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Abstract 

The residential Heating Ventilation and Air-Conditioning (HVAC) system 
use around 3/5 of the total energy consumption. Thermostats optimize the 
HVAC operation; however, householders have attitudes that lead into behav- 
ioral and usability problems toward the thermostat’s interface usage. So a 
serious game applied in the thermostat interface can balance entertainment 
and education. Therefore, thermostat interfaces must address strategies that 
reduce energy without losing thermal comfort. This paper proposed an in- 
teractive interface type and a predicted interface type based on an HVAC 
strategy and a Natural Ventilation strategy. These strategies measured the 
impact of adaptive thermal comfort, energy consumption, and costs. Hence, 
twelve energy models located at Concord, Riverside, Los Angeles, and San 
Diego in California were simulated using EnergyPlus through LadybugTools. 
The first interactive interface included Serious Game elements, so the house- 
holder interacted with the date, location, and setpoint. The second interface 
predicted the energy consumption and thermal comfort during winter and 
summer in Concord by a two-layer feed-forward Artificial Neural Network 
structure. The results show that the proposed structure decreases the en- 
ergy consumption by at least 62% without losing thermal comfort. 

Keywords: energy simulation, adaptive thermal comfort, ANN thermostats 
interfaces, adaptive thermostats interfaces, serious games, user type 
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1. Introduction 

In 2020, the US electricity consumption was about 3.6 trillion kW; the 
residential sector contributed 40% to the electricity consumption and 22% to 
the energy consumption [1]. The Heating Ventilation and Air-Conditioning 
(HVAC) system is the greatest energy consumer in this sector, with about 
40% to 60% [2, 3, 4, 5]. Existing technologies can reduce envelope losses, 
increase the efficiency of HVAC systems, or control the HVAC operation [6]. 
Thermostats control the HVAC systems, and more than 86% of the res- 
idential buildings have one, representing an opportunity area to optimize 
HVAC usage [2]. Householders set their thermostats based on their behav- 
ioral adaptation, garments, and activities [7, 8, 9] affecting the impact on 
energy use [2, 3, 4, 5, 10]. Connected thermostats can reduce energy con- 
sumption from 10% to 35% of the peak load and 5% of occupant energy 
efficiency due to behavioral change [11, 12]. In that sense, attractive gami- 
fied Human-Machine Interfaces can engage end-users to better interact with 
the thermostat [13, 14, 15]. Moreover, Ponce et al. [13] suggest using Serious 
Games (SGs) within the thermostat interfaces as they balance entertainment 
and education to teach, engage, and motivate householders reduce energy 
consumption. 

SGs focus their efforts on teaching end-users specific topics such as energy 
reduction to improve their skills, acquire knowledge, and get more experience. 
Thus, SGs consider experience, multimedia, and entertainment elements. 
Some of the SGs applied to the energy topic include end-users interacting 
with household appliances to see how their actions either by a single user or 
by all the family members, affect the energy consumption [13, 16, 17, 18]. 
Thus, changing user behavior through real-time feedback, historical feedback, 
financial information, social influences, gamification, and goal-setting strate- 
gies can decrease energy consumption by 18% [19]. However, to succeed in 
those reductions, it is relevant to focus on the end-users’ behavior and usabil- 
ity problems, for instance, when using a thermostat [13, 20, 21, 22, 23, 24, 25]. 
Hence, Ponce et al. [13, 26] classified the householders based on their person- 
ality traits [27], SG user [28] and energy end-user segment [29] when socially 
connected devices at households are deployed. 

Additionally, Ponce et al. [13] described six behavioral problems that 
avoid energy savings through thermostats: (1) Users operate the thermostat 
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differently than how the engineers intended or the manual establishes [21]. 
(2) Users do not understand the functions and feel complicated to use the 
thermostat. (3) Users do not know or care about the benefits of thermostats. 
(4) Users are not aware of the environmental impact. (5) Users’ interests 
are different from energy saving. (6) Users do not know how to use the 
HVAC system. Nevertheless, two additional behavioral problems must be 
added: (6) Users have a psychological, physiological, and behavioral adap- 
tation that affect their thermal comfort [7, 9], preventing the reduction in 
energy consumption. (7) Users face energy poverty problems [30, 31, 32, 33] 
and suppress their energy needs to financially meet other basic needs avoiding 
energy saving behaviors and leading in the misuse of thermostats. 

The psychological dimension derives from the perception and reaction to 
past experiences and expectations. The physiological adaptation relates the 
body reaction based on genetic adaption and acclimatization with the expo- 
sure to thermal factors. The behavioral adjustment considers the personal, 
technological and cultural responses that an individual perform to adapt in 
their environment. Hence, comfort is a desirable human condition and a 
comfortable environment where people require change [8]. 

The thermal comfort concept gained attention since the 1920s as it be- 
came possible to control indoor temperatures [34]; however, it was until the 
1970s that Fanger [35] proposed the Predicted Mean Vote/Predicted Per- 
centage of Dissatisfied (PMV/PPD) that considers six mandatory parame- 
ters [36]: metabolic rate, clothing insulation, air temperature, air speed, and 
humidity. In 1998, de Dear and Brager [7] proposed the adaptive method 
based on human behavior through three categories of thermal adaptation: 
behavior, clothing, and air temperature. In 2002, Nicol and Humphreys [9] 
included the outdoor temperature to calculate the range of thermal comfort 
temperatures at indoors. The occupants have a higher degree of freedom to 
adjust the clothing insulation and wider acceptance of indoor temperatures 
during swing seasons that fall outside the conventional adaptive comfort 
zone [37]. 

Adaptive behavior requires to consider the conditions to which an individ- 
ual is exposed. The behavior includes adaptive and non-adaptive actions [30]. 
The adaptive actions occur when the individual opens or closes windows, ad- 
justs thermostat setpoints, uses heaters or coolers, or adapts through a set 
of actions as a response to warm or cool environments [30, 38]. The non- 
adaptive actions rely on reporting discomfort, occupant presence or data 
gathering from sensors [30]. Therefore, Humphreys et al. [39] outlined how 
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householders use strategies to achieve thermal comfort such as selecting areas 
shaded by trees or sheltered from wind, occupying rooms based on the season, 
selecting the type of HVAC system, thermostat, ceiling fans or other type 
of control to increase the air movement inside a room to cool the occupants 
and become comfortable [40]. Other strategies include selecting the type of 
garments and activities based on the climate, season, indoor temperature, 
or fashion style. Thus, they pointed out that householders have attitudes 
toward the indoor operative temperature because there are users that prefer 
to save or spend money by accepting wider ranges of indoor temperature. 

By considering the outdoor temperature, it is unnecessary to think about 
other factors such as humidity or air movement because thermal comfort can 
be achieved by clothing insulation or even by metabolic rates [9]. Besides, 
adaptive thermal comfort provides opportunities to reduce costs and become 
energy efficient, and an example is by changing clothes with few to little 
cost or adjusting setpoints [20, 8]. During cooling periods, increasing the 
setpoint by 1.8 °F (1 °C) can save 6% of electricity [14]. In [41], they used 
the adaptive comfort model in Europe, and depending on the location, they 
found an energy saving of 35% compared with a static setpoint. 

It is complex to measure householders’ satisfaction because their com- 
fort is related to perception and other context-specific factors, such as age, 
gender, income, cultural aspects, specific needs or any possible disability or 
long-term illness beyond climate zones [3, 34, 40, 39, 33, 38]. Unfortunately, 
income aspect may affect the thermal comfort perception because although 
users would prefer to be comfortable, a lack of income or inadequate levels 
of essential energy services in the household lead into domestic energy de- 
privation or better known as energy poverty condition [30, 31, 32, 33]. Low 
income homes spend less or around 2/3 of their income on fuel leading on a 
lack of thermal comfort [32]. 

