)
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By (2.2) and Cauchy-Schwarz,

∥P≤Nu
♯
n∥2L2

tL
∞
x ([−1/2,1]×R3) ≲

(∑
N ′≤N

(N ′)3/2∥PN ′u♯n∥L2
tL

2
x([−1/2,1]×R3)

)2

≲ N1/2
∑
N ′≤N

(N ′)5/2∥PN ′u♯n∥2L2
tL

2
x([−1/2,1]×R3)

and by Plancherel’s theorem,

∥P>Nu
♯
n∥2L2

tL
2
x([−1/2,1]×R3) ≲

∑
N ′>N

∥PN ′u♯n∥2L2
tL

2
x([−1/2,1]×R3).

Plugging these into (4.3), we obtain an estimate for the high frequency component,

∥P≥1u
♯
n∥L1

tL
∞
x ([−1/2,1]×R3) ≲

∑
N≥1

(
N−1/2

∑
N ′≤N

(N ′)5/2∥PN ′u♯n∥2L2
tL

2
x([−1/2,1]×R3)

+N2
∑
N ′>N

∥PN ′u♯n∥2L2
tL

2
x([−1/2,1]×R3)

)
+ AO(1)

≲
∑
N

N2∥PNu
♯
n∥2L2

tL
2
x([−1/2,1]×R3) + AO(1)

≲ AO(1).

by (2.31). For the remaining parts of u, by Hölder’s inequality in time, (2.2), (2.14), and

(2.8),

∥u♭n∥L1
tL

∞
x ([−1/2,1]×R3) ≲ ∥u♭n∥L∞

t,x([−1/2,1]×R3) ≲ AO(1)

and

∥P<1u
♯
n∥L1

tL
∞
x ([−1/2,1]×R3) ≲ ∥u♯n∥L∞

t L2
x([−1/2,1]×R3) ≲ AO(1)

which completes the proof.

Now we can prove the back propagation proposition from [60] with the more general

critical control on u.
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Proposition 4.4. Let u be as in Proposition 4.3. Suppose there exist (t1, x1) ∈ [t0−T
2
, t0]×R3

and N1 ≥ A3T
− 1

2 such that

|PN1u(t1, x1)| ≥ A−1
1 N1. (4.4)

Then there exists (t2, x2) ∈ [t0 − T, t1]× R3 and N2 ∈ [A−1
2 N1, A2N1] such that

A−1
3 N−2

1 ≤ t1 − t2 ≤ A3N
−2
1 ,

|x2 − x1| ≤ A4N
−1
1 ,

and

|PN2u(t2, x2)| ≥ A−1
1 N2.

Proof. First consider q > 3. We scale and translate so that N1 = 1 and t1 = 0. Then

[−2A3, 0] ⊂ [t0 − T, t0]. Then by assumption we have

|P1u(0, x1)| ≥ A−1
1 . (4.5)

Assume for contradiction that the claim fails, which would imply

∥PNu∥L∞
t,x([−A3,−A−1

3 ]×B(x1,A4))
≤ A−1

1 N

for N ∈ [A−1
2 , A2]. From the pointwise bound on ∂tPNu and the fundamental theorem of

calculus, the time interval can be enlarged up to t = 0,

∥PNu∥X∞
0;A3

(B(x1,A4)) ≲ A−1
1 N + A−1

3 A2N3 ≲ A−1
1 N. (4.6)

For t ∈ [−A3, 0], Duhamel’s formula, Hölder’s inequality for the linear term, and (2.2) give

us

∥rαPNu(t)∥Lq/2
x (B(x1,A4))

≤ A
3/q
4 ∥rαe(t+2A3)∆PNu(−2A3)∥Lq

x(B(x1,A4))

+

ˆ t

−2A3

∥rαe(t−t′)∆PN div u⊗ u(t′)∥
L
q/2
x (R3)

dt′

≲ A
3/q
4 e−N2A3/20Nαq−αA+

ˆ t

−2A3

e−(t−t′)N2/20N1+2αq−αA2dt′
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assuming −2
q
< α ≤ αq. Therefore, for N ≥ A−1

2 ,

∥PNu∥Xq/2
α;A3

(B(x1,A4))
≲ A2N1− 6

q
−α. (4.7)

Starting from this base case, we claim inductively that

∥PNu∥Xq/n
α;Tn

(Bn)
≲ N1− 3n

q
−αAOn(1) (4.8)

for all N ≥ A
− 1

2
− 1

n
2 , where Tn = (1

2
+ 1

n
)A3 and Bn = B(x1, (

1
2
+ 1

n
)A4), if 2 ≤ n ≤

min(q, q+5
2
−) and −2

q
< α ≤ min(αq, 2− 2n

q
−). Suppose (4.8) holds for some n− 1 ≥ 2. For

t ∈ [−Tn, 0],

∥rαPNu(t)∥Lq/n
x (Bn)

≤ ∥rαe(t+Tn−1)∆PNu(−Tn−1)∥Lq/n
x (Bn)

+

ˆ t

−Tn−1

∥rαe(t−t′)∆PN div P̃N(u⊗ u)(t′)∥
L
q/n
x (Bn)

dt′.

The linear term can be handled exactly as in the previous case, using Hölder and (2.2). Then

by (2.3) and a paraproduct decomposition of the nonlinearity,

∥rαe(t−t′)∆PN div(u⊗ u)∥
L
q/n
x (Bn)

≲n e
−(t−t′)N2/20N1−α

×
(
Nαq+β∥rαq+β(P>N/100u⊗ u+ P≤N/100u⊗ P>N/100u)∥Lq/n

x (Bn−1)

+ (NA4)
−50nA

3
q
(n−2)

4 N2αq∥r2αqu⊗ u∥
L
q/2
x (R3)

)
,

assuming additionally that α− αq ≤ β < 1− 2n−3
q

. This implies

∥PNu∥Xq/n
α;Tn

(Bn)
≲n (NA4)

−10 +N− 3
q
+β−α

(
∥(P>N/100u)⊗ u∥

X
q/n
αq+β;Tn−1

(Bn−1)

+ ∥(P≤N/100u)⊗ (P>N/100u)∥Xq/n
αq+β;Tn−1

(Bn−1)

)
+ (NA4)

−50nA
3
q
(n−2)

4 N1− 6
q
−αA2.

For the first nonlinear term, for N ≥ A
− 1

2
− 1

n
2 ,

∥P>N/100u⊗ u∥
X

q/n
αq+β;Tn−1

(Bn−1)
≲ AOn(1)N1− 3(n−1)

q
−β
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using Holder’s inequality, (4.8), (1.9), and summing the geometric series, assuming addition-

ally that max(−2
q
, 1− 3(n−1)

q
) < β ≤ min(αq, 2− 2(n−1)

q
−). The “low-high” term is analogous.

Thus (4.8) is proved, assuming that there exists a β such that all the stated conditions on

α, β, and n are satisfied. One easily checks that this is follows from the hypotheses given

above.

It is straightforward to see that by taking the largest permissible n satisfying the con-

straints of (4.8), we can always make q/n ∈ (1, 2]. Therefore we can apply (4.8) with α = 0

along with (2.3) and (1.9) to find

∥PNu∥X2
0;A3/2

(B(x1,A4/2)) ≲ N
3n
q
− 3

2∥PNu∥Xq/n
0;A3/2

(Bn)
+ (A4N)−50A

3
2
− 3

q

4 NαqA.

This implies, using (4.8), Hölder’s inequality, and (1.9),

∥PNu∥X2
0;A3/2

(B(x1,A4/2)) ≲ N− 1
2AO(1) (4.9)

for N ≥ A
− 1

2
2 .

We bootstrap this estimate one more time to bring in factors of A−1
1 . The linear and

global terms are estimated the same way as before so we neglect them and focus on the

remaining parts. By the same calculation above, for N ≥ A
−1/3
2 ,

∥PNu∥X2
0;A3/2

(B(x1,A4/4)) ≲ N−1∥P̃N(u⊗ u)∥X2
0;A3/4

(B(x1,A4/3)).

Using the paraproduct decomposition and (2.3),

∥P̃N(u⊗ u)∥X2
0;A3/2

(B(x1,A4/3)) ≲
∑

N1≲N2∼N

∥PN1u⊙ PN2u∥X2
0;A3/2

(B(x1,A4/2))

+N3/4
∑

N1∼N2≳N

∥PN1u⊗ PN2u∥L∞
t L

4/3
x (B(x1,A4/2))

.

By Hölder’s inequality, (4.9), Lemma 2.5, and (4.6),∑
N1≲N2∼N

∥PN1u⊙ PN2u∥X2
0;A3/2

(B(x1,A4/2)) ≲
∑
N1≲N

A−1
1 AO(1)N−1/2∥PN1u∥X∞

0;A3/2

≲ AO(1)(A−1
2 + A−1

1 N1/2)
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and, using Young’s inequality, interpolation, (4.9), Lemma 2.5, and (4.6),∑
N1∼N2≳N

∥PN1u⊗ PN2u∥X4/3
0;A3/2

(B(x1,A4/2))
≲

∑
N≲N1≤A2

AO(1)N
−1/4
1 A

−1/2
1

+
∑

N1≥A2

AO(1)N
−1/4
1

≲ AO(1)(A
−1/2
1 N−1/4 + A

−1/4
2 ).

Thus we conclude

∥PNu∥X2
0;A3/2

(B(x1,A4/4)) ≲ AO(1)((A1N)−1/2 + (A2N)−1/4). (4.10)

To reach the contradiction, Duhamel’s formula and (4.5) give us

A−1
1 ≤ |P1u(0, x1)|

≤ |eA3∆/4P1u(−A3/4)|(x1) +
ˆ 0

−A3/4

|e(t−t′)∆P1 div P̃1(u⊗ u)(t′, x1)|dt′.

For the first term, by (2.4) and (1.9),

|eA3∆/4P1u(−A3/4)|(x1) ≲ e−A3/80A

which is negligible compared to A−1
1 . Therefore

ˆ 0

−A3/4

|e(t−t′)∆P1 div P̃1(u⊗ u)(t′, x1)|dt′ ≳ A−1
1 . (4.11)

By (2.3), we have

|e(t−t′)∆P1 div P̃1(u⊗ u)(t′, x1)| ≲ e−(t−t′)/20(∥P̃1(u⊗ u)(t′)∥L∞
x (B(x1,A4/8)) + A−50

4 )

which admits the paraproduct decomposition

∥P̃1(u⊗ u)∥X∞
0;A3/4

(B(x1,A4/8)) ≲
∑

N1≲N2∼1

∥PN1u⊙ PN2u∥X∞
0;A3/4

(B(x1,A4/4))

+
∑

1≲N1∼N2≤A2

∥PN1u⊗ PN2u∥X4/3
0;A3/4

(B(x1,A4/4))

+
∑

N1∼N2≥A2

∥PN1u⊗ PN2u∥X1
0;A3/4

(B(x1,A4/4)).
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We estimate each piece using Hölder’s inequality, (4.6), Lemma 2.5, (4.9), interpolation, and

(4.10):

∑
N1≲N2∼1

∥PN1u⊙ PN2u∥X∞
0;A3/4

(B(x1,A4/4)) ≲
∑

N1≤A−1
2 ,N2∼1

A2N1 +
∑

A−1
2 ≤N1≲N2∼1

A−2
1 N1

≲ A2A−1
2 + A−2

1 ,

∑
1≲N1∼N2≤A2

∥PN1u⊗ PN2u∥X4/3
0;A3/4

(B(x1,A4/4))

≲
∑

1≲N1≤A2

AO(1)((A1N1)
−3/4 + (A2N1)

−3/8)(A−1
1 N1)

1/2

≲ AO(1)(A
−5/4
1 + A

−1/2
1 A

−1/4
2 ),

and

∑
N1∼N2≥A2

∥PN1u⊗ PN2u∥X1
0;A3/4

(B(x1,A4/4)) ≲
∑

N1≳A2

AO(1)N−1
1 ≲ AO(1)A−1

2 .

Comparing this upper bound with the lower bound (4.11), we reach the contradiction

A−1
1 ≲ AO(1)(A−1

2 + A−2
2 + A

−5/4
1 + A

−1/2
1 A

−1/4
2 + A−1

2 ).

Now we consider the 2 < q < 3 case. By (4.4), (2.2), and (1.9),

A−1
1 ≤ |P1u(0, x1)| ≤ r(x1)

−1+ 2
q ∥r1−

2
qP1u(0)∥L∞

x
≲ r(x1)

−1+ 2
qA.

Therefore we may assume r(x1) ≲ A2 which will be useful at certain points to bound the

heat propagator term when the power on the weight is larger than what we can handle using

(2.2).

First, we show by induction on n ≥ 1 that

∥PNu∥Xq
α;Tn

(Bn) ≲ Nαq−αAO(1) (4.12)
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if N ≥ A
−1− 1

n
2 , −2

q
< α < 2 − 3

q
and α ≤ n(1 − 2

q
) − 1

q
, where now Tn = (1

2
+ 1

2n
)A3 and

Bn = B(x1, (
1
2
+ 1

2n
)A4). For n = 2 and t ∈ [−3A3/4, 0], first consider the linear term. Using

the fact that r(B1) ≤ A4, (2.4), and (1.9),

∥PNe
(t+2A3)∆u(−2A3)∥Xq

α;A3
(B1) ≲ Aα−γ

4 ∥PNe
(t+2A3)∆u(−2A3)∥Xq

γ;A3

≲ Aα−γ
4 Nαq−γe−A3N2/20A

≲ (AN)−10

upon taking, say, γ = min(αq, α). Therefore, by Hölder’s inequality, (2.3), and (1.9),

∥rαPNu(t)∥Lq
x(B1) ≲ (AN)−10 +

ˆ t

−2A3

∥rαPNe
(t−t′)∆P div(u⊗ u)(t′)∥Lq

x(R3)dt
′

≲ (AN)−10 +

ˆ t

−2A3

e−(t−t′)N2/20N2+αq−α∥r2αqu⊗ u∥
L
q/2
x (R3)

dt′

≲ Nαq−αA2

if−2
q
< α ≤ 2− 5

q
. Note that the lower boundN ≥ A

−3/2
2 is essential to make the contribution

of the linear term negligible. This completes the proof of the base case.

Next suppose we have the desired bound for some n − 1 ≥ 2. The linear term can be

treated as in the previous case so we do not repeat the argument. Then, again by Hölder’s

inequality and (2.3), for t ∈ [−Tn, 0],

∥rαPNu(t)∥Lq
x(Bn) ≲ ∥PNe

(t+Tn−1)∆u(−Tn−1)∥Xq
α;Tn

(Bn)

+

ˆ t

−Tn−1

∥rαPNe
(t−t′)∆P div(u⊗ u)(t′)∥Lq

x(Bn)dt
′

≲ (A4N)−10 + (A4N)−50A3A
3
q
+α−γ

4 N3− 3
q
−γ∥u⊗ u∥

X
q/2
2αq ;Tn−1

+N2+β−α

ˆ t

−Tn−1

e−(t−t′)N2/20

(
∥rβ+αqP>N/100u⊗ u∥

L
q/2
x (Bn−1)

+ ∥rβ+αqP≤N/100u⊗ P>N/100u)∥Lq/2
x (Bn−1)

)
dt′

≲ (A4N)−10 +Nβ−α∥P>N/100u∥Xq
β;Tn−1(Bn−1)

∥u∥Xq
αq ;Tn−1

≲ N1− 3
q
−αAO(1)
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assuming γ ≤ α and −2
q
< γ ≤ 2 − 5

q
for the global Bernstein term, −2

q
< α ≤ β + αq +

1
q

and β < 1− 1
q
for the local Bernstein term, and −2

q
< β < 2− 3

q
and β ≤ (n− 1)(1− 2

q
)− 1

q
)

for the inductive bound on PNu. One computes that such a β and γ exist under the stated

conditions on α and q.

For fixed q, since q > 2, the upper bound n(1− 2
q
)− 1

q
becomes arbitrarily large by taking

n large so eventually the only constraint on α becomes −2
q
< α < 2− 3

q
. Therefore we have

∥PNu∥Xq
α;T/2

(B(x1,1/2)) ≲ Nαq−αAO(1) (4.13)

for all such α if N ≥ A−1
2 . Now as in the q > 3 case, we bootstrap this estimate one

more time with (4.6) to bring in powers of A−1
1 . In the usual Duhamel formula for PNu on

[−Tn−1, 0], we neglect the linear term and the global Bernstein term since they can be dealt

with as above. Then by (2.3) and a paraproduct decomposition, for t ∈ [−Tn, 0],

∥PNu(t)∥Lq
x(Bn) ≲ N−1

∑
N ′∼N

∥PN ′u⊙ P≲Nu∥Xq
0;Tn−1

(Bn−1)

+N1− 2
q

∑
N1∼N2≳N

∥PN1u⊗ PN2u∥X3q/4
2−3/q;Tn−1

(Bn−1)
.

For the first term, by Hölder’s inequality, (4.13) with α = 0, Lemma 2.5, and (4.6), we have

for A
−1/2
2 ≤ N ≤ A

1/2
2

∑
N ′∼N

∥PN ′u⊙ P≲Nu∥Xq
0;Tn−1

(Bn−1) ≲ NαqAO(1)

( ∑
N1≤A−1

2

AN1 +
∑

A−1
2 ≤N1≲N

A−1
1 N1

)

≲ N1+αqAO(1)A−1
1 .

