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The resuspension and dispersion of particles occur in industrial fluid dynamic processes as well as
environmental and geophysical situations. In this paper, we experimentally investigate the ability to fluidize
a granular bed with a vertical gradient of temperature. Using laboratory experiments with a localized heat
source, we observe a large entrainment of particles into the fluid volume beyond a threshold temperature. The
buoyancy-driven fluidized bed then leads to the transport of solid particles through the generation of particle-laden
plumes. We show that the destabilization process is driven by the thermal conductivity inside the granular bed
and demonstrate that the threshold temperature depends on the thickness of the granular bed and the buoyancy
number, i.e., the ratio of the stabilizing density contrast to the destabilizing thermal density contrast.

DOI: 10.1103/PhysRevE.96.032903

I. INTRODUCTION

The transport of solid particles induced by shearing
particulate beds with water or air flow occurs in many
geophysical events, such as in river beds and landscape
evolution, wind-blown sand, and dust emission [1,2], but also
in industrial processes: filtration systems or the food industry,
for instance [3–7]. Depending on the nature, geometry, and
regime of the fluid flow, different types of particle movements
can be observed. Conventionally, rolling and sliding motion,
saltation, and suspension are distinguished depending on the
Reynolds number. In other configurations, when the granular
bed is subject to an ascending flow of liquid or gas, the
normal stress can fluidize the particulate medium and maintain
grains in suspension, which leads to particular properties and
characteristics of the medium (see, e.g., [8]). This situation is
observed for instance during the rise of air in an immersed
granular bed [9,10].

In addition of these mechanical mechanisms of resuspen-
sion, a heat source inside or below the sediment may destabi-
lize a loose random packing of granular matter. Resuspension
due to thermal effects is of great importance to understand, for
example, volcanic ash clouds [11] or seafloor hydrothermal
systems such as black smokers. Whereas the resuspension and
fluidization of an immersed granular bed by fluid flows such as
vortices [12–15], impacting jets [16,17], shear flows [18,19],
or gas crossing a liquid-saturated granular bed have been the
focus of many studies, the ability of thermal convection to
resuspend particles remains poorly understood. Indeed, in
recent decades particular attention has been focused on the
settling of particles, initially in suspension, in steady cellular
convection but only few studies [20] have investigated the
destabilization process of an initially loose randomly packed
granular bed driven by thermal convection.

Several scenarios are possible to induce the reentrainment
of solid particles from the bottom: erosion by the bottom shear
stress induced by convection current or fluidization by emer-
gence of particle-laden plumes. To explore the mechanisms

*Corresponding author: morize@fast.u-psud.fr

of the resuspension process by thermal convection, Solomatov
et al. [20,21] used a three-dimensional experimental setup with
aqueous solution and polystyrene particles which are initially
sedimented to form a loose random packing of granular
matter. The bottom wall is uniformly heated from below to
ensure the destabilization process of the sedimented particles.
The authors defined a Shields number, Sh, which compares
the ratio of the destabilizing hydrodynamic stress τ exerted
on a grain to its stabilizing apparent weight �ρgd, where
�ρ = ρp − ρl is the density difference between the grains
and the ambient fluid, g is the acceleration of gravity, and d

is the mean particle diameter. The resuspension of particles
from the bottom is driven by the tangential buoyancy stress
τ = βρlg�T δT (where β is the thermal expansion coefficient,
�T is the temperature difference between the bottom and the
top of the cell, and δT is the thermal boundary layer thickness)
at the top of the granular bed induced by convection current:
particles roll and slide horizontally and can form dunes. At the
crest of a dune, the tangential buoyancy stress is vertical and
can lead to the resuspension of particles. The buoyancy Shields
number, separating a regime without bed motion from a regime
with particle entrainment is approximatively constant and of
the order of 0.1 in the experiments. On the other hand, Martin
and Nokes [22] used a similar setup but a different initial state
where particles are in suspension. The reentrainment of parti-
cles occurred by the emergence of plumes from the bottom but
the authors were unable to extract a criterion for reentrainment.