Furthermore, the authors of this research had proposed gamified strate- 
gies that reduced energy through tailored interfaces [13, 14, 42, 43, 44, 45, 
46, 47, 48]. Nevertheless, until this paper, they simulated the thermal com- 
fort and energy consumption in different locations to be added within the 
thermostats’ interfaces. 

Existing energy building simulators such as EnergyPlus can predict the 
overall energy consumption and the two thermal comfort models, the adap- 
tive and the PMV/PDD model [49, 50, 51, 52, 53, 4]. This software bases its 
features and capabilities on BLAST and DOE-2, two different software tools 
that were in development in 1996 by the Department of Energy [49]. Honey- 
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bee Energy from Ladybug Tools (LT) uses Energy Plus for the simulation. 
LT from Grasshopper visual programming language is a graphical interface 
that runs within the Rhinoceros software [54]. Examples of applying these 
tools include: 

• The analysis of thermal mitigation potential of fa çades in Copenhagen, 
Madrid, Brindisi, and Abu Dhabi [55]; 

• the modeling of outdoor thermal comfort to get the UTCI values and 
energy demand in urban canyons [56]; 

• an algorithm proposal that finds the optimal skylight design while sav- 
ing energy by considering the impacts of daylight [57]; 

• the energy performance analysis of a building that integrates photo- 
voltaic panels on fa çades for power generation [58, 59, 60]. 

Figure 1 shows the two types of approaches used for thermal comfort 
and the thermal scales; Figure 1(a) depicts the building or group approach 
that considers the six parameters proposed by Fanger [35] and considered 
in the ASHRAE 55 Standard [36]. Figure 1(b) shows the adaptive thermal 
comfort, that considers the human-centered approach [8]. This paper focuses 
on adaptive thermal comfort as it is demonstrated that it fits better in the 
residential sector [3]. Figure 1(c) shows three types of scales used to measure 
thermal comfort: the thermal sensation, the thermal preference, and the 
thermal stress. 

The thermal sensation is often known as the predicted mean vote (PMV) 
index. The ideal scale is the 4 where the individual feels comfortable, or no 
changes are required in the indoor room [8]. The thermal preference vote is 
a sensation scale that map the individual’s preference when operating HVAC 
systems or performing activities [61]. Additionally, to avoid local thermal 
discomfort due to cold feet when the individual prefers warmer temperature 
or has hot head but prefers cooler temperatures, the body requires to stay in 
heat balance and adaptive strategies can be addressed as turning on electric 
fans or put the feet on cold water or cover their feet with warmer socks. 
The Universal Thermal Climate Index (UTCI) reflects the human physiolog- 
ical reaction to the actual thermal condition and is categorized as thermal 
stress [62]. Therefore, an individual can have no thermal stress within an air 
temperature range from 48.2 °F to 78.8 °F (9 °C to 26 °C). 
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Figure 1: Thermal comfort approaches: (a) Building or group approach, (b) human- 
centered approach, and (c) thermal scales. 

 
Artificial Intelligence (AI) can classify clothes and predict thermal com- 

fort [20], energy consumption [45], or propose rules to classify the type of 
end-user and propose game elements that teaches, engages, and motivates 

householders in reducing energy even if they are not interested [13, 23, 26, 42]. 
Hong et al. [63] employed the thermal sensation scale to predict energy 

savings in a fifteen-floors residential apartment. Ngarambe et al. [64] sug- 
gested using AI methodologies to predict thermal comfort. Alamin et al. [65] 
proposed an Artificial Neural Network (ANN) to predict the energy con- 
sumption of the fan-coil by considering as the input variables the energy 
consumption of the fan-coil for one sample delay and two sample delays, the 
impulse air velocity, and the indoor air temperature. Zhang et al. [66] used 
the six factors of the PMV/PPD model to predict if the space was comfort- 

able. Another proposal analyzed occupied periods in a residential building 
to include a temperature control algorithm to predict setback temperature 

for the cooling system [67]. Other predictions included the use of input 
variables as outdoor temperature, outdoor relative humidity, Indoor temper- 



7  

 
 
 
 

ature, cooling load, air handling unit supply air temperature, condenser fluid 
temperature setpoint, and condenser fluid pressure setpoint to predict the 
total amount of cooling energy consumption for the next hour [68]. 

However, none of these proposals included the adaptive theory comfort 
applied on the thermostat usage as setpoint, date, and location to link those 
parameters into an SG interface. Thus, the end-user could learn in a ludic 
manner without being intrusive about the implications of changing those 
parameters with the thermal comfort, energy usage, and bill costs. Hence, 
the research question that this paper focuses on addressing is as follows: 

• What requirements does a Serious Game interface need to teach the 
end user the benefits of using an adaptive strategy to promote energy 
and money savings without losing thermal comfort? 

The remainder of this paper is as follows. Section 2 provides a five-step 
framework for tailoring SGs interfaces. Section 3 describes the methodology 
used in each step of the framework to simulate the energy models and strate- 
gies for predicting thermal comfort and energy usage. Therefore, two interac- 
tive interfaces were proposed within a serious game context to teach, engage, 
and motivate end-users to become energy-aware connected thermostat inte- 
gration into a device. Section 4 presents the results of the methodology used 
and the results of the two interactive interfaces applied into Bedroom 2. Sec- 
tion 5 describes the scope of the research and discusses the advantages and 
disadvantages of the study. Finally, conclusions and suggestions for future 
work are presented in Section 6. 

 
2. Proposed Framework 

Figure 2 describes the five required steps to propose a tailored SG in- 
terface. This framework considers a continuous adjustment and feedback 
environment to analyze if the end-user is engaged and is saving energy or 
money. Besides, if it is required, the SG design elements displayed on the 
platform could be updated. Fanghella and Della Valle [31] suggested that 
end-user behavioral factors explain up to 50% of the variance of overall cool- 
ing and heating consumption. Ponce et al. [13] indicated that householders 
must take an active role in energy platforms to give them the desire to control 
their energy behavior. 
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1. User and product type identification: During the first step the type of 
user and SGs design elements for energy-saving platforms are identified 
(see Figure 3). The type of product is identified and the type of user 
is obtained by surveying them through accepted surveys [46, 43, 13]. 

• The openness personality trait appreciates divergent thinking and 
novel ideas with a curious and imaginative attitude. The consci- 
entiousness trait is a rule-follower with clear goals in life. This 
user type is self-discipline, competitive, and responsible. The 
openness and conscientiousness traits are positive to learn new 
things through internet while saving energy. The extraversion 
trait prefers social interactions, exciting and diverse activities with 
an assertive and optimistic attitude. Higher levels of extraversion 
lead in saving energy attitudes. The agreeableness trait has a 
modest, cooperative, and altruistic nature with a sympathetic and 
tolerant attitude to others and with inclinations to save energy. 
The neuroticism trait experiences negative emotions leading in an 
impulsive, stressful, and bad-tempered attitude. Higher neuroti- 
cism’s levels have positive energy saving attitude. 

• The achiever SGs user type focuses on earning points and levels. 
The explorer type finds and gathers all the information available 
on the game and about the players. The main purpose for the 
socializer user type is the interaction with other players. On the 
contrary, the killer type imposes on others to control them. 