For the second term, by Young’s inequality, the trivial interpolation inequality

∥rβf 2∥L3q/4 ≤ ∥r3β/4f∥4/3Lq ∥f∥2/3L∞ ,
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(4.13) with α = 3
2
− 9

4q
, (4.6), and Lemma 2.5,∑

N1∼N2≳N

∥PN1u⊗ PN2u∥X3q/4

2− 3
q ;Tn−1

(Bn−1)
≲

∑
N≲N1≤A2

(N
αq−( 3

2
− 9

4q
)

1 AO(1))4/3(A−1
1 N1)

2/3

+
∑

N1≥A2

(N
αq−( 3

2
− 9

4q
)

1 AO(1))4/3(AN1)
2/3

≲ AO(1)(A
−2/3
1 N−1/q + A

−1/q
2 ).

Therefore, if A
−1/2
2 ≤ N ≤ A

1/2
2 ,

∥PNu∥Xq
0;A3/4

(B(x1,A4/4)) ≲ AO(1)A
−2/3
1 Nαq . (4.14)

Now returning to (4.11) and applying a paraproduct decomposition, Hölder’s inequality,

(4.14), Lemma 2.5, (4.6), and (4.13), we have

A−1
1 ≲

ˆ 0

−A3/4

|e(t−t′)∆P1 div(u⊗ u)(t′, x1)|dt′

≲
∑
N ′∼1

∥PN ′u⊙ P≲1u∥Xq
0;A3/4

(B(x1,A4/4))

+
∑

N1∼N2≳1

∥PN1u⊗ PN1u∥Xq/2
0;A3/4

(B(x1,A4/4))

≲ AO(1)A
−2/3
1

 ∑
N1≤A−1

2

AN1 +
∑

A−1
2 ≤N1≲1

A−1
1 N1


+

∑
1≲N1≤A

1/2
2

AO(1)A
−4/3
1 N

2αq

1 +
∑

N1≥A
1/2
2

N
2αq

1 AO(1)

≲ AO(1)(A
−2/3
1 A−1

2 + A
−5/3
1 + A

−4/3
1 + A

αq

2 )

which is the desired contradiction, recalling that αq < 0 in this case.

This proposition can be iterated exactly as in [60] to obtain the back propagation result

we will need in the main argument.

Proposition 4.5 ([60, Proposition 3.1(v)]). Let x0 ∈ R3 and N0 > 0 be such that

|PN0u(t0, x0)| ≥ A−1
1 N0.
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Then for every A4N
−2
0 ≤ T1 ≤ A−1

4 T , there exists

(t1, x1) ∈ [t0 − T1, t0 − A−1
3 T1]× R3

and

N1 = A
O(1)
3 T

− 1
2

1

such that

x1 = x0 +O(A
O(1)
4 T

1
2
1 )

and

|PN1u(t1, x1)| ≥ A−1
1 N1.

We do not repeat the proof from [60] because it would proceed in the exact same manner

now that we have all the building blocks: the back propagation proposition (Proposition

4.4), the pointwise bounds for the frequency-localized vector fields (Lemma 2.5), and the

bounded total speed property (Proposition 4.3).

4.3 Main blowup proposition

Theorems 4.1 and 4.2 will follow without much difficulty from the following proposition.

Proposition 4.6. Let u be as in Proposition 2.15, with A ≥ C0. Suppose that there exist

x0 ∈ R3 and N0 > 0 such that

|PN0u(t0, x0)| ≥ A−1
1 N0.

Then

TN2
0 ≤ exp(exp(A

O(1)
6 )).
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Proof. By translating the solution, we may assume t0 = (x0)3 = 0. Note that we can shift

to make the third component of x0 vanish but not the first two as the norm Xq
α;T is not

shift-invariant in those directions.

As shown in [60], by propagating the concentration of |PN0u| backward in time using

Proposition 4.5, converting it into a lower bound on the vorticity, and applying Proposition

A.3 within an epoch of regularity provided by Proposition 2.15, one can deduce the following:

for every T1 ∈ [A4N
−2
0 , A−1

4 T ], and every x∗ ∈ R3 with |x∗ − x0| ≥ A4T
1/2
1 , we have the

concentration

ˆ
B(x∗,|x∗|/2)

|ω(t, x)|2dx ≳ exp(−O(A3
5|x∗|2/T1))T

−1/2
1

for all t ∈ I where I ⊂ [−T1,−A−O(1)
3 T1] is a time interval with |I| = A

−O(1)
3 T1. (We do not

repeat these arguments because they hold in our setting without modification.)

In order to make use of this lower bound, we need some control on the location of x0.

As in the proof of Proposition 2.20, letting γq = 2
q
in the case where q ∈ (2, 3] with u

axisymmetric and γq =
3
q
in the case where 3 < q <∞, we compute using (2.2) and (1.9)

A−1
1 N0 ≤ |PN0u(t0, x0)| ≤ r(x0)

−1+γq∥r1−γqPN0u(t0)∥L∞
x (R3)

≲ r(x0)
−1+γqN

γq
0 A

and therefore

|x0| ≲ A
O(1)
1 N−1

0 ≤ A−1
3 T

1/2
1 .

Thus we deduce the lower bound

ˆ −A−1
4 T1

−T1

ˆ
S(R,10R;10R)

|ω(t, x)|2dxdt ≳ exp(−O(A3
5R

2/T1))T
1/2
1 (4.15)

for any R ≥ A2
4T

1/2
1 , since the domain of this integral necessarily contains a ball B(x∗, |x∗|/2)

such that 2A4T
1/2
1 ≤ |x∗| ≲ R. In order to propagate this concentration forward in time,
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we need some regularity on u and ω. For any T2 ∈ [A2
4N

−2
0 , A−1

4 T ], by Proposition 2.20, we

have

|∇ju(x, t)| ≤ T
− 1+j

2
2 A

−1/O(1)
5 , |∇jω(x, t)| ≤ T

− 2+j
2

2 A
−1/O(1)
5 (4.16)

for j = 0, 1 and all (t, x) ∈ [−T2, 0]×{r ≥ A5T
1/2
2 }. This allows us to apply Proposition A.2

on [0, T2/C0] with r− = A2
5T

1/2
2 , r+ = A6T

1/2
2 , and u replaced by the function

(t, x) 7→ ω(−t, x).

The vorticity equation

∂tω −∆ω = ω · ∇u− u · ∇ω (4.17)

along with the coefficient bounds for the right-hand side coming from (4.16) imply (A.2).

Letting

X =

ˆ 0

−T2/C0

ˆ
S(A2

5T
1/2
2 ,A6T

1/2
2 ;A6T

1/2
2 )

e2|x|
2/T2(T−1

2 |ω|2 + |∇ω|2)dxdt,

Y =

ˆ
S(A2

5T
1/2
2 ,A6T

1/2
2 ;A6T

1/2
2 )

|ω(0, x)|2dx,

and

Z = T−1
2

ˆ 0

−T2/4C0

ˆ
S(10A2

5T
1/2
2 ,A6T

1/2
2 /2;A6T

1/2
2 /2)

|ω(x, t)|2dxdt,

the Carleman estimate gives

Z ≲ e−A2
5A6/4X + e2A

2
6Y.

From (4.15), we have

Z ≳ T
−1/2
2 e−O(A5

5).

Thus either

X ≳ T
−1/2
2 eA6 (4.18)
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or

Y ≳ T
−1/2
2 e−3A2

6 . (4.19)

First let us assume that the concentration comes from (4.18) which is the harder case. Then
ˆ 0

−T2/C0

ˆ
S(A2

5T
1/2
2 ,A6T

1/2
2 ;A6T

1/2
2 )

e2|x|
2/T2(T−1

2 |ω|2 + |∇ω|2)dxdt ≳ T
−1/2
2 eA6 .

By (4.16), the integrand is bounded by T−3
2 e4A

2
6 and the region of integration in the (t, x1, x2)

variables has volume O(A2
6T

2
2 ). Therefore the range of x3 in the integral can be narrowed

without changing the inequality to
ˆ 0

−T2/C0

ˆ
S(A2

5T
1/2
2 ,A6T

1/2
2 ;e−A3

6T
1/2
2 ,A6T

1/2
2 )

e2|x|
2/T2(T−1

2 |ω|2 + |∇ω|2)dxdt

≳ T
−1/2
2 eA6 .

The region S(A2
5T

1/2
2 , A6T

1/2
2 ; e−A3

6T
1/2
2 , A6T

1/2
2 ) can be covered by O(A4

6) sets of the form

S(ρ, 2ρ; z, 2z), so by the pigeonhole principle there exist ρ ∈ [A2
5T

1/2
2 , A6T

1/2
2 ] and |z| ∈

[e−A3
6T

1/2
2 , A6T

1/2
2 ] such that
ˆ 0

−T2/C0

ˆ
S(ρ,2ρ;z,2z)

e2|x|
2/T2(T−1

2 |ω|2 + |∇ω|2)dxdt ≳ T
−1/2
2 eA6/2.

Therefore,
ˆ 0

−T2/C0

ˆ
S(ρ,2ρ;z,2z)

(T−1
2 |ω|2 + |∇ω|2)dxdt ≳ T

−1/2
2 exp(−O(ρ2 + z2)/T2).

By an analogous argument using (4.16), the upper time limit in the integral can be shortened

to −T
5/2
2

ρ2z
e−O(ρ2+z2)/T2 which, by Young’s inequality, is less than −T2e−O(ρ2+z2)/T2 . Thus

ˆ −e−O(ρ2+z2)/T2T2

−T2/C0

ˆ
S(ρ,2ρ;z,2z)

(T−1
2 |ω|2 + |∇ω|2)dxdt ≳ T

−1/2
2 exp(−O(ρ2 + z2)/T2).

The interval [−T2/C0,−e−O(ρ2+z2)/T2T2] can be covered by O((ρ2 + z2)/T2) intervals of the

form [−2t0,−t0] so by the pigeonhole principle, there exists a t0 ∈ [e−O(ρ2+z2)/T2T2, T2/C0]

such that
ˆ −t0

−2t0

ˆ
S(ρ,2ρ;z,2z)

(T−1
2 |ω|2 + |∇ω|2)dxdt ≳ T

−1/2
2 exp(−O(ρ2 + z2)/T2).
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Moreover, since t0 ≥ e−O(ρ2+z2)/T2T2, the spatial domain of integration can be covered by

eO(ρ2+z2)/T2T
−3/2
2 ρ2z, which again is smaller than eO(ρ2+z2)/T2 , balls of radius t

1/2
0 . Therefore

there exists an x∗ in the region S(ρ, 2ρ; z, 2z) such that

ˆ −t0

−2t0

ˆ
B(x∗,t

1/2
0 )

(T−1
2 |ω|2 + |∇ω|2)dxdt ≳ T

−1/2
2 exp(−O(|x∗|2)/T2). (4.20)

From here we apply Proposition A.3 to the function

(t, x) 7→ ω(−t, x∗ + x)

on the interval [0, 1000t0] with ρcarleman = C
1/4
0 (t0/T2)

1/2|x∗| and t1 = t0. Note that r ≤

|x∗|/C1/4
0 and ρcarleman ≥ A2

5T
1/2
2 imply that B(x∗, r) is contained in the region of regularity

guaranteed by (4.16). Therefore

Z ′ ≲ e−C
1/2
0 |x∗|2/500T2X ′ + t

3/2
0 eO(C

1/2
0 |x∗|2/T2)Y ′ (4.21)

where

X ′ =

ˆ 0

−1000t0

ˆ
B(x∗,C

1/4
0 (t0/T2)1/2|x∗|)

(t−1
0 |ω|2 + |∇ω|2)dxdt,

Y ′ =

ˆ
B(x∗,C

1/4
0 (t0/T2)1/2|x∗|)

|ω(0, x)|2t−3/2
0 e−|x−x∗|2/4t0dx,

and, since t
1/2
0 ≤ r/2,

Z ′ =

ˆ −t0

−2t0

ˆ
B(x∗,t

1/2
0 )

(t−1
0 |ω|2 + |∇ω|2)dxdt.

By (4.20), we have

Z ′ ≳ T
−1/2
2 exp(−O(|x∗|2)/T2).

Using (4.16),

e−C
1/2
0 |x∗|2/500T2X ′ ≲ e−C

1/2
0 |x∗|2/500T2C

3/4
0 t

3/2
0 T

−7/2
2 |x∗|3 ≲ e−C

1/2
0 |x∗|2/1000T2T

−1/2
2 .
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Therefore within (4.21), the X ′ term is negligible compared to the Z ′ term and we are left

with

ˆ
B(x∗,C

1/4
0 (t0/T2)1/2|x∗|)

|ω(0, x)|2e−|x−x∗|2/4t0dx ≳ exp(−O(C1/2
0 |x∗|2/T2))T−1/2

2 .

It follows that

ˆ
B(x∗,C

−1/4
0 |x∗|)

|ω(0, x)|2dx ≳ exp(−O(A3
6))T

−1/2
2

for some x∗ in S(A2
5T

1/2
2 , 2A6T

1/2
2 ; e−A3

6T
1/2
2 , 2A6T

1/2
2 ). In conclusion,

ˆ
S(A5T

1/2
2 ,A2

6T
1/2
2 ;A2

6T
1/2
2 )

|ω(0, x)|2dx ≳ exp(−O(A3
6))T

−1/2
2 (4.22)

for all T2 ∈ [A2
4N

−2
0 , A−1

4 T ]. If instead of (4.18) we had (4.19), then (4.22) is immediate.

Next we convert (4.22) back into a lower bound on the velocity. By the pigeonhole

principle, there exists an x∗ in S(A5T
1/2
2 , A2

6T
1/2
2 ;A2

6T
1/2
2 ) where

|ω(0, x∗)| ≳ exp(−O(A3
6))T

−1
2 .

The gradient estimate in (4.16) implies that this concentration persists up to a distance of

at least exp(−O(A3
6))T

1/2
2 from x∗, and therefore∣∣∣∣ˆ

R3

ω(0, x∗ − ρy)ϕ(y)dy

∣∣∣∣ ≳ exp(−O(A3
6))T

−1
2

for a bump function ϕ supported in B(0, 1), for some ρ = exp(−O(A3
6))T

1/2
2 . Then writing

ω = curlu and integrating by parts,∣∣∣∣ˆ
R3

u(0, x∗ − ρy) curlϕdy

∣∣∣∣ ≥ exp(−O(A3
6))T

−1/2
2 .

Then by Hölder’s inequality,

ˆ
B(0,1)

|u(0, x∗ − ρy)|qdy ≳ exp(−O(A3
6))T

−q/2
2 .
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Within B(x∗, ρ), since ρ ≤ 1
100
r(x∗), r is comparable to r(x∗) ∈ [A5T

1/2
2 , A2

6T
1/2
2 ]. Therefore

ˆ
B(x∗,ρ)

rq−3|u(0, x)|qdx ≳ exp(−O(A3
6)). (4.23)

Since such an x∗ appears within every set S(A2
5T

1/2
2 , 2A6T

1/2
2 ), and T2 can take any value

in [A2
4N

−2
0 , A−1

4 T ], there are at least log(TN2
0 )/ logA6 disjoint concentrations of the form

(4.23). Therefore

log(TN2
0 )

logA6

exp(−O(A3
6)) ≲

ˆ
R3

rq−3|u(0, x)|qdx ≤ Aq

by (4.23) and (1.9), and the desired conclusion follows.

4.4 Proof of main theorems

Proof of Theorem 4.1. Once again, we can roughly follow [60], but we must be a bit more

careful due to our slightly worse control of u♭n. By increasing A, we can make A ≥ C0. By

rescaling, it suffices to prove the theorem with t = 1. Proposition 4.6 implies that

∥PNu∥L∞
t,x([1/2,1]×R3) ≤ A−1

1 N (4.24)

whenever N ≥ N∗, where

N∗ = exp(exp(A7)).

We apply the decomposition u = u♭n+u
♯
n on [0, 1] so that on [1/2, 1], we have all the estimates

from Proposition 2.7. Taking the curl, we analogously have ω = ω♭
n + ω♯

n and define

E(t) =
1

2

ˆ
R3

|ω♯
n(t, x)|2dx

where we fix an n sufficiently large so that (2.17) gives bounds on u♯n for p ∈ [min(q′, q
2
), 3).

With (4.17) and integration by parts, we compute

d

dt
E(t) = −Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8
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where

Y1(t) =

ˆ
R3

|∇ω♯
n|2dx,

Y2(t) = −
ˆ
R3

ω♯
n · (u♭n · ∇ω♭

n)dx,

Y3(t) = −
ˆ
R3

ω♯
n · (u♯n · ∇ω♭

n)dx,

Y4(t) =

ˆ
R3

ω♯
n · (ω♯

n · ∇u♯n)dx,

Y5(t) =

ˆ
R3

ω♯
n · (ω♯

n · ∇u♭n)dx,

Y6(t) =

ˆ
R3

ω♯
n · (ω♭

n · ∇u♯n)dx,

Y7(t) =

ˆ
R3

ω♯
n · (ω♭

n · ∇u♭n)dx,

Y8(t) = −
ˆ
R3

ω♯
n · curl(u♭n · ∇u♭n)dx.

By Hölder’s inequality, (2.17), and (2.14), we have for t ∈ [1/2, 1]

|Y2(t)| ≲ ∥ω♯
n∥L∞

t Lp′
x ([1/2,1]×R3)

∥u♭n∥L∞
t L2p

x ([1/2,1]×R3)∥∇ω
♭
n∥L∞

t L2p
x ([1/2,1]×R3)

≲ AO(1),

taking p = max(q, q
q−2

). The same argument applies for Y7 and Y8. For Y3, by Hölder’s

inequality and (2.14), we have

|Y3(t)| ≲ E(t)1/2∥u♯n∥L∞
t L2

x([1/2,1]×R3)∥∇ω♭
n∥L∞

t,x([1/2,1]×R3) ≲ E1/2AO(1).

