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Abstract: Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe
human respiratory illness. These spillover events underlie the importance of detecting known and
novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution,
allowing improved prediction of spillover events or where a human–reservoir interface should be
closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have
modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay.
Representatives from the four coronavirus genera (α-CoVs, β-CoVs, γ-CoVs and δ-CoVs) were tested
and all of the in-house CoVs were detected using this assay. After comparing both assays, we found
that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas
the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect,
monitor and track CoVs to enhance viral surveillance in reservoir hosts.

Keywords: coronavirus; PCR; pan-CoV PCR; detection; pandemic; reservoir host

1. Introduction

Coronaviruses (CoVs) are a large virus family comprising four genera—Alphacoronavirus
(α-CoV), Betacoronavirus (β-CoV), Gammacoronavirus (γ-CoV) and Deltacoronavirus (δ-CoV).
These genera are grouped based on phylogenetic relationship and genomic structure. The β-
CoV genera is further grouped into lineages A–D [1].

CoVs infect a wide variety of hosts, some of which include avian species, bats, swine,
camels, dogs, cats, bovine, and humans [2,3]. Human CoVs are members of the α-CoV
and β-CoV genera with two α-CoVs (NL63 and 229E) and two β-CoVs (HKU1 and OC43)
circulating in humans and inducing mild respiratory illnesses such as the common cold [4,5].
Specific spillover events resulting in new CoV infections in humans have occurred in recent
history. In 2003, a novel pathogenic coronavirus named severe acute respiratory syndrome
coronavirus (SARS-CoV) was linked to transmission events from Himalayan palm civets
(Paguma larvata) and possibly bats into humans and caused 8096 cases and 774 deaths [6–8].
In 2012, another novel coronavirus, Middle East respiratory syndrome coronavirus (MERS-
CoV), was linked to spillover from dromedary camels into humans and so far has caused
2553 cases and 876 deaths [9–11]. MERS-CoV is closely related to bat CoVs such as
PREDICT/PDF-2180 [12,13], suggesting that bats could be an ancestral reservoir. However,
antibodies against MERS-CoV have been detected in camel sera obtained 20–30 years ago,
arguing that a potential jump from bats to camels occurred several decades ago [14]. SARS-
CoV is linked to one major spillover event, while MERS-CoV is still widely circulating
among dromedary camels and will continue to transmit to humans without an intervention.
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In 2019, a novel CoV emerged in Wuhan, China and resulted in a pandemic. It is
hypothesized that SARS-CoV-2 is the result of another spillover event [15]. Malayan
pangolins (Manis javanica) have been investigated as an intermediate host, but the most
likely natural animal reservoir are bats from the Rhinolophus genus [16–21]. This is the third
CoV spillover into the human population in the twenty-first century—highlighting the
importance of tracking CoVs in their natural and intermediate reservoirs.

Increased human-to-wildlife interface has raised the risk of CoV spillover events into
the human population, and although consensus PCR assays have been widely implemented
in programs like PREDICT, they have not been systematically evaluated for sensitivity or
updated to account for all the new diversity that has been discovered in recent years. It is
important that we better understand CoV dynamics in animal reservoir species as well
as reservoir host distribution, density, and prevalence [22]. A well-designed PCR assay
allows for detection of every genera of CoVs and identification of the appropriate genera
when sequenced. In 2010, Watanabe et al. [23] designed a set of primers that targeted
a highly conserved region of the RNA-dependent RNA polymerase (RdRp) gene across
all coronavirus genera. Since then, numerous new CoV sequences have been detected
and described. Here we provide a modification and validation on the original assay to
allow reliable and robust detection of all genera of CoVs. The assay demonstrated high
sensitivity and detected CoVs in all genera—including lineage B and C of β-CoVs which
include MERS-CoV, SARS-CoV, and SARS-CoV-2. The described novel PCR is suitable for
detecting and monitoring CoV circulation in reservoir species.

2. Materials and Methods
2.1. Primer Design and Optimization

We obtained the sequence of the previously published Watanabe et al. [23] primers
5′-GGTTGGGACTATCCTAAGTGTGA-3′ (Watanabe conventional_F) and 5′-CCATCATCA
GATAGAATCATCATA-3′ (Watanabe conventional_R). These primers were mapped to
48 CoVs, which represented all four genera, allowing identification of mismatches. We then
redesigned these primers. The primer sequences of the first PCR are: 5′-GGTGGGAYTAY
CCHAARTGYGA-3′ (Pan_CoV_F-1), 5′-CCRTCATCAGAHARWATCAT-3′ (Pan_CoV_R-1),
and 5′-CCRTCATCACTHARWATCAT-3′ (Pan_CoV_R-2). The semi-nested second PCR uti-
lizes the same reverse primers and 5′-GAYTAYCCHAARTGTGAYAGA-3′ (Pan_CoV_F-2)
and 5′-GAYTAYCCHAARTGTGAYMGH-3′ (Pan_CoV_F-3) as forward primers (Table S1).

