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Abstract

A hallmark of human intelligence is the ability to adapt to new situations, by applying learned 

rules to new content (systematicity) and thereby enabling an open-ended number of inferences and 

actions (generativity). Here, we propose that the human brain accomplishes these feats through 

pathways in the parietal cortex that encode the abstract structure of space, events, and tasks, 

and pathways in the temporal cortex that encode information about specific people, places, and 

things (content). Recent neural network models show how the separation of structure and content 

might emerge through a combination of architectural biases and learning, and these networks 

show dramatic improvements in the ability to capture systematic, generative behavior. We close 

by considering how the hippocampal formation may form integrative memories that enable rapid 

learning of new structure and content representations.

The ability to directly transfer existing knowledge to new situations by applying learned 

rules to new content (systematicity) and thereby generate an open-ended number of different 

behaviors (generativity) is particularly advanced in humans relative to other animals. 

However, this ability is nevertheless shared in a limited but instructive way with even 

relatively simple computer programs. For example, it is easy to write a function that takes 

two arbitrary strings as arguments, and systematically returns the concatenation of those two 

strings. With just a bit more logic, calling such a function repeatedly can easily construct 

an open-ended number of sentences. However, learning to do something like this in a 

neurally-plausible manner is much more challenging, and neural network models continue 

to be criticized as lacking in these signature human abilities, with much of their recent 

successes potentially attributable to something closer to rote memorization of increasingly 

large datasets (Fodor & Pylyshyn, 1988; Lake & Baroni, 2017; Marcus, 2018; O’Reilly et 

al., 2014; Plaut, McClelland, Seidenberg, & Patterson, 1996). Likewise, empirical cognitive 

neuroscience is only beginning to uncover the relevant brain areas involved in these abilities 

(Constantinescu, O’Reilly, & Behrens, 2016; Frankland & Greene, 2020; Park, Miller, Nili, 

Ranganath, & Boorman, 2020; Summerfield, Luyckx, & Sheahan, 2020).

oreilly@ucdavis.edu . 

R. C. O’Reilly is Chief Scientist at eCortex, Inc., which may derive indirect benefit from the work presented here.

HHS Public Access
Author manuscript
Curr Dir Psychol Sci. Author manuscript; available in PMC 2022 June 30.

Published in final edited form as:
Curr Dir Psychol Sci. 2022 April ; 31(2): 124–130. doi:10.1177/09637214211049233.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The essential trick employed by the simple concatenation function is that arbitrary content 

can be routed into it and operated upon generically, independent of any details of the 

content. The cognitive equivalent of this, which is widely recognized as critical for human 

systematic behavior (Fodor & Pylyshyn, 1988) is a separation of structure (i.e., the rule-

processing system, akin to the function) from content. In language, syntax has traditionally 

been thought of as an example of content-independent structure, and Chomsky’s famous 

example: “colorless green ideas sleep furiously” demonstrates that people can accurately 

judge grammatical correctness with arbitrary content. Without adopting traditional abstract 

symbolic syntactic frameworks, understanding how something like content-independent 

syntactic structure can be learned and represented via known biological mechanisms is 

thus a critical step toward advancing our understanding of the neural basis of our signature 

human abilities.

In this paper, we review cognitive and neural evidence consistent with the separation 

between structure and content across various cognitive domains, and recent neural network 

models that demonstrate how such a separation might emerge through a combination of 

architectural biases and learning, producing significantly greater systematicity. Critically, 

structure and content also need to interact and be integrated in various ways, and certain 

brain areas appear to be specialized for this integration, so as is often the case, the brain is 

likely to apply multiple representational strategies in parallel.

Structure and Content in Cognitive Models

The FINST (fingers of instantiation) framework of Pylyshyn (1989) provides an early, 

simple model for how structure can be represented independent of specific content and also 

maps well onto cognitive neuroscience data reviewed in the next section. The key idea is 

that abstract, content-independent, pointer-like “fingers” can index a small set (up to about 

4) of different visual locations at a time. These content-independent pointers were originally 

proposed to serve as place-holders for encoding relationships among items in a scene (e.g., 

INSIDE(a,b)).