For Y5, Hölder’s inequality and (2.14) easily give

|Y5(t)| ≲ E(t)∥∇u♭n∥L∞
t,x([1/2,1]×R3) ≲ E(t)AO(1).

The same is true for Y6, since Plancherel’s theorem and incompressibility imply

∥∇u♯n∥L2
x(R3) ≲ ∥ω♯

n∥L2
x(R3).

From here one proceeds to estimate Y4 and conclude exactly as in [60], making use of (2.30)

and (4.24). (In that paper the analogous term is called Y3.)
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As in [60], Theorem 4.2 follows immediately from Theorem 4.1 combined with essentially

any classical blowup criterion.
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CHAPTER 5

Type I regularity theorem for axisymmetric solutions

5.1 Introduction

This chapter reflects joint work with Wojciech Ożański [41] which is to appear. We aim to

understand the regularity properties of solutions bounded in the weak space L3,∞ which is

connected to Type I blowup and other self-similar-type behavior.

5.1.1 Tao’s stacking argument and Type I blowup

In order to illustrate the main difficulty in the endpoint space L3,∞, let us recall the main

strategy of Tao [60] to show that, if u concentrates at a particular time, then there ex-

ists a widely separated sequence of length scales (Rk)
K
k=1 and α = α(A) > 0 such that

∥u∥L3({|x|∼Rk}) ≥ α for all k, which implies that

∥u∥33 =
ˆ
R3

|u|3 ≥
∑
k

ˆ
|x|∼Rk

|u|3 ≥ α3K. (5.1)

The more singularly u concentrates at the origin, the larger one can take K; thus the L3

norm controls the regularity of u. More precisely, if ∥u∥3 ≤ A and u concentrates at a large

frequency N at time T , then one can take α = exp(− exp(AO(1))) and K ∼ log(NT
1
2 ), which

leads to the conclusion N ≤ T− 1
2 exp exp exp(AO(1)).

Let us contrast this L3 situation with that of general Lorentz spaces with interpolation

exponent q ≥ 3. In that case, ∥u∥L3,q({|x|∼Rk}) ≥ α implies (as a simple application of Tonelli’s
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theorem)

∥u∥L3,q(R3) ≳
∥∥∥u∥L3,q({|x|∼Rk})

∥∥
ℓqk
≥ αK

1
q ,

and so one should expect the bounds from the stacking argument used in the Lorentz

space L3,q extension [23] to degenerate as q → ∞. Indeed, if |u(x)| = |x|−1, we have

∥u∥L3,∞({|x|∼R}) = 1/O(1) for every R > 0, yet ∥u∥L3,∞(R3) ∼ 1 which shows that the first

inequality in (5.1) fails for the L3,∞ norm. For this reason, the approach of Tao [60] (and,

for related reasons, of Escauriaza-Seregin-Šverák) to the L3 problem cannot be extended to

L3,∞.

This issue is in fact closely related to the study of Type 1 blowups and approximately

self-similar solutions to (1.2). Leray famously conjectured the existence of backwards self-

similar solutions that blow up in finite time, a possibility later ruled out by Nečas, Růžička,

and Šverák [40] for finite-energy solutions and by Tsai [61] for locally-finite energy solutions.

The latter reference identifies the following as a very natural ansatz for blowup:

u(t, x) =
1

(T0 − t)
1
2

U

(
x

(T0 − t)
1
2

)
, U(y) = a

(
y

|y|

)
1

|y|
+ o

(
1

|y|

)
as |y| → ∞, (5.2)

where a : S2 → R3 is smooth. While Tsai [61] shows that there are no solutions exactly

of this form, solutions that approximate this profile or attain it in a discretely self-similar

way are promising candidates for singularity formation, as demonstrated by the Scheffer

constructions [42, 43, 51, 52], for example. Unfortunately, criteria pertaining to L3 such as

those in [22, 60, 46] are not effective at controlling such solutions because |x|−1 /∈ L3(R3),

which shows the relevance of the weak norm L3,∞.

Specializing to the case of axial symmetry, it is known, for instance due to Seregin’s result

[54], that finite-time blowup cannot be of Type I. Thus, roughly speaking, no axisymmetric

solution can approximate the profile (5.2) all the way up to a putative blowup time T0. How-

ever, this regularity is only qualitative (indeed, the proof uses an argument by contradiction

based on a “zooming in” procedure), and so explicit bounds on the solution have not been

available.
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The main purpose of this work is to make this regularity quantitative, in the same sense

that Tao [60] made quantitative the of Escauriaza-Seregin-Šverák theorem [22]. This allows

us to not only to rule out Type I singularies, but also to control how singular they can

possibly become. For example it lets us estimate the length scale down to which a solution

can be approximated by a self-similar profile; see Corollary 5.10 for details.

5.1.2 The main regularity theorem

We suppose that a strong solution to (1.2) on the time interval [0, T ] is axisymmetric, meaning

that

∂θur = ∂θu3 = ∂θuθ = 0, (5.3)

where ur, uθ, u3 denote (respectively) the radial, angular, and vertical components of u, so

that

u = urer + uθeθ + u3e3

in cylindrical coordinates, where er, eθ, e3 denote the cylindrical basis vectors.

We assume further that u remains bounded in L3,∞,

∥u∥L∞([0,T ];L3,∞(R3)) ≤ A (5.4)

for some A≫ 1. We prove the following.

Theorem 5.1 (Main result). Suppose u is a classical axisymmetric solution of (1.2) on

[0, T ]× R3 obeying (5.4). Then

∥∇ju(t)∥L∞
x (R3) ≤ t−

1+j
2 exp exp(AOj(1))

for all j ≥ 0, t ∈ [0, T ].

Our main ingredients are parabolic methods applied to the swirl Θ := ruθ near the axis,

as well as localized energy estimates on

Φ :=
ωr

r
and Γ :=

ωθ

r
. (5.5)
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These quantities will be our avenue to transfer regularity of Θ to regularity of the full solution.

To be more precise, our proof builds on the work of Chen, Fang, and Zhang [16], who

showed that the energy norm of Φ, Γ,

∥Φ∥L∞
t L2

x
+ ∥Γ∥L∞

t L2
x
+ ∥∇Φ∥L2

tL
2
x
+ ∥∇Γ∥L2

tL
2
x
, (5.6)

controls u via an estimate on ∥u2θ/r∥L2 (see [16, Lemma 3.1]). They also observed that one

can indeed estimate this energy norm as long as the angular velocity uθ remains small in

any neighbourhood of the axis, namely if

∥rduθ∥L∞
t ([0,T ];L3/(1−d)({r≤α})) is sufficiently small for some α > 0 and d ∈ (0, 1). (5.7)

In fact, this can be observed from the PDEs satisfied by Φ, Γ, namely that(
∂t + u · ∇ −∆− 2

r
∂r

)
Γ +

2

r2
uθωr = 0,(

∂t + u · ∇ −∆− 2

r
∂r

)
Φ− (ωr∂r + ω3∂3)

ur
r

= 0,

(5.8)

which shows that, in order to control the energy of Γ, Φ one needs to control ur/r, ωr, ω3

and uθ. However, ur/r can be controlled by Γ, in the sense that

ur
r

= ∆−1∂3Γ− 2
∂r
r
∆−2∂3Γ (5.9)

(see [16, p. 1929] for details), which is one of the main properties of function Γ. In particular,

(5.9) lets us use the Calderón-Zygmund inequality to obtain that∥∥∥D2ur
r

∥∥∥
Lq

≤ ∥∇Γ∥Lq (5.10)

for q ∈ (1,∞) (see [16, Lemma 2.3] for details). Moreover we have ωr = rΦ, and ω3 =

∂r(ruθ)/r, which shows that the L2 estimate of Φ and Γ relies only on control of uθ. In

fact, away from from the axis, one can easily control uθ, while near the axis the smallness

condition (5.7) is required in an absorption argument by the dissipative part of the energy;

see [16, (3.11)–(3.14)] for details.
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In this work we obtain adequate control on uθ thanks to the weak-L3 bound (5.4) com-

bined with the parabolic theory developed by Nazarov and Ural’tseva [38] in the spirit of

the Harnack inequality. Namely, noting that the swirl satisfies the autonomous PDE(
∂t +

(
u+

2

r
er

)
· ∇ −∆

)
Θ = 0 (5.11)

everywhere except for the axis, one can deduce (as observed in [38, Section 4]) Hölder

continuity of Θ near the axis. A similar observation, but in a case of limited regularity of

u was used by Seregin [54] in his proof of no Type I blow-ups for axisymmetric solutions.

We quantify this approach (see Proposition A.4 below) to obtain an estimate on the Hölder

exponent in terms of the weak-L3 norm, and hence we obtain sufficient control of the swirl

in a very small neighbourhood of the axis. As for the outside of the neighbourhood, we

make use of the pointwise estimates proved in §2.5.3. This would enable one to close the

energy estimates for the quantities in (5.6) if there exist sufficiently many starting times

where the energy norms are finite. Unfortunately, there are no times when we can explicitly

control these energies in terms of A due to lack of quantitative decay in the x3 direction.

The standard approach of propagating L2 control of Φ,Γ from the initial data at t = 0

(for instance, as in [16]) would lead to additional exponentials in Theorem 5.1. To avoid

this issue and prove efficient bounds, we replace (5.6) with L2 norms that measure Φ and Γ

uniformly-locally in x3: namely, we consider

∥Φ∥L∞
t L2

3−uloc
+ ∥Γ∥L∞

t L2
3−uloc

+ ∥∇Φ∥L2
tL

2
3−uloc

+ ∥∇Γ∥L2
tL

2
3−uloc

. (5.12)

See Proposition 5.7 below for an estimate of such energy norm, as well as (5.17) for the

precise definition of the L2
3−uloc space. This issue gives rise to further challenges, such as the

x3 − uloc control of the solution u itself in terms of (5.12), as well as an estimate on ur.

We show that the former difficulty can be resolved by an x3 − uloc generalization of the L4

estimate on uθ/r
1/2 introduced by [16, Lemma 3.1], together with a x3 − uloc bootstrapping

via ∥u∥L∞
t L6

3−uloc
and an inductive argument for the norms ∥u∥L∞

t Wk−1,6
uloc

with respect to k ≥ 1,

where “uloc” refers to the uniformly locally integrable spaces (in all variables, not only x3).
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As for the latter difficulty, we derive new x3−uloc estimates of ur in terms of Γ. To be more

precise, instead of the global estimate (5.10), we require L2
3−uloc control of ur/r, which is

much more challenging, particularly considering the bilaplacian term in (5.9) above. To this

end we develop bilaplacian Poisson-type estimate in L2
3−uloc (see Lemma 5.9), which enables

us to show that∥∥∥∇∂rur
r

∥∥∥
L2
3−uloc

+
∥∥∥∇∂3ur

r

∥∥∥
L2
3−uloc

≲ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

, (5.13)

see Lemma 5.6. This lets us close the estimate of (5.12), and thus control all subcritical

norms of u in terms of ∥u∥L3,∞ .

5.1.3 Blowup rate and comparison to the literature

We note that Theorem 5.1, together with the well-known blow-up criterion ∥u(t)∥∞ ≥ c/(T∗−

t)1/2 (see [45, Corollary 6.25], for example), where T∗ > 0 is a putative blow-up time,

immediately implies the following lower bound on the blow-up rate of ∥u(t)∥L3,∞ .

Corollary 5.2 (Blow-up rate of the weak-L3 norm). If u is a classical axisymmetric solution

of (1.2) that blows up at T∗, then

lim sup
t→T−

∗

∥u(t)∥L3,∞(R3)

(log log(T∗ − t)−1)c
= +∞. (5.14)

This corollary is also a consequence of a recent theorem of Chen, Tsai, and Zhang [17],

who prove1

lim sup
t→T−

∗

∥b(t)∥Ḃ−1
∞,∞(R3)(

log log 100
T∗−t

) 1
48

−
= +∞,

where b := urer + u3e3 denotes the swirl-less part of the velocity field u (see [34, Section 3.3]

for the relevant definition of Ḃ−1
∞,∞). Thus, since Ḃ−1

∞,∞(R3) ⊃ L3,∞, the above blow-up rate

1Let us note the existence of a substantial misprint in the published version of [17]: in their Theorem 1.4,
as in our Corollary 5.2, the blowup rate is double-logarithmic.
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implies (5.14). We conjecture that a variant of Theorem 5.1 holds with the weak-L3 norm

replaced by such a critical Besov norm and can be proved using the ideas presented here.

In order to describe the relation of Corollary 5.2 to [17], we note that the argument in

[17] proceeds by proving a pointwise estimate of the form

|ruθ| ≤ C exp(−c| log r|τ ), (5.15)

where c, C > 0, τ ∈ (0, 1), for axisymmetric solutions obeying the slightly supercritical

bound
1

R
1
2

∥u∥L∞((−R2,0);L2(BR)) ≤ K

(
log log

100

R

)β

for all R ∈ (0, 1/4]

for some β ∈ (0, 1
8
) and K > 0. This is yet another application of Harnack inequality

methods to axisymmetric Navier-Stokes equations. Rather than proving Hölder continuity

of Θ under a global control of a critical norm as we do in Proposition A.4, [17] obtains (5.15)

by an “almost Hölder continuity,”

osc
Qρ

Θ ≤ exp

(
−c
((

log
100

ρ

)τ

−
(
log

100

R

)τ))
osc
QR

Θ (5.16)

for 0 < ρ < R ≤ 1/4, τ ∈ (0, 1); see [17, Proposition 1.2]. A similar result in the case of

τ = 1/4 has been obtained independently by Seregin [55, Proposition 1.3]. Note that the

case of τ = 1 corresponds to Hölder continuity.

Let us emphasize that the main point of our work is not to improve the blowup rate

but to give an explicit bound on u and its derivatives in terms of only the critical norm—

this is a strictly stronger result in the sense that it pertains to all axisymmetric classical

solutions, even those not blowing up. A näıve attempt to prove a similar quantitative theorem

(e.g., using ideas of estimating axisymmetric vector fields from [32]) would lead to a bound

which, compared to Theorem 5.1, would contain more iterated exponentials as well as severe

dependence on the time t and subcritical norms of the initial data. Instead, Theorem 5.1

parallels the results in [60] and improves on those in [46] in the sense that the final bound

depends only on ∥u∥L∞
t L3,∞

x
and a dimensional factor in t. This also leads to additional
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interesting corollaries: for instance, an explicit rate of convergence for u(t) → 0 as t→ +∞,

and the non-existence of nontrivial ancient axisymmetric solutions in L∞
t L

3,∞
x .

A comparison of these results with the work of Chen, Tsai and Zhang [17] raises the

following question: Is it possible to efficiently control (in the sense of Theorem 5.1) u and

its derivatives in terms of only b measured in some critical norm? In fact, in our proof of

Hölder continuity of Θ near the axis (Proposition A.4) one can easily replace (5.4) with

boundedness of ∥b(t)∥L3,∞ in time, since “u” in (5.11) can be replaced by “b”, due to axial

symmetry. However, we do require L3,∞ control of all components of u for other quantitative

estimates leading to Theorem 5.1. These include the basic estimates, quantitative decay away

from the axis (Proposition 2.19), as well as energy estimates on Γ and Φ (Proposition 5.7)

and their implementation in the main argument.

A related open problem is to explicitly control u in terms of only uθ. Despite a great deal

of work [16, 29, 33, 39, 55, 62] on the properties of the swirl ruθ, its role in the regularity

problem for axisymmetric solutions remains unclear.

5.2 Preliminaries

Given f : Ω → R we let

osc
Ω
f := sup

Ω
f − inf

Ω
f

denote the oscillation of f over Ω. We also denote by
ffl
Ω
:= 1

|Ω|

´
Ω
the average over Ω.

In this chapter, given p ∈ [1,∞], we will make use of the uniformly local Lp norms,

∥u∥Lp
uloc

:= sup
x∈R3

∥u∥Lp
x(B(x,1))) and ∥u∥Lp

t,x−uloc
:=
∥∥∥u∥Lp

uloc

∥∥
Lp
t
,

as well as the norms that are uniformly local in x3 only,

∥f∥Lp
3−uloc(R3) := sup

z∈R
∥f∥Lp

x(R2×[z−1,z+1]). (5.17)
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Let us also define the heat kernel Ψ(x, t) := (4πt)−3/2e−x2/4t which satisfies

∥∇kΨ(t)∥p = Ck,pt
− 3

2(1−
1
p)−

k
2 . (5.18)

5.2.0.1 Lorentz spaces

We recall the Lorentz spaces, defined by

∥f∥Lp,q := p1/q∥λ|{|f | ≥ λ}|1/p∥Lq(R+, dλ
λ
) (5.19)

for q <∞ and the endpoint

∥f∥Lp,∞ := ∥λ|{|f | ≥ λ}|1/p∥L∞(R+, dλ
λ
).