2.2. Viruses Selected for PCR Establishment

Viruses were either obtained from BEI Resources (https://www.beiresources.org/)
or from collaborators. The following CoVs were included: Human CoV NL63 (BEI: NR-
470), Canine CoV UCD1 (BEI: NR-868), Porcine Respiratory CoV ISU1 (BEI: NR-454) and
Alphacoronavirus purdue P115 (BEI: NR-43285), MERS-CoV (Ron Fouchier, Erasmus EMC),
HKU5 pseudo (BEI: NR-48814), 2019-nCoV/SARS-CoV-2 (Natalie Thornburg, CDC), WIV1
(Ralph Baric, UNC), SHC014 (Ralph Baric), Murine CoV icA59 (BEI: NR-43000), HCoV-
OC43 (BEI: NR-52725), Bovine CoV Mebus (BEI: NR-445), Bat SARS-like CoV pseudo (BEI:
NR-44009), and Avian infectious bronchitis CoV Massachusetts (BEI: NR-43284).

A nucleotide fragment was designed for common moorhen CoV HKU21 based on
GenBank reference sequence: NC 016-996. The fragment was transcribed into RNA using
the MEGAscript T7 transcription kit (ThermoFischer, Rockville, MD, USA).

2.3. RNA Extractions and cDNA Synthesis for Viral Templates

Viral RNA was extracted with the RNeasy Mini Kit (QIAGEN, Hilden, Germany)
following the manufacturer’s protocol. cDNA was synthesized using the SuperScript
IV First-Strand Synthesis System (ThermoFischer, Rockville, MD, USA). Briefly, 2 µL of
50 ng/µL random hexamers, 1 µL dNTPs (10 mM each), 0.5 µl Ribonuclease Inhibitor
(40 U/µL) and 10.5 µL RNA were mixed and incubated for 5 min at 65 ◦C. 0.5 µL of
Ribonuclease Inhibitor (40 U/µL), 4 µL 5× SSIV Buffer, 1 µL 100 mM DTT and 0.5 µL
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Viruses 2021, 13, 599 3 of 8

SuperScriptTM IV Reverse Transcriptase (200 U/µL) were mixed and 6 µL was added to the
reaction. Reverse transcription was performed by incubation for 10 min at 25 ◦C, 15 min at
50 ◦C, and 10 min at 80 ◦C. Finally, 1 µL E. coli RNase H was added per reaction and the
samples were incubated at 37 ◦C for 20 min.

2.4. Pan-CoV PCR

Optimization of the PCR protocol comprised of evaluating primer sets at different
temperatures (49.2 ◦C–59 ◦C). It was observed that 48 ◦C was the most successful in the
first PCR and 58 ◦C was the most successful in the second PCR. The primer concentrations
(0.4 µM) remained the same throughout the experimentation process.

An amount of 2 µL of cDNA, 12.5 µL TopTaq Master Mix 2× (QIAGEN), 2.5 µL
CoraLoad (QIAGEN), 1 µL of each primer (3 primers, final concentration = 0.4 µM) and
5 µL H2O. Thermal cycling for the first round of PCR was performed at 94 ◦C for 3 min for
initial denaturation, followed by 25 cycles of 94 ◦C for 30 s, 48 ◦C for 30 s, and 72 ◦C for
one minute, and a final extension at 72 ◦C for 5 min.

For the newly designed PCR assay, a second amplification was performed using semi-
nested primers: 1 µL of PCR product, 12.5 µL TopTaq Master Mix 2× (QIAGEN), 2.5 µL
CoraLoad (QIAGEN), 1 µL of each primer (4 primers, final concentration = 0.4 µM) and
5 µL H2O. Thermal cycling for the second round of PCR was performed at 94 ◦C for 3 min,
followed by 40 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s and 72 ◦C for 1 min. Visualization of
PCR product was done on 2% agarose gel. Water controls were used as negative controls
in every PCR run (Table S1).

2.5. Limit of Detection (LOD)

cDNA from the 15 in-house CoVs was 10× serially diluted, starting at 1:10 and
ending at 1:10,000. Each dilution was assessed 10 times for each assay. The LOD was
determined to be the lowest dilution that still resulted in a band on the gel for all replicates.
Every individual CoV dilution was tested on a NanoDrop 800 (ThermoFischer, Rockville,
Maryland) in duplicate. Concentration (ng/µL) was graphed on a linear scale against the
dilution. These mapped values resulted in a unique linear equation (y = ax + b) for each
CoV, which was used to calculate copies/µL. If the R2 value was less than 0.96 all serially
diluted cDNA was remade and retested (Table S2).

