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Abstract 
 

A bi-objective facility location problem: Coverage and Access 

by 

Jiwon Baik 

 

Selecting a good location for an activity or service is fundamentally important. Many 

different approaches across a range of disciplines have been proposed, developed, and 

explored to address such strategic decision-making. With better understanding and insight, 

as well as better geo-spatial data, a number of computational and mathematical advances 

have been made in recent years. Perhaps the most prominent strategic location problem is 

attributed to Weber, seeking a site in continuous space that minimizes the sum of weighted 

distances to multiple destinations. However, increasingly important is accounting for 

additional concerns, with spatial coverage being particularly critical. This thesis introduces a 

bi-objective strategic location problem. A mathematical model formulation is derived, and 

an optimal solution approach is developed. Application findings are reported for several 

application case studies. 
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Chapter 1  

Introduction 

 

An important strategic decision involves the selection of a site that provides service or 

facilitates an activity. There are many examples of an associated activity and/or service 

facility, including a factory, distribution center, emergency response staging area, waste 

collection site, cybersecurity data vault, disaster command and control post, etc. Recent 

work by Murray et al. (2020) detailed the siting of a juice production facility. The COVID-

19 pandemic highlights the need for locating a testing and/or vaccination site in a region. 

Interestingly, such service and activity sites often must consider multiple criteria associated 

with locational decision-making. Two fundamentally critical geographic attributes of a 

selected facility site are access and coverage. 

Access and accessibility are generally addressed through a measure of proximity, with 

average distance (or equivalently total weighted distance) being particularly common. The 

goal then is finding the location for a facility that provides the lowest average distance, 

thereby making it the site with the best access. Weber (1909) discussed this siting problem 

in great detail, seeking to locate a factory in continuous space that provides the best access, 

measured by total weighted distance. The challenge is to site a factory or production plant to 

minimize associated transportation costs. Accordingly, the transportation costs are viewed as 
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critically important under conditions where land acquisition and labor costs are relatively 

constant across a region. What has made this fundamental problem of such great interest is 

that economic efficiency is formalized and that the importance of spatial location is 

inherently central to notions of efficiency. A network restricted case of finding the best site 

for a telephone switching center was discussed in Hakimi (1964), with access considered as 

well as coverage. The intent was to identify a location that minimizes the maximum distance 

to any demand. The notion of coverage along these lines is an important one as well. Hakimi 

(1964) explicitly discusses an additional context where a facility is a police station or 

hospital. The implication is that service response to/from demand is often time-critical, with 

fast arrival likely thwarting a crime or saving a life. Church and Murray (2018) detail that 4-

6 minute response time standards are not uncommon in such contexts. Hakimi (1964) 

recognizes for the case of siting the facility on a network that addressing both access and 

coverage was indeed complicated, opting instead to focus on solving for the best facility 

location with respect to either access or coverage independently. 

This thesis seeks to address the facility siting situation that simultaneously considers 

both access and coverage. The following section reviews related literature. This is followed 

by a formal mathematical model representing the intended bi-objective spatial optimization 

problem, addressing both access and coverage. Details on how the problem can be solved 

are then given, along with proof of associated solution properties. Application results are 

presented to illustrate problem characteristics. In particular, the nature of decision-making 

involving multiple objectives is highlighted. The thesis ends with a discussion and 

concluding comments.
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Chapter 2 

Background 

 

There has been considerable work oriented toward locating a range of different service 

facilities. Reviews of the location modeling approach to support this can be found in Francis 

et al. (1992), Church and Murray (2009), and Laporte et al. (2019), among others. Various 

spatial features of facilities and services are noted, formalized, and structured in an 

optimization context. Among these features, access and coverage have been particularly 

important across many planning, management, and decision-making contexts. 

Access and accessibility have been longstanding themes, reflecting broad interest in 

identifying sites in close proximity to the demand being served. Weber (1909) is generally 

credited with articulating a challenging single facility (factory) siting problem, with an 

objective to minimize total transportation costs in locating the facility in a region. One 

simple form of this problem involves service to a finite set of discrete points, allowing the 

facility to be anywhere in the plane and distance represented using the Euclidean metric. 

Algorithmic development of approaches to solving the Weber problem has been substantial, 

including the Varignon frame (see Weber 1909). A prominent solution technique is that of 

Weiszfeld (1937), based on partial derivatives used in an iterative process that converges to 

the optimum, representing the point with the least total weighted distance (see also Miehle 
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1958, Kuhn and Kuenne 1962,  Cooper 1963, Vergin and Rodgers 1967, Weiszfeld and 

Plastria 2009). A recent review is offered in Murray (2018) with linkages to related single 

facility problems, as well as various spatial extensions. 

There have been many extensions of the classic Weber problem. Hakimi (1964) 

discussed finding the absolute median on a network consisting of weighted arcs and demand 

nodes. This work spawned much interest in discrete versions of this problem. Recent work 

by Church (2019) discusses that while much attention has been given to the classic Weber 

problem, there are indeed many interesting and important variants that remain to be 

investigated. Further, solution approaches for most of these extensions have not yet been 

devised. Along these lines, Murray et al. (2020) examine the case where only a subset of 

demand is to be allocated to the sited facility, dynamically affecting which demand is 

considered in the derivation of the distance minimization goal. The Weber problem 

collectively has been the subject of continuing interest because of its general utility and the 

fact that it accurately reflects access and accessibility considerations. 

