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ABSTRACT OF THE DISSERTATION

Some quantitative regularity theorems for the Navier-Stokes equations

by

Stanley Palasek
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2023
Professor Terence Chi-Shen Tao, Chair

Consider a velocity field u solving the incompressible Navier-Stokes equations on [0, 7] x R?
(d > 3) and satisfying ||u(t)||x < A for all times, where the norm X is critical with respect
to the Navier-Stokes scaling. We prove several theorems to the effect that the regularity of
the solution can be controlled explicitly in terms of A, building upon Tao’s pioneering work
on the case d = 3, X = L*(R?). First we prove a generalization to the critical Lebesgue
space in any number of spatial dimensions (d > 4, X = L4(R%)). Then we show a variety of
circumstances under which Tao’s bounds can be strengthened, including the case in which
the solution is nearly axisymmetric. For exactly axisymmetric solutions, we prove regularity
in terms of the weak norm X = L3°°(R?) which implies effective bounds on approximately

self-similar behavior.
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We locate a concentration point zg inside the cylindrical shell S(R — Rg, R+ Ry)
(delimited by the dashed lines) and, using the gradient estimate on 7,,v which
holds in the region S(R—Ry—p, R+ Ry+p) (delimited by the dotted lines), one can
deduce a comparable estimate holds within a ball which (in the most nontrivial
case) has radius at least on the order of 1. In the case of axial symmetry, we can
infer from the pointwise lower bound in the ball that the same lower bound holds

within the solid torus obtained by rotating it around the zs-axis. . . . . .. ..

We schematize some key steps in the proof of Proposition 3.7. The high frequency
concentration at zp is propagated backward in time to z;. The concentration of
Py, u persists in a parabolic cylinder (red) which we convert into a lower bound
on [[w[|z  (blue). The objective is to locate a small cylinder @) such that u obeys
subcritical bounds in the interior and the vorticity concentrates on a smaller

subcylinder Q. . . . . . ..

In the proof of Proposition 3.8 we begin with a vorticity concentration in a
parabolic cylinder (', which in turned is contained in a (/2 where u possesses
subcritical bounds. We use Proposition A.3 to propagate the vorticity lower
bound into a slice of regularity obtained from Proposition 2.17. Then we it-
eratively apply Proposition A.3 to locate a vorticity concentration in a distant
annulus where u is regular. In this annulus we may apply a backward uniqueness
Carleman inequality to conclude the existence of a ||u|s concentration at the

final time. . . . . .
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CHAPTER 1

Introduction

In this dissertation we consider the incompressible Navier-Stokes equations in R¢, d > 3,

ou—vAu+u-Vu+Vp=0
(1.1)

divu =0
which models the motion of an incompressible viscous fluid with velocity field w : [0,T") x
R? — R? and pressure field p : [0,7) x R? — R. The viscosity v is a positive dimensional

parameter. We perform some standard reductions to transform (1.1) into a more analytically

convenient form. First one can normalize the viscosity to v = 1 via the rescaling
u(t, ) = vu(vt,z), p(t,z) — v*p(vt, x).

Then, upon projecting to the space of divergence-free vector fields using the Leray projection

P =1 — A~'V div which eliminates the pressure term, we arrive at
Ou— Au+Pdive ® u = 0. (1.2)

Note that divu®u = u-Vu by incompressibility; moreover one no longer needs to separately

impose divu = 0 as this condition is preserved by (1.2) (under very mild assumptions).

At times it will still be useful to refer to the pressure since it essentially captures the

nonlocal part of the nonlinearity. (1.1) implies that it satisfies the Poisson equation

—Ap = divdiv(u ® u).



Assuming, as we often will, that u(t) € L¢(RY), this specifies’ a unique p € LY*(R9) ex-

pressible with the formula

p=—-A"tdivdiviu @ u) = F* (fﬁ;@(f)) (1.3)

in which we employ the Einstein summation convention.

To motivate the delicate critical problems that will be our main focus, let us briefly review
some well-known classical results in the regularity theory for (1.2). Leray in his seminal paper
[35] proved local existence and uniqueness of “strong” solutions of (1.2) with finite energy
data ug in the spaces LP(R?), p > 3. He obtains as well quantitative lower bounds on the
norms’ divergence: if u is a strong solution blowing up at time T, > 0, meaning the solution

cannot be continued smoothly beyond time 7,, then

() + fortel0,Ty) (1.4)

u(t D > 7
el 2 = g

for all p € (3, 0¢0], where ¢(p) is a positive constant. In fact, an analogous estimate holds for

solutions on R?, d > 3 for all p € (d, o0].

Let us justify why one would expect this scale of spaces to be capable of detecting blowup
as in (1.4). It is straightforward to see that the space of solutions of (1.2) is invariant under

the group of transformations
u(t, x) = up(t, z) = (N, z), A >0, (1.5)
which scale the spatial LP? norms according to
luallzzesy = X%l 2oy

Taking A > 1 leads to a transformation which “zooms in” on the small scale behavior of

the solution; thus the L2(R?) norm is effective at controlling possible concentration at small

1Clearly the “normalized pressure” given by (1.3) differs from the original in (1.1) by a harmonic function
at every time. However, in the case that u is smooth and finite energy, this difference is just a constant
function (in space) for almost all time, as shown in [59, Lemma 4.1]. Thus for such solutions, there is no
loss of generality in assuming (1.3).



scales as long as 1 — % > 0, i.e., when p > d. In general, such function spaces X with the
homogeneity ||uy||x = A*||u|lx, a > 0, are referred to as “subcritical” with respect to the

natural scaling of the PDE.

On the other hand, when a < 0, the space X is referred to as “supercritical” and has
little chance of controlling small scale behavior of the solution. The most relevant example

is L>®L2([0,T] x R?) when d > 3 which is related to the energy equality

t
()12 ay +/ IVut) |72 @aydt” = [1u(0)]|72 ) (1.6)
0

for strong solutions of (1.2). (1.6) is the only known coercive conservation law for Navier-
Stokes equations; hence all known a priori estimates correspond to spaces at most as strong
as & = L®L2> N L?H!. Since the corresponding norm is supercritical (indeed, |Juy]le =

X274 ull¢), (1.6) appears to be useless by itself for ruling out singular behavior.

The third case, a = 0, is the subject of the dissertation at hand. This corresponds to the
norm respecting the symmetry exactly and thus measuring the solution equally at all scales.
For instance, the energy space £ introduced above is critical when d = 2, and Leray in his
classical work had already proved that strong solutions in R? exist globally in time. More
generally, in R%, d > 2, there are a variety of commonly studied homogeneous critical spaces

which follow the inclusions

+d

M c L'C L% B,y " ¢ BMO™ € B,

where p, ¢ € (d,00). (Of course this is not an exhaustive list, and there are inclusions as well
within the L% and B,, ;+% scales.) Various delicate issues arise in the setting of the weakest
spaces in the chain, and in some cases even a satisfying local theory is lacking. For the
purpose of this dissertation we restrict our attention primarily to the Lebesgue and Lorentz

scales; the endpoint case L%* = L% is also of particular interest due to its connection

blowup phenomena and will be the subject of Chapter 5.

Let us also mention the critical spacetime norms which make up the Prodi-Serrin-Ladyzhenskaya



scale,

2 d
XP4=LVLL where —+—-=1, d<q< .
p q

The relationship between p and ¢ enforces criticality. We remark that (1.4) already implies

that if u blows up at t = T, then

||u||Xp'q([T*—e,T*}><Rd) =00

with the (p,q) = (oo,d) case once again excluded. The stronger result coming from the
works of Prodi [49], Serrin [56], and Ladyzhenskaya [31] is that X?? is enough regularity to
ensure weak-strong uniqueness; in other words, if u; and uy are Leray-Hopf? weak solutions
of (1.2) with the same initial data and u; € XP? ¢ > 3, then u; = uy and the solutions are

smooth.

The endpoint space LI(R?) is a glaring gap in the above classical picture. It should
be noted that local existence is known for data in L?; however there is no lower bound on
the time of existence in terms of ||ugl||z« alone. Indeed, dimensional analysis considerations
appear to preclude such a lower bound. It is not clear at all that a bound on |[ul| e ¢ (ra)
should control the regularity of the solution since the norm does not penalize concentrations

at small scales that agree with the PDE’s scaling.

One should also compare L¥°L¢ = X4 to the Prodi-Serrin-Ladyzhenskaya spaces X7
for ¢ > d in the following manner: if z, € [0,00) x R? is a putative blowup point, consider a
parabolic cylinder () with radius r around zy. If u is bounded in X?? with ¢ > 3, p < oo, then
XP1(Q) can be made arbitrarily small by taking r small and using dominated convergence,

from which one can infer regularity in the interior of () by standard arguments. On the

2The Leray-Hopf class is a commonly studied class of weak solutions obeying the additional property
that (1.6) holds as an inequality. Leray [35] proved the global existence of such weak solutions in R?
for all reasonable data, yet uniqueness in general remains a major unsolved problem (although there is
exciting recent progress [2]). The question of uniqueness of weak solutions to fluid equations is a completely
different side to the regularity question and has been intensively studied recently, including by the author
and collaborators [10, 11], but will not be in the scope of this dissertation.



other hand, in X3, this argument breaks down due to the L> norm. These considerations
suggest that in order to control the regularity of the solution in terms of an endpoint critical

norm, or to prove an analogue of (1.4) for L¢, nontrivial ideas are needed.

The breakthrough on this problem came in the paper of Escauriaza, Seregin, and Sverdk
[22] which, as one consequence, implies that for a classical solution u of (1.2) blowing up at

time T,

lim sup ||u(t)|| 13 rs) = oo.
t1 T

The lim sup was upgraded to a pointwise limit as ¢ 1 7, by Seregin [53] (which is still open
in the case d > 4). The most important new tool in [22] was a backward uniqueness theorem
for the heat equation on the exterior of a ball, proved in their paper [21]. The idea is
as follows: one assumes by contradiction that u blows up at (¢,2) = (0,0) while [ju(t)|.s
stays bounded. The scaling symmetry defined in (1.5) allows one to construct a sequence
of rescaled solutions wuj which obey the same L? bound while zooming in in the singularity.
One can justify passing to a subsequence which converges weakly to another solution u.;
furthermore ., can be shown to be non-trivial near the original singularity, while vanishing
far away from 0 at time ¢ = 0. The backward uniqueness theorem for the heat equation,
applied to the vorticity w = curlu, implies that w vanishes away from x = 0 for all t < 0.
From there a straightforward unique continuation argument proves that w = 0 everywhere,

which contradicts u,, being nontrivial at (0,0).

This argument, while very powerful, suffers from being fundamentally non-quantitative
due to the use of compactness. While it does abstractly imply® the existence of some F :

[0, 00) — [0, 00) such that

||u||L§f’z([1/2,1]xR3) < F(|lull e 23 (0,1 xr?))

for all classical solutions u with |lu|zecrs(o,1xrs) < 00, the growth rate of F' is not at all

effective.

3This observation appears to be due to Hongjie Dong.
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Here we briefly survey the subsequent non-quantitative work that made use of the tech-
niques in [22]. Dong and Du have extended these results to dimensions d > 4 in [19], which
will be discussed later in detail. The space L2 has been weakened to the non-endpoint
Lorentz space L>?, 3 < ¢ < oo by Phuc [48] and further to the negative order non-endpoint
Besov spaces By, ;+3/ P 3 < p,q < oo by Gallagher, Koch, and Planchon [25]. It should be
noted that this latter work takes a slightly different approach, following the concentration
compactness method of Kenig and Merle [27] which had been introduced into the Navier-
Stokes setting by Kenig and Koch [26]. The strongest qualitative result for solutions in R3
to date is due to Albritton and extends Seregin’s lim; 7, theorem [53] to the negative order
Besov spaces from [25]. Ultimately all of these theorems are non-quantitative and rely on a

strategy similar to that of [22].

In 2019, Tao [60] gave the first effective bounds for solutions of (1.2) in R* bounded in a

critical space. First, he showed that if u is a classical solution with
|ul| oo L3 (0,71xmr3) < A
with A large, then one can explicitly control the subcritical norms of u as
IV7u(t) e < t20%9 exp exp exp(A% D) (1.7)

forall j > 0and ¢t € [0,7T]. This is a quantitative version of Escauriaza, Seregin, and Sverdk’s
theorem. Taking j = 0 and combining this with (1.4), it fills in the missing endpoint of (1.4)

(at least along a sequence of times): there exist ¢,, 1 T such that

T, ¢
lu(tn)|| s msy > (log log log T ) (1.8)

x tn
where ¢ > 0 is an absolute constant.
Tao’s idea, which is the starting point of this dissertation, is similar in spirit to Escauri-

aza, Seregin, and Sverdk’s argument in the contrapositive (to avoid proof-by-contradiction),

replacing qualitative tools including unique continuation theorems with their quantitative



analogues. The high-level strategy is as follows: one shows that if the solution concentrates
in a high frequency bubble, then the bubble must have been caused by a series of past
bubbles at various larger scales. If the solution has sufficient partial regularity, one can use
Carleman estimates to show that these previous bubbles lead to slight concentrations of
vorticity scattered throughout space, each of which contributes to the L3 norm. The higher
the frequency of the initial bubble, the more scales must have had such contributions, which

produces the desired conclusion that singular behavior requires a large L3 norm.

The results in [60] leave many questions open that have attracted significant attention
since; see [6] for a more detailed survey. First, once again for solutions bounded in L3(R?),
Barker and Prange [5] quantify the improvement in [53] toward a pointwise blowup rate of
the critical norm. They also prove that for Type I blowups, the norm diverges at least as fast
as a single logarithm (at the expense of double exponential dependence on the weaker norm
that stays bounded). By using tools related to spatial rather than Fourier concentration,
they are able to obtain results that are well localized in space. Barker [3] later proved a fully

localized blowup theorem using a truncation method.

Another interesting development [4] is that the lower bound (1.8) can be extended to a
slightly supercritical Orlicz norm on the order of L3/ loglogloglog L, following an observation

of Bulut [9].

To state the results of this dissertation, let us consider the general situation in which the

solution is assumed to be bounded uniformly in time as

l|lw]| Loo o, x) < A (1.9)

with A > 2, say. The plan is to address three natural questions about solutions obeying this

bound:

1. Can analogues of (1.7) and (1.8) be proved in dimensions four and greater? The
argument in [60] breaks down in several substantial ways. The fundamental problem

is that the energy space is much weaker in high dimensions; thus the partial regularity

7



which plays an essential role is hard to come by. In Chapter 3 we are able to introduce
new quantitative approaches to partial regularity and unique continuation to answer

this question in the affirmative.

. Can the triple exponential and logarithmic bounds in (1.7) and (1.8) be improved? Tao
conjectures in [60] that this might be possible by avoiding use of “annuli of regularity”
which are problematic due to being distributed sparsely over scales. Unfortunately,
while we cannot answer this question in generality, we can answer in the affirmative
if X = L3(R?) and u is axisymmetric. In Chapter 4 we prove the following: if either
(i) 3 < ¢ < oo or (ii) u is axisymmetric and 2 < ¢ < 3, then with X = Lq(rl_%dm),
where r? = 22 + 22, the results (1.7) and (1.8) can be improved by one exponential

and logarithm (respectively).

. Can X = L*(R?) be replaced by the weak Lebesgue norm? This question is very
relevant for understanding blowup, and is indeed a major open question in the field
(even the corresponding qualitative statement). Here we prove a quantitative theorem
in the axisymmetric case, which appears inaccessible by the method of [60] (see §5.1),
using instead Harnack-type inequalities and favorable parabolic equations obeyed by
components of axisymmetric solutions. This will be the subject of Chapter 5 and is

joint work with Wojciech Ozanski.



CHAPTER 2

Quantitative tools for analyzing critically bounded

solutions

2.1 Introduction

This chapter contains results that have appeared in the author’s work [46, 47]. The purpose
is to prove various estimates and other quantitative properties of solutions of (1.2) that obey
a bound of the form (1.9). These will be our main tools toward the regularity theorems in

Chapters 3, 4, and 5. There are two main goals that we pursue in the following sections:

(i) We wish to carry out energy estimates on the velocity fields and related quantities, even
when the critical space X is poorly suited for this purpose. For instance, if the spatial
dimension d is large and we are given only a bound on ||u||.4, then there is not nearly
enough spatial decay to control f]Rd |u|?dx at any time; nonetheless, we would still like to
make use of energy estimates (for instance, for proving partial regularity). The solution
is to employ a Picard-esque decomposition of u into a “flat” part «’ which represents
a finite number of interactions between different heat flows; and the residual “sharp”
part uf. The former has essentially unlimited regularity in high integrability spaces,
while the latter has acceptable bounds in spaces with low integrability. Moreover the
latter solves a Navier-Stokes-like equation that is conducive for energy estimates. We
face similar issues in the case where X is a weighted norm, as in Chapter 4. This is

the subject of §2.3.



(ii) We would like to locate regions in spacetime where the solution is regular, such that
both the size of the region and regularity of u inside are explicitly controlled in terms
of A. Such “partial regularity” results are used in several places in the main arguments
but most crucially to produce a region in which Carleman inequalities for the heat
equation (Appendix A.1) can be applied (in Chapters 3 and 4). The partial regularity

theorems presented in the sequel fall into three categories:

Epochs of regularity When d = 3, every time interval contains a subinterval whose
length we can bound from below in which the solution is well-controlled. This
was proved quantitatively in the X = L3(R?) case by Tao [60]. This property is
a consequence of energy conservation; in fact, a version for finite-energy solutions

was discovered originally by Leray [35].

CKN-type spacetime regularity Caffarelli-Kohn-Nirenberg famously proved [12]
that the d — 2-dimensional (parabolic) Hausdorff measure of the set of space-
time singularities is zero (the epochs of regularity property being a special case).
We prove quantitative realizations of this theorem based on the blowup procedure
in §2.4. This implies the existence of many thin regions of regularity for even the

high-dimensional Navier-Stokes equations which will be essential for our purposes.

“Away-from-the-axis” regularity A simple qualitative consequence of the CKN
theorem is that if the axisymmetric Navier-Stokes equations blow up, it may
happen only on the axis. In §2.5.3 we produce quantitative versions of this fact
in a somewhat more general setting, as well as in some weighted spaces (without
symmetry assumptions). The main tools are axisymmetric and weighted Bernstein

inequalities (§2.2.2).

We remark that several similar tools have appeared in Tao’s work on the X = L2 case,
although they have been substantially extended for our purposes in this dissertation. For ex-

ample, the decomposition described in (i) has a predecessor in the decomposition u!"® + y1in

10



appearing in [60].! Tao also makes use of a three-dimensional “annuli of regularity” propo-

sition which is essentially a manifestation of Caffarelli-Kohn-Nirenberg partial regularity.

2.2 Preliminaries

2.2.1 Notation

The critical spaces X that are of interest often involve some parameter, for instance, the
dimension d > 3 (Chapter 3) or the exponent g € (2,00) (Chapter 4). Since we are not par-
ticularly concerned with how the constants depend on these parameters, we use asymptotic
notation z < y or x = O(y) to mean that there is a constant C' = C'(X) depending on the
choice of X such that |z| < C'y. Indeed, many constants should be expected to deteriorate
as ¢ 2,913, ¢ o0, ord? oo Asin [60], we fix a large constant Cj that may depend
as well on these parameters. With A as in (1.9), we define the hierarchy of large constants
Aj = A%,
Let us emphasize that no constants may depend on A or wu.

We will occasionally write z < y— or x4+ < y to mean x < y. This will make it possible
to abbreviate a collection of strict and non-strict inequalities. For example, x < a, x < b,

x < ¢ can be written as < min(a, b, c—).

If I C R is a time interval, we use |I| to denote its length. If QO C R3, || will denote its
three-dimensional Lebesgue measure. If o € R3 and R > 0, we will write B(z, R) to denote
the closed ball {z € R® : |x — xy| < R}. If z € R?, then r will denote the radial distance
in cylindrical coordinates, that is r := \/m For a specific point, say p € R?, we will
write its radial coordinate as r(p) = \/m For 0 < 7, < 7y, we define the cylindrical

shell S(ry,79) := {z € R® : ry < r < 1y} along with the truncated versions S(ry,ro; M) :=

n fact, similar decompositions have appeared in other contexts [14, 25, 1]. We thank an anonymous
referee for ARMA for bringing these references to our attention.

11



{z € S(r1,ro) : |w3] < M} and S(ry,72; My, M) :={x € S(r1,79) : My < |z3] < My}

We say a scalar-valued function is axisymmetric if its derivative in the spatial direction
(—x9,x1)" vanishes identically. We say a vector-valued function is axisymmetric if each
component is axisymmetric when the function is written in cylindrical coordinates around

the zs-axis.

When studying the nonlinearity of (1.2), we will use the symmetrized tensor product
1
(NORIRES §(u®v~|—v®u)

for u,v € R3, or in coordinates, (v ® v);; = 3(uv; + ujv;). This allows the convenient

binomial expansion (v +v)® (v +v) =uu+2uO v+ v v.

For Q C R™ and I C R, we will use the Lebesgue norms

1/q
1 fllza @) = (/Q If(x)\qu)
e ( I )

with the usual modifications if p = co or ¢ = 00

and

For a Schwartz function f : R?* — R"™, we define the Fourier transform
fer = [ et
R3
and the Littlewood-Paley projection by the formula

Pen [ (€) = (/N f(€)

where ¢ : R® — R is a radial bump function supported in B(0,1) such that ¢ = 1 in
B(0,1/2). Then let

Py := P<y — P<nj2, Poy:=1- Py, 15N1=P§2N—P5N/4-
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These all commute with other Fourier multipliers such as P, A and e*®. Estimation of such

operators in the weighted spaces X g;T is the subject of the next subsection.

When a summation is indexed with a capital letter such as N or M, it should be taken

to range over the dyadic integers 22. Thus we have the shorthand notation

SV =S, Y = Y ), et

Ne2Z A<N<B {Ne2Z:A<KN<B}
2.2.2 Bernstein-type inequalities with axial symmetry and weights

If @ C R® and a € R, we define the weighted space X ,(€) of smooth vector fields u :
[—T,0] x Q — R? such that

HUHXZ;T(Q) = |\7”au\|Lg<>Lg([_T,o]xQ) < 0.

For brevity we will set Xg;T = X&T(R:i). The spaces become critical with respect to the

Navier-Stokes scaling when o = o, where
g =1——.
The case of interest, in which it is possible to improve the bounds compared to [60], is
either ¢ € (3,00), or u is axisymmetric and ¢ € (2, 3]. (2.1)

See Chapter 4 for details.

We record Holder’s inequality for X&T spaces, which is immediate from the standard

version for LP spaces: assuming 1 < p,q,r < o0, a, 5,7 € R, % = % + %, and a = (8 + 7,
I wvllxe , < Il ol
The following proposition shows that Bernstein’s inequality for Fourier multipliers with

compactly supported symbols extends naturally to weighted L” spaces such as X g;T. When

working with u controlled in an quéq;T space with ¢ < 3 one runs into the difficulty that

13



a, < 0. Proposition 2.1, as well as many of the estimates for other operators we will derive
from it, only hold when the weight on the left-hand side has a smaller power than the one
on the right (see Remark 2.2), so it is not clear how one would control the components of u
with frequency much larger than r~!. Fortunately, in the presence of axial symmetry we can
avoid these issues and prove a weighted Bernstein inequality which allows us to exchange

some integrability for negative powers of r.

Proposition 2.1. Let m be a Fourier multiplier supported in B(0, N') with |Vim| < M N~
for 5 =0,1,...,100. If 1 < q < p < oo and either

1. a>—%,ﬁ<%, and a < 3;

2. p=o00, a=0, and0§5<§; or
3. q=1,08=0, and—%<a§0,
then we have
P Tl e < MN 72808 1. (2.2)

If |u| is azisymmetric, then the conditions « < 3, 5 > 0, and o« < 0 can be improved to

a<B+Li-138>_1 ora<1—1 respectively.
q p q p
Proof. In this proof we make use of the standard non-weighted Bernstein inequalities proved,

for example, in [60, Lemma 2.1].

When establishing the case of the proposition in which |u| is axisymmetric, let us assume

for the moment that the symbol m is likewise axisymmetric.

We begin by rescaling x and m to make N = M = 1. Then it clearly suffices to show
that the operator T' = r®T,, 77 is bounded from L?(R3) to LP(R?®). To do so, we decompose

it into spatially localized pieces as

T = ZTR,S; Trs = r*xrTnr "xs
R.S

14



where x : R — [0,00) is a smooth function such that the collection xg(z) = x(r/R) over

R € 27 forms a partition of unity of R\ {0}. More specifically we may choose xr to be

supported in S (%, %) Then Tg s can be expressed as an integral operator Trsf(y) =

ng f(z)K(x,y)dx with the kernel

Krs(z,y) = ror;xr(y)xs(z)m(z —y)

satisfying

|[Kns(@,y)| S RS Pxn(y)xs(@) (@ —y) ™

where we let (v) = (1 + |z|?)*/2. Then, bounding the operator with Hélder’s inequality, we
have that for R, S such that max(R/S,S/R) > 100,

ITrsllzasre S KRS oy
S RSP (max(R, 8)) " |Ixs(x){ws = ys) |l <
< R"‘Sfﬁ+§<max(R, S))—50
and
1 Trsllsre S N EKrsl e
< RS (max(R, 8))"|Ixr(y){xs — ys) Il oz
< RT3 S (max(R, S))~.
Then by interpolation, if p > ¢, it follows that
I Trsl oot S R*T2S™77 (max(R, §)) .
By essentially the same calculation, if 1/100 < R/S < 100, then
a—Bi242
||TR,S||Lq_>Lp <R 6+P+Q’.

Unfortunately this estimate is adequate only when R, S < 1, so we separately consider the

case where R and S are comparable and R, S > 1. Fix a p ~ RY' that evenly divides R/4.
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Let v = rPysu. We need to find a spatial region that we can dilate slightly (as required
to use the localized Bernstein inequality, again see [60, Lemma 2.1]) without drastically

increasing the L> norm of T),,v. Suppose first we do not have such a region, that is
R
HvaHLOO(S(g,%)) Z QHTmU”Lm(S(%—i—p,%_ ) Z e Z 24p HTmUHLOO(S(g 3R)).

Then taking the left- and right-most ends of the inequality, the ordinary Bernstein inequality

implies
_R1/2 _
1Tl sz sy < 277 Tl S B0
It follows that

TrsullLe S R™|ullLa

which is an adequate estimate to proceed with the argument. Otherwise, there exists an

Ry € [£, 28] such that

1
[ Lm0 oo (S(R-Ro—p, R+ Ro+0) < 5HTmU||L°°(3(R—RO,R+Ro))-
Let xy be a point in the region S(R — Ry, R + Ry) such that
1
| Tv(wo)| > 5||va||L°°(S(R*Ro,R+Ro))'

By composing with P<j and applying the local Bernstein inequality from [60], we have the

gradient estimate

VTl Lo (s(r-Ro- 2,8+ Ro+2)) S 1 Tm0| Lo (S(R—Ro—p, R Ro+p)) T s

SN Tonv | Lo (S(R=—Ro R4 Ro)) + B0 10

Therefore, by the fundamental theorem of calculus,

1
[ Trv ()| > Zl”TmUHLOO(S(R—RO,R—i-Ro))
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for all

1 Tv|| poo _
re (s Tolsnroneny )
O) [|Tmvll ow (5(R—Ro. B+ Roy) + B72||0]| Lo

Importantly, since p > 1 and the radius of this ball is less than 1, it is contained in S(R —

Ry— %, R+ Ry + %) where the gradient estimate holds. Without axial symmetry, this implies

T30 | oo (SR Ros R o)) )3/‘1
e

IToollin 2 Vtlimsieeromsno e STt
m — 1o, 0

No matter which term in the denominator is larger, we conclude (using the ordinary Bernstein

inequality for T, if the first is larger)

| T || oo (S(B=Ro, B4+ RoY) S |[V]| L4

Now suppose |u|, and consequently |v], is axisymmetric. Let T, be the operator with kernel

|K(x,y)|. Then by the triangle inequality, inside the same ball, we have the concentration

~ 1
Tn(lo) (@) 2 7 [ Tontl| e (5o, -

Thanks to the assumption that m is axisymmetric, one easily computes that T),(|v]) is as
well. Thus, the bound still holds inside the torus obtained by rotating the ball around the

xg-axis. (See Figure 2.1.) Note that within this torus, r 2 R; therefore

T ([0))] 20 2 (| Ton0]| oo (R Ro, R+ oY) R

( T30 | oo (SR Ros R ) )”‘1
| T || oo (S(B—Ro,R+Ro)) + B3|V e

Once again, no matter which term in the denominator is larger, this implies

Q=

1Tl poo (s 3my) S B e|0]| o
272

Since supp xg C S(%, %%), it follows that

[ Trsull < Ra||Tm7”_6XSU||Loo(5(§,3R)) S Ra_ﬁHUHan

2

17



or
75 sulle € B0 ull s
in the presence of axial symmetry. By interpolating with the trivial inequality
|1 Trsull S Rl
we obtain, if ¢ < p,
|1 Trsllzo—rr S R*P

or

Q=

| TrsllLasrr S Re+y-

in the presence of axial symmetry.

Finally, we can sum over R, S € 2% to obtain the desired estimate. Let yg be a dilated

version of yg such that ysxs = xs. Then

Tu = Z TRﬂg()N(SU) + Z TR75()~<SU)

max(R/S,5/R)>100 1/100<R/S<100

where each x € R3 lies in the support of boundedly many terms. This implies that without

axial symmetry,

p

2
(Tl S > R*T5 S77% 7 (max(R, )| vsul| 1s
R {S:max(R/S,S/R)>100}

_B+24 2 ~
+ > BT P+ Y (R Rsulle)”
1/100<R/S<100 1/100<R/S<100
max(R,S)<1 max(R,S)>1

with the suitable modification if p = oo, in the sense that we are taking an ¢*(2%) norm

in R. When p < oo, the sums converge as geometric series and are bounded by ||ul/f, as

2
/

longasa>—12—),ﬁ<q

,and o < f. If p = oo, the expression is similarly bounded as
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S(R+ Ry)

. \(contains zg),
S(RE(Ro+p))

(control on VT,,v)

Figure 2.1: We locate a concentration point x( inside the cylindrical shell S(R — Ry, R+ Ry)
(delimited by the dashed lines) and, using the gradient estimate on 7,,v which holds in the
region S(R— Ry—p, R+ Ro+p) (delimited by the dotted lines), one can deduce a comparable
estimate holds within a ball which (in the most nontrivial case) has radius at least on the
order of 1. In the case of axial symmetry, we can infer from the pointwise lower bound in the
ball that the same lower bound holds within the solid torus obtained by rotating it around

the zs-axis.
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long as 0 < o < B < 2. If @ = B3, then summability of the last term follows from the

q
S llullzq- A

~Y

embedding (9(2%) — (7(2%) (using p > ¢), and the fact that 3., [[Xrull7,

similar argument applies to the first term on the right-hand side in the case ¢ =1, § = 0.

