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Abstract

The aim of this paper is to import basic concepts from informa-
tion theory into the epistemological debate about probabilistic
measures of coherence. Rather than putting forward and de-
fending a new measure, this paper will sketch an account of
‘external’ coherence, which will be defined as a relation be-
tween a target variable of interest, sources containing (more
or less) information about the target, and a rule or theoreti-
cal hypothesis that postulates the relevant connections between
source and target. Relations with and potential insights for
standard notions of coherence in formal epistemology are ex-
plored. More generaly, the paper explores the potential bene-
fits of applying information theory to the epistemological de-
bate about coherence.

Keywords: Coherence; Information Theory; Bayesian episte-
mology; Neurophilosophy; Reasoning; Higher-order cognition

Introduction

Coherence is an important feature of human cognition. Co-
herent narratives are not only easier to follow, but they also
appear to be more convincing than less coherent narratives.
Epistemology investigates questions about coherence in rela-
tion to truth and epistemic justification. Thus, a central ques-
tion that motivates the epistemological investigation of coher-
ence concerns whether a strongly coherent belief system or a
coherent set of testimonies is more likely to be true than a
less coherent one (BonJour, 1985). However, answering this
question first requires answer to some more basic questions:
what does it even mean to say that a set of statements is “co-
herent”? How can we measure coherence? These questions
are investigated by formal epistemology!. Over the last few
decades the epistemological literature has generated a large
amount of candidate measures of coherence, and their compe-
tition goes on. However, the literature on probabilistic mea-
sures of coherence has so far neglected insights that can be
drawn from information theory and its applications in com-
putational neuroscience and psychology, where modeling the
coherent integration of information is a thriving field of re-
search. Quite possibly, these neighbouring fields harbour po-
tent formal tools and valuable empirical results that may help
us to get a more well-founded grip on the general questions
raised by epistemology: what do we mean by “coherence”?
Where does our preference for coherence come from, and

Ifor a discussion of philosophical foundations, related to the
Bayesian approach to epistemology see (Bovens & Hartmann,
2004), in particular chapter 2; for overviews of probabilistic mea-
sures of coherence, see (Roche, 2013).

(under what conditions) is it a reliable cognitive tool? This
paper is intended as a first step towards closing this gap, by
applying basic concepts from information theory to build an
extended account of coherence. Rather than putting forward
and defending a new measure, this paper will sketch an ac-
count of target-relative, or external coherence, which will be
defined as a relation between a target variable 7' of interest,
sources S containing (more or less) information about 7', and
a rule or theoretical hypothesis ® that postulates the relevant
connections between S and 7. We will consider the condi-
tional mutual information between S and T given O as a pre-
liminary proposal for quantifying external coherence. How-
ever, at this point nothing hinges on this proposal, as the goal
of this contribution is only to (i) sketch the basic elements of
this alternative notion of coherence, in relation to the standard
notion of internal coherence, and to (ii) demonstrate how the
debate can benefit from applying information theoretic con-
cepts in general. We will see that investigating external co-
herence can provide valuable insights for the broader study of
coherence, and possibly also connect to other fields of episte-
mology. In order to start this project, the next section provides
a quick overview of basic information theoretic concepts that
have been employed in psychology and computational neu-
roscience for modeling the integration of several information
sources into a coherent whole. This is followed by a brief re-
view of the epistemological project of measuring coherence
in terms of probability. These two sections together will fi-
nally motivate the formulation of a basic account of external
coherence. The paper ends with a brief conclusion.

Uses of Information Theory in Neuroscience

Psychologists and neuroscientists have studied the question
of how the brain integrates information into a coherent whole
in several respects. Early debates occurred between Gestalt
psychologists, who emphasised the importance of the holis-
tic perception of an environment, and more atomistic ap-
proaches to perception (Wagemans et al., 2012). Later on,
the development of information theory led to the formulation
of more precise principles, which are grounded in the pre-
dictability of the perceptive stimulus (Attneave, 1954; Ka-
reev, 2000; Van der Helm, 2000). More recently, in the con-
text of predictive coding and the free energy principle, vi-
sual representations are considered as hypotheses that encode
diverse impressions, from which expectations about future
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states are derived. Actions — like saccadic eye movements
— are interpreted as experiments to test the respective hypoth-
esis (Friston, Adams, Perrinet, & Breakspear, 2012). In other
words, diverse perceptual inputs are subsumed under a uni-
fying cognitive model, which generates a coherent represen-
tation of the world. Let us now see how the coherence of
perceptual experiences in the light of a cognitive model can
be described in terms of information theory.