There is an analogue of the Hölder inequality,

∥fg∥Lp,q ≤ Cp1,p2,q1,q2∥f∥Lp1,q1∥g∥Lp2,q2 , (5.20)

whenever 1/p = 1/p1+1/p2, 1/q = 1/q1+1/q2, p1, p2, p ∈ (0,∞), q1, q2, q ∈ (0,∞]. We refer

the reader to [58, Theorem 6.9] for a proof of (5.20). The Hölder inequality can be very

useful when estimating some localized integrals in terms of the Lp,∞ norm. For example, if

ϕ ∈ C∞
0 (Ω) is a smooth cutoff function then we have the simple estimate

∥ϕ∥Lp,1 = p

ˆ ∞

0

|{|ϕ| ≥ λ}|1/pdλ ≤ p

ˆ ∥ϕ∥∞

0

|{|ϕ| ≥ λ}|1/pdλ ≤ p|Ω|1/p∥ϕ∥∞,

which shows that, for example ˆ
Ω

fg ≤ ∥f∥L3,∞∥g∥2|Ω|1/6.

This simple method allows us to use the weak L3 space to estimate some integrals over a

region close to the axis of symmetry.

We also note two Young’s inequalities involving weak Lp spaces

∥f ∗ g∥Lp,∞ ≲ ∥f∥1∥g∥Lp,∞ for p ∈ (1,∞), (5.21)

∥f ∗ g∥p ≲ ∥f∥r∥g∥Lq,∞ for p, q, r ∈ (1,∞) with
1

p
+ 1 =

1

q
+

1

r
, (5.22)

see [34, Proposition 2.4(a)] and [50, Theorem A.16] for details (respectively).
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5.2.0.2 The Bogovskĭı operator

We recall that, given p ∈ (1,∞), an open ball B ⊂ R3, b ∈ W 1,p(B) such that div b = 0, and

ϕ ∈ C∞
0 (B; [0, 1]) such that ϕ = 1 on B/2 there exists b ∈ W 1,p(R3) such that b = 0 outside

B and inside B/2,

div b = div(ϕb) and ∥b∥W 1,p ≲ ∥b∥W 1,p(B), (5.23)

due to the Bogovskĭı lemma (see [7, 8] or [24, Lemma III.3.1], for example). We note that

the Bogovskĭı lemma often assumes that the domain is star-shaped (which is not the case for

B \B/2), but it can be overcome in this particular setting by applying the partition of unity

to ϕ; see [44, Section 2.3] for example. Note as well that although the implicit constant in

(5.23) depends on the scale of B (by inhomogeneity), in our applications B will be of unit

scale.

5.2.0.3 A Poisson-type tail estimate

Here we are concerned with a Poisson equation of the form −∆f = D2g, and we show that

any W k,∞(B(0, 1)) norm of ∇f can be bounded by the L1
uloc norm of g, if g = 0 on B(0, 2).

To be more precise, we let ψ ∈ C∞
c (B(0, 1); [0, 1]) be such that ψ = 1 on B(0, 1/2). Given

y ∈ R3 we set

ψy(x) := ψ(x− y). (5.24)

and

ψ̃ :=
∑
j∈Z3

|j|≤10

ψj.

Lemma 5.3. Suppose that f = D2(−∆)−1(g(1− ψ̃)) for some g ∈ L2. Then

∥ψ∇f∥Wk,∞ ≲k ∥g∥L1
uloc

for k ≥ 0.

Proof. We note that

∂if(x) =

ˆ
(xi − yi)g(y)(1− ϕ̃(y))

|x− y|5
dy
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for x ∈ supp ϕ, and so

|∇f(x)| ≤
ˆ
{|x−y|≥5}

|g(y)|
|x− y|4

dy

≤
∑
j∈Z3

|j|≥2

ˆ x1+j1+1

x1+j1

ˆ x2+j2+1

x2+j2

ˆ x3+j3+1

x3+j3

|g(y)|
|x− y|4

dy3 dy2 dy1

≲ ∥g∥L1
uloc

∑
j∈Z3

|j|≥2

|j|−4 ≲ ∥g∥L1
uloc
,

as required. An analogous argument applies to higher derivatives of f .

The above proof demonstrates a simple method of tail estimation which we will later

use to obtain a L2
3−uloc estimate of ur/r in terms of Γ, mentioned in the introduction (recall

(5.13)). In fact, to this end, a similar strategy can be applied in the x3 direction only, and can

be extended to the more challenging bi-Laplacian Poisson equation (see Lemma 5.9 below).

5.2.0.4 Cylindrical coordinates

Given x ∈ R3 we denote by x′ := (x1, x2) the horizontal variables, and r := (x21 + x22)
1/2

denotes the radius in the cylindrical coordinates. We often use the notation

{r < r0} := {x ∈ R3 : r < r0}

for a given r0 > 0.

We recall a version of the Hardy inequality

∥r−1f∥Lq(Ω) ≲ C(Ω)∥f∥Lq(Ω) + ∥∇f∥Lq(Ω) (5.25)

where Ω is a bounded domain and q ∈ (1, 2]; see [16, Lemma 2.4] for a proof.

We recall the divergence operator in cylindrical coordinates: if v = vrer + vθeθ + v3e3

then

div v =
1

r
∂r(rvr) +

1

r
∂θvθ + ∂3v3 (5.26)
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For an axisymmetric vector field v, one can compute the length of the partial gradient,

|∇′v|2 = (∂rvr)
2 + (∂rvθ)

2 + (∂rv3)
2 +

1

r2
(v2r + v2θ), (5.27)

which implies the pointwise bounds

|vr|
r
,
|vθ|
r

≤ |∇′v|.

Here ∇′ refers to the gradient with respect to the horizontal variables x′ only. Moreover,

|∂rrf | ≲ |D2f |. (5.28)

Indeed, since

∂r = cos θ ∂1 + sin θ ∂2 =
x1
|x′|

∂1 +
x2
|x′|

∂2,

we can compute that

∂rr =
x21
|x′|2

∂11 + 2
x1x2
|x′|2

∂1∂2 +
x22
|x′|2

∂22,

from which (5.28) follows. One can compute more generally that

∂Nr =
N∑

n=0

(
N

n

)
|x′|−N(x1∂1)

n(x2∂2)
N−n

from which it follows

|D3
r,x3

f | ≲ |D3f | and |D4
r,x3

f | ≲ |D4f | (5.29)

for any axisymmetric f , where D4 refers to all fourth order derivatives with respect to

x1, x2, x3.

5.2.0.5 A quantified version of the Hardy inequality

From the classical Hardy inequality

∥r−
3
p
+ 1

2f∥p ≲p (∥f∥2 + ∥∇f∥2)
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for p ∈ (2, 6) (see [16, Lemma 2.6], for example), we prove a variant that is localized in

the horizontal variables, uniformly local in x3, and whose failur near the p = 2 endpoint is

explicitly controlled. In particular,

Lemma 5.4 (Quantified Hardy inequality). The is a C > 0 such that for all p ∈ (2, 6− ϵ),

∥r−
3
p
+ 1

2f∥Lp
3−uloc({r≤1}) ≲ϵ (p− 2)−C

(
∥f∥L2

3−uloc({r≤1}) + ∥∇f∥L2
3−uloc({r≤1})

)
.

Proof. From the Sobolev embedding

∥u∥L2p/(2−p)(R2) ≲ (2− p)−O(1)∥∇u∥Lp(R2)

for p < 2, (see, e.g., [57] where the sharp constant is computed), one can prove the two-

dimensional Gagliardo-Nirenberg inequality

∥f∥Lq(B(1)) ≲ q

(
∥f∥

6
q

L6(B(1))∥∇f∥
1− 6

q

L2(B(1)) + ∥f∥Lp(B(1))

)
(5.30)

for q > 6. Fix ϵ > 0 to be specified. Then∥∥∥ f

r
3
q
− 1

2

∥∥∥
Lq

x′ (r≥ϵ)
≤ ∥r−

3
q
+ 1

2∥
L
6q/(6−q)

x′ ({r≥ϵ})∥f∥L6
x′ (R

2) ≲ ϵ−
1
q
+ 1

6∥f∥L6
x′ (R

2).

Inside, for any 1
s
∈ ( 3

2p
− 1

4
, 1
p
), by (5.30),∥∥∥ f

r
3
p
− 1

2

∥∥∥
Lp

x′ (r≤min(1,ϵ))
≤ ∥r−

3
p
+ 1

2∥Ls
x′ (r<min(1,ϵ))∥f∥Lps/(s−p)

x′ (B(1))

≲
(1
s
− 3

2p
+

1

4

)− 1
s
(1
p
− 1

s

)−1

×
(
ϵ−

3
p
+ 1

2
+ 2

s∥f∥
6
p
− 6

s

L6
x′ (B(1))

∥∇f∥
1− 6

p
+ 6

s

L2
x′ (B(1))

+ ∥f∥Lp

x′ (B(1))

)
.

Upon taking ϵ = ∥f∥36/∥∇f∥32 and 1
s
= 4

3p
− 1

6
,∥∥∥ f

r
3
p
− 1

2

∥∥∥
Lp

x′ (B(1))
≲ (p− 2)−O(1)

(
∥f∥

3
2
− 3

p

L6
x′ (B(1))

∥∇f∥
− 1

2
+ 3

p

L2
x′ (B(1))

+ ∥f∥Lp

x′ (B(1))

)
.

Finally by Hölder’s inequality, Sobolev embedding, and Gagliardo-Nirenberg interpolation,

we find ∥∥∥ f

r
3
p
− 1

2

∥∥∥
Lp
x(BR2 (1)×BR(z,1))

≲ (p− 2)−O(1)∥f∥H1
x(BR2 (1)×BR(z,1)),

as required.
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5.2.0.6 Second derivative estimates

The following second derivative estimate is a consequence of energy conservation and is

related to theorems of Constantin [18], Lions [36], and Vasseur [63].

Lemma 5.5 (2nd order derivatives estimates). If u solves (1.2) on [0, T ] and obeys (5.4),

then

∥∇2u∥Lp
t,x−uloc([

T
2
,T ]×R3) ≲p A

O(1)T
5
2p

− 3
2

for p ∈ [1, 4
3
), where the local norm is measured at spatial scale T

1
2 .

Proof. We use the approach due to Constantin [18]. First rescale to make T = 1. For every

ϵ ∈ (0, 1
2
), we define the approximation to the function ⟨x⟩ := (1 + |x|2) 1

2 ,

q(x) := ⟨x⟩ − 1

2(1− ϵ)
⟨x⟩1−ϵ

which satisfies the properties

|∇q| ≤ 1, (5.31)

ξT∇2q(x)ξ >
ϵ

2
⟨x⟩−(1+ϵ)|ξ|2, (5.32)

1− 2ϵ

2− 2ϵ
⟨x⟩ ≤ q(x) ≤ ⟨x⟩. (5.33)

With τ a time scale to be specified, we define w := q(τω) which obeys the equation

(∂t + u · ∇ −∆)w = τ∇q(τω) · (ω · ∇u)− τ 2 tr(∇ωT∇2q∇ω).

Multiplying by a spatial cutoff at length scale R and integrating over Rd,

d

dt

ˆ
R3

wψ ≤
ˆ
R3

(u · ∇ψ +∆ψ)w +O(τ |∇u|2)ψ − ϵ

2
τ 2⟨τω⟩−(1+ϵ)|∇ω|2ψ.

Let ψ̃ be an enlarged cutoff function so that R|∇ψ|+R2|∆ψ| ≤ 10ψ̃. We define the Lp
x−uloc,R

norm to be the supremum of the Lp norm restricted to balls of radius R. Integrating in time
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starting from a t0 to be specified and taking a supremum over the balls,

∥wψ(t)∥L1
x−uloc,R

+
ϵ

2
τ 2
ˆ t

t0

ˆ
R3

⟨τω⟩−(1+ϵ)|∇ω|2ψdxdt

≲ ∥w(t0)∥L1
x−uloc,R

+

ˆ t

t0

(R−2 +R−1∥u∥∞)∥w(t′)∥L1
x−uloc,R

dt′ + τ∥∇u∥2L2
t,x−uloc,R

.

Grönwall’s inequality and (2.9) imply

∥w(t)∥L1
uloc,R

≲
(
∥w(t0)∥L1

uloc,R
+ τRAO(1)

)
exp(R−2|t− t0|+R−1AO(1)|t− t0|

1
2 ).

Setting R = AC1 and τ = A−2C1 for a sufficiently large C1, we find

∥⟨τω(t)⟩∥L1
x−uloc,R

≲ ∥⟨τω(t0)⟩∥L1
x−uloc,R

.

By (2.9) and Hölder’s inequality, we can find a t0 ∈ [1/4, 1/2] where the right-hand side is

bounded by AO(1). Thereforeˆ t

t0

ˆ
R3

⟨τω⟩−(1+ϵ)|∇ω|2ψ dxdt ≤ ϵ−1AO(1).

We use Hölder’s inequality with the decomposition

|∇ω|
4

3+ϵ =
(
|∇ω|

4
3+ϵ ⟨τω⟩−2 1+ϵ

3+ϵ

)
⟨τω⟩2

1+ϵ
3+ϵ

to conclude

∥∇ω∥
L
4/(3+ϵ)
t,x−uloc([t0,t]×R3)

≤ ϵ−O(1)AO(1).

To convert this into a bound on∇2u, fix a unit ball B ⊂ R3 and a cutoff function φ ∈ C∞
c (3B)

with φ ≡ 1 in 2B. We decompose ∇2u = a+b where a = ∇2∆−1 curl(φω). Note that b = ∇f

where f = ∇∆−1 curl((1− φ)ω) is harmonic in 2B so for any p ∈ [1, 4
3
),

∥a∥Lp
t,x([t0,t]×B) ≲ ∥∇ω∥Lp

t,x([t0,t]×3B) + ∥∇φ∥L∞∥ω∥L2
t,x−uloc([t0,t]×R3) ≤ ϵ−O(1)AO(1)

and

∥b∥Lp
t,x([t0,t]×B) ≲ ∥∇∆−1 curl((1− φ)ω)∥L2

t,x([t0,t]×2B)

≲ ∥ω♯∥L2
t,x([t0,t]×R3) + ∥ω♭∥L∞

t,x([t0,t]×R3) ≤ AO(1)

where we have used (2.9), Hölder’s inequality, and (2.6).
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5.3 A Poisson-type estimate on ur/r

Here we discuss how derivatives of ur/r can be controlled by Γ using the representation (5.9),

ur
r

= ∆−1∂3Γ− 2
∂r
r
∆−2∂3Γ, (5.34)

see [16, p. 1929], which will be an essential part of our 3-uloc energy estimates for Φ and Γ

(see Proposition 5.7 below).

Lemma 5.6 (The L2
3−uloc estimate on ur/r).∥∥∥∇∂rur
r

∥∥∥
L2
3−uloc

+
∥∥∥∇∂3ur

r

∥∥∥
L2
3−uloc

≲ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

We defer the proof to §5.5.0.1.

A version of the above estimate without the localization in x3 has appeared in [16,

Lemma 2.3]. As mentioned in the introduction, the localization makes the estimate much

more challenging, particularly due to the bilaplacian term in (5.34).

5.4 Energy estimates for ω/r

In this section, we assume the weak L3 bound (5.4) on time interval [0, 1] and prove an

energy bound for Φ2 + Γ2 at time 1.

We first note that uθ satisfies(
∂t + u · ∇ −∆+

1

r2

)
uθ +

ur
r
uθ = 0, (5.35)

from which one computes that the swirl Θ = ruθ obeys(
∂t +

(
u+

2

r
er

)
· ∇ −∆

)
Θ = 0 (5.36)

in (R3 \ {r = 0}) × (0, T ). It then follows that, at each time, (r, x3) 7→ uθ(r, x3, t) is a

continuous function on R+×R with uθ(0, x3, t) = 0 for all x3 (see [37, Lemma 1] for details).

In particular
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Θ(0, 0, x3) = 0 for all x3 ∈ R. (5.37)

Moreover, since ω is a smooth vector field with bounded derivatives (on which we have no

effective bounds yet, of course) (5.27) implies Φ and Γ are locally bounded near the x3-axis.

Proposition 5.7 (An L2
3−uloc energy estimate for Φ and Γ). Let u be a classical solution of

(1.2) satisfying the weak L3 bound (5.4) on [0, 1]. Then

∥Φ(1)∥L2
3−uloc(R3) + ∥Γ(1)∥L2

3−uloc(R3) ≤ exp expAO(1). (5.38)

We note that we will only use (in (5.43) below) the bound on Γ.

Proof. We fix a cutoff function ϕ ∈ C∞
c ((−1, 1); [0, 1]) such that ϕ ≡ 1 in [−1/2, 1/2], and

we define the translate

ϕz(y) := ϕ(y − z).

Clearly, we have the pointwise inequality

ϕ′
z, ϕ

′′
z ≲

2∑
i=−2

ϕz+i.

We will consider the energies

E(t) := sup
z∈R

Ez(t), Ez(t) :=
1

2

ˆ
R3

(Φ(t, x)2 + Γ(t, x)2)ϕz(x3)dx,

F (t) := sup
z∈R

Fz(t), Fz(t) :=

ˆ t

t0

ˆ
R3

(∇Φ(s, x)2 +∇Γ(s, x)2)ϕz(x3)dx ds

for t ∈ [t0, 1], where t0 ∈ [0, 1] will be chosen in Step 3 below. Given z ∈ R, we multiply the

equations (5.8) by ϕzΓ and ϕzΦ, respectively, and integrate to obtain, at a given time t,

E ′
z ≤

ˆ
R3

(
− (|∇Φ|2 + |∇Γ|2)ϕz +

1

2
(Φ2 + Γ2)(uzϕ

′
z + ϕ′′

z)

+ (ωr∂r + ω3∂3)
ur
r
Φϕz − 2r−1uθΦΓϕz

)
dx

=: −F ′
z(t) + I1 + I2 + I3.