In the case where |u| has axial symmetry, we carry out an analogous calculation and find
the same result except with the last condition relaxed to oo < g+ % — % thanks to the smaller

power of R in the last term.

Now we show how to remove the assumption that m is axisymmetric. Note that P<jq

does have an axisymmetric symbol; moreover P<1oT,, = T,,. Therefore if |u| is axisymmetric,

|7 Peroul| e S |77 ul| o

2

assuming p > q, a > —%, b < il

and a < [+ % — % (with the appropriate adjustment in
the two endpoint cases). Then by the non-axisymmetric version of the theorem,

7 Tl e S (7 P<aoul| e
as

which yields the desired result. Note that we have a < 3 + % — zla < 2 - % — =2 <

'ﬁ\l[\)

1
P
required. O]
Remark 2.2. Later in the chapter, most notably in the proof of Proposition 2.7, we will be
applying Proposition 2.1 in an iterative procedure which will lead to some laborious checking
of its hypotheses. The reader may find it illuminating to keep in mind some examples which

show why each one is necessary. For simplicity we take N =1 and T, = P;.

Since Pyu is approzimately constant on balls of radius O(1), when p < oo, in order
for r*?|Piu|P to be integrable in such a ball centered on the xs3-azis, we need ap > —2, or
a > —%. Of course when p = oo, there is no such integrability issue as long as o > 0.

Next, let u = ¢(x)/(r? + €*) where u is a bump function supported in B(0,1). By the same
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uncertainty principle heuristic, one finds that ||r®Pyul|L» is comparable to log %, but
( 2
677%@, B < %

Pl pa ~ log!/? L B= % :

2
|1 B>2

By taking € sufficiently small, we find that the proposition can hold only when either 5 < % or
g=1andp =0. Letu be a bump function supported in B(zg, 1) where r(xy) = R > 1. Then
(2.2) asserts R* < RP. By taking R sufficiently large, we see oo < (3. Similarly, consider a
smooth azisymmetric function supported in the annulus {x € R : (r — R)® + 23 < 1} where

R> 1. Then (2.2) becomes R*» < R4 which necessitates a < B+ % — ]l).

As in [60], this Bernstein inequality can be localized to a region, at the cost of a global

term that can be made small by enlarging the region by a length > N~!.
Proposition 2.3. Let m be a multiplier with suppm C B(0, N) such that
|Vim| < MN™

for 5 = 0,1,...,2K where K > 100. Also let Q C R? be open and Qun = {x € R3 :
dist(z,2) < A/N}. Then

1P Tyl oo sy Sie MNP0 0B o, (23)

AT Q)e e B NG e ey
ifpi > qis p1L < Py a1 > Qo ;> —p%, Bi < q%, and a; < B; fori=1,2. Here r(2) denotes
sup{r : z € Q}.

1

If |u| is axisymmetric, the last condition can be weakened to a; < [3; + % — o As in

Proposition 2.2, the result extends to the p; = 0o, a; =0 and ¢; = 1, 5; = 0 endpoints.

We refer to the second term on the right-hand side of (2.3) as the global term. Regardless
of what kind of Xg;T control is known for wu, it is usually possible to make it negligible

provided the length scale of € is much smaller than N
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Proof. Once again we can rescale to achieve N = M = 1. Observe by the triangle inequality
that it suffices to assume u is supported outside €24, since the part inside can be estimated
directly using (2.2). First one uses Holder’s inequality to control the L% norm by L%, as
well as the trivial bound r* < r®2r(Q)*~*2. Adopting the notation from the proof of

Proposition 2.1, we are concerned with estimating convolutions in the form

Trs(y) = Krs(z,y)u(x)de,

R3

but with the additional feature that y € Q and x ¢ Q4, so |x —y| > A. Therefore, the

estimate for the kernel can be improved to

|KR,S(5L’7Z/)’ <k RaSiﬁXR(y)Xs(:c)@ _ y>*50A7K

and one proceeds as in Proposition 2.1. O

s a special case of Proposition 2.1, with m = e~ ’ N), we get the heat estimate
A ] f P tion 2.1, with el g

[r®e™® Py Viul| e <5 e tN2/20 NI+ =B~ *NrPul| a (2.4)

~

under the same assumptions on the parameters. Then summing over N € 2%,

[reAu| e <, ¢ 2050 |y |, (2.5)

~J

Let us prove one other local lemma in a similar spirit as Proposition 2.3.

Lemma 2.4. If NK >0, >0,p<¢q, 0<r <71y, f€C®RY), and ¢ € C*(RY) with
¢ =1 1in B(ry), then

1PNV fllio86r)) Sriremaiics PN OV P)lleaey) + N5 flloa)-
Proof. With (&) the Fourier multiplier for P, we have

PyVI( / D) (V) (& — y/N)dy + / B(y)(1— $)V9f) (@ — y/N)dy

R4\ B(cN)

as long as z is restricted to B(ry) and ¢ is chosen sufficiently small compared to ro — 7. The
first term is exactly Py(¢V/ f)(x) and the second term is straightforward to estimate using

integration by parts, polynomial decay of ¥ and its derivatives, and Holder’s inequality. [
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Combining Lemma 2.2 with (1.2) and (1.9), the following bounds on the frequency-

localized vector fields are immediate.

Lemma 2.5. If u solves (1.2) on [—T,0] and admits the bound (1.9), where either X =
LYRY) or X = X1 with (2.1), then we have

||ijNU||L§fm [—T,0] xR%) Y AN1+j7 ||5tPNU||L;>j;([7T,o]de) S A’N?®
forall j >0, N > 0.
Proof. We focus on the X[ ;. case since the proof is slightly less trivial. By (2.2),
V7 Pyu| S NI/ 0kaa)|poay |, < ANTH,
Applying Py to (1.2) and again using (2.2) and Holder’s inequality,

S N1+g+2aq HrQoﬂu X UHLQ/Q —+ N2+%+aq HTQqUHL%
< A%N3.
Note that the weights satisfy the Bernstein inequality when ¢ > 3 because then o, > 0, and

when 2 < ¢ < 3 because then o, > —é. O

2.3 Picard decomposition

2.3.1 The R¢ case

A difficulty of working in L? is that while one would wish to make use of energy methods, the
solution does not have enough decay to be in any L2-based spaces. In the cases d = 3,4 one
can avoid this problem by some manner of splitting v into one flow solving a linear equation
and another that solves a complementary nonlinear equation, see [13, 60]. For example, the

method in [60] of considering u(t) — e®~*0)%y(ty), i.e., removing the heat flow part of the
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evolution, leaves the remaining nonlinear flow in L°L? for p € [%l, d]. Unfortunately when

d > 5, this range excludes the important energy space L°L2.

In the general case d > 3 we address this difficulty using the following decomposition of
u. We remark that decompositions based on a Picard-type iteration in the same spirit have
also appeared in [14, 25, 1]. The idea is essentially to subtract off a Picard iterate starting
from an initial condition u(ty). The critical bound (1.9) implies good subcritical estimates
on the iterate thanks to smoothing from the heat propagator, and one can show inductively
using Duhamel’s formula that the difference lies in lower integrability spaces including L{°L?2.
Moreover, the difference satisfies a Navier-Stokes-type equation which leads to estimates that

will be useful later.

Proposition 2.6. Suppose u is a classical solution of (1.2) on [T, 0] with the bound (1.9).
Then for every Ty € [0,T/2], there exist v’ and u* such that the following hold:

e We have the decomposition

u = +u* on [-Ty,0].

e I[fd<p<ooandj>0, then

||Vjub||Lg°L£([—T1,0}de) < AOj(l)T;%(Hjig% (2.6)
| Pt [ sy < AW TN/, (2.7)
e [f1<p<dandl < q< oo, then?
[0 || o 12 (-7 0 xRy < AO(l)T1%(%_1)> (2.8)
V0l gy, + 1Vt o < AT, (2.9
v <, AT (2.10)

LILZ ([-T1,0]xR%)

where Q(r) = [—r?,0] x B(r).

2We thank an anonymous referee for JMFM for bringing (2.10) to our attention which allows a simplifi-
cation of the original argument.
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o u solves
Ot + Pdiv(u® @ uf + 2u° © u¥) — Auf = f (2.11)
where f obeys estimates
. _Llg4,_d
Hv]fHL?OL’;([—Tl,O]de) < Aoj(l)T1 2(3+55) (2.12)

forggpgoocmdjz().

Let us emphasize that different choices of the subinterval [—77, 0] lead to entirely different
decompositions. In the sequel when we use this proposition, it will be made clear on which

interval the decomposition is taken.

Proof. Starting with

we inductively define for n > 1

n

¢
W (t) = ey (1) — / AP dive | @ ul_ ()dl,
Tn—1
t ’
ub (t) = — / AP diviu @ u — v’ @u’, ) (t)dt
Tn—1

where we have chosen a sequence of O(1)-many times —27; < 7 < 75 < --+ < =T} such that
7i — Tip1 = 11/O(1). We prove (2.6) on the shrinking time intervals [r,,, 0] with v’ replaced
by «’ by induction on n. For n = 0 it is trivial. Suppose the claim for some n — 1 > 0.

Then, for t € [r,,0],

t
_1 ;
+/ (t—1t) 2HUZ—l(t/)HLi(Rd)HVJUZ—l(t/)HLgO(Rd)dt/
Tn—1

which gives the desired bound. Then (2.7) follows similarly by induction using Duhamel’s

principle and a paraproduct decomposition.
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Next, it is convenient to decompose u? = uf! + u%? where
t !
ubl(t) = —2/ AP dived_ ©uh_ (¢t
Tn—1
t /
ut?(t) = — / AP divet | @uh_ (¢)dt.
Tn—1

We claim the bound in (2.8) for uf,, specifically in the range max(-%-,1) < p < d and on the

n+17
time interval [7,,0]. Thus we will obtain the desired result by taking n large depending on
d. Note that the p = d case is immediate from (1.9) and (2.6). As a base case, we consider

nzlforwhichuji =0. Foru ,
f,2 ! n—i3-9) N2 /
[ Ol S [ (=) 2 2 )] g ey dt
Tn—1

which yields the desired result using (1.9) assuming § d < p < d. Now assume the desired

inequality for some n — 1 > 1. Then

Ls (RY) [, ()] L (raydt,

t
[ Ol S [ (6= 0) D 0)
Tn—1

assuming zl:) < 141 This is integrable in time, and furthermore we can apply (2.6) and

(2.8), by taking r = ddTpp and s = d, and assuming additionally that max(-%- Pl )<p<i
If instead we take r = g and % = max(% — %, 0), we obtain the same result but instead for

< p < d. Combining these, we have the full range of p. Next we consider u#2. With

Sl Wl

:%(Cll—i_%)_ea

t
12 ()l ey < / (t = #) it ()] gt
Tn—1

implies the desired bound upon taking e sufficiently small depending on p and d. (2.6)-(2.9)

therefore hold upon setting u”, uf := uz, ug.

One readily computes (2.11) with f = Pdiv(v}_, ® v},_, — v}, ® u}). Then (2.12) follows

by Hélder’s inequality and (2.6). Multiplying (2.11) by u* and integrating over R?, we have

d [ | 412 o 4
— | —de=— [ |Vu|"= | v (- -V&)+u-f
dt ]Rd 2 Rd Rd
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and therefore we can apply (2.8), (2.6), and (2.12) to find

HVUﬂHng([—Tl,O]de) S ”uﬁ”L?Lg([le,O]de) + HUﬁHLgOLg([le,o]de)HVUbHLgfI([le,o]de)

+Hu”hfLﬂkﬂﬂMR%Wﬂhﬁﬂ—ﬂﬁhR%

which proves (2.9).

Finally, we note that
(0, — A)Vuf = —VPdiv(u @ u — u’)_; @u’)_,).

Thus by (2.5) and maximal regularity for the heat equation,

141
\VZRL: < T2 (=T b b '
IV g ST T g+ u® =y @il g

We conclude (2.10) by (2.6), (1.9), and Hélder’s inequality. O

2.3.2 The axisymmetric case

A similar decomposition is necessary for solutions bounded instead in the X? ;. scale. (See

§2.2.2 for definitions.) As in the R? case we begin by defining for ¢t € [T, 0]

Let T, = (1 +27")T. Then for n > 1 and ¢ € [T, 0], we iteratively define

¢
W (t) = eI By (=T,,) — / AP diva’,_ @l (t)dt
-,

¢
ub (t) = — / AP div(iu @ u —u’_, @ u’_y)(t)dt.
-,

By Duhamel’s principle applied to the Navier-Stokes on [—T,,, 0] we see that for every n,

these functions sum to u.

Proposition 2.7. Assume u is a classical solution of (1.2) on [T, 0] x R? satisfying (1.9)
with X = XZ. - and (2.1). Then we have the following.
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1. Forn=1,2,3,... and t € [-%,0], u admits the decomposition
u = +ul. (2.13)
2. If p > q and either

2
g>3 and —-<a<aq,

p
or

: . : 1
u is avisymmetric, 2<q¢<3, and —-<oa<a;+-——,
p qg P

then v’ satisfies the bound

j b a—ap—j On
”v]unHXZ;T/Q Sn T p=3)/2 AOn(1) (214)

These bounds continue to hold at the p = oo, o = 0 endpoint. For N > T2, there

are also the frequency-localized estimates

[Pl S €V 400 (215)
and
“PNUZHX{;?T/Q <, e~ TN?/0n(1) \7 O (1) (2.16)

3. If g € (2,00) and py € (1,3), for any n sufficiently large depending on q and py,

|| xr <, T7o/2A9D) (2.17)

0;T/2 7
for all p € [po, 3).

Remark 2.8. A useful observation for Chapter 5 is that Proposition 2.7 still holds when the
weighted LP norm X is replaced with its weak LP counterpart (see Chapter 5 for definitions),

except at the endpoints p = q and o = oy (resp. o = o, + é — %) without (resp. with) azial
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symmetry. The reason is that we can easily extend the weighted Bernstein inequality using

the Lorentz space version of Young’s inequality. Indeed, if Proposition 2.1 gives some bound
17Tl e S N P<rou]| Lo+

(note that in the notation of Proposition 2.1 we have T,,P<io = T,,) then with K the convo-

lution kernel for P<yq,

[P<soul| e S 1K prvoc [[ull o S [l o

This € > 0 causes the endpoints to fail, and is necessary because of the failure of || f * gl|rr <

11z llgllzeoe.
Given Bernstein’s inequality, one arrives at estimates for the heat propagator and the

proof of Proposition 2.7 can proceed without substantial modification.

Proof. To prove (2.14), we claim slightly more strongly that under the stated conditions on

D, ¢, n, and a,

IV ||y <y Teow3)/2 400

IN']

where T, = (3 +27")T as above. For ], this is immediate from (1.9) and (2.5). Suppose

we have the desired inequality for some w’_,, n — 1 > 1. From the triangle inequality,

n—1

V7w lixr, | S IV T8(=T,)
idn41 iin41

¢
—I—/T |reviet= AP diva’ ®ui_1(t’)||Lg(Ra)dt'.

The first term is estimated in the same way as u}. For the second term, by Holder’s inequality

and (2.5),

VI8P dive,_y @), lxr S =)V (W) @ul)xr,

1 i b 2.,
SJ(t_t/) 2 Z <Hv“u”*1||xzz/)2;mvaunflnle;?fn)'

i1+ia=j
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The claimed conditions on p and « are closed under the operation of doubling p and halving

a, so we achieve the desired bound on u’, upon integrating in time.

Now let us address the frequency-localized estimates. We remark that (2.14) can also
be proven by estimating Pyu’, and summing in N, but this is less straightforward than the

above method in some endpoint cases.

The n = 1 case of (2.15) is immediate from (2.4), and indeed it is true for all N > ¢, 7~1/2
(with a constant depending on ¢;). Suppose that for some n — 1 > 1 we have the following

version of (2.15) with a slightly wider time interval,

b - 2 n n
||PNU’n—1||ng;Tn § e N<T/O (I)AO (1)7

for all N > ¢;T~Y2. Then for N > 1000c¢; and t € [~T,,1,0], by (2.4) and (1.9),
17 Py, (1) g sy S eV /O A

t
+ / e*(tft )N2/20N2H7’2aqPN(UZ,1 ® uliz—l)<t/) HLZ/Q'
-7,

Integrating in time, taking a paraproduct decomposition of the nonlinearity, and applying

Holder’s inequality, the iterative estimate on Pyu’, ,, and (2.14), the second term becomes

HPN(P>N/100U24 ® szl + PSN/mouihl ® P>N/100UZ,1)HX§/2 .
agidln

< Z e_(Nl)2T/On(1)AOn(1)
N’>N/100

< o= N?T/0n(1) AOn (1)

Then (2.15) follows by induction on n. Note that in order to obtain (2.15) for a particular
n and all N > T2 one needs to take ¢; sufficiently small depending on n, since the
permissible range for N shrinks by a factor of 1000 at each step (due to the frequency
overlap of the Littlewood-Paley projections). Thus the constant in (2.15) depends on n.

From here, (2.16) is immediate. Indeed, by (2.2) and (2.15),

1Py || xee =|IPNPNu';||Xoo <N||PNUZ||X3 < o NPT/0n(1) p7 gOn (1)

n
0;T/2 0;T/2 ~ ¢:T/2 ™
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Now we turn to estimating uf. The desired estimate (2.17) is an immediate consequence

of the following more general assertion: if max (1, HLH) < p < o0, and either

1
3 < q< oo, ap<a<2min<—,,aq>, 1<n<gq
p
or
L . . (2 2 1
u is axisymmetric, 2 <¢ <3, a,<a <min —/,(n+1)<1——)——
p

q p

then
||U£L||X§;T/2 < T(a—ap)/2 AOn(1) (2.18)

It is straightforward to see that by taking a = 0 and letting n be large depending on ¢, these
conditions reduce to (4.1) and the hypotheses of (2.17). To prove (2.18), let us decompose
uf = ubl + uh? where
t
ubl(t) = — /T AP vt @l (t)dt,

t
) =2 [ IRl ol (0
—Thn

and claim that for 3 < ¢ < oo, on the slightly larger interval [—T,,,0], we have the desired

bound for ub! n > 1, if

1
pZQi, ap < a < 2min <—,,2aq>
n p
and for uh? if
q 1
> ——\ ——<a<2min|—,«a
b= n+1 P (p’ q)

The desired result (2.18) will follow by taking the intersection of these two conditions. The
base cases where n = 1 are immediate from (2.5), Holder’s inequality, and (1.9) (in fact,
ut{’z = 0). On the other hand, the induction on n involves fairly complicated relations

between the parameters; thus the reader may find it elucidating to refer to Examples 2.9
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and 2.10 which provide concrete examples of the iteration in the ¢ > 3 and ¢ < 3 cases
respectively.

To induct, we assume (2.18) holds for the u®! part for some n — 1 > 1. By (2.2) and
Holder’s inequality, for ¢ € [T, 0],

6

t
Irub ()] 2 S / (t— ) 2UFETF 280 2808 @0 (#)]
—Tn

L5/2dt

< T%(‘X—ap)AOn(l)

assuming there exists an s € [2,00] and 8 € R such that

a <24,

2 2 2
S_
s

<l, a>—, f<1l-—-
D S

= | =

which are required for Bernstein’s inequality,

6 3
- —2428-a<1
s P

which is required to integrate in time, and
1 n 1
- < —, ay<f<2min (aq,—/>
s q s
which are needed so that ufl_l € X5, ,- Letting 8 =1— % — € for a positive € which we
will take to be as small as needed depending on the other parameters, the conditions on s

reduce to

1 3 1 1 . (1l 2—a a—a, n
max (—,———) < - < min (—, -, ,—)
2p q 2 S 2 4 2 q

which one can check is a nonempty interval if in addition to the relations on p, ¢, n, « in the
hypothesis, we assume

26 3
aZmaX(l—— ———>.

) 2.19
pq p ( )

Next we let § = a, + € and the conditions on s become

1 2 1 1 . (1 2—an
max(—,————{—)g—gmm(—, ,—)
2p q 3 S 276 'gq
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which is nonempty and intersects with [0, 1] under the hypotheses, along with the additional

assumption

a<2- 2 (2.20)
p

Then it is easy to see that as long as ¢ > 3, either (2.19) or (2.20) must be true. This

completes the estimate of u%!. Next we have by (2.5) and Holder, for t € [T, 0],

t P P
lro a2 ()2 < / (t— )20l e W] e
0;Tn

—Tn Xlg }i

which implies the desired bound if there exist ¢, s, and 5 such that

1 1 2 2
OCSB, _§_7 Q> ——, ﬁ<2__
p S p S
for Bernstein,
3 3
-——+pf-a<l
s P

to integrate in time, and

<, 0<=—

Y

1 3 3 1 1
- §min<1,2>, 1——+j<ﬁ<2min<aq,1——+—~>
§ q

1
q q s 5 q

1 1
7" q

) 5
to make v} | € X¢.r,_, and o e Xt

—s
sdn—1

. It suffices to use % = max(2 +,0). Let us

S

first take 8 = a. One can compute that the conditions on s reduce to

3
a>1-2 (2.21)
q
and
11—« 1 ) a 1 1 n+1
max(—, +>§—§m1n(1———,——|———, )
p 3 S 2 '3 p q

which is a nonempty interval intersecting with [0, 1], assuming (2.21) and the original hy-
potheses on p, q,a,n. Now let us instead take g =1 — 37” + €. Then the conditions reduce

to

1 . 1 3n o 1 n n+1
a<l——, max(—,—)g—gmln(—+——,—+—+——, )
S 2 2q 3 p q q



and one can verify that this is a nonempty interval intersecting with [0, 1] if (2.21) fails.

Thus there always exists a suitable s.

Next consider the case with 2 < ¢ < 3 and u axisymmetric. In the same manner as
above, we actually prove the bound for the nth iterate on the slightly larger time interval

[—T,,,0]. As a base for the induction we have

t
!Wthrii/ (t — t)"2CFom 200y @ q(t')|| g dt’ S T2 A2

assuming p > 4, —]% <a<L2-— % — 110, and %4—04 > 1, all of which follow from the assumptions.

#

w1, n—1>1. Proceeding as in

Next suppose we have the desired estimate for some u
the ¢ > 3 case, the result follows for u*! if there exists an s € [2,00] and 8 € R such that

2 1

2
OKSQB—F———,
s p

1 2 2
_S_a o> ——, 5<1__
p s P S
for the axisymmetric Bernstein inequality,

6 3
-———+20—-a<1
s p
to integrate in time, and
n 2 1

2
, B<—, as<ﬁ<n<1——>——
q s

1
S q S

<

i

n_1- First we let = a4 + € for a sufficiently small

so that we have the same bound for «
(depending on «, ¢, n, etc.) € > 0. With the given conditions on «, p,n, these constraints

reduce to

1 2 2 , 1 1\ 2n
max —,1—n<1——>+,0+ < — < min 1——<a+—),—,1
p q 5 2 P/ q
which one can verify is a nonempty interval if we assume additionally that

3
a<2-2, (2.22)
p

Next we instead take 3 = %(a + %) — %, and the conditions reduce to



which is a nonempty interval assuming o > — %. Clearly if this fails, then instead we can

conclude by (2.22).

Next, we have

t
Irut? ()] e < / (¢ — ) 2T T By ()]
—T,

n—1 L3t
X It (1) et
which can be estimated if there exist s1, $o, and [ such that
1 1 1 2 1 1 2 2 2 1
< —+—, ——<a<l+Bft+——-—>, B<lt+-————
p s Ss2 P s1 P 9 q Ss1 52
for (2.2),
2 3 2
f-—a+—+—<—-+-

1 n 1
—< -, B<—, a51<ﬁ§n<1——>——
S1 g 1 q 51
to control ufl_l, and
1 1 1 2
—<D, —=<1-=
S22 ¢ 52 q

to control v} _,. First we take 3 = aj, + ¢, and the conditions reduce to the existence of s;
and sy such that

1 1 1 ) 1 3 2 1
-2 <= <min §<a—1+—+—)—,—

P ST S P q q

which one computes is nonempty and intersects [0, 1] assuming s; satisfies

1 1 1 2 2 1 1 i 1 1\ n+1
— max —+,—/—Oz+,—,2—(n+1)<1——> < —+ — < min 1——<a+—>, :
p P p q 514 2 p/ q

Such an s; exists in [0, 1] assuming

3o 2 1) (2.23)

a§min<2——,2————
¢ ¢ p
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in addition to the given assumptions.

Next we instead take  =a — 1+ % — i + ]lj. The conditions on é reduce to

1 1 1 ) 1 1 1 1 11
max(O,———)S—Smm(Z—oz ————— ,——1————7_)
p 5 S2 P S1 2 p S ¢

which can be satisfied, along with the other constraints, as long as

1 1 1 1
max(O,———,l———g———l—)

1 , 1 1 1 n
§—§m1n<1,—+——,2—a———,—>.
P q q 2 2p 2 p

S1 p q

There exists such an s; if, along with the given assumptions, we have

n 2 1
a>2max<0,1——> - —— -
q q D
One computes that if this constraint fails, then instead we have (2.23). O

For the reader’s convenience, we provide two examples of the iteration for estimating u?
in Proposition 2.7. In these special cases, it becomes routine to verify the many conditions
at each step such as the hypotheses of Proposition 2.1. Moreover, one can more easily see

how the iteration successively makes progress from (1.9) toward the claimed estimates.

Let us assume the more straightforward bounds (2.14) and the n = 1 case of (2.18)
which follows directly from (1.9). In fact, in this case the upper bound required on « can be

weakened slightly to o < 2¢y since there is no u1’2 contribution.

Example 2.9 (¢ > 3 case). Let u be as in Proposition 2.7. By rescaling, we may assume

T =1. With q =8, let us prove ||u§,||X§_1/2 < A% We will make use of the estimates

b -1
bl 0 S A% Iblg, S A%

for p > 8. We can fix, say, € = 1/100. Putting the first bound into Duhamel’s principle
using (2.5) and Hélder’s inequality, fort € [—3/4,0],
t

W%WMQS/ (F— )2l o () | et < A
~3/4
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Similarly for u ,

T

t
HW”®M§/ (¢ =) i eud © ) st 5 A°
—3/4
so in total we have

s, , < A%

Again applying this with Duhamel’s formula and Hélder’s inequality, for t € [—5/8,0],

t
luf" (1)) 2 §/5/8(t—t’)i46|]r86 i @ b ()] edt’ S A

Next we have

t
|M%Mws/ (L= ) 520l @ o () | adt! < A*
’ —3/4
and
t 5 € 1
Ol S [ 0= E S 0 w0y
—3/4
1 b
<l Il S A°
SO
ﬁ < A4
||u2||X§;/33/4 ~J *
Finally,

t
_1
[ (1)) 2 5/5/8(t—t') 2|[uf © us ()| 2t S Hu2HX8/3 I\u2|!X85/8 S A°
In conclusion,

Iz, < A%

The argument can be schematized as follows:
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Xzz)e ;3/4

X5/8 1 o X1/4+e 3/4 / Xg 1/2
S~ 8/3
X0;3/4
uh = u u b ub

The arrows indicate that we used that ufl_l is in one space to prove that uf is in the
next space, and each column corresponds to a particular n. The main point of the iteration
when q > 3 is to prove estimates in lower integrability spaces. One can see that the iteration
makes progress by using the quadratic nonlinearity to reduce the exponent at each step. The

bottleneck in doing so is the ub? contribution because of the limited range of p for which

(2.14) holds.

Example 2.10 (2 < ¢ < 3 axisymmetric case). Now we let ¢ = 5/2 and set out to prove

HugHXa/z < A% We will assume the estimates
0;1/2

HulHX < A2 H%HX S A, HU2”X5/2 A?

i3/4 ™ 1/5;3/4 ™~ 1/5:5/8

again for some fired small € > 0. Fort € [—3/4,0],

It (8)]] 3

x

t
5/ (= )2t @ W (#) | et S A*
—3/4

and
t
L € €
[ ub? (t)]| s 5/ (t— )05 5 eud © f (t)]| e dt’
—3/4

b
AT AT s
which imply

At

~Y

s,

Similarly,

t
||7”5+46 ti1< )HL;M 5/ /4(t—t’)—1+5||7’26u§®u1( >||L3/2dt <A4
-3
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and

t
U (1) 1o S / (b= t)75 25w © w (1) | gt

~J 3
b
< Nedls, o8 s, , S A7
which imply
bl i S A%

1/5+4+4€;3/4

Finally, fort € [-5/8,0],
t
1 1
||U3 <t>||Li/2 SJ /5/8(t — t’) 2 E||rr2€uﬁ2 ® ug(tl)HLg/?dtl SJ AS
and
.2 t 5—2¢||,.4e, 1 b § b
) N\ —35—2¢ €
6Ol S [ €O 0wl S bl e,
<A
which imply
4 8
||u3||)((:;’;/12/2 5 A®.
Below s the strategy of the iteration.

X3

/ o \
X5/12 X3 X3/2
—-1/2;1 €3/4 \ / 0;1/2
y15/4
1/5+4€;3/4
uh = u ' ul ul

Here in the ¢ < 3 case, the main issue is that we require an estimate with o = 0, but we are
only given (1.9) which has ay < 0. The iteration above exploits the fact that (2.2) allows
one to increase the power av at the cost of increasing the integrability exponent. We can pay
this cost thanks to the exponent halving coming from the quadratic nonlinearity and Holder’s

inequality.
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2.4 Blowup procedure

We will make use of three slightly different consequences of the local energy equality for
(1.2). The second is an extension of Lemma 2.2 in [19], now with the dependence on A made

explicit. Define the local scale-invariant quantities

_d__1_
C(R, 20) = B35 u| scarasarn g

and

L omd 1o 12
D(R,z) = R 2 a=s" HpHLi}d;3)/(d+1>(Q(ZoyR)).

Here we use the standard notation for a parabolic cylinder,
Q(z,7) = [t —r%t] x B(z,7)

where r > 0 and z = (¢,z) is a point in spacetime. For brevity, if @ = Q(z, R), we write
C(Q) in place of C(R, zp). These quantities appear in [19], although here we have defined

them slightly differently so they are 1-homogeneous in .

Lemma 2.11. Let u be a smooth solution of (1.2) satisfying (1.9) with X = L*(R?) on
[—T,0], » >0, and I C [-T,0]. Then we have

sup/ |u|2dx+// \Vu|?dzdt < APWrd=4 ]|, (2.24)
B(r) IJB(r)

1

a
ull e r2(@0r/2) + 1VUll 12 (@0r/2)) S T2 YC(r, 20) + D(r, 2)) A2, (2.25)

and, for ty <t < tg+ 1072,

t 2 t 2
/ |u(?)] dx_/ [uto)l®
Qaor/2) 2 Qor/2) 2 (2.26)

S HVUHL%w(cg(zo,r))z‘l%"%*1 + D(r, 29) Ar®2.
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Proof. All three estimates are elementary applications of the local energy equality
d [ |uf? 2 Juf?
— —dx + |Vu|“ydr = — (O + AY + u - V) + pu - Vipdz,
dt R4 2 R4 R4 2
along with Holder’s inequality, (1.9), integration by parts, and the Calderén-Zygmund esti-

mate for the pressure. O

The following proposition is closely related to Proposition 3.1 in [19]. Their method of
proof is by contradiction and uses a compactness argument to find suitable values 7 and e.