Of course, there are other facets to access and accessibility. One is a maximum travel 

standard known as coverage (see Church and Murray 2018), as noted above. The idea is that 

there is a maximum distance or travel time beyond which service quality degrades such that 

it is ill-advised or ineffective. Further, coverage reflects the notion of a range of a good or 

service reflected in central place theory (Church and Murray 2009). Coverage models have 

been a critical category of location optimization work, oriented toward enhancing 

accessibility to facilities and/or services. When demand is within the critical service standard 

of a sited facility, the demand is considered covered. Hakimi (1964) initially discussed 
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vertex covering problems in the context of policing a highway network. Continuous space 

variants, such as the location that minimizes the maximum distance from demand (Brady 

and Ronsenthal, 1980; Mehrez et al., 1983), can also be observed. Subsequent work has 

followed, suggesting two classic coverage approaches, the location set covering problem 

(LSCP) and maximal covering location problem (MCLP). The LSCP aims to site the 

minimum number of facilities needed to ensure complete coverage of all demand, with 

Toregas et al. (1971) the first to formalize this approach in the context of emergency 

response. The MCLP, structured in Church and ReVelle (1974) relaxes that all demand must 

be served, seeking instead to cover the most demand possible given a fixed number of 

facilities. Extensions are many, with interesting cases explored in Berman et al. (2003) and 

Kim and Murray (2008). 

Subsequent work on coverage has been substantial. Noteworthy in this thesis is the 

generalization of the MCLP defined in Church (1984), where potential facility locations are 

not fixed to a finite set but can be anywhere in the plane. To deal with the infinite number of 

potential facility locations, Church (1984) proved that a discretization of continuous space is 

possible and it would contain an optimal solution, the so-called circle intersection point set 

(see also Mehrez and Stulman 1982). Murray and Tong (2007) extended this work to 

account for situations where demand might be represented as any spatial object, such as 

points, lines, and polygons. Matisziw and Murray (2009) explored an extension of the 

MCLP where demand is continuously distributed and a single facility is to be located. They 

exploited an equivalent line representation of a demand region, known as the medial axis or 

skeleton, and proved that an optimal solution lies on this line representation.  
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A challenge is addressing multiple considerations in location siting. In particular, the 

interest here is to account for access and coverage simultaneously. Doing so suggests a bi-

objective optimization context. Multiobjective optimization problems are particularly 

challenging and remain the focus of much academic research. Cohon (1978) offers an 

overview of multiobjective optimization. In essence, multiple objectives result in Pareto 

optimal solutions. Each identified Pareto optimal solution represents a trade-off between 

objectives, where one cannot improve one objective without degrading the other. Therefore, 

these so-called non-dominated solutions are of critical importance and represent the best 

possible choices for a decision-maker. One approach for identifying Pareto solutions in the 

bi-objective location planning context is the non-inferior set estimation algorithm proposed 

by Cohon et al. (1979), with subsequent work by Solanki (1991) associated with a mixed-

integer programming problem. Medrano and Church (2014) proposed a heuristic algorithm 

to identify non-dominated solutions to a bi-objective problem involving two different costs 

associated with the shortest path between the origin and destination, which traverses a given 

intermediate arc or node. The heuristic algorithm can find a subset of non-dominated 

solutions in a mixed-integer context within a reasonable computational time. 

As noted above, this thesis aims to simultaneously address access and coverage in the 

continuous space location of a facility, similar to that posed by Weber (1909) but taking into 

account service coverage as well. One line of work attempts to incorporate both through the 

constraint on the maximum distance a demand could be from the sited facility. Schaefer and 

Hurter (1974) referred to this as a Weber problem with metric constraints on the plane, 

suggesting that it was related to the LSCP. Subsequent work by Hansen et al. (1982) and 
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Watson-Gandy (1985), as well as others, focused on the solution of this distance-constrained 

problem. In a discrete space environment, where demand and potential facility sites are 

finite in number and defined at given locations, somewhat related work is that of Pirkul and 

Schilling (1991) and Yao et al. (2019). Pirkul and Schilling (1991) extended the capacitated 

MCLP applied to fixed demand and potential facility location, including another objective to 

minimize the total travel distance of demand beyond the coverage standard, while Yao et al. 

(2019) extended the LSCP to account for maintaining a prespecified number of existing 

facilities and optimizing access. In contrast, in this thesis potential facility sites are not 

identified in advance but rather are infinite in number since a facility may be located 

anywhere in a region. Beyond this, there have been a number of developments in a network 

setting worth mentioning. Church and Meadows (1977) suggested a solution method to a 

coverage problem where the facilities could be sited anywhere on the network, at nodes or 

along arcs, proposing the network intersect point set in the context of the distance 

constrained p-median problem. The solution method identifies a single solution as coverage 

is a constraint. Church (1980) details a heuristic for a tri-objective problem to locate a 

number of interstate solid waste recycling centers. The approach minimizes the weighted 

distance to all demand locations while maximizing coverage within a given standard as well 

as maximizing the number of centers that meet a minimum threshold of service demand. 

