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Disrupted brain functional connectivity as
early signature in cognitively healthy
individuals with pathological CSF
amyloid/tau

Check for updates

Abdulhakim Al-Ezzi1 , Rebecca J. Arechavala 2, Ryan Butler1, Anne Nolty3, Jimmy J. Kang4,
Shinsuke Shimojo 5, Daw-An Wu 5, Alfred N. Fonteh1, Michael T. Kleinman2, Robert A. Kloner1,6 &
Xianghong Arakaki1

Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer’s disease
(AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already
influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel
electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ
tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FCwas estimated with Partial Directed
Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the
correlations between directed FC and various functional metrics, including neuropsychology,
cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-
NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative
functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the
CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the
pathology.Moreover, CH-PATs showed greater FC in the frontal and occipital regions thanCH-NATs.
Our findingsprovide auseful andnon-invasivemethod for EEG-basedanalysis to identify alterations in
brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.

Alzheimer’s disease (AD) is a neurological disorder in which progressive
neurodegeneration and synaptic dysfunction result in impairments in a
range of cognitive domains.With the continual rise of the global population
and life expectancy, it is anticipated that the prevalence of neurocognitive
disorders or dementia will experience a substantial surge, reaching an
estimated 74.7 million individuals by 2030 and more than 131.5 million by
2050 worldwide1,2. Recent research reported early impairments in executive
functions and memory among individuals afflicted with Aβ and/or tau
pathologies3–5. These findings provide validation for the notion that
executive functions and episodic memory6–8 are indeed affected during the
initial stages of AD, primarily due to the alteration or pathology of the
frontal and temporal cortices9,10. More specifically, inhibitory abilities11,
attentional processes12,13, and visuospatial functions14 appear to be

particularly compromised.Adefining feature of the progressionofAD is the
reduction in Aβ protein (resulting in low levels of CSF amyloid-β (Aβ) and
the rise in neuronal degeneration biomarkers (such as increased levels of
CSF total tau and phosphorylated tau) in individuals with AD. The
reduction in CSF Aβ levels seems to occur in the early progression of AD,
becoming apparent more than twenty years before the onset of any clinical
symptoms15. In individuals with AD or those who are at risk of developing
AD, the amyloid-β-to-tau ratio is often low, indicating an accumulation of
Aβ plaques and/or tau tangles in the brain6,16,17. Lei Wang et al, found that
lower CSF Aβ42 levels and higher tau/Aβ42 ratios were strongly correlated
with a reduction in hippocampal volume and indicators of progressive
atrophy of the cornu ammonis subfield in pre-clinical AD individuals, but
not cognitively healthy (CH) individuals18. Compared to the Aβ42 and/or
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tau, the Aβ42/tau ratio demonstrated greater sensitivity in detecting pre-
symptomatic AD and distinguishing it from frontotemporal dementia19.
Consequently, it is plausible that Aβ42/tau ratio may serve as a sensitive
biomarker in detecting the earliest stages of preclinical AD compared to
individual biomarkers. Preclinical investigations offer robust evidence
supporting functional connectivity as a probable intermediary mechanism
linking Aβ to tau secretion and accumulation20. Despite the significant
research dedicated to unraveling AD pathogenesis, there is currently a lack
of sensitive, specific, reliable, objective, and easily scalable biomarkers or
endpoints to guide clinical trials and facilitate early risk detection in clinical
settings.

Several large prospective studies attempt to characterize the early
diagnostic criteria in people at risk of developing AD. These assessments
include pathological markers (both Beta Amyloid (Aβ) and tau
pathologies)21, neuropsychological scores (Montreal Cognitive Assessment
(MoCA) and Mini-Mental State Examination (MMSE))22, neuroimaging
(Magnetic resonance imaging (MRI), Magnetoencephalography (MEG),
and electroencephalogram (EEG)23, and heart rate variability (HRV)24. EEG
Brain connectivity, MRI brain structures, neuropsychological assessments,
and HRV are intricately correlated measures that can predict early AD
pathology. For example, a recent examination of HRV from the Multi-
Ethnic study of atherosclerosis revealed a correlation between higher HRV
and superior cognitive function across various cognitive domains25. We
previously reported a significant association between high resting HR and
less negative alpha event related resynchronization (ERD) during Stroop
testing in individuals with pathological Aβ/tau, compared with those with
normal Aβ/tau26. These findings prompt further investigation into brain
connectivity involved with pathological Aβ/tau presence during task-
switching tasks. Therefore, we aim to integrate brain activity, neu-
ropsychology, andHRVassessments in this study to facilitate early detection
ofADrisks, understanddiseasemechanisms, andultimatelyhelp improving
outcomes for individuals affected by AD by addressing the multifaceted
nature of the disease.

The abnormality of brain connectivity measured by MRI in regions
with early Aβ-burden (e.g., default mode network (DMN) has been shown
whenAβfibrils just start to accumulate27.However, this abnormality has not
been reported or tested in EEG investigations to our knowledge. Both Aβ
and tau pathologies have been shown to impact brain network’s structural
andFC28. Abnormal FChas beenconsistently identified in the early stagesof
AD before the appearance of clinical symptoms or brain structural
changes29. For instance, a recent study has achieved 90% accuracy in clas-
sifying brainAβ and tau pathology in subjective cognitive decline frommild
cognitive impairment (MCI) individuals using EEGcoherence30. FC studies
have found that abnormal cerebrospinal fluid (CSF) levels of
phosphorylated-tau and Aβ in early AD are linked with disrupted cortical
networks involving the anterior and posterior cingulate cortex, and tem-
poral and frontal cortices31. We previously reported that ERD increased in
CH with pathological Aβ tau ratio (CH-PATs)32, compared to CH with
normal Aβ tau ratio (CH-NATs) in alpha band. Using regional inter-
connectivity methods, a previous study found that the temporal and frontal
regions’ connection is a characteristic pattern for the pathological transition
of normal toMCI and the density of edges in these networks is a differential
pattern between HC and MCI33. The decreased patterns of regional hemi-
spheric interconnectivity in the metabolic network rely on the pathology
severity33. Therefore, EEG can be a promising, diagnostic, noninvasive, high
temporal resolution method, which is a cost-effective biomarker and easily
accessible to track and predict the severity of cognitive dysfunction in
degenerative diseases. Asmemory (predominantly localized in the temporal
region) and executive functions (mainly associated with the frontal region)
are the two sensitive cognitive activities thatwere abnormal in earlyAD9,10, it
will be compelling to study frontal and temporal FC in the early stage of AD
spectrum.

In the present study, we aimed to: (1) compare effective connectivity
(EC) between CH-NATs and CH-PATs during task switching, and explore
the potential contributionof task difficulty levels; (2) study the links between

EC and Neuropsychological measures, structural MRI brain volumes,
and HRV.

Results
Participant characteristics
The demographic and clinical characteristics of our subjects have been
reported in our previous work32). The participants’ age in CH-PATs and
CH-NATs were comparable and both groups also had similar educational
levels, withmean years of education. There were no differences in cognitive
reserve (CR) and intelligence quotient (IQ) scores between CH-NATs and
CH-PATs.