(5.39)
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The second term on the right hand side can be bounded directly,

I1 ≲ (1 + ∥uz∥L∞
x (R3))E(t). (5.40)

The remaining terms I2, I3 are more challenging—we estimate them and choose t0 as follows.

Step 1. We use the Hölder continuity proved in Proposition A.4 to show that |Θ| ≤ rγAO(1)

whenever r ≤ 1
2
, where γ = exp(−AO(1)).

To this end we note that, due to incompressibility, div(u+ 2
r
er) = 4πδ{x′=0}, which enables

us to apply Proposition A.4 to the equation for the swirl Θ (recall (5.11)).

Moreover, in the notation of Proposition A.4, for every R < 1
2
, t0 ∈ [1

2
, 1] and x0 ∈

(0, 0)× R (i.e., on the x3-axis),

R− 4
5∥u+ er

r
∥
L∞
t L

5
3
x (Q((t0,x0),R))

≲ R− 1
2∥u∥L∞

t L2
uloc([t0−R2,t0]×R3) + 1 ≤ AO(1)

by Hölder’s inequality and (2.9) applied on the timescale R2. (In particular note that each

scale R leads to a different decomposition u = u♭n + u♯n, but they all obey the same bounds

up to being suitably rescaled.) Thus, for every r ∈ (0, 1/2), oscB(x0,r) Θ(t0) ≲ rγ oscQ(1/2)Θ

for r ∈ (0, 1/2), which implies the claim.

Step 2. We show that ˆ t

t0

|I2 + I3| ≲
1

2
F (t) + r−10

0 +

ˆ t

t0

GE

for each t0 ∈ [t/2, t], where

r0 := e−γ−2

, (5.41)

γ = exp(−AO(1)) is given by Step 1, and

G := r−3
0 + ∥u∥∞ + ∥D2u∥

L
5/4
uloc

+ ∥∇u∥L2
uloc

at each t′ ∈ [t0, t].
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To this end, we proceed similarly to [16]. Using integration by parts, we compute

I2 = 2π

ˆ
R

ˆ ∞

0

(−∂3uθ∂r
ur
r
Φ +

∂r(ruθ)

r
∂3
ur
r
Φ)ϕz(x3)r dr dx3

=

ˆ
R3

uθ(∂r
ur
r
∂3Φϕz − ∂3

ur
r
∂rΦϕz + ∂r

ur
r
Φϕ′

z)

=: I2,1 + I2,2 + I2,3.

Let us further decompose I2,i = I2,i,in + I2,i,out (i = 1, 2, 3) by writing

ˆ
=

ˆ
{r<r0}

+

ˆ
{r≥r0}

,

and yet further

I2,1,in = I2,1,in,1 + I2,1,in,2

where

I2,1,in,1 :=

ˆ
{r<r0}

uθ

( 
Ω

∂r
ur
r

)
∂3Φϕz

and Ω := {x′ : r < 1} × suppϕz. We compute using Hölder’s inequality and Sobolev embed-

ding ∣∣∣∣ ˆ
Ω

∂r
ur
r

∣∣∣∣ ≤ ∥r−1∂rur∥L1(Ω) + ∥r−2ur∥L1(Ω)

≲ ∥r−1∥L15/8(Ω)∥∇u∥L15/7(Ω) ≲ ∥∇2u∥L5/4(Ω) + ∥∇u∥L2(Ω) ≲ G.

Thus, integrating by parts, and applying Hölder’s inequality in Lorentz spaces (5.20), and

Young’s inequality, we obtain

|I2,1,in,1| ≤ G

ˆ
B(r0)×R

(
rΦ2ϕz + |uθΦϕ′

z|
)
dx

≲ G(r0E + ∥uθ∥L3,∞
x (R3)∥Φ∥L2

x(Ω)|Ω|
1
6 )

≲ G(E + AO(1)).
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As for I2,1,in,2 we note that p = 2(1− γ)/(1− 2γ) is such that p− 2 = 2γ/(1− 2γ) ≥ γ and

so we can use the quantitative Hardy inequality (Lemma 5.4) to obtain for t ∈ [1
2
, 1] that

|I2,1,in,2| ≲ ∥r
3
p
− 1

2uθ∥
L(

1
2− 1

p)
−1

({r≤r0}∩suppϕz)

∥∥∥∥r− 3
p
+ 1

2 (∂r
ur
r

−
 
Ω

∂r
ur
r
)ϕ

1
2
z

∥∥∥∥
Lp({r≤1})

∥∂3Φϕ
1
2
z ∥2

≲ γ−O(1)r
γ/3
0

∥∥∥∇∂rur
r

∥∥∥
L2
3−uloc

∥∇Φϕ
1
2
z ∥2

≤ e−γ−1/4(∥∇Γ∥L2
3−uloc(R3) + ∥Γ∥L2

3−uloc(R3))∥∇Φϕ
1
2
z ∥2,

where we have also applied Poincaré’s inequality and our choice (5.41) of r0. Thus

ˆ t

t0

I2,1,in,2 ≤
1

20
F (t) +

ˆ t

t0

E.

An analogous argument with “∂r” and “∂3” interchanged yields the same bound for I2,2,in,2.

As for I2,2,in,1, we integrate by parts and apply (5.20) and Young’s inequality to obtain

|I2,2,in,1| ≤
∣∣∣∣ 

Ω

∂3
ur
r
ϕz

∣∣∣∣ˆ
{r≤r0}∩suppϕz

|uθ∂rΦ|

≲

∣∣∣∣ 
Ω

ur
r
ϕ′
z

∣∣∣∣∥uθ∥L3,∞∥∇Φ∥L2
x(suppϕz)r

1
3
0

≲
2∑

i=−2

∥∇u∥L1(Ω)A(F
′
z+i)

1
2 r

1
3
0

≲ GAr
1/3
0

(
2∑

i=−2

F ′
z+i

) 1
2

,

which, thanks to the smallness of r0 = exp(− exp(AO(1))) (recall (5.41)), gives

ˆ t

t0

|I2,2,in,1| ≤
1

20
F (t) + (t− t0).

We similarly decompose I2,3,in = I2,3,in,1 + I2,3,in,2 to find

|I2,3,in,1| =
∣∣∣∣ 

Ω

∂r
ur
r

∣∣∣∣ ∣∣∣∣ˆ
{r≤r0}

uθΦϕ
′
z

∣∣∣∣ ≲ (∥∇u∥L2(Ω) + ∥∇2u∥L5/4(Ω))AE
1
2 r

1
3
0

≲ G(E + 1)
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where we have used Lemma 5.4 and change of variables, the pointwise estimate |ur/r| ≤ |∇u|,

and Hölder’s inequality to bound∣∣∣∣ 
Ω

∂r
ur
r

∣∣∣∣ ≲ ˆ z+10

z−10

ˆ 1

0

(
|∂rur|+

|ur|
r

)
dr dz

≲ ∥r−1∂rur∥L1(Ω) + ∥r−1∇u∥L1(Ω)

≲ ∥r−1∇u∥L5/4(Ω)

≲ ∥∇u∥L2(Ω) + ∥∇2u∥L5/4(Ω),

where we used (5.27) in the third line, and the Hardy inequality (5.25) in the last line. Next

|I2,3,in,2| =
∣∣∣∣ ˆ

{r≤r0}
uθ

(
ddr

ur
r

−
 
Ω

∂r
ur
r

)
Φϕ′

z

∣∣∣∣
≲ ∥ruθ∥L3({r≤r0})

∥∥∥∥r− 1
2

(
ddr

ur
r

−
 
Ω

∂r
ur
r

)∥∥∥∥
L3(R2×suppϕz)

∥r−
1
2Φ∥L3(R2×suppϕz)

≤ AO(1)r
2
3
0

∥∥∥∇∂rur
r

∥∥∥
L2
3−uloc

∥∇Φ∥L2
3−uloc

,

where we have used the Hardy inequality (Lemma 5.4). Thus Lemma 5.6 and Young’s

inequality imply that

ˆ t

t0

|I2,3,in,2| ≤
1

20
F (t) +

ˆ t

t0

E.

Next let us consider the contributions to I2 from outside B(r0). Using Hölder’s inequality,

we obtain that

|I2,1,out| =
∣∣∣∣ ˆ

{r>r0}
uθ∂r

ur
r
∂3Φϕz dx

∣∣∣∣
≤ ∥uθ∥L6

3−uloc({r>r0})∥r
−1∂rur − r−2ur∥L3

3−uloc({r>r0})∥∇Φ∥L2
3−uloc(R3).

Hence, since Proposition 2.19 shows that |u| ≤ AO(1)(r−1 + r−1/4) and |∂rur| ≤ AO(1)(r−2 +

r1/4), we see that the first two norms on the right hand side are finite and bounded by, say,

r−10
0 . Thus, an application of Young’s inequality gives that

ˆ t

t0

|I2,1,out| ≤
1

20
F (t) + r−10

0 (t− t0).
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The remaining outer parts of I2, i.e. I2,2,out and I2,3,out can be estimated in a similar way,

with the latter bounded by, say, E + r−10
0 .

Finally let us consider I3. Taking p such that, for example, 1
p
= 1

2
− γ

4
, we have p− 2 =

2γ/(2− γ) ≥ γ, and so our quantified Hardy’s inequality (Lemma 5.4) shows that

|I3,in| ≤
∥∥∥r−2+ 6

puθ

∥∥∥
L(1−

2
p)

−1

({r≤r0})
∥r−

3
p
+ 1

2Φ∥Lp
3−uloc

∥r−
3
p
+ 1

2Γ∥Lp
3−uloc

≲ γ−O(1)r
γ/2
0

(
∥Φ∥L2

3−uloc
+ ∥∇Φ∥L2

3−uloc

)(
∥Γ∥L2

3−uloc
+ ∥∇Γ∥L2

3−uloc

)
,

which gives that
´ t

t0
|I3,in| ≤ 1

20
F (t)+

´ t

t0
E. On the other hand, for r ≥ r0 we have the simple

bound

|I3,out| ≤ 2∥r−1uθ∥L∞
x ({r≥r0})∥Φ∥L2

3−uloc
∥Γ∥L2

3−uloc
≤ r

−5/4
0 E,

as required.

Step 3. Given τ > 0 we use the choice of time of regularity (Proposition 2.14) to find

t0 ∈ [1− τ, 1] such that E(t0) ≲ AO(1)τ−3.

Indeed, Proposition 2.14 lets us choose t0 ∈ [1− τ, 1] such that

∥∇2u(t0)∥∞ ≤ AO(1)τ−
3
2 .

It follows from the axial symmetry and (5.27) that |Φ|+ |Γ| ≤ |∇ω|, and so

∥Φ(t0)ϕ1/2
z ∥L2({r≤1}) + ∥Γ(t0)ϕ1/2

z ∥L2({r≤1}) ≲ ∥∇ω(t0)∥L∞(B(1)×R) ≤ AO(1)τ−
3
2 (5.42)

for every z ∈ R. Using the decomposition ω = ω♯
1 + ω♭

1 on the interval [0, 1], by (2.9), (2.6),

and Hölder’s inequality,

∥Φ(t0)ϕ1/2
z ∥L2({r>1}) + ∥Γ(t0)ϕ1/2

z ∥L2({r>1}) ≲ ∥ω♯
1∥L2(R3) + ∥r−1ω♭

1∥L2({r>1}∩supp ϕz)

≲ ∥∇u♯1∥L2(R3) + ∥r−1∥L4
x′ (B(1)c)∥ω♭

1∥L4(R3)

≤ AO(1).
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This and (5.42) proves the claim of this step.

Step 4. We prove the desired estimate on Φ and Γ.

Integration in time of the energy inequality (5.39) from initial time t0 chosen in Step 3

above, taking supz∈R, and applying the estimate (5.40) for I1 and Step 2 for I2, I3 we find

that

E(t) +
1

2
F (t) ≤ E(t0)︸ ︷︷ ︸

≤AO(1)τ−3

+r−10
0 +

ˆ t

t0

O(r−3
0 + ∥u∥∞ + ∥∇2u∥

L
5/4
uloc

+ ∥∇u∥L2
uloc

)E(t′)dt′

for t ∈ [t0, 1]. Thus, by Grönwall’s inequality,

E(1) ≤ (AO(1)τ−3 + r−10
0 ) exp

(
O
(
r−3
0 (t− t0) + AO(1)(t− t0)

1
5

))
.

Setting τ := r40, we see that the last exponential function is O(1), and the prefactor gives

the required estimate (5.38).

5.5 Main type I theorem

In this section we prove Theorem 5.1. Namely, given the L3,∞ bound (5.4) on time interval

[0, 1], we show that |∇ju| ≤ exp expAOj(1) at time 1.

Step 1. We show that ∥b∥Lp
3−uloc(R3) ≤ Cp exp expA

O(1) for each p ∈ [3,∞), t ∈ [1/2, 1],

where b := urer + uzez denotes the swirl-free part of the velocity field.

To this end we apply Proposition 5.7 to find

∥Γ∥L∞
t L2

3−uloc([
1
2
,1]×R3) ≤ exp expAO(1). (5.43)
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On the other hand Proposition 2.19 shows that

∥r2ω∥L∞
x ({r≤10}) ≤ AO(1).

Interpolating between this inequality and (5.43) we obtain

∥ωθ∥Lp
3−uloc({r≤10}) = ∥Γ

2
3 (r2ωθ)

1
3∥Lp

3−uloc({r≤10}) ≲ ∥Γ∥
2
3

L2
3−uloc

∥r2ωθ∥
1
3

L∞
x ({r≤10}) ≤ exp expAO(1)

for all p ≤ 3.

Recalling that

curl b = ωθeθ, div b = 0

almost everywhere, we localize b to obtain an Lp estimate near the axis. Namely, for any

unit ball B ⊂ {r ≤ 10}, let ϕ ∈ C∞
c (B) such that ϕ ≡ 1 on B/2. Observe that for all

p ∈ [1, 3) we can use Hölder’s inequality for Lorentz spaces (5.20) to obtain

∥div(ϕb)∥Lp(R3) = ∥b · ∇ϕ∥p ≲ ∥b∥L3,∞∥∇ϕ∥L3p/(3−p),1 ≲ A.

Applying the Bogovskĭi operator (5.23) to div(ϕb) on the domain B\(B/2), we find b̃ ∈ W 1,p

such that div b̃ = 0, ∥b− b̃∥W 1,p(B) ≤ AO(1), b̃ ≡ b in B/2, and b̃ ≡ 0 outside B. Then for any

p ∈ (1, 3),

∥b∥L3p/(3−p)(B/2) ≤ ∥b̃∥3p/(3−p) ≲ ∥∇b̃∥p ≲ ∥curl b̃∥Lp(B)

≤ ∥ωθ∥Lp(B) + ∥b− b̃∥W 1,p(B)

≤ exp expAO(1),

which is our desired localized estimate. Here we have used the boundedness of the opera-

tor curl f 7→ ∇f in Lp, p ∈ (1,∞), (which is a consequence of the identity curl curl f =

∇(div f)−∆f , which in turn implies that ∇f = ∇(−∆)−1 curl curl f for divergence-free f).

Combining this with the pointwise estimates away from the axis (Proposition 2.19) gives the

claim of this step.
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Step 2. We show that there exists C0 > 1 such that∥∥∥uθ(t)
r

1
2

∥∥∥4
L4
3−uloc

≤
∥∥∥uθ(t0)

r
1
2

∥∥∥4
L4
3−uloc

+ 1 + exp expAC0

ˆ t

t0

∥∥∥∥uθ
r

1
2

∥∥∥∥
L4
3−uloc

for each t0 ∈ [1/2, 1] and t ∈ [t0, 1].

To this end we provide a localization of the estimate of uθ/r
1/2 in the spirit of [16,

Lemma 3.1]. Indeed, one can calculate from the equation (5.35) for uθ that for a smooth

cutoff ψ = ψ(x3),

1

4

d

dt

ˆ
R3

u4θ
r2
ψ +

3

4

ˆ
R3

∣∣∣∇u2θ
r

∣∣∣2ψ +
3

4

ˆ
R3

u4θ
r4
ψz

= −3

2

ˆ
R3

1

r3
uru

4
θψ +

1

8

ˆ
R3

1

r2
u2θ(2u

2
θuz − ∂z(u

2
θ))ψ

′ =: I1 + I2 + I3.

As before, we choose ψ ∈ C∞
c ((−2, 2)) with ψ ≡ 1 in [−1, 1] and define the translates

ψz(x) := ψ(x− z) for all z ∈ R. Consider the energies

Ez(t) :=
1

4

ˆ
R3

u4θ
r2
ψz, Fz(t) :=

3

4

ˆ t

t0

ˆ
R3

∣∣∣∇u2θ
r

∣∣∣2ψz,

E(t) := sup
z∈R

Ez(t), F (t) := sup
z∈R

Fz(t).

By Step 1 and Sobolev embedding,

|I1| ≲ ∥ur∥L6
3−uloc

∥∥∥r− 1
2
u2θ
r

∥∥∥2
L12/5(Ω)

≤ exp expAO(1)

(∥∥∥u2θ
r

∥∥∥ 1
2

L2(Ω)

∥∥∥∇u2θ
r

∥∥∥ 3
2

L2(Ω)
+
∥∥∥u2θ
r

∥∥∥ 1
2

L2(Ω)

)
,

where Ω := R2 × supp ψ. It follows that
ˆ t

t0

|I1| ≤
1

20
F (t) + exp expAO(1)

ˆ t

t0

E + (t− t0).