• The green advocate energy end-user segment prefers new technolo- 
gies to continue be energy aware. The traditionalist cost-focused 
segment has few to no interest in new technologies and cost-saving 
is their motivation with an extensive overall energy-saving behav- 
ior. The home-focused segment looks for household improvements 
while saving energy and money. The non-green selective segment 
is a not energy aware type and selects energy savings though set- 
and-forget inventions. The disengaged energy waster segment’s 
motivation relies on saving money through energy savings 

• The social product bullet refers to household appliance that will 
communicate between the householder and the product and be- 
tween products to propose a tailored service; for instance, the 
connected thermostat [15, 45, 13]. 
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• This step may be omitted if there is no information available or 
consider a generic end-user. 

2. Household characteristics identification: This step collects the house- 
hold characteristics (building materials, occupancy hours, location), 
the energy usage patterns, the thermostat setpoints, the outdoor and 
indoor temperature, the adaptive and non-adaptive behaviors and the 
occupant behavior. 

3. Simulation analysis: This step builds a persona, a calibrated energy 
model and perform the thermal comfort analysis and statistical analy- 
sis. 

•  Ponce et al. [26] describes a persona as a fictitious individual 
that represent the characteristics of a consumer group. For in- 
stance, this persona can consider the general characteristics of a 
group that contain the majority of the personality traits like the 
socializer or explorer SG type and the killer type. 

4. Build an AI algorithm: Once collected the information from the previ- 
ous step, during the third step is proposed the AI algorithm depending 
on the target. An example is by employing a multilayer ANN to predict 
energy consumption, cost, thermal comfort and SGs design elements. 

• AI acknowledges three big areas: Fuzzy logic (FL) [69, 70, 71, 72], 
Artificial Neural Networks (ANN)[73], and Genetic Algorithms 
(GA) [74]. Moreover, the Adaptive Neuro-Fuzzy Inference Sys- 
tems (ANFIS) [75, 76] combine the ANN with FL. Therefore, this 
step can be changed for another type of decision system. 

5. Propose tailored SGs interfaces: the fourth step analyzes the results 
and plot them into a tailored SG interface or platform. The interface 
considers the SGs design element depicted in Figure 3. 

• A generic interface can be used in case of not knowing the user 
type. This generic interface must consider the majority of the 
personality traits (for instance, the socializer SG tupe) and the 
killer SG type. Another consideration is that the display should 
display the saving money and saving energy element as the type 
of energy end-user segment is not known. 
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3. Methodology 

This section presents the five steps of the proposed Framework and the 
required tools to propose SGs interactive interfaces. 

3.1. Step 1 and Step 2: Householder and Home Characteristics 
This research considers a generic persona that gathers the five personality 

traits, the SGs player type and do not know if they prefer to save energy or 
money. The social product considered is the connected thermostats. Fig- 
ure 4(a) shows the east fa çade of the home and Figure 4(b) the 3D Energy 
Model that was created and simulated in Rhinoceros + Grasshopper and LT. 
Figure 4(c) depicts the floor plan; its distribution had three bedrooms, one 
bathroom, one kitchen, dining and living room, dining, and a one-level home 
with an attic. Bedroom 2 and the Dining and Living Room have two room 
air conditioners and two wall furnaces. For this paper, all the units were in 
kWh to better dimension the energy savings impacts. 

 

 

Figure 4: (a) East Fa¸cade, (b) 3D Energy Model, and (c) Home Zones (Floor plan distri- 
bution). 
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The software used during this research were: 

• Rhinoceros Version 7 SR10 and Grasshopper 3D version 1.0.0007 

• Ladybug Tools Version 1.2.1. 

• Excel from Microsoft 365 

• RStudio Version 1.4.1106 and RPubs 

• Neural Network toolbox from MATLAB Version R2021a 

• MATLAB /Simulink Model Version 1.36 and Simulink Version R2021a 

The adaptive thermal comfort considers the metabolic rate and the cloth- 
ing insulation as they are related to the occupant. An acceptable range of 
clothing insulation is 0.5 clo for typical summer season and 1.0 clo for winter 
season [77]. The metabolic rates considered for the simulation [78] were: 

 
• Activity: Sleeping 

– Activity level: 72 W/person 
– Metabolic rate = 0.7 met 

• Activity: Seated or writing 

– Activity level: 108 W/person 
– Metabolic rate = 1 met 

• Activity: Standing 

– Activity level: 126 W/person 
– Metabolic rate = 1.2 met 

• Activity: Typing 

– Activity level: 117 W/person 
– Metabolic rate = 1.1 met 

• Activity: Cooking 

– Activity level: 190 W/person 
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– Metabolic rate = 1.8 met 
 

The energy model required of the weather file in EnergyPlus Weather 
Format (EPW). Thus, the climate data were from the Climate One Building 
repository; this meteorological database derived weather data hourly from 
2004 to 2018. 

Five Californian locations were selected: Concord [79], Riverside [80], Los 
Angeles [81], and San Diego [82]. All the locations belonged to the IECC 
Climate Code 3B (warm, marine). Moreover, whereas the IECC Climate 
Zone 3B covers the four locations, the California Climate Zone (CaCtZ) 
considers three different zones. Hence, the selection of these places relied on 
considering the north part and the south part of Zone 3B to measure the 
HVAC kWh consumption compared to the three different CaCTz. 

The kWh costs were calculated using the current Electricity time-of-use 
C (E-TOU-C) [83] rate from the Pacific Gas and Electric Company (PGE) 
for all the locations to uniform the results and value the costs’ impacts. 

 
3.2. Step 3: Simulation analysis 

This subsection describes the energy model characteristics and the pa- 
rameters needed to perform and analyze the energy simulations. 

 
3.2.1. Energy Model Calibration 

The ASHRAE Guideline 14 was followed to calibrate the building model 
and achieve Normalized Mean Bias Error (NMBE) values within 5% and 
Cumulative Variation of Root Mean Square Error (CV(RMSE)) values be- 
low 15% [84, 85, 86]. The NMBE and CV(RMSE) were calculated using 
Equations (1) and (2). 

1 
 n

 (mi − si) 
NMBE = 

m̄ 
 i=1  

n − p 
(1) 

 

Where m̄ is the mean of measured values, p is the number of adjustable 
model parameters and is suggested to be one for calibration purposes. mi 
is the measured values and si is the simulated values, n is the number of 
sample. 

1
    n

 

(mi − si)2 
CV (RMSE) = 

m̄ 
 i=1  

n − p 
(2) 

• 
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The measured data came from the PGE utility bill and consumed 2,113.7 
kWh. The calibrated model had an annual energy consumption of 2,052.1 
kWh. The NMBE was 3.18%, and the CV(RMSE) was 10.55%. After this 
calibration, six cases were analyzed. 

3.2.2. Energy Model Cases 
The energy model required the HVAC setpoints; thus, in addition to 

the owner HVAC schedule, two additional HVAC schedules were included. 
Figure 5 (a) displays the HVAC setpoints from the owner’s home; during 
heating periods, the setpoint was set to 68°F at 7 a.m. as it was the hour 
where all the householders were awake, interacting, for instance, at the din- 
ing and living room zone. Woods [10] collected, from 96 houses with a total 
of 783,459 observations, the monthly cooling and heating setpoints; hence, 
Figure 5 (b) displays the monthly cooling and heating setpoints proposed 
by Woods [10]. The 2019 Residential Appliance Saturation Study (RASS) 
metered 69,682 householders and 303 households to provide information on 
appliances, equipment, and general consumption [87]. Figure 5 (c) displays 
the cooling and heating setpoint based on the utility that belonged to Con- 
cord, Riverside, Los Angeles, and San Diego were used to feed the energy 
model. 