Behavioral analysis
The difference between the accuracy (ACC) and reaction time (RT) scored
under the effect of trial types (repeat or switch) was notable with a sig-
nificantly improved RT (p < 0.0001) and ACC (p = 0.048) during repeat
trials than during switch trials. In addition, the results of this study showed
no significant differences in group × trial type interaction in RT, F(1,
108) = 0.0001, p = 0.991 and ACC, F(1, 108) = 0.003, p = 0.960 between the
two groups of all CH-PAT andCH-NAT participants. A comparison of the
main effect of trial types and group × trial between CH-NATs and CH-
PATs was reported previously in our work32.

EEG power spectral density
The comparison of the normalized alpha power in resting-state and task-
switching at the five regions in the CH-PATs and CH-NATs is shown in
Fig. 1. The CH-NATs showed significantly stronger spectral power of task-
switching alpha at temporal, parietal, and occipital electrodes when com-
pared to CH-PATs (p < 0.0001), (p = 0.0005 and p < 0.0001), respectively as
shown in (Fig. 1a, b). On the contrary, there were no significant differences
betweenCH-PATSandCH-NATs in frontal or central power. In the resting
state, there were no significant differences in alpha power changes between
all brain regions (Fig. 1b, d).

The mean partial directed coherence (PDC) FC pattern of CH-PATs
and CH-NATs were shown in Fig. 2a, b, respectively, and we qualitatively
observed that the main difference between the two groups was that CH-
PATs patients exhibited much more and much weaker long-range con-
nections from left and right temporal cortices than CH-NATs. Specifically,
compared with the CH-NATs group (0.135 ± 0.017), the averaged infor-
mationflow in the alpha frequencyofCH-PATswas enhanced in the frontal
regions during task switching processing (0.223 ± 0.014); t (44) = 18.06,
p < 0.0001. On the contrary, CH-NATs showed increased information flow
from temporal region (0.187 ± 0.016) compared to CH-PATs
(0.09 ± 0.015), t (44) = 21.06, p < 0.001. On the contrary, central, parietal,
and occipital regions did not show any significant differences between CH-
NATs and CH-PATs. It is also interesting to note that resting-state EC
showed a significant difference between CH-NATs and CH-PATs only in
the occipital cortex (0.082 ± 0.03), (0.105 ± 0.036), t (44) = 2.36, p = 0.023 as
shown in Fig. 2c, d. Differences in brain connectivity (Switching task con-
nectivity values - Resting state connectivity values) were calculated across
five distinct brain regions (Fig. 2e, f). Results revealed differences between
CH-NATs and CH-PATs in frontal ((0.036 ± 0.041), (0.084 ± 0.037), t
(44) = 6.985, p < 0.0001) and temporal ((0.072 ± 0.039),(−0.028 ± 0.027), t
(44) = 10.21, p < 0.0001)), while nodifferenceswere observed in the parietal,
occipital, or central regions.

To validate the outcomes concerning directed connectivity as mea-
sured by PDC, we employed multiple functional phase connectivity
methodologies, including Weighted Phase Lag Index (wPLI) and Phase
locking value (PLV). Although FC and EC can be associated, they estimate
distinct characteristics of brain interactions, and the presence of one does
not inherently imply the presence of the other.During task-switching, wPLI
results showed that CH-PATs demonstrated significantly higher phase
connectivity in frontal and central regions (Supplementary Fig. 1). In
addition, PLV analysis showed decreased phase coherence in frontal and
occipital regions (Supplementary Fig. 2). Detailed results, including
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additional analyses and comparisons utilizing wPLI and PLV algorithms,
are presented in this manuscript’s supplementary file.

Task difficulty
To examine the potential contribution of task difficulty level to the EC
differences, we selectively compared connectivity between “good perfor-
mers” in CH-PATs and “bad performers” from CH-NATs to bring down
the potential differences and check if the frontal and temporal EC differ-
ences remained. Task difficulty was determined through the calculation of
performance indicators, namely ACC or RT, and brain connectivity. In this
context, theACC results demonstrated a significant difference betweenCH-

NATs (0.79 ± 0.13) and CH-PATs (0.96 ± 0.03) with p < 0.0001. Similarly,
the results indicated that CH-NATs showed a significant increase in RT
(1743.63 ± 265.6) compared to CH-PATs (1218.47 ± 167.66) with
p < 0.0001. For this condition, we sorted the EC based on the ACC and RT
data (i.e., low-vs-high-connectivity) and constructed a statistical analysis
between CH-PATs and CH-NATs. For instance, using EC based on the
ACC classification, the CH-PATs showed increased frontal connectivity
(0.22 ± 0.02) compared to CH-NATs (0.131 ± 0.02) with p = 0.0009.
Additionally, the CH-PATs showed decreased temporal connectivity
(0.09 ± 0.02) compared to CH-NATs (0.187 ± 0.006) with p < 0.0001. Fur-
thermore, using EC based on the RT classification, the CH-PATs showed

Fig. 1 |Mean normalized absolute power spectral density (PSD) in CH-PATs and
CH-NATs. a, bA group comparison between CH-PATs and CH-NATs using t-test
in different brain regions (Frontal, temporal, parietal, central, occipital) within the
range (200–550 ms), where 0 ms is the onset of the stimulus during task switching
and resting-state, respectively. c, d Shows the avereged topographical distribution of
alpha power in CH-PATs and CH-NATs during task switching and resting-state,

respectively. e, f Shows the mean normalized absolute PSD for all electrodes in the
frequency domain (0–50Hz) for CH-NATs and CH-PATs during the switching task
and resting state. Frequency bands are decomposed into the following: delta (0.4–4
Hz), theta (4.1–8 Hz), alpha (8.1–12 Hz), and beta (12.1–30 Hz). *P < 0.05,
**P < 0.01, ***P < 0.001.
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increased frontal connectivity (0.22 ± 0.01) compared to CH-NATs
(0.13 ± 0.02) with p = 0.0008. The CH-PATs showed decreased temporal
connectivity (0.09 ± 0.02) compared toCH-NATs (0.188 ± 0.012) with p <
0.0001. This rigorous comparative analysis supported that the EC differ-
ences are independent of task difficulty levels. Figure 3 illustrates mean
scores for task difficulty based on ACC and RT classifications for the color-
Word (cW) test.

Functional connectivity and neuropsychological and cognitive
reserve analysis
Supplementary Table 1 presents several correlations between task-
switching brain connectivity in temporal and frontal brain regions and
different neuropsychological tests (i.e., processing speed, working
memory, and executive functions) between CH-NATs and CH-PATs.