Similarly,

|I2| ≲ ∥uz∥L6
3−uloc

∥∥∥u2θ
r

∥∥∥
L2
3−uloc

∥∥∥u2θ
r

∥∥∥
L3(Ω)

≤ exp expAO(1)E
1
2

(∥∥∥u2θ
r

∥∥∥ 1
2

L2(Ω)

∥∥∥∇u2θ
r

∥∥∥ 1
2

L2(Ω)
+
∥∥∥u2θ
r

∥∥∥
L2(Ω)

)
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which yields the same bound as I1. Finally,

|I3| =
1

8

∣∣∣∣ˆ
R3

u2θ
r
∂3
u2θ
r
ψ′
∣∣∣∣ ≲ ∥∥∥u2θr ∥∥∥L2

3−uloc

∥∥∥∇u2θ
r

∥∥∥
L2(Ω)

so we have

ˆ t

t0

|I3| ≤
1

20
F (t) +

ˆ t

t0

O(E).

Summing and taking the supremum over z ∈ R gives the claim of this step.

Step 3. We deduce that

∥u∥L∞
t L6

3−uloc([t0,1]×R3) ≤ exp expAO(1), (5.44)

where

t0 := 1− exp(− expAO(1)).

Indeed, Lemma 2.14 and Proposition 2.19 give a t0 ∈ [1 − exp(− expAC0), 1] such that

∥r− 1
2uθ(t0)∥L4

x(R3) ≤ exp expA2C0 . Therefore, applying Grönwall’s inequality to the claim of

the previous step, ∥∥∥uθ
r

1
2

∥∥∥
L∞
t L4

3−uloc([t1,1]×R3)
≤ exp expAO(1).

Combining this with Proposition 2.19 and Hölder’s inequality,

∥uθ∥L∞
t L6

3−uloc([t1,1]×R3) ≤ ∥ruθ∥
1
3

L∞
x ({r≤1})∥r

− 1
2uθ∥

2
3

L∞
t L4

3−uloc([t1,1]×R3)
+ ∥u∥L∞

t L6
x([t1,1]×{r>1})

≤ exp expAO(1),

which, together with Step 1, implies (5.44).

We note that Step 3 already provides a subcritical local regularity condition of the type of

Ladyzhenskaya-Prodi-Serrin, which guarantees local boundedness of all spatial derivatives

138



of u, and can be proved by employing the vorticity equation for example (see [50, Theo-

rem 13.7]). In the last step below we use a robust tail estimate of the pressure function

(recall Lemma 5.3) to provide a simpler justification of pointwise bounds by exp expAO(1).

Step 4. We prove that, if ∥u∥L∞([1−t1,1];W
k−1,6
uloc ) ≲ exp expAO(1) for some k ≥ 1 and

t1 = exp(− expAO(1)), then the same is true for k (with some other t1 of the same or-

der).

Let I = [a, b] ⊂ [t1, 1], and let χ ∈ C∞(R) be such that χ(t) = 0 for t < a + (b − a)/8

and χ(t) = 1 for t > (a + b)/2. We set ϕ ∈ C∞
c (B(0, 2); [0, 1]) such that ϕ = 1 on B(0, 1/2)

and
∑

j∈Z3 ϕj = 1, where ϕj := ϕ(· − j) for each j ∈ R3.

Letting v := χϕ∇ku we see that v(t1) = 0, and

vt −∆v = −χ′ϕ∇ku− 2χ∇ϕ · ∇(∇ku)− χ∆ϕ(∇ku)︸ ︷︷ ︸
=:f1

−χϕ div(1 + T )∇k(u⊗ u)

= f1 − ϕ div(1 + T )((χ∇ku⊗ u+ u⊗ χ∇ku)ϕ̃)

− χϕ div(1 + T )
∑

|α|+|β|+|γ|=k
|α|,|β|<k

Cα,β,γ(D
αu⊗DβuDγϕ̃)− χϕ div T∇k(u⊗ u(1− ϕ̃))

=: f1 + f2 + f3 + f4.

We can now estimate ∥v(t)∥6, by extracting the same norm on the right-hand side and

ensuring that the length of the interval is sufficiently small, so that the norm can be absorbed.
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Namely,

∥v(t)∥6 =
∥∥∥∥ˆ t

a

e(t−t′)∆f1(t
′)dt′ +

ˆ t

a

e(t−t′)∆f2(t
′)dt′ +

ˆ t

a

e(t−t′)∆f3(t
′)dt′ +

ˆ t

a

e(t−t′)∆f4(t
′)dt′

∥∥∥∥
6

≤
(
∥χ∇kuϕ̃∥L∞([a,t];L6) + ∥χ′∇k−1uϕ̃∥L∞([a,1];L6)

)ˆ t

a

∥Ψ(t− t′)∥W 1,1dt′

+ ∥χ∇kuϕ̃1/2∥L∞([a,t];L6)∥uϕ̃1/2∥L∞([a,t];L6)

ˆ t

a

∥Ψ(t− t′)∥W 1,6/5dt′

+ ∥u∥2
L∞([a,1];Wk−1,6

uloc )

ˆ t

a

∥Ψ(t− t′)∥W 1,6/5dt′

+ ∥ div T (u⊗ u(1− ϕ̃))∥L∞([a,1];Wk,6(B(0,2)))

ˆ t

a

∥Ψ(t− t′)∥1dt′

≤ ∥χ∇ku∥L∞([a,t];L6
uloc)

(
(b− a)1/2 + exp expAO(1)(b− a)1/4

)
+ exp expAO(1)

for each t ∈ (a, b), where we used Young’s inequality, heat estimates (5.18) and the Calderón-

Zygmund inequality. By replacing ϕ (in the definition of v) by ϕz for any z ∈ R3, we obtain

the same bound, and so

∥χ∇ku∥L∞([a,b];L6
uloc)

≤ ∥χ∇ku∥L∞([a,b];L6
uloc)

(b− a)1/4 exp expAO(1) + exp expAO(1).

Thus, for any b, a such that t1 ≤ a < b ≤ 1 and (b− a)1/4 ≤ exp expAO(1)/2 we can absorb

the first term on the right-hand side by the left-hand side to obtain

∥∇ku∥L∞([(a+b)/2,b];L6
uloc)

≤ exp expAO(1).

Since the upper bound is independent of the location of [a, b] ⊂ [t1, 1], we obtain the claim.

5.5.0.1 Proof of Lemma 5.6

Here we prove Lemma 5.6, namely that∥∥∥∇∂rur
r

∥∥∥
L2
3−uloc

+
∥∥∥∇∂3ur

r

∥∥∥
L2
3−uloc

≲ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

. (5.45)

To this end we recall (5.34) that

ur
r

= ∆−1∂3Γ− 2
∂r
r
∆−2∂3Γ.
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Since
∂r
r

= ∆′ − ∂rr,

we have that
ur
r

= −∆−1∂3Γ + 2(∂rr −∆′)∆−2∂3Γ. (5.46)

Thus, since |∇∂3 ur

r
| = |(∂r∂3 ur

r
, ∂3∂3

ur

r
)| (and similarly for |∇∂r ur

r
|), we can use (5.28) and

(5.29) to observe that∣∣∣∇∂3ur
r

∣∣∣+ ∣∣∣∇∂rur
r

∣∣∣ ≲ |D2
r,x3

∆−1∂3Γ|+ |D2
r,x3

(∂rr −∆′)∆−2∂3Γ|

≲ |∇Γ|+ |D2∆−1∇′Γ|+ |D4∆−2∇′Γ|,

where we used ∂33 = ∆−∆′ in the last line. In particular, each of the terms on the right-hand

side involves at least one derivative in the horizontal variables. Thus, in order to estimate

the left-hand side of (5.45) it suffices to find suitable bounds on the last two terms, which

we achieve in Lemmas 5.8–5.9 below. Their claims give us (5.45), as required.

Lemma 5.8. Let f = ∆−1∇′Γ. Then

∥D2f∥L2
3−uloc

≤ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

Proof. Let I(x) denote the kernel matrix of D2(−∆)−1. We have that

|∇jI(x)| ≤ C

|x|3+j
for j = 0, 1,

and

D2f(x) = p.v.

ˆ
R3

I(x− y)∇′Γ(y)dy

= p.v.

ˆ
R3

∇′Γ(y)ϕ̃(y3)I(x− y)dy + p.v.

ˆ
R3

Γ(y)(1− ϕ̃(y3))∇′I(x− y)dy

=: f1(x) + f2(x).

The Calderón-Zygmund inequality gives that

∥f1∥L2
3−uloc

≤ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

.
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Moreover, noting that
´
R2

dx1 dx2

(a2+x2
1+x2

2)
2 = Ca−2, we can use Young’s inequality for convolutions

to obtain

∥f2(·, x3)∥L2 ≤
ˆ
R

∥Γ(·, y3)∥L2(1− ϕ̃(y3))

|x3 − y3|2
dy3

≤
∑
j≥1

ˆ
{|x3−y3|∈(j,j+1)

∥Γ(·, y3)∥L2(1− ϕ̃(y3))

|x3 − y3|2
dy3

≤
∑
j≥1

j−2

ˆ
{|x3−y3|∈(j,j+1)

∥Γ(·, y3)∥L2dy3

≤ ∥Γ∥L2
3−uloc

.

integration in x3 over supp ϕ finishes the proof.

For the double Laplacian term one needs to work harder:

Lemma 5.9. Let f = D4∆−2∇′Γ. Then

∥f∥L2
3−uloc

≤ ∥Γ∥L2
3−uloc

+ ∥∇Γ∥L2
3−uloc

.

Proof. We have that

f(x) = p.v.

ˆ
R3

p.v.

ˆ
R3

∂3Γ(z)I(x− y)I(y − z)dz dy

Recalling that ϕ̃ =
∑

|j|≤10 ϕj, and
˜̃ϕ =

∑
|j|≤20 ϕj we use the partition of unity,

1 = ˜̃ϕ(z3) + (1− ˜̃ϕ(z3))ϕ̃(y3) +
∑
|j|>10
|k|>20

ϕj(y3)ϕk(z3)

= ˜̃ϕ(z3) + (1− ˜̃ϕ(z3))ϕ̃(y3)

+
∑
|j|>10

ϕj(y3)


∑
|k|>20

|k−j|≤10

ϕk(z3) +
∑
|k|>20

|k−j|>10
k≤j/2

ϕk(z3) +
∑
|k|>20

|k−j|>10
j/2<k≤2j

ϕk(z3) +
∑
|k|>20

|k−j|>10
k>2j

ϕk(z3)

 ,
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to decompose f accordingly,

f(x) = p.v.

ˆ
R3

p.v.

ˆ
R3

∇′Γ(z) ˜̃ϕ(z3)I(x− y)I(y − z)dy dz

+ p.v.

ˆ
R3

I(x− y)ϕ̃(y3)p.v.

ˆ
R3

∇′Γ(z)(1− ˜̃ϕ(z3))I(y − z)dz dy

+ p.v.

ˆ
R3

I(x− y)
∑
|j|>10

ϕj(y3)p.v.

ˆ
R3

∇′Γ(z)
∑
|k|>20

|k−j|≤10

ϕk(z3)I(y − z)dz dy

+ p.v.

ˆ
R3

I(x− y)
∑
|j|>10

ϕj(y3)p.v.

ˆ
R3

∇′Γ(z)
∑
|k|>20

|k−j|>10
k≤j/2

ϕk(z3)I(y − z)dz dy

+ p.v.

ˆ
R3

I(x− y)
∑
|j|>10

ϕj(y3)p.v.

ˆ
R3

∇′Γ(z)
∑
|k|>20

|k−j|>10
j/2<k≤2j

ϕk(z3)I(y − z)dz dy

+ p.v.

ˆ
R3

I(x− y)
∑
|j|>10

ϕj(y3)p.v.

ˆ
R3

∇′Γ(z)
∑
|k|>20

|k−j|>10
k>2j

ϕk(z3)I(y − z)dz dy

=: f1(x) + f2(x) + f3(x) + f4(x) + f5(x) + f6(x).

Clearly f1 involves localization of ∇′Γ in z3, and so we can use the Calderón-Zygmund

inequality twice to obtain

∥f1∥L2 ≲ ∥∇Γ∥L2
3−uloc

.

As for f2 we integrate by parts in the z-integral (note that this does not conflict with the

principal value, as the singularity has been cut off, and the far field has sufficient decay) and

apply the Calderón-Zygmund estimate in x to obtain

∥f2∥L2 ≲

∥∥∥∥∥ϕ̃(y3)
ˆ
R3

|Γ(z)|(1− ˜̃ϕ(z3))

|y − z|4
dz

∥∥∥∥∥
L2

≲ sup
y3∈supp ϕ̃

∥∥∥∥∥
ˆ
R3

|Γ(z)|(1− ˜̃ϕ(z3))

|y − z|4
dz

∥∥∥∥∥
L2
y′

≲ sup
y3∈supp ϕ̃

ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|y3 − z3|2
dz3

≲ sup
y3∈supp ϕ̃

∑
j≥1

j−2

ˆ
|z3−y3|∈(j,j+1)

∥Γ(·, z3)∥L2
z′
dz3 ≲ ∥Γ∥L2

3−uloc

where we used Young’s inequality in the second line (as in the lemma above).
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As for f3, we integrate by parts in z and then in y to obtain

|f3(x)| ≲
∑
|j|>10

ˆ
R3

ϕj(y3)

|x− y|4

∣∣∣∣∣∣∣∣p.v.
ˆ
R3

Γ(z)
∑
|k|>20

|k−j|≤10

ϕk(z3)I(y − z)dz

∣∣∣∣∣∣∣∣ dy.
We note that the integration by parts is justified as

f3 = D2(−∆)−1

(1−
∑
|j|≤10

ϕj(y3))D
2(−∆)−1

(
∇′Γ(1−

∑
k∈I

ϕk(z3)

) ,

where I := {−20, . . . , 20} ∪ {j − 10, . . . , j + 10} is a finite index set. Thus, the operation of

integration by parts above is equivalent to moving ∇′ outside of the outer brackets, which

in turn holds since the sums do not depend on x′ and ∇′ commutes with other differential

symbols .

Thus, using Young’s inequality in x′

∥f3(·, x3)∥L2
x′
≲
∑
|j|>10

ˆ
R

ϕj(y3)

|x3 − y3|2

∥∥∥∥∥∥∥∥p.v.
ˆ
R3

Γ(z)
∑
|k|>6

|k−j|≤2

ϕk(z3)I(y − z)dz

∥∥∥∥∥∥∥∥
L2
y′

dy3

≲
∑
|j|>2

j−2

∥∥∥∥∥∥∥∥p.v.
ˆ
R3

Γ(z)
∑
|k|>20

|k−j|≤10

ϕk(z3)I(y − z)dz

∥∥∥∥∥∥∥∥
L2
y

≲
∑
|j|>10

j−2

∥∥∥∥∥∥∥∥Γ(z)
∑
|k|>20

|k−j|≤10

ϕk(z3)

∥∥∥∥∥∥∥∥
L2

≲ ∥Γ∥L2
3−uloc

for each x3 ∈ supp ϕ, where we applied the Cauchy-Schwarz inequality (in y3) in the second

line.

As for f4 we note that

|y3 − z3| ≥ |y3| − |z3| ≥ (j − 1)− (k + 1) ≥ j

2
− 2 ≥ (j + 2)/4 ≥ (|y3|+ 1)/4 ≥ |y3 − x3|/4
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Thus, we can integrate by parts in z to obtain

|f4(x)| ≤
ˆ
R3

ˆ
R3∩{|y3−z3|≥|x3−y3|/4}

|Γ(z)|(1− ϕ̃(y3))(1− ϕ̃(y3 − z3))

|x− y|3|y − z|4
dz dy

Thus, applying Young’s inequality in x′ and then in y′ we obtain

∥f4(·, x3)∥L2 ≤
ˆ
R

∥∥∥∥∥
ˆ
R3∩{|y3−z3|≥|x3−y3|/4}

Γ(z)(1− ϕ̃(y3))(1− ϕ̃(y3 − z3))

|y − z|4
dz

∥∥∥∥∥
L2
y′

·
ˆ
R2

dx1 dx2

(|x3 − y3|2 + x21 + x22)
3/2︸ ︷︷ ︸

=C|x3−y3|−1

dy3

≲
ˆ
R

ˆ
R∩{|y3−z3|≥|x3−y3|/4}

∥Γ(·, z3)∥L2(1− ϕ̃(y3))(1− ϕ̃(y3 − z3))

|x3 − y3| |y3 − z3|2
dz3 dy3.

(5.47)

Hence

∥f4(·, x3)∥L2 ≤
ˆ
R

1− ϕ̃(y3)

|x3 − y3|3/2

(∑
j≥1

ˆ
{|y3−z3|∈(j,j+1)}

∥Γ(·, z3)∥L2

|y3 − z3|3/2
dz3

)
dy3

≲ ∥Γ∥L2
3−uloc

ˆ
R

1− ϕ̃(y3)

|x3 − y3|3/2
dy3 ≲ ∥Γ∥L2

3−uloc
.

As for f5 we have
1

4
≤ |x3 − y3|

|x3 − z3|
≤ 4,

since

|x3 − y3| ≤ |y3|+ |x3| ≤ j + 2 ≤ 2j − 8 ≤ 4k − 8 ≤ 4(|z3| − |x3|) ≤ 4|x3 − z3|

and

|x3 − z3| ≤ |z3|+ |x3| ≤ k + 2 ≤ 2j + 2 ≤ 4(j − 2) ≤ 4(|y3| − |x3|) ≤ 4|x3 − y3|.