The aim of the present work is to investigate the resus-
pension of a granular bed of particles by fluidization from
a localized heat source. This situation is different from the
uniform heating used in previous studies [20] where the gran-
ular bed was eroded over a long time by shear flows induced
by the thermal effects and the particles were susceptible to
rolling, sliding, and being carried away at the bed surface by
saltation [21]. Here, we demonstrate that at larger temperature
difference the fluidization of the granular bed can also occur
from the bottom and actively participate in the resuspension
and reentrainment of particles into the bulk through the
generation of particle-laden plumes. We focus on the scaling
of this fluidization threshold with the relevant dimensionless
parameters that describe this destabilization process.
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FIG. 1. Schematic of the experimental setup.

II. EXPERIMENTAL METHODS

We study the resuspension of spherical polystyrene
particles (Dynoseeds purchased from MicroBeads) of diameter
2a = 250 ± 10 μm and a density ρ0

p = 1.049 ± 0.003 g cm−3

[23] induced by a localized heating at the bottom of the
granular bed. The setup used in the resuspension experiments
is shown in Fig. 1 and consists of a rectangular Poly(methyl
methacrylate) tank of internal dimensions 20 cm in length,
b = 1.2 cm in width and H = 20 cm in height. Given the
aspect ratio of the tank, no significant motion of the fluid takes
place in the short direction. The temperature is imposed at the
top and the bottom of the tank through two copper plates whose
temperatures are imposed by two circulating thermostated
baths and measured by platinum thermocouples located inside
the plates. The top copper plate is 20 cm wide and covers the
tank, whereas the bottom copper plate is centered and has a
width of 4 cm, resulting in a localized heating.

The working fluid is composed of water with different
concentrations of calcium chloride, CaCl2. The quantity of
salt is varied to increase the density of the working fluid in
the range ρl = [1, 1.049] g cm−3 (measured at 20 ◦C with a
densimeter Anton Paar DMA 35; see Appendix). In addition,
a small amount of sodium dodecyl sulfate surfactant is added
to the water to initially disperse the dry particles into water
and avoid the trapping of air bubbles. Each experiment is
performed with a new suspension of particles that is allowed
to settle and form a loose randomly packed granular bed at the
bottom of the tank. The resulting compacity of the granular
bed, i.e., the solid volume fraction φ = Vp/Vtot (where Vp

is the volume of the particles and Vtot is the volume of the
liquid and the particles) is equal to φ = 0.57 ± 0.01 and its
controlled thickness h lies in the range 1–30 mm. A vertical
laser sheet is set through the short side of the tank so that the
fluid and the granular bed are clearly visible. The evolution
of the granular bed is recorded using a Phantom MIRO M110
camera (resolution 1200 × 800 pixels) at 1 frame/s.

At the beginning of each experiment, the thermostated baths
are first allowed to reach their assigned temperature, leading
to a top temperature Tc and a bottom temperature in the copper
plate, Th. Initially, we set Tc = Th = T0 = 15 ◦C. We then wait
for a sufficiently long time, typically 30 min, to ensure that
the initial temperature in the system is homogeneous and
equal to T0 = 15 ◦C. At time t = 0, we suddenly increase
the temperature of the bottom copper plate to the reference
temperature Th > T0. Experimentally, providing a sudden
increase in temperature of the bottom plate is challenging and
we rely on a third thermostated bath that is set at θh prior to
the experiment. Switching the fluid flow in the bottom plate
to this thermostated bath leads to a progressive increase of the
temperature of the bottom copper plate, Th, while the upper
copper plate remains at Tc = T0 = 15 ◦C. The temperature Th

increases continuously and, when it reaches a critical value,
we observe the sudden destabilization and resuspension of the
granular bed.