Other heuristics for solving p-median problems with coverage constraints on a network are 

noted in Saez-Aguado and Trandafir (2012). Daskin (1995) introduces an algorithm to 

identify the tradeoff solutions of coverage and weighted distance for a discrete location 

problem in a network setting, providing accompanying software and datasets. 
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Based on the above review, it is clear that no existing research has dealt with access and 

coverage simultaneously in a continuous space context. Given the known challenges of 

multiobjective (bi-objective) optimization combined with the continuous space siting 

orientation, this thesis addresses an important planning problem that involves locating a 

single facility anywhere in a region in order to maximize demand coverage and minimize 

average distance.
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Chapter 3 

Mathematical Model 

 

As highlighted previously, access and coverage objectives are important planning 

criteria that guide locational decision-making. Simultaneously addressing these concerns 

offers great potential for better supporting analysis, planning, management, and policy. In 

this section, the precise mathematical model is formalized, enabling it to be better 

understood and contrasted with previous research. Consider the following notation: 

 

𝑖 = index of demand to be served 

𝑎𝑖 = total activity at demand  𝑖 

(𝑥𝑖, 𝑦𝑖) = geographic coordinates of demand 𝑖 

𝑆 = service coverage standard 

M = a large number 

Given this notation, the supporting decision variables are as follows: 

(𝑋, 𝑌) = location of the facility 

𝑍𝑖 = {
1 if demand 𝑖 within 𝑆 of a facility at (𝑋, 𝑌)

 0 otherwise                                                      
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Thus, what is sought is the best location of the facility, (𝑋, 𝑌), in accordance with the 

goals that the facility be the most accessible as well as provide the greatest service coverage. 

A model integrating these decision variables to address access and coverage goals is the 

following: 

 

Minimize ∑ 𝑎𝑖√(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2
𝑖   (1) 

Maximize ∑ 𝑎𝑖𝑍𝑖𝑖  (2) 

Subject to 𝑆 + 𝑀 ∗ (1 − 𝑍𝑖) ≥ √(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2    ∀𝑖 (3) 

 𝑋, 𝑌 unrestricted in sign (4) 

 𝑍𝑖 = {0,1}    ∀𝑖 (5) 

 

The facility location decision variables, (𝑋, 𝑌), are intuitive, representing the coordinate 

reference. The 𝑍𝑖 decision variables are introduced to account for whether coverage is 

provided to a given demand 𝑖. The bi-objective model includes one objective, (1), seeking to 

minimize the total weighted distance from the facility to all demand points and a second 

objective, (2), to maximize the amount of demand covered by the sited facility. Constraints 

(3) defines whether or not suitable coverage is provided to each demand based upon the 

stipulated service distance, 𝑆. Constraints (4) and (5) note conditions on decision variables. 

An essential distinction of problem formulation (1)-(5) is that objective (1) is nothing 

other than the total weighted distance measure reflecting the intent of the classic Weber 

problem (see Wesolowsky 1993, Yao and Murray 2014, Murray 2018, Church 2019, Murray 
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et al. 2020). Minimizing total weighted distance is equivalent to minimizing average 

distance and hence reflects the notion of access and accessibility. Of course, Equations (1)-

(5) goes beyond the classic Weber problem's intention to include coverage as well. 

Further discussion and details are therefore necessary for objective (2) and constraints 

(3). It is perhaps most straightforward to focus on constraints (3) initially. Two fundamental 

conditions must be tracked, whether the sited facility covers a demand or if it does not. This 

suggests two cases for a given demand 𝑖 in constraints (3). Consider first the case where 

demand 𝑖 is not covered. Given the corresponding decision variable, this means that 𝑍𝑖 = 0. 

Accordingly, constraint (3) takes the following form of when 𝑍𝑖 = 0: 

 

𝑆 + 𝑀 ∗ (1 − 0) ≥ √(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2 (6a) 

This simplifies to: 

𝑆 + 𝑀 ≥ √(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2 (6b) 

 

As the left-hand side is a large number, 𝑆 + 𝑀, this will be larger than any possible 

distance in the region. Therefore, there is no impact on the distance measure recorded on the 

right-hand side of equation (6b). Further, as intended, since the demand is not covered, the 

contribution to objective (2) is zero. Viewed in an alternative manner, since the orientation 

of objective (2) is to maximize, then the associated distance must be preventing the decision 

variable 𝑍𝑖 from being anything greater than zero. This is the intended outcome. 
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The second case is when demand 𝑖 is covered, 𝑍𝑖 = 1, with constraint (3) taking the 

following form: 

 

𝑆 + 𝑀 ∗ (1 − 1) ≥ √(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2 (7a) 

This simplifies to: 

𝑆 ≥ √(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2 (7b) 

 

Thus, the distance from the demand to the sited facility on the right-hand side of 

equation (7b) must be less than the coverage standard, 𝑆, on the left-hand side. As a result, 

objective (2) would correctly account for demand coverage in this situation, as intended. 