In particular, the triangle inequality gives that

|y3 − z3| ≤ 5|x3 − z3|.

145



Thus we can integrate by parts twice (in z and then in y, so that the derivative falls on

I(x− y)), and then use Young’s inequality twice (as in (5.47) above) and Tonelli’s Theorem

to obtain

∥f5(·, x3)∥L2 ≤
ˆ
R

ˆ
{|x3−y3|/4≤|x3−z3|≤4|x3−y3|}

∥Γ(·, z3)∥L2(1− ϕ̃(y3 − z3))(1− ˜̃ϕ(z3))

|x3 − y3|2|y3 − z3|
dz3 dy3

≤
ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|x3 − z3|2

ˆ
{|y3−z3|≤5|x3−x3|}

1− ϕ̃(y3 − z3)

|y3 − z3|
dy3 dz3

≲
ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|x3 − z3|2
log(5|x3 − z3|)dz3

≲
∑
j≥1

ˆ
|z3−x3|∈(j,j+1)

∥Γ(·, z3)∥L2

|x3 − z3|2
log(5|x3 − z3|)dz3

≲
∑
j≥1

j−2 log(5j)∥Γ∥L2
3−uloc

≲ ∥Γ∥L2
3−uloc

Finally, for f6 we observe that

1

4
≤ |x3 − z3|

|y3 − z3|
≤ 4,

since

|y3 − z3| ≥ |z3| − |y3| ≥ k − j − 2 >
k − 8

2
≥ k + 2

4
≥ |x3|+ |z3|

4
≥ |x3 − z3|

4

and

|y3 − z3| ≤ |y3|+ |z3| ≤ j + k + 2 ≤ 3k + 4

2
≤ 4(k − 2) ≤ 4(|z3| − |x3|) ≤ 4|x3 − z3|.

In particular, the triangle inequality gives that

|x3 − y3| ≤ 5|x3 − z3|.

Thus, similarly to the case of f5 (although without integrating by parts in y), we apply
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Young’s inequality twice and Tonelli’s Theorem to obtain

∥f6(·, x3)∥L2 ≤
ˆ
R

ˆ
R

∥Γ(·, z3)∥L2(1− ϕ̃(y3))(1− ˜̃ϕ(z3))

|x3 − y3||y3 − z3|2
dz3 dy3

≤
ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|x3 − z3|2

ˆ
{ 1
4
|z3−x3|≤|y3−z3|≤4|z3−x3|}

1− ϕ̃(y3)

|x3 − y3|
dy3 dz3

≤
ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|x3 − z3|2

ˆ
{1≤|x3−y3|≤5|x3−z3|}

1

|x3 − y3|
dy3 dz3

≲
ˆ
R

∥Γ(·, z3)∥L2(1− ˜̃ϕ(z3))

|x3 − z3|2
log(5|x3 − z3|)dz3

≲
∑
j≥1

ˆ
|z3−x3|∈(j,j+1)

∥Γ(·, z3)∥L2 log(5|x3 − z3|)
|x3 − z3|2

dz3

≲
∑
j≥1

log(5j)j−2∥Γ∥L2
3−uloc

≲ ∥Γ∥L2
3−uloc

for x3 ∈ supp ϕ. Integration of the squares of the above estimates for f3, f4, f5, f6 gives the

claim.

5.6 Lower bounds on the self-similar length scale

An application of the quantitative estimate in Theorem 5.1 above is an estimate on the

length scale up to which an axisymmetric solution to the NSE (1.2) can be approximated by

a self-similar profile as in (5.2).

In order to make this precise, we will say that a vector field b ∈ L∞(R3;R3) is nearly-

spherical if there exists δ ∈ (0, 1/2) such that for every R > 0, there exists x0 ∈ R3 with

|x0| = R such that

|b(x0)| ≥
∥b∥∞
2

and |b(x)− b(x0)| ≤
∥b∥∞
4

for all x ∈ B(x0, δ|x0|). (5.48)

Clearly any spherical profile b(x) = a(x/|x|) is nearly-spherical for every a ∈ C(∂B(0, 1)) (in

which case the choice of δ for (5.48) to hold can be made by a simple continuity argument).

Let ψ ∈ C∞
c (R3; [0, 1]) be such that

´
ψ = 1, and let ψl(x) := l−3ψ(x/l) denote a mollifier of

a given length scale l > 0. We also set ψ̃l := ψl ∗ ψl.
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We note that, letting R := 2l/δ, we can find x0 ∈ R3 with |x0| = 2l/δ and satisfying

(5.48). In particular∣∣∣∣(ψ̃l ∗
b(·)
| · |

)
(x0)

∣∣∣∣ = ∣∣∣∣ˆ
B(x0,2l)

ψ̃l(x0 − y)
b(y)

|y|
dy

∣∣∣∣ ≳ |b(x0)| − ∥b∥∞/4
(1 + δ)|x0|

≥ δ∥b∥∞
16l

,

which shows that ∥∥∥∥ψ̃l ∗
b(·)
| · |

∥∥∥∥
∞

≥ δ∥b∥∞
16l

(5.49)

for every length scale l > 0. This simple fact lets us deduce from Theorem 5.1 that, if an

axisymmetric solution approximates a self-similar profile b(t, x)/|x| up to length scale l(t),

where b is nearly-spherical uniformly on [0, t], then l(t) cannot be smaller than a particular

quantitative threshold.

Corollary 5.10. If u is a strong axisymmetric solution u of (1.2) on [0, T ],∥∥∥u(t)− ψl(t) ∗
b(t, x)

|x|

∥∥∥
L3,∞

≤ σ∥b(t)∥∞ (5.50)

for t ∈ [0, T ], and σ < cδ, where c > 0 is a sufficiently small constant and b(T ) is nearly-

spherical with constant δ, then

l(T ) ≳ δT
1
2∥b(T )∥∞ exp

(
− exp

(
∥b∥O(1)

L∞
t,x([0,T ]×R3)

))
.

Proof. We note that, at time T , we can use (5.49) to obtain that

∥u∥∞ ≳ ∥ψl ∗ u∥∞

≥
∥∥∥∥ψ̃l ∗

b(·)
| · |

∥∥∥∥
∞
−
∥∥∥∥ψl ∗

(
u− ψl ∗

b(·)
| · |

)∥∥∥∥
∞

≥ δ∥b∥∞
16l

− Cl−1

∥∥∥∥u− ψl ∗
b(·)
| · |

∥∥∥∥
L3,∞

≥
(
δ

16
− C σ

)
∥b∥∞
l

.

Thus ∥u(T )∥∞ ≥ δ∥b(T )∥∞/32l if σ ∈ (0, δ/32C). Since also

∥u(t)∥L3,∞ ≤
∥∥∥∥ψ̃l(t) ∗

b(t, ·)
| · |

∥∥∥∥
L3,∞

+

∥∥∥∥u(t)− ψl(t) ∗
b(t, ·)
| · |

∥∥∥∥
L3,∞

≤ C∥b(t, ·)∥∞,

148



for all t ∈ [0, T ], Theorem 5.1 implies that

δ∥b(T )∥∞
32 l(T )

≤ ∥u(T )∥∞ ≲ T−1/2 exp exp
(
∥b∥O(1)

L∞([0,T ]×R3)

)
,

from which the claim follows.
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APPENDIX A

Quantitative parabolic theory

A.1 Carleman inequalities for the heat equation

We quote from [60, Lemma 4.1] the general Carleman inequality for the backward heat

operator L = ∂t + ∆ from which Carleman inequalities for specific domains and weight

functions can be derived. Note that it is conventional to work with the backward heat

operator even though we intend to apply these estimates to the forward heat equation.

Lemma A.1. Let [t1, t2] be a time interval and u : C∞
c ([t1, t2]×Rd → Rm) solve the backwards

heat equation

Lu = f.

Fix a smooth weight function g : [t1, t2]× Rd → R and define

F = ∂tg −∆g − |∇g|2.

Then we have
ˆ t2

t1

ˆ
Rd

(
1

2
(LF )|u|2 + 2D2g(∇u,∇u)

)
egdxdt

≤ 1

2

ˆ t2

t1

ˆ
Rd

|Lu|2egdxdt+
ˆ
Rd

(
|∇u|2 + 1

2
F |u|2

)
egdx

∣∣∣t=t2

t=t1
.

(A.1)

Our first application of this lemma is to a Carleman estimate resembling the one used

to prove backward uniqueness for the heat operator in [22] and the quantitative analog

appearing in [60]. Unfortunately that estimate relies on the differential inequality (A.2)
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holding in an annular region (or, in the qualitative case, the complement of a ball), which

cannot possibly be contained in the cylindrical regions of regularity provided by Proposition

2.19. Thus we prove a variant that is suited to this geometry.

In this section only, since we give the result in the general setting Rd1+d2 (where the last

d2 coordinates correspond to the “axis”), we extend the definition of r and define |z| to be

r :=
√
x21 + · · ·+ x2d1 , |z| :=

√
x2d1+1 + · · ·x2d1+d2

.

The regions S(r−, r+), etc. are defined in the same way as before but in terms of the gener-

alized r and |z| coordinates, where naturally |z| replaces |x3|.

Proposition A.2 generalizes a quantitative Carleman inequality from [60] which corre-

sponds to the case d1 = 3, d2 = 0. In the case at hand, we will be using the case d1 = 2,

d2 = 1.

Proposition A.2 (Backward uniqueness Carleman estimate). Let d1 ≥ 1, d2 ≥ 0, T > 0,

0 < r− < r+, and C denote the spacetime region

C = {(t, x) ∈ R× Rd1+d2 : t ∈ [0, T ], r− ≤ r ≤ r+, |z| ≤ r+}.

Let u : C → R be a smooth function obeying the differential inequality

|Lu| ≤ 1

C0T
|u|+ 1

(C0T )1/2
|∇u| (A.2)

on C. Assume the inequality

r2− ≥ 4C0T.

Then one has

ˆ T/4

0

ˆ
S(10r−,

r+
2
;
r+
2
)

(T−1|u|2 + |∇u|2)dxdt ≲ C0e
− r−r+

4C0T (X + e
2r2+
C0T Y )

where

X =

ˆ ˆ
C
e2|x|

2/C0T (T−1|u(t, x)|2 + |∇u(t, x)|2)dxdt
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and

Y =

ˆ
S(r−,r+;r+)

|u(0, x)|2dx.

Proof. We may assume r+ ≥ 20r−. The pigeonhole principle implies the existence of a

T0 ∈ [T/2, T ] such that

ˆ
S(r−,r+;r+)

e2|x|
2/C0T (T−1|u(T0, x)|2 + |∇u(T0, x)|2)dx ≲ T−1X. (A.3)

With the weight

g(x, t) =
r+(T0 − t)

2C0T 2
r +

1

C0T
|x|2,

we apply the general Carleman inequality to ψu, where ψ is a smooth spatial cutoff supported

in S(r−, r+; r+) that equals 1 in S(2r−, r+/2; r+/2) and obeys |∇jψ(x)| ≲ r−j
− for j = 0, 1, 2.

Since the function r is convex, we have

D2g ≥ 2

C0T
Id

as quadratic forms. With F = ∂tg −∆g − |∇g|2, we compute

F = − r+
2C0T 2

r − r+(T0 − t)

2C0T 2

d1 − 1

r
− 2(d1 + d2)

C0T
−
r2+(T0 − t)2

4C2
0T

4
− 4

C2
0T

2
|x|2 − 2r+(T0 − t)

C2
0T

3
r

≤ 0.

It follows that

LF =
r2+(T0 − t)

2C2
0T

4
+

2r+
C2

0T
3
r − r+(T0 − t)

2C0T 2

(d1 − 1)(3− d1)

r3

−8(d1 + d2)

C2
0T

2
− 2r+(T0 − t)

C2
0T

3

d1 − 1

r
.

By using the bounds 2(C0T )
1/2 ≤ r− ≤ r ≤ r+, one finds that

r+(T0 − t)

2C0T 2

(d1 − 1)(3− d1)

r3
+

8(d1 + d2)

C2
0T

2
+

2r+(T0 − t)

C2
0T

3

d1 − 1

r
≤ 3(d1 + d2)r+

C3
0T

3
r.
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Therefore, letting C0 ≥ 3(d1 + d2),

LF ≥ r+r

C2
0T

3
≥ 4

C0T 2
.

Putting this information into the general inequality (A.1), we have

ˆ T0

0

ˆ
S(2r−,

r+
2
;
r+
2
)

(
2

C0T 2
|u|2 + 4

C0T
|∇u|2

)
egdxdt

≤ 1

2

ˆ T0

0

ˆ
Rd1+d2

|L(ψu)|2egdxdt+
ˆ
Rd1+d2

|∇(ψu)(T0, x)|2eg(T0,x)dx

+
1

2

ˆ
Rd1+d2

|F (0, x)||ψu(0, x)|2eg(0,x)dx.

In the region S(2r−, r+2 ;
r+
2
), ψ is identically 1 so thanks to the pointwise bound on Lu, this

part of the integral in the first term on the right-hand side can be absorbed into the left-hand

side. Moreover, throughout all of C, using the bounds on ∇jψ and r−,

|L(ψu)|2 = |ψLu+ 2∇ψ · ∇u+ (∆ψ)u|2 ≲ (C0T )
−2|u|2 + (C0T )

−1|∇u|2.

Similarly,

|∇(ψu)|2 = |ψ∇u+∇ψu|2 ≲ |∇u|2 + (C0T )
−1|u|2.

By limiting the time interval for the integral on the left-hand side to [0, T/4] and the r

interval to [10r−, r+/2], we find that on this region of integration

g(x, t) ≥ 5r−r+
4C0T

.

Therefore

e
5r−r+
4C0T

ˆ T/4

0

ˆ
S(10r−,

r+
2
;
r+
2
)

(
1

C0T 2
|u|2 + 1

C0T
|∇u|2

)
dxdt

≲
ˆ T0

0

ˆ
S(r−,2r−;

r+
2
)∪S( r+

2
,r+;

r+
2
)∪S(r−,r+;

r+
2
,r+)

(
1

(C0T )2
|u|2 + 1

C0T
|∇u|2

)
egdxdt

+

ˆ
S(r−,r+;r+)

(
|∇u(T0, x)|2 +

1

C0T
|u(T0, x)|2

)
eg(T0,x)

+

ˆ
S(r−,r+;r+)

|F (0, x)||u(0, x)|2eg(0,x)dx.
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Consider the first term on the right-hand side. Within the region of integration, we have

g(x, t)− 2|x|2

C0T
− 5r−r+

4C0T
=
r+(T0 − t)

2C0T 2
r − 1

C0T
|x|2 − 5r−r+

4C0T
≤ − r+r−

4C0T
.

Indeed, in S(r−, 2r−) ∪ S( r+
2
, r+), this is maximized at r = 2r−, |z| = 0 where the given

upper bound holds. In {|z| ∈ [r+/2, r+]}, the quantity is clearly largest when |z| = r+/2, so

we have the upper bound

r+
2C0T

r − 1

C0T

(
r2 +

r2+
4

)
− 5r−r+

4C0T

which is largest when r = r+/4, yielding an upper bound of − 3r2+
16C0T

≤ − r+r−
4C0T

.

In conclusion, after dividing both sides of the inequality by e
5r−r+
4C0T , the first term on the

right-hand side has a weight bounded by e
2|x|2
C0T

− r+r−
4C0T so the whole term can be absorbed into

e
− r+r−

4C0T X/T . Similarly, eg(T0,x) = e
|x|2
C0T so by the definition of T0, the second term on the right

has the same upper bound. Thus we have

ˆ T/4

0

ˆ
S(10r−,

r+
2
;r+/2)

(
1

C0T 2
|u|2 + 1

C0T
|∇u|2

)
dxdt

≲ e
− r+r−

4C0T

(
T−1X +

ˆ
S(r−,r+;r+)

|F (0, x)||u(0, x)|2eg(0,x)dx
)
.

To conclude, we easily have

|F (0, x)| ≤
r2+
C0T 2

and

eg(0) ≤ e
3r2+
2C0T

when x is restricted to S(r−, r+; r+). Therefore

|F (0, x)|eg(0) ≤ e
2r2+
C0T T−1

which completes the proof.

The next Carleman inequality we quote directly from [60].
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Proposition A.3 (Unique continuation Carleman inequality). Define the cylindrical space-

time region

C = {(t, x) ∈ R× R3 : t ∈ [0, T ], |x| ≤ ρ}.

Let u : C → R3 be a smooth function obeying (A.2) on C. Assume

ρ2 ≥ 4000T.

Then for any

0 < t1 ≤ t0 ≤
T

1000
,

one has

ˆ 2t0

t0

ˆ
|x|≤ ρ

2

(T−1|u|2 + |∇u|2)e−|x|2/4tdxdt ≲ e
− ρ2

500t0X + t
3/2
0 (et0/t1)

O(ρ2/t0)Y

where

X =

ˆ T

0

ˆ
|x|≤ρ

(T−1|u|2 + |∇u|2)dxdt

and

Y =

ˆ
|x|≤ρ

|u(0, x)|2t−3/2
1 e−|x|2/4t1dx.