III. EXPERIMENTAL RESULTS

A. Phenomenology

A typical experiment is shown in Fig. 2(a) where a time
lapse shows the evolution of the granular bed. Initially, the
temperature profile is constant in the granular and the fluid
layers, equal to T0 = 15 ◦C, and the resulting density profile
of the liquid is constant in both regions and is equal to ρ0

l . The
density of the polystyrene beads at T0, ρ0

p, is larger than the den-
sity of the liquid, ρ0

l , and therefore the granular bed is stable.
At time t = 0, the bottom copper plate is connected to the hot
thermostated bath at the temperature θh, and the temperature Th

in the bottom plate then starts to increase while the temperature
Tc of the top plate remains constant as shown in Fig. 2(b). The
progressive increase of the temperature of the hot source, Th,
leads to the increase of the temperature in the bottom region of
the cell and therefore a decrease of the liquid and particle
densities in the granular bed. Because of the thermal loss
between the thermostated bath, whose temperature θh is fixed,
and the bottom copper plate, the final temperature T

f

h is smaller
than θh. Indeed, the thermostated bath is connected to the
bottom copper plate through tubings, which, even insulated,
lead to heat transfer with the ambient atmosphere and lead to a
temperature T

f

h smaller than θh. Nevertheless, the temperature
probe measures Th during the entire duration of an experiment
and we therefore refer to this temperature in the following.

During the first phase, no motion of the granular bed occurs
(corresponding to region 1 in Fig. 2). Then, at a temperature
threshold T ∗

h , the granular bed starts to destabilize with the
formation of a small corrugation that later grows in time
(regions 2 and 3). The transition from a flat granular bed
to the rise of a particle-laden plume occurs suddenly over
a time scale that is small compared to the duration of the entire
experiment and the evolution of the temperature at the bottom
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FIG. 2. (a) Time lapse of an experiment showing the granular bed
(1) before and (2) after the resuspension threshold and (3), (4) the later
evolution of the particle-laden plume. The experimental parameters
are h = 10 mm, the temperature of the thermostated bath θh = 65 ◦C,
and �ρ0 = 1.98 kg m−3. (b) Time evolution of the temperature in
the top, Tc (crosses), and the bottom, Th (squares), of the cell as a
function of time. The horizontal dotted line indicates the resuspension
threshold. The experimental pictures (1)–(4) are also indicated in the
plot.

of the cell. We can therefore accurately estimate the time and
the corresponding temperature Th at the bottom plate at which
the granular bed becomes unstable, which in this example
corresponds to t = 135 s and T ∗

h � 38 ◦C.
In the following, we rationalize quantitatively the threshold

temperature T ∗
h and the destabilization time at which the

granular bed starts to fluidize. We systematically investigate
the influence of the temperature of the hot source, Th, the initial
density contrast between the fluid and the particles, �ρ0, and
the thickness of the granular bed, h.

B. Time evolution of Th

We observe that a threshold temperature T ∗
h needs to

be reached to resuspend locally the granular bed. Because
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FIG. 3. Time evolution of the temperature Th at the bottom
copper plate for different temperatures of the hot thermostated bath:
θh = 60 ◦C (red), 65 ◦C (blue), 70 ◦C (green), 75 ◦C (cyan), and 80 ◦C
(magenta). The open black circles indicates the threshold temperature
T ∗

h and the corresponding destabilization time tdes in each situation.
The horizontal black dotted line indicates the value of T ∗

h for a
slow increase of temperature. In these experiments, h = 10 mm and
�ρ0 = 2.6 kg m−3. Inset: Time tdes needed to reach the threshold in
temperature as a function of the steady temperature of the bottom
plate, T

f

h . The vertical black dotted line indicates T ∗
h .

our experimental approach involves a transient increase of
the temperature of the bottom copper plate, we characterize
the influence of this transient dynamic on the threshold
temperature. To do so, we consider a granular bed of fixed
height h = 10 mm and a fixed initial density contrast �ρ0 =
ρ0

p − ρ0
l = 2.6 kg m−3. We then impose different temperatures

at the thermostated bath connected to the bottom hot source,
θh = [60, 65, 70, 75, 80] ◦C, keeping the temperature at the
top of the cell constant and equal to Tc = 15 ◦C during
the entire experiment. As mentioned previously, the thermal
loss between the thermostated bath and the bottom copper
plate leads to a temperature T

f

h reached at the bottom of
the cell significantly smaller than the temperature θh of the
thermostated bath. Experimentally, we determine that T

f

h is in
the range 42−64 ◦C.