Thus such an approach does not give any information on how they depend on A or u more

broadly.?

Proposition 2.12. Let u be a smooth solution of (1.2) satisfying (1.9) with X = LY(RY).
Then for any e < A% if zy € [=T/2,0] x R?, p < T/4, and

C(p, 20) + D(p, 20) < ¢,
then
C(r,z1) + D(r, z) < €AW
for any z1 € Q(zo,p/2) and r € (0,p/2).

As in [19], Proposition 2.12 is obtained by iteratively applying Lemma 2.13 below. The
point is that given a lower bound C(r, z;)+D(r, z1) > € in a small cylinder, the lemma implies
the same lower bound in a cylinder dilated by a factor of A. This step can be iterated until
it yields a cylinder @)’ that is comparable in length to Q(zo, p), the ratio depending on A.
Since @)’ can be smaller than Q(zo, p), the scaling factors in the definition of C' and D lead
to the loss of A9M),

3Unfortunately the proof in [19] also appears to be incorrect, as pointed out in a subsequent paper by
Dong and Wang [20]. The author is grateful to an anonymous referee for JMFM for bringing this to our
attention. Let us emphasize that the results presented here do not rely at all on the lemma in [19] containing
the error.
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Lemma 2.13. Let €, u, p, and zy be as in Proposition 2.12. Then, withn = A™!,
C(p,20) + D(p, 20) <€, (2.27)
implies
C(np, 20) + D(np, z0) < €. (2.28)
Proof. We translate and rescale so that zop = 0 and p = 1. By (2.25),
el e 2y + IVl oy S €A2. (2.29)

Fix the large frequency scale N = = By interpolation and Lemma 2.3,

# =
| Ps | ezt <> Py UH ’ [Pl s
Ly, st Q) LI Q)
<D <M7m”PMW”L3@<Q(i>) + MO S

M>N

X (M5]| Pl oz sy + M%) 7.

Fix a spatial cutoff ¢ € C°(B(1/2)) with ¢ =1 in B(1/3). By Lemma 2.4, Plancherel, and
(2.29),

— 3
Z H‘P]MUIHLO"L2 l ~ Z <||PM(¢U)H%?OL%(Q( ) +M 100d A2>

1
4 4
M>N M>N

5 (62 + N—100d3)A2

and by the same reasoning

ZHPMVu||L2 1y S (€ + N7 A7

Q(3)
M>N

Therefore, by Holder’s inequality, the main term is

S M Pyl g 1Pl

L7 ,(Q(1)) L L2(Q(3))
M>N

1 1
1 da+3
__1
< N (Z PVl o ) (Z HPMUH%E"’L%(Q(D))
MoN M>N

< N dae+ N 904 4,

d+1
d+3
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The remaining terms all involve the small global Bernstein error and can be estimated

similarly to find

24d
| Pyt < N e 4 NP < orlpTral
>SNU L2+dil ) ~ € ~ 0 n €.

t,x (

To study the low frequencies, let ¢ € C°(Q(1/2)) be a spacetime cutoff function sat-
isfying ¢ = 1 in Q(1/3). Using Duhamel’s formula we decompose u into local and global

parts,

t

ul(t) == eV ((pu)(—1)) — / 2 div(p(u @ u+ pld))(#)dt,  u? = u —ul.

-1
By Hoélder, Lemma 2.2, (2.5), (2.29), fractional integration, and (2.27),

d+2

P
[P<nt|| oy S [ ((Gu) (= 1)) g (2,0 )

_4
Ly QM)
d 1
gy 212
+ N2tz P (25
L, TLA5 ((n2,0)xRY)

/t e div(p(u @ u+ pId))(t)dt’

-1

&g 1 d, 1 24e 1
2+ 5 stogs—1.2 -1, 2+
SnTa@TeAr + N2Tas ™ e S Cp ™ @t e

Next observe that P<yu? solves the heat equation in Q(1/3) so by Holder’s inequality and

well-known parabolic theory,

d+2 d+2

< i || Poyuf|| oo < 2t || Peyu? .
2T ey IFavidllzzsiaom w7 [Pew Hszﬁ(Q(i))

[ Panu?|

Clearly P<yu? = u— P-yu— P<yu'. The first piece can be estimated using (2.27), while the
other two we have already addressed. (Note that the estimates are unaffected by changing
the domain to Q(Z—ll) except for the heat propagator part of P<yu'; however even the worse

bound €Az without the improvement from using Holder on Q(n) suffices.) In total,
C(n) < Cy'le.
Next we consider the pressure. From the decomposition
Poyp = AV divdiv Py (2P§N/5u ® Ponysti+ (P>N/5u)®2> — 0+ T,
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we have

[RECY (o

S P N/5U _4
Lo T Q) |P<nrs HLf,Zd“

Po /st . + (nN —50d° 42
<Q<2n>)“ >N HLf,Zd“@@n)) ()

by Lemma 2.3 and (1.9). By the same calculations by which we estimated C' above and the

large choice of N, this implies

d+2 o

L .2 < Optan 2
H IHLZ(Z“ @m ~ 0"
For the other term we have
d+2 o
< 2 —50d? 2 <« =2 1472 2
HH2HL;Z%(Q(W» ~ HP>N/5UH[,3+%+1(Q(%)) * N A ~ CO U ’ €

again by Lemma 2.3 and the calculations above.

Next we turn to the low frequencies. With ¢ € C(Q(£)) a new spacetime cutoff
satisfying ¢ = 1 in Q(g), define

= —Ndivdivipu®u), p*:=p—p

where N is the Newton potential. To estimate the local contribution we employ the para-

product decomposition

Pngl = —Nle div PSN ((P(P§5NU)®2 + Z QDPN/UJ &® PN”U) =: H3 + H4.

N/NNII
max(N',N")>5N

The calculations above imply that P<yu can be decomposed as v + w where

d+2

-1, -2 —1, 244
Folles @iy < Commoehwll oy 0 < Gommmt e

for any ¢ > 1. (For example, let w be the nonlinear part of P<yu' and v the rest.) Thus,

using the Calderén-Zygmund estimate for N,

d+2 1 d+2

I Py <pitaz VR U 4+ n* @ ||pv O w 4
|| 3||Lt1:; dil (Q(?’])) ~ TI ||(IO ||Liqz([7772,0]><Rd) 77 ||SD ||ijcdil ([_77270]><Rd)
+ w K w 2
le ”Lt“;dil ([=n2,0] xR)
d+2 o
S Gyttt e
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where ¢ is taken large but finite to avoid the unboundedness of N divdiv at the endpoint.
By the calculations for P. yu,

d+2

HH4HL1+% S Z (N’)_ﬁe2 + (N/)—100d2A2 < 00_2771+% €2

~

@) T e

Finally, observe that P<ypY is harmonic in Q(é). Therefore

d
1+-2_
NUBEE HPSNPQHL?%H

(@)

d
< T || Poyp? _
L@y~ |Penv HLZ%“

Ponp? 2
| P<np ||L2;dil @)
Then the decomposition P<yp? = p — Poyp — P<yp' along with the above estimates and

(2.27) implies the desired bound. This completes the estimate of D(n). O

2.5 Partial regularity

2.5.1 Epochs of regularity

An essential step in some of our arguments, for instance the proof of Proposition 4.6, consists
of using a Carleman inequality (Proposition A.3) to show that concentrations of the solution
near x = 0 imply additional concentration in regions far from the z3-axis. Since the Carleman
estimate demands some pointwise regularity of the solution, it is important that it be applied
within an “epoch of regularity” which we construct in three dimensions in Proposition 2.15
for solutions bounded in the spaces X7, with (2.1). This is an extension of Proposition
3.1(iii) in [60] which we state first (for solutions in a slightly weaker space than the original,

but without introducing any new difficulties for the reasons mentioned in Remark 2.8).

Proposition 2.14. Let u : [tg — T, to] x R — R3 be a classical solution of (1.2) satisfying
(1.9) with X = L>>*(R3). Then for any interval I in [ty — T/2,to], there is a subinterval
I' C I with |I'| 2 A=°W|I| such that

V90 Lo, 1 xmsy S AP T|7UFV2,
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This only differs from the corresponding statement in [60] in the L3 norm being weak,

but it is easy to see that the proof holds without substantial modification.

On the other hand, additional effort is needed to handle the axial cases.

Proposition 2.15. Proposition 2.1/ holds as well with X = X, . and (2.1).

Proof. By shifting time and rescaling, we may assume that [ = [0, 1] and [—1,1] C [to—T, to].

For n sufficiently large, (2.17) implies that

Huvﬁ1||L§°Lp([ 1/2,1]xR3) p A ow)

for all p € [min(q¢’,2),3). By differentiating the definition of uf in time, we see that it

satisfies
ot + Pdiviu ®@u — ), @u’,_;) — Auf =
Thus, defining

1 1
Boft) =5 | (e, B1) = [ [Vt

we have the equality

d
EEO( )+ / - diviu@u — ), ®@u)_ —ub ®uf)de + 2F(t) = 0,
R3

using the fact that divuf, = 0 and therefore [uf -divuf, @ uf, = 0. Then integrating in time,
using (2.17) with p = 2, expanding the product u ® u — uf, ® uf, = 2u}, ® uf, + v} @ v,
integrating by parts, and applying Young’s inequality,

1

Ei(t)d / Vu ) O uf —
_1 % ]R3

< AW 4 ;/ L(t)dt 42 /

2 2

1
—uf - div(e, @ u — ) @ uLl)da:dt

uj,

-

2
<8|uk; © ub|?
)

|div(w) @ w’ — v’ @u’_, |)dxdt.

1
Zgft
+ Sl
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Therefore, by Holder’s inequality,

1

o(1 b 112 2
) El(t)dt 5 A @ + Hu’nH ;’j;:([—%,l]xW)Hu&l”Lf"Lg([—%,l]xH@)

|
¥

b b 2.30
+ <Hun71||L?°L§p([7%71}><]l§3) + ||unHLf°L§p([7%,1]><R3)) ||U§L”LtooLg’([,%71}Xﬂ{3) ( )

< A0
The above inequality is consistent with the hypotheses of (2.14) and (2.17) if we take p =

max(q, -%;). Plancherel’s theorem then implies
Z N2HPNui"i?L%([*%,l]xRS) < A0 (2.31)
N
and then by Sobolev embedding,

||UJEL||L?L§(—%,1]><]R3) N AW, (2.32)

Next, using the equation satisfied by u?, integration by parts and the identity uflfl =
b

» 1, we have

uEL—l—uEL—u

d
— b = V20l | + / A, - diV(“ifl ® ungl + 2“5171 © ungl)
dt R3 R3

|Vl |2 + / At - div(ud @ vl + 200 © uf)
R3 R3
N R AL A )
R3
Note that for a vector field u, [V?u|? denotes the quantity 9;;uy0;;uy. By Holder’s inequality,

Sobolev embedding, interpolation, and Gagliardo-Nirenberg,

. 3/2 1/2
Idiv s, @ || 2oy S 1| poqeon IV | oy S IV g | VU oy

S By ()| V2l | sy

By Hélder’s inequality, (2.14), and (2.17),

. b b
Idiv ey, © |2 sy S NIV oo sy k|l 22 sy + 11| e oy || Ve | 2 )

S AV + E1)'?)
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and
A div(w, y +u) © (u), —ul )|l zgsy S AW

where again p = max(q, q%). Combining these estimates for the nonlinearity with Young’s
inequality, Holder’s inequality, and (2.17),

d 1
=3 V24 |* + O(Br(6)*2| V20 || 2 sy + AV (1 + Ev(1)))
R (2.33)

1
< 1 ’VQuMQ + O(E1(t)3 + Ao(l)(l + Ei(t)).
]RB

From (2.30), there exists a time ¢; € [0, 1] such that Ey(t;) < A°M. A continuity argument
then implies that there is an absolute constant C' such that within the interval Iy = [t1, ¢, +
A9, we have Ey(t) < A®. More generally we define the truncated intervals I; = [t; +
LA t; + A=C]. Along with (2.33), this implies

/ \V2ud |2dadt < AW, (2.34)
Iy JR3

Using this along with the bound on F; within the Gagliardo-Nirenberg inequality

1/2 1/2
o | 2o gy S NIV | oo | V208 | oy

then applying Holder’s inequality in time and (2.14), yield

HUHL;*Lgo(IOxRB) < ||u|;LHL§Lg°(IO><R3) + HuiHLngo(onRi*) N ACW),

Duhamel’s principle on Iy, (2.5), and Young’s inequality give

t
_1
[ = O )

t1

el 3 e 1y ey S € 2 u(t) | 5 poe (1, xm) + ‘
L¥(I1)

< AP0,

where we truncate the time interval to I; so the heat propagator in the linear term stays
away from the initial time. Bootstrapping and truncating the interval one more time in the

same manner, we arrive at

[ullzge, (roxre) S AW, (2.35)

s
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We also have, by (2.34) and Sobolev embedding,
HVUELHLng(onRif) S |’V2u£LHLfL§(Io><R3) N AW (2.36)

which we apply to the Duhamel formula
_ 1 K :
Vu(t) = =154 DAyt + ~AC) — / e COAYP divu @ u(t)dt!
5 t1+%A_c
for t € I. Using (2.5), (2.35), and (2.14) and assuming ¢ € I3,
t
IVu(®)liz 4204 [ (= ) Vi () g
ti+1A-C
+ (=) 2w VU, (V)| peedt!
t
5 AO(l) (1 _|_/ (t_t/)—3/4||vu£il(t/)||Lgdt/>

t1

and therefore

||VUHL§Lgo(13x1R3) S A°M

by fractional integration and (2.36). Finally, for ¢ € I, by this and (2.35),

t
IVu(t) || oo gy S A + / (t = )72 |ull e, (1 xm) | V() || oo syt
t1+%A70 ’
and so
||vu||L§f’z(I4><R3) N A°D (2.37)

again by Young’s inequality.

The estimates (2.35) and (2.37) imply regularity of the coefficients of the vorticity equa-
tion in I, x R? and therefore the estimates for w and Vw follow by (4.17) and parabolic

regularity. O]
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2.5.2 Annuli and slices of regularity

The first application of Proposition 2.12 is that the smallness of C' and D implies good
pointwise bounds on the solution. We state Proposition 2.16 as a more quantitative variant

of Theorem 4.1 in [19].

Proposition 2.16. Let u, zy, and p be as in Proposition 2.12 and suppose that for every
21 € Q(20,01/2), p € (0,p1/2) we have

C(p,21) + D(p,z1) < e < AT
Then, for j =0,1,2,

| L
V90 e, Qs a1y < ACNV/OD 1

s

Proof. Let us normalize p; = 1 and 2y = 0. By the argument in the proof of Theorem 4.1 in

[19] using the bound on p coming from (1.9), one finds
[l e a3y < ACMe /00, (2.38)

We may bootstrap the estimates for higher derivatives using Duhamel’s formula. Let us

fix a decreasing sequence of O(1)-many lengths + > r; > ry > r3 > -+ >

3 satisfying

i
Tn — Tnp1 = 1/O(1). For a frequency N > 1 to be specified, (2.38), (2.6), Lemma 2.3, and

Duhamel’s formula for (1.2) starting from ¢t = —1/3 imply
1Pyl e @iy S € VOO NA 4 N71AOM/OM) 4 =50 42

Clearly with N large enough, the first term (from the linear propagator) is negligible com-

pared to the third (the global contribution to Bernstein). Therefore, again by Duhamel’s

20



formula, (2.38), and a paraproduct decomposition of Py(u ® u),

1 Pnvull e, @era)) S e NIOWNA + N7 Peyu © Pyl oem))

+ N7 Pyl gy + NTH0A

N'ZN
< Nfl(AO(1)€1/O(1) + N749A) (NflAO(l)El/O(l) + N750A2>

+ N1 Z lAO(l 1/0(1) + (N/)_50A2) + NN A2

N'ZN
< N—QAO(l)El/O(l) + N—49AO(1)
Thus, once again by Duhamel’s formula and (2.5), for any Ny > 0,
190l 22 @ < Nollullzzsarmy + Na ™A+ S (NI Prtllzzs ey + N-A)
N>Ng
< Ny AOMl/OW) 4 =48 40()
By taking N, to be a suitable power of ¢!, we arrive at

IVl 32 sy < ACWet/OW.

Proceeding in the same way, one can obtain the higher order estimates as well.

Taking Propositions 2.12 and 2.16 together, we obtain the useful fact that if C(Q) +

D(Q) < A7', then we have good pointwise bounds for u in Q/2. (Clearly we may also

replace )/2 with, say, 9Q /10 by trivially modifying the proofs.) As an application, we prove

the first partial regularity result. As discussed in more depth in §3.3, by letting the region of

regularity expand in space (as opposed to taking, say, Qo x R?~* for some small Qy C R¥),

we obtain better estimates upon iterating unique continuation. We remark that we do not

claim this to be the optimal result; indeed one should expect that regular regions exist that

are unconstrained in up to three of the d 4+ 2 parabolic dimensions, (cf. epochs of regularity

when d = 3 which are unbounded in all three spatial dimensions). In this case, the region is

unbounded in only one spatial dimension, i.e., radially toward 6.
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Proposition 2.17 (Slices of regularity). Assume u is smooth and satisfies (1.2) and (1.9)
with X = LYRY) on [~T,0], 20 € [-T/2,0]xR%, and R* < T/4. Then there exist a direction

0 € S¥! and a time interval I C [to — R?,to] with |I| = A;2R? such that within the slice
S =1x{recR®: dist(x, 2o + R 0) < 104" |(x — z0) - 0], |z — x| > 20R} C [T, 0] x RY,

for 7 =0,1,2, we have

. L/ R\ VY
Vil < 47 ()
2

Proof. We normalize R = 1 and z, = 0, then apply Proposition 2.6 on the interval [—2,0].

Let Sy be the collection of all spacetime regions of the form
I x {z € RY: dist(z, zo + Ry 0) < 2045 (x — x0) - 0], |2 — mo| > 10}

ranging over all § € S* ' and I = [~1045%k, —10A;%(k — 1)] where k € [1, A2/10] N N.
Clearly we may find a disjoint subcollection S; containing > A% such slices. We seek to
find one where we can apply Propositions 2.12 and 2.16. To find a region where D is small,
observe that by the Calderén-Zygmund estimate for divdiv /A, Hélder’s inequality, Sobolev
embedding, and (2.9),

AT divdive! @ u?|| o < Jlfl* . < A°W),
LI LT ([-1,0)xRY) L2172 ([-1,0)xR)

d
By interpolation with the L°L2 bound from (2.8),
A divdiv e @ w2 (-10cmey < AW,

As a result, of the > AT™ slices in Sy, at least 99% must have

d+1

|A™ divdivef @ w2 (5 < Aidy 7

Using (2.6) and Holder’s inequality, it is easy to see that the same can be said for O uf
and ©” ® «’. Let Sy C S; be the collection of all such slices. Combining these estimates and

applying Holder’s inequality, we have

(2.39)



for every parabolic cylinder @ C S of length ~ A;* and every S € S,. By the same argument
along with (2.9), most of the S € S, satisfy

da+1

IVl 2 (s) < Ay 7, (2.40)

so in fact the family Sz of slices satisfying both (2.39) and (2.40) has #(S;) > Cy tAF™.
Each of these slices occupies one of ~ A3 time intervals, so by the pigeonhole principle, there
is an interval I = [to,to + Ay ?] which contains at least Cj2A9~" slices in S5. By (1.9), there

must be one of these slices Sy such that
B
Juto)llLagsy,) S 42 “A

where Sy, C R? is the projection of Sy to the spatial components. Then by Holder’s

inequality, for every ball of length A, inside S,

d
2

=

44
[uto)llr2m) < Ap* * A

By (2.26), (2.39), and (2.40), for any @ C Sy of length A,/2,

NI

+

o]t

ull Loz < Ay P Ay

Note that the bound (2.40) on u* can be restricted to any such Q C Sy and extended to the
full solution v using (2.6) and Holder’s inequality. We conclude from the above and the local
Gagliardo-Nirenberg inequality (see e.g., Lemma 2.1 in [19]) that
a_y A 3 _3
0@ 545 (VU 0 + Il ) < Aty
for any @@ C Sy of length As/2. This along with (2.39) leads to the claimed bounds by
Propositions 2.12 and 2.16. O

The next proposition should be compared to Proposition 3.1(vi) in [60]. In the case
d > 4 it will be necessary locate even wider annuli where the solution enjoys good subcritical

bounds, at the expense of needing to search a larger range of length scales. Note that in
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[60] a key ingredient of the proof is the bounded total speed property which is unavailable in
high dimensions. For this reason we proceed in the manner of Barker and Prange who use

an e-regularity criterion to find quantitative annuli of regularity; see [5, Section 6].

Proposition 2.18 (Annuli of regularity). Let u be a smooth solution of (1.2) satisfying (1.9)
on [—10,0]. For any Ry > 2, there exists a scale R € [Ry, RSXP<A4)] such that for j =0,1,2,

j -1/0(1
||VJUHL;>§C (—1,0]x{ R<|e|<R2Aa}) < Ay /ew,

Proof. Since, by (1.9),

/ (Jul* + |pl*/*)ddr < AW,

[~10,0]x{ Ro<|2| <RG™ #4}

the pigeonhole principle implies that there exists R in the desired range such that
1

/ (jal” + pI**)dodt < A,
[~10,0] x{ R/10<|z|<10R2A4}
and therefore, by Holder’s inequality, for every parabolic cylinder @ C [—10,0] x {R/10 <
x| < 10R*},

HUHL%ﬁ(Q) + Hp”LH%(Q S Ay

t,x t,x )

N

This implies that the region [—1,0] x {R < || < R?*41} can be covered by a collection of
1

cylinders @;/2 such that Q; C [—10,0]x {R/10 < |z| < 10R*44} and C(Q;)+D(Q;) S A, 2.

Successively applying Propositions 2.12 and 2.16 in all the (); yields the desired bounds. [l

2.5.3 Regularity away from the axis

The following appeared in [41] refining a result in [46]. One can heuristically justify that
these are likely the sharp pointwise bounds for critically bounded axisymmetric solutions,

perhaps up to the € power loss far from the axis.
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Proposition 2.19 (Pointwise bounds away from the axis). Let u solve (1.2) on [0,1] satis-

fying (1.9) with X = L3°°. Then for every ¢ € (0,4/15), we have
(Viu| < (ril*j + 7’7%“) A9 (1)

for each t € [1/2,1]. We also have

ull Lo(rz1yy < A% D
for each such t, and p € (3, 00].
Proof. We first pick any a € (1/3 —¢/2,1/3) and ¢ = ¢(j) > 0 sufficiently small so that

(1—a+j)c<e/2 and c<af(l—a). (2.41)

We also pick n = n(j) € N sufficiently large so that

n>(2+7) (1 + %) (2.42)

We set t, == 1/2 — (1/2)* and we define a sequence of regions {z € R? : r > R/2} = Q; D
QD DQ,={reR:r > R} such that dist(Qy, Q1) > R/2n.

Given such a sequence of times we now consider the corresponding Picard iterates 5,

ui, for k € {0,1,...,n}.

Step 1. We show that
Pl e 2 |1 P (0) oy S RN A0 (2.43)

for all a € [0,3), R >0 and ¢ € [t;, 1], k > 0.

In fact, we first observe that Lemma 2.2 gives that
(7% Pyu(t) ]| oo < NP Ju(t)|| s < NEP2ACW), (2.44)
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Thus, since the first inequality above is valid for any axisymmetric function, it remains to
note that the second inequality is also valid for each ui, uﬁk, on [tg, 1], k > 0. Indeed, the
case k = 0 follows trivially, while the inductive step follows by applying Young’s inequality

(5.21) for weak LP spaces, and Holder’s inequality (5.20) for Lorentz spaces
t
lur (D)l zse S NV = t) 1 ]Ju(ti)]| oo +/ IV =)l (i @ wmy) ()| pr2oe dt’
173
t
< CkA + CkHuZ1||%0°([tk_171];L3,oo)/ (t _ t/)*%dt/ < AOk(l)
12

for t € [ty, 1], as required, where we also used the heat kernel bounds (5.18).

Step 2. We show that the inequality from Step 1 can be improved for ui for large k, namely
PN || oot qintrs oy < NACKD(RN)~(=Da 4 y=(=1) 2.45
kIl Lo ([,1)x{r>R})

for every k > 1 and N € 28 N [100* max(1, R7'), 00).

We will show that,
Xey < N5 AW (RN)~*=De g y=(E-D)y (2.46)
for k> 1 and N > 100¥ max(1, R~!), using induction with respect to k, where

Xiw = | PNULI Lo (4 11225/ 00)-

Then (2.45) follows by the local Bernstein inequality (2.3).

As for the base case k = 1 we note that (2.5) gives that
t /
IPxaOllrs S [ 1Pve 5P div(u s u)(t) st
t1
¢
S /t e—(t—t')N2/O(1)Ng ||(u ® u)(t/)HL%,oodt,
1
< Ng”e—tN2/O(1

)HLl(tl,l)Hu”%S,oo
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for ¢t € [ty,1]. Thus
4
Xin < HPNU§|’L°°([1£2,1];L5/3) < N75A°W, (2.47)

due to Holder’s inequality for Lorentz spaces (5.20).

As for the inductive step, we use the Duhamel formula for ui and the local Bernstein

inequality (2.3) to obtain
t ’
1Py ()] orson) S / [Pne™ 8P div(u ® u — wy_y @ wy_y)l| /30, At
ty

t
< / Ne= N0 Qe (| Py (u @ w — g @ u)_y)|| oo 1125/ (001
tk

+(NR)_(k_1)a||PN(U Q@ u — UZ—1 ® UZ—I)HLOO([tk,l];LE’/:‘))

_ . I~
S/ N 1 (HPN(U X u— ubk;fl & Ubk’*l)HLOO([tk,l};L5/3(Qk71)) + N5 (NR) (k—1) AO(1)> :

where we used the weak L? bound (5.4) and Lemma 2.2 for the u ® u term and (2.6) for the
u,_, ®uj,_, term. Thus we can use the paraproduct decomposition in the first term on the

right-hand side to obtain
Xen SN+ + Vsl poo (112530001 + N5 (NR)~ (=D g0(1), (2.48)
where

N'~N

Yy = Z PNlu?Cfl ® PNQULI,
Ni~N2ZN

— 2 : b #
YE’) = PNluk,_l ® PNzuk_l,
Ni~No>N

Y, =2 Z PN/ULl © PSN/lOOui‘—l’

N'~N

Y, =2 Z Pen/ioott_y © Pyti_y.
N'~N
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Using (2.43),
HYlHLOo ([t1,1];L5/3(Q_1) Z Xp—1,N7 Z R 1 a AOk(1)
N'~N N'SN

S R*CYNI*CVAOk(l) Z Xk—l,N’

N'~N

and
HYQ||L°°([tk71];L5/3(Qk—1)) 5 R A%M Z (N/)l_an_LNl'
N'>N
Moreover, the frequency-localized bounds (2.5) for uj,_, give that
13l ooty 152573000 1)) S A% Z ef(Nl)Q/O’“(l)N/XkA,N/,
N'>N
and (2.8), as well as boundedness of P<y/100 on L5/3 give that

S A0 § = (VP/O0) NI g o= N0 4Ou)
N'~N

IYall Lo it 10: 2573 001y
Finally, using boundedness of P<y/190 on L™ and (2.6) we obtain
Y5l oo (1305730 1)) S A% Z Xi—1,n7-

Combining these estimates into (2.48), we have shown

Xpn S AW (RN)+ N D> Xpow + N'R D) (N Xy
N'~N N'ZN
(2.49)
FNTEN T e WHOONTX s+ NTE(NR) TR NN/ OD)
N'ZN

Since the upper bounds on Xj_; 5+ provided by the inductive assumption (2.46) are

comparable for all N' ~ N, up to constants depending only on k, we thus obtain that

37 Xioiw < A%ONTE ((RN)70E2) 4 N7F=2)

N'~N

R~ Z (N/)lian—l,N’ < Aok(l)R—a Z (N/)l a—— ((RN/) a(k—2) + (N/) ))

N'>N N'>N

< A% N (RN)~ok=D 4 N=¢-D) |
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where, in the last line we used the fact that (k—1)(1—«)—4/5 < 0 for any k > 2. A similar

estimate for Y v~y e~ W /O-MN' X, v now allows us to deduce from (2.49) that

Xen < N5 ACW(RN)~¢=Da g N1y

as required.
Step 3. We prove the claim.

We first consider the case R > 100"/, and we note that, by (2.43)
HPNSRCvjuEL”L;’?A[%,l]x&zR}) < Z AOn() N1=ati o < AOn(1) proct(i-atile < AOn() p-jte
N<Re

where we used the choice of @ > 1/3 — €/2 and the first property of our choice (2.41) of ¢ in
the last inequality. On the other hand for N > R°® we can use (2.45) with k = n to obtain
arbitrarily fast decay in N. Comparing the terms on the right-hand side of (2.45) we see
that N=("=2 dominates (RN)~("=2 if and only if N < R*(=%) which allows us to apply
the decomposition

P> eV e 3 gy < >, AN
Re<N<Re/(1=e)

+ Z AOn(l)Nl—l—j(RN)—(n—l)oc
N>Re/(1-0)

S Aon(l) RC(_n+2+j)

where we used the second property of our choice (2.41) of ¢ in the second inequality, and the

choice (2.42) of n in the last inequality.

We now suppose that R < 100™/¢. The low frequencies can be estimated directly from
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the weak L3 bound (5.4),
HP§1002n/cR—l VJUHLZDI([%,I]X{TER}) SJTL,C AO(l)R*lfj

On the other hand, for N > 1002*/°*R~! we have in particular N > R*/(1=9) which shows
that the dominant term on the right-hand side of (2.45) is (RN)~(™~2* and so

HP>1002”/CR—1vjuEL(t>HLOO({TZR}) < Z N1+jAOn(1)(RN)f(n71)a < AOn(W) p1-i
N>100%7/c¢R~1

for every t € [1/2,1], as desired. As for the estimate for v’ we use (2.6) to obtain
||vjui||L°°({r2R}) < R—1/3+e||7,1/3—evjui;L||oo <, R—1/3+5Aoe,j(1)’

as needed.

The estimate for ||u||z»({r>1}) follows by an LP analogue of Step 1, as well as applying the
X N estimates (2.46) in the L? variant of Step 3. O

We prove an axial version of Proposition 2.19. We do not attempt to be as precise because
the bound is sure to deteriorate near the thresholds of (2.1), and it will not be necessary for

the application in Chapter 4.

Proposition 2.20. Suppose u is a classical solution of (1.2) obeying (1.9) with X = X7 ;.
and (2.1). If T' € [0,T/2] and R > (T")'/2, then in the region

Q={(t,z) €to— T, to] x R®*: v > R},
we have
A 2\ —1/0;(1)
Wl S @5 (3) A0

for j > 0.