The general idea is that a representation is coherent, if sev-
eral parts can be predicted from other parts. For example, if a
fraction of a picture is known, and we increase the portion that
is known, the rest can be reconstructed with increasing ease.
This means that coherent representations can be compressed,
and therefore they allow for an efficient reconstruction and
prediction of details from a few key characteristics, in which
information is concentrated. For example, in a visual field,
certain areas have a higher density of information, whereas
others follow the same regularity, and hence, the brain can
focus on the characteristic points that contain more informa-
tion, in order to derive a representation of the whole picture
(Attneave, 1954).

Furthermore, this kind of redundance also makes informa-
tion transmission robust against errors, which is an important
feature of natural language. Human languages are a mix of
predictability and surprise — and this is beneficial, because the
predictability (redundance) increases robustness (e.g. against
external noise that distorts the original message), while the
flexible, non-determined components allow for the expres-
sion of new ideas. The statistical structure of natural lan-
guage, which can be modeled with Markov chains that encode
different levels of conditional dependence was first demon-
strated by Claude Shannon, in his seminal work (Shannon,
1948).

In computational neuroscience, information theory is used
to model communication within neural networks. In particu-
lar, the concept of mutual information is often used as a foun-
dation for more complex hypotheses about the computational
goals of the brain (Kay & Phillips, 2011; Gutknecht, Wibral,
& Makkeh, 2021; Williams & Beer, 2010). The mutual in-
formation between two random variables X,Y is standardly
defined as

1(X:Y) = H(X) ~ H(X]Y), ()

which is equivalent to:

1(X:Y) = H(X) + H(Y) —H(X,Y), @)

where H (X) is the Shannon entropy of the random variable X,
H(X|Y) is the conditional entropy of X given Y, and H(X,Y)
is the joint entropy of X and Y.

It is important to mention that information theoretic mea-
sures, like Shannon entropy, have two components: (i) the
measure of information, which is defined pointwise (i.e. the
information of a single event), and (ii) the average infor-
mation contained in a whole probability distribution, which

is the expected value of pointwise information under the
given probability distribution. The pointwise information?
h(X = x;) of a single event X = x; (i.e. a specification of
all the variables contained in a random vector) is given by

1
pX=x;)’

and the entropy H(X) of the whole ensemble is the ex-
pected value, i.e. in the discrete case:

h(X =x;) = log 3)

L
p(X = X,') ’

The mutual information between X and Y measures how
informative the determination of one variable is with respect
to the possible values of the other variable. As can be seen
from equation 2, this relation is symmetric. In computa-
tional neuroscience, mutual information is used to measure
how much information a source (say, the firing patterns of an
input neuron or a receptor) provides to the receiver (a pro-
cessing neuron) about the value of a farget variable (the ob-
ject that provided the stimulus). This can also be applied to
the systemic level, where sources are external stimuli, and the
target is an adequate representation of the object that caused
the stimuli.

Turning to epistemology now, here we are concerned with
higher-level representations (beliefs and propositions), and in
particular, whether their coherence is associated with truth.
Since the framework of predictive coding exhibits parallels to
the scientific process (e.g. subsumption of sensory data under
a hypothesis, and action as experiments to test the hypothe-
sis), it is plausible that applying insights from one field to an-
other can generate mutual benefits. Thus, let us now briefly
review the project of developing probabilistic measures of co-
herence in epistemology.