The time evolution of the temperature at the bottom plate,
as recorded by the temperature probe, is shown in Fig. 3 for
varying values of the temperature θh of the hot thermalized
bath. The threshold temperature T ∗

h at which the granular
bed starts to resuspend is also reported. We observe that
the temperature of the bottom plate increases quickly at
the beginning and then the increase in temperature becomes
slower. In all the different situations considered here where
T

f

h > T ∗
h , we observe the resuspension of the granular bed at

sufficiently long time. In addition, the threshold temperature
remains approximatively constant, T ∗

h = 41.6 ± 0.8 ◦C, which
suggests that, for a constant thickness of granular layer
sufficiently large, here h = 10 mm, and given density contrast,
the threshold temperature T ∗

h does not depend significantly
on the dynamics of the system. However, we are going to
see in the following that the transient effects are required to
describe the system when varying the granular bed thickness h.
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FIG. 4. Time evolution of the bottom plate temperature Th (con-
tinuous line) and threshold values (open symbols) for various density
contrast �ρ0 = ρ0

p − ρ0
l (blue square, �ρ0 = 1.6 kg m−3; red circle,

�ρ0 = 2.6 kg m−3; green diamond, �ρ0 = 3.5 kg m−3; cyan triangle,
�ρ0 = 4.0 kg m−3). Inset: Threshold temperature T ∗

h as a function of
�ρ0. The dotted line is a linear fit. The experimental parameters are
h = 10 mm and the temperature of the hot thermostated bath is set at
θh = 65 ◦C.

Although the threshold temperature for the destabilization
of the granular bed does not seem to depend significantly on
the imposed value of the temperature of the hot thermostated
bath θh, the time needed to reach the destabilization threshold,
T ∗

h , increases sharply when θh is decreased. This observation
is mainly explained by the thermodynamics of the system:
the time needed to reach the threshold temperature increases
when decreasing the temperature of the hot source, leading to
a longer waiting time. In addition, if the temperature of the
bottom plate remains smaller than T ∗

h , no destabilization of
the granular bed is observed at long time. In the following, we
consider a heat flux at the hot source that leads to a maximum
steady value of the bottom plate of T

f

h � 50 ◦C.

C. Density contrast between the fluid and the particles, �ρ0

Another relevant parameter in the destabilization process
is the density contrast between the fluid and the particles,
�ρ0. We thus vary the density of the fluid, ρ0

l , by tuning
the concentration of CaCl2 salt so that �ρ0 = ρ0

p − ρ0
l ranges

from 1.6 to 4.1 kg m−3 (see Appendix). No resuspension of
the granular bed has been observed with further increase of
the density difference �ρ0 within the range of temperatures
that we have access to in our experiments. For a constant
bed thickness h = 10 mm and θh = 65 ◦C, we report in
Fig. 4 that the resuspension of the granular bed occurs
at different temperature thresholds. Indeed, the smaller the
density contrast �ρ0 is, the sooner the resuspension takes
place during the temperature ramp, which corresponds to
smaller temperature threshold of the bottom plate T ∗

h . The
inset of Fig. 4 highlights that the temperature threshold T ∗

h

increases linearly with the density contrast �ρ0 in the range
of parameters that we have considered. We come back to this
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T
f c

(o
C

)

h (mm)

t d
e
s
(s

)

1

2T
∗ h

FIG. 5. Temperature threshold T ∗
h for increasing thickness of the

granular bed, h. Red circles are the experimental results and the black
dotted line shows T ∗

h ∝ h1/2. Inset: Time elapsed, tdes, prior to the
resuspension threshold for increasing thickness of the granular bed h.
The temperature of the hot thermostated bath is set at θh = 65 ◦C and
�ρ0 = 1.98 kg m−3.

point in the next section when we rationalize our results with
dimensionless parameters.