Proof. The strategy of the proof is similar to that of Proposition 2.19. Let us shift time and
rescale to achieve ¢ty = 0 and 7" = 1. First we note that by (2.2), (2.14), and (1.9), if ¢ > 3
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and f is either u’ or uf,, we have

_3 3
R4\ Py fll e -1/20x rz 10 S 1775 Py fll e 1 /z0xmey S NaAO D

and if instead ¢ < 3 and v is axisymmetric, then

_2
R qHPNfHLf,oz([*l/Q,O]x{rER/lO}) S Hr qPNfHL‘X’ ([~1/2,0]xR3) N NQAO

Let us therefore define v, = 2 in the former case and v, = = in the latter so that we always

have

1Px s, (11200 gz /10p)s |1 Pl Lo -1 /2.0 (= Ry10p) S N0R™HH70 A9 (2.50)

Importantly, in either case, 7, < 1. The point is that while staying uniformly away from
the x3-axis, this is a subcritical estimate and we can iteratively improve it with Duhamel’s
principle. Let us begin with a straightforward application of (2.4), Hélder’s inequality, and
(1.9) to obtain, for ¢t € [—1/2,0],
t
||r2°‘qPNu§(t)||Lg/2(R3) < / ||r2°‘qPNe(t_t,)AIP’ div(u ® u)(t')”Li/z(Rg)dt'

—-1/2

¢
< / e (= IN/20 \ |1 200y, u||Lq/2(R3)dt/
,1/2 ’

< NAZ
Next, we have

¢
Pyul (1) = Pne™2 Qiv Py (uf @b+ 208 0w’ dt.
n 12 n—1 n—1 n—1 n—1

By (2.3), for t € [-1/2,0], we have

||T2aqPNu ( )||Lq/2(r>(1 2-7)R) Nn 1”TQO[(I(le +Yo+ Y3+ +}/5)||LQ/2 (3—2-(»=D)R)

+ (NR>_50N_1||T2aq (un—l & Un,1 + 2un71 © un—1>||Lg/2(R3)
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where we decompose PN(uBL,l ® ui,l + QUEL,l ®u’_,) with the paraproducts

Y, =2 Z Pyt | ® PSN/IOOU?l—l

N'~N

YV2 = Z PNIUEL—I ® PN2UEL—1
Ni~No>N

. b i
YES = E PNluTL—]. ® PN2un—1
Ni~No>N

Y, =2 Z Pyl ® PSN/IOOU?l—l

N'~N

Y5 =2 Z P<njiootty,_ © Pyl

N'~N

By Hélder’s inequality, (2.14), and (1.9), the global Bernstein term is bounded by (NR) 0N~ A%(1),
Let Q, = [-1/2,0]x {r > (3 —2"")R}. Assuming N =, . R, where ¢ > 0 is a small constant
depending on ¢, by Hoélder’s inequality, (2.2), (2.14), (1.9), (2.50), (2.15), and (2.16),

Il ez, S D I Pl e

Qn—l)
N'~N

x Y AOON max(N'R, 1)~
N'<n
< AO~(Y) Nva R=1474 Z HrZ%PNIu

ﬂ “ /2
n—1 L;DLZ (Qn—l)’

Hr2an-2HLtOOLg/2(Qn_1) S Z AOn(l)NquRflJr’Yq HTQO‘quzuBz—l HLtOOLg/2

(Qn—l)’
Ni~N22N

||T2anE’)|’L§°L3/2(Qn_1)5 Z G_N%/O"(I)NlAO"(I)\|T2aqPN2U?1—1HLt°°LZ/2

(Qn—ly
Ni~N2ZN

b
||T2aqn||L?°Lg/2(Qn,1) S Z ||PNlun—1||ng71||P§NUEZ—1||XZ%1
N'~N

< ¢~ N?/0n(1) 4On())
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and
_ 2
I Yl e o,y S D € TOON A ST 20 Py s,
N'SN N'~N

S,Aon(l) Z HT2aqPN’u§L—1HLtOOLg/Q(Qn—l).
N'~N

In total,

HrQaqPNU?@HL;’OLgﬂ(Qn) 5 Aon(l)((NR)l—’Yq + N)_l Z HT?aqPNUEl—lHL;’OLg/Q(Qn,l)

N'~N
—1+ —1 4On(1) Ya || ,.2 !
+R YTaN—LA Z quur aqPNlun*IHLgoLg/Q(Qn,l)
N1 >N
+ N—lAOn(l)e—Nz/On(l).
Iteratively applying this, we find
122 Pl g sz S A% DN min( (V) 0, )7 (251)

noting that the assumption N 2, . R® implies
€—N2/On(1) 5 ((NR)l—’yq’N)—n-i-l.

In order to make use of (2.51), we take the Littlewood-Paley decomposition of Viuf, and

apply (2.2) and (2.3) to find

IVl gm0y S I Pepr Vb lxee + ) N[ Pytd]|iee o)
R—1<N<n. R

+ Z <N2+j||PNU§7‘”X§(§241(TZR/2) + (NR)_5ON1+j||PNU§L||XZQ;1) .
NZn,cRe ’

Thanks to (2.2), (2.14), and (1.9), the first term is bounded by R~'77A% (1) The global
Bernstein term is estimated the same way, and summing the geometric series, we obtain
the bound A%*(M R4 For the intermediate frequency term, we apply (4.13) and sum the
geometric series to find

Z NjHPNuELHLfO,(Q) Sne AOn(1) p=1+7g+(vati)e,
R-1<NZn R ’
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For the high frequency term, we have to split the sum once again depending on how the

minimum is attained in (2.51).

2+j # On(1 j—n+2
Z N ]HPNUNHX%ZJ(TZR/Q) S Z A ( )N]

N> .Rc 1
~n,c RCSn,cN,SR’Yq

n A0 NI (N Ry~ (=0) (1)
NZRYa

Sn,c Aon(l)Rmin(%—l,c)(j—n—i-Q)

where j = 0,1,2,3, assuming n > 10/(1 — ~,) in order to make the series summable. By
taking n and ¢! sufficiently large depending on ¢, all the powers on R can be made uniformly

negative, that is to say
V74 | e ) S AP RO,
Moreover, by essentially the same argument we used for (2.50), we have
ijum’Lﬁ(Q) < AW R=0-%),

Since u = u’, + uf, and 7, < 1, this proves the estimates for V/u. O
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CHAPTER 3

Regularity in dimensions four and higher

3.1 Introduction

The contents of this chapter appeared in the author’s paper [47]. We prove a quantitative
blowup rate analogous to (1.7) for d > 4, answering a question of Tao, see Remark 1.6 in [60].
As in [60], we assume for convenience that u is a classical solution, meaning it is smooth with
derivatives in Ly°LZ ([0, T] x R?). Since our results depend quantitatively on only [[u| e~ 4,

they can in principle be extended, for instance to the Leray-Hopf class as in [22].

Theorem 3.1. Suppose u is a classical solution of (1.2) that blows up att =T, and d > 4.
Then

5 |w(t) || a (ra B
im sup =00

17 (loglogloglog 7= )¢

for a constant ¢ = ¢(d) > 0 depending only on the dimension.

This is a straightforward consequence of our other main theorem which asserts that a
solution satisfying the critical bound (1.9) with

X = LYRY)

is regular; in particular we can quantify its subcritical norms in terms of A. Let us take A

to be at least 2.

Theorem 3.2. If u is a classical solution of (1.2) on [0,T] satisfying (1.9) with d > 4, then

1+j

VI u(t)|| poomay < exp exp exp exp(A°)t™ 2
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fort € (0,T], where C = C(j,d) depends only on j > 0 and the dimension.

Remark 3.3. Using ideas from [46], particularly Proposition 8, it is possible to improve the
bounds in Theorems 3.1 and 3.2 if some mild symmetry assumptions are made on u. For
example, suppose u is axisymmetric' about the 3,1y, ..., xq-plane. When d = 4, one log
and one exp can be removed from Theorems 3.1 and 3.2 respectively. When d > 5, we may
remove two logs and two exps. In the latter case, in the proof of Proposition 3.7, we find
the desired concentration at length scale ¢ = A=W using the slightly improved energy bound
(2.10), while when d = 4, we resort to pigeonholing the energy over A°M -many length scales
which yields an ¢ as small as exp(—A°W). An argument similar to Proposition 8 in [46]
allows one to avoid losing additional exponentials when locating annuli of reqularity as in

Proposition 2.18.

Let us summarize why the approach in [60] breaks down in greater than three dimensions.
The first set of difficulties arises when one would use the “bounded total speed” property,
i.e., control on [|ul| 1 .0, see Proposition 3.1(ii) in [60]. One expects (for example, based on
the heuristics following Proposition 9.1 in [59]) that this property fails when d > 4. In other
words, one cannot expect any kind of “speed limit” for elements convected by u. Instead,
we derive a procedure to propagate concentrations of the velocity and pressure from fine to
coarse scales, encapsulated in Proposition 2.12, which is a quantitative version of Lemma 3.2
in [19]. From this we can extract several important results including an e-regularity criterion

(Proposition 2.16) and the backward-propagation lemma (Proposition 3.4).

The second and more significant challenge in high dimensions is due to the lack of quan-
titative epochs of regularity as in Proposition 3.1(iii) in [60]. In the qualitative analysis,
it suffices to use epochs of regularity for which one has absolutely no lower bound on the

length, nor any explicit upper bound on |ul, |[Vul, etc. (For example, see the use of Proposi-

L By this we mean the following: when regarded in the coordinate system which consists of polar coordinates
(r,0) in the x1,xo-plane and Cartesian coordinates in the rest, we have u(x) = Rg(u(R_gx)) where Ry
denotes counterclockwise rotation by 6 in the x1,xo-plane.
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tion 2.4 in the proof of Proposition 5.3 in [19].) This becomes a problem when one needs to
propagate concentrations of vorticity through space and into a distant annulus of regularity,
as the width of the time interval on which one has regularity determines the lower bound
one can extract from unique continuation for the heat equation. We will remedy this by
substituting spacetime partial regularity in place of epochs of regularity. This creates some
new difficulties; first that when one propagates a high frequency concentration of the solu-
tion backward in time, a priori there is no guarantee that the resulting concentration has
any of its Lf@, mass inside the regular region. There is a particular fractal arrangement of
concentrations in spacetime which is consistent with this obstruction; indeed the objective

of Proposition 3.7 is to locate a scale where we may rule it out.

The second difficulty faced when propagating the vorticity using only spacetime partial
regularity is the following: the usual Carleman inequality for unique continuation has as
its domain a large ball in space (compared to the length of the time interval); however we
wish to propagate the vorticity for a great distance through a thin spacetime slice. We are
able to accomplish this without the bounds suffering too badly (losing only one additional
exponential compared to the d = 3 case) by repeatedly applying the Carleman inequality in a
series of moving and expanding balls lying in an expanding slice of spacetime. We show that
the iteration of unique continuation accelerates exponentially away from the initial vorticity
concentration. The positive feedback loop this creates is essential for arriving at the claimed
bounds, as unique continuation through a uniformly thin slice would lead to an unbounded

number of logarithms and exponentials in Theorems 3.1 and 3.2.

3.2 High dimensional back propagation

Next we prove a high-dimensional analogue of Proposition 3.1(v) in [60]. The proof given
there is obtained by iterating a lemma for very short back-propagation, with the bounded

total speed property (Proposition 3.1(ii) in [60]) preventing the sequence of concentrations
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from traveling too far through space. Although the bounded total speed is unlikely to hold

when d > 4, Proposition 2.12 is a suitable replacement.

Proposition 3.4. Suppose u is smooth and satisfies (1.2) and (1.9) with X = LYR%) on
[—T,0] where T > 100. If Ny > 10A4; and

| Pyou(0)] > AT No,
then there exist z; € [—1,—A5'] x B(Ay) and Ny € [A;*', Ay] such that
|Pyu(21)] > Ay

Proof. Using Lemma 2.5 to deduce that there must be a parabolic cylinder about z = 0

where we still have the lower bound on | Py,u|, we have

AN S < | P, < lull
T u u
b = WENR 22t oy ~ T L2 (gasn)

(d+1)(d+2) 4

+ A0r 2 A

with 7 = A7? Ny, using Lemma 2.3. Rearranging, this implies
C(A;Ny',0) > AP (3.1)
Because Ny > 10A;, we can apply Proposition 2.12 in the contrapositive to find
C(1,0) + D(1,0) > A[%.

Suppose first that C'(1,0) > %AI_M. Using some large parameter M to be specified, we split

u into three pieces to estimate C'(0,1): low frequencies

A
HP<M_1UHL3+%+1(Q(1)) S HP<M—1UHL§?I([—1,O]><R‘1) N M
intermediate frequencies
Py-1<. <pu e <log(M) max [[Pyu e ,
IPas il st oS Tom(M) Pl
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and high frequencies

b
”P>MuHLf+ﬁ(Q(1)) S E (HPNU HLff’z([fl,O]de))
T N>M

L ([~1,0]xR9) L L2 ([-1,0] xR%)

f d+3 f d+3
2
+ N7 Py | Py )

Here we have used the decomposition from Proposition 2.6 on, say, [—2,0] x R¢ followed by

Lemma 2.3 and Hélder’s inequality in space and interpolation in time. For the first term,

by (2.7),

Z ||PNU ||L > ([=1,0] xRd) < M40

N>M

For the second, by Hélder’s inequality, Plancherel, (2.8), and (2.9),

> NTEE(N||Pyut 22, (- 10)xRa))" s | Py |25

L L2([—1,0]xRd)
N>M

_ 1
S M7 (Z N2HPNUﬂHi@([—LO}XRd))
N

< M w400,

1
27 d+3

pe=
(Z HPNUﬂ H%tOOLg([—Lo]de))
N

Combining the above estimates, we conclude

1 A L
§A1 s .05 M + log(M) M—rlrg}\}f{<M ”PNUHL?Z(Q(U) + M~ AW

With M = A?(l), we obtain z; € Q(1) and N; € [A; ', A,] such that

Pru(z)] 2 4700,

Suppose instead that D(1,0) > 1A% By Hélder’s inequality, Lemma 2.3, and (1.9), also
using the fact that p = —A~'divdiv(u ® u), we have

||P<10M71p|| 1442 5 ‘|P<10M*1p||L§fz(Rd) f, M™2A%

Ly (Q()
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To handle the intermediate and high frequencies, we use the paraproduct decomposition

PZIOM—l(u X U) = PZIOM_l (2(P<M—1U) ® (PM—1§~§MU) + 2u ® <P>MU) + (PM—1§-§MU)®2)
=11 + I, + I15.
For the first term, by Holder’s inequality, Lemma 2.2, and (1.9),
HA_l div div Iy || 12 S HP<M—1UHL;<>I([71,0}XW)HPM—lé~§MUHL?°L%([7LO]XRUZ)

Ly, QM)
< APM

Next, by Proposition 2.6, Holder’s inequality, (1.9), (2.7), and estimating P.ju® using

Plancherel and (2.9) as above, we have

A divdivIL| .. o <A(P I Pt L s )
H ol st gy S APy + 1Pty

< M- A0,
Finally, by Holder’s inequality, Lemma 2.3, and (1.9),

||A_1 diniVHSHLH_% 5 ||PM71S‘SMU||22+ﬁ 4 M_50A2.
t,x

(Q(l)) Ltw ([7170}><B(M2))

In total,

1

L _1 _
§A1 4d S D(O, 1) ,S M 2A + M~ 20@d+3) AO(l) + 10g<M) Ne[nj\}[a}1(7M] HPNUHL?%(Q[—LO}XB(MQ))‘

Once again with M = A10(1)7 we obtain N; and z; with the claimed properties. Finally we
address the possibility that this #; falls in [~A45", 0] instead of the desired interval. By the

fundamental theorem of calculus and Lemma 2.5,
Pyt — Ay )] = 4770 — O(NPA* A

which implies we can redefine ¢; to be in [~1, —A;'] while maintaining the lower bound on

|PN1U|' O]
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3.3 Iterated unique continuation

Clearly the Carleman inequality Proposition A.3 is incompatible with the geometry of Propo-
sition 2.17 since B(r) would have to be contained in the thin slice in order to guarantee (A.2),
while simultaneously we need r2 > t, in order for the first error term to be suppressed.
Instead we iteratively apply the Carleman inequality outward in space, starting near the
vertex of the slice. The point is that as the iteration proceeds, the center for the Carleman
inequality moves further in the 6 direction, so r can be taken to be larger, which makes the
Carleman inequality stronger. Thus combining Propositions 2.17 and 3.5 leads to a feedback
loop which leads to substantially better estimates; specifically, only ~ log(Rs/R;) iterations
of Proposition A.3 (by way of Lemma 3.6) are needed® to propagate a concentration from

length scale Ry to Rs.

Proposition 3.5 (Iterated unique continuation Carleman inequality). Suppose T} > 0,

0<n< 00—17 and u 1s smooth on S with

ul IV

Vju - S T _1_%’ LU S
IVl e () < (1T3) Ll < Gt ™ oty

Y(t,z) € S (3.2)

o=

for j = 0,1, where, for some direction 6 € S 1,
1
S = [-nT1,0] x {x € R?: |z| > 1072, dist(z,R.0) < n]x - 6]}

Moreover, assume that for every t € [—nTy,0], we have

d_
/ u(t)Pde > Ty
B(Ro6,m°Ro)

2If instead one were to iterate the Carleman inequality through a region of the form Qy x R?~* for some
small Qg C R¥, one would need a number of iterations on the order of Ry/R;. This would lead to an extra
exponential in the vorticity lower bound, which would in turn require us to ensure a much smaller error
when the backward uniqueness Carleman inequality is applied in the proof of Proposition 3.8. It would be
necessary then to find a much larger annulus of regularity in Proposition 2.18 which would result (rather
unsatisfyingly) in tower exponential bounds in Theorem 3.2.
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1 1
where 2072 < Ry < n?T? and € < n®. Then for every t € [-nT1/2,0] and R > 2R,, we

have

/ lu(t)*dz > (BB Tlg_Q,
B(ROm5R)

Given the following lemma, Proposition 3.5 will follow by iteration.

1
Lemma 3.6. Assumew, Ty, andn are as in Proposition 3.5 and that there is some R > 2017

and a € (3,1) such that for every t € [—aT}, 0],

[ b
B(ROm5R)

[SI[cH

-2

where
€p < min(y®, (R?/Ty) 70, e 2000 R/ 1),

Then for every t € [—aTy, + 2n°R?log™! %7 0],

d
g2

/ u(t)Pde > €T
B(R'6,7°R’)

where R' := (14 n*)R.

Proof of Proposition 3.5. Let us normalize 77 = 1. One iterates Lemma 3.6 on the time
intervals [—ay,0] for &k = 0,1,...,n, where n = [log, s(R/Ro)|. Specifically, the kth
application of the lemma is centered at the point Rz € R? and uses the lower bound e,

where

k
. 1
— e R, = Ry(1+n3)k —n—2 SR21og ™t =
=€, Rp=Ro(1+7°)", apr=n ;:077 log™ =

One computes that

k

1 Z. 1
ar =n— 2P Rylog™ = (n+n")* >n—4n’Rilog™ —.
1=0
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Recall that Ry < 7% and ¢ < n® Thus, with 7 sufficiently small, a; > Z so the claimed

bound holds on [~%,0]. The final lower bound resulting from the iteration is given by

logn~2

> (1 2(R/Ro)los47%)

B n—2F10g1+n3 (R/Ro)]

€Ep =

[N

With 7 sufficiently small, we have ; 01281_7723) < n_% and 2 < (R/Ry)"

Thus €, > e(R/BO)f4 as claimed. O

, using that R > 2R,.

Proof of Lemma 3.6. Again, we rescale so that T} = 1. Fix any ¢’ € [—a + 2°R?log ™" %, 0].
We apply Proposition A.3 to the function

(t,x) = u(t’' —t,x + R'0)
on the time interval [0, T,.] with the parameters

1 1
T. =min(n/2,7°R?*), r=n*R, to=n"R*log™" —, t =n"R*log™' —.
€0 €0

Clearly (3.2) implies (A.2) is satisfied. Consider the three terms in the Carleman inequality
which takes the form Z < X +Y. For the left-hand side, since B(R'0,7*R/2) D B(R0,7°R),

’ 1 5
7 Z tOTc_l / ’u|2€—|x—R 9‘2/4t0dx Z maX(n4R2, 1) logfl (_>Eé+7] /4 > 6(2),
B(R'0,mn2R/2) €o

1
using that n and ¢, are small, R > 20, and 1 > ¢;. Next, by (3.2),
X < E3*1/1000772+2de

which is negligible compared to Z due to the constraint < Cy'. For the remaining term

in the Carleman inequality,

—_n—2 lr—PR'9|2
Y <e¢” / lu(t', x)|2e”l#= B /40 gy
lx—R'0|<n’R

By (3.2), the contribution to this term from the region where |z — R'6] > n° R’ is negligible

compared to Z:
2 | PRIP|2 _ —3/4_p—2
e ]u(t' x)‘Qe |e—RIO /4ty g, < 772d 2 pd N /4=n <
0 ) ~ 0 0’
SR/ <|z—R'6|<n?R

using that g < R710%  Thus Z is bounded by the contribution to Y from B(R'0,7°R’)

which proves the lemma. O
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3.4 Main propositions

Next we proceed to the main propositions which will lead to the theorems claimed in this
chapter. The philosophy is similar to [60] but will face additional obstacles in higher dimen-
sions without quantitative epochs of regularity. As a result, given a spacetime point where
u has a high frequency concentration, it is far from clear that the vorticity lower bound
implied by Proposition 3.4 intersects at all with a spacetime region where the solution is
regular, let alone an entire epoch I x R? as in the three-dimensional case. From a qualitative
perspective, since w is locally L7, and the measure of the spacetime set where [V/u| < 7177
shrinks to zero as ¢ — 0, there must be some small ¢ and cylinders Q' CC @ of length ~ ¢
such that |V7u| < ¢7177 holds in @ while fQ, |w|?dxdt is bounded from below (see Figure
3.1). The problem is that in order to prove a quantitative theorem, we need an effective

lower bound on this /.

As one sees in the proof of Proposition 3.7, the worst-case scenario is that at each small
scale £, there are ~ ¢~%™2 parabolic cylinders of length ~ ¢ where [ |w|*dxzdt 2 ¢*~2, and in
the complement the solution obeys |V7/u| < ¢7177. At each scale, this fractal configuration
is consistent with the energy inequality. We rule out this scenario in dimensions d > 5 by
applying the improved energy bound (2.10) at a sufficiently small scale £ = A=¢. In d = 4
we cannot quite use this improvement and are forced to take ¢ as small as exp(—A®). Here
the idea is that each scale ¢ contributes roughly a fixed amount to the energy. A significant
fraction of the contribution comes from the frequencies around ¢7!, so by summing over

many scales we can contradict this scenario.

Note that the exponential smallness of ¢ when d = 4 does not affect the final estimates
because it contributes in parallel with exponentials appearing at other points in the argu-

ment.>

3It is conceivable that the d > 5 case can be handled using the same energy pigeonholing approach,
although it is less straightforward because of the spatial overlaps of the concentrations caused by the fact
that @’ is a factor § smaller than Q. As a result £ would depend exponentially on 6~ which would cause
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Proposition 3.7 (Backward propagation into a regular region). Suppose u is a classical
solution of (1.2) on [to — T\, to] satisfying (1.9) with X = L4(R?), and that there are zo € R?
and Ny > 0 such that at the point zy = (to, zo),

‘PNOU(Z())‘ Z Al_lND.

Then for any Ty € [A2Ny 2, T/100], there exist £ > 0 and Q = Q(z},£/2) C [~Ty, —A;'Ty] x
1
B(A3T?) such that

IV7ul| g @) < Ay (3.3)
for 7=0,1,2 and
lolliz, i@ = A0 (02T (34)
where Q' = Q(z) — (£2/8,0),6¢). We may take 6 = A;" and ¢ such that

le [exp(—A4), Ail]a d= 47

(= A%t d>5.

Proof. Without loss of generality we may let zp = 0 and 77 = 1. Let us begin with the case
d > 5. By Proposition 3.4, there exists a point z; € [~1,—A45'] x B(Ay) and a frequency
N, € [Ay', Ay] such that

| Pryu(z21)] > A3
Combining this with Lemma 2.5, we find that the lower bound persists in a parabolic cylinder:

|Pyu(2)| 2 Ayt V2 € Qo A7), (3.6)

problems in the proof of Proposition 3.8, as the smallness of § is necessary to create favorable geometry for
the Carleman estimates. It is preferable for other reasons to have ¢ depend polynomially on A; for example
see Remark 3.3.
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. %3.4
21

@ CQ IxB(AT?)
00T

1

(w concentration
l

Q(Zla A2_4T1§)

to— Tt (| Py, u| is bounded below)

Figure 3.1: We schematize some key steps in the proof of Proposition 3.7. The high frequency
concentration at zj is propagated backward in time to z;. The concentration of Py, u persists
in a parabolic cylinder (red) which we convert into a lower bound on ||wl| 12, (blue). The
objective is to locate a small cylinder () such that u obeys subcritical bounds in the interior

and the vorticity concentrates on a smaller subcylinder ()'.
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We apply Proposition 2.6 on [t; — 2A5*,¢,] to obtain a decomposition u = u” 4 u*. Let I be
the contraction of the time interval [t; — Ay %, #;] by a factor of % about its center. By (2.10),

Holder’s inequality, and (2.6),

|Vul| 4 < A7W. (3.7)

L2, (5IxB(243)) ~
Defining the vorticity w := dv where d is the exterior derivative on R? and v is the covelocity
field of u, we apply the codifferential § to obtain —Awv = dw. Thus we have a version of the

Biot-Savart law,
v=—-A"tw.
It follows from (3.6) and Lemma 2.3 that for all ¢ € I,

—0(1 _
A7 < || Py, A70w(8) || 12 (8045 /2))

d
S N w (@) r2sas)) + (AsNp) YNV || p2 ray + A2 | VU || o ey ) -

Taking the L?(I) norm, bounding the u* global error term with (2.9), and the v’ term with
(2.6), we obtain

||w||Lf’m(IxB(A3)) > A;O(l)- (3.8)
Consider the collection of parabolic cylinders
Co:={Q(2,0) : z € ((60)°Z x (6¢Z)%) N (2 x B(2A435))}

of which there are ~ A;°A%(6¢)=472. (Once again 21 denotes dilation of the interval about
its center.) We seek to understand in which cylinders u is regular. By the LP-boundedness

of divdiv /A, Hélder’s inequality, Sobolev embedding, and (2.9),

AT divdive! @ uf|| a4 S|P e < Ag(l)'
LILE72 ([t —AF % 1] xRY) L2LE72 ([t1—AF % #1] xR)

d
By interpolation with the L{°LZ bound coming from (2.8),

I o
|A™ divdivuf ® uu||L%7z([t1—A;4,t1}de) < AQ( ),
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Using this, (1.9), and (2.9),

1 4. . —d—2 ,0(1
> (IVe3; g + 1A divdived @ w3, o + ullyy ) <5742490,  (39)
€Co

since the sets in Cy can overlap up to O(6-%472) times. Define
1o Cqd
C = {Q € Cp : max (||Vuﬁ||Lgyz(Q), A~ divdivuf ® uﬁ||L%’I(Q), ||u||i/§l2$(Q)) > Aztee 1}.
From (3.9), we clearly have

1
#(Cr) < 0OIPEAATY < o HH(C).

Consider an arbitrary Qo = Iy X By € Cy \ C;. Additionally using (2.6) and (2.8), we have

“p”Lf,z(Qo) < Aglfg_l + [[A7 divdiv(2u® © v’ + v’ ® Ub)”Liz(Qo)

S AN 5 A0,
Then by Holder’s inequality
D(Qo) < A5' + 0A9Y < A7 (3.10)

Next we address C(Qo). Let I /190 be the first % of the interval I,. Using again that
Qo € Co\ Cy,

| e < 45260
I /10

and so by the pigeonhole principle and Holder’s inequality, there exists a 79 € I;/19 such that

1||U(7'0)||Lg(Bo) S A

d_
2

Ul

2 g
d€§—

[u(ro)ll L2 (80) < ¢

With this we can apply (2.26), (3.10), and the fact that Qo ¢ C; (along with Holder’s

inequality and (2.6) for the u” part) to obtain

_2 1
[ullzgor23@o/) < As 10370 4 A 20 A+ A9Wes



A bound for |[Vul[z2 (30,/4) similarly follows from the definition of C; and (2.6). Then by

Gagliardo-Nirenberg interpolation,
C(3Q0/4) < Ay 1A+ A9,

With this and (3.10), we arrive at (3.3) in Qo/2 by Propositions 2.12 and 5.1.

For every Q = Q(z,0) € Cy, let Q' := Q(z — (£?/8,0),5¢). Since {Q" : Q € Cy} covers
I x B(R), (3.8) implies

> lwllzs g > 245"
QeCo

There are two cases. First, suppose

> lwllzs g > A3
Q€eCo\C1

By the pigeonhole principle, since the family Cy \ C; has cardinality A3O(1)(6£)_d_2, there is a
Q € Cp \ Cy such that

—o(1 d
leollzz @y > A5 OV (50)2 1, (3.11)
This pair @, Q)" satisfies the conclusion of the proposition. In the other case,

Z ”WH%gx(QI) > Az (3.12)
QeCy

If so, we seek to derive a contradiction with (3.7). We compare the lower bound (3.12) with
HWH%Ex(Q/) < Ao(l)(5£>d_2

from (2.24), and the fact that C; contains at most A36-472¢=9+2 cylinders. Indeed, defining

the family of disjoint cylinders

C={Q': Q€ Cy, |wl}z (g > As"" 22,
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we have, using that the contracted cylinders {Q'}gec, are disjoint,

A7V S Y wliZe gy S #(C)AD (BT 4 H(Co \ Co) A5 072002,
Qe

It follows that
#(Cy) > AF2(60)7F2, (3.13)
For all Q" € C5 and p > 2, by Hélder’s inequality,
lwll o = A;20dg2s,

Summing over Co,

loll 4 > A;%Wa-25a. (3.14)
With /¢ sufficiently small as in (3.5), this is in contradiction with (3.7).

Next consider the case d = 4. We define
Cs:={Q€eCy: HVjuHL??I(Q/g) < A7 for j=0,1,2}.

There are two cases: first, suppose UQeco\c3 5@ projected to the time axis does not cover 1.

Then there exists an interval I’ C I of length 2 such that
||vju||Lff’z(I/><B(A3)) < Ayttt

for j = 0,1,2. The existence of a large slab of regularity makes this case relatively straight-
foward so we argue briefly. One appeals once again to (3.6) and repeats the calculations
leading to (3.8); however now when we take the L? norm of the Bernstein inequality it is
only over I" which yields the lower bound |[w([rz (1rxp(as)) = A;O(l)ﬁ. Analogous to the
definition of Cy, we partition a slight dilation of I’ x B(Aj3) into overlapping parabolic cylin-
ders of length ¢ offset by length 0¢. Using the regularity assumed within I’ and applying
the pigeonhole principle to the vorticity lower bound, it is clear that there exist @ and @’
obeying (3.3) and (3.4).
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Otherwise, suppose UQeco\c3 5@ when projected to the time axis does cover I. Then we
may take a C; C Cp \ C3 such that the projections of {5Q}gec, form a subcover which is

minimal in the sense that no more than two intersect at once. It follows that
—0(1) )—
#(Cy) > A0V,

Due to our definition of Cs, for every @) € C4, applying Propositions 2.12 and 5.1 in the

converse yields
C(Q)+ D(Q) > A9V

By the argument from the proof of Proposition 3.4, there exist N € [A3'¢~! A3¢~!] and
z € A3Q such that

|Pyu(z)| > A1t

It follows by Lemmas 2.5 and 2.3, as well as Holder, (2.6), and (2.9) to estimate the global

Bernstein error, that

-o(1
||PNVU||L§@(A§Q) > Ay We.