H(X) =Y p(X=x)log 4)
i=1

Probabilistic Measures of Coherence

The coherence of a set of propositions (generally called infor-
mation set) is understood as the degree to which the propo-
sitions in this set ‘fit together’ or ‘hang together’. If there is
a tension among some propositions — in the extreme case: if
some of the propositions logically exclude each other — the
set is considered incoherent; if, on the other hand, the propo-
sitions ‘fit together’ — in some sense to be specified — the set
is considered to be coherent. The challenge is how to expain
what it means to “fit together”, how this can be measured,
and what the epistemic value of coherence is — in particular,
to what extent it is truth conducive.

Probabilistic measures of coherence abstract from the
question of what makes a set of propositions coherent, and
instead focus on measuring coherence as a function of prob-
abilities. If probabilities are also the basis for measures of

2] use ITALIC CAPITAL letters for random variables,
and italic small letters for value assignments (instantiations),
BOLD CAPITAL letters for vectors of random variables, and
bold small letters for their instantiations.
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explanatory power, confirmation, and other relations between
propositions (which make them coherent), then a probabilis-
tic measure of coherence also captures the central aspects of
coherence. The task for such a measure is then to explicate
the notion of ‘fitting together’ in probabilistic terms.

There are at least three general classes of probabilistic mea-
sures of coherence (allowing for intermediates and mixtures),
each of which has generated several candidates (Shogenji,
1999; Olsson, 2002; Fitelson, 2003; Douven & Meijs, 2007;
Roche, 2013): coherence as correlation, coherence as relative
overlap, and coherence as average mutual support or confir-
mation. For illustrative purposes, let us have a quick look
at two exemplary competitors: Shogenji’s and Olsson’s mea-
sures.

Coherence as correlation: the Shogenji measure

One of the earliest measures commonly discussed in the liter-
ature is Shogenji’s (1999) measure, which defines coherence
as correlation, or deviation from independence. Given a set
I', Cs(T) is given by:

Cs(T) = P(Asera) (5)

[Taer?P (A) .

The neutral point (neither coherent nor incoherent) is given
whenever I is independent, i.e. P(AgcrA) =TTaer P(A), and
thus Cs(T") = 1. If Cg(T") > 1, there is net positive depen-
dence among the elements of I' (hence, I' is coherent), and
if Cs(I") < 1, there is net negative dependence (I" is incoher-
ent)’.

If Cs is defined (i.e. P(A) > 0 for all A € T), then Cs is
minimal, whenever P(/\4crA) = 0, and maximal whenever
P(ApcrA) = minger P(A). Note that this maximum is al-
ways relative to the individual probabilities P(A) — in particu-
lar, P(ApcrA) = 1 entails P(A) = 1 for all A € T, and thereby
Cs() = 1.

Coherence as relative overlap: the Olsson Glass
measure

The first candidate of this class was independently proposed
by Olsson (Olsson, 2002) and Glass (Glass, 2002):

_ P(/\AEFA)
P(VperA)

The idea is that a set of propositions becomes more coher-
ent, if its conjunction covers an increasing area of its disjunc-
tion (or set theoretic union). That is, if at least one of the
propositions in I'" being true makes it very likely that all of I
is true, then I" is highly coherent®.

As for Cs, Cp is maximal (Cp = 1), whenever all propo-
sitions in I" are equivalent, and minimal (Cp = 0), whenever

Co(T) (6)

3Note that this measure is exactly proportional to a single point-
wise contribution in Watanabe’s ((1960, 1961)) measure of total cor-
relation, which is also a non-negative generalisation of mutual infor-
mation for more than two random vectors.

“note that Co(I') = P(AT|VT).

they cannot be true together (i.e. the probability of the con-
junction is zero). However, unlike Cg, the maximum for Cp is
always fixed to 1, hence it is not relative to the indivudal P(A)
in T; so, in particular, if P(AA) = 1, then also Cp(T") = 1.
Furthermore, Cp doesn’t have a neutral point, unlike Cs.

Internal vs external coherence

As mentioned previously, the goal of these competing mea-
sures is to capture the idea of propositions ‘fitting together’.
In any case, this fitting together is something beyond the
probability of the propositions just being frue together —
which is given by the probability of their conjunction (i.e.
their joint probability). It is easy to see that for both, Cg and
Co it is possible that a set of statements with a lower joint
probability can be more coherent than a set of statements with
a higher joint probability. Thus, we may call this kind of co-
herence — how well propositions fit together — the internal co-
herence of an information set. In the next section, this internal
coherence will be distinguished from the external coherence
(of an information set).