The core ideas in the FINST framework can be extended to represent any kind of abstract 

structure that specifies the relationships between different indexed elements. For example, 

to describe the action of giving, there are distinct functional roles (giver, recipient, item), 

and each of these could be represented using a separate FINST-like thematic role pointer, 

instead of using the semantic content specific to a particular situation (e.g., “Radhika 

gave Charan a gift”). Because giving is encoded in terms of content-independent roles 

indexed by FINST-like pointers, these representations can automatically generalize to new 

contents, and additional inferences could be made about the properties and implications 

of the structural relationship (e.g., the giver no longer has the item, and may have some 

expectation of reciprocity depending on the nature of the transaction and relationship). 

Encoding sufficiently rich structural knowledge to do so requires much more than FINST’s, 

but encoding this knowledge in a relatively content-independent manner would clearly 

support systematic reasoning.
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In short, FINST-like indexes provide a plausible attention-based neural mechanism for 

role-filler variable slots in the context of classical symbolic representational frameworks. 

At a cognitive level, the kinds of elaborated structural representations and processes that 

have been studied include a range of different levels of complexity, from verb / action 

based elements as in the giving example (Boylan, Trueswell, & Thompson-Schill, 2015) to 

more elaborated schemas or scripts describing longer sequences of events (e.g., the schema 

associated with a kid’s birthday party), as we discuss below. The ability to transfer structural 

knowledge across content domains is also central to established models of analogical 

reasoning (Gentner & Holyoak, 1997) (e.g., the relational structure of orbiting can be 

transferred from the planetary to atomic scale).

Structure Representation in the Human Brain

There is a well-established distinction between spatial and object processing in the human 

brain, which can be reframed as one example of how the brain separates structure and 

content via distinct, but interacting pathways. Visual (and auditory) networks in the brain 

route sensory input into distinct dorsal and ventral stream pathways (Ungerleider & 

Mishkin, 1982), with the ventral visual pathway extending from early visual cortex to 

inferotemporal (IT) cortex characterized as the What pathway, specialized for object or 

scene recognition (i.e., visual content). The dorsal pathway through the parietal lobe is 

specialized for spatial Where processing, based on extensive evidence that this pathway 

represents spatial and relational information in a relatively content-independent manner.

The potential for the dorsal stream pathway to support systematic structure-sensitive 

processing was already well developed by Pylyshyn (1989), and has been incorporated 

into psycholinguistic theories (Frankland & Greene, 2020; Landau & Jackendoff, 1993). 

Furthermore, there is substantial evidence that posterior parietal cortex encodes nonspatial 

structural information as well. First, it is clear that the parietal lobe plays a critical role in the 

sensory guidance of action performance (Orban, Van Essen, & Vanduffel, 2004), as captured 

in the What vs. How ventral / dorsal framework (Goodale & Milner, 1992). In humans, 

this action coding extends to the representation of verb-based argument structure (e.g., as 

in the giving example above) in the inferior parietal area (angular gyrus), supporting the 

core of structure at the sentence level (Binder & Desai, 2011; Boylan et al., 2015; Palmer, 

Bonial, & Hwang, 2016). More abstract structural and linguistic concepts are thought to 

build directly upon these parietal action, space and time foundations (Frankland & Greene, 

2020; Landau & Jackendoff, 1993), including event representations in higher-order parietal 

areas as discussed below.

It is well established that parietal spatial and action representations anticipate the effects 

of eye, head, or body movements (Cavanagh, Hunt, Afraz, & Rolfs, 2010) — this 

suggests that acquisition of structure in the parietal lobe could be based on predictive 
learning (O’Reilly, Russin, Zolfaghar, & Rohrlich, 2021). Specifically, learning driven 

by the difference between a predicted sensory outcome of an action and the subsequent 

sensory input can drive improved predictions and shape the formation of more abstract 

structural representations to more efficiently generate these predictions. While it is fairly 

straightforward to learn to predict specific sensory outcomes from motor actions, an 
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important area of current research is to determine the extent to which more abstract, 

structural representations can emerge, capturing the consistent, generalizable relationships 

that hold across a large number of such actions (Summerfield et al., 2020).

Even if the dorsal-ventral streams separately encode structure and content in the brain, 

fundamental questions remain about how these streams interact at the level of detailed 

neural mechanisms, to support systematic cognitive function. A recent neural network model 

provides a useful example for how FINST-like attentional pointers can operate on newly-

learned content information, in the context of separate structure and content representations 

(Russin, Jo, O’Reilly, & Bengio, 2020). Unlike many existing models that have relied upon 

various hand-coded mechanisms to directly emulate programming-language like variable-

binding functionality in neural hardware, this model learned entirely via error-driven 

learning, with only very broad, biologically plausible architectural constraints between two 

processing pathways.