A.2 Harnack-type inequalities

Here we consider the parabolic equation

MV := ∂tV −∆V + b · ∇V = 0 (A.4)

in a space-time cylinder

QR(x0, t0) := B(x0, R)× (t0 −R2, t0).
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We assume that at each point of QR

either div b = 0 or V = 0. (A.5)

We also assume that

N (R) := 2 + sup
R′≤R

(R′)−α∥b∥Lℓ
tL

q
x(QR′ ) <∞ (A.6)

where α := 3
q
+ 2

ℓ
− 1 ∈ [0, 1). In such setting [38, Corollary 3.6] observed that V must be

Hölder continuous in the interior of QR, and in the proposition below we state a version of

their result in which we quantify the dependence of the Hölder exponent in terms of N .

Proposition A.4. If V is a Lipschitz solution of (A.4) then

osc
B(r)

V (0) ≲
( r
R

)γ
osc
Q(R)

V

for all r ≤ R, where γ = exp(−NO(1)).

We note that the swirl Θ satisfies (A.4) with b := u+2er/r (recall (5.36) above). Moreover

div b = 0 everywhere except for the axis, since div u = 0, div(er/r) = 0 (recall (5.26)) there.

Moreover, V = 0 on the axis (recall (5.37)), and so the assumption (A.5) holds. Thus

Proposition A.4 shows that Θ is Hölder continuous in a neighbourhood of the axis. We

explore this in more detail in the proof of Theorem 5.1, where we quantify N in terms of

the weak-L3 bound A (see Step 1 in subsection 5.4).

Here we prove Proposition A.4. Namely, we consider parabolic cylinders

Qλ,θ
R (t0, x0) := [t0 − θR2, t0]×B(x0, λR), Qλ,θ

R := Qλ,θ
R (0, 0), QR := Q1,1

R

and we consider Lipschitz solutions V of MV = 0 on Qλ,θ
R , namely we suppose thatˆ

R

ˆ
(∂tV ϕ+∇V · ∇ϕ+ b · ∇V ϕ) = 0 (A.7)

for all ϕ ∈ C∞
c (Qλ,θ

R ), where the (distributional) supports of div b and V are disjoint. More-

over we assume that (A.6) holds, namely

N (R) := 2 + sup
R′≤2R

(R′)−α∥b∥Lℓ
tL

q
x(QR′ ) <∞
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where α := n
q
+ 2

ℓ
− 1 ∈ [0, 1). We also say that V is a subsolution (or supersolution) of

MV = 0, i.e. MV ≤ 0 (or MV ≥ 0), if (A.7) holds with “=” replaced by “≤” (or “≥”) for

all nonnegative test functions.

We will show that

osc
B(r)

V (0) ≲
( r
R

)γ
osc
Q(R)

V (A.8)

for all r ≤ R, where γ = exp(−NO(1)).

To this end we first prove the Harnack inequality for Lipschitz subsolutions of MV = 0.

Lemma A.5 (based on Lemma 3.1 in [38]). Let V be a Lipschitz solution of MV ≤ 0 in

Qλ,θ
R where λ ∈ (1, 2] and θ ∈ (0, 1]. Then

sup
Q

1,θ/2
R

V+ ≤ (N /θ)C

( 
Qλ,θ

R

V 2
+

) 1
2

.

Proof. We first note that for any r, a such that

3

r
+

2

a
∈
[
3

2
,
5

2

]
we have the interpolation inequality

∥ζU∥La
tL

r
x(Q

λ,θ
R ) ≲λ,θ R

3
r
+ 2

a
− 3

2∥ζU∥V(Qλ,θ
R ) (A.9)

by [30, (3.4) in Chapter II], where V is the energy space L∞
t L

2
x ∩ L2

t Ḣ
1
x.

Since V is a subsolution, we have, for a non-negative test function η,
ˆ
Qλ,θ

R

(∂tV η +∇V · ∇η + b · ∇V η) ≤ 0.

We let η = φ′(V )ξ where ξ is a cutoff function vanishing on a neighborhood of the boundary

of Qλ,θ
R , and φ is a convex function vanishing on R−. Taking U := φ(V ) then gives

ˆ
Qλ,θ

R ∩{V >0}

(
∂tUξ +∇U · ∇ξ + φ′′(V )

φ′(V )2
|∇U |2ξ + b · ∇Uξ

)
≤ 0.
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We now take

φ(τ) := τ p+ (p > 1) and ξ := χ{t<t}Uζ
2,

where ζ is a smooth cutoff function in Qλ,θ
R and t ∈ (−θR2, 0),

ˆ
BλR

(ζU)2(t)dx+

ˆ
Qλ,θ

R ∩{t<t}
(2− p−1)|∇U |2ζ2+U∇U ·∇(ζ2)+

1

2
b ·∇(U2)ζ2− ∂t(ζ

2)U2 ≤ 0.

(A.10)

Using integration by parts and recalling the assumption div b ≥ 0, we can apply Hölder’s

inequality to obtain

ˆ
Qλ,θ

R ∩{t<t}
b · ∇(U2)ζ2 ≥ −

ˆ
Qλ,θ

R ∩−{t<t}
b · ∇(ζ2)U2

≥ −∥b∥Lℓ
tL

q
x(Q

λ,θ
R )∥|U |

1
s ζ

1
s
−1∇ζ∥L2s

t,x(Q)∥(ζ|U |)2−
1
s∥

L
(1− 1

2s− 1
ℓ
)−1

t L
(1− 1

2s− 1
q )−1

x (Q)

= −∥b∥Lℓ
tL

q
x(Q

λ,θ
R )∥Uζ

1−s|∇ζ|s∥
1
s

L2
t,x(Q

λ,θ
R )

∥ζU∥2−
1
s

La
tL

r
x(Q

λ,θ
R )

where s > 2 and r and a are defined by

1

2s
+

1

q
+

1

r

(
2− 1

s

)
= 1,

1

2s
+

1

ℓ
+

1

a

(
2− 1

s

)
= 1.

Applying Young’s inequality to separate the last term, and utilizing the interpolation in-

equality (A.9) (which is valid since

3

r
+

2

a
=

3

2
+ 1− 2

(
1 + 2/

(
3

q
+

2

ℓ

))−1

∈ (3/2, 11/6),

as needed) we obtain, after plugging into the local energy inequality (A.10),

sup
t∈[−θR2,0]

ˆ
BλR

(ζU)2dx+

ˆ
Qλ,θ

R ∩{t<t}
(2− p−1)|∇U |2ζ2 + U∇U · ∇(ζ2)− ∂t(ζ

2)U2

−O
(
R2∥b∥2s

Lℓ
tL

q
x(Q

λ,θ
R )

∥Uζ1−s|∇ζ|s∥2
L2
t,x(Q

λ,θ
R )

)
− 1

10
∥ζU∥2V(Qλ,θ

R )
≤ 0.

Absorbing ∇U from the term on the third term on the left-hand side by the second term we

obtain

∥ζU∥2V(Qλ,θ
R )

≲
ˆ
Qλ,θ

R

(
|∇ζ|2 + ζ|∂tζ|+R2∥b∥2s

Lℓ
tL

q
x(Q

λ,θ
R )
ζ2−2s|∇ζ|2s

)
U2.
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We now set

λm := 1 + 2−m(λ− 1) and θm :=
1

2
θ(1 + 4−m),

and we substitute ζ with ζm such that

ζm ≡ 1 in Q
λm+1,θm+1

R , ζm ≡ 0 outside Qλm,θm
R , |∂tζm| ≤

4mC

θR2
,

|∇ζm|

ζ
1− 1

s
m

≤ 2mC

R
,

where C may depend on λ. Then the energy estimate and (A.9), taken with r = l = 10/3,

yield

∥ζmU∥L10/3
t,x (Qλ,θ

R )
≲ ∥ζmU∥V(Qλ,θ

R ) ≤ CR−1(θ−
1
2 + 2m +N s)2ms∥U∥L2

t,x(Q
λ,θ
R ).

Recalling the definition of U and replacing p with pm := (5/3)m, Hölder’s inequality implies( 
Q

λm+1,θm+1
R

u
2pm+1

+

) 1
2pm+1

≤

(
C

 
Qλm,θm

R

(ζmU)
10/3

) 1
rpm

≤

(
Cθ−1

m N 2s4m(s+1)

 
Qλm,θm

R

u2pm+

) 1
2pm

.

Iterating, we have( 
Qλm,θm

R

u2pm+

) 1
2pm

≤
m−1∏
k=0

(
C

θ
4k(s+1)N s

) 1
2pk

( 
Qλ,θ

R

u2+

) 1
2

and we conclude by taking m→ ∞.

In the next three lemmas we focus on nonnegative solutions to MV ≤ 0 and we find

lower bounds on the mass distribution of such solutions. We first show that if V ≥ k in

QR, except for a small (quantified) “portion of QR”, then in fact V ≥ k/2 everywhere in a

smaller cylinder.

Lemma A.6 (based on part 2 of Corollary 3.1 in [38]). If V is a non-negative solution of

MV ≥ 0 in Qλ,θ
R and

|{V < k} ∩Qλ,θ
R | ≤ (N /θ)−5C |Qλ,θ

R |,
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then

V ≥ k

2
in Q

1,θ/2
R .

Proof. We apply Lemma A.5 to k − V to find

sup
Q

1,θ/2
1

(k − V )+ ≤ (N /θ)C

( 
Qλ,θ

R

(k − V )2+

) 1
2

≤ N−1k

which implies the result.

We now show that, if the cylinder Q1,θ
R is flat enough, then a lower bound on the bottom

lid of Q1,θ
R (i.e. at t = −θR2) implies a similar lower bound at every t.

Lemma A.7 (based on Lemma 3.2 in [38]). Suppose V is non-negative with MV ≥ 0 in a

neighbuorhood of Q1,θ0
R and

|{V (−θ0R2) ≥ k} ∩BR| ≥ δ0|BR|

for some δ0 > 0 and θ0 ≤ C−1δ60N−1. Then

|{V (t) ≥ 1

3
δ0k} ∩BR| ≥

1

3
δ0|BR|

for all t ∈ [−θ0R2, 0].

Proof. By the calculations in [38], with ζ a smooth cutoff function supported in BR,ˆ
BR

(V (t)− k)2−ζ
2 +

ˆ
Q

1,θ0
R

χ{t<t}|∇(V − k)−|2ζ2 ≤
ˆ
BR

(V (−θ0R2)−K)2−ζ
2 (A.11)

+

ˆ
Q

1,θ0
R

χ{t<t}(V − k)2−
(
O(|∇ζ|2) + b · ∇(ζ2) + (div b)ζ2

)
. (A.12)

We choose ζ such that ζ ≡ 1 in B(1−σ)R and |∇ζ| ≤ 2
σR

where σ < 1 is to be specified. Note

that due to (A.5),
ˆ
Q

1,θ0
R

χ{t<t}(V − k)2−(div b)ζ
2 ≤ k2

ˆ
Q

1,θ0
R

χ{t<t}(div b)ζ
2

= −k2
ˆ
Q

1,θ0
R

χ{t<t}b · ∇(ζ2).
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Then the right-hand side of (A.11) is bounded by

k2
(
(1− δ0)|BR|+O(θ0σ

−2|BR|) +
4

σR
∥b∥Lℓ

tL
q
x(QR)∥1∥Lℓ′

t Lq′
x (Q

1,θ0
R )

)
.

From here one can proceed with the argument exactly as in [38] to arrive at∣∣∣∣{V (t) <
1

3
δ0k

}
∩BR

∣∣∣∣ ≤ (1− 1

3
δ0

)−2

(1− δ0 +O(σ + σ−2θ0 + σ−1θ
2/ℓ′

0 N )).

Setting σ = C−1/5δ20 and θ0 as above proves the claimed bound.

We now show that for any given “portion of Q1,θ
R ” (in the sense of a set with the measure

arbitrarily close to |Q1,θ|) V is greater or equal a constant multiple of some lower bound, if,

for each t, the lower bound occurs at least on some “portion of BR”. Although this enables

us to obtain a lower bound on almost the entire cylinder, we lose an exponential in the

process.

Lemma A.8 (based on Lemma 3.3 in [38]). Let V ≥ 0 be a solution of MV ≥ 0 in Qλ,θ
R

satisfying

|{V (t) ≥ k0} ∩BR| ≥ δ1|BR| for all t ∈ [−θR2, 0]

for some k0 > 0, δ1 > 0. Then for any µ > 0 and s > C(N + θ−1)/(δ1µ)
2,

|{V < 2−sk0} ∩Q1,θ
R | ≤ µ|Q1,θ

R |.

Proof. With km = 2−mk0, we define

Em(t) := {x ∈ BR : km+1 ≤ V (x, t) < km}; Em := {(t, x) ∈ Q1,θ
R : x ∈ Em(t)}.

Integrating the inequality MV ≥ 0 against the test function η = (V − km)−ξ(x)
2 where ξ is

a smooth cutoff vanishing in a neighborhood of ∂BλR and satisfying ξ ≡ 1 in BR,ˆ
Qλ,θ

R ∩{V <km}
|∇V |2ξ2 ≤

ˆ
Qλ,θ

R

|∇(V − km)−|2ξ2 ≲
ˆ
BλR∩{V <km}

(V − km)
2
−ξ

2

∣∣∣∣
t=−θR2

+

ˆ 0

−θR2

ˆ
BλR∩{V <km}

(V − km)
2
−|∇ξ|2 + 2(V − km)

2
−ξb · ∇ξ

≲ k2mR
n(1 + θN ) (A.13)

161



by Hölder’s inequality and the trivial bound 0 ≤ (V − km)− ≤ km. From De Giorgi’s

inequality [30, (5.6) in Chapter II],

(km − km+1)|{V (t) < km+1} ∩BR| ≲
R

δ1

ˆ
Em(t)

|∇V (t)|

for all t ∈ [−θR2, 0]. Integrating in time, squaring, and applying Cauchy-Schwarz gives

k2m+1

∣∣∣{V < km+1} ∩Q1,θ
R

∣∣∣2 ≲ R2

δ21

ˆ
Em

|∇V |2dxdt|Em|.

Combined with (A.13), this gives∣∣∣{V < km+1} ∩Q1,θ
R

∣∣∣2 ≲ δ−2
1 Rn+2(1 + θN )|Em|.

We conclude

s
∣∣∣{V < ks} ∩Q1,θ

R

∣∣∣2 ≤ s−1∑
m=0

∣∣∣{V < km+1} ∩Q1,θ
R

∣∣∣2
≲ δ−2

1 Rn+2(1 + θN )
s−1∑
m=0

|Em|

≲ δ−2
1 (θ−1 +N )|Q1,θ

R |2.

We can now combine Lemmas A.6–A.8 to obtain a pointwise lower bound for V in the

interior of a cylinder, with an exponential dependence on N .

Lemma A.9 (based on part 1 of Corollary 3.2 in [38]). If V is a non-negative solution of

MV ≥ 0 in Q2,1
R and

|{V (−ΘR2) ≥ k} ∩BR| ≥ δ|BR|

for some k > 0 and Θ ≤ C−1δ6N−1, then

V ≥ exp(−δ−2(N /Θ)20C)k in Q
1,Θ/2
R .
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Proof. This is a straightforward application of Lemmas A.7, A.8, and A.6 in sequence, with

the latter two applied with R → 3
2
R to compensate for the shrinking domain in Lemma

A.6.

By considering V − inf V and supV − V the above lemma now allows us to estimate

oscillations of solutions to MV = 0 with no sign restrictions.

Lemma A.10 (based on Lemma 3.5 of [38]). If V solves MV = 0 in Q2,1
R then

osc
Q(1)

V ≤ (1− exp(−N 50C)) osc
Q(2)

V

where Q(1) = Q
1,Θ/2
R , Q(2) = Q2,1

R , and Θ = C−2N−1.

Proof. Consider the positive supersolutions V1 = V − infQ(2) V and V2 = supQ(2) V −V . With

k = oscQ(2) V , clearly we must have |{Vi(−ΘR2) ≥ k} ∩ B2R| ≥ |B2R|/2 for either i = 1 or

i = 2. Fix this i, so Vi obeys the hypotheses of Lemma A.9. Let us assume for concreteness

that i = 1; the other case is analogous. Then by the lemma,

inf
Q(2)

V + exp(−N 50C) osc
Q(2)

V ≤ V ≤ sup
Q(2)

V

for all (t, x) ∈ Q(1), which immediately implies the result.

Finally, iterating Lemma A.10 we obtain the required Hölder continuity (A.8), i.e. we

can prove Proposition A.4.

Proof of Proposition A.4. Iterating Lemma A.10, we have

osc
Q2,1

(Θ/2)k/2R/2

V ≤ (1− exp(−N 50C))k osc
Q2,1

R/2

V.

We conclude upon taking k = ⌊log R
r
(log 2

Θ
)−1⌋.
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[34] P. G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem, volume 431
of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC,
Boca Raton, FL, 2002.

[35] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta mathemat-
ica, 63:193–248, 1934.

[36] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1,. Oxford Lecture Series
in Mathematics and its Applications. The Clarendon Press, Oxford Uni- versity Press,
New York,, 1996.

[37] J.-G. Liu and W.-C. Wang. Characterization and regularity for axisymmetric solenoidal
vector fields with application to Navier-Stokes equation. SIAM J. Math. Anal.,
41(5):1825–1850, 2009.

[38] A. I. Nazarov and N. N. Ural’tseva. The Harnack inequality and related properties of
solutions of elliptic and parabolic equations with divergence-free lower-order coefficients.
Algebra i Analiz, 23(1):136–168, 2011.
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[40] J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-
Stokes equations. Acta Math., 176(2):283–294, 1996.
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