D. Granular bed thickness h

Finally, we investigate the influence of the granular bed
thickness on the temperature threshold and report the results
in Fig. 5. We keep the density of the liquid and the
particles constant, and using the same temperature of the hot
thermostated bath θh, we measure the temperature threshold
at which the resuspension occurs as well as the time elapsed
before the destabilization, tdes. We observe that the threshold
temperature increases with the thickness of the granular layer
following a trend close to T ∗

h ∝ h1/2. In addition, the time
tdes follows a slope tdes ∝ h2. This scaling suggests that the
mechanism responsible for the resuspension of the granular
bed is diffusive.

IV. DISCUSSION

The experimental results highlight that an increase in the
density contrast �ρ0 or the granular bed thickness h leads
to a larger temperature threshold T ∗

h for destabilization. In
this section, we show that these results can be rationalized by
considering buoyancy effects in the granular bed.

A. Buoyancy number

Buoyancy-driven flows in a Hele-Shaw cell are commonly
described using a modified Rayleigh number defined as [24]

Ra = gβ�T Hb2

12νD
, (1)

where g is the acceleration due to gravity, b and H the width
and height of the cell, respectively, β is the thermal expansion
coefficient, ν is the kinematic viscosity, and D is the thermal
diffusivity. For large enough Rayleigh number, the system is
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unstable and natural convection is observed. In the present
study, the Rayleigh number lies in the range [103, 106], and
we observe large recirculation cells in the top layer (liquid)
even below the resuspension threshold. We therefore need to
consider an additional dimensionless number to explain the
global destabilization of the granular bed.

Here, the presence of a granular bed at the bottom of the
cell leads to a more complex situation as we now observe
the possible destabilization of the granular layer beyond a
temperature threshold. This situation can be related to past
studies that have considered a density stratification in two-layer
Newtonian fluids when the two fluids have different densities
and viscosities and there is no surface tension between the two
fluid layers [25–27]. In this situation, it has been shown that
the onset of convection can be either stationary or oscillatory
depending on a dimensionless number, the buoyancy number
B, defined as the ratio of the stabilizing density anomaly to
the destabilizing thermal density anomaly:

B = ρ0
p − ρ0

l

ρ0
l β�T

(2)

where �T = Th − Tc. Depending on the buoyancy number
B, two main regimes have been identified. Typically, when
B is large enough, i.e., B larger than 0.5–1, convective flows
develop above and/or below the flat interface to obtain the
so-called stratified regime. When the buoyancy number B is
small enough, typically smaller than 0.3–0.5, the interface
can become unstable and spontaneous flow occurs in the
whole tank, leading to the mixing of the two initial fluid
layers in the bed and above. Using this approach, we rescale
the experimental results presented in Secs. III B and III C,
obtained for a given thickness h of the immersed granular bed
and varying the density contrast and the temperature of the
thermostated bath. The results reported in Fig. 6 highlight that
the destabilization of the granular bed occurs for a constant
value of the buoyancy number B = Bc � 0.34 at h = 10 mm.

In Fig. 7, we also report the evolution of the critical
buoyancy number Bc for varying h while the other parameters

FIG. 7. Evolution of the critical buoyancy number Bc varying the
thickness of the granular bed, h. The temperature of the thermostated
bath is set at θh = 65 ◦C and �ρ0 = 1.98 kg m−3. The black solid line
is the best polynomial fit and is a guide for the eye. In the light yellow
region, the granular bed is stable, whereas resuspension occurs in the
dark blue region.

are kept constant. These results show that Bc decreases
when increasing the rescaled granular bed thickness h/H as
observed for two Newtonian fluids by Le Bars and Davaille
[27]. However, such an approach does not explain the evolution
of tdes with the bed thickness.