Using Holder’s inequality and (2.7), one computes that the contribution from u’

is negligible
thanks to the smallness of ¢. (Note that we continue to refer to the decomposition obtained
by applying Proposition 2.6 on [t; — 2A45*,¢,].) By the properties of C4, particularly the at
most Ago(l)-fold boundedness of the overlap, we obtain
Yo IPYVEIR e 2 A5, (3.15)
Ne[Az 11, A50-1]

On the other hand, by Plancherel and (2.9),
o)
> HPNvuﬁHiiz(IXRd) < A7
N

If (3.15) holds for all ¢ € [exp(—A4), A;'], we reach a contradiction by summing over a
geometric sequence of scales in this range. Thus the proposition is satisfied by fixing ¢ to be

any scale for which (3.15) fails. O
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Figure 3.2: In the proof of Proposition 3.8 we begin with a vorticity concentration in a
parabolic cylinder (', which in turned is contained in a ()/2 where u possesses subcritical
bounds. We use Proposition A.3 to propagate the vorticity lower bound into a slice of
regularity obtained from Proposition 2.17. Then we iteratively apply Proposition A.3 to
locate a vorticity concentration in a distant annulus where u is regular. In this annulus we
may apply a backward uniqueness Carleman inequality to conclude the existence of a ||u|| .4

concentration at the final time.

Having obtained a suitable vorticity concentration within a cylinder where the solution
is regular, we need only to propagate this lower bound back to time ¢y using a series of
Carleman inequalities. For every scale Ty between N, ? and T, this scheme leads to a triple-
exponentially small amount of L3 mass at to. Summing over log(T'NZ)-many geometrically

separated scales and comparing the result to (1.9), we will conclude the following.

Proposition 3.8 (Propagation forward to the final time). Suppose u, zo, and Ny are as in

Proposition 3.7. Then
TN§ < expexp expexp(Ag).

Proof. Let us once again fix an arbitrary T} € [A?N; 2, T/100]. For now, we normalize zy = 0
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and T = 1. We continue to use the notation of Proposition 3.7 and its proof; in particular
let us take @ and @' satisfying the the conclusion. Let 2z’ := (¢, 2’) be the center of )'. We
apply Proposition 2.17 centered at 2’ 4+ (100(6¢)?,0) (i.e., shifted forward in time) at length
scale R = ¢f. This yields a slice of regularity which, by rotating, we may assume has 6 = e;.

Specifically, there is an I C [t/ + 99(6¢)2, ¢ + 100(5¢)?] of length (6¢)2A5? such that within
=1 x {r e RY: dist(x, 2’ + Ryey) < 1047 2, — 2|, |z — 2| > 200¢},
we have for 7 =0,1,2
IV7ull g sy < A7 (60/A2) ™. (3.16)

Let t” € I be arbitrary. In order to propagate vorticity concentration into this cone, we

apply Proposition A.3 to the function
(t,x) = w(t" —t,x + 2’ + 505le;)

on the interval [0, Cy(6¢)?] with to = 75(50)%, t; = (A3%6%¢)2, and r = ¢/2. The differential

inequality (A.2) for w is clear from the coordinate form of the vorticity equation
8twij — Awij —+u - Vwij + (&-uk)wkj — (8juk)wik == 07

combined with the estimates in (3.3). Considering each the terms in the Carleman inequality

which takes the form Z < X + Y, by (3.4) the left-hand side obeys
Z > A; 9 (50)
while for the first term on the right-hand side,
X < 6—1/0(52)%1—4‘

The latter is negligible compared to the former given (3.5); thus the Carleman inequality

becomes

/ |w(t//)|2€—|z—a:’—506€el|2/4t1dx > éd exp(—5_3).
B(z'+506¢leq1,£/2)
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Finally we narrow the domain of integration using the fact that the contribution from outside
B(a2' 4+ 5060e1, A310) is negligible compared to the left-hand side which follows from (3.3)
and (3.5). This yields

/ |w(t")|?dz > exp(—A3) (3.17)
B(a'+5080e1,A3 ' 6¢0)

for every t” € I.

Next we apply Proposition 2.18 to find an R € [Ay4, exp exp(A4)] such that
- —1/0(1
IV7ull Lo (1.0 {lale[r.R2A07y) < Ad fow (3.18)

for j = 0,1,2. Then define x, = 2’ + 100Re; and let 7 = sup I. We apply Proposition 3.5 to

the function
(t,z) » w(t+7,2+a")
on the interval [0, 4(6¢)%] with Ry = 508¢, n = Ay, and € = e=44 to find

/ w(t)|Pde > e B (3.19)
B(z.,A7'R)

for every t € [r — e7344 7]. Note that the initial lower bound follows from (3.17) and that

we have (3.2) thanks to (3.16) and the vorticity equation.

Next we propagate this concentration forward in time using a Carleman inequality for
backward uniqueness, see Proposition 4.2 in [60] (the extension of which to higher dimensions
was proved in [46], Proposition 9). In particular, by applying it to the function (¢,z) —
w(—t,z) on the interval [0, 1] with r_ = 5R and r, = R?44/10, we have Z < X + Y where

7 > ¢ (BRI

0
* 5"RW/ / 210 (|w]? + |Vl dad,
—1 J5R<|z|<R?44/10

Y < / |w(0, z)|*dz.
S5R< |z|<ry
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(Note that this and all subsequent applications of Carleman inequalities are valid because

(A.2) is implied by (3.18) and the vorticity equation.) Thus there are two cases:

/ w(0, 2)[?dz > e B (3.20)
5R<|z|<R244 /10

and

0
/ / 2P0 (f? 4 |Vof2)dadt > P (3.21)
—1 J5R<|z|<R?44/10

First assuming (3.21), we essentially follow the proof of Theorem 5.1 in [60]. By the pigeon-
hole principle, there exists an R’ € [5R, R*41/10] such that

0
/ / (Jw? + |Vw|?)dzdt > e~ 4HE)*/Co,
—1J R/ <[a|<2R/

By (3.18), the contribution to the left-hand side from the time interval [—e*(R/)Q, 0] is neg-
ligible compared to the right so essentially the same lower bound holds with the integral
evaluated on [—1,—6*(R/)2]. We apply the pigeonhole principle, now in time, to find a

Ty € [e=®)* 1] in this time interval such that

—T,
/ / (|lw]? + |[Vw|?)dzdt > e,
—oTy J RI<[z|<2R

Having obtained length and time scales where the vorticity concentrates, we cover the annulus
1 1
{R <|z| <2R'} by O(R'/T})? balls of radius TiZ. The pigeonhole principle then provides

an xo € {R' < |z| <2R'} such that
/ (lwf? + |Vw|?)dzdt > e O
Q((—T07I0)7T01/2)
Finally we may apply Proposition A.3 on [0, 1000dT}] to the function
(t,z) = w(—t,x + x0)
1
with ¢ty = Tp, t1 = Cyy 3Ty, and r = Cy R’ Ty . The Carleman inequality becomes

efO(R/)2 < efCo(R’)QTO% + eO(CS(R’)Q)/ ) |w(0,x)]Qe*Cé?'“xO'Q/‘lTodx.
B(zo,CoR'T?)
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With a sufficiently large choice of Cy, the first term on the right-hand side is negligible
compared the the left. Moreover, the contribution to the second term on the right from

outside B(xq, R'/2) is also negligible by (3.18). Thus

/ w(0, 2)|2dx > e~ COED?,

B(zo,R'/2)
In both cases (3.20) and (3.21), we can thus conclude
/ |w(0, z)|2dz > exp(— exp exp(24,)).
2R<|z|<R?A4 /4

Now let us fix an z, € {2R < |z| < R?41/4} where

|w(0, x4)| > exp(— expexp(3A4y)).

By repeating the simple mollification argument from [60] to convert the concentration of

vorticity into the critical space, we obtain
/ . . [u(0, 2)|%dz > exp(— exp exp As).
AsT? <|z|<expexp(344)T?
At this point we undo the original rescaling so that 7; is explicit. This estimate can be

summed over geometrically separated scales T € [A2N; 2, T/100] to conclude

/d |u(0, z)|*dz > exp(— exp exp As) log(TNZ)
R

which implies the result when compared to the upper bound (1.9). O

3.5 Proof of Theorems 3.1 and 3.2

As in [60], Theorem 3.1 is obtained easily from Theorem 3.2 combined with, say, Leray’s

blowup criterion.

Proof of Theorem 3.2. We increase A so that A > C and rescale so that t = 1. By Propo-

sitions 3.7 and 3.8 in the converse, we have that

[Pl oo (12 1xmey < AT'N (3.22)
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for all
N > N, := 2expexpexpexp(Ag).

Starting with the decomposition u = v’ +wuf on [0, 1] and differentiating to reach w = w”+wF,

we define the enstrophy-type quantities

_ [ V)P
E,(t) := /Rd de

and compute
Ey(t) = —/ Vw2 da —/ wh - (Vuh whdr
Rd Rd
- / Wt (Vb W) + (Vo) +uf - Vo’ — f)de
R4

- _Xl +X2+X3

Here we have defined (Vu,w);; := (Q;ug)wy; — (Ojur)wy, for a vector field v and 2-form w so

that we may represent the Lie derivative as L,w = (Vu,w) + u - Vw.

Clearly X; > 0. By Littlewood-Paley decomposition and Plancherel we have

Xt)=— > /Rd Py,w* - (V Py, uf, Py,wt)dz

N1,N2,N3

S IPm@ e 1 Prot | 2 ety | Py oo ey
Ni~N2>N3

Applying Lemma 2.5 and (3.22) for N3 smaller or larger than N, respectively, we arrive at
Xa(t) S D 1w ()1 72 ay (ACNZ + ATINT)
N1
S ||Vuﬁ(t)||ig(Rd)AO(l)N*2 +ATTX.
By Holder’s inequality, (2.6), (2.8), and (2.12), we have for ¢ € [3,1]

X3(t) < (V@ 1)1z + 1A%,
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Integrating in time using (2.9) and Gronwall’s inequality, we find that for any $ < ¢; <t, <1,
Eo(ty) — Eo(ty) < N2A°W,
At the same time, by (2.9), there exists a to € [1/2,3/4] such that Ey(ty) < A°®Y. Thus

t
sup Ey+ 2 ﬂ Ey(t)dt < N2A°O), (3.23)

3
tely,1] b

Next we compute using (2.11)
Et)=-Y1+Y2+Y;+Y,+Y;
where

Yi(t) = / VLA,
Rd

va(t)= - (Z) /R VI (VYR T da,

k=0
n

Ys(t) = — Z (n) » VWt (VR - VRt da,

k
k=1

Yi(t) ==Y (Z) /R ) Vit (VR - VYV Fuf) da
k=1

Ys(t) = —/ V' V'V, o) + (Vi wf) — uf - VW’ — curl f)da.
Rd
We then take the Littlewood-Paley decompositions and estimate

. n n n—
Y2(t) = Z <l€) Z R4 \Y Pleﬂ ’ (VV kPNauu7 VkPNQWﬁ>dx
k=0 Ni1,N2,N3

<I+1II

where we decompose based on whether the top order derivatives that fall on the high fre-
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quency factors. Specifically, by Holder, Lemma 2.2, (1.9), and (3.22),

n
IS Y IV Phwl e e |V Prow? || 2 ey | V™ Py ]| oo ey
k=0 Ni~No>Nj

S IV Pl e ey | VF Prgt?| 2 ey (AP NI THF2 4 ATENDRH2)

k=0 N1~N>
S S ACONIERE (1) B, (1) + AT (1),
k=0
and

n—1
IT5Y Y VP02 | V" Prow| 2 ey | V" Py e )
k=1 N1~No>Nj
n—1

S IV Py w2 e |V Pryw? | 2 gy (AP N2 4 AT NTH2)
k=1 Ni~No
n—1

<Y ACONIE (1)1 E, (1% + AT (1),
k=1

Next, Y3(t) contains essentially the same terms and admits the same bounds (note crucially

the exclusion of £ = 0 by incompressiblity). By Cauchy-Schwarz and (2.6),
Ya(t) Su Y ACOE, ()2 By (8)2.
k=1
Finally, by (2.6), (2.8), (2.12), and integration by parts,

Yi(t) Sn ACDEL (0 (143 Br(t)}) + 40,
k=0
In total, combining some terms with Young’s inequality,

n—1
E'(t) < AWN2E, () + N2+2 ZEk(t) 1 A0
k=0

Inductively applying Gronwall’s inequality (at each step using the pigeonhole principle to
find an initial time), starting with (3.23) as a base case, implies
1
sup | [V (1) [P + / / IV (8) [P dadt < NOO
te(tn,l] JRE tn, JRA
for an increasing sequence t, € [3,1]. The claimed L{%, estimates are immediate by (2.6)

and Sobolev embedding, taking n sufficiently large depending on d. O
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CHAPTER 4

Regularity for approximately axisymmetric solutions

4.1 Introduction

This chapter contains results that appeared in the author’s paper [46]. We will be concerned

with solutions of (1.2) satisfying the critical bound
lullx = Il vull s sy < A
where u and ¢ fall into one of two cases:
either ¢ € (3,00), or u is axisymmetric and ¢ € (2, 3. (4.1)

These conditions have already been mentioned in §2.2.2 but we repeat them for convenience.
In fact the assumption of axial symmetry (when g € (2,3]) can be weakened to |u| being
comparable to an axisymmetric function. In other words, it suffices that there exist f :
R x R?® — [0,00) and C' > 0 such that f is axisymmetric and C~!f < |u| < C'f. Indeed, we
will only invoke the axial symmetry assumption by way of Propositions 2.1 and 2.3. This is
in contrast with the bulk of the literature on the axisymmetric Navier-Stokes equations in
which one takes advantage of the special structures coming from this symmetry; Chapter 5

is an example, for instance by making use of the very favorable PDE (5.11) solved by ruy.

Without loss of generality, let us take A > 2. Then we have the following theorems,

which mirror those in [60] but offer improvements of the quantitative bounds.

Theorem 4.1. If u: [0,7] x R® — R? is a classical solution of (1.2) satisfying (1.9) with
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X = X[ and (4.1), then it satisfies the bounds
(VZu(t, )| < exp exp(AOj(l))t’%
fort € (0,T), r € R3, and j > 0.

Theorem 4.2. Let u : [0,T,) x R® — R3 be a classical solution to (1.2) which blows up at
time t = T,. If u and q satisfy (4.1), then

_3

) s
im sup T =
1T (log log T*,t)

for a constant ¢ > 0 depending only on q.

Let us emphasize that in the case ¢ € (3,00), we do not assume any symmetry on u.
We also wish to stress that here r is not the distance to the origin, but the distance to the
x3-axis. When ¢ > 3, it should be possible to extend these arguments even to the case where
r is replaced with, say, |x;|. However we choose instead to work in the axial setting in order

to make the results comparable to other regularity theorems in the literature.

One noteworthy special case of Theorems 4.1 and 4.2 is when ¢ = 3, which is the end-
point of the famous Prodi-Serrin-Ladyzhenskaya scale. By assuming additionally that w is
axisymmetric, we obtain the same result as [60] but with one fewer exp or log in the es-
timates. Also notable is that when ¢ gets large, we approach the the well-known criterion
from [28] and [15] cited above, but without needing to assume any kind of symmetry on w.
Unfortunately, it seems unlikely that this result can be extended all the way to ¢ = oo using
these techniques. Not only do many of the estimates in this chapter degenerate as ¢ — oo,
but L*°-based critical spaces seem to be out of reach of these quantitative methods since
the argument relies on locating concentrations in many different spacial regions which then

contribute additively to the critical norm. (See Proposition 4.6.)

On the other hand, it seems likely that the ¢ = 2 case is achievable, although we expect

Proposition 2.19 to fail at this endpoint and pigeonholing would again be necessary to apply
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the Carleman estimates. Thus one may have to settle for triple exponential and logarithmic
bounds. We can justify this as follows. Although all the conditions defined by (1.9) and
(4.1) are critical with respect to the Navier-Stokes scaling, we claim that when ¢ = 3 or
q = 2 with v axisymmetric, the criticality is homogeneous in the sense that the norms
measure all concentrations of the solution identically everywhere in space; on the other
hand, if, say, P iy € L L1 where ¢ > 3 or u is axisymmetric and ¢ > 2, the norm becomes
subcritical far from the x3-axis and supercritical near it. (The opposite would be true if
q < 3 or g < 2 respectively.) This explains why we can handle these cases without gaining
a third exp or log; indeed, by working sufficiently far from the axis, we can guarantee that
the velocity and its derivatives are suitably small compared to the scale of the spacetime
region. One can see this phenomenon concretely by considering a concentration of Pyu at
an xo € R? which lies a distance ry from the axis. (Refer to Section 2.2.1 for the definition of
Littlewood-Paley projections.) Using the same heuristic for (1.2) from [59, p. 67], u behaves
essentially as a solution to the heat equation unless the advection term in (1.2) dominates
the viscosity, which happens when |Pyu(zg)| > N. By the uncertainty principle, such a
concentration must occupy a length scale of at least N~'. In the case that N > ry*, the
ball B(zg, N7') does not intersect the x3-axis and therefore, roughly speaking, it contributes
at least (rON)l_% to the critial norm H'rl_%uHL?oLg. Thus by assuming (1.9) with ¢ > 3, we
expect to be able to rule out nonlinear effects with amplitude much larger than r,'. If we
assume axial symmetry and N > r;*, then this concentration exists not just in B(xg, N7}
but also in the torus obtained by rotating this ball around the x3-axis; thus the contribution
to Hrk%uHL?oLg can be strengthened to (TON)P%, and we only need ¢ > 2 to reach the same

conclusion. These heuristics are formalized in the proofs of Propositions 2.1 and 2.19.

In order to work in these weighted spaces, we employ the decomposition u = v’ + u?
detailed in §2.3. The overall strategy is analogous to [60]. An essential new element is the
observation that far from the x3-axis, the solution is regular enough to use a Carleman in-

equality to propagate concentration forward in time (Proposition 2.19). We then prove a
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backward uniqueness-type Carleman inequality with geometry suited for use with Proposi-
tion 2.19. It becomes necessary to work in cylindrical regions where r and z are localized,
rather than annular regions as in [60], and in the appendix we prove a backward uniqueness

Carleman inequality suited to such a region.

4.2 Axisymmetric back propagation

The “bounded total speed property” (see [59]) is useful for iterating the back propagation—
although, as we saw in Chapter 3, there are alternatives. Proposition 4.3 is an extension of

the version that appears in [60].

Proposition 4.3. Let u solve (1.2) on [to — T, to] x R* with (1.9), X = X2 For any time
interval I C [ty — T/2,t0], we have

”UHL,}Lgo(IxR?») S AO(1)|I|1/2- (4.2)

Proof. By symmetries we may assume without loss of generality that I = [0, 1]. Once again

we let n be sufficiently large so that

168 | 5o 12 (-1 2,1 <3y Sp ACT

for all p € [¢, 3).

From the equation for u* we have

¢
Pt (t) = — / Pye=APdiv Py(u @ u — v, @’ )(t))dt’
~1/2

and so

NUYp|lL} Lo ([—1/2,1] xR3)
[ Prved |
t
Ne Nt )/QOHPN(U ®u— Ui—l ® uk’:t—l)(t/) 250z dt’
—-1/2

<

~Y

Li([-1/2,1)

SN Py(u®@u—u, @ ui—l)”L}Lgo([—l/ll}x]l@)-
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We split u ® u = uf, @ uf, + 2u’, ® ub + v’ ® u’, and estimate, by (2.2) and (2.14),

» b b b
1PN (ty, @ )| 13 poo (-1/2,1] xR3) S ||un||%‘;fx([71/271}xR3) < AW

and similarly for v}, ® v’_,. By (2.2), Holder’s inequality in time, and (2.32),

| Py (ul, ® Ui)HLngo([—uQ,uxRB) S NY2| Py(u), © UEL)HL%LQ([—l/Z,l]XRii)

S N2 | s -1/2,17xm9) 1 [ 2 29 - 1/2,1)x83)

S AO(l)Nl/Q‘

Finally, we decompose u? = P<yuf + P-yuf and estimate the three terms that appear when

uf ® uf is expanded. By (2.2) and Hélder’s inequality,

||]5N<P§NUEL ® PSNUBJ‘|L§Lg°([—1/2,1]xR3) SJ ||PSNuEL||%%Lg°([—1/271]><]1£3)7
| Py (Pantl, ® Ponud) | oo o1 o008y S NP2 | Panul, © Pontd |1z o1 o1 m9)
S NP2 Peytlh || 2 pe (o1 /2,1)x%)
X HP>NUEL||LfL%([71/2,1}><R3)7
#

| Py (P> yul, ® P>NU§L)||L%Lg°([—1/2,1]><R3) < N?||Poyul, © P>NU§L||L%L91E([—1/2,1]><R3)

S N3||P>NUEL||%ng([_1/2,1]xR3)-

In total, by Young’s inequality,

||PN(U51 ® UEZ)HLngo [—1/2,1]xR3) = ||P§NU§L||%ng°([71/2,1]><]R3)

+ N3HP>N“E~L"%ng([—1/2,1]xR3)'
Inserting this into the estimate for uf

HPNUEL||L}Lg°([—1/2,1]xR3) 5 Nil”PSNuELHi%LgO([—l/Q,l]x]l@)

+ N2||P>NU5L||%§L%([_1/2,1]XR3) + Ao(l)(N_l -+ N_1/2).

(4.3)
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By (2.2) and Cauchy-Schwarz,

2
I Pen |72 oo (1 2113y S ( > (N')3/2HPN'U5LHL§L3([1/2,1]xR3)>

N'<N

1/2 5/2 2
SNV E (N')> ||PN'U§L|’L§L%([—1/2,1]><R3)
N'<N

and by Plancherel’s theorem,
2 2
||P>Nu?1HL%L%([—1/2,1]><R3) S Z ||PN'ugL”L%L%([—l/Q,l]XR?’)'
N'>N
Plugging these into (4.3), we obtain an estimate for the high frequency component,

1Porud || o oo o o pems) S <N1/2 > (N')> 2| Prvrtah 12 3 (1 21y

N>1 N'<N

+N2 Z ||PN/U§Z||%$L%([1/2,1]><R3)) +AO(1)
N'>N

O
S NP 2 1 (g emy + ACY
N

< A%,

by (2.31). For the remaining parts of u, by Holder’s inequality in time, (2.2), (2.14), and
(2.8),

||UEL||L%L30([—1/2,1]><R3) S ||UEL||L§,‘?T([—1/2,1]><R3) < A%
and
1Pavtd | s zee o1 /pmxrey S Nhll e raqo1jzncmsy S AW
which completes the proof. O]

Now we can prove the back propagation proposition from [60] with the more general

critical control on wu.
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Proposition 4.4. Let u be as in Proposition 4.3. Suppose there exist (t1,x1) € [to—g, to] xR?
and Ny > AgT’% such that

|PN1U(t1,[E1)| 2 Al_lNl. (44)
Then there exists (ty,x3) € [to — T,t1] x R? and Ny € [A;' Ny, AyNy] such that

AN <ty —ty < A3Ny2,

‘IQ — .CCl| S A4Nf1’
and

|PN2u(t2,x2)| Z A1_1N2.

Proof. First consider ¢ > 3. We scale and translate so that Ny = 1 and t; = 0. Then

[—2A3,0] C [to — T, to]. Then by assumption we have
Assume for contradiction that the claim fails, which would imply

||PNU||L<;3 [—A3,— A3 | B(z1,A4)) < Ale

for N € [A;', A;]. From the pointwise bound on 9;Pyu and the fundamental theorem of

calculus, the time interval can be enlarged up to t = 0,
||PNU||ngA3(B(x1,A4)) S Al_lN —|— A§1A2N3 5 Al_lN (46)

For ¢t € [—As, 0], Duhamel’s formula, Holder’s inequality for the linear term, and (2.2) give

us

|7 Pyu(t) < AY o248 Pray(—2A3) || 3 ey, An))

HLg/Q(B(:u,AU) -
t
N / [l et~ Py divu @ u(t')| o2 gy 4t
—2A3 z
t

§Ai/qu2A3/20N°‘qu+/ ) ef(tft’)N2/20N1+2aqfaA2dt/
—2A3
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assuming —% < o < . Therefore, for N > A; L
< A2PN'ae (4.7)

|| Pyul| X7 (Bla1, A1)

Starting from this base case, we claim inductively that
1-32_q On
Pl gy 5, S N F 0400 (45)

_1_1
for all N > A,> ", where T, = (3 + 1)4; and B, = B(x1,(3 + 2)Ay), if 2 < n <

min(q, 42—) and —% < a < min(ag, 2 — 27”—). Suppose (4.8) holds for some n —1 > 2. For
t e [-T,,0],
||TaPNu(t)||Lg/”(Bn) < ||Ta6(t+Tnil)APNu(_Tn—1)HLg/”(Bn)
t
+ / [re®1A Py div Py (u @ u)(t) ||Lq/n(B )dt’.
—T._, T n

The linear term can be handled exactly as in the previous case, using Holder and (2.2). Then

by (2.3) and a paraproduct decomposition of the nonlinearity,

< 6—(t—t’)N2/20N1—a

Hrae(t—t’)APN div(u ® u) ||L;/"(Bn) ~n

X <N01q+5||7“aq+6(P>N/100u X u + PSN/loou (029 P>N/100u)||Lg/"(Bn_1)
NA —5OnA%(n72)N2aq 20
+( 4) 4 ||T’ U®U||L%/Q(R3) )

assuming additionally that o« —a, < 8 <1 — %. This implies

_3 _
1Pyl 5,y S VAN 4 N8 ([(Popao) @ 0l

o‘q+f8?Tn71(Bn_1)
+ [[(P<n/100u) @ (P>N/100u)||ngil3;Tn—1(Bn_1))

3 (p
+ (VA AN 2,

3=

1
For the first nonlinear term, for N > A,* ",

3(n—1)
< AOn(1) pr1-32 g
| P> ny/100u © UHXZ{IT—LO—B;Tn,l(B"*l) SA N ?
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using Holder’s inequality, (4.8), (1.9), and summing the geometric series, assuming addition-
ally that max(—%, 1— 3(" U) < 8 < min(oy, 2— %—). The “low-high” term is analogous.
Thus (4.8) is proved, assuming that there exists a § such that all the stated conditions on
a, B, and n are satisfied. One easily checks that this is follows from the hypotheses given

above.

It is straightforward to see that by taking the largest permissible n satisfying the con-
straints of (4.8), we can always make ¢/n € (1,2]. Therefore we can apply (4.8) with a =0
along with (2.3) and (1.9) to find

3_3
||PNU||XOA La(B@1,Aa/2) S SNT 2||PNU||Xq/n (Ba) + (A4N)0A; TN™A,
This implies, using (4.8), Holder’s inequality, and (1.9),
_1
IPvullxz . Baagz) SN 2 A9 (4.9)

for N > A, 2.

We bootstrap this estimate one more time to bring in factors of A;*. The linear and

global terms are estimated the same way as before so we neglect them and focus on the

remaining parts. By the same calculation above, for N > A, Y °,
||PNU||X§;A3/2(B(x1,A4/4)) SN Y Py(ue ulxz, . L/a(B1,44/3))-
Using the paraproduct decomposition and (2.3),
||PN(U®U)||X§A (Bl Ay3) S > IPvu© Pryullxz , ,(Br.ai/2)
N1SN2~N
+N Z 1Pt @ Prvyll e 403 (0, a2
Ni~No>N

By Holder’s inequality, (4.9), Lemma 2.5, and (4.6),

Z ||PN1U®PN2U||X§A /2(B(z1,A44/2)) Z Ay PACWIN 1/2||PN1U||X

N1<Na~N N<N

§AO(1)(A2_1+A1_1N1/2)

0;Ag/2
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and, using Young’s inequality, interpolation, (4.9), Lemma 2.5, and (4.6),

3 1Pru ® Pyl o e, aug 2, ATONTTAL
N1~N2Z N N<N1<A2
+ ) ACON
N1>As

< AO(l)(A;1/2N—1/4 + A;1/4)
Thus we conclude

||PNU||XO g j2(Bl@1,Aa/1) S ACD((AN)T2 4 (A,N) 7. (4.10)

To reach the contradiction, Duhamel’s formula and (4.5) give us

Al_l S |P1U(0,I’1)|
0

< | B Pou(—Ag/4)| (1) + / et =2 Py div Py (u @ u)(t, x1)|dt.

—As/4

For the first term, by (2.4) and (1.9),
AP Ay (1) S €04
which is negligible compared to A;*. Therefore

0
/ =2 P, div Py (u @ u) (', 21)|de’ > AL (4.11)
—Asz/4

By (2.3), we have
e8P iy Pr(u @ u) (¢, 21)| S e (| Pu(u @ w) (1) | g (B ags)) + A™)
which admits the paraproduct decomposition

1P(u®u)|xse,  (Banagsy S D 1Pviuw © Pryullxge, (81,409

N1SNa~1

+ Z ||PN1U®PNQU||X4/3 /4(3(331 Aq/4))
1SN1~No<As

+ 0y 1Pvu ® Pryullxy,  (B@1.a/a)-

Ni~N3>As

0A/4

99



We estimate each piece using Holder’s inequality, (4.6), Lemma 2.5, (4.9), interpolation, and

(4.10):

> 1Py u © Pryullxee,  (B@rai/a) S Y AN+ Y AP

N1<N2~1 N1<AF Y No~l AFT<N1<Na~1

SAPAG + AP

Py u® Py,ul| 4
Z | Pnyu @ Py, ||Xo;/23/4(3($17144/4))
1SN1~N2<Ag

SO ACD((AING) T+ (ApNy) ) (AT Ny

1SN1<A2

S AXDAP 4 AT A,
and

Z ||PN1U ® PN2U||X5;A3/4(B(:E1,A4/4)) r'S Z AO(I)Nfl 5 AO(l)Agl'

Ni~N2>As N1Z A2

Comparing this upper bound with the lower bound (4.11), we reach the contradiction
AT S AODAY + A AT AT A 1 A,

Now we consider the 2 < g < 3 case. By (4.4), (2.2), and (1.9),
At < [Pru0,0)] < re) ™0 r 0 Paa0) e S r(e) T A

Therefore we may assume r(x;) < Ay which will be useful at certain points to bound the
heat propagator term when the power on the weight is larger than what we can handle using

(2.2).