One such pathway had full access to the temporal ordering of words within a sentence, 

while the other was only able to process the single current word at any given time (Figure 

1). Furthermore, the temporal-order sensitive pathway could only influence the network 

output via attentional modulation of the other pathway (similar to the FINST-like attentional 

pointers). Distinctions such as these could plausibly derive from evolved differences in 

the initial wiring of the neural architecture, providing affordances upon which subsequent 

learning operates.

With these constraints in place, the network learned syntax-like structural representations in 

the temporal-order pathway, and semantic-like content information in the other pathway, and 

in so doing, exhibited significantly more systematic behavior on challenging out-of-domain 

generalization tests than unstructured models (Lake & Baroni, 2017). Specifically, when 

the model was trained on examples generated from a simple phrase structure grammar, the 

syntax-like pathway was able to direct attention to the proper sequence of content items 

based on commands like “turn left twice,” and generalize this to a novel verb, e.g., “jump 

twice.” The ability of attention-like mechanisms to drive this FINST-style indexing into 

novel content items is consistent with the central importance of such mechanisms in the 

neural basis of structure / content dynamics. Furthermore, this model demonstrates how 

learned, distributed neural representations can take on a syntax-like role without traditional 

explicit symbolic grammar trees. However, more work is needed to understand the nature of 

structure representations in the brain supporting the more complex and sophisticated forms 

of human cognition, compared to these simplified models.

Interestingly, a similar distinction between structure and content pathways was achieved 

in a fairly different way using a variable-binding system based on an explicit slot-filler 

(key-value) lookup table mechanism (Webb, Sinha, & Cohen, 2021). In this model, the 

structure processing pathway learned to control this lookup table independent of the specific 

content stored there, while the content pathway learned representations of individual items. 

This architectural structure / content separation enabled the model to exhibit much more 

systematic behavior than comparison models without such a separation. Other related 

architectures are discussed in Akyürek and Andreas (2021).
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While these models provide important initial demonstrations of how a separation between 

structure and content can support systematicity, it is critical to appreciate that many real-

world situations also require strong interactions between the two. This has perhaps been 

most extensively studied in the case of pronouncing English words: as every English-as-a-

second-language learner knows too well, the number of exceptions and sub-regularities are 

mind-spinning, and monolithic neural network pathways may provide the most appropriate 

mechanism for learning these mappings (Plaut et al., 1996). Likewise, the difference in 

parsing “Fruit flies like a banana” vs. “Time flies like an arrow” requires an interaction 

between syntax and semantics. In the visual domain, these interactions can be illustrated in 

the case of viewing a scene of a kitchen, where incoming content information may activate 

structural representations of typical kitchens, which then guide visual attention and semantic 

processing (Hayes & Henderson, 2019). In other words, human cognition likely represents a 

combination of separated and interacting streams (Franklin, Norman, Ranganath, Zacks, & 

Gershman, 2020; O’Reilly et al., 2014).

Binding of Structure and Content in the Medial Temporal Lobes

So far, we have used the classic model of the dorsal and ventral streams as one example 

of the separation of structure and content, but structure exists across multiple scales. For 

example, structural knowledge is required to parse and comprehend individual sentences, 

but comprehending a sentence within the context of a larger text passage often requires 

a mental representation of the structure of events depicted in that passage. Recent fMRI 

research has uncovered a candidate set of brain regions that may represent the abstract 

structure of events — the Posterior Medial (PM) network — and regions that may represent 

the characteristics of the specific people, places and things that serve as event content 

— the Anterior Temporal (AT) network (Figure 2). The PM and AT networks can be 

considered as anatomically higher up from the classic dorsal (PM) and ventral (AT) streams 

(Kravitz, Saleem, Baker, & Mishkin, 2011; Ranganath & Ritchey, 2012). Although these 

networks are distinct, the hippocampus is in a key position to integrate information across 

the two networks. AT network regions project predominantly to the lateral entorhinal cortex 

(LEC), and PM network regions mostly project to the medial entorhinal cortex (MEC). 

The hippocampus proper then binds information from these streams together into unitary 

episodic memories (Ranganath & Ritchey, 2012). Considerable evidence suggests that the 

PM and AT networks differentially represent information about structure and content, at 

higher, more complex levels and over longer spatiotemporal scales than the more posterior 

dorsal and ventral streams. For example, the PM network encodes the structure of events and 

spatial contexts and participates in the reconstruction of past events and the simulation of 

future events (Ranganath & Ritchey, 2012), and is also central for discourse comprehension 

(Martín-Loeches, Casado, Hernández-Tamames, & Álvarez-Linera, 2008).