Therefore, twelve energy models were developed to compare the differ- 
ences between HVAC strategy and natural ventilation strategy. These mod- 
els gave as a result the indoor temperatures, electrical consumption, billing 
costs, and thermal scales (thermal sensation, thermal preference, and UTCI). 
The selection of these locations relied on the importance that each location 
belongs to the ASHRAE Climate Zone 3B; however the California Climate 
Zone is different, Concord belongs to the California Climate Zone 12, River- 
side to the California Climate Zone 10, Los Angeles to the California Climate 
Zone 9, and San Diego to the California Climate Zone 10. Therefore, the 
selection of the thermostat setpoints were based on Figure 5. The twelve 
models were divided into six cases: 

• Case 1: Owner’s heating and cooling setpoint (See Figure 5 (a)). En- 
ergy model 1 was the HVAC simulation and Energy model 2 was the 
Natural Ventilation simulation. 

• Case 2: James Wood’s heating and cooling setpoint (See Figure 5 (b)). 
Energy model 3 was the HVAC simulation and Energy model 4 was the 
Natural Ventilation simulation. 
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• Case 3: RASS’s heating and cooling setpoint from Concord, CA (See 
Figure 5 (c)). Energy model 5 was the HVAC simulation and Energy 
model 6 was the Natural Ventilation simulation. 

• Case 4: RASS’s heating and cooling setpoint from Riverside, CA (See 
Figure 5 (c)). Energy model 7 was the HVAC simulation and Energy 
model 8 was the Natural Ventilation simulation. 

• Case 5: RASS’s heating and cooling setpoint from Los Angeles, CA 
(See Figure 5 (c)). Energy model 9 was the HVAC simulation and 
Energy model 10 was the Natural Ventilation simulation. 

• Case 6: RASS’s heating and cooling setpoint from San Diego, CA (See 
Figure 5 (c)). Energy model 11 was the HVAC simulation and Energy 
model 12 was the Natural Ventilation simulation. 
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Figure 5: Heating and Cooling Setpoint by month: (a) Current heating and cooling set- 
point; (b) Thermostat setpoints analyzed by Woods [10]; (c) RASS setpoints by Utility [87]; 
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Table 1 describes the location, occupancy hours, HVAC schedules, num- 
ber of family members, equipment, and shows the building materials charac- 
teristics used to feed the 3D energy model simulator. The 1000 square foot 
household is located at in Concord, CA. Besides, for the cost calculation the 
rate was considering using the electricity time-of-use C (E-TOU-C) [83] with 
these characteristics: 

 
• Summer: From June 01 to September 30 

– Peak: 0.34229 $/kWh 
– Off-peak: 0.27885 $/kWh 

• Winter: From October 01 to May 31 

– Peak: 0.2452 $/kWh 
– Off-peak: 0.22788 $/kWh 

An adaptive strategy was added by first considering opening the windows 
to ventilate the indoors and then closing the window when the indoor temper- 
ature was higher than the HVAC setpoints to turn on the system. Therefore, 
this research analyzed twenty-four strategies; twelve were for HVAC usage, 
and the other twelve were for Natural Ventilation (NV). 

Figure 6 depicts the nine steps used to build and run the energy model 
simulations and the block generated using the LT. 

 
3.2.3. Adaptive Thermal Comfort Analysis 

The mean outdoor temperature estimated the exponentially weighted 
running mean outdoor temperature with an α= 0.7 (Equation (3)). Re- 
search indicates that mid-latitude climates have alpha values lower than 0.9, 
such as 0.7 because people are used to weather variability [88]. This formula 
means that today’s prevailing mean outdoor temperature would be 30% of 
yesterday’s mean daily outdoor temperature in addition to 70% of yesterday’s 
running mean outdoor value. This equation advances the value of the running 
mean from one day to the next and is convenient for computer algorithms 
and manual calculations. However, a value for running mean temperature 
has to be assumed for day one to seed the sequence. Besides, the running 
mean needs to be initiated seven days before the start of the period of in- 
terest. Therefore, the first day of January seeded the sequence, and the last 
week of December initiated the period. 
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Table 1: Characteristics fed into the residential energy simulator. 
 

Characteristics Description 
 

Location Case 1 to 3 Concord (IECC 3B; CaCtZ 12 [79]). 
Utility: PGE. 

Location Case 4 Riverside (IECC 3B; CaCtZ 10 [80]). 
Utility: SCE. 

Location Case 5 Los Angeles (IECC 3B; CaCtZ 9 [81]). 
Utility: LADWP. 

Location Case 6 San Diego (IECC 3B; CaCtZ 10 [82]). 
Utility: SDG&E. 

Non occupied 8 am to 3 pm (Monday to Friday) 
HVAC schedules  Heating: November to March 

Cooling: April to October 
Occupants 4 family members (mother, father, two chil- 

dren) 
Equipment Appliances: gas water heater, stove, oven, 

and two wall-furnaces. 
Electric: refrigerator (100 W), microwave 
(500 W), instant pot (900 W), electric ket- 
tle (1000 W), toaster (600 W), two room 
air conditioners (840 W, 1100 W), com- 
puter/monitor (120 W), laptops (60 W), LED 
lights (10 W). 

Construction set 
External wood wall 
(R11): 2x4 @ 16′′ (40.6 
cm) O.C. 
External window: Sin- 
gle pane wood framed 
windows. 

Wood Siding, Wall insulation R10, 1/2′′ 
(1.27cm) Gypsum Board 

 
U 0.20, SHGC 0.22, Simple Glazing 

Ceiling (R22) Wood Siding, 5/8′′ (1.6 cm) Plywood, Insula- 
tion R20, 5/8′′ (1.6 cm) Plywood 

Exterior Roof (R25)2x6 
@ 24′′ (61 cm) O.C. 
Floor (R22): Under 
floor crawl spaces; 2x8 
@ 24′′ (61 cm) O.C. 

Asphalt Shingles, Insulation R24, 5/8′′ (1.6 cm) 
Plywood. 
5/8′′ (1.6 cm) Plywood, Insulation R20, 5/8′′ (1.6 
cm) Plywood, Wood Siding 
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Figure 6: Energy model diagram of each step of the simulation. 
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Equation (4) describes the adaptive thermal comfort formula for the ac- 
ceptable operative temperature used in this paper for a time-interval of seven 
days. 

 
 

tpma(out) =  (1−α)[te(d−1) +αte(d−2) +α2te(d−3) +α3te(d−4) +α4te(d−5)...]  (3) 
 

Where tpma(out) is the prevailing mean outdoor temperature, the α is 
equal to 0.7, and te(d−n) is the mean daily outdoor temperature for the day 
before the day in question. 

 

80% Acceptability limit = (0.31 ∗ tpma(out)) + (54.2F ± 6.3F ) (4) In 

°C the Equation (4) should be changed from 54.2 6.3 to 17.8 3.5. 
The operative temperatures for the HVAC Zones (Bedroom 2 and Dining 
and Living Room) considering the upper and lower 80% acceptability limits 
of Equation 4 were plotted to visualize the adaptive thermal comfort from 
each case using the HVAC and the NV strategy. 

Table 2 shows the thermal sensation values considered for each case. The 
shaded row means the Neutral thermal sensation scale and the No Change 
thermal preference scale. 

3.2.4. Statistical Analysis 
As a result of the energy model, a new database was created with thirty- 

two variables for the thermal comfort and the statistical analysis. Table 3 de- 
picts those variables.The statistical analysis data was performed using RStu- 
dio Version 1.4.1106. 