First, we show by induction on n > 1 that

| Pyl

X% . (Bn) 5 Naq_aAO(l) (412)

a;Tn

100



g1
ifN2A21 ",—%<oz<2—%andozgn(l—g)—é,wherenoan:(%—l—%)Agand

B, = B(z1, (34 55)A4). For n =2 and t € [-3A3/4,0], first consider the linear term. Using

the fact that r(By) < Ay, (2.4), and (1.9),
[Pyet™ 2408 u(—243) [ xs , () S AT | Prel 2492 u(=245) x|
< AZ*’YNaqf'yengNzﬂoA
< (AN)T

upon taking, say, v = min(a,, o). Therefore, by Holder’s inequality, (2.3), and (1.9),

t

I Byutllzqan S AN+ [ s Pel OB divtu® ) e)lgen
—2A3
t
S (AN)—IO + /2A e (t=t )N2/20N2+aq_aH7’2aqU ® u“Lg/Q(Rg)dt/
—2A3

< NaqfaAQ

if —% <a< 2—2. Note that the lower bound N > AQ_?’/2 is essential to make the contribution

of the linear term negligible. This completes the proof of the base case.

Next suppose we have the desired bound for some n — 1 > 2. The linear term can be

treated as in the previous case so we do not repeat the argument. Then, again by Holder’s
inequality and (2.3), for t € [T, 0],
I Pau(®)lg(5,) S IPe™ B D3u(=T, llxe s,
t
+ / |7 Py e 2P div(u @ ) () || o, dt’
_Tn—l

34— 3
< (AgN) 70 4+ (AN) 04,48 TTND T fu @ | e

20q;TH 1

t

_ (44! 2

+ N8 a/ e (7N /20<||Tﬁ+aqP>N/100“®“HLi/Q(Bn—n
—Tn—l

+ ||7,6+aqp§N/100u ® P>N/100U) HLg/z(Bn_l)> dt

S (ALN) 0+ Nﬁ*O‘HP>N/100U||Xg;Tn 5 ||UHX§q;T

n—1

—1(Bp—

S legfaAO(l)
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assuming v < « and —% <y<L2-— g for the global Bernstein term, —% <a<fB+a,+ é
and # < 1— ¢ for the local Bernstein term, and —2 < § <2—2and 8 < (n—1)(1—2) - )
for the inductive bound on Pyu. One computes that such a 8 and v exist under the stated

conditions on « and q.

For fixed ¢, since ¢ > 2, the upper bound n(1 — %) — % becomes arbitrarily large by taking

n large so eventually the only constraint on o becomes —% <a<2-— %. Therefore we have

IPvullxe . (Bleje) S N * AW (4.13)

oa;T/2

for all such o if N > A;'. Now as in the ¢ > 3 case, we bootstrap this estimate one
more time with (4.6) to bring in powers of A;'. In the usual Duhamel formula for Pyu on
[—T,-1,0], we neglect the linear term and the global Bernstein term since they can be dealt

with as above. Then by (2.3) and a paraproduct decomposition, for t € [T, 0],

IPvu(®)llLse) SN [1Pyiu© Penullxg . (8-
N'~N

_2
+N1 a Z HPN1U®PN2U’HX§‘1/4

Bn_1)’
—3/a; Ty — (Br-1
leszN /6 Tp—1

For the first term, by Hélder’s inequality, (4.13) with o = 0, Lemma 2.5, and (4.6), we have
for A;'? < N < A)?

Z ||PN/U O] PSNU|‘X3;TH71(Bn—1) < NagAO(D( Z AN, + Z A1—1N1>

N'~N N1<AG?! AFI<NISN
1+ag 4O0(1) g—1
< Nitea g0 g1,

For the second term, by Young’s inequality, the trivial interpolation inequality

4/3 2/3
172 2| psara < |IP3 2 FI 2N IS,
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(4.13) with a = 3 — %, (4.6), and Lemma 2.5,

g (39
Z | Pyt @ Pyt 3a/4 (Bu1) < Z (N (3 4q)AO(1))4/3(A1‘1N1)2/3
2_3. n—

Ni~N2>N giTn—1 N<N;<As
T SRRV CEIVAPRALE
N1>Az
(SAO(l)(A—Q/:iNfl/q_i_A—l/lI)

Therefore, if A;1/2 <N A;p?

| Pyvullxe  (ByAe) S AW AP Nea, (4.14)

0;A3/4

Now returning to (4.11) and applying a paraproduct decomposition, Hélder’s inequality,
(4.14), Lemma 2.5, (4.6), and (4.13), we have
0
A< / =2 P div(u © u) (2 )|’
—As/4

S IPvue Paullxg , (B0

N'~1

Py u® Py u
+ > IPvu® Puullges 5, am
Nlr\/NQzl

S; AO(l)AIQ/?) Z AN1 + Z A;lNl

Ni<A7? AFt<Ni <1
—4/3 772 2
+ 2 : Ao(l)Al / Nlaq 4 E NlanO(l)
1SN1<Ay/? N> AL

S ACW(ATP AT + AT+ ATV ASY)
which is the desired contradiction, recalling that a, < 0 in this case. [

This proposition can be iterated exactly as in [60] to obtain the back propagation result

we will need in the main argument.
Proposition 4.5 ([60, Proposition 3.1(v)]). Let zo € R® and Ny > 0 be such that

‘PNOu(t()?‘CEO)‘ > Al_lNo.
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Then for every A4NO_2 <7 < Ale, there exists

(tl, 1’1) € [to — Tl, to — A3_1T1] X Rg

and
N, = A?‘”Tf%
such that
11 = a0 + O(ASDTY)
and

‘PNlu(tla .1'1)‘ 2 Alel-

We do not repeat the proof from [60] because it would proceed in the exact same manner
now that we have all the building blocks: the back propagation proposition (Proposition
4.4), the pointwise bounds for the frequency-localized vector fields (Lemma 2.5), and the

bounded total speed property (Proposition 4.3).

4.3 Main blowup proposition

Theorems 4.1 and 4.2 will follow without much difficulty from the following proposition.

Proposition 4.6. Let u be as in Proposition 2.15, with A > Cy. Suppose that there exist

zo € R? and Ny > 0 such that

| Pnyu(to, 7o) > A7 No.
Then

TN < exp(exp(A5")).
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Proof. By translating the solution, we may assume tq = (x9); = 0. Note that we can shift
to make the third component of xy vanish but not the first two as the norm Xg;T is not

shift-invariant in those directions.

As shown in [60], by propagating the concentration of |Py,u| backward in time using
Proposition 4.5, converting it into a lower bound on the vorticity, and applying Proposition
A.3 within an epoch of regularity provided by Proposition 2.15, one can deduce the following:
for every Ty € [A4N; 2, A;MT), and every x, € R? with |z, — 20| > A,T}"? we have the

concentration

/ w(t, 2)]Pdz Z exp(=O(Aa. |/ Ty) T} 2
B(r fr.1/2)

for all t € I where I C [-T1, —A; °WT] is a time interval with |I] = 45 YTy, (We do not

repeat these arguments because they hold in our setting without modification.)

In order to make use of this lower bound, we need some control on the location of xg.
As in the proof of Proposition 2.20, letting v, = % in the case where ¢ € (2,3] with u

axisymmetric and v, = g in the case where 3 < ¢ < 0o, we compute using (2.2) and (1.9)

AT Ny < |Pyyulto, z0)| < (o) ||r' =% Pryu(to) | oo re)

S rla0) NG A
and therefore
o S ATONG < AT
Thus we deduce the lower bound

—A7'T
/ / (w(t, ) Pdadt > exp(—O(AR/T})) T2 (4.15)
- S(R,10R;10R)

T

for any R > A2T}/?, since the domain of this integral necessarily contains a ball B(z,, |z,|/2)

such that 2A4T11 /2 < |z.] £ R. In order to propagate this concentration forward in time,
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we need some regularity on u and w. For any Ty € [A2N;?, A;'T], by Proposition 2.20, we

have
j —5% 4-1/0(1) j ~#4 —1/0(1)
\Viu(z,t)| <T, * A; ;| Vw(z,t)] < T, * A (4.16)

for j=0,1and all (¢,z) € [-T5,0] x {r > A5T21/2}. This allows us to apply Proposition A.2
on [0,73/Cy] with r_ = A%TQ/Q, ry = AGT;/z, and u replaced by the function

(t,z) = w(—t, ).
The vorticity equation
Ow — Aw =w-Vu—u-Vw (4.17)

along with the coefficient bounds for the right-hand side coming from (4.16) imply (A.2).
Letting

0
X = / / 2P (T w? + |Vw]?)dadt,
—Ts/Co J S(A2T) /2 AeTy/?;A6Ty ')

v-| (0, ),
S(A2T,) /% AeTy % A6 Ty ?)

and

Z =Ty |w(z, t)|*dxdt,

0
—T»/4Cy J S(10A2T)/? A6 Ty /2 /2, ATy "% /2)

the Carleman estimate gives
z< e—A§A6/4X + ezAgY
From (4.15), we have
7 > Ty 2e0U3),
Thus either
X > T, e (4.18)
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or
Y > Ty e 34, (4.19)

First let us assume that the concentration comes from (4.18) which is the harder case. Then

0
2 _ —-1/2
/ / 2T (T w|? 4 |Vw|?)dodt > T, 2ehs,
—Ty/Co J S(A2T) /% AeTy ;A6 T, )

By (4.16), the integrand is bounded by 75 3¢*4% and the region of integration in the (¢, z1, z5)
variables has volume O(AZ2T3). Therefore the range of x3 in the integral can be narrowed

without changing the inequality to

0
2 _
/ / ) AT (T w2 4 | Vw|?)dadt
—To/Co J (AT, /% A6 Ty ;e 46T, /%, A6 T, /%)

Z T2*1/26A6 )

The region S(A2T)/%, AgTy'?; e=4T)/? | AgT)"?) can be covered by O(A%) sets of the form
S(p,2p; z,2z), so by the pigeonhole principle there exist p € [A§T21/2,A6T21/2] and |z| €
[e=4T,/%, A¢T)"?] such that

0
/ / 2P 1T (T |2 o+ |Vw|?)dadt > Ty e /2.
—T5/Co J S(p,2p;2,2%)

Therefore,

0
/ / (T3 wf? + [Vewl2)dadt = Ty exp(~O(2 + 22)/Ts).
—T»/Co v S8(p,2p;2,22)

By an analogous argument using (4.16), the upper time limit in the integral can be shortened

5/2
to —7;223 e 0w +2*)/T2 which, by Young’s inequality, is less than —Tpe C@*+2*)/T2 Thus

—e—0?+:2)/ Ty,

/ / (T wl? + [Ve[2)dzdt > T Y2 exp(—O(p2 + 22)/Th).
—T5/Co S(p,2p;2,22)

The interval [—T5/Cy, —e= W +2)/T2Ty] can be covered by O((p? + 22)/Ty) intervals of the
form [—2ty, —to] so by the pigeonhole principle, there exists a ty € [e‘o<p2+z2)/ 1y Ty /O]
such that

—to
/ / (T5Hw]? + |Vwl?)dzdt 2 Ty V2 exp(—O(p? + 2%) /).
—2tg J S(p,2p;2,22)
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Moreover, since to > e O +2*)/T2T,  the spatial domain of integration can be covered by

eOp*+2)/ o, 2_3/ 2,022, which again is smaller than O +2)/T2 halls of radius té/ ?. Therefore

there exists an z, in the region S(p,2p; z,22) such that

—to
/ /B( 1/2)(712_1|W|2 + | Vw?)dzdt > Tz_l/2 exp(—O(|z.|?)/Ty).
—2p Tyt

From here we apply Proposition A.3 to the function

(t,z) = w(—t, z, + T)

(4.20)

on the interval [0,1000to] wWith pearleman = 03/4(t0/T2)1/2|x*| and t; = ty. Note that r <

|z.|/ C’é/ * and Pearleman > AZT. 21 /2 imply that B(x,,r) is contained in the region of regularity

guaranteed by (4.16). Therefore

7' < = Co*ouP/500T2 x1 4 43/2,0(Co o/ Ta) !

where

0
X' = / / (toHw|® + |Vw|?)dzdt,
—1000to J B(ax,Co/* (to/To)1/2|a. )

y! = / |w(0,:c)|2t83/26_|’”_”3*|2/4t°d$,
B, Cy/ (to/To) /2|2

and, since 15(1)/2 <r/2

—to
7' = / / (toHw|® + |Vw|?)dwdt.
—2to J Bza tl/?)

0

By (4.20), we have
7' 2 157 exp(=O(|a.?) ) To).

Using (4.16),
6—03/2|x*\2/500T2X/ < e_cé/Q‘x*|2/500T26’8/4tg/2T{7/2

.
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Therefore within (4.21), the X’ term is negligible compared to the Z’ term and we are left
with
/ w(0, z)[2e 7=/ 40 gy > exp(—O(Cé/2|x*]2/T2))T271/2.
B(z«,C,

o/ 4 (t0/To) /2| ])

It follows that

/ (0, ) 2z > exp(—O(A2)T5 2
B(w.,Cy |l

for some x, in S(A2Ty/? 24Ty e=4Ty"% 246Ty’*). In conclusion,

/ (0, )P de 2 exp(~0(4)T5 (422
S(AsTy/? A2T)/%A2T)/2)

for all Ty € [A2N; 2, A;'T). If instead of (4.18) we had (4.19), then (4.22) is immediate.
Next we convert (4.22) back into a lower bound on the velocity. By the pigeonhole
principle, there exists an x, in S(A5T21/2, AgTQI/2; A%T;/Q) where

[w(0,2,)] 2 exp(—O(AD))T; .

The gradient estimate in (4.16) implies that this concentration persists up to a distance of

at least exp(—O(A3))T, /2 from ., and therefore

/Rg w(0, 2, — py)fb(y)dy’ > exp(—O(A3)) Ty

for a bump function ¢ supported in B(0, 1), for some p = exp(—O(Ag))T;m. Then writing

w = curl v and integrating by parts,

/ u(0, 7. — py) curl cbdy’ > exp(—O(A3)) Ty 2.
R3

Then by Holder’s inequality,

/ (0, 2, — py)|9dy > exp(—O(AZ))T, .
B(0,1)
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Within B(z,, p), since p < tisr(2.), r is comparable to r(z,) € [A5T21/2, A%T;ﬂ]. Therefore
/ r73 (0, 2)|%dz 2 exp(—O(AR)). (4.23)
B(:U*,p)

Since such an z, appears within every set S(A%TQUQ, 2A6T21/2), and 75 can take any value
in [A2N;2, A;'T), there are at least log(T'NZ)/log Ag disjoint concentrations of the form
(4.23). Therefore

log(T'NG)

_ 3)) < q—3 q < A4
og As exp( O(AG))N/ ri7°|u(0, x)|%dx < A

R3

by (4.23) and (1.9), and the desired conclusion follows. O

4.4 Proof of main theorems

Proof of Theorem 4.1. Once again, we can roughly follow [60], but we must be a bit more
careful due to our slightly worse control of «’. By increasing A, we can make A > ;. By

rescaling, it suffices to prove the theorem with ¢ = 1. Proposition 4.6 implies that
[ Prvullpge (1/2,1)xm3) < AT'N (4.24)
whenever N > N,, where
N, = exp(exp(A7)).

We apply the decomposition u = u’, +u¥ on [0, 1] so that on [1/2, 1], we have all the estimates
from Proposition 2.7. Taking the curl, we analogously have w = w’ + w! and define
1
Et) =5 [ |wi(t,2)fde
2 R3

where we fix an n sufficiently large so that (2.17) gives bounds on «, for p € [min(¢, £),3).

With (4.17) and integration by parts, we compute

d
%sz—n+n+n+n+n+%+n+n
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where
V) = [ [V
R3
Y(t) = — / W (- V),
RS
Vt) == [ (k- Vi,
R3
Yi(t) = / W (W Vat)d,
RS
Yi(t) = / W (W V),
RS
Vilt) = [ k- (wh Vud)da,
R3

V)= [ o (o Vi),
RS

By Hélder’s inequality, (2.17), and (2.14), we have for ¢ € [1/2,1]

b b
Y2 (t)| S Hwi HLgoLg’([l/g,l]Xﬂgs) [, HLgOLiP([1/2,1]xR3) vanHLgOLip(u/Q,u xR3)

< AW,

taking p = max(q, q%). The same argument applies for Y7 and Yz. For Y3, by Holder’s

inequality and (2.14), we have
Ya3(t)] S E(t)1/2||ugz||L§°L§([1/2,1]><]R3)||vw7bz||L‘t’f’z([1/2,l]><R3) < BY2A00)
For Y;5, Holder’s inequality and (2.14) easily give
Y5()] S E@IVUr iz 1/2.xm3) S E(HACY.
The same is true for Yg, since Plancherel’s theorem and incompressibility imply
IVl | 2@y S Mokl o2 o)

From here one proceeds to estimate Y; and conclude exactly as in [60], making use of (2.30)

and (4.24). (In that paper the analogous term is called Y3.) O
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As in [60], Theorem 4.2 follows immediately from Theorem 4.1 combined with essentially

any classical blowup criterion.
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CHAPTER 5

Type I regularity theorem for axisymmetric solutions

5.1 Introduction

This chapter reflects joint work with Wojciech Ozanski [41] which is to appear. We aim to
understand the regularity properties of solutions bounded in the weak space L** which is

connected to Type I blowup and other self-similar-type behavior.

5.1.1 Tao’s stacking argument and Type I blowup

In order to illustrate the main difficulty in the endpoint space L>*°, let us recall the main
strategy of Tao [60] to show that, if u concentrates at a particular time, then there ex-
ists a widely separated sequence of length scales (Ry)X , and o = a(A) > 0 such that

||| L3((jz~ryy) = @ for all k, which implies that

lull3 = / ul® > Z/ ul® > o’ K. (5.1)
R? g lzl~Ry

The more singularly u concentrates at the origin, the larger one can take K; thus the L3
norm controls the regularity of u. More precisely, if ||u|l3 < A and u concentrates at a large
frequency N at time T, then one can take v = exp(— exp(A°M)) and K ~ log(NT'z), which

leads to the conclusion N < T~z exp exp exp(A°D).

Let us contrast this L? situation with that of general Lorentz spaces with interpolation

exponent ¢ > 3. In that case, ||u|| 13.0({jz|~r,}) = @ implies (as a simple application of Tonelli’s
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theorem)

1
lullzoaey 2 [l oaqqiairinllpn > @K,

and so one should expect the bounds from the stacking argument used in the Lorentz
space L>7 extension [23] to degenerate as ¢ — oo. Indeed, if |u(x)| = |z|7!, we have
||| £3.00 (jz)~ry) = 1/O(1) for every R > 0, yet ||u|[zs.®s) ~ 1 which shows that the first
inequality in (5.1) fails for the L3> norm. For this reason, the approach of Tao [60] (and,
for related reasons, of Escauriaza-Seregin-Sverdk) to the L? problem cannot be extended to
L3,

This issue is in fact closely related to the study of Type 1 blowups and approximately
self-similar solutions to (1.2). Leray famously conjectured the existence of backwards self-
similar solutions that blow up in finite time, a possibility later ruled out by Necas, Ruzicka,
and Sverdk [40] for finite-energy solutions and by Tsai [61] for locally-finite energy solutions.

The latter reference identifies the following as a very natural ansatz for blowup:

— 1 v —a( L S 0 S as 00 )
““"’”‘<T0_t>;U<<TO_t>é>’ v =a (g g+ () =M= 62

where a : 5% — R? is smooth. While Tsai [61] shows that there are no solutions ezactly

of this form, solutions that approximate this profile or attain it in a discretely self-similar
way are promising candidates for singularity formation, as demonstrated by the Scheffer
constructions [42, 43, 51, 52], for example. Unfortunately, criteria pertaining to L3 such as
those in [22, 60, 46] are not effective at controlling such solutions because |x|~! ¢ L*(R?),

which shows the relevance of the weak norm L3>,

Specializing to the case of axial symmetry, it is known, for instance due to Seregin’s result
[54], that finite-time blowup cannot be of Type I. Thus, roughly speaking, no axisymmetric
solution can approximate the profile (5.2) all the way up to a putative blowup time Ty. How-
ever, this regularity is only qualitative (indeed, the proof uses an argument by contradiction

¢

based on a “zooming in” procedure), and so explicit bounds on the solution have not been

available.
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The main purpose of this work is to make this regularity quantitative, in the same sense
that Tao [60] made quantitative the of Escauriaza-Seregin-Sverdk theorem [22]. This allows
us to not only to rule out Type I singularies, but also to control how singular they can
possibly become. For example it lets us estimate the length scale down to which a solution

can be approximated by a self-similar profile; see Corollary 5.10 for details.

5.1.2 The main regularity theorem

We suppose that a strong solution to (1.2) on the time interval [0, 7] is axisymmetric, meaning
that
891@ = 89U3 = aQUQ = 0, (53)

where u,, ug, us denote (respectively) the radial, angular, and vertical components of u, so
that

U = Up, + Upey + Uses
in cylindrical coordinates, where e,, ey, €3 denote the cylindrical basis vectors.
We assume further that u remains bounded in L3>,
|| oo (j0,77; 300 (3)) < A (5.4)
for some A > 1. We prove the following.

Theorem 5.1 (Main result). Suppose u is a classical axisymmetric solution of (1.2) on

[0, T] x R3 obeying (5.4). Then
V7 u(t)|| oo rry < 2 exp exp(A% D)
forallj>0,te€]0,T].

Our main ingredients are parabolic methods applied to the swirl © = ruy near the axis,

as well as localized energy estimates on

=" and T =22 (5.5)



These quantities will be our avenue to transfer regularity of © to regularity of the full solution.

To be more precise, our proof builds on the work of Chen, Fang, and Zhang [16], who

showed that the energy norm of @, T',
[Pl zoere + ||T| oo r2 + ||V(I)||L3Lg + HVFHL%’Lga (5.6)

controls u via an estimate on ||u3/r||12 (see [16, Lemma 3.1]). They also observed that one
can indeed estimate this energy norm as long as the angular velocity uy remains small in

any neighbourhood of the axis, namely if

HrdugHL?O([O’T};Ls/u_d)({TSQ})) is sufficiently small for some @ > 0 and d € (0, 1). (5.7)

In fact, this can be observed from the PDEs satisfied by &, I, namely that

<8t+u~V—A—§8T>F+f—2u9wT:O,
, ; (5.8)
<8t +u- V — A — ;&) o — (wT&« +w383)7r = 0,

which shows that, in order to control the energy of I', ® one needs to control w, /7, w,, ws

and wug. However, u,/r can be controlled by T'; in the sense that

% N Q%A‘Q@,F (5.9)

(see [16, p. 1929] for details), which is one of the main properties of function I'. In particular,

(5.9) lets us use the Calderén-Zygmund inequality to obtain that

Uy
T

<9 (5.10)

for ¢ € (1,00) (see [16, Lemma 2.3] for details). Moreover we have w, = r®, and w; =
Or(rug)/r, which shows that the L? estimate of ® and T relies only on control of ug. In
fact, away from from the axis, one can easily control uy, while near the axis the smallness
condition (5.7) is required in an absorption argument by the dissipative part of the energy;

see [16, (3.11)—(3.14)] for details.
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In this work we obtain adequate control on uy thanks to the weak-L* bound (5.4) com-
bined with the parabolic theory developed by Nazarov and Ural’tseva [38] in the spirit of

the Harnack inequality. Namely, noting that the swirl satisfies the autonomous PDE
2
(at+ (u+—e,,) -V—A)@:o (5.11)
r

everywhere except for the axis, one can deduce (as observed in [38, Section 4]) Hélder
continuity of © near the axis. A similar observation, but in a case of limited regularity of
u was used by Seregin [54] in his proof of no Type I blow-ups for axisymmetric solutions.
We quantify this approach (see Proposition A.4 below) to obtain an estimate on the Holder
exponent in terms of the weak-L3 norm, and hence we obtain sufficient control of the swirl
in a very small neighbourhood of the axis. As for the outside of the neighbourhood, we
make use of the pointwise estimates proved in §2.5.3. This would enable one to close the
energy estimates for the quantities in (5.6) if there exist sufficiently many starting times
where the energy norms are finite. Unfortunately, there are no times when we can explicitly
control these energies in terms of A due to lack of quantitative decay in the x3 direction.
The standard approach of propagating L? control of ®,T' from the initial data at t = 0
(for instance, as in [16]) would lead to additional exponentials in Theorem 5.1. To avoid
this issue and prove efficient bounds, we replace (5.6) with L? norms that measure ® and T

uniformly-locally in z3: namely, we consider

[Pllreerz o+ 10 egers , +IV®l2z |+ IIVTlE2rz (5.12)

See Proposition 5.7 below for an estimate of such energy norm, as well as (5.17) for the

2

3_uloe SPace. This issue gives rise to further challenges, such as the

precise definition of the L
x3 — uloc control of the solution w itself in terms of (5.12), as well as an estimate on wu,.
We show that the former difficulty can be resolved by an x3 — uloc generalization of the L*

1/2 introduced by [16, Lemma 3.1], together with a x3 — uloc bootstrapping

estimate on wuy /7
via ||ul|pers ~and an inductive argument for the norms ||ul| ey s-1.6 with respect to k > 1,
—uloc t uloc

where “uloc” refers to the uniformly locally integrable spaces (in all variables, not only x3).
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As for the latter difficulty, we derive new x3 — uloc estimates of u,. in terms of I'. To be more

2

5 uloe control of w,/r, which is

precise, instead of the global estimate (5.10), we require L

much more challenging, particularly considering the bilaplacian term in (5.9) above. To this

2

3 uloe (s€e Lemma 5.9), which enables

end we develop bilaplacian Poisson-type estimate in L

us to show that

oo
T

SNz

3—uloc

+ VT2 (5.13)

—uloc’

Uy

+ Hvag—

LZ_ . r
—utoc

3—uloc
see Lemma 5.6. This lets us close the estimate of (5.12), and thus control all subcritical

norms of u in terms of ||u||zs..

5.1.3 Blowup rate and comparison to the literature

We note that Theorem 5.1, together with the well-known blow-up criterion ||u(t)||s > ¢/(Ti—
t)Y/2 (see [45, Corollary 6.25], for example), where T, > 0 is a putative blow-up time,

immediately implies the following lower bound on the blow-up rate of ||u(t)]|zs.0-

Corollary 5.2 (Blow-up rate of the weak-L? norm). If u is a classical axisymmetric solution

of (1.2) that blows up at T, then

: [[u(®) || 2200 ®2)
1 = . 5.14
1:1_1)78117113 (log log(T* - t)_1>c +OO ( )

This corollary is also a consequence of a recent theorem of Chen, Tsai, and Zhang [17],

who prove!

, 16| 2., r3)
lim sup ———— = +09,

T <10g log % >E—

where b := u,e, + uszes denotes the swirl-less part of the velocity field u (see [34, Section 3.3]

for the relevant definition of Bx!,). Thus, since BZ'. (R?) D L**, the above blow-up rate

Let us note the existence of a substantial misprint in the published version of [17]: in their Theorem 1.4,
as in our Corollary 5.2, the blowup rate is double-logarithmic.
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implies (5.14). We conjecture that a variant of Theorem 5.1 holds with the weak-L3 norm

replaced by such a critical Besov norm and can be proved using the ideas presented here.

In order to describe the relation of Corollary 5.2 to [17], we note that the argument in

[17] proceeds by proving a pointwise estimate of the form
|rug| < Cexp(—c|logr|T), (5.15)

where ¢,C > 0, 7 € (0,1), for axisymmetric solutions obeying the slightly supercritical

bound

1 100"
EHUHLDO((_R27O);L2(BR)) § K log log ? fOf all R € (0, 1/4]

for some 5 € (0, %) and K > 0. This is yet another application of Harnack inequality
methods to axisymmetric Navier-Stokes equations. Rather than proving Hélder continuity
of © under a global control of a critical norm as we do in Proposition A.4, [17] obtains (5.15)

by an “almost Holder continuity,”

100\ " 100\ "
0 < — log— | — | log — ) 5.16
grosoo(e((w ) (o) ) 015

for 0 < p < R <1/4, 7 € (0,1); see [17, Proposition 1.2]. A similar result in the case of
7 = 1/4 has been obtained independently by Seregin [55, Proposition 1.3]. Note that the

case of 7 = 1 corresponds to Holder continuity.

Let us emphasize that the main point of our work is not to improve the blowup rate
but to give an explicit bound on u and its derivatives in terms of only the critical norm—
this is a strictly stronger result in the sense that it pertains to all axisymmetric classical
solutions, even those not blowing up. A nailve attempt to prove a similar quantitative theorem
(e.g., using ideas of estimating axisymmetric vector fields from [32]) would lead to a bound
which, compared to Theorem 5.1, would contain more iterated exponentials as well as severe
dependence on the time t and subcritical norms of the initial data. Instead, Theorem 5.1
parallels the results in [60] and improves on those in [46] in the sense that the final bound

depends only on ||ul| peerpee and a dimensional factor in ¢. This also leads to additional
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interesting corollaries: for instance, an explicit rate of convergence for u(t) — 0 as t — 400,

and the non-existence of nontrivial ancient axisymmetric solutions in L$° L3,

A comparison of these results with the work of Chen, Tsai and Zhang [17] raises the
following question: Is it possible to efficiently control (in the sense of Theorem 5.1) u and
its derivatives in terms of only b measured in some critical norm? In fact, in our proof of
Holder continuity of © near the axis (Proposition A.4) one can easily replace (5.4) with
boundedness of ||b(t)| 3. in time, since “u” in (5.11) can be replaced by “b”, due to axial
symmetry. However, we do require L** control of all components of u for other quantitative
estimates leading to Theorem 5.1. These include the basic estimates, quantitative decay away

from the axis (Proposition 2.19), as well as energy estimates on I" and & (Proposition 5.7)

and their implementation in the main argument.

A related open problem is to explicitly control u in terms of only uy. Despite a great deal
of work [16, 29, 33, 39, 55, 62] on the properties of the swirl ruy, its role in the regularity

problem for axisymmetric solutions remains unclear.

5.2 Preliminaries

Given f: Q2 — R we let
osc f= sgpf — 1gff
denote the oscillation of f over ). We also denote by fQ = ﬁ fQ the average over €.

In this chapter, given p € [1, 00|, we will make use of the uniformly local L” norms,

||U||L§loc = sup ||ullzz(pe,1)) and ||u||Lf,z7uloc = HHUHLglOC e
z€R3
as well as the norms that are uniformly local in x5 only,
Hf”Lg_uloc(M) = SU}E ”fHLé’-(R?x[z—l,zﬂ])- (5.17)
ze
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Let us also define the heat kernel W(z,t) := (4mt)~3/2e~**/4 which satisfies

NE

VR, = iyt 3077)75, (5.18)

5.2.0.1 Lorentz spaces
We recall the Lorentz spaces, defined by

1 llzra = p UL = AP gy a2 (5.19)
for ¢ < oo and the endpoint

£ llzmoe = [INLLF] 2 AHYP ) ey, 2)-

There is an analogue of the Holder inequality,
1fgllzra < Cprpgrgo | f | rran [|gl] ooz, (5.20)

whenever 1/p = 1/p1+1/p2, 1/g=1/q¢1+1/q2, p1,p2,p € (0,00), q1, G2, q € (0,00]. We refer
the reader to [58, Theorem 6.9] for a proof of (5.20). The Hélder inequality can be very
useful when estimating some localized integrals in terms of the LP* norm. For example, if

¢ € C§°(Q2) is a smooth cutoff function then we have the simple estimate

00 ll#]loo
]| ot = p/ 1{|¢] > A}MPdN < p/ {6 > A}HYPAX < p|QYP)|¢]| o,
0 0

which shows that, for example

/Q £ < 1 e llgll2]2 7.