Clearly, problem formulated by Equations (1)-(5) represents a unique and important 

extension of the classic Weber problem, offering the capability to address both access and 

coverage issues simultaneously. Unfortunately, there is no existing method for solving this 

single facility location problem. The bi-objective nature of the problem, along with non-

linear objectives and constraints, makes it exceedingly complicated to solve. 
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Chapter 4 

Exact Solution Algorithm 

 

An exact algorithm is proposed and implemented to solve (1)-(5) presented in chapter 3. 

The approach is based on a strategic partitioning of the geographic region, 𝑅, enabling 

evaluation of each partition in order to find the location that simultaneously optimizes both 

access and coverage objectives. This means that continuous space consisting of an infinite 

number of potential facility locations can be reduced to a finite set of partitions, where a 

more focused search for the best location within the partition can be carried out. In essence, 

the coverage objective enables such a partitioning to be done, and then the solution process 

reduces to finding the best access location within the partition. The significance is that the 

search can be enumerative, focusing on each individual partition. Further, such an approach 

facilitates the identification of all non-dominated solutions. 

Assume that a valid discrete and finite partition of the region is possible. Subsequent 

discussion will detail how this can be done along with proof of partition validity. Given this, 

an exact solution algorithm is offered in Figure 1, guaranteed to identify all non-dominated 

solutions. The solution approach outlined in Figure 1 is only the beginning, as theoretical 

details remain regarding specification and proof of optimality. The initial focus is on the 
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coverage aspects of Equations (1)-(5) (see chapter 3). The following definition of demand 

coverage represents a starting point for details to come: 

 

Definition (demand coverage): If demand 𝑖 is within the distance/travel time standard 𝑆 

of the sited facility (𝑋, 𝑌), then the corresponding expected activity 𝑎𝑖 at 𝑖 is covered (or 

served). 

 

Input: 𝐼, 𝑆 

Output: 𝛹 

 

# derive regional Weber point 

(�̂�, �̂�) ← min
(�̂�,�̂�)⊂𝑅

∑ 𝒂𝒊 √(�̂� − 𝒙𝒊)
𝟐 + (�̂� − 𝒚𝒊)

𝟐

𝒊 ∈ 𝑰

 

 

# create buffer for each demand point 

for each  𝑖 ∈ 𝐼  do 

𝜇𝑖 ← {(𝑥, 𝑦)  ⊂ 𝑅 |  𝑑(𝑥,𝑦)(𝑥𝑖,𝑦𝑖) ≤  𝑆} 

end-for 

 

# face overlay 

𝑂 ← {𝜇𝑖 | ∀ 𝑖 ∈ 𝐼} 

Κ ← {𝜈|𝛿 ∈ ℘ (𝑂) where ∀ 𝜐, �̂�  ⊂ 𝛿  𝜐 ∩ �̂� = ∅ ∧  ⋃ 𝜈𝜈 = 𝑅 } 

 

# derive face Weber points 

for each 𝜅 ∈ 𝐾do 

(𝑋𝜅 , 𝑌𝜅) ← min
(𝑋𝜅,𝑌𝜅)⊂𝜈𝜅

√( 𝑋𝜅  −  �̂� )2  +  ( 𝑌𝜅 −  �̂� )2 

end-for 

 

# filter non-dominated solutions 

𝜳 ← {} 

for each 𝜅 ∈ 𝐾 do 

 if 𝒏𝒐𝒏 − 𝒅𝒐𝒎𝒊𝒏𝒂𝒕𝒆𝒅 then 𝜳 ← 𝜿 

end-for 

 

Figure 1. Exact solution algorithm for identifying all non-dominated solutions. 
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Given demand 𝑖 defined as a point with reference (𝑥𝑖, 𝑦𝑖), then it is possible to derive the 

area in the study region 𝑅 within which the sited facility would be capable of providing 

coverage. Formally, for demand 𝑖 this is: 

 

𝜇𝑖 ← {(𝑥, 𝑦) ⊂ 𝑅|𝑑(𝑥,𝑦)(𝑥𝑖,𝑦𝑖)  ≤ 𝑆} (8) 

 

where (𝑥, 𝑦) is a location and 𝑑(𝑥,𝑦)(𝑥𝑖,𝑦𝑖) is the distance from the location to demand 𝑖. 

As indicated in (1) and (3), the Euclidean distance metric is assumed, suggesting that 𝜇𝑖 is a 

circle of radius 𝑆 since the demand object is a point. In general, however, this need not be 

the case as any distance or travel time measure could be relied upon. As noted in Murray 

(2021), the set theoretic specification in (8) formalizes the buffer operation in GIS 

(geographic information systems) and computational geometry. Without loss of generality, 

since demand consists of the set of 𝐼 points, assume that 𝑅 = ⋃ 𝜇𝑖𝑖∈𝐼 . If (𝑋, 𝑌) ⊂ 𝜇𝑖 (the 

facility is sited somewhere in the area object), then demand 𝑖 would satisfy the demand 

coverage definition, providing service to 𝑎𝑖 total activity. Thus, area 𝜇𝑖 represents a discrete 

object in the continuous space region 𝑅 for which coverage potential could be assessed. 