We can think of the hippocampus, PM, and AT networks as complementary learning systems 

(Russin, Zolfaghar, Park, Boorman, & O’Reilly, 2021), where the PM and AT networks 

are specialized for slow, integrative learning leading to highly generalizable representations, 

complementing the rapid episodic memory supported by the hippocampus. By capturing 

states of PM and AT network regions at critical moments, the hippocampus is in a unique 

position to rapidly form memories that combine information about structure and content 
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that is encountered during a specific period of time (i.e., an episode). When encountering a 

similar item or situation later on, hippocampal pattern completion can lead to reinstatement 

of previous states in the PM and AT networks, thereby facilitating the generation of a mental 

model of the current situation in a new or ambiguous context (Franklin et al., 2020).

Although they embody principles that are largely consistent with the ones proposed here, 

other computational models (Stachenfeld, Botvinick, & Gershman, 2017; Whittington et 

al., 2020) have placed more emphasis on the role of the hexagonally-tiled grid cells in 

the MEC, which are thought to represent the topological structure of spatial environments, 

and hippocampal place cells, which are thought to encode specific locations within an 

environment. These models suggest that the MEC and hippocampus can represent any kind 

of task in a 2D state-space, consistent with fMRI studies showing MEC activity patterns 

characteristic of grid cells during the performance of novel tasks (Constantinescu et al., 

2016). Notably, however, these and other studies of humans suggest that grid cells and grid 

cell-like fMRI activity patterns are evident throughout the PM network and in the medial 

prefrontal cortex (Jacobs et al., 2013).

Further work is needed to disentangle the unique contributions of the MEC relative to 

earlier parietal-lobe pathways in structure representation. One possibility is that the use of 

structural knowledge to guide flexible behavior is driven by the PM network, and the MEC 

plays an important role in the use of episodic memory to support rapid structure learning 

by the PM network. For instance, it is possible that the MEC grid cell network might 

perform an initial step of pattern separation on inputs from the PM network, moving them 

apart in representational space and thus making them easier to learn without interference 

(Frankland et al, in prep). This is consistent with results from lesion studies suggesting 

that hippocampal or MEC lesions can significantly impair spatial learning, while generally 

sparing navigation in familiar environments (Hales et al., 2014; Kolarik et al., 2016).

Conclusions

There is good reason to believe that the architecture of the neocortex is optimized to 

support systematic and generative behavior by bifurcating sensory information into separate 

structure and content pathways along the dorsal and ventral streams. The hierarchically 

organized pathways through the parietal lobe generate different levels of representations 

that encode structural relationships reliably associated with different actions and events. 

Such representations capture the general “logic” of actions and events: how things move, 

transform, and interact over space and time, in a way that can be readily applied to novel 

content. Significant work remains to be done in order to establish the nature of structure 

representations. By understanding the evolution of learning and dynamics across interacting 

brain networks, we can make significant progress toward understanding the nature of the 

representations that give rise to our uniquely human intelligence.
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hippocampal system, with nice illustrations of different forms of structure and how they can 
support systematic behavior in different domains.
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Figure 1: 
Diagram depicting a neural network model (Russin et al., 2020) with separate pathways 

for learning structure (syntax) and content (semantics). The structure pathway was recurrent 

(as shown by the blue self-connection) and had full access to the temporal ordering of 

the words in the instructions. However, it could only influence the output actions taken at 

each time step through an attention mechanism (indicated by the blue dotted line and open 

circle). The character of the representations in these different pathways facilitated systematic 

generalization, but was not built in, and emerged due to the architectural constraints imposed 

by the separation.
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Figure 2: 
Two cortico-hippocampal networks. Top: Surface renderings depict the neocortical regions 

in the Posterior Medial (PM) Network (cyan), implicated in schema representation, and 

Anterior Temporal (AT) Network (magenta), implicated in representations of people and 

things. Bottom: A diagram schematically depicts the pathways by which information 

from the AT and PM Networks is directed to parallel pathways in the medial temporal 

lobes before fully converging in the hippocampus. PRC = Perirhinal cortex; PHC = 

Parahippocampal cortex; RSC = Retrosplenial cortex; LEC = Lateral entorhinal cortex; 

MEC = Medial entorhinal cortex.
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