The descriptive analysis was conducted for the outdoor temperatures and 
indoor variables of subsection 3.2.2: 

• For the outdoor temperatures, the boxplot summarized Concord, River- 
side, Los Angeles, and San Diego’s monthly mean temperatures; and 
the bar chart depicted the frequencies of the heating degree days (HDD65) 
and cooling degree days (CDD65) with a baseline of 65 °F (18.3 °C). 

• For the indoor variables, the shape statistics, the histogram, and the 
Kolmogorov-Smirnov test determined the kWh and costs’ normality. 
The objective was to decide the appropriate central tendency and dis- 
persion measures to describe the variables, select which test best fit 



 

 
 
 
 
 
 
 
 
 

Table 2: Thermal Sensation Scale values considered for each case (See Figure 1(c)). 
 

Cases 1 2 3 4 5 and 6 
 Summer Winter Summer and Winter 

 
 
 
 
 
 
 
 
 
 
 

AS
H

RA
E 

Sc
al

e 
°C

) 1 [1.7,7.8] [0,5] [0,5] [0,5] [0,5] [0,5] 
2 (7.8,12.8] (5,10] (5,10] (5,10] (5,10] (5,10] 
3 (12.8,18) (10,12.8) (10, Htg.Stpt-1.7) (10,15.6) (10,18.3) (10,18.3) 

 4 [18,26.7] [12.8,25.6] [Htg.Stpt-1.7, Clg.Stpt+1.7] [15.6,25.6] [18.3,26.7] [18.3,23.6] 
5 (26.7,32.2] (25.6,29.4] (Clg.Stpt+1.7, 32.2] (25.6,32.2] (26.7,32.2] (23.6,32.2] 
6 (32.2,45.6] (29.4,45.6] (32.2,45.6] (32.2,45.6] (32.2,45.6] (32.2,45.6] 
7 (45.6,inf) (45.6,inf) (45.6,inf) (45.6,inf) (45.6,inf) (45.6,inf) 

1 [35,46] 
2 (46,55] 
3 (55,64.4) 

[32,41] 
(41,50] 
(50,55) 

[32,41] 
(41,50] 

(50, Htg.Stpt-3) 

[32,41] 
(41,50] 
(50,60) 

[32,41] 
(41,50] 
(50,65) 

[32,41] 
(41,50] 
(50,65) 

5 
6 
7 

(74.5,90] 
(90,114] 
(114,inf) 

(80,90] 
(90,114] 
(114,inf) 

(78,90] 
(90,114] 
(114,inf) 

(Clg.Stpt+3, 90] 
(90,114] 
(114,inf) 

(78,85] 
(85,114] 
(114,inf) 

(80,90] 
(90,114] 
(114,inf) 

[65,74.5] [65,80] [60,78] [Htg.Stpt-3, Clg.Stpt+3] [55,78] [64.4,80] 4 

20 

AS
H

R
A

E 
Sc

al
e 

(°
F)
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both strategies’ comparison, and analyze if there was a statistically 
significant change. Furthermore, a table summarized the characteris- 
tics of operative temperature and thermal sensation scales. 

 
 

Table 3: Variables created from the energy model to analyze the HVAC usage in Bedroom 
2 and the Dining and Living Room zones. 

 

Outdoor 
variables 

Indoor 
variables 

Indoor variables by HVAC 
zone (Bedroom 2 & DLH) 

Outdoor Temperature Heating Setpoint Operative Temperature 
α= 0.7 Cooling Setpoint UTCI 
Upper limit (80%) HDD65 Thermal sensation 
Lower limit (80%) CDD65 Thermal Preference 
Month Total Heating kWh Heating kWh 
Day Total Cooling kWh Cooling kWh 
Hour Total Heating Cost Heating Cost 
Date (mm.dd.hr) Total Cooling Cost Cooling Cost 

 
 

The comparative analysis for the kWh and the costs between the HVAC 
strategy and the NV strategy of each case were performed using the Wilcoxon 
signed-rank test; this test is a non-parametric alternative to paired t-test. 

 
• The null hypothesis was that the differences of medians of the kWh 

and costs between both strategies are equal. 

– H0: Median kWhNatural Ventilation - Median kWhHVAC = 0 
 

The paired samples were dependent and continuous variables; the 8760 
observations yielded the annual data. Consequently, the pair had those hours 
for each strategy. Besides, both groups were pairs as they were measured for 
two occasions, for the HVAC strategy (before) and the NV strategy (after). 

 
3.3. Step 4: AI Decision system 

Four ANN models were developed, two for the summer and winter period 
of the HVAC strategy and two for both seasons of the NV strategy. Summer 
periods were from June to September and Winter periods were from October 
to May. Each ANN model considered a two-layer feed-forward network with 
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100 neurons in the hidden layer and a hyperbolic tangent sigmoid transfer 
function [89]. 

The Neural Network Tool (nntool) is a graphical user interface that 
opens the Network/Data Manager window to create an ANN [89]. The net- 
work type used in this paper was the Feed-forward backpropagation, with a 
network training function that uses the Levenberg-Marquardt optimization 
method to update the weight and bias values. In addition, it employed the 
gradient descent with momentum weight and bias learning function and a 
mean squared error performance function. 

Once obtained the database from the energy model, the Concord strate- 
gies were selected (Case 1 to 3), due to they had more information to feed 
the ANN model in terms of a broader range of heating and cooling setpoints 
leading into a wider range of energy consumption. Hence, eight matrices 
considering Bedroom 2 divided into winter and summer periods were created 
in MATLAB to feed the ANN models. 

 
3.4. Step 5: Thermostat Interactive Dashboards 

Two types of interfaces were proposed using the premise of teaching 
the end-users how to save energy and money through a set of SGs design 
elements. The first interface based their displayed information using the 
database variables described at the beginning of subsection 3.2.4. Thus Fig- 
ure 7(a) displays the interface layout of the Dining and Living Room and 
Figure 7(b) for Bedroom 2. The numbering represents the input variables 
that the end-user needs to select. In contrast, the letters display the third 
column values of Table: Indoor variables by HVAC zone (Bedroom & DLH). 

• Input variables: (1) Month, (2) day, (3) hour, (4) strategy. 

• Output variables: (A) Outdoor temperature, (B) HVAC setpoint, (C) 
Operative temperature, (D) kWh, (E) Cost, (F) thermal sensation. 

This interface aims to teach the end-user the differences in cost, energy, 
and thermal sensation between strategies and the impact benefits of the NV 
strategy. 

The second type of interface were divided into summer (Figure 7(c)) and 
winter period (Figure 7(d)). These interfaces were the result of the ANN 
models generated in the previous subsection 3.3. The numbering represents 
the input variables that the end-user needs to select, whereas the letters 
display the result. 
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• Input variables: (1) Month, (2) day, (3) hour, (4) setpoint, (5) Strategy, 
(6) Outdoor temperature. 

• Output variables: (A) Indoor temperature, (B) kWh, (C) thermal sen- 
sation. 

 
Furthermore, the number six is blue because the outdoor temperature is 

an input value needed to predict the output values; however, the temper- 
ature was linked into a matrix with the dry-bulb temperature values from 
the EPW file. Thus, the end-user did not need to plug hypothetical outdoor 
temperatures. As a result, it was easier for the end-user to test each strategy 
to analyze the changes depending on the selected strategy without worry- 
ing about outdoor temperatures. In both types of interfaces, the thermal 
sensation scale was shown using the values in Table 2 so that people could 
visualize in which comfort range they could find themselves. 