Specifically, (𝑋, 𝑌) ⊂ 𝜇𝑖 indicates that demand 𝑖 is covered and (𝑋, 𝑌) ∉ 𝜇𝑖 implies that 

demand 𝑖 is not covered. To illustrate coverage along these lines, three demand points are 

given in Figure 2a. The associated areas of coverage based on 𝑆 are shown in Figure 2b, 

namely 𝜇1, 𝜇2 and 𝜇3. Thus, (𝑋, 𝑌) ⊂ 𝜇1 means that demand 1 is covered, (𝑋, 𝑌) ⊂ 𝜇2 

results in demand 2 being covered and (𝑋, 𝑌) ⊂ 𝜇3 indicates that demand 3 is covered. 
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Figure 2. Three demand points and corresponding areas of coverage. 
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Consider the case of two demand locations, 𝑖 and 𝑖′, with demand coverage areas 𝜇𝑖 and 

𝜇𝑖′, respectively. Assuming that 𝜇𝑖 ∩ 𝜇𝑖′ ≠ ∅, then the two coverage areas overlap. Thus, 

(𝑋, 𝑌) ⊂ 𝜇𝑖 ∩ 𝜇𝑖′ implies that the sited facility covers 𝑖 and 𝑖′, with total demand coverage 

of 𝑎𝑖 + 𝑎𝑖′. This can be contrasted to (𝑋, 𝑌) ⊂ 𝜇𝑖\𝜇𝑖′  (𝜇𝑖 less 𝜇𝑖′) only capable of covering 

demand 𝑖 (𝑎𝑖 total demand) or (𝑋, 𝑌) ⊂ 𝜇𝑖′\𝜇𝑖 only capable of covering demand 𝑖′ (𝑎𝑖′ total 

demand). As a result, three discrete partitions emerge for the continuous space region in this 

case, enabling coverage potential to be assessed with respect to facility placement. When the 

entire set of demand locations 𝐼 is considered, then the set of demand coverage areas can be 

denoted 𝑂 = {𝜇𝑖 | ∀ 𝑖 ∈ 𝐼}. In order to identify all possible discrete sub-areas or partitions of 

𝑅, the overlay operator is useful: 

 

Κ = {𝜈|𝛿 ∈ ℘ (𝑂) where ∀ 𝜐, 𝜐  ⊂ 𝛿  𝜐 ∩ 𝜐 = ∅ ∧  ⋃ 𝜈𝜈 = 𝑅 } (9) 

 

where ℘ (𝑂) is the power set operator that enumerates potential combinations of objects 

in the set 𝑂. Therefore, the resulting set Κ in (9) represents all unique overlapping objects or 

faces (see Murray 2021). The face is nothing other than a partitioning of continuous space 

based on demand coverage areas. Each face can be further defined and/or specified using the 

following additional notation: 

 

𝜅 = index of faces (|Κ| in number) 

𝜈𝜅 = face 𝜅 
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Ω𝜅 = set of demand coverage areas that define the face 𝜈𝜅 

 

Definition (face): A face is the area formed by the intersection of a set of overlapping 

demand coverage areas, (8), maintaining conditions (9) where 𝜈𝜅 = ⋂ 𝜇𝑖𝑖∈Ωκ
. 

The set of faces identified in (9) is comprised of discrete areas, finite in number, 

essentially partitioning the region based on demand coverage. The faces that result from 

overlay of the coverage areas in Figure 2b are shown in Figure 2c, namely 𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5, 

𝜈6 and 𝜈7. These faces reflect the definition, and are significant in the following manner. 

 

Theorem 1. The optimal solution with respect to coverage, (2), only is to site the facility 

in one of the faces 𝜈𝜅. 

Proof: The region 𝑅 is comprised of faces 𝜈𝜅 such that ⋃ 𝜈𝜅𝜅 = 𝑅 in (10). Suppose that 

(𝑋, 𝑌) ∉ 𝑅. Thus, no coverage of demand is possible since (𝑥𝑖, 𝑦𝑖) ⊂ 𝑅 ∀𝑖 and ⋃ 𝜇𝑖𝑖 = 𝑅. 

However, (𝑋, 𝑌) ⊂ 𝑅 implies that there exists at least one 𝜈𝜅 ∈ Κ with (𝑋, 𝑌) ⊂ 𝜈𝜅 where 

∑ 𝑎𝑖𝑖∈Ωκ
> 0, contradicting the proposition that (𝑋, 𝑌) ∉ 𝑅. Further, since |Κ| is finite, there 

must exist 𝜅 such that ∑ 𝑎𝑖𝑖∈Ωκ
≥ ∑ 𝑎𝑖′𝑖′∈Ωκ′  for all other κ′ ∈ |Κ|, meaning that an optimal 

solution with respect to (2) is contained within a face. 

Theorem 1 is significant because a face reflects total demand covered by siting the 

facility anywhere in the face. Specifically, (𝑋, 𝑌) ⊂ 𝜈𝜅 implies a known level of coverage, 

equal to ∑ 𝑎𝑖𝑖∈Ωκ
. Without loss of generality, denote this facility location within a face as 

(𝑋κ, 𝑌κ). Note that related simplifications of continuous space to a discrete space 
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representation can be found in Mehrez and Stulman (1982), Church (1984) and Murray and 

Tong (2007) (see also Church and Murray 2018). 