Processing speed tests were used to assess the ability to process infor-
mation rapidly. The higher the score, the more time it has taken, and the
worse the performance. Executive function and working memory tests
can provide an estimation of a wide range of skills (i.e., working memory
and organization). The higher the score, the more time it has taken, and
the better the performance. While CH-PATs showed greater scores in
performance in speed processing tests, CH-NATS showed a better per-
formance in executive function and working memory tests. Also, the
present study aimed to investigate the relationship between cognitive
reserve (CR) and parietal connectivity in two groups, CH-NATs and CH-
PATs. Our findings revealed a significant negative correlation between
CR and parietal connectivity in the CH-NATs group (r =−0.61,
p = 0.030), as shown in Fig. 4. This suggests that individuals with higher
CR tend to exhibit lower parietal connectivity in this group. However, in

Fig. 2 | The averaged brain connectivity (measured by PDC) at the sensor level.
Representation of the functional networks as graphs in the Alpha frequency band at
stimuli time (200–550 ms) after the onset of the stimulus. PDC from an area i to j is
represented by an arrow. a, c, e Group connectivity comparison between CH-PATs
and CH-NATs during task switching, resting state, and the differences between task
switching and resting (Task-rest), respectively in the alpha band. b, d, f The directed

connectivity of the CH-PATs (left) and CH-NATs (right) during task switching,
resting state, and the differences between task switching and resting (Task-rest),
respectively in the alpha band. The brain regions are graphically represented with
connections depicting causal influence at (200–550ms). The brain surface templates
we used to visualize these connections in Fig. 2 are primarily generated from a
commonly used template known as MNI/Talaraich (ICBM152).
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contrast, the CH-PATs group did not show any differences in CR and
parietal EC.

Functional connectivity and MRI brain volumes
In the CH-PATs group, significant negative correlations were observed
during task switching between temporal EC and several brain volumetrics:

Fusiform Right Side Volume (r =−0.42, p = 0.043), Hippocampal Occu-
pancy Score (HOC) Norm Percentile (r =−0.46, p = 0.023), and Fusiform
Asymmetry Norm Percentile (r =−0.41, p = 0.049) as shown in Fig. 5.
However, CH-NATs did not show significant correlations between tem-
poral EC and the same regions. Moreover, CH-NATs showed significant
correlations between temporal EC and Entorhinal Cortex Asymmetry
Norm Percentile (r =−0.67, p = 0.013), Fusiform Left Percent Of intra-
cranial volume (ICV) (r =−0.58, p = 0.041), and Fusiform Asymmetry
Norm Percentile (r =−0.67, p = 0.015). Additional correlations between
frontal and temporal connectivity with brain volumetrics in CH-NATs and
CH-PATs are reported in Supplementary Table 2.

Functional connectivity and HRV analysis
Spearman’s correlation analysis was also conducted in both groups to
explore the relationship between HRV metrics and EC during task-
switching paradigms. In the task-switching condition, CH-PATs exhibited
noteworthy findings, revealing significant negative correlations between
frontal EC with Root mean square of the successive differences (RMSSD)
(r =−0.52, p = 0.020). Conversely, CH-NATs demonstrated significant
negative correlations between frontal connectivity andmeanRR (r =−0.87,
p = 0.002), as shown in Fig. 6. On the contrary, CH-NATs did not reveal
significant correlations in RMSSD measures and brain connectivity as
shown in Fig. 6.

Discussion
The main objective of the present biomarker study was to characterize the
effects of the accumulation ofAβ pathologies and tau concentrations on the

Fig. 3 | Task difficulty and behavioral responses of
task switching. a The Reaction Time (RT) was dif-
ferent between CH-NATs and CH-PATs. The
values represent the best 50% performance of RT
(lowest RT values) in CH-PAT participants and the
worst 50% performance (Highest RT values) in CH-
NATs during high-load color-word switch trials.
The comparison was performed between the two
groups for frontal (b) and temporal (c) connectivity
for the same participants. d The ACC was sig-
nificantly different between CH-NATs and CH-
PATs. The values represent the good 50% perfor-
mance of ACC scores (highest ACC values) in CH-
PATs and the worst 50% performance (lowest ACC
values) in CH-NATs during high-load color-word
switch trials. The comparison was performed
between the two groups for frontal (e) and temporal
(f) connectivity for the same participants using a
parametric t-test. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

Fig. 4 | Scatterplots with Spearmen correlation represent the relationship
between CR and frontal connectivity in CH-NATs (blue scatters) and CH-PATs
(red scatters) groups.A linear regressionmodel was used to estimate the coefficients
of linear correlations (Confidence Intervals = 0.95) that relate a set of predictor
variables to a response variable.
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directed brain networks inCH individuals. Participants categorized into our
CH-NAT and CH-PAT groups were asymptomatic, with normal neuro-
cognitive tests, and were diagnosed based on CSF Aβ42 and Tau measures
that were within the published ranges6. The CSF Aβ42/Tau ratio outper-
forms the CSF Aβ42 or tau levels individually to identify dementia and
preclinical phases of AD. Abnormal amyloid levels and tau accumulation
can disrupt synaptic function by interfering with neurotransmitter release
and synaptic plasticity. This disruption can lead to neurotoxicity, micro-
tubule destabilization, neuroinflammation, and alterations in the strength
and efficiency of synaptic connections betweenneurons, ultimately affecting
overall brain connectivity. In this exploratory study, we report on several
important findings: (1) CH-PATs compared to CH-NATs, presented
higher frontal EC, and lower temporal EC, independent from task diffi-
culties. (2)CH-PATspresented significant correlationsbetween temporal or

frontal EC and other measures, including neuropsychological measure-
ments (i.e., processing speed, executive functions, and working memory
tests), MRI regional volumetrics, and HRV, supporting compensatory
mechanisms. These changes are potentially linked to a less strategic
approach while performing the task in CH-PATs, or no improvement in
efficiency. These results may indicate that CH-PATs may present com-
pensating mechanisms and may lack learning and self-improvement with
functions that as seen in advanced intelligence for self-improving mode.
Another similar example is during coding, using functions (temporal lobe in
CH-NATs) can improve efficiency, while always using whole codes (frontal
lobe) but limited functions (temporal lobe) can be exhaustive for CH-PATs.

The identification of effective EEG biomarkers associated with AD
pathology holds substantial promise in unraveling the neural mechanisms
underlying this neurodegenerative disorder and facilitating its early

Fig. 5 | Correlation analysis between various brain volumetrics and direc-
ted functional connectivity in CH-PATs and CH-NATs. a A Correlation analysis
between Hippocampal Occupancy Score (HOC) Norm Percentile and temporal EC
in two groups;in two groups CH-NATs (blue scatter plots) and CH-PATs (red
scatter plots). b Correlation between Fusiform Right Side Volume and temporal EC

between two groups; CH-NATs and CH-PATs. A correlation analysis reveals the
strength and direction of the association between brain volumetrics and brain
connectivity. Spearman correlation was applied and the p < 0.05 and r (association
directionality values) are shown.