 
3.4.1. SG design elements 

Therefore, the SGs design elements that appears in the interface consider 
all the personality trait and energy end-user segment behavior by displaying 
the electricity and money consumption with the following SG player type: 

 
• Socializer: Dashboard 

• Explorer: Tips, notifications, messages, voting mechanisms 

• Achiever: Levels or progression 

• Killer: Voting mechanisms and degree of control through the thermo- 
stat setpoint. 
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Figure 7: Interactive Dashboard Elements for a Thermostat within a Serious Game con- 
text: (a) Dining, Living room, and hall zone; and (b) Bedroom 2 zone. ANN Interactive 
Dashboard Elements: (c) Summer period; and (d) Winter period. 

 
 

4. Results 

Figure 8(a) shows the boxplot for the monthly outdoor temperature for 
Concord, Riverside, Los Angeles, and San Diego and their statistics. Fig- 
ures 8(b) and (c) represent the heating and cooling degree-days of those 
locations considering 65 °F (18.3 °C) as a baseline. 

During the summer periods, Riverside required more cooling than other 
places. Furthermore, Los Angeles and San Diego required lesser cooling 
compared to the other places. During winter periods, Concord needed more 
heating than the other locations. Los Angeles required the least heat of 
all the places. Another relevant aspect to consider was that Riverside and 
Concord had the highest standard deviation compared to the other locations; 
for example, those broader ranges were noticeable from June to September. 
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Figure 8: Concord, Riverside, Los Angeles, and San Diego: (a) Monthly Outdoor Tem- 
perature; (b) Heating Degree Days considering 65 °F (18.3 °C) as a baseline; (c) Cooling 
Degree Days considering 65 °F (18.3 °C) as a baseline. 

 
Moreover, according to the UTCI scale, there was no thermal stress up 

to 78.8 °F (26 °C), and the neutral thermal sensation scale limits were up to 
80 °F (26.7 °C) for Cases 1 and 4 (See Table 2). Therefore, it was possible 
to infer that there was a chance of reducing energy consumption by initially 
opening windows before turning on the HVAC system. 

 
4.1. Operative Temperatures and Thermal Sensation Scales by Case and 

Strategy 
Figure 9(a) depicts the monthly boxplot for Bedroom 2 and Figure 9(b) 

for the Dining and Living Room Zone. Furthermore, each image displays 
the summary statistics of each strategy by case. The maximum temper- 
ature decreased when the windows were open; the minimum temperature 
increased for the NV strategy. From the boxplot, it was interesting that the 
temperatures varied due to the cooling and heating setpoint for the Concord 
location (Cases 1 to 3). In contrast, Riverside, Los Angeles, and San Diego 
remained with similar temperatures. The drastic changes between seasons 
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were presented in the first case, due to during heating periods, the thermo- 
stat setpoint is 55 °F to 68 °F (12.8 °C to 20 °C). The summer season did not 
present dramatic changes between cases as the cooling setpoint was under 
80 °F (26.7 °C). 

Cases 5 and 6 for the Bedroom presented changes in the thermal sensa- 
tion scales. For the NV strategy, the maximum values were a neutral thermal 
sensation for the ASHRAE scale and no change for the thermal preference 
scale. For the DLH, the maximum values decreased with the NV strategy 
from Cases 3 to 6 for the ASHRAE scale and thermal preference. In general, 
the thermal scales were within the slightly cool to slightly warm spectrum 
in all the strategies. Case 1 presented wider sensation scales because the 
householders were habituated to that thermal sensation, although their ther- 
mal sensation falls out of the common thermal sensation. In the case of the 
UTCI scale, most of the cases had no thermal stress, and cases 1, 2, and 4 
presented moderate heat stress. 

 
4.2. Adaptive Thermal Comfort Results 

The full plotted interactive graphs of each case and strategy were up- 
loaded to the RPubs webpage [90, 91, 92, 93, 94, 95]. Thus, the reader can 
interact with each case and view the hours of occupancy, not occupancy, and 
sleeping activity and the 80% acceptability limits to review if, in that specific 
time or hour, the individual was comfortable. The relevance of presenting the 
graphs with references is because it was complicated to show the differences 
between strategies in a single picture. 

Figure 10 displays the annual operative temperature and with the 80% 
acceptability limits for the first case. This figure shows the strategies with the 
occupied, not occupied, and sleeping activities. Then, the next graphs show 
the information filtered by occupied activity to indicate that the end-user is 
within the adaptive thermal comfort range during the occupancy. For the 
specific case of bedroom 2, the sleeping activity fell below the acceptability 
limit; however, a blanket covers the householder, then there is an acceptance 
of those ranges. 

Although by following the Equation (4), Case 1 had no thermal comfort 
during half the year, the actual occupied hours fell within the acceptability 
range making the place comfortable for the inhabitants. Moreover, if the 
natural ventilation strategy was added, the thermal comfort increased and 
continued relying on the acceptability range, and the costs savings increased 
by 78%. 
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Figure 9: Monthly Operative Temperature boxplots and their summary statistics for each 
case: (a) Bedroom 2 and (b) Dining and Living Room. 
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Figure 10: Case 1: Annual operative temperature with occupancy hours of both strategies. 
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For instance, in Case 1 Bedroom, the NV strategy raised the thermal 
comfort within the range; for the case of the DLH zone, it also improved; 
moreover, there were hours in which the occupied activities in the HVAC 
case were outside the upper limits of acceptability. Case 2 had an hour in 
which both cases were outside the comfort range; however, for the NV, this 
hour increased the comfort. The hour was 08/20 21:00 hours from 65.2 °F to 
66.4 °F (18.4 °C to 19.1 °C). 

Regarding the DLH zone, cases two and four had hours during summer 
when the temperature range went below the acceptability limit; however, the 
temperature increased due to activities and equipment usage. 

In both strategies for the bedroom zone, from cases 3 to 6, the thermal 
comfort ranges were within the range most of the time. However, by opening 
the windows, there was more energy reduction, and the thermal comfort 
increased. For the case of the DLH, the thermal comfort increased and 
remained within the range of the acceptability limits. Case 5 and 6 in the 
DLH zone were within the acceptability limits of thermal comfort. 

 
4.3. Statistical Analysis 

The six cases succeeded in terms of thermal comfort; however, the major 
differences were in kWh usage and their costs. Thus, satistical analysis was 
performed to analyze if there were significant changes between strategies; the 
first step was to evaluate the normality of the data. Therefore, Figures 11 
and 12 exhibit the shape statistics, histogram, and Kolmogorov-Smirnov tests 
for each case; none of the cases were normal. Besides, below each histogram, 
the summary statistics of kWh and costs of each zone were displayed. 

Thus, the next step was to deploy the comparative analysis between cases 
and strategies using the Wilcoxon signed-rank test. Table 4 showed the 
paired sample Wilcoxon test based on the positive ranks. In all of the cases, 
the null hypothesis were rejected as the medians were not equal. Moreover, 
the p-values were statistically significant and were based on positive ranks, 
meaning that there were changes between the NV with the HVAC strategy. 

The statistical analysis demonstrated that there were statistically signif- 
icant changes by allowing NV. Thus, major savings were achieved. Further- 
more, the plotted thermal comfort charts available on the RPubs [90, 91, 

92, 93, 94, 95] and exemplified on Figure 10 showed that the thermal com- 
fort increased or remained within the acceptability ranges of comfort in all 

the cases. Hence, by just doing minor changes in routines and activities as 
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opening the windows instead of turning on the HVAC, money savings were 
achieved without losing thermal comfort. 

 

Figure 11: Normality Tests for Bedroom 2. 
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Figure 12: Normality Tests for Dining and Living Room. 
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Table 4: The Paired Samples Wilcoxon Test for Bedroom 2 and DLH. 
 