2.6. Phylogenetic Tree Analysis

In total, 48 CoV sequences representing all genera were chosen and downloaded from
NCBI for analysis in Geneious Prime 2019.04. The inner set of primers were mapped to
the RdRp, and the theoretical PCR product was determined (~430 nt). This product was
aligned and then mapped using ATGC PhyML software [24]. The tree was made using
Akaike Information Criterion (AIC) with 1000 bootstraps.

2.7. Statistics

Statistical significance was determined using the Spearman’s rank correlation coeffi-
cient. Differences were deemed significant when p-value was <0.05.

3. Results
3.1. Primer Design

The Watanabe and newly designed primers were aligned to 48 CoVs which included
16 α-CoVs, 19 β-CoVs, 10 γ-CoVs and 3 δ-CoVs (Figure 1). The Pan-CoV forward primers
used the same location as the Watanabe forward primers. The Pan_CoV_R-1 and R-2 were
designed ~440 nt away from Pan_CoV_F-1. Semi-nested forward primers were designed to
increase sensitivity. Degenerate bases were added to areas with high sequence variability to
increase the likelihood of detecting CoVs. Two reverse primers were designed to ensure less
than five degenerate bases per primer. The pan-CoV outer primer set results in a ~440 nt
product and the semi-nested inner primer set results in a ~430 nt product. The Watanabe
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and Pan-CoV PCR primers were mapped to a reference genome (MERS-CoV: MF598663.1)
and the genome location is denoted by nucleotide numbers (Table S4).

Viruses 2021, 13, x FOR PEER REVIEW 4 of 9 
 

 

3. Results 
3.1. Primer Design 

The Watanabe and newly designed primers were aligned to 48 CoVs which included 
16 α-CoVs, 19 β-CoVs, 10 γ-CoVs and 3 δ-CoVs (Figure 1). The Pan-CoV forward primers 
used the same location as the Watanabe forward primers. The Pan_CoV_R-1 and R-2 were 
designed ~440 nt away from Pan_CoV_F-1. Semi-nested forward primers were designed 
to increase sensitivity. Degenerate bases were added to areas with high sequence varia-
bility to increase the likelihood of detecting CoVs. Two reverse primers were designed to 
ensure less than five degenerate bases per primer. The pan-CoV outer primer set results 
in a ~440 nt product and the semi-nested inner primer set results in a ~430 nt product. The 
Watanabe and Pan-CoV PCR primers were mapped to a reference genome (MERS-CoV: 
MF598663.1) and the genome location is denoted by nucleotide numbers (Table S4). 

 
Figure 1. Primer aligned with 48 CoV sequences that represent all four genera of CoVs. Representatives for each group 
were chosen randomly and include all tested CoVs. (A) Watanabe and (B) Pan-CoV primers aligned with CoV represent-
atives. Red: α-CoVs, yellow: β−CoVs, light blue: δ-CoVs, dark blue: γ-CoVs. * = in-house tested CoVs. 

3.2. Pan-CoV PCR Assay Limit of Detection 
After computational optimization, both primer sets were compared with regards to 

sensitivity and breadth of CoV detection. Both the Watanabe primers and Pan-CoV pri-
mers were compared against 15 CoVs; 4 α−CoVs, 9 β-CoVs, 1 γ-CoV and 1 δ-CoV. The 
Pan-CoV primers successfully detected all of the in-house CoVs with a sensitivity range 
of 1-68 copies/μL. The Watanabe primers did not detect seven of the 15 in-house CoVs. In 
our hands and at the highest concentration used, the Watanabe primers were unable to 
detect human CoV NL63, MERS-CoV, SARS-CoV-2, WIV1, SHC014, common moorhen 
CoV HKU21, and Avian CoV Massachusetts (Table S3). For the CoVs recognized, we 
found that both primer sets achieved a sensitivity of between 1–100 copies/μL. Overall, 
the newly designed assay was more sensitive than the original assay (Figure 2). We then 

Figure 1. Primer aligned with 48 CoV sequences that represent all four genera of CoVs. Representatives for each group were
chosen randomly and include all tested CoVs. (A) Watanabe and (B) Pan-CoV primers aligned with CoV representatives.
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3.2. Pan-CoV PCR Assay Limit of Detection