Fig. 6 | A correlation analysis between HRV measures and brain connectivity
(frontal and temporal regions) in two groups CH-NATs (blue scatter plots) and
CH-PATs (red scatter plots). a A correlation between mean RR and frontal EC
during task switching for two groups CH-NATs and CH-PATs. b A correlation

between resting RMSSD and frontal connectivity for the two groups. Spearman
correlation was applied and p values were set to < 0.05 and r (association direc-
tionality values) are shown.
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diagnosis. Growing evidence suggests that EEG measurements reflect the
capacity of AD neuropathology on brain neural signal transmission
underlying cognitive processes34–36. However, the accuracy and reliability of
different types of EEGbiomarkers, i.e., power and entropy in facilitating the
early detection and prediction of AD progression remain largely unknown.
To our knowledge, this is the first study to evaluate the impact of promising
EEG connectivity on detecting early AD pathology in CH individuals. We
provide strong evidence supporting that the inclusion of multidimensional
information (i.e., EEG biomarkers, CSF measures, brain volumetrics, and
HRV) is highly effective in assessing patients’ pre-symptomatic clinical
status. Taken together, our findings suggest that brain connectivity has the
potential for the early detection of risk for cognitive decline in CH indivi-
duals independently or in association with other measures. Notably, our
study corroborates these findings and highlights the significance of EEG
metrics and connectivity as pivotal biomarkers for revealing CH-PATs.

The Behavioral results of this study showed no significant differences
between all CH-PATs and CH-NATs groups (results were reported pre-
viously in ref. 32). Additionally, the after-test survey suggested no subjective
difficulty levels between the twogroups.This indicates that, at the behavioral
level, there is no evidence of cognitive decline inCH-PATs at this early stage
of the disease. One possible explanation is that the cognitive deficits asso-
ciatedwithCH-PATs arenot yet severe enough tomanifest at the behavioral
level37. It is also possible that compensatory mechanisms and/or CR may
contribute to similar behavioral performance in both groups38. When the
brain switches attention between tasks, it successfully alternates, but con-
sistent mental replacement of one task with another requires additional
effort in terms of time and cognitive resources. This leads to switching costs,
which we also observed in our study. Both CH-PATs and CH-NATs
exhibited longer RTs during switch trials compared to repeat trials, indi-
cating the presence of a successful switching cost effect32,39,40. Moreover, to
investigate the possible contribution of task difficulty level to the EC dif-
ferences, we selectively compared connectivity values between the best 50%
performance of CH-PATs (Highest accuracy scores and lowest RT scores)
and the lowest 50% performance from CH-NATs (lowest accuracy scores
and highest RT scores) to bring down the potential differences and check if
the frontal and temporal EC differences remained. Presumably, these sub-
sets will bring CH-PATs and CH-NATs data closer in subjective difficulty/
concentration. If connectivity analysis continues to exhibit consistent dif-
ferences, it suggests that the connectivity patterns are fundamental, rather
than solely results of task difficulty. Conversely, if the connectivity differ-
ences diminish, it indicates that theymay indeed be influenced by subjective
task difficulty. This approach was motivated by the desire to control for the
influence of task difficulty on EC alterations and isolate the effects of
intrinsic brain connectivity differences. By focusing on individuals with
comparable task performance levels, we were able to minimize the con-
founding effects of task difficulty, ensuring that any observed ECdifferences
weremore likely attributable to inherent neurobiological factors rather than
variations in task performance41. The good performance (increased ACC
values anddecreasedRTvalues) in Fig. 3may suggest that this group ofCH-
PATs did benefit from cognitive reserve, at least on neural activity during
task switching. This also could be due to a compensatory increase in the
number of neurons and/or synapses in CH-PATs.

During task switching processing compared to CH-NATs, CH-PATs
exhibitedhigher alpha power values in the frontal region, while lower values
were observed in temporal and parietal areas as shown in Fig. 1. These
aberrations may signify two distinct pathophysiological alterations: the
reduction in alpha power inADpathology could be attributed to alterations
in cortico-cortical connections42. We previously reported increased event-
related resynchronization (ERD) in CH-PATs, compared to CH-NATs in
the alpha band32. In contrast to ERD (Negative values calculated by wavelet
transform and corrected with baseline), absolute alpha power (Positive
values calculated bywelchpower) is ameasure of the overall power thatmay
detect changes in excitability alterations in the brain and does not provide
specific information about task-related processing. ERD and absolute alpha
power are both measures used in EEG analysis, but they capture different

aspects of brain activity. Furthermore, evidentiary results have found higher
resting-state alpha power manifestations in the frontal regions amongMCI
individuals compared to CH individuals43. This increase may suggest the
recruitment of compensatory mechanisms. Individuals with a cognitive
decline may show less vigilance to external stimuli in the resting state and
may exhibit diminished capacity to recruit relevant brain regions when
performing a task. Previous investigations have consistently reported
slowing EEG activity among individuals withMCI and AD. For instance, a
recent work substantiates the presence of distinct power resting state EEG
rhythms in older individuals with subjective memory complaints (aware-
ness of memory loss), notably showing greater theta power and a subtle
reduction in EEG reactivity44. In addition, a decreased alpha/beta power and
increased theta/delta power across various brain regions, including the
frontal, temporal, parietal, and occipital areas45 were reported. The degen-
eration of cholinergic neurons in the basal forebrain projecting to the hip-
pocampus and neocortex is believed to play a pivotal role in this process46.
The present study also examined the resting-state EEG power analysis in
CH-PATs and CH-NATs. Our findings revealed no significant differences
in EEG power between the two groups during the resting state. This lack of
significant differences suggests that the EEG resting-state brain activitymay
not be significantly affected by the pathological amyloid/tau. Such results
may indicate compensatory mechanisms or variability within the groups,
which might contribute to the absence of significant differences. The
absence of significance alsomay indicate that cognitive challenge canhelp in
revealing subtle changes in brain activities47,48.

In our investigation, we employed directed EC measures in the alpha
frequency band, which are reliable, valid, and less influenced by con-
founding factors such as volumeconduction49.Unlike undirected functional
connectivity (i.e., coherence, phase lag index (PLI), and Phase LockedValue
(PLV)) or Structural connectivity (anatomical links between neuronal
populations), Effective connectivity (EC) (i.e., partial directed coherence
(PDC)) among different EEG features examines the causal and directional
influences between distant brain networks. Our study provides evidence of
EEG changes associated with pre-clinical AD neuropathologies (Aβ and
tau). Specifically, we found a significant association between the Aβ /tau in
CSF and an increase in CH-PATs frontal alpha connectivity. Reduced levels
of Aβ peptides in the CSF indicate heightened Aβ deposition in the brain,
while elevated levels of CSF tau protein, derived from damaged neuronal
microtubules, serve as reliable biological indicators of AD and predictors of
MCI conversion50. It has been found that synaptic dysfunction is a funda-
mental deficit in AD, preceding the emergence of hallmark pathological
changes51. Soluble Aβ oligomers and tau fibrillar lesions disrupt synaptic
plasticity and contribute to synaptic loss, resulting in the impairment of
neural networks. Consequently, MCI and pre-symptomatic AD are better
characterized as disruptions in functional and structural integration of
neural systems rather than localized abnormalities. Our study observed
increased frontal connectivity in CH-PATs. This finding suggests possible
compensatory responses within executive networks and the presence of
synaptotoxicity and neuronal dysfunction associated with presymptomatic
AD-related pathology52. Furthermore, preclinical studies have suggested
that increased synchrony in cortical circuits among individuals with
pathological Aβ/tau may be attributed to reduced inhibitory neuro-
transmission mediated by GABAergic mechanisms rather than increased
excitatory transmission53. Furthermore, tau was hypothesized to be asso-
ciated with a breakdown in predictive neural coding54.