Positive ranks Test statistics 
 

n Mean rank Sum of ranks Ties Z p 
 Bedroom 2 (kWhNatural Ventilation - kWhHVAC)  

Case 1 2 103.50 207 6959 -36.740 <.001* 
Case 2 0 0 0 2777 -66.990 <.001* 
Case 3 43 242.69 10,436 2178 -70.195 <.001* 
Case 4 4 115.75 3,007 3007 -65.686 <.001* 
Case 5 628 1,425.61 895,285 1510 -68.719 <.001* 
Case 6 531 1,160.12 616,026 1343 -71.246 <.001* 

  DLH (kWhNatural Ventilation - kWhHVAC)  
Case 1 1 132.00 132 6303 -42.928 <.001* 
Case 2 5 50.80 254 2030 -71.047 <.001* 
Case 3 16 161.19 2,579.0 1410 -74.235 <.001* 
Case 4 59 165.81 9,783 2217 -69.990 <.001* 
Case 5 101 385.45 38,931 1267 -74.760 <.001* 
Case 6 219 392.56 85,972 896 -76.374 <.001* 

  Bedroom 2 (CostNatural Ventilation - CostHVAC)  
Case 1 2 103.50 207 6959 -36.746 <.001* 
Case 2 0 0.00 0 2777 -66.990 <.001* 
Case 3 43 235.43 10,436 2178 -70.197 <.001* 
Case 4 4 111.25 3,007 3007 -65.686 <.001* 
Case 5 628 1,297.41 895,285 1510 -69.170 <.001* 
Case 6 531 1,051.11 616,026 1343 -71.560 <.001* 

  DLH (CostNatural Ventilation - CostHVAC)  
Case 1 1 129.00 129 6303 -42.928 <.001* 
Case 2 5 45.00 225 2030 -71.047 <.001* 
Case 3 16 159.19 2,547.0 1410 -74.235 <.001* 
Case 4 59 160.47 9,468 2217 -69.992 <.001* 
Case 5 101 406.33 41,040 1267 -74.748 <.001* 
Case 6 219 399.57 87,506 896 -76.366 <.001* 

* Indicates statistically significant change 
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Figure 13: (a) Total heating electricity energy consumption and cost. (b) Total cooling 
electricity energy consumption and cost. (c) Total HVAC electricity energy consumption 
and savings. (d) Total HVAC electricity cost and savings. 
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Therefore, Figures 13(a) and (b) display the total heating and cooling 
electricity energy consumption and electricity cost for each case. By choosing 
the opening windows strategy reflected in changes in energy consumption 
or potential money savings. Besides, Figure 13(c) shows the total HVAC 
energy consumption by case and strategy and the percentage of reduction 
by first opening the windows. Figure 13(d) shows the electricity cost and 
the percentage of reductions. Case 2 was the strategy that had more drastic 
changes than Case 5. Those variations involved the setpoint ranges described 
in Figure 5. 

 
4.4. Simulink Models 

Figure 14(a) shows the Simulink code for the first type of interactive 
interface. The input values required were the month, day, hour, strategy, and 
case. Thus, 105,120 observations were needed. Each group of observations 
contained 8760 variables. As a result, the MATLAB function depicted 17 
variables. The dashboard enabled the end-user to interact with possible 
scenarios to value the differences and rate the variations between using HVAC 
or opening the windows. Besides, this dashboard reflected that either the 
thermal comfort could be achieved by opening the windows or negatively 
affecting the thermal sensation scale. 

Figure 14(b) shows the Simulink diagram for the second type of interac- 
tive interface and the regression plot of each ANN model during the summer 
period and Figure 14(c) for the winter period. The diagrams also showed the 
calculations performed to get the costs based on the energy consumption. 
These costs were calculated with the E-TOU-C rates PGE [83]. 

 
4.5. Thermostat HMIs: Interactive Dashboards 

Figure 15 shows twelve interfaces considering SGs environment; the left 
side shows six cases for the HVAC strategy, and the right side compares the 
differences if the NV strategy is selected. These interfaces belonged to the 
Bedroom 2 zone. 
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Figure 14: Simulink diagram for the second type of the interactive interface. (a) shows 
the diagram for the summer period, and (b) for the winter period. 

function y = fcn(a,b,c,d,cases) 
col=0; 
r=0; 
for col umn =  1 

for r ow = 1:105120 
if a==cases(row,column) &&b==cases(row,2)&&c==cases(row,3) &&d==cases(row,4) 

col=col umn; 
r=row; 

end 
end 

end 
y=cases(r,5:21); 

(a) 

(b) 

(c) 
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Figure 15: Interactive Dashboard Results. 
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The interface revealed a message indicating to the end-users how they 
can interact with the interface by selecting the date and the schedule to 
see how their decisions affect the consumption and the thermal sensation 
scale. There were cases where the end-user could feel slightly warm with the 
HVAC strategy, and when the windows were open, the ventilation allowed the 
end-user to feel neutral. Cases as 4 show that although the outside tempera- 
ture is warmer than the inside, the indoor temperature decreases by opening 
windows. This happened because NV allows airflow and removes indoor 
heat. On the other hand, during these hours this room was not occupied. 
Thus, strategies as opening windows can be selected. This repository’s file ti- 
tled InteractiveDashboardDB ComplementaryData.mat located the database 
used to build this interactive dashboard [96]. 

Figure 16 shows the second type of interactive dashboard. This dashboard 
used a two-layer feed-forward ANN to predict energy consumption, indoor 
temperature, and thermal sensation at Concord, California. Although the en- 
ergy consumption values displayed in this type of dashboard were lower than 
the energy model results, the differences between opening windows versus 
using HVAC existed and impacted the indoor temperature, energy consump- 
tion, and thermal sensation. For instance, Figure 16(a) displays the interface 
with more energy consumption than Figure 16(b). This interactive dashboard 
aims to teach the end-user how interacting directly with the setpoint affects 
the energy consumption and the thermal sensation scale. In this interface 
type, the end-user needed to select the month, day, hour, and setpoint to 
predict the energy consumption, indoor temperatures, and thermal scales 
for the Bedroom 2 zone. This repository’s file titled InteractiveANNDash- 
boardDB ComplementaryData.mat locateed the databases’ matrix used to 
build this interactive dashboard [96]. 

In both cases, SGs were created to teach the end-user how to manage their 
thermostat and how their actions directly affected the energy consumption, 
indoor temperature, and thermal sensation. In addition, the thermal sensa- 
tion offered an interesting manner to show the end-user how the setpoint and 
daily occupancy were affected by their usual ranges of thermostat setpoints. 
Full occupancy hours can be found at this repository’s file titled EnergyMod- 
elResults ComplementaryData.csv [96]. 
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Figure 16: ANN Dashboard results. 
 
 

5. Discussion 

A five-step framework was proposed. This framework integrates the user 
type, the SGs design element and the thermal comfort within a connected 
thermostat interface was proposed to include connected thermostat inter- 
faces. The user type was a persona with all the personality traits and their 
relationship with the energy-end user segment and SG player type (Figure 3. 
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Four locations in California were analyzed to gather information regarding 
thermal comfort and four locations in California to analyze six cases. Ther- 
mal comfort is directly related to the thermostat setpoint and the adaptive 
strategy used. Woods [10] analyzed householders’ thermostat setpoint usages 
to understand end-user behavior and, hence, he suggested that energy models 
and policies should consider different ranges of setpoints. Besides, Figure 13 
supported that energy reductions were achieved by providing different ranges 
of setpoints even by just considering the HVAC strategy. Case 3 considered 
the Greater Bay Area setpoints collected by the RASS survey, whereas Case 
2 considered Woods [10]’s setpoints. Although Case 2 had wider setpoints 
values, Case 3 had more energy and money usage than Case 2. This means 
that Case 2 strategy was more appropriate for savings. 