Of course, Equations (1)-(5) (see chapter 3) is a bi-objective spatial optimization 

problem, so coverage is but one aspect of locational siting criteria. However, Theorem 1 

implies that identifying non-dominated solutions essentially involves a search of each face 

in order to find the location that offers the best access, which corresponds to the location 

within each face that minimizes total weighted distance, (1). Formally, this is the following: 

 

min
(𝑋κ,𝑌κ)⊂𝜈𝜅

∑ 𝑎𝑖√(𝑥𝑖 − 𝑋𝜅)2 + (𝑦𝑖 − 𝑌𝜅)2
𝑖  (10) 

 

This means that the goal is to find (𝑋κ, 𝑌κ) for each face 𝜈𝜅 ∈ Κ according to (10), with a 

known level of demand coverage ∑ 𝑎𝑖𝑖∈Ωκ
. The remaining challenge is optimally solving 

(10) for each 𝜈𝜅 ∈ Κ. 

If only objective (1) is considered, then the optimal solution, (�̂�, �̂�), can be found using 

the iterative approach of Weiszfeld (1937) (see also Kuhn and Kuenne 1962, Weiszfeld and 

Plastria 2009, Plastria 2011, Church 2019). (�̂�, �̂�) can be thought of as the regional Weber 

point, in contrast to the face Weber point, (𝑋κ, 𝑌κ). Since (1) is convex (see Kuhn and 

Kuenne 1962, Plastria 2011), the following can be inferred. 

 

Theorem 2. The point (𝑋κ, 𝑌κ) with the lowest total weighted distance in each face 𝜈𝜅, 

(10), is that which is closest to (�̂�, �̂�). 
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Proof: The contention is that  min
(𝑋κ,𝑌κ)⊂𝜈𝜅

√(𝑋𝜅 − �̂�)
2

+ (𝑌𝜅 − �̂�)
2
 is an optimum for (10). 

Suppose there exists (𝑋, 𝑌) ⊂ 𝜈𝜅 such that min
(𝑋,𝑌)⊂𝜈𝜅

∑ 𝑎𝑖√(𝑥𝑖 − 𝑋)2 + (𝑦𝑖 − 𝑌)2
𝑖 <

min
(𝑋κ,𝑌κ)⊂𝜈𝜅

∑ 𝑎𝑖√(𝑥𝑖 − 𝑋𝜅)2 + (𝑦𝑖 − 𝑌𝜅)2
𝑖 . If this were true, then (1) would not be convex 

However, (1) is convex (see Kuhn and Kuenne 1962, Plastria 2011 for formal proofs), so 

min
(𝑋κ,𝑌κ)⊂𝜈𝜅

√(𝑋𝜅 − �̂�)
2

+ (𝑌𝜅 − �̂�)
2
 must be an optimum for (10). Worth noting is that 

proofs in terms of visibility are offered in Schaefer and Hurter (1974), Hansen et al. (1982) 

and Watson-Gandy (1985) and represent an alternative approach for Theorem 2. 

Given the above definitions and theorems, the algorithm detailed in Figure 1 is now 

explained with supporting justification and proof. The next section demonstrates 

implementation and application feasibility, highlighting the utility of this approach along 

with showing computational efficiency.  
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Chapter 5 

Application Results 

 

The algorithm outlined in Figure 1 to solve the model (1)-(5) (see chapter 3) was 

implemented in Python using a Jupyter notebook, relying on ArcPy for needed GIS 

functionality. Reported computational details are for a Windows 10 AMD Ryzen CPU 3600 

with 32GB RAM desktop computer. Two planning applications are examined. The first is 

utilized in Church and Baez (2020), known as the Swain data, consisting of 55 locations 

reporting a total demand for service of 640 in the Washington, D.C. region. The second 

study involves 85 batted balls during college baseball games at UCSB during the 2018-2019 

season, with a total value (or total demand) of 280.9886. 

In the case of emergency response, the goal is to site the facility (e.g., fire station and/or 

ambulance) in order to respond to anticipated calls for service, both maximizing demand 

that can be served within the 𝑆 distance/time standard as well as minimizing average 

distance/time to respond to all demand (within and beyond the 𝑆 standard). The demand for 

service is shown in Figure 3. The relied upon service coverage standard is 𝑆 = 10 miles. 

Demand coverage areas (8) for each of the 55 demand locations result in 1,557 faces 

when the overlay operation, (9), is applied. Again, the faces are significant (Theorem 1) 

because they represent unique coverage potential of the area. This means that total coverage 
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Figure 3. Demand intensity and location (Swain 55 demand locations). 

 

is known for any location within the face, leaving the location within the face that has the 

lowest total weighted distance to be found. This can be accomplished using Theorem 2. 

Thus, coverage and minimum total weighted distance can be derived for each face. Total 

processing and solution time in this case is 15 seconds. Figure 4 summarizes all 1,557 

solutions by average distance (x-axis) and coverage (y-axis). This is a standardization of 

objectives (1) and (2) by total demand (640 in this case) in order to simplify interpretation. 