In the literature on probabilistic measures of coherence, in-
tuitive counterexamples are offered against most, if not all,
serious candidate measures (Fitelson, 2003; Bovens & Hart-
mann, 2004; Douven & Meijs, 2007). However, often enough
individual intuitions about examples diverge. An alternative
approach for singling out the best candidates is the formula-
tion of general normative principles, which an adequate mea-
sure has to satisfy. However, some principles that received
strong intuitive support turned out to be jointly inconsistent
(Schippers, 2014). So, in order to make progress on that front,
the literature must seek principled and independent reasons to
justify the precedence of one principle over another one. Em-
pirical investigations, like (Koscholke & Jekel, 2017; Harris
& Hahn, 2009) may also help to shed further light on our
intuitions regarding internal coherence. However, in order
to produce deeper insights, empirical research needs to be
tied to theoretical insights, e.g. from computational neuro-
science, which can help to explain and predict our intuitions
about coherence in different domains, in order to meaning-
fully compare them to the normative requirements produced
by the epistemological study of coherence and its relation to
truth.

In any case, there is an important problem, which arguably
applies to all probabilistic measures of internal coherence:
the problem is posed by propositions about which we are
extremely confident (i.e. their marginal and joint probabil-
ities are high), but at the same time they are considered to
be unrelated. In the extreme case, the information set con-
sists only of known facts (which we take to have probability
1), and thereby they automatically become probabilistically
independent of everything else. For the Olsson measure, if
the joint probability is 1, we always get maximal coherence,
regardless of the theoretical relations between the proposi-
tions involved. On the other hand, the Shogenji measure is
always neutral for maximal joint probability. For average
mutual support measures, which are based on measures of
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confirmation, this is just an instance of the problem of old
evidence® (Glymour, 1980). However, our problem extends
beyond propositions with maximal probability: if we con-
sider propositions in which we are highly confident, but they
are considered as unrelated, several coherence measures will
output a high degree of coherence. For example, the set of
propositions Q = { C;: There will be a presidential election
in the US in 2024; C,: In Munich, there will be at least one
day with a maximum temperature above 25 degrees Celsius
in the summer of 2023} turns out to be highly coherent un-
der the Olsson- and several average mutual support measures,
because we have extremely high confidence in both proposi-
tions (say, P(C1) = P(C2) = 0.99, then Cp(Q) =~ 0.98). But
obviously, these are completely unrelated. Shogenji’s mea-
sure does better, as it outputs a neutral value for independent
propositions. However, for known propositions (with proba-
bility 1), Cs will always output a neutral value, which is too
strict. After all, in scientific and legal practice, we often use
one set of known facts (together with a theory) to explain an-
other set of facts.

This problem is not necessarily lethal, but intuitions re-
garding its implications may again pull in different directions:
should certain propositions always be considered neutral or
always maximally coherent? Should extreme probabilities be
excluded from the analysis of coherence? Or should there be
some additional factor that informs measures of coherence,
beyond their actual probability? In this case, there has to
be a case-wise definition of the respective measure (e.g. for
propositions with probability 1, assign degree of coherence x
if some designated property holds, and assign y otherwise).
However, in order to do this in a non-arbitrary way, we will
need to discuss additional theoretical principles that go be-
yond internal coherence. Achieving this is a potential contri-
bution of the notion of external coherence.

Thus, the plan for the remainder of this paper is to explain
in more detail what is meant by external coherence, how it is
different from internal coherence, and how it can be a useful
concept for the epistemological study of coherence.