We speculate that CH-NATs exhibited pronounced temporal lobe
connectivity in terms of causal interactions, surpassing those observed in
CH-PATs. These results align with existing evidence indicating that the
preclinical stages and MCI are characterized by significant atrophy and
hypometabolism primarily in the posterior hippocampal, cingulate, tem-
poral, and parietal regions. Particularly, these affected regions collectively
resemble the memory network and default mode network as delineated in
healthy individuals using task-free fMRI paradigms55. In summary,
decreased brain connectivity is believed to be associated with memory
decline56.
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Furthermore, our analysis of EEGdata using threedistinct connectivity
measures (that is, PDC, PLV, and wPLI) revealed complementary insights
into neural connectivity patterns57. PDC analysis showed significant EC
between the frontal and temporal cortices, pointing to greater information
flow from these regions. In contrast, PLV identified significant phase syn-
chronization between the frontal and occipital cortices, suggesting coupled
activity potentially related to top-down visual attention processes58. WPLI
results found significant phase synchronization in the frontal, parietal, and
central cortices, indicating inhibitory effects of visuospatial attention,
inhibition of return, and inhibitory control59. Different brain regions might
be more involved in either directional influence or synchronization
depending on the cognitive task. The synchronization (Measured by PLV
and wPLI) between two regions could be due to a third region influencing
both, or other indirect interactions. Conversely, PDC can be established
without strong functional synchronization if the causal influence is strong
enough to create a statistically significant correlation in their activities. The
differences in how these methods handle noise, artifact, spatial, temporal
resolutions, and the assumptions they create aboutneural dynamicscan lead
to variations in results. Notably, these three methods consistently identified
the frontal cortex as a keyhubof connectivity. Thesefindingsunderscore the
importance of the frontal cortex in the neural network and illustrate how
different connectivity measures can provide a multifaceted understanding
of brain activity60.

Our results revealed significant associations between brain con-
nectivity and performance on these neuropsychological measures.
Regarding memory tasks (e.g., REY-O 3-MINUTE DELAY), CH-PATs
show a strong positive correlation between frontal connectivity and per-
formance on episodic memory tasks. This finding suggests that greater
connectivity within the working memory brain networks is associated with
greater efficiency61. Furthermore, we observed a significant negative corre-
lation between frontal connectivity and executive functions tasks (that is,
language animals tasks), indicating that decreased connectivity in the
temporal or frontal regions is associated with poorer executive functions
tasks and may indicate a neural compensatory mechanism. CH-PATs
showed a positive correlation between frontal connectivity and Stroop
color-naming task as compared to CH-NATs. This suggests that CH-PATs
compensate for their processing speed decline by increasing their frontal
cortex connectivity (specifically in regions linked with executive functions)
to perform better on the Stroop color naming task. Moreover, we found
many negative correlations between brain connectivity and attention tasks,
indicating that greater connectivity in these regions is associated with
decreased attentional performance62. These results underscore the impor-
tance of brain connectivity with memory and cognitive functioning63. The
strong correlations observed between specific brain regions and perfor-
mance on memory and cognitive tasks provide evidence for the role of
neural networks in cognitive processes.

Furthermore, results suggest that the relationship between CR and
parietal connectivity may vary across different patient populations, with
the CH-NATs group showing a distinct pattern of negative correlation.
Adults with higher levels of cognitive reserve (CR) are more likely to use
other cognitive resources, such as memory strategies, to compensate for
their memory impairments. Previous studies showed that individuals
with a higher CR use additional brain regions associated with better
memory task performance64. CR is assumed to reduce the risk of cog-
nitive decline associated with brain changes related to aging by pro-
moting the use of compensatory cognitive processes65. CR indicates the
efficiency, capacity, and flexibility of cognitive processes in the presence
of a challenge, which helps to explain the individual’s ability to cope
better with brain pathology (e.g., brain aging, delay of dementia symp-
toms, stroke) via more adaptable functional brain processes. Although
actual biomarkers of CR are still questioned, a possible mechanism for
CR has been hypothesized66. Neural reserve theory postulates that there
exists an inter-individual variability in brain networks that function as a
basis of any task. In CH-NATs, a higher CR was correlated with a lower
parietal EC (more efficient), which was not observed in CH-PATs. This

result may suggest that CR may be exhausted in CH-PATs during this
task switching processing.

The association ofMRI structural volumes andEEGbrain connectivity
in alphamay explain howneural structures and brain functions are coupled.
The negative correlations in CH-PATs between temporal EC and these
brain volumes suggest that a decrease in the volume of these brain regions
may be associated with an increase in EC67. This could be due to a com-
pensatory increase in the number of neurons and/or synapses in these brain
regions. Previous studies have found that people with AD typically have
smaller hippocampus than in HCs68. This suggests that the reduction of
neurons in the hippocampus may constitute one of the initial alterations
observed in AD69. Other brain regions that are often affected in AD include
the temporal, the parietal, and the frontal lobes69,70. In late-onsetAD, cortical
atrophy initiates in the temporal cortex and subsequently extends to the
parietal cortex via the cingulum bundle. In contrast, in early-onset AD,
cortical atrophy originates in the parietal cortex and then spreads to the
temporal cortex71,72. These regions are involved in a variety of cognitive
functions, including language, memory, and executive function. Further-
more, recent research observed that both AD and MCI patients showed
altered FC of the fusiform gyrus in a resting state compared to normal
controls73,74, which can help explain our findings in supplementary Table 2.
As the disease progresses, the brain tissue in these regions may shrink,
leading to further cognitive decline. Our findings uphold the notion that
greater connectivity within the frontal regions is associated with brain
compensation in pre-symptomatic AD75. This relationship aligns with
previous studies highlighting the involvement of the frontal cortex in early
AD pathology10. The results could provide evidence that enlarged regional
volumes in CH-PATs may link with greater frontal EC and play a role in
compensating for behavioral performance in the presence of AD
pathologies.

Despite the probable clinical relevance of autonomic dysfunction in
CH individuals with pathological Aβ/tau, only a few studies have eval-
uated HRV in presymptomatic AD. Our study observed a significant
negative correlation between frontal connectivity and RMSSD in CH-
PATs but not in CH-NATs. The level of brain connectivity may serve as a
predictor of cognitive flexibility during a cognitive task, whereas HRV
may specifically predict cognitive flexibility when influenced by neuronal
oscillations76. The association of HRV, which measures autonomic
function, and cardiovascular disease as well as cognitive dysfunction has
been evidenced. There is a strong relationship between cardiovascular
risk and an elevated likelihood of developing neurodegenerative
diseases77. During the initial phases of AD, perturbations in the auto-
nomic nervous system play a role in sustaining chronic hypoperfusion,
thereby impacting the self-regulation of the brain and the functioning of
the neurovascular unit. Conversely, neurodegenerative alterations char-
acteristic of AD can exert an influence on autonomic functions and HRV
by disrupting the vegetative networks situated in the insular cortex and
brainstem78. This is in line with the previous findings that the preclinical
dementia patients demonstrated parasympathetic regulation of slow
waves is strongly associated with disrupted FC in the central nervous
system79. Our data suggested that higher HRV (mean RR or RMSSD) is
related to lower temporal and frontal connectivity in CH-NATs. CH-
PATs also suggest that higher RMSSD is associated with decreased brain
connectivity. Our study supports that memory and executive function
networks are related to autonomic regulation and are affected by AD
pathology.