This simple method allows us to use the weak L3 space to estimate some integrals over a

region close to the axis of symmetry.

We also note two Young’s inequalities involving weak L spaces

1 * gllzeee S A flLllgllzre for p e (1,00), (5.21)

o1 1 1
17 glly S 1/l \gllzoee for p,g,r € (1, 00) with =41 ===,

see [34, Proposition 2.4(a)] and [50, Theorem A.16] for details (respectively).

(5.22)
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5.2.0.2 The Bogovskii operator

We recall that, given p € (1,00), an open ball B C R3, b € W?(B) such that div b = 0, and
¢ € C°(B;[0,1]) such that ¢ = 1 on B/2 there exists b € W?(R?) such that b = 0 outside
B and inside B/2,

div b = div(¢b) and  |[b]lwre S [bllwres), (5.23)

due to the Bogovskii lemma (see [7, 8] or [24, Lemma I11.3.1], for example). We note that
the Bogovskii lemma often assumes that the domain is star-shaped (which is not the case for
B\ B/2), but it can be overcome in this particular setting by applying the partition of unity
to ¢; see [44, Section 2.3] for example. Note as well that although the implicit constant in
(5.23) depends on the scale of B (by inhomogeneity), in our applications B will be of unit

scale.

5.2.0.3 A Poisson-type tail estimate

Here we are concerned with a Poisson equation of the form —Af = D?g, and we show that

any W**(B(0,1)) norm of V f can be bounded by the L., norm of g, if g = 0 on B(0,2).
To be more precise, we let 1 € C2°(B(0,1); [0, 1]) be such that ¢» = 1 on B(0,1/2). Given

y € R3 we set
Uy(2) = (z —y). (5.24)

and

Y= E wj-
jez?
|7]<10

Lemma 5.3. Suppose that f = D*(—A)7'(g(1 — 1)) for some g € L*. Then

1OV fllwees Sk llgllze for k> 0.

uloc

Proof. We note that

0:f(z) = / (z: = 3:)gW)(1 = 00)

lz —yp
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for = € supp ¢, and so

Vi)l < / 9 ay
{jz—y|>5} |x - y|
z1+j1+1  pretjot+l  prstiz+l ’
/ / / 1dys dya dys
ez Y Ttn T2+j2 z3+J3 —
IJI>2
Slglley,, > il S gl
jez?
|71>2

as required. An analogous argument applies to higher derivatives of f.

O

The above proof demonstrates a simple method of tail estimation which we will later

use to obtain a L3_ .

estimate of u,/r in terms of I, mentioned in the introduction (recall

(5.13)). In fact, to this end, a similar strategy can be applied in the x3 direction only, and can

be extended to the more challenging bi-Laplacian Poisson equation (see Lemma 5.9 below).

5.2.0.4 Cylindrical coordinates

Given x € R? we denote by 2’ := (1, z2) the horizontal variables, and r :

denotes the radius in the cylindrical coordinates. We often use the notation
{r<ryt={xcR r<r}

for a given ry > 0.

We recall a version of the Hardy inequality

1P fllzay S CENSf e + IV fllLa@)

where (2 is a bounded domain and ¢ € (1,2]; see [16, Lemma 2.4] for a proof.

(@ + a2

(5.25)

We recall the divergence operator in cylindrical coordinates: if v = v,.e, + vgeg + vses

then

1 1
div v = —=0,(rv,) + —0gvg + 0303
T T

123

(5.26)



For an axisymmetric vector field v, one can compute the length of the partial gradient,
1
V0> = (90,)? + (Orv)? + (0rv3)” + = (v + v7), (5.27)
r

which implies the pointwise bounds

[er] ~Jvol
.

< [V'vl.
Here V' refers to the gradient with respect to the horizontal variables x’ only. Moreover,
01 S ID? ] (5.28)

Indeed, since

x
0, = cosf0; +sinf 0, = | /’ ﬁ%
x
we can compute that
x? 129 3
Opp = ——=011 + 220109 + ——2=0as,

|22 |22 |2

from which (5.28) follows. One can compute more generally that

o) = i (N) '] (2101)" (w202) " "

n
n=0

from which it follows

DR fISIDf| and Dy, fl S |DY] (5.29)

r,x3 7‘:123

for any axisymmetric f, where D* refers to all fourth order derivatives with respect to

X1, T2, T3

5.2.0.5 A quantified version of the Hardy inequality
From the classical Hardy inequality

I 52 fllp Sp (1112 + 1V £]l2)

124



for p € (2,6) (see [16, Lemma 2.6], for example), we prove a variant that is localized in
the horizontal variables, uniformly local in x3, and whose failur near the p = 2 endpoint is

explicitly controlled. In particular,

Lemma 5.4 (Quantified Hardy inequality). The is a C > 0 such that for all p € (2,6 — €),

3—uloc uloc

Ir™ 5 % f|| o <1y Se (p—2) <||f||L2 <y IV Az« {T<1})> '

Proof. From the Sobolev embedding

HUHLQP/(Q—P)(RQ) S(2- P)_O(1)||VUHLP(R2)

for p < 2, (see, e.g., [57] where the sharp constant is computed), one can prove the two-

dimensional Gagliardo-Nirenberg inequality

[fllLaBay S 4 (HfHLe(B(l) HVfHLz )+ HfHLP(B(l))) (5.30)
for ¢ > 6. Fix € > 0 to be specified. Then
f —2+3 < eits
Hrg—_ qu(r>)< 154 gm0 gy I i, a2 S €50 g ey
Inside, for any < € (— — —) by (5.30),
f _3,1
‘r_ zmnaey S W7 ezt 1 e e
_1 -1
SRR
~\s 2p 4 p 5
34142 1-0+¢
X |er ||f||L6 J(B(1)) HVfHL?/(B(l)) + HfHL‘;,(B(l)) .
Upon taking € = [|f[I3/[Vf[3 and { = 5, — é
. < 02700 (1l Ty IV A8 ey + 17122
e 2 Ly, ) EICIL S o oy LB )

Finally by Hélder’s inequality, Sobolev embedding, and Gagliardo-Nirenberg interpolation,
we find

f

_1
2

S =2 "Vl fllm (B2 ()% Ba o))

73 1L2(By (1)< Ba(2,1))

as required. 0
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5.2.0.6 Second derivative estimates

The following second derivative estimate is a consequence of energy conservation and is

related to theorems of Constantin [18], Lions [36], and Vasseur [63].

Lemma 5.5 (2nd order derivatives estimates). If u solves (1.2) on [0,T] and obeys (5.4),
then

0] 5 _3
(xR Sp AT

IV2ull

t,x—uloc

forp e |1, %), where the local norm is measured at spatial scale T>.

Proof. We use the approach due to Constantin [18]. First rescale to make T'= 1. For every

€ € (0,1), we define the approximation to the function (z) := (1+ z|?)2,

q(z) == (x) — m@)l_ﬁ

which satisfies the properties

Vq| <1, (5.31)
V(@) > 5 {a) P, (5.32)
L2 ) < glo) < (o). (5.33)

With 7 a time scale to be specified, we define w := g(7w) which obeys the equation
(O +u-V —Aw=7Vq(1w) - (w- Vu) — 7% tr(Vw! V¢Vw).

Multiplying by a spatial cutoff at length scale R and integrating over R?,

E w < / (u - VY + AY)w + O(7|Vul?)y — 572(7w>_(1+5)|Vw\2¢.
dt ]R3 RS 2

Let ¢ be an enlarged cutoff function so that R|V1)|+ R%|Aw| < 10¢). We define the L?

r—uloc,R

norm to be the supremum of the L” norm restricted to balls of radius R. Integrating in time
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starting from a ty to be specified and taking a supremum over the balls,

€ t .
wsOlls_,,, o+ 57 [ [ (o) I Tufudsas
to JR3

z—uloc,R

t
Sty o+ [ B2+ Rl @)l

r—uloc,R
to

dt,—f-THVUHiQ

t,x—uloc,R

Gronwall’s inequality and (2.9) imply
_ _ 1
||w(t)||Liloc,R < <||w(t0)||L71m7R - TRAO(I)) exp(R72|t — to| + R7TAOW|t — t42).
Setting R = A®t and 7 = A2 for a sufficiently large O}, we find

[{rw(@)cy S [[{rw(to)lzy

—uloc,R ~ zfuloc,R'
By (2.9) and Hélder’s inequality, we can find a t, € [1/4,1/2] where the right-hand side is
bounded by A’ . Therefore

t
/ / (1w) =9 | Vw|? dedt < e AW,
tog JR3

We use Holder’s inequality with the decomposition

|Vw|3i+e = (|Vw|3i+f(7'w)f2é$:) (TLU)zi%Z

to conclude

”v“’||Li‘/ﬁt§2,c<[to,t1xR3> < omA%l,

To convert this into a bound on V?u, fix a unit ball B C R? and a cutoff function ¢ € C>°(3B)
with ¢ = 1in 2B. We decompose V?u = a+b where a = V2A~! curl(pw). Note that b = V f

where f = VAl curl((1 — ¢)w) is harmonic in 2B so for any p € [1, 1),

'3
HGHLQQC([::O,t]xB) S HVWHLix([tO,t]XSB) + HVQOHL‘X’HWHLf’IfulOC([toﬂXRS) < e oWA0
and
16l 22 (1t0.11xB) S IVA™ curl((1 - @)l 2 (0,128
S ||wn||L§7m([to,t]><R3) + ||Wb||L;>j;([to,t]xR3) < Ao(l)
where we have used (2.9), Hélder’s inequality, and (2.6). O
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5.3 A Poisson-type estimate on u,/r

Here we discuss how derivatives of w,./r can be controlled by I" using the representation (5.9),

U A-1g,0 — 2% A2a, (5.34)
T r

see [16, p. 1929], which will be an essential part of our 3-uloc energy estimates for ® and I'

(see Proposition 5.7 below).

Lemma 5.6 (The L2

3 uloe €stimate on w,. /7).

oo
r

i Hvagﬁ
2 T

3—uloc

S Pl ez

3—uloc

L2 + HVFHLg—uloc

3—uloc

L

We defer the proof to §5.5.0.1.

A version of the above estimate without the localization in z3 has appeared in |16,
Lemma 2.3]. As mentioned in the introduction, the localization makes the estimate much

more challenging, particularly due to the bilaplacian term in (5.34).

5.4 Enmergy estimates for w/r

In this section, we assume the weak L? bound (5.4) on time interval [0,1] and prove an

energy bound for ®2 4+ I'? at time 1.

We first note that ug satisfies
1 Uy
<8t+u-V—A+—2)u@+—u@:O, (5.35)
r r
from which one computes that the swirl © = ruy obeys
2
(at + <u + —eT) SV A)@ —0 (5.36)
T

in (R®\ {r = 0}) x (0,7). It then follows that, at each time, (r,z3) — up(r,z3,t) is a
continuous function on Ry x R with u4(0, x3,t) = 0 for all z3 (see [37, Lemma 1] for details).

In particular

128



©(0,0,23) =0 for all z3 € R. (5.37)

Moreover, since w is a smooth vector field with bounded derivatives (on which we have no

effective bounds yet, of course) (5.27) implies ® and I' are locally bounded near the z3-axis.

Proposition 5.7 (An L2 , energy estimate for ® and I'). Let u be a classical solution of

(1.2) satisfying the weak L? bound (5.4) on [0,1]. Then

(A%

3—uloc

)+ Tz gy < expexp AW, (5.38)

uloc(

We note that we will only use (in (5.43) below) the bound on T.

Proof. We fix a cutoff function ¢ € C°((—1,1);[0,1]) such that ¢ = 1 in [-1/2,1/2], and

we define the translate
0:(y) = ¢y — 2).
Clearly, we have the pointwise inequality

2
G S D G

i=—2

We will consider the energies

B(t) =swE.(0). E.lt) = / (@1, 2" + T (1,26 )

F(t) =sup F,(t), F.,(t) ::/t /RS(V<I>(3,x)2 + VI(s,2)%)¢.(v3)dx ds

z€R

for t € [ty, 1], where to € [0, 1] will be chosen in Step 3 below. Given z € R, we multiply the

equations (5.8) by ¢.I" and ¢, P, respectively, and integrate to obtain, at a given time t,

1
Bo< [ (= (90 + VIR0 + 50+ 1) (ul +00)
R3
U o — o1 (5.39)
+ (w0, + w303) " g, — 2r ugPl'e, |dx
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The second term on the right hand side can be bounded directly,
I S (14 [z oo m3)) E(2). (5.40)

The remaining terms I5, I3 are more challenging—we estimate them and choose ty as follows.

Step 1. We use the Holder continuity proved in Proposition A.4 to show that |©] < r7 AW

whenever r < %, where v = exp(—A°W),

To this end we note that, due to incompressibility, div(u+%er) = 47d14—0), which enables

us to apply Proposition A.4 to the equation for the swirl © (recall (5.11)).
Moreover, in the notation of Proposition A.4, for every R < %, ty € [%, 1] and xy €
(0,0) x R (i.e., on the z3-axis),

[
R 5|lu+ —|

_1 o(1
r Lo L (Q(t0,m0), ) S R ullgerz,, (o2 o)xrs) +1 < AW

uloc

by Holder’s inequality and (2.9) applied on the timescale R?. (In particular note that each
scale R leads to a different decomposition u = u’, + uf, but they all obey the same bounds
up to being suitably rescaled.) Thus, for every r € (0,1/2), 08¢z, O(to) S 77 05Cq(1/2) ©
for r € (0,1/2), which implies the claim.

Step 2. We show that
t 1 t
/ I+ 3] < 5F(t) + gt +/ GE
to

to

for each ty € [t/2,1], where

2

ro=e ", (5.41)
v = exp(—A°WM) is given by Step 1, and
G =5 4 lull + D%l s + [Vl

at each t' € [ty, 1]
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To this end, we proceed similarly to [16]. Using integration by parts, we compute

I = 27r// (—83u98r%<1> O (:ua)ag— ®) b, (23)r dr dizs
R3

=:Iy1 + Iyp + Io3.

Let us further decompose Io; = Io;in + I2i 0w (1 = 1,2,3) by writing

J= oot ooy
{r<ro} {r>ro}

and yet further

Iiin = 121 im0 + 12102

where

Uy
I2,1,m,1 1:/ Up (][ ar_) 83<D¢z
{r<ro} Q r

and Q = {z/: r < 1} X supp ¢,. We compute using Holder’s inequality and Sobolev embed-

fo

ding

< |10 || L1 () + HT_QUrHLl(Q)

S sy Vullpssmay S 1Vl i) + [Vull 2oy < G-

Thus, integrating by parts, and applying Hélder’s inequality in Lorentz spaces (5.20), and

Young’s inequality, we obtain

|2 1.m1] < G/ (Tq)2¢z + |U9‘I)¢/z|) dx
TQ)XR

1
S GroE + [lugll 3 ) 1Pl L2 () [€2]7)

< G(E + A%W),
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As for I51 2 we note that p = 2(1 — ) /(1 — 27) is such that p — 2 = 2v/(1 — 2vy) > ~ and

so we can use the quantitative Hardy inequality (Lemma 5.4) to obtain for ¢ € [3, 1] that

3,41 u u 1
r p+2(8r_r_ 0r_r> z2
T Q T

1
105902 |2
Lr({r<1})

NI

3_1
o 1in2] S 1P 2w A ,;)—1
P/ ({r<ro}nsupp ¢:)

VOS2

v/3 H

3 uloc

-1 1
<e’ /4(|IVF||L2 ey H Tz @) VPO o,

3— uoc 3— uloc

where we have also applied Poincaré’s inequality and our choice (5.41) of ry. Thus

t 1 t
[2,1,m2 F( ) / E.
[, aona < 50+ |

An analogous argument with “0,” and “0s;” interchanged yields the same bound for 59y, 2.

As for I5 5,1, we integrate by parts and apply (5.20) and Young’s inequality to obtain

/ 19, D)
{r<ro}Nsupp ¢-

1
[[uo | 3.0 | V| 2 (supp )70

| I29.im1| < ’][33—@

Uy
5Lf—¢

;1
Z HVU”LI z+z)2r03

1=—2
< GATl/S (Z Z—H) )
1=—2

which, thanks to the smallness of 75 = exp(— exp(A°M)) (recall (5.41)), gives

t
/ ] < b
to

We similarly decompose 23, = 12301 + 12302 to find

‘/{TSTO}

< o F(0) + (¢~ ).

1 1
S (IVull 2 + 1Vl ps/a ) AE= g

<G(E+1)
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where we have used Lemma 5.4 and change of variables, the pointwise estimate |u, /7| < [V,

z+10 ’
/ / (|8 Uy ) drdz

N Hr_larurHLl(Q) + H7’_1VUHL1(Q)

and Holder’s inequality to bound

S eVl s

S IVl + 1Vl 10

where we used (5.27) in the third line, and the Hardy inequality (5.25) in the last line. Next

A=|f e (- o)

{r<ro} r r

o3 <dd O ][ a,ﬂ)
T Q r

IV L

3—uloc

_1
HT 2 CI)HL3(R2
L3(R2xsupp ¢»)

S llruel| s (qr<rey ||7 xsupp ¢2)

< A0(1)T§

Y

3—uloc

where we have used the Hardy inequality (Lemma 5.4). Thus Lemma 5.6 and Young’s

t 1 +
[ I53,in2| < —=F(t) +/ E.
‘/tO 20 to

Next let us consider the contributions to I from outside B(rg). Using Holder’s inequality,

inequality imply that

we obtain that

Uy
|1271,0Ut| = '/ uear_83®¢z dx
{r>ro} r

< [luollLg

3—uloc

({r>ro})||r_larur - T_QUTHL? {r>7~(J})||V(I)||L2

3) .
S—uloc R )

uloc

Hence, since Proposition 2.19 shows that |u| < AW (r=t 4+ r=14) and |0,u,| < AW (r—2 +
r1/4), we see that the first two norms on the right hand side are finite and bounded by, say,

75'%. Thus, an application of Young’s inequality gives that

t
1
[ Vasina] < 36 F(0) 4757~ o)

to
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The remaining outer parts of I, i.e. [s2,u and I3, can be estimated in a similar way,
with the latter bounded by, say, E + 7y °

Finally let us consider I3. Taking p such that, for example, % = % — 1 we have p — 2 =

27/(2 — ) > 7, and so our quantified Hardy’s inequality (Lemma 5.4) shows that

_341
[t 1 PP [ 0 %

3—uloc

_ 6
TR S
) ({r<ro})

_ 2
ST (Nl + 190z, ) (WP, + 19Tz, )

which gives that ft 1130 <
bound

< 20 F(t)+ fti E. On the other hand, for » > ry we have the simple

< r()_5/4E,

HF||L2

3—uloc

L3 0ut] < 207 gl Lo (rzrop || @] 12

3—uloc

as required.

Step 3. Given 7 > 0 we use the choice of time of regularity (Proposition 2.14) to find
to € [1 — 7, 1] such that E(t,) < A9W7r—3

Indeed, Proposition 2.14 lets us choose tg € [1 — 7, 1] such that
IV2u(to) [l < AZW772

It follows from the axial symmetry and (5.27) that |®| + |I'| < |Vw], and so

M\u

1@ (t0)62 2 |2ty + T (20) 02 | 2grzayy S 1V (to) | Lo(myxr) < A%V (5.42)

for every z € R. Using the decomposition w = w? + w} on the interval [0,1], by (2.9), (2.6),
and Holder’s inequality,

1
1@ (to) oY 2| 21y + 1T ()0 M r2 sty S Nwhllzzmsy + 7 @il r2(prs13nsupp 62)

S ||VU§||L2(R3) + ||7“_1||L‘;,(B(1)c) )

< A0
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This and (5.42) proves the claim of this step.
Step 4. We prove the desired estimate on ® and I'.

Integration in time of the energy inequality (5.39) from initial time ¢, chosen in Step 3
above, taking sup,.r, and applying the estimate (5.40) for I; and Step 2 for I, I3 we find
that

1 t
E(t)+=F(t) < E(ty) —|—7’0_10+/ O(ry® + |Julloo + |]V2u||L5{4 + | Vaullgz, VE()dt

2 —— to
SAO(I)T—S

for t € [ty, 1]. Thus, by Gronwall’s inequality,
B(1) < (42077 45 ) exp (0 (1 (1 = 1) + A%V (0 —10)? ) ).

Setting 7 = rj, we see that the last exponential function is O(1), and the prefactor gives

the required estimate (5.38). O

5.5 Main type I theorem

In this section we prove Theorem 5.1. Namely, given the L** bound (5.4) on time interval

[0, 1], we show that |Viu| < expexp A%M) at time 1.

Step 1. We show that [|b]lz ~ @ms) < Cpexpexp A°W for each p € [3,00), t € [1/2,1],

uloc(
where b = u,e, + u,e, denotes the swirl-free part of the velocity field.
To this end we apply Proposition 5.7 to find

||F||L§;°L,2 (13,1]xR3) < expexp AW, (5.43)

3—uloc
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On the other hand Proposition 2.19 shows that
Il g (gr<a0py < A%

Interpolating between this inequality and (5.43) we obtain

2 1 2 1
el ctrcton = T3 0000 g octon S U0 Il by g caay < expesp 490
for all p < 3.

Recalling that
curlb = wpey, divb=0

almost everywhere, we localize b to obtain an LP estimate near the axis. Namely, for any
unit ball B C {r < 10}, let ¢ € C°(B) such that ¢ = 1 on B/2. Observe that for all

p € [1,3) we can use Holder’s inequality for Lorentz spaces (5.20) to obtain
I1div(¢b) | o@sy = [[6- Vollp S bllsce [Vl panra-na S A

Applying the Bogovskii operator (5.23) to div(¢b) on the domain B\ (B/2), we find b € W'
such that divb =0, ||b— gnwl,p(B) < A°W b =pin B/2, and b = 0 outside B. Then for any

pe(1,3),

160l Lo/ s-72) < NBll3p/3—p) S VOl S [lcurl bl rogsy
< |\wellzr(sy + 116 — bllwres)

< expexp A°W),

which is our desired localized estimate. Here we have used the boundedness of the opera-
tor curl f — Vf in LP, p € (1,00), (which is a consequence of the identity curl curl f =
V(div f)—Af, which in turn implies that V f = V(—A)~! curl curl f for divergence-free f).
Combining this with the pointwise estimates away from the axis (Proposition 2.19) gives the

claim of this step.
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Step 2. We show that there exists Cy > 1 such that

<

L B 3
3—uloc r

4 Ug

1

r2

1
r2

" t
H—u9< >‘ \ +1—|—expeprC°/
L

3—uloc to

4
L3—uloc

for each tg € [1/2,1] and t € [to, 1].

To this end we provide a localization of the estimate of wy/r'/? in the spirit of [16,

Lemma 3.1]. Indeed, one can calculate from the equation (5.35) for uy that for a smooth

cutoff ¢ = v(s),

1d ug 3 u3 |2 3 ug
T
4dt Jps r2w+4/Rg r ¢+4/R3 r4¢

3 1 1 1
-3 / Ui+ / —ud(2udu, — 0. = I+ Lo+ Iy

As before, we choose 1 € C°((—2,2)) with ¢ = 1 in [—1, 1] and define the translates
¥, (x) :=(z — z) for all z € R. Consider the energies

1 ul 3 [t
E.(t)== [ “Ly,, F(t)="=
(t) 4/W¢ (t) 4//

E(t) =sup E,(t), F(t) = sup F,(t).

z€R z€R

22
Ug
vy,

By Step 1 and Sobolev embedding,

212
1U
7‘_5_0
T

2
< exp exp AW (H %
r

1] S Nlurll g

3—uloc

L12/5(Q)

2.3
u,

1 3 2
2 2 UG

+ |
r 1lr2Q) r

L*(Q)

1
2
L2(9)> ’

t 1 t
/ || < %F(t)—i—expeprO(l)/ E + (t —tp).
to

where Q := R? x supp 9. It follows that

to
Similarly,
2 2
IB| S ey, || =
2l S z L37uloc r L%,l r LS(Q)
2,1 2,1 2
<expeXpAO(1)E% Yoll? HV@ ’ Yo
- r 11L2(Q) r L2(Q) T HL2(Q)
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which yields the same bound as /;. Finally,

1 uz ul
R3 r

2
% ‘
.

v

<

L2

3—uloc

r L2(Q)

so we have

/t:|13| < %F(t)Jr/t:O(E).

Summing and taking the supremum over z € R gives the claim of this step.

Step 3. We deduce that

||uHL§°L6 ([to,1]xR3) < €XP exp AOW) (5.44)

3—uloc

where

to =1 — exp(— exp A°W).

Indeed, Lemma 2.14 and Proposition 2.19 give a t; € [1 — exp(—exp A“0), 1] such that
||7“_%ue(t0)|| L4(r3) < €xpexp A%C_ Therefore, applying Grénwall’s inequality to the claim of
the previous step,

< A,
(e = PP

Hue
1
r2

Combining this with Proposition 2.19 and Holder’s inequality,

Ly LY

3—uloc

1 1 2
luollLoors  (ita.1xms) < ||7“U0||i;o({rg1})||7“ 2u9||z§°L§_ (ftr1]xR3) T [l e g (i 21> 1))

3—uloc uloc

< expexp AW,
which, together with Step 1, implies (5.44).
We note that Step 3 already provides a subcritical local regularity condition of the type of

Ladyzhenskaya-Prodi-Serrin, which guarantees local boundedness of all spatial derivatives
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of u, and can be proved by employing the vorticity equation for example (see [50, Theo-
rem 13.7]). In the last step below we use a robust tail estimate of the pressure function

(recall Lemma 5.3) to provide a simpler justification of pointwise bounds by exp exp A°W).

Step 4. We prove that, if ||u||LOQ([1_t1 1wk=L6) < expexp A°M for some k > 1 and

uloc

t; = exp(—exp A°M), then the same is true for k (with some other ¢, of the same or-

der).

Let I = [a,b] C [t1,1], and let x € C*°(R) be such that x(t) =0 fort < a+ (b—a)/8
and x(t) =1 for t > (a+b)/2. We set ¢ € C(B(0,2);]0,1]) such that ¢ =1 on B(0,1/2)
and Y7 ;s d; = 1, where ¢; = ¢(- — j) for each j € R®.

Letting v := x¢V*u we see that v(t;) = 0, and
v — Av = —x'¢V*u = 2xVé - V(V*u) — xAp(V*u) —xo div(l + T)V*(u @ u)
=h

= fi — ¢div(l + T)(xVF*u ® u + u ® xVFu)9)

—x¢div(1+T) Y Copy(D*u® D*uD?$) — x¢divTV*(u @ u(l - §))
ol +181+ 1| =k
ol |B1<k

= fi+ fot+ f3+ fa

We can now estimate |[v(t)|lg, by extracting the same norm on the right-hand side and

ensuring that the length of the interval is sufficiently small, so that the norm can be absorbed.
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Namely,

t t t t
Hv(t>H6 _ / e(t_t/)Afl(t,)dt/—i-/ e(t—t/)Af2<t/)dt/+/ e(t_t/)Afg(t/)dt/—i-/ e(t—t/)Af4(t/)dt/

t
< <||Xvku¢||L°°<[a,ﬂ;L6>+IIX’Vk‘lucbllLooqa,u;La))/ Wt — ) ||wrndt
t
+ XV 4" oo (a,1:20) 142 | o (a g1 29) / (=) [[wrosdt
t
L PR T

t
+ || div T(U X U(]_ — ¢))||L°°([a,1};ka6(B(O,2))) / ”\I/<t — t/>H1dt/

< IxV¥u Lo agize. ) ((b—a)'? + expexp A%M (b — a)'/*) + exp exp A°W

uloc

for each t € (a,b), where we used Young’s inequality, heat estimates (5.18) and the Calderén-
Zygmund inequality. By replacing ¢ (in the definition of v) by ¢, for any 2z € R3, we obtain

the same bound, and so

||Xvku||Loo([a,b};L6 ) < ||Xvku||Loo([a,b];Lgloc) (b— a)1/4 exp exp A°M + exp exp AW

uloc

Thus, for any b, a such that t; <a < b <1 and (b —a)"/* < expexp A°M /2 we can absorb

the first term on the right-hand side by the left-hand side to obtain
IV | oo (ot 20000,y < expexp AW,

uloc

Since the upper bound is independent of the location of [a,b] C [t1, 1], we obtain the claim.

5.5.0.1 Proof of Lemma 5.6

Here we prove Lemma 5.6, namely that

oo
T

< HFHLg_

3—uloc

VT (5.45)

L2 ulo 3—uloc
3

To this end we recall (5.34) that

Uy
+ ||y
—uloc r

U _ a-19,r — 2% A—2a,r
T T
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Since

% = A/ - 8rr7
,
we have that
% = —A'9,T +2(0,, — A)A20,T. (5.46)

Thus, since |[VOs| = [(0,03%, 030" )| (and similarly for [V9,%=|), we can use (5.28) and
(5.29) to observe that

‘vaﬁ
;

n ‘var&
T

SIDZ AT + D2 (0, — A)AT?0,T

r,X3
< |VL| + | D*A™'V'T| + |D*A2V'T),
where we used d33 = A— A’ in the last line. In particular, each of the terms on the right-hand
side involves at least one derivative in the horizontal variables. Thus, in order to estimate

the left-hand side of (5.45) it suffices to find suitable bounds on the last two terms, which

we achieve in Lemmas 5.8-5.9 below. Their claims give us (5.45), as required.