Towards an account of external coherence

Now it is time to explain what is meant by external coherence.
The general idea is that a set of information sources (e.g. tes-
timonial statements) is externally coherent to the extent that it
is jointly informative about a target variable of interest. This
idea is motivated by its analogy to the integration of percep-
tual inputs into a coherent representation, as discussed in the
beginning of the paper. In the context of high-level cognition,
organisational principles that connect individual thoughts into
a unified scenario seem to play a role analogous to binding
principles (hypotheses) in perception. This becomes particu-
larly apparent when assessing a set of known facts: are these

>The problem of old evidence (Glymour, 1980) consists in the
fact that, by Bayes’ theorem, P(E) = 1 entails that P(H|E) = P(H),
i.e. already known facts apparently cannot confirm a hypothesis,
even if the hypothesis is able to explain those facts.

facts connected? Do they provide any information about re-
lated questions, or do they appear to be completely unrelated?
It seems that these factors affect our judgement about how
well such known facts fit into a coherent sequence of thoughts
(argument or narrative) that is constructed in the service of
finding answers to a specific set of related questions.

Targets, sources, and theories

To make this general idea more precise, we need to formally
introduce the notion of a target system, which consists of
source variables and target variables. The source variables
are pieces of information that an agent obtains from the tar-
get system. Thus, a set of instantiated source variables is
an information set, in the epistemological sense. The target
variables represent the questions on which our investigation
focuses. It is important to note that the classification of a
variable as a source- or target variable is context-dependent:
e.g. a proposition can be a source variable in one context,
and a target variable in another context. However, the nature
of the concrete problem will make the assignment of source
and target (i.e. what we already know beforehand and what
we want to know in the end) obvious. The connection be-
tween source- and target variables is established by a theory,
which is explained right below. The formal notation will be
as follows:

1. The target variables are represented as a vector of random
variables T = (T1,...,T,,). They are the central questions
of interest.

2. The source variables are represented by another vector of

random variables S = (S, ..., Sy).

3. The theory, denoted as ®, connects the source- and tar-

get variables, and it can be taken as the basis for assign-
ing probabilities and postulating conditional dependencies.
Formally, ® is a set of constraints that any probability func-
tion must satisfy to be consistent with the theory (an exam-
ple, to be presented right below, will make this more intu-
itive). This set of constraints can be subdivided into several
subsets. For our purpose, two categories will be sufficient:
let ®; = (¥;,;), where

U; represents the core hypothesis, or -principles. These
are general statements, like scientific laws or rules that
apply to any system in the domain of the theory, and
they specify relations between variables within the sys-
tem. These relations can be deterministic in principle
(like laws in classical mechanics), but they can also be
probabilistic, if the most general description of the sys-
tem is only stastical (e.g. due to complex interactions).
In the simplest case, when we are dealing with propo-
sitional variables, ¥; specifies conditional probabilities
p(X|Y) between variables X, Y.

o; represents particular knowledge about variables in
the target system, like observations or assumed bound-
ary conditions. When dealing with propositional vari-
ables, o specifies unconditional probabilities.
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Figure 1: Causal DAG for the car example. The general
rules in ¥ determine the conditional independence structure
(which is represented in the graph), and together with par-
ticular knowledge contained in o, the graph can be equipped
with a probability distribution, to specify a Bayesian network.

With all three parameters at hand, the current proposal is
to identify external coherence C with the conditional mutual
information between S and T, given a specific theory, ®;. For-
mally,

C(S;T;0;) :=I(S;T|0;). @)

Now, let us look at an example — adapted from (Sprenger
& Hartmann, 2019, p. 194) — to develop an intuitive un-
derstanding of this definition. Suppose you want to know
whether the engine of your car might break down during your
trip (variable Z), and you know that there are just two crit-
ical components® that can cause the engine to fail: a dead
battery (X) or a blocked fuel pump (Y). Thus, in this situ-
ation, Z is our target variable, and X,Y are the source vari-
ables. Now, what is our background theory ®? As for the
general rules ¥, suppose you know that the engine will work
(Z = 7) if and only if both, the battery is not empty (X = —x)
and the pump works (Y = y). Furthermore, X and Y are in-
dependent (notation: X 1Y). So, in our example, these two
rules (z <> —x Ay and X TY) are the only relevant rules, i.e.
¥ ={z4> —x Ay, X LY}. The relevant causal structure can be
represented as a DAG (fig. 1). Furthermore, we can assume
that you also have some more specific information about the
components in the target system. That is, o. contains infor-
mation about the state of some of the variables in the system.
For example, suppose that you went to a car repair shop re-
cently, and so you know that battery and pump are in opti-
mal condition — however, since there is also a bit of noise
in the system (any kind of problem that might come up dur-
ing your trip and that you can’t exactly predict at the cur-
rent moment), your degrees of belief are p(—x) = 0.99 and
p(y) = 0.9 (i.e. a contains these two unconditional probabil-
ities). Together with O = {z <> ~x Ay, X LY}, this entails that
p(z) =0.9-0.99 =0.891.