As can be seen, most of the solutions are dominated, with seven identified non-dominated 

(Pareto optimal) solutions superior to all others with respect to both coverage maximization 

and total weighted distance minimization. Note that Figure 4 is provided for illustration 



 

Chapter 5.  Application Results 

 

23 

purposes as the only solutions of significance are those that are non-dominated based on 

optimizing the model (1)-(5) (see chapter 3). Accordingly, Figure 5 shows the non-

dominated solutions only, enabling associated trade-offs to be more clearly observed. As can 

be seen in Figure 5, the leftmost solution reflects an emphasis on minimizing total weighted 

distance, resulting in an average distance of 9.03 miles and coverage of 64.5% demand 

within 10 miles, whereas the rightmost solution offers the most coverage possible (68.28%) 

within the standard and average distance increasing to 10.67 miles. An interesting trade-off 

solution is highlighted in Figure 6, showing the spatial location selected, offering coverage 

of 67.97% and an average distance of 9.39 miles. 

 

Figure 4. Objective space summary of identified solutions  

(Swain 55 demand locations in Washington, D.C.). 
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Figure 5. Non-dominated solutions  

(Swain 55 demand locations in Washington, D.C.). 

 

 

Figure 6. Select a non-dominated solution location  

(Swain 55 demand locations in Washington, D.C.). 
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The baseball setting suggests a goal to position a player (facility) in order to respond to 

an anticipated hit, both maximizing total demand that can be served within the 𝑆 

distance/time standard as well as minimizing average distance/time to respond to all demand 

(within and beyond the 𝑆 standard). The hit importance (demand) for service is shown in 

Figure 7, totaling 280.989 across the 85 hits. The relied upon service coverage standard is 

𝑆 = 90 feet, reflecting the expected range that a collegiate player could respond to a hit 

under certain hangtime conditions. Accordingly, the player is expected to cover the 

anticipated hit by catching it without letting it touch the ground when the ball falls within 

the 𝑆 standard. 

 

 

Figure 7. Hit importance and location (UCSB 85 hit locations). 
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The 85 demand locations result in 4,666 faces for the case of 𝑆 = 90 feet. There are 20 

non-dominated solutions identified by the exact solution approach (Figure 1), and these are 

summarized in Figure 8. The total solution time is 45 seconds. As shown in Figure 8, the 

leftmost solution reflects an emphasis on minimizing total weighted distance, resulting in an 

average distance of 112.03 ft. and coverage of 36.76% demand within 90 ft. In contrast, the 

rightmost solution offers the most coverage possible (47.45%) within the standard and 

average distance increasing to 115.94 ft. An interesting trade-off solution is highlighted in 

Figure 9, showing the spatial location selected among the non-dominated solutions, offering 

coverage of 45.79% and an average distance of 114.43 ft 

 

 

Figure 8. Non-dominated solutions (UCSB 85 hits). 
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Figure 9. Selected non-dominated solution location (UCSB 85 hits)
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Chapter 6 

Discussion 

 

There are a number of interesting and important discussion points regarding this 

research. The first has to do with the impacts of geometry approximation. The second 

involves the use of commercial solvers capable of dealing with non-linear models. The final 

is placing the proposed modeling approach in the context of previous research addressing 

distance constraints. 

Precise representation of spatial objects is not trivial. Appropriate geometry generally 

results in greater computational processing as arcs and other curvatures must be dealt with. 

One approach that has historically been relied upon to deal with complex geometries is 

through polyline approximations. This means that circles, curves and other non-linear 

geometries are represented using a polyline consisting of a number of connected straight-

line segments. Commercial and open source GIS software as well as open source GIS 

libraries (e.g., QGIS, Shapely, matplotlib) often implement linear 

approximation/simplification of non-linear geometries. Of importance in this research is the 

likely impact on optimality with respect to Theorem 2. Specifically, Theorem 2 is only valid 

when the face geometry is accurate. The nearest point from each face, (𝑋κ, 𝑌κ), to (�̂�, �̂�), 

the location of minimum total weighted distance (e.g., regional Weber point), will be on the  
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Figure 10. Face approximation implications. 
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 face boundary. However, if the face boundary is approximated, then the result will be one 

of four outcomes: outside the face, inside the face, a non-closest boundary point or closest 

boundary point. The last outcome, the closest boundary point would be virtually impossible 

since the approximation would consist of a polyline vertex at precisely the optimal location. 

In other cases, the result is a non-optimal location at best, and at worst a non-feasible 

location (outside the face). 

Figure 10 illustrates the impact of face approximation using polylines. The precise face 

geometry of  𝜐𝜅 is shown in Figure 10a, with a polyline approximation given in Figure 10b. 

The implications of such an approximation are offered in Figure 10c, where the regional 

Weber point, (�̂�, �̂�), is indicated as a red square and the closest point in face 𝜈𝜅, (𝑋κ, 𝑌κ) the 

face Weber point, is also given. The significance is that it is impossible to identify (𝑋κ, 𝑌κ) if 

the polyline approximation is relied upon. For this reason, this research used ArcPy through 

ArcGIS in order to ensure correct geometry representation. 