The current study has several limitations. Firstly, the study’s sample
size was relatively modest, potentially limiting the generalizability of our
findings to broader populations or distinct groups. Second, we used the 21-
electrode EEG system to study brain connectivity (scalp potentials) in the
brain cortex. Future research should focus on a high-density EEG system
(i.e., 64, 128, or 256 electrodes) and compare the results with our findings.
Third, a notable limitation of this study is the time difference in data col-
lection,withMRI andEEGdata being acquired at different timepoints. This
misalignment could potentially introduce confounding variables related to
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alterations in the participants’ electrophysiological states or external
environmental factors over time. Fourth, our analysis was performed at the
sensor-space level rather than at the source-space level. While sensor-level
analysis offers valuable insights into neural activity patterns, it lacks the
precision and specificity that source-level analysis can provide in localizing
the origins of these signalswithin the brain. Fifth,we consideredCSFAβ and
tau in classifying our cohorts. Future research endeavors may explore brain
connectivity using PET or plasma Aβ and tau to study pre-clinical AD
progression. Lastly, a significant limitation in estimating causal information
flowamongbrain regions, such aswithPDC, particularlywithmultichannel
non-invasive recordings, is the influence of volume conduction arising from
surrounding active neuronal sources. Future investigations should explore
alternative connectivity algorithms less sensitive to volume conduction and
validate findings using high-temporal-resolution methodologies such as
MRI or DTI.

To conclude, AD pathology manifests several years before clinical
symptoms are recognized, termed the preclinical stage.We investigated this
stage to assess whether brain connectivity could detect this early patho-
physiology. The results of this study showed the potential of EC as a non-
invasive tool in isolating the asymptomatic participants with normal CSF
biomarker (CH-NATs)levels from asymptomatic participants with AD
(CH-PATs) during task switching. Reduced temporal EC and increased
frontal EC were reported in CH-PATs compared to CH-NATs, indepen-
dent of task difficulties. The increased frontal EC and/or decreased temporal
EC in CH-PATs are linked with disrupted brain volumes, neuropsycholo-
gical, HRV, andCR, suggesting a compensatorymechanism in the presence
of AD pathology to retain the same behavioral performance. Our findings
indicate that Aβ/tau pathology may affect specific EEG networks with
systemic structural/functional compensations. Overall, EC is a useful, non-
invasive tool for assessing EEG-functional-network activities and provides a
better understanding of the neurophysiological mechanisms underlying
Alzheimer’s disease.

Methods
Participants
Forty-six cognitively healthy elderly participants were recruited locally
through local newspapers and newsletters, the Pasadena Huntington

Hospital Senior Health Network, and visits to the senior centers. All
participants consented via an Institutional Review Board (IRB) approved
protocol (HMRI # 33797). Assessments included collecting demographic
data, physical exams, fasting blood studies, disease severity and disability
scales, and CSF Aβ/tau measurements6. Inclusion criteria: over 60 years,
classified as CH after a comprehensive neuropsychological battery,
as referenced in detail6. Exclusion criteria: other active, untreated
disease, use of anticoagulants, or other contraindications to lumbar
puncture.

CSF Amyloid/tau analysis
We reported a cutoff ratio of Aβ42/total tau (2.7132) provided at least 85%
sensitivity in discriminating AD from non-AD participants; we then used
this regression to assign CH participants (CH) into 2 groups, one with
normal CSF Aβ/total tau (CH-NATs) and the other with pathological Aβ/
total tau (CH-PATs). As provisional evidence for the capacity of this CSF
Aβ/total tau to predict clinical decline, a longitudinal study found that 40%
of CH-PATs declined cognitively over 4 years toMCI, or AD, while none of
the CH-NATs declined39,40. A detailed description of the data collection,
methodological aspects of the entire process, and CSF data analysis proce-
dures have been documented in our prior studies6,32,39.

Task switching paradigms
During therestingstatebaseline,participantswere instructed toremainstill and
relax for 5min with their eyes open, followed by another 5min with their eyes
closed. For the task-switching testing each trial consisted of two sequential
stimuli, both presenting incongruent colored words (e.g., the word ‘Red’ in
green color or theword ‘Green’ in red color), with orwithout an underline (see
Fig. 7). Participants were instructed to press a button labeled ‘1’ for red and ‘2’
for green, indicating either the color (c)whenunderlinedor theword (w)when
not underlined. The trials were categorized into low-load repeat (color-color
(cC) or word-word (wW)) or high-load switching (cW or wC) trials, with the
second stimulus denoted using superscript to indicate the study target. The
task-switching phasewas comprised of threemixed blocks, each containing 64
trials. The blocks included all four conditions (cC, wW, cW, wC) in a random
sequencewith equalweightage.Our analysis focused on the cW task due to the
presence of the persisting task-set inhibition80.

Fig. 7 | Task switching testing paradigms. Each
trial includes two sequential stimuli. Each stimulus
is incongruent colored word. Participants were
requested to respond to the word itself (no-under-
line), or to the color of the ink (underlined), by
pressing a button (“1” for red, “2” for green). Tasks
include a random mixture of low-load repeat trials
(a) or high-load switch trials (b). The paradigm is
described from our previous work32.

https://doi.org/10.1038/s42003-024-06673-w Article

Communications Biology |          (2024) 7:1037 9



EEG data acquisition and processing
All EEG data were collected during the resting state (eyes closed) or during
the switching-task challenge32. A 21-head-sensor, dry electrode system
(QuasarWearable Sensing,DSI-24, SanDiego,CA,USA)wasused to collect
EEG signals. Sensor configuration followed the international 10–20 system.
EEG signals were sampled at 300Hz, and bandpass filtered between 0.4 and
45Hz. For artifact rejection, we applied a − 100 to 100 μVvoltage threshold
todetect bad epochs. In short, the visual inspectionof epochswasperformed
based on a minimum of artifacts (e.g., excessive muscle activity, eye blinks)
and drowsiness. In our study, drowsiness was inspected in EEG signals
through careful visual inspection. Specifically, trained individuals examined
EEG recordings for characteristic patterns associated with drowsiness, such
as slowing of brainwave frequencies, increased theta activity, or intermittent
bursts of alpha waves. Inspecting drowsiness is crucial to keep participants
awake and alert (verbal notification) to ensure data quality, participant
safety, and thevalidity of our experimentalfindings inour recordings.When
an adequate level of quality was not obtained, we either substituted the
epochs with alternative ones or eliminated the EEG data from further
analysis if therewere no sufficient epochs from the same subject available for
analysis. Data quality refers to the standard of quality considered acceptable
for the EEGdata to be considered reliable for further analysis. This standard
encompasses different factors including signal clarity, absence of artifacts,
and adherence to predefined criteria for data integrity. For better signal
processing, electrooculographic, electrocardiographic, and electro-
myographywere recorded by 3 auxiliary sensors. A trigger channel encoded
the time of color-word stimuli onset, the participants’ responses, and the
type of test (C or W) for further analysis.