Lemma 5.8. Let f = A7'V'T. Then

||D2fHL2

3—uloc

< HF||L2

3—uloc

+ VL

3—uloc

Proof. Let I(z) denote the kernel matrix of D?(—A)~'. We have that

for j = 0,1,

and
D2f(z) = pov. / I(z - y)V'T(y)dy

=pv. | VT(y)dlys)I(z —y)dy + p-v'/ T'(y)(1 = d(ys))V'I(z — y)dy

R3 R3
=: fi(@) + fa(x).
The Calderén-Zygmund inequality gives that

/1l

3—uloc

< [IPllrz

3—uloc

+ VT

3—uloc ’
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dxq dxo

Moreover, noting that fRQ ( = Ca~?2, we can use Young’s inequality for convolutions

to obtain
L ys)lle2 (1= dly
||f2<'7x3)||L2 S/ H ( 3)HL ( - ( 3))dy3
R |23 — Y3
(- 1—¢
-y Iyl (1= ),
j>1 v {lzs—ysl€(Gi+1) |5 — ys]
<>t 1T, )l 2dlys
§>1 {lzz—ys|€(4.j+1)
S ||F||L§7uloc
integration in x3 over supp ¢ finishes the proof. n

For the double Laplacian term one needs to work harder:

Lemma 5.9. Let f = D*A72V'T. Then

(>

3—uloc

< [Tz

3—uloc

+IVElrs

uloc

Proof. We have that

f(z) =p.v. /RS pv. | Os(2)[(z —y)l(y — z)dzdy

R3

Recalling that ¢ = Z\j\glo ¢;, and ¢ = Z\J‘\QO ¢; we use the partition of unity,

1=¢(z) + (1— d(23)(ys) + Y 6i(ys)en(2s)

|7|>10
|k|>20

= (z3) + (1 — 6(25))$(ys)

+Z¢j(y3) Z Oi(z3) + Z On(z3) + Z On(z3) + Z Pr(z3) |

|7]>10 |k|>20 |k|>20 |k|>20 |k[>20
|k—j]<10 |k—3]>10 |k—3]>10 |k—j]>10
k<j/2 J/2<k<2j k>2j
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to decompose f accordingly,

f(z) =p.v. / p.v. V'I’(z)qi(zg)l(x —y)l(y — 2)dydz

— y)d(ys)p.v. 5 VT (2)(1 — ¢(23)) I (y — 2)dz dy

+pVR3/R3 (R3 )
+p.v./Rg Y 6 ygpv/ VI S )y — 2)dedy
+pv/]Rg

[ -

|7]>10 |k|>20

m>10 |k|>20
|k—j]>10
k<j/2
+ p.v. Z ®;(ys)p.v. / V'T(z) Z Or(23)(y — 2)dz dy
I>10 |k[>20
|k—j[>10
J/2<k<2j
+p.v./ Z ®;(ys)p.v. / V'T(z) Z Or(23)1(y — 2)dz dy
R 51>10 |k[>20
|k—j]>10
k>2j

= fulx) + fa(@) + fs(z) + falz) + f5(2) + fo(2).
Clearly f1 involves localization of V'T" in z3, and so we can use the Calderén-Zygmund

inequality twice to obtain

[ fillze S VT 2z

3—uloc

As for f, we integrate by parts in the z-integral (note that this does not conflict with the
principal value, as the singularity has been cut off, and the far field has sufficient decay) and
apply the Calderén-Zygmund estimate in x to obtain

T(2)|(1 — o(z
TG0 = o),

R3 ly — =[*

L)L = 6())

R3 ly — =[*

S osup
2 Y3€Esupp ¢

/ IT(-, 23) [ 22 ( 1—¢(23))dz3

\?/3 - 23’2

I follze < HQE(ZJS)

L2
'

S osup
y3Esupp ¢

< sp 34 / I 25) 12, d2s S T2
|zz3—y3|€(4,j+1)

~ 3—uloc
Y3ESUPP ¢ j>1

where we used Young’s inequality in the second line (as in the lemma above).
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As for f3, we integrate by parts in z and then in y to obtain

?;(y
|fs(z)] < E J V. ['(2) E Or(z3) 1 (y — 2)dz| dy.
5 |J|>10/ y|4 / lk\k\ﬁ(io o

We note that the integration by parts is justified as

fs=D(=A)" [ (1= ) &i(ys))D*(=A)~" (V'F(l - Z¢k(23)> »

ljl<10 kel

where I := {-20,...,20} U{j —10,...,j + 10} is a finite index set. Thus, the operation of
integration by parts above is equivalent to moving V' outside of the outer brackets, which
in turn holds since the sums do not depend on 2’ and V' commutes with other differential

symbols .

Thus, using Young’s inequality in z’

1fsCa)lis, Z/ﬂ’f 4s) : pv/ ) S o)y —2)dz|| s

=10 /R 173 T Y3 |k|>6

k—j|<2
|k—j|< L2,

<Z-7 - pv/3 ['(2) Z Or(23)(y — 2)dz

|7]>2 R |k|>20

k—j1<10
[k—j|< L%

S NG DY (=] STl

li|>10 |k|>20

|k—j| <10 12

for each z3 € supp ¢, where we applied the Cauchy-Schwarz inequality (in y3) in the second

line.

As for f, we note that

lys — 23| = Jys| —lzs| 2 (1 —1) = (k+1) 25 =2>( +2)/4 = (Jys| +1)/4 = |ys — 3] /4

rO | .
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Thus, we can integrate by parts in z to obtain

IT(2)|(1 = $(ys)) (1 — Pys — z3))
|f4<x>, = /R3 /Rgﬁ{ys z3]>|z3—ys|/4} ey

|z —ylPly — 2|*

Thus, applying Young’s inequality in 2’ and then in ¢’ we obtain

[ D)= B~ — )
R3N{|ys—23|>|z3—ys|/4} ly — z[*

| fal )l < /

R

L2
Y/

/ d[L’l dZL’Q d

: Ys

Je2 |z — ysf? + a3 + 23)*?
:C|$;:y3\71

] G2l = B0~ Blos =20,
RN{|ys—23|>|xs—ys3|/4}

‘533 - 3/3’ ‘yz - 23’2

(5.47)

Hence

IT(-, 23) || 2
1aCws)llze < / / G z)llee g Y gy,
|$3 - |3/2 Z |y5 Z5|E(] j-‘rl } |y3 - Z3|3/2

]>1
ST R T [P

As for f5 we have

1< |23 — sl < 4,

4 |ZE3 —Z3|
since

3 —ys] < ys| + |23 <7 +2 <25 —8 <4k — 8 < 4A(|ag] — |as]) < 4|wg — 23

and

|23 — 23] < [z| 4 |ws| Sk +2 <25 +2 <40 —2) < A(ys| — [2s]) < 4las — ysl-
In particular, the triangle inequality gives that

‘yg — 23’ S 5’1’3 — Z3|.
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Thus we can integrate by parts twice (in z and then in y, so that the derivative falls on

I(x —y)), and then use Young’s inequality twice (as in (5.47) above) and Tonelli’s Theorem

to obtain
I,z 2(1— d(ys — = 1—:Zr
1f5(+ 23) |22 S// ICC 2)lc2( qb(gf ) i 3))dz3dy3
R |137y3|/4<|:p3723|<4|:E37y3|} |23 — yal?[ys — 23]
I(- (1— 1— o(y; —
/ IT(, 23) [l 22 ( 2¢(Z3)) / o(ys Z3)dy3 dzs
|23 — 23] (lys—2s|<5los—ss} U3 — 23]

/IIT ,28) | r2(1 — (23))

|z3 — Z3|2

r w2 2
< Z/ Mlog(fﬂxg — z3])dz
lz3—z3|€(

j>1 ],]+1) |‘CE3 - Z3’2

lOg<5|l’3 — Zg|)dZ3

S i oGz, STl
j=1
Finally, for fs we observe that
1 |os — 2 4,
|Z/3 - Z3|
since
k—8  k+2 T3| + |2 T3 — 2
|y3—23|>|Z3|—|y3|>k’—j—2> 5 Z . Z|3|4|3|2|34 3|
and
3k +4

lys — 23] < lys| + [z < j+k+2 < <4k —2) < 4(|z3| = |w3]) < 4|as — 23]
In particular, the triangle inequality gives that

|23 — y3| < 5|zg — z3).

Thus, similarly to the case of f5 (although without integrating by parts in y), we apply
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Young’s inequality twice and Tonelli’s Theorem to obtain

1 f6(- 23) |2 <// I°C 23 HL2(1_¢(y3>>(1_¢(z3))d23dy3

’933 y3||?/3 - 23’2

/||F , 23) || 2 ( 1—¢(23))/ Md o dzs
{3

|:L‘3 - Z3|2 |23 —x3|<|ys—z3|<4|z3—z3|} |$3 - y3|

/||r 28) |22 1—¢(23>>/ L
{

|9€3 - Z3|2 1<|z3—y3|<5|z3—23|} |5E3 - y3|

log(5|xs — z3])dzs

/HF 23)ll=(1 — B(zs))

|23 — 232

< Z/ IT(+, 23)|| 2 log (5|3 — 23|>dz3

|1U3 - Z3|2

j>1 Y lzs—w3l€(i+1)

<> 1og(5)i 2T 12

2 oo < TN 23
j>1

3—uloc

for x3 € supp ¢. Integration of the squares of the above estimates for f3, f4, f5, fs gives the

claim. O

5.6 Lower bounds on the self-similar length scale

An application of the quantitative estimate in Theorem 5.1 above is an estimate on the
length scale up to which an axisymmetric solution to the NSE (1.2) can be approximated by

a self-similar profile as in (5.2).

In order to make this precise, we will say that a vector field b € L>(R3;R?) is nearly-
spherical if there exists 6 € (0,1/2) such that for every R > 0, there exists zo € R?® with
|zo| = R such that

and |b(x) — b(z)] < (U

o) > -

= T for all x € B(l’o,é‘l’o‘) (548)
Clearly any spherical profile b(x) = a(z/|x|) is nearly-spherical for every a € C(9B(0,1)) (in
which case the choice of ¢ for (5.48) to hold can be made by a simple continuity argument).
Let ¢ € C2°(R?;[0,1]) be such that [¢ =1, and let ¢;(z) = [73¢(x/l) denote a mollifier of

a given length scale [ > 0. We also set @ZZ =y Y.
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We note that, letting R := 21/d, we can find zo € R?® with |zg| = 21/§ and satisfying
(5.48). In particular

~ b<->) / ~ b(y) ‘ 1b(z0)| — [[bllse/4 _ 61bllse
* — | (To)| = xo —y)—=dy| = > ,
’(“’l 1) @) B@OQDWO DY 2 T ok = 16
which shows that
~h() A
7 > A4
¢l*\-|Hm— 161 (49

for every length scale [ > 0. This simple fact lets us deduce from Theorem 5.1 that, if an
axisymmetric solution approximates a self-similar profile b(¢, x)/|z| up to length scale [(t),
where b is nearly-spherical uniformly on [0,¢], then [(#) cannot be smaller than a particular

quantitative threshold.

Corollary 5.10. If u is a strong azisymmetric solution u of (1.2) on [0,T],

Hu(t) — Py * M‘

]

<ot (5.50)

L3

fort € [0,T], and o < ¢d, where ¢ > 0 is a sufficiently small constant and b(T) is nearly-

spherical with constant &, then

U(T) 2 6T ||b(T - ||

(1) 2 6THHT) | exp (= exp (190 01y ) -
Proof. We note that, at time 7', we can use (5.49) to obtain that

[ulloo 2 M1 %l

3 e I R CR o
16| _ b(-)
2 —g ~ O _wl*ﬁmw

J 0]
> (= — Moo
= (16 CU) l

Thus [|[u(T)]|e > 0||6(T")||0/32l if o € (0,5/32C). Since also

b(t, ")
-

b(t,-)

] < CYb(t; ) oo,

+

3,00

Jl(t) * u(t) — Yy *

)5 < )

L300
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for all t € [0,T], Theorem 5.1 implies that

O[6(T) [l

~1/2 o
32U(T) < fu@lle T / €xp exp (l‘b"Loo([o,T]XR:s)) )

from which the claim follows.
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APPENDIX A

Quantitative parabolic theory

A.1 Carleman inequalities for the heat equation

We quote from [60, Lemma 4.1] the general Carleman inequality for the backward heat
operator L = 0; + A from which Carleman inequalities for specific domains and weight
functions can be derived. Note that it is conventional to work with the backward heat

operator even though we intend to apply these estimates to the forward heat equation.

Lemma A.1. Let [t1,ts] be a time interval andu : C°([ty, to] xR — R™) solve the backwards

heat equation
Lu = f.
Fiz a smooth weight function g : [t1,ts] X R? — R and define
F =0,9—Ag—|Vg|*.

Then we have

to
/ / (%(LF)]u\Z +2D%*g(Vu, Vu)) eddxdt
t1 R4

< —/ / | Lu| egdxdt—i-/ \Vu|* + - F|u] egdx‘ :
2 t1 R4 Rd 2 t=t1

Our first application of this lemma is to a Carleman estimate resembling the one used

(A.1)

to prove backward uniqueness for the heat operator in [22] and the quantitative analog

appearing in [60]. Unfortunately that estimate relies on the differential inequality (A.2)
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holding in an annular region (or, in the qualitative case, the complement of a ball), which
cannot possibly be contained in the cylindrical regions of regularity provided by Proposition

2.19. Thus we prove a variant that is suited to this geometry.

In this section only, since we give the result in the general setting R4+ (where the last

dy coordinates correspond to the “axis”), we extend the definition of r and define |z| to be

e f2 2 ]2 2
ri=ajri 4 tan, |2 .—\/xdl+1+ T3y

The regions S(r_, 74 ), etc. are defined in the same way as before but in terms of the gener-

alized r and |z| coordinates, where naturally |z| replaces |z3].

Proposition A.2 generalizes a quantitative Carleman inequality from [60] which corre-
sponds to the case dy = 3, do = 0. In the case at hand, we will be using the case d; = 2,

d2:1.

Proposition A.2 (Backward uniqueness Carleman estimate). Let dy > 1, do > 0, T > 0,

0 <r_ <ry, and C denote the spacetime region
C={(t,x) ERxRUT2 1 c[0,T],r_ <r<ry, |z <71y}

Let u : C — R be a smooth function obeying the differential inequality

1 1
Lu| < — —_— A2
Ll < ol + gl Vo (A2)
on C. Assume the inequality
r2 > 4C,T.
Then one has
T/4 r_ry 27“3»
/ / (T Hul* + |Vu|*)dzdt < Coe #0T (X + e%TY)
0 Sor_,F; 50

where

X = / / PR ICT (1. 2P + |Vu(t, 2)|?)dedt
C
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and

% :/ (0, 2)[2dz.
S(r—,rysmy)

Proof. We may assume r, > 20r_. The pigeonhole principle implies the existence of a

Ty € [T'/2,T] such that
/ €2|$‘2/COT(T_1|U(TO,$)|2 + |VU(T0, m)|2)d$ 5 T—lX. (A3)
S(r—,ry5ry)

With the weight

r(To — 1) 1 2
20,2 COTM ’

g(:lj',t) =

we apply the general Carleman inequality to vu, where ¢ is a smooth spatial cutoff supported
in S(r_,ry;r,) that equals 1 in S(2r_,r, /2;r,/2) and obeys |Vityh(z)| < r~7 for j = 0,1, 2.
Since the function r is convex, we have

2
D%*qg > —1Id
9=,

as quadratic forms. With F' = 9,9 — Ag — |Vg|?, we compute

Fe_ Ty " 7’+(T0—t) d1—1 _ 2(d1+d2) _T_2~_(T0—t)2 _ 4 ’ ‘2_ 27"+(T0—t>
20,172 20,72 1 CoT AC2T C2T12 273

<0.

It follows that

LF — Ti(Tg—t) 2’/“_;,_ T_T’+(T0—t) (dl—l)(B—dl)
2027+ C2T3 20, T2 r3

8<d1 + dQ) 2T+(To — t) dl -1

oo G ro

By using the bounds 2(CoT)Y? < r_ <r <r,, one finds that

T+(T0 - t) (dl - 1)(3 - dl) + 8(d1 + dg) 2T+(T0 — t) d1 -1 < 3(d1 + dg)T+
2C,T? r3 CET? CET3 ro —  C3T3
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Therefore, letting Cy > 3(dy + da),

T 4

LF > .
= 273~ CoT?

Putting this information into the general inequality (A.1), we have

T 2 4 2
\Y Idxdt
/ /S(w,;; (OT2| o u\)e .

To
<1 / / |L () e dndt + / IV () (T, 2) 2650
2 0 Rd1+d2

Rdl +do

1
+ —/ |F(0, x)||¢u(0,x)|269(0’$)dx.
2 RA1+d2

In the region S(2r_, 5F; ), ¢ is identically 1 so thanks to the pointwise bound on Lu, this

part of the integral in the first term on the right-hand side can be absorbed into the left-hand

side. Moreover, throughout all of C, using the bounds on V7 and r_,
[L(u)|* = [ Lu + 2V - Vu+ (Ag)ul® < (CoT) 7 |uf* + (CoT) ™[ Vul.
Similarly,
V(u)]* = [¥Vu+ Viul* < [Vul* + (CoT) " |ul”.

By limiting the time interval for the integral on the left-hand side to [0,7/4] and the r
interval to [10r_,r /2], we find that on this region of integration

or_ T+

4C,T

g(z,t) >

Therefore

54%?/”4/ ( 2+ |V |2>d dt
e 1Co U —|Vu T
0 S(1or_, 55 CoT? CoT

To 1
< S|ul® + —|Vu|2> eddxdt
\/0 \/5(1“_,27”_;r"L US(—+ T 2 )US(T‘ Ty ((C ) C(OT‘
R (T |u Ty, 2) ) o)
S(r—,rysry)

T / |F<o,x>||u<o,x>|2eg<0@>da:.
S(r—,r4;r+)
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Consider the first term on the right-hand side. Within the region of integration, we have

2lz|>  br_ Toh—t 1 or_ -
g(%’,t)— |ZE‘ _ TT-"-:T-"-( 0 2)’1“— |.I"2— T’T+__T+7’ .
CoT  4C,T 2C,T CoT 4C,T 4C,T
Indeed, in S(r_,2r_) U S(5,74), this is maximized at r = 2r_, |z| = 0 where the given

upper bound holds. In {|z| € [r;/2,r]}, the quantity is clearly largest when |z| = r /2, so

we have the upper bound

re 1 <r2—|—ﬁ> _brory
200T OQT 4 4COT
2 Ty
which is largest when r = r /4, yielding an upper bound of — 1§CZT < —iGT

57‘_7‘+
In conclusion, after dividing both sides of the inequality by e %7 | the first term on the
M_ T4T_—
right-hand side has a weight bounded by e ©%T 46T g0 the whole term can be absorbed into
o Jal?
e 1T X /T. Similarly, e90?) = ¢@T g0 by the definition of Tj, the second term on the right

has the same upper bound. Thus we have

[ (ol + oIVl
u|” + —=|Vu )dxdt
o Jsaor w2 \CoT? CoT
T+

< ¢ iT (TIX +/ |F(0,x)|\u(0,:c)|269(0’“)dx) :
S(r—,ryiry)

To conclude, we easily have

2

.
F < =
F0,2) < 57

and

37"1
9(0) < 20T

when z is restricted to S(r_,r,;7.). Therefore
27’1
|F(0,2)]e9®) < e@or !
which completes the proof. O]

The next Carleman inequality we quote directly from [60].
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Proposition A.3 (Unique continuation Carleman inequality). Define the cylindrical space-

time region
C={(t,r) eERxR*:t€[0,7T], |z| < p}.
Let u : C — R? be a smooth function obeying (A.2) on C. Assume
p* > 4000T.
Then for any
T
O0<t; <tg < ——

~ 1000’

one has

2to 5
/ / (T Hul® + |Vu’2)€_|r|2/4tdxdt < ¢~ 00 X + tg/Q(eto/tl)O(”Q/tO)Y

to |I‘§g

where

T
X :/ / (T Hul?® + |Vul?)dzdt
0 Jz|<p

and

Yy = / (0, )| 261240 gy
lz|<p

A.2 Harnack-type inequalities
Here we consider the parabolic equation
MV =0,V -—AV +b-VV =0 (A.4)
in a space-time cylinder
Qr(wo, 1) == B(xo, R) x (to — R, ty).
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We assume that at each point of Qg

either divb=0 or V =0. (A.5)
We also assume that
N(R) =2+ ;}i%(R,)_aHbHLfLZ(QR/) < 0 (A.6)

where « = 2 + 2 —1€[0,1). In such setting [38, Corollary 3.6] observed that V must be
Holder continuous in the interior of (Jr, and in the proposition below we state a version of

their result in which we quantify the dependence of the Holder exponent in terms of .

Proposition A.4. IfV is a Lipschitz solution of (A.4) then

r\7
osc V(0) < <—) osc V
B(r) ©) R7 Q®)

for all ¥ < R, where v = exp(—N°9W).

We note that the swirl © satisfies (A.4) with b := u+2e, /7 (recall (5.36) above). Moreover
div b = 0 everywhere except for the axis, since div u = 0, div(e,/r) = 0 (recall (5.26)) there.
Moreover, V' = 0 on the axis (recall (5.37)), and so the assumption (A.5) holds. Thus
Proposition A.4 shows that © is Holder continuous in a neighbourhood of the axis. We
explore this in more detail in the proof of Theorem 5.1, where we quantify N in terms of

the weak-L? bound A (see Step 1 in subsection 5.4).

Here we prove Proposition A.4. Namely, we consider parabolic cylinders
Q' (to, 20) = [to — OR* 1] x B(wo, AR), Q"= Q3"(0,0), Qr=Qy

and we consider Lipschitz solutions V' of MV =0 on Qi{e, namely we suppose that

//(atv¢+vv-v¢+b-vv¢):o (A7)
R

for all ¢ € C=°(Q%"), where the (distributional) supports of divb and V are disjoint. More-

over we assume that (A.6) holds, namely

N(R) =92 + sup (R,)_aHb“LfLZ(QR/) <00
R'<2R
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where o == ¥ + 2—1€[0,1). We also say that V is a subsolution (or supersolution) of
MV =0,ie. MV <0 (or MV >0), if (A.7) holds with “=" replaced by “<” (or “>") for

all nonnegative test functions.

We will show that
osc V(0) < <—>’Y osc V (A.8)

for all r < R, where v = exp(—N°W).

To this end we first prove the Harnack inequality for Lipschitz subsolutions of MV = 0.

Lemma A.5 (based on Lemma 3.1 in [38]). Let V' be a Lipschitz solution of MV < 0 in
QY where A € (1,2] and 6 € (0,1]. Then

su;; V. < (N/0)C <][ Vf)
1,0/2 QNG

QR R

VI

Proof. We first note that for any r, a such that

3+2€ 35
r  a 272

we have the interpolation inequality
3,2 3
HCUHL;?LQ(Q;:G) S)\ﬂ RrFa™2 ||CU||V(Q)}¥9) (AQ)

by [30, (3.4) in Chapter II], where V is the energy space L°L2 N L?H.

Since V' is a subsolution, we have, for a non-negative test function 7,

J

We let n = ¢/ (V)€ where € is a cutoff function vanishing on a neighborhood of the boundary

@V +VV -V +b-VVn) <0,

A,
R

of Q}\%’e, and ¢ is a convex function vanishing on R_. Taking U := ¢(V') then gives

/ (atU§+VU-vg+ ‘”, (V)2|VU]2§+6«VU£) <0.
QR n{v>0} (V)
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We now take
p(r) =17 (p>1) and £ = XpanUC,

where ¢ is a smooth cutoff function in @’ and # € (—0R2,0),

/ (CUY(Ddx + / (25 VUL + UV -9(C) + 5 V(U2 ~ ()02 <0,
Bxr QXn{t<i} (A10)

Using integration by parts and recalling the assumption div b > 0, we can apply Holder’s

inequality to obtain

/H ) b.V(U2)§2Z—/H b V()P
QR N{t<t} Qp N—{t<t}

1.1 _1
> — bl g3 o) 1V 1v<°||Lg;(Q>||<<“|U|>2 g joede

N ||CU|| ;

= = [1bll g g ) 1UCT L LE (@)

where s > 2 and r and a are defined by

1_1_1+1<2 1)_1 1+1+1<2 1)_1
25 q T s/ 77 25 4 a s/

Applying Young’s inequality to separate the last term, and utilizing the interpolation in-

equality (A.9) (which is valid since

3 2 3 3 2\\ '
;+5_§+1—2<1+2/<5+Z)> € (3/2,11/6),

as needed) we obtain, after plugging into the local energy inequality (A.10),

sup /B (CUY2dz + / (2 = p D VURC + UVU - V(C?) — dy(CA)U?

te[—6R2,0] Qy°n{t<}

1
2 1-s s|12 2
=0 (BBl g 00, IUC*IVC 2, or) = T I gy < 0.

Absorbing VU from the term on the third term on the left-hand side by the second term we

obtain

I gy 5 [, (1964 0T+ BN 5 o P19 U

R
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We now set
1
Am =1+27"(A—1) and O = 59(1 +47™M),
and we substitute ¢ with ¢, such that

4nC VG| _ 2nC
R -1 = R

Gn=11n QFy Amtnfmit e =0 outside Q)I‘%m’g’", 10¢Cm| <

where C' may depend on A. Then the energy estimate and (A.9), taken with r = [ = 10/3,
yield
Gl sy < 16U ey < CRTO7H 27 4+ N2 U5 quoy

Recalling the definition of U and replacing p with p,, := (5/3)™, Hélder’s inequality implies

9 ﬁ Tplm

Dm+1 10/3

][ AmA41:0m+1 Ut S ¢ f Am,0m (gmU)

Qg QR
_1
2pm
< <09;l1/\/'234m(5+1) ][ uipm> ]
Q;‘?m79m

[terating, we have

1

1
2pm m—1 ﬁ 2
2pm
][ ul | | ( 4R N ) ][ u?
Am,0n A0
Q™™ k=0 QF

and we conclude by taking m — oo. O]

In the next three lemmas we focus on nonnegative solutions to MV < 0 and we find
lower bounds on the mass distribution of such solutions. We first show that if V' > k in
Qr, except for a small (quantified) “portion of Qg”, then in fact V' > k/2 everywhere in a

smaller cylinder.

Lemma A.6 (based on part 2 of Corollary 3.1 in [38]). If V is a non-negative solution of
MV >0 in Q),‘%’e and

{V <k} n @y’ < (N/0)°C1Q%°),
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then

V> m Q}%’GD.

NN

Proof. We apply Lemma A.5 to kK — V to find

=

sup (k= V), < (V/6)° (72 G v>i> <

1,6/2
1

which implies the result. O

We now show that, if the cylinder Q}%’e is flat enough, then a lower bound on the bottom

lid of Q}%’e (i.e. at t = —OR?) implies a similar lower bound at every ¢.

Lemma A.7 (based on Lemma 3.2 in [38]). Suppose V is non-negative with MV >0 in a
netghbuorhood of Q}%’eo and

{V(=6,R*) > k} N Bg| > &|Bx]
for some 8y > 0 and 0y < C71OSN L. Then
_ 1 1
H{V(t) > §5Ok} N Bg| > §5O|BR\
for all t € [—6,R2,0].
Proof. By the calculations in [38], with ¢ a smooth cutoff function supported in Bg,
[ w@-02¢ s [ el -b-PE < [ (V-0R) - KPEG (A
Br Qp° Br
+ /Qwo Xe<ty(V = B)2(O(| V() +b-V(¢?) + (divD)¢?). (A.12)
R
We choose ¢ such that ( =1 in By_s)p and |V(] < %% where o0 < 1 is to be specified. Note
that due to (A.5),

/Q“’O vt RS K /Ql,oo X<y (div b)¢*?

R R

- /Q o Xpah V(@)

R
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Then the right-hand side of (A.11) is bounded by

4
2 —2
k ((1 — 00)|Br| + O(6ho | Bg|) + ﬁ%HbHLng(QR)Hl”L/tz/Lg’(Qgeo))~

From here one can proceed with the argument exactly as in [38] to arrive at

-2
'{V(Z) < %6()1{} N Br| < (1 — %50) (1 =00 +0(c+0 20 + 0*163“//\[)).

Setting o = C~/°62 and 6, as above proves the claimed bound. O

We now show that for any given “portion of Q}ég” (in the sense of a set with the measure
arbitrarily close to |QY|) V is greater or equal a constant multiple of some lower bound, if,
for each t, the lower bound occurs at least on some “portion of Br”. Although this enables

us to obtain a lower bound on almost the entire cylinder, we lose an exponential in the

process.

Lemma A.8 (based on Lemma 3.3 in [38]). Let V > 0 be a solution of MV >0 in Q'
satisfying

H{V(t) > ko} N Bgr| > 61| Bg| for all t € [-0R?,0]
for some kg > 0, §; > 0. Then for any u >0 and s > C(N +071)/(d1)?,
{V <27k} NQF'| < plQ5'|.
Proof. With k,, = 27k, we define
Em(t) ={2 € Bt k1 S V(2,t) <kn}; En={(t,x) € Q" x € En(t)}.

Integrating the inequality MV > 0 against the test function n = (V — k,,)_£&(x)? where £ is

a smooth cutoff vanishing in a neighborhood of 0B, and satisfying £ = 1 in Bg,

Lo wvpes [ v -k Pes [ (V = k)€
Qr M{V<km} QR Bar{V<km} t——0R2
0
+ / / (V = )2 [VE + 2(V — k)26b - Ve
—0R? J B\gpn{V<km}

S kLR (14 0N) (A.13)
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by Hélder’s inequality and the trivial bound 0 < (V — k,,)- < k,,. From De Giorgi’s
inequality [30, (5.6) in Chapter I1],

R
(= b VO < b} VBl S 5 [ [9V(0)
1 JEn(t)

for all t € [-0R?,0]. Integrating in time, squaring, and applying Cauchy-Schwarz gives

2 2
<

(V <kni}NQY

2
km+1

/ IVV 2dzdt|E,,|.
Sm
Combined with (A.13), this gives

2
’{V <k} N QY SOTERYTE (1 4+ ON)|E .

We conclude

2 5T 2
< Z ‘{V < k1 } N QR

=0

(V <k}nQy

S

s—1

SOPRM 14 0N) D |E|
m=0
S 207+ N)|QE
]

We can now combine Lemmas A.6—A.8 to obtain a pointwise lower bound for V in the

interior of a cylinder, with an exponential dependence on N.

Lemma A.9 (based on part 1 of Corollary 3.2 in [38]). If V is a non-negative solution of
MV >0 in Q%' and

{V(-=©R?) >k} N Bg| > 6| Bg
for some k >0 and © < C~Y9N 1, then

V > exp(—0 2 (N/0)* Nk in QRO
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Proof. This is a straightforward application of Lemmas A.7, A.8, and A.6 in sequence, with
the latter two applied with R — %R to compensate for the shrinking domain in Lemma

A.6. [l

By considering V' — inf V' and supV — V the above lemma now allows us to estimate

oscillations of solutions to MV = 0 with no sign restrictions.

Lemma A.10 (based on Lemma 3.5 of [38]). If V solves MV =0 in Q%" then

osc V < (1 — exp(=N%)) osc V
QM Q@

where QN = Q}%@/z, Q¥ = Q%’l, and © = C2N L,

Proof. Consider the positive supersolutions V; = V —infge) V and V3 = supge) V —V. With
k = oscoe V, clearly we must have |{Vi(—=OR?) > k} N Byg| > |Bag|/2 for either i = 1 or
1 = 2. Fix this i, so V; obeys the hypotheses of Lemma A.9. Let us assume for concreteness

that ¢+ = 1; the other case is analogous. Then by the lemma,

inf V + exp(—N5OC) oscV <V <supV
Q@ Q® Q@

for all (¢,z) € Q, which immediately implies the result. O

Finally, iterating Lemma A.10 we obtain the required Hélder continuity (A.8), i.e. we

can prove Proposition A.4.
Proof of Proposition A.4. Iterating Lemma A.10, we have

osc V< (1 —exp(—N"))* osc V.

2,1 2,1
Q(@/Q)k/QR/2 QR/2

We conclude upon taking k& = |log ?(log %)flj. a
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