The explicit reference to a background theory ®, where
general rules 8 and boundary conditions o are separated, can
help to overcome the difficulties with coherence relations

%in principle, of course, we could make this scenario arbitrarily
complex, but for the purpose of developing an intuitive understand-
ing this simple example should be sufficient.

among known facts. In a nutshell, the idea is to vary ., in
order to show how counterfactual initial conditions (such that
the known facts are assumed to be not yet instantiated) af-
fect the joint informativeness of the sources regarding the tar-
get system. The resulting mutual information under coun-
terfactual initial conditions then measures how informative
the sources can be in principle (under a fixed core hypothe-
sis ) with respect to the target. This is broadly in line with
counterfactual causal explanations in the philosophy of sci-
ence (Woodward & Hitchcock, 2003).

Finally, if there is more than one potential target variable,
there is an important difference between external coherence,
relative to a target variable, and the internal coherence among
the source variables (i.e. the information set). Consider an-
other standard example (Bovens & Hartmann, 2004, p. 29):
{a1: My pet Tweety is a bird; ap: My pet Tweety cannot fly}.
With adequate probabilistic assumptions (most birds can fly),
our standard measures of internal coherence, such as Cg, Cop,
and several confirmation-based measures will assign a rather
low value to {aj,a,} — after all, there is some tension in the
set. However, depending on what the target question is, the
external coherence of that set becomes orthogonal to its in-
ternal coherence. For example, if the goal is to know whether
Tweety is a penguin, a; and a, together become highly infor-
mative. On the other hand, if the question is whether I got
this pet from my parents, both pieces of information are ir-
relevant, given commonsense background knowledge (which
can of course change if we obtain more specific knowledge
about my own or my parents’ preferences for pets). If the in-
formation is informative (e.g. relative to the question whether
Tweety is a penguin), there are two ways in which it can be
informative: if we want to know whether the question can
confirm or rule out a specific answer to our question (Tweety
is/isn’t a penguin), we are looking at the pointwise contribu-
tion to mutual information. Otherwise, if we want to know
how informative any information from the source variables
A1,A; can be with respect to obtaining any answer to the tar-
get question (whether Tweety is a penguin), we are looking at
the expected information gain, relative to the full probability
distribution. This point brings us to the more general con-
tribution that information theory cann offer to the study of
coherence, which we will now outline in the short remainder
of this section.

The contribution of information theory to
understanding coherence

The Tweety-example pointed to an important novelty in us-
ing an information theoretic measure for external coherence:
it means that we can talk about the coherence of topics or
questions, rather than only particular statements. This is, be-
cause the measure is an expected value over a whole prob-
ability distribution, containing all point-probabilities for in-
stantiated propositions. This makes an information theoretic
approach broader than the standard probabilistic approach to
internal coherence: instead of asking how well a set of state-
ments fits together, we can ask how informative any answer
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to the qguestions encoded by the random variables will be,
on expectation. For example, in the information set Q from
above, we can map the positive statements c1, ¢ to binary
random variables C;,C, (their possible values represent the
positive and negative literals c;, —c;, for i = 1,2 respectively).
Then, we can ask what a positive or negative answer to the
question whether there will be a presidential election in 2024
(i.e. C; =cy or C; = —cy1) may tell us about the question
whether there will be at least one day with a temperature
above 25 degrees in Munich, in summer 2023 (variable C5).
The probability distribution then represents our expectation
to receive the respective answers (positive or negative). Since
the weather in Munich is independent from the US presiden-
tial relations, learning the value of one variable won’t tell us
anything about the other variable, and hence, their mutual in-
formation is zero.