B. Destabilization threshold

We consider a granular bed of compacity φ made of
polystyrene particles of density ρ0

p. Initially, the system is at
temperature Tc = 15 ◦C. We consider an infinitesimal element
of length dL and width b, which is the gap of the Hele-Shaw
cell. The density of the granular bed averaged over the
thickness of the granular bed is written

〈ρ(T )〉h = 1

h

∫ h

0
φ ρp(T ) + (1 − φ) ρl(T ) dz, (3)

where the temperature T (z) depends on the vertical coordinate.
The evolution of the density with the temperature is given by

ρl(z) = ρ0
l [1 − αl(T ) �T ] (4)

for the liquid and by

ρp(z) = ρ0
p [1 − αp(T ) �T ] (5)

for the polystyrene beads. In these equations, αl and αp are the
coefficients of thermal expansion of the liquid and polystyrene
beads, respectively (see Appendix).

We first consider the steady state where the temperature
profile only depends on the vertical coordinate z. Experi-
mentally, we observe, even below the resuspension threshold,
large-scale flow in the fluid and we therefore assume that at
the top of the granular bed the local temperature is comparable
to the temperature of the cold source, Tc. Therefore, the
temperature profile in the layer can be approximated as T (z) =
Tc + (Th − Tc)z/h. In this configuration, the granular bed
becomes unstable when the density averaged over the entire
thickness h becomes smaller than the density of the fluid on top
of it, assumed to be at the temperature Tc = T0, which means
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FIG. 8. (a) Threshold temperature T ∗
h obtained in the steady state

regime as a function of the density contrast �ρ0. The thickness of the
granular bed is h = 10 mm. The dotted line shows the linear scaling
T ∗

h ∝ �ρ0. (b) Time elapsed, tdes, prior to the resuspension threshold
obtained by solving the diffusion equation for increasing thickness h

of the granular bed. The numerical parameters are Th = 55 ◦C, �ρ =
5 kg m−3. The dotted line is a slope t ∝ h2.

if 〈ρ(T )〉h < ρ0
l . We can solve this condition numerically for

varying density contrast �ρ0 as illustrated in Fig. 8(a).
We observe that qualitatively the threshold temperature T ∗

h

increases linearly with the density contrast �ρ0 as observed
experimentally. This observation is consistent with the defini-
tion of the buoyancy number B. For a constant granular bed
thickness, the density contrast has a stabilizing effect, whereas
an increase in temperature contributes to the destabilization of
the granular bed through a local modification of the density
of the granular bed. We should also emphasize that this
description is qualitative but not quantitative because of the
experimental limitations. Indeed, the increase in temperature
at the bottom copper plate is not instantaneous and therefore
Th increases as a function of time. Nevertheless, this approach
allows us to highlight the influence of the buoyancy number on
the resuspension threshold of an immersed granular bed and
the destabilizing effect of the temperature.

The influence of the transient state is clearly observed
when considering the influence of the granular bed thick-
ness h. Indeed, if we consider the steady state only, the

temperature threshold T ∗
h should not depend on h. However,

our experimental results show that T ∗
h increases with h (see

Fig. 5). Although in our experiments the time variation of
the temperature of the hot source is intrinsically related to
the thermal properties of the system, we can consider the
effect of the time variation to explain the scaling of the time
to destabilize the granular bed, tdes. We modified the model
developed previously and now consider that, at t < 0, the
temperature is equal to Tc everywhere in the fluid and in
the granular bed. At time t = 0, the lower part at z = 0 is
suddenly put at T = Th. In the experiment, this temperature
is increasing when connecting the hot thermostated bath but
here, for the sake of simplicity, we assume that the temperature
of the bottom plate is reached instantaneously. As a result,
the time dependence of the temperature at the position z

is the solution of the classical one-dimensional diffusion
problem

T (z) = Tc + (Th − Tc)

[
1 − erf

(
z

2
√

D t

)]
, (6)

with D � 1.8 × 10−7 m2 s−1, the effective diffusion coeffi-
cient in the granular bed. We know that the granular bed
becomes unstable when 〈ρ(T )〉h < ρ0

l , and we can solve this
condition numerically using Eqs. (3)–(6).