The continuousbaselineEEGdatawere initially converted fromtheDSI-
24 format toMATLAB format (R2022a)38. To ensure data quality and remove
artifacts, a preprocessing pipeline designed explicitly for developmental EEG
data, known as the Harvard Automated Processing Pipeline for EEG
(HAPPE),was employed38. This subset consisted of 21 channels; Frontal (Fp1,
Fp2, F7, F3, Fz, F4, F8), Temporal (T3, T4, T5, T6), Parietal (P3, PZ, P4),

Occipital (O1,O2), Central (C3,CZ,C4), andmastoidal (A1,A2), as shown in
Fig. 8. The EEG signals were then referenced to the two mastoids/earlobes
electrodesA1andA2.Before independentcomponentanalysis (ICA), a0.4Hz
digitalhigh-passfilter, anda45Hz low-passfilterwereapplied to theEEGdata
to remove non-stationary signal drifts across the recording. HAPPE’s artifact
removal steps encompassed the elimination of 60 Hz electrical noise using
CleanLine’s multi-taper approach, rejection of bad channels, and removal of
participant-related artifacts (e.g., eye blinks, movement, muscle activity)
through ICA with automated component rejection via EEGLAB and the
Multiple Artifact Rejection Algorithm (MARA)81. After artifact rejection, any
channels removed during bad channel rejection were reconstructed using
spherical interpolation to mitigate spatial bias in re-referencing. The resting-
state EEG data were segmented into contiguous 2-s windows, and segments
containing retained artifacts were rejected based on HAPPE’s amplitude and
joint probability criteria, consistent with prior research on developmental
EEG82. Importantly, there were no significant differences between outcome
groups in terms of the mean lengths of the processed EEG data or any of the
HAPPE data quality measures. Significant features were determined
(p < 0.05), and assessed for the between groups using Student’s t-test)82.

A Fast Fourier Transform (FFT)withmultitaperwindowingwas used to
decompose the EEG signal into power for each 2-s segment for each of the
channels of interest. For each of the four frequency bands, the summed power
across all frequencies within the band was calculated as the measure of total
power in that frequency band. All segmentation parameters and analysis
windows are consistent with connectivity metrics and FFT was conducted
using a Hanning window. Each participant’s data was averaged across the
epochs for eachelectrode and themeanalphapowerwas computed for eachof
the following frequency bands: delta (0.4–4Hz), theta (4–8Hz), alpha
(8–12Hz), and beta (12–30Hz). We selected a time window from 200 ms to
550msafter stimulusonset as itdetects brain responsesassociatedwithdiverse
cognitive functions, such as attention, working memory, decision-making,
integration of incoming words, and emotion processing83. The data analysis
process is illustrated in the block diagram in Fig. 8.

Fig. 8 | Schematic representation of the main steps involved in EEG data pro-
cessing. From raw EEG signals, cortical activity is achieved by means of high-
resolution EEG techniques. It shows the HAPPE pipeline’s pre-processing steps
including ICA, the estimation of directed FC from the cortical time series, threshold
application, and eventually the statistical analysis. The Schematic figure also shows
the proportional threshold on the PDCmetrics bymaintaining a proportion p (0 < p

< 1) of the high dense connections and setting these connections to the same con-
nectivity value, with all other connections set to 086. The selection of the optimum
thresholding value was based on global cost efficiency96. The brain network statistics
are performed by t-test and Spearman’s rank correlation coefficient or Pearson
correlation coefficients where appropriate.
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Brain connectivity networks and information flow
Partial directed coherence (PDC) is one measure of the Granger causality
which provides insights about the directionality of information between the
brain nodes. PDC is based on the consideration that knowledge of the “dri-
ver’s” past increases the prediction of the “receiver’s” present state, compared
to only using the receiver’s past. In the presence of volume conduction,
however, all EEGchannelsmutually “drive” eachother in this respect. PDC is
derived from coefficients of a multivariate autoregressive (MVAR) model,
which additionally depends on the scaling of the data. Interestingly, this
scaling dependency is sufficient to yield significant spurious informationflow
from low-variance to high-variance temporally and spatially white noise
channels. TheMVAR uses Akaike information criterion (AIC) and Schwarz
information to select themodel order ofMVAR84,85. In this study, the average
MVAR model order p for all subjects was 7. Models with lower AIC are
principally preferred. PDC is a frequency-domain approach to denote
the direct linear relationship between two different signals yi(t) and yj(t)
(equation 1) once remarked jointly with a set of other signals. Considering
Y(t) the set of all observed time series, it can be depicted as an autoregressive
model as follows: where p represents the model order, ε(t) is the prediction
error matrix and Ak are the coefficients matrix with aij elements in which
denotes the relationbetween signals at lagk. ε(t) has a covariancematrix ξ and
their coefficients areusually awhitenoisewithzeromean.This results inPDC
factor (πij) and partial coherence function (∣kij[f]∣2) that indicates the strength
and the direction of communication at frequency f.

Therefore, the PDC value from channel j to channel i can be expressed
as follows:

πij½ f � ¼
�Aijð f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j � H ðf Þξ�1

�ajð f Þ
q ð1Þ

kij½ f � ¼ πH
i ðf Þξ�1

πjð f Þ ð2Þ

where, ð�aiÞð f Þði ¼ 1; 2; . . .MÞ represents the ith column of the matrix �AðfÞ
and πij represents the strength of causal interaction of the information flow
from channel j to channel i at a frequency of f.

H[f] is the Hermitian matrix which is equal to �A�1½ f �. �Aijðf Þ is the
complement of Aij(f) and represents the transfer function from yj[t] to yi[t]
being also an elementofA[f]matrix. Finally,aj[f] is the j

th columnofA[f] and
πi is the i

th row ofπij.
We applied the proportional threshold on the PDC metrics by main-

taining a proportion p (0 < p < 1) of the highly dense connections and setting
these connections to the same connectivity value, with all other connections
set to 086. The selection of the optimum threshold value was based on global
cost efficiency. Proportional thresholding is a commonly used analysis step in
reconstructing functional brain networks to ensure equal density across
patient and control samples. The proportional thresholdmethod is employed
tohighlight themost robust and significant connectionswhile reducingvisual
clutter caused by weaker or less relevant connections. TheMVARmodel is a
mathematical model commonly used in time series analysis to describe the
relationship between an observation and a linear combination of its past
observations. ThisMVARmodel is generated using the two-time series for a
specific frequency f, Ak is the MVAR model in the discrete domain, is the
covariance of the cross-spectral density matrix, k is the number of EEG
channels, and I is the identitymatrix. Calculation of the PDCvalues leads to a
large matrix that describes the connectivity between the EEG channels, as
shown in equation (1), where ij( f ) is the individual PDC value calculated
from the time series i to j at frequency f. The PDCvalues range between 0 and
1 depending on howwell one time series predicts the other. The strength of a
measure such as PDC is apparent in its formulation because it is normalized
according to the destination. When analyzing time series, this operation is
taken in a short time Fourier transform approach. A 50 percent overlap
between windows, with a window length of 400 Ms, is chosen to capture
events that may fall on the border between windows. To reduce memory
requirements, frequencies are divided into evenly spaced bins, typically a

power of 2; here we chose 30. For k channels, there will be a k x k x 30 x t
matrix of PDC values. The first dimension is the source channel and the
second corresponds to the destination.