After computational optimization, both primer sets were compared with regards
to sensitivity and breadth of CoV detection. Both the Watanabe primers and Pan-CoV
primers were compared against 15 CoVs; 4 α−CoVs, 9 β-CoVs, 1 γ-CoV and 1 δ-CoV.
The Pan-CoV primers successfully detected all of the in-house CoVs with a sensitivity
range of 1-68 copies/µL. The Watanabe primers did not detect seven of the 15 in-house
CoVs. In our hands and at the highest concentration used, the Watanabe primers were
unable to detect human CoV NL63, MERS-CoV, SARS-CoV-2, WIV1, SHC014, common
moorhen CoV HKU21, and Avian CoV Massachusetts (Table S3). For the CoVs recognized,
we found that both primer sets achieved a sensitivity of between 1–100 copies/µL. Overall,
the newly designed assay was more sensitive than the original assay (Figure 2). We then
analyzed correlation between the sum of mismatches in primers and the LOD (Figure 3).
A significant correlation was found for the Watanabe primers (r = 0.7816, p = 0.001), but not
the pan-CoV primers (r = 0.2712, p = 0.3270).
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3.3. Phylogenetic Tree Analysis

The sequences used for the phylogenetic tree were obtained in silico by mapping
the primers to 48 CoV sequences and determining the theoretical Pan-CoV PCR product.
These sequences were aligned and mapped using ATGC PhyML software. Based on the
theoretical 430 nt product, we observed clustering of the four genera of CoVs: α-CoV,
β-CoV, γ-CoV and δ-CoV (Figure 4). We thus hypothesize that the sequence of the Pan-CoV
PCR product will allow identification of the genera (α-CoV, β-CoV, γ-CoV, and δ-CoV),
including lineages A–D of the β-CoV genera.
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4. Discussion

The availability of a sensitive and easy-to-use assay to detect coronaviruses is impor-
tant to better understand the prevalence of coronavirus in different animal host. When com-
paring the Watanabe assay against the newly designed assay which was developed as a
nested PCR assay, our assay was able to detect a wider range of CoVs with comparable
sensitivity. This is likely because of the optimization of primers. The Watanabe primer sets
were less sensitive in detecting coronavirus when there were more than four mismatches
in the primers. We found that for the Watanabe assay, an increasing number of mismatches
significantly correlated with an increase in the LOD. We did not find such a correlation for
the Pan-CoV assay (Figure 1). Importantly, the Watanabe primers contained mismatches
towards the 3′ end of the reverse primer of some CoVs, which likely contributed to the
observed reduced sensitivity. In contrast, our newly designed assay was more sensitive in
detecting all of the coronaviruses tested, including lineage B and C of the β-CoV genera
which contain SARS-CoV, SARS-CoV-2, and MERS-CoV. Based on the small PCR product,
all CoVs separated into their appropriate genera down to the β-CoV specific lineages.
The Pan-CoV PCR product can be sequenced using the Pan-CoV semi-nested primers.
As demonstrated by the in silico results, this sequence will allow placement in the CoV
phylogenetic tree. Based on this result, one can decide to perform full genome sequencing
using Illumina and Next Generation Sequencing. With the recent emergence of SARS-
CoV-2, increased research efforts will be focused at the origin and zoonotic potential of
CoVs. Sensitive pan-CoV assays will be crucial in order to study the coronavirus diversity
in natural reservoirs, production animals and wet markets. We would expect to detect
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γ-CoVs and δ-CoVs predominately in avian species [25]. In monkey, feline, canine, rodent,
and bat species, we would expect to see α-CoVs and β-CoVs [26].

Our modified assay is semi-nested, whereas the original Watanabe assay used a single
PCR. Although sensitivity of a semi-nested PCR is higher, there are several drawbacks to
this approach: the method is more time-consuming, more costly and most importantly the
chance of contamination is higher. When we compared the results of the Watanabe assay
to the results of our first PCR (Table S3), we noticed an improvement in the ability to detect
CoVs (Watanabe detected 8 out of 15, Pan CoV detected 14 out of 15). Thus, if one prefers
not to utilize a semi-nested PCR, the redesigned primers will still provide an improvement
for single PCR.

In conclusion, our assay was able to reliably detect all in-house CoVs, which repre-
sented the four CoV genera. This could be an important tool in detecting potential spillover
events from reservoir hosts. The PCR product can be sequenced to identify known and
novel CoV strains and track circulation in hosts. The Pan-CoV PCR, demonstrated in
this paper, will provide a resource for future research to identify novel CoVs, monitor
circulation CoVs and detect potential spillover events.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13040599/s1, Table S1: Pan-CoV PCR protocol with primers and thermocycling conditions.
Table S2: Scatter plots and linear equations for in-house CoV cDNA. Table S3: Gels showing the seven
tested CoVs detected by the Pan-CoV primers but not by the Watanabe primers. Table S4: Placing
primers in MERS-CoV reference sequence. Table S5: Acknowledgements for the sequences used.
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