Moreover, Case 1 had less energy consumption of all the cases; however, 
this is atypical. It can be considered a non-typical user and a green-advocate 
end-user as these household members are aware of the environmental impact 
of their actions. On the other hand, case 2 can be considered a traditionalist 
home-focused end-user type [45], and Case 3 was another type of user that 
does not change the values from default or a disengaged energy waser end- 
user. The kWh for cooling and heating was consistent with the HDD65 
and CDD65 depicted in Figure 8. For instance, Los Angeles’ cases were the 
strategies that had less consumption compared with cases 2, 3, 5, and 6. 
Case 1, in this case, was out of this analysis as the owners were aware that 
their consumption was lower than the local metrics. 

Furthermore, although the first case showed that theoretically, there was 
no thermal comfort at some hours, as Fergus Nicol and Humphreys [40] 
indicated, some of the measures of not losing thermal comfort during low 
temperatures were taking a nap or going to sleep, in this case, during the 
hours in which Bedroom 2 was uncomfortable, the individuals were sleeping. 
Thus, for the case of the DLH zone, there were unmet hours of thermal 
comfort. However, the individual felt comfortable as they were habituated 
to these temperatures; moreover, different strategies can be addressed to 
suggest that the end-user use warmer clothes or possibly perform activities 
that increase the heating body. 

Besides, energy model simulators like the LB Tools [54] allow personalized 
schedules, activities, or clothes for a year simulation. However, this simulator 
lacked real-time feedback or usage; thus, the schedules remained constant, 
while real-time activities were dynamic. Nevertheless, as an approach to 
energy usage and thermal comfort, these models were ideal for framing out 
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the general framework of energy consumption. 
During the decision system process, two types of interfaces were depicted. 

The first interface added the energy model results into an SG context, and the 
second interface included a two-layer feed-forward ANN model. Regarding 
thermal comfort, using the NV strategy in bedroom 2, cases 5 and six showed 
a reduction for the maximum values of the thermal sensation scale. Cases 3 
to 6 show that the NV strategy changed from a slightly warm sensation to 
a neutral one for the dining and living room zone. Figure 14(a) displayed 
17 variables; the activity and the other thermal scales were not displayed in 
the interfaces to avoid any overcharged dashboard. This research aimed to 
display the thermal sensation while saving energy and money. 

Finally, two types of interaction were promoted. First, the householder 
interacted with an SGs interface by selecting only the date and the sched- 
ule to watch the thermostat setpoint used for that specific scenario and the 
energy consumption. The idea was to open the individual’s mind to the 
energy impacts of each setpoint case and how that setpoint and location af- 
fected the energy usage, money consumption, and thermal sensation. For 
instance, it was not the same consumption in Riverside as in Los Angeles. 
Second, the individuals interacted with the ANN interface to teach their en- 
ergy consumption and thermal sensation by selecting higher setpoints during 
summer periods or lower setpoints during winter. In addition, the end-user 
interacted directly with the thermostat setpoint to visualize the immediate 
effects of changing the setpoint or opening the windows. 

On the other hand, there are low-income families that suffer of energy 
poverty [30, 31, 32, 33]. Thus, the interface can be proposed consider- 
ing Ponce et al. [26] low-income thermostats proposal. Nevertheless, some 
householders may not engage or even use an interface due to energy poverty 
conditions [31]. Therefore, further steps should address this topic. 

 
6. Conclusion 

Following, the research question addressed on this paper is answered: 

• What requirements does a Serious Game interface need to teach the end 
user the benefits of using an adaptive strategy to promote energy and 
money savings without losing thermal comfort? 

The interface needs to consider the community and not just the single home. 
This interface should consider the other homes, their electrical or energy 
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consumption, and validate that opening the windows before turning on the 
air conditioning is suitable for this type of people because thermal comfort is 
mandatory to be considered beyond just looking for the reduction of energy 
or electricity billing. 

Additionally, the interface must use different scenarios with contextual 
information to stimulate the user about the strategies adopted to reduce 
energy or cost savings, depending on their interest. In addition, the purpose 
of serious games is to motivate and teach the users without making them feel 
compromised to learn specific activities in a fun way. The interfaces proposed 
in this research were conceptualized under these concepts. 

Hence, knowing the home consumption in detail and the day-to-day ac- 
tivities carried out in the home allows generating interfaces that provide 
feedback to the user. Therefore, managing a digital environment where the 
householders are in direct contact with their real electrical consumption al- 
lows them to interact with the interface and analyze the real implications 
of taking or not taking the decision regarding, for example, opening a win- 
dow or decreasing or decreasing increasing the setpoint. All this, taking into 
account the primary interest of providing thermal comfort. 

Two types of interfaces were proposed for a Serious Games context using 
a five-step framework. The first interface took the energy model results into 
an interactive context. Thus, the end-user primarily interacted with the six 
scenarios to teach them the differences between strategies in an SG environ- 
ment. The second interface predicted the energy consumption and thermal 
comfort based on the thermostat setpoint manipulation. Thus, the end-user 
visualized the differences between opening or using only HVAC during sum- 
mer or winter. 

During these scenarios and depending on the selected case, there was 
more consumption during off-peak than during peak periods during winter 
(Figure 13(a)). During summer, cases like 1, 2, and 4 had lower consumption 
during peak periods (Figure 13(b)). Furthermore, there were energy reduc- 
tions up to 82% (Figure 13(c)) and cost reductions from 62.2% to 82.7% (Fig- 
ure 13(d)). 

Alternatively, interfaces, as proposed, gather information about end-users 
preferences. For instance, the thermal sensation component can collect end- 
user votes to better understand their thermal preferences and adjust tech- 
niques to engage them in activities to reduce consumption or money without 
losing thermal comfort. 

Hence, future work includes measuring how this gamified and SGs applica- 
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tion affects or benefits the initial conditions selected in the energy model and 
the future implications of selecting other game techniques. For instance, LT 
provides a component to select a passive strategy and immediately visualize 
how these changes affect thermal comfort and energy reduction. Therefore, 
future research can include but are not limited to these topics: 

 
• In terms of energy simulation impacts, optimization methods suggest 

a range of minimum or maximum setpoints needed to ventilate or heat 
the space without losing thermal comfort. Thus, future research should 
include GA or other optimization methods that can analyze those im- 
pacts. 

• Use a FL decision system based on the thermal sensation to propose an 
adaptive strategy that reduces energy consumption and saves money. 

• Use of ANFIS systems to connect multi-sensory systems to analyze 
the clothing insulation or activities to understand end-user behavior 
and therefore promote strategies that help in reducing energy without 
losing thermal comfort in real-time. 

• Consider a decision system that includes the energy poverty topic and 
its impact on householder behavior, thermal comfort, and energy sav- 
ings. 

 
This framework helps build the energy model simulation and proposes the 

two types of interfaces to analyze the difference of using adaptive strategies; 
thus, the end-user behavior became energy aware. Besides, employing other 
adaptive strategies such as garments or metabolic rate to predict thermal 
comfort or even propose personal thermal comfort models can help better 
understand the end-user attitudes and behaviors toward saving energy. 

Modeling and simulating energy cases require further knowledge of end- 
users’ patterns and environments, such as their behavior during occupied 
spaces and their location. Besides, these simulations provide insights re- 
garding thermal home and end-users characteristics. Thus, a novel approach 
analyzed in this research was using SG elements with educational purposes 
within the thermostat interface and included the impact of thermal sensation 
on energy and money savings. 
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