Furthermore, information theory can help more generally
with the further development of probabilistic measures of co-
herence. For example, analysing mutual information can ex-
plain some cases that were previously considered as coun-
terexamples to the Shogenji measure. Consider the following
two scenarios (Douven & Meijs, 2007, p. 414). In scenario 1,
we are investigating a murder that occurred in a big city with
10,000,000 inhabitants. 1,059 inhabitants are Japanese, and
1,059 own a Samurai sword. Of those, 9 are both, Japanese
and owners of a Samurai sword. We want to find the murderer
among the 10,000,000. In scenario 2, we already know that
the murder occurred in a particular street, where 100 people
live. 10 of those are Japanese, 10 have a Samurai sword, and 9
are Japanese and own a Samurai sword. Now, we are asked to
assess the coherence of the following information set: { : the
suspect is Japanese; o : the suspect owns a Samurai sword}.

Douven & Meijs argue that intuitively, the information
set {j,s} is more coherent in scenario 2 than in scenario
1. This is also the verdict of several probabilistic measures
of coherence that were tested by Douven & Meijs (2007,
p. 414). However, for the Shogenji measure, in scenario
1 we obtain Cs(j,0) = 80.3, whereas in scenario 2 we ob-
tain Cs(j,0) = 9.0, which seems to be the wrong result. Now
note that for two variable-instantiations x, y Cs(x, y) is propor-
tional to their pointwise mutual information, and thus, we can
use our information theoretic framework to explain the above
result. Let us look back to equation 1, which defines the mu-
tual information for random variables X,Y as the difference
H(X)— H(X|Y). We can also do this for a single point, writ-
ing h(x) — h(x|y) = log p(x|y) —log p(x). The interpretation
of this formula is as follows. It tells us by how much learning
y before learning x reduces the surprise of learning x after-
wards. It is maximal, when P(x|y) = 1, i.e. x is entailed by
y. In this case, h(x|y) = 0, and thus, the difference is (x),
which means that the amount by which the surprise upon
learning x is reduced after learning y is exactly the amount
of surprise (information) that lies in the event x before learn-
ing anything. Hence, pointwise mutual information (and by
extension, the Shogenji measure) is actually a measure that

is relative to the (pointwise) information in the whole ensem-
ble. If h(x) is very high (because p(x) is very low), then a
slight reduction of the surprise of learning x after learning y
can be greater than a large reduction in the case where A(x)
is already comparatively low. This is precisely what happens
in Douven & Meijs’ example: in scenario 1, the marginal
probabilities of 0 and j are extremely low, whereas the corre-
sponding probabilities in scenario 2 are comparatively much
higher. But how could we fix this? It is possible to nor-
malise average mutual information (and variants of it), and
one can also normalise the pointwise measure, relative to the
maximum amount of information (surprise) contained in the
single and joint variables. Thus, a normalised version of the
logarithmised Shogenji measure (or, equivalently, normalised
pointwise mutual information) can be defined as

h(x) — h(x]y)
h(x,y)

where h(x) = log ﬁ (this also gives the ‘intuitively cor-
rect’ result in the preceding example). Whenever X and Y
are independent, it follows that NLCs(x,y) = 0 (new neu-
tral value, due to log(1) = 0). Furthermore, for p(x|y) =
1, NLCs(x,y) = 1, which is the maximum value, and for
p(x|y) = 0, NLCs(x,y) — —1. For sets containing falsehoods
or contradictions (p(x) = 0 or p(x,y) = 0), NLCs(x,y) can be
defined via the limit as —1.

NLCs(x,y) := ®)

Conclusion

This paper has developed a basic account of external coher-
ence, as a tripartite relation between a target system 7, a set of
sources S, and a theory ® that provides the expected relation
between target system and sources. The initial proposal for
quantifying this relation is in terms of the conditional mutual
information of S and T, given ®. An important advantage of
employing information theory is that we can broaden the fo-
cus of coherence considerations from statements to topics or
questions, which is given by the expected value over the set
of random variables. Furthermore, the explicit reference to a
theory ® allows us to better deal with the coherence of a set
of known facts (with probability 1), by varying the state of
affairs encoded in the auxiliary assumption of @, to allow for
counterfactual experiments.
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