Brain phase synchronization
Phase synchronization analysis is crucial in understanding undirected
functional connectivity in brain networks derived from EEG data. The
Phase Lag Index (PLI) is a widely used measure in neuroscience that
quantifies the consistency of phase differences between neural oscillations
across different brain regions. Nonetheless, the Weighted Phase Lag Index
(wPLI) extends the PLI by considering the magnitudes of the phase dif-
ferences. This enhancement accounts for the strength of phase coupling
between neural oscillations in addition to their consistency. The wPLI is a
robust functional connectivity approach used in EEG connectivity analysis,
because of its high insensitivity to common sources and volume conduction
effects. The formula for wPLI is given by:

wPLI ¼ ∣hsinðΔϕðtÞÞi∣
hj sinðΔϕðtÞÞji ð3Þ

Where, ∣Δϕ(t)∣ represents the magnitude of the phase difference. wPLI
provides a more refinedmeasure of functional connectivity, capturing both
the consistency and strength of phase coupling between brain regions. In
contrast to PLI, the wPLI adjusts the weighting of the cross-spectrum based
on themagnitude of its imaginary component. It eliminates the influence of
cross-spectrum elements (phase lacking) near the real axis (0, π, or 2π),
which are susceptible to small noise perturbations thatmight alter their true
sign due to the volume conduction effects.

Moreover, thephase lockingvalue (PLV)method is commonlyused for
calculating the correlation between two electrodes. The PLV is a statistic that
can be used to investigate EEG data for task-induced changes in the long-
range synchronization of neural activity. To calculate the PLV, two time
series are first spectrally decomposed at a given frequency, f0, to obtain an
instantaneous phase estimate at each time point. Phase synchronization
between two narrow-band signals is frequently characterized by the PLV.
Consider apair of real signals s1(t) and s2(t), that havebeenband-passfiltered
to a frequency range of interest. Analytic signals ziðtÞ ¼ AiðtÞejϕiðtÞ for
i = {1, 2} and j ¼ ffiffiffiffiffiffiffi�1

p
are obtained from si(t) using the Hilbert transform:

ziðtÞ ¼ siðtÞ þ jHTðsiðtÞÞ ð4Þ

where HT(si(t)) is the Hilbert transform of si(t) defined as:

HTðsiðtÞÞ ¼
1
π
P:V :

Z 1

�1

siðtÞ
t � τ

dτ ð5Þ

and P. V. denotes the Cauchy principal value. Once the analytic signals are
defined, the relative phase can be computed as:

ΔϕðtÞ ¼ arg
z1ðtÞz�2ðtÞ

∣z1ðtÞ∣∣z2ðtÞ∣

� �

ð6Þ

The instantaneous PLV is then defined as87:

PLVðtÞ ¼: ∣E½e jΔϕðtÞ�∣ ð7Þ

whereE[. ] denotes the expected value. The PLV takes values on [0, 1]with 0
reflecting the case where there is no phase synchrony and 1 where the
relative phase between the two signals is identical in all trials. PLV can
therefore be viewed as a measure of trial-to-trial variability in the relative
phases of two signals. In this work, we use the Hilbert transform, but the
continuousMorlet wavelet transform can also be used to compute complex
signals, producing separate band-pass signals for each scaling of the
wavelet88. The connectivity results associated with wPLI and PLV are
presented in the supplemental section (Figs. S1 and S2).
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Neuropsychological tests and cognitive reserve
Several tests of working memory, language, executive function, and pro-
cessing speed were considered in our analysis. A full description of these
tests and their references were reported in these studies6,89.

One crucial factor that has not been taken into account in the
previously described studies on strategy use is the potential role of
Cognitive reserve (CR) (brain’s ability to withstand aging or pathology by
employing compensatory mechanisms)90. CR indicates the effectiveness,
capability, and adaptability of cognitive processes during cognitive
challenges or pathology. This phenomenon elucidates an individual’s
capacity to manage brain-related issues such as aging, and delayed onset
of dementia symptoms. Various proxies are used to measure CR,
including educational level, verbal intelligence quotient (IQ), engagement
in work, social interactions, and/or participation in leisure activities91.
Presently, composite measures offer the most comprehensive assessment
of CR, such as education, occupational complexity, and leisure activities.
In our study, both IQ estimation and education level were used as proxies
for CR. First, scores were transformed into Z-scores. Subsequently, the
education and IQ Z-scores were averaged into a single cognitive reserve
(CR) score64,66,92.

Structural MRI data acquisition
All MRI images were acquired at the Advanced Imaging and Spectroscopy
Center of theHuntingtonMedical Research Institutes (Pasadena,CA)using
a 1.5 Tesla General Electric (GE) clinical scanner with an 8-channel high-
resolution head coil. A brief description ofMRI andNeuroQuant (Cortechs
Labs.ai Inc, San Diego, CA, USA) analyses was reported in our published
work93. Several brain regions were selected to examine the correlation
between brain connectivity and brain atrophy in CH-NATs and CH-PATs.
These regions include the fusiform cortex, frontal cortex, hippocampus,
entorhinal Cortex, and Amygdala. The normalization factors are often
based on automated intracranial volume (ICV) measurements or scaling
factors from skull-based or whole-head-based registration to a standard
template94,95.

ECG and HRV analysis
We examined the correlation between EC and HRV measures. Raw elec-
trocardiogram (ECG) data were collected during the task-switching using
AcqKnowledge software (BIOPAC Systems, Inc., Goleta, CA). ECG and
HRV recording and analysis details were reported in our previous work32. A
correlation between CH-PATS and CH-NATs was conducted between
brain connectivity andHRV timedomainmeasures (i.e., NN intervals (RR),
heart rate (HR), standard deviation of NN (SDNN), and rootmean squared
successive differences (RMSSD)) and frequency domain (i.e., low frequency
(LF) and high-frequency (HF)).

Statistics and reproducibility
We employed a parametric two-sample t-test, using Bonferroni–Holm
correction method, to assess the connection metrics between CH-
NATs and CH-PATs. Before conducting the statistical analysis, we
used the Kolmogorov-Smirnov method to test the normal distribution
of the data. A p-value (p < 0.05) was used to identify the significant
differences between CH-NATs and CH-PATs at the group level. All
data are presented as (mean ± SD). Finally, Spearman’s or Pearson
correlation was applied to study the association between brain con-
nectivity and neuropsychological, CR scores, brain volumetric, and
HRV scores. The p < 0.05 and r (association directionality values)
are shown.

All statistical analyses were performed usingGraphPad prism statistics
software (version 9.5.0) and R programming language (version 2023.06.0),
and Matlab (version 2022A, The Mathworks, Inc).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw data were generated at HuntingtonMedical Research Institutes (HMRI).
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files, specifically in Supple-
mentary Data 1. Derived data and Matlab codes supporting the findings of
this study are available from the corresponding author AA on valid request.
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