The corresponding results are reported in Fig. 8(b): the
scaling observed experimentally tdes ∝ h2 is captured by the
diffusion equation in the granular bed. Therefore, transient
effects appear to be important to explain the destabilization
of an immersed granular bed. The qualitative model presented
here captures the key physical effects and provides scaling laws
to describe the phenomenon. To take into account the increase
in temperature of the hot source a full numerical model will
be needed.

V. CONCLUSION

In this paper, we have explored experimentally the resus-
pension of an immersed granular bed by a localized heat
source. The granular bed is made of particles that have a density
slightly smaller than the density of the surrounding fluid. Our
experiments illustrate that, beyond a temperature threshold,
the averaged density of the granular bed can become smaller
than the density of the top fluid and produce an overturning
instability as observed for two Newtonian fluid [25–27]. This
flow results in the production of thermal plume and the
dispersion of the granular particles in the entire container. We
have shown that this mechanism can be described through the
buoyancy number B = (ρ0

p − ρ0
l )/(ρ0

l β �T
◦
). The threshold

value Bc is observed to be dependent on the granular bed
thickness in our experiments owing to the transient regime.
We rationalize our experimental findings with scaling argu-
ments that capture the main features of this destabilization
process.

Such resuspension of a granular bed could be important in
geophysical and environmental processes in which localized
heating can induce the transport of deposited particles and
the later contamination of the environment. The dynamics of
particle-laden plumes is important to describe the subsequent
dispersion of the particles.
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APPENDIX: DENSITY OF THE WATER SOLUTION
AND THE POLYSTYRENE BEADS

1. Aqueous solution

The liquid used in our experiments is a mixture of distilled
water and CaCl2 (between 0% and 5.5% w/w). We measured
the density of different aqueous mixture using a densimeter
(Anton Paar DMA 35) in a range of temperature between
15 ◦C and 30 ◦C as reported in Fig. 9.

The evolution of the density with the temperature and the
salt concentration ρl(c,T ) is fitted using the expression

ρl(c,T ) = ρ0
l (c) [1 − α(T ) (T − T0)], (A1)

where ρ0
l (c) is the density of the aqueous mixture having a

mass fraction c of CaCl2 (wt%), taken at the temperature T0 =
20 ◦C. The coefficient of thermal expansion, α(t) = a T + b,
is fitted from the experimental data [a = 9.6 × 10−6 (◦C)−2,
b = 1.2 × 10−4 (◦C)−1 and T is expressed in ◦C].

15 20 25 30 35 40
1035

1040

1045

1050

1055

T (oC)

ρ
(k

g
m

−
3 )

FIG. 9. Density of aqueous mixture for different salt concentra-
tion: 4.85% w/w (blue circles), 4.9% w/w (cyan crosses), 4.95%
w/w (red squares), 5.05% w/w (green diamonds) and 5.15% w/w
(magenta crosses). The dotted lines are the best fits from the equation
(A1) for varying ρ0

l (c).

2. Polystyrene beads

The coefficient of thermal expansion (volume) is taken
equal to αp = 1.9 × 10−4 (◦C)−1 [28], such that the density
of the polystyrene beads can be expressed as

ρp(T ) = ρ0
p

[
1 − αp (T − T0)

]
, (A2)

with ρ0
p = 1049 kg m−3 taken at T0 = 20 ◦C.
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