Given advances made in solving non-linear optimization problems, supporting 

commercial software now includes more capabilities than ever before. The natural question 

is whether such software is capable of solving the model (1)-(5) (see chapter 3), and what 

are the implications for specialized solution approaches such as that offered in Figure 1. To 

address this issue, LINGO was considered given its non-linear solution capabilities. A 

prominent question, no doubt, is cost. The use of a commercial package like LINGO is not 

necessarily a trivial expense. A single-user license can range from around $500 to $5,000, 

depending on the number of decision variables encountered. In theory, the solution approach 

outlined in Figure 1 could be implemented using open source software, but this was not 
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done here given the representation issues encountered in dealing with face arcs. Therefore, 

the use of ArcPy would require a commercial software license of ArcGIS as well, potentially 

costing $100 or more. Perhaps of more relevance and significance is solver performance. 

Consider the Swain 55 locations in Washington, D.C in emergency response context. The 

weighting method was used to integrate objectives (1) and (2) as a single objective, with the 

weight 𝑤 ∈ [0,1]. Various weights were considered, and the model was repeatedly solved. 

In total, 23 problem instances were solved, requiring 373 seconds. All seven non-dominated 

solutions were found. In the case of finding an outfielder location for the UCSB 85 baseball 

hits, LINGO found only 4 of the 20 non-dominated solutions, requiring 1,294 seconds to 

solve. This is based on a selective set of weights, with 23 total problems solved in the 

previous case. An alternative would involve the use of the constraint method, requiring 878 

seconds to solve 26 problem instances in the Swain 55 case. Irrespective of the method 

employed, there is a clear benefit of the developed algorithm in Figure 1 using 

computational geometry as it is much more efficient than the commercial non-linear solver 

considered here, LINGO. However, it is encouraging to see that LINGO was able to do an 

outstanding job in solving the non-linear problem instances, generally capable of finding 

non-dominated solutions, albeit requiring more computational effort significantly.  

Schaefer and Hurter (1974) referred to the Weber problem with metric constraints, a 

special type of LSCP. The problem was navigated by subsequent work by Hansen et al. 

(1982) and Watson-Gandy (1985). Watson-Gandy (1985) applied their solution algorithm to 

a dataset with 20 demand points with the same demand. The service standard distance was 

set as 3 (units). This application is examined using the proposed modeling approach, 
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Equations (1)-(5) in chapter 3, and solved using the exact algorithm outlined in Figure 1. 

The solution in this case is trvial (Figure 11), however, as the regional Weber point (�̂�, �̂�) is 

actually within a face that can cover all demand within the 3 unit standard. Thus, (�̂�, �̂�) =

(𝑋κ, 𝑌κ) for face 𝜅 providing 100% coverage. This is curious because it defeats the purpose 

of the approach developed in Watson-Gandy (1985) to, in essence, find the closest point on 

the face to regional Weber point, capable of covering all demand. Further, there are no 

tradeoffs because all demand can be covered by (�̂�, �̂�). 

In order to provide a compelling situation more reflective of the intent of Watson-Gandy 

(1985), three demand points were modified with higher demand (see Figure 13). This results 

 

 

Figure 11. Solution for the Watson-Gandy 20 demand application. 
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in (�̂�, �̂�) now being outside the face with 100% coverage (Figure 13). Solution of the model 

formulated by Equations (1)-(5) now identifies multiple non-dominated solutions, 

summarized in Figure 12. Worth highlighting is that the solution shown in Figure 13a with 

an average distance of 1.616 and 100% coverage is the only one that would be identified 

using the approach of Watson-Gandy (1985). In contrast, additional non-dominated 

solutions emerge when less than 100% coverage is possible. In this case, Figure 12 identifies 

the non-dominate solution, with coverage of 100%, 96.97% and 93.94% and corresponding 

average distances of 1.616, 1.603 and 1.474, respectively. Thus, average distance can be 

reduced by 0.82% and 8.79%, respectively, with a slight loss of demand coverage within the 

standard. The associated spatial locations for the non-dominated solutions are shown in 

Figure 13, with Figures 13b and 13c showing the two cases with greater access but slight 

decreases in coverage. 

 

Figure 12. Non-dominated solutions (modified Watson-Gandy 20 points). 
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Figure 13. Spatial location for each non-dominated solution (modified Watson-

Gandy 20 points). 
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Chapter 7 

Conclusions 

 

This thesis detailed the use of a spatial analytic approach to a bi-objective extension of 

the Weber problem, addressing issues of coverage maximization along with access 

optimization. The mathematical formulation of the problem was presented. Issues of the 

problem complexity arise due to mixed linearity and non-linearity conditions, necessitating a 

new and innovative solution approach. An algorithm capable of identifying exact solutions 

was developed. The algorithm uses GIS-based functionality along with spatial insights to 

find the entire set of non-dominated solutions. Application results were presented, 

highlighting the utility and importance of this new modeling approach along with the 

capabilities of the exact solution algorithm. The potential that GIS and spatial knowledge 

can contribute to structuring and solving important geographic problem is particularly 

salient across regional science, but more generally as well.  

There are other related problems that may be amenable to the approach presented here. 

One of these might involve the same general problem, that of locating one facility on a 

continuous space and minimizing weighted distance and maximizing coverage where 

distances are measured based upon the Manhattan metric. Another problem of interest could 
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involve a step function of coverage benefits, or even address localized obnoxious elements 

that are present in some problems (e.g., fire station location).
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