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Abstract

With the emergence of large-scale sequencing data1,2, methods for improving power in rare variant 

analyses (RVAT)3–5 are needed. Here, we show that adjusting for common variant polygenic 

scores (PGS) improves the yield in gene-based RVAT across 65 quantitative traits in the UK 

Biobank (up to 20% increase at α=2.6×10−6), without marked increases in false-positive rates or 

genomic inflation. Benefits were seen for various models, with the largest improvements seen for 

efficient sparse mixed-effects models. Our results illustrate how PGS-adjustment can efficiently 

improve power in rare variant association discovery.

In recent years, large-scale biorepositories have seen an explosion in available high-depth 

sequencing data1,2, and investigators have increasingly leveraged gene-based tests to identify 

rare variants contributing to human phenotypic variability3–5. An important direction in the 

genetics field is to identify methods for improved power in rare variant association analyses 

(RVAT). Many quantitative traits have considerable heritability from common variants.6 

Given known power benefits for inclusion of known covariates in linear models7–9, we 
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hypothesized that adjusting for polygenic scores (PGS), which summarize common variant 

effects, would efficiently improve power in RVAT.

We leveraged the UK Biobank dataset, which contains imputed data on nearly 500,000 

individuals10 as well as exome sequencing for over 200,000 individuals2. We first 

performed genome-wide association analyses (GWAS) for common variants (MAF≥1%) 

across 65 quantitative traits (Supplementary Table 1). We performed three types of GWAS, 

namely an out-of-sample GWAS within European samples who were not included in the 

exome sequencing subset (N=230k), an in-sample GWAS within European samples who 

were also exome sequenced (N=190k), and a ‘total’ GWAS within all European UK 

Biobank participants (N=460k) (Figure 1). All traits had multiple independent genome-wide 

significant (P<5×10−8) common variant hits (Extended Data Figure 1a, Supplementary Table 

2).

Using the GWAS summary statistics, we then constructed PGS based on two methods, 

namely ‘lead-SNP’ PGS (P<5×10−8 and r2<0.001), and genome-wide PGS using PRScs-

auto11 (Methods, Figure 1). Thus, we analyzed six PGS per trait: PGSlead-SNP (out-sample), 

PGSCS (out-sample), PGSlead-SNP (in-sample), PGSCS (in-sample), PGSlead-SNP (total) and PGSCS 

(total). All types of PGS explained variance for their respective traits (Extended Data Figure 

1b, Supplementary Table 2).

We then performed exome-wide gene-based collapsing RVAT within the exome sequenced 

samples, focusing on ultra-rare loss-of-function (LOF) and missense variants with MAC<40 

(Methods, Figure 1). We ran RVAT models with no PGS included, as well as RVAT models 

adjusting for each type of PGS. We used an efficient sparse mixed-effects model to account 

for relatedness.

All six PGS-adjusted models showed higher numbers of RVAT gene-phenotype associations 

at various significance cutoffs, compared to the model without a PGS (Figure 2a, 

Supplementary Figure 1, Supplementary Tables 3–4). PGSCS (out-sample) generally yielded 

more total associations than PGSlead-SNP (out-sample). The PGSCS (out-sample) model yielded 

13.3% and 19.7% more significant associations at Bonferroni-corrected significance 

(α=7.2×10−8; 170 vs 150 associations), and conventional exome-wide significance 

(α=2.6×10−6; 261 vs 218 associations), respectively.

PGSlead-SNP (in-sample) performed similarly to PGSlead-SNP (out-sample), while PGSCS (in-sample) 

generally performed the least well (Figure 2a).

At various significance thresholds, PGS-adjusted models significantly improved the P-

values for top gene-phenotype associations, as compared to the model without PGS 

(Supplementary Figure 2 and Supplementary Table 5). For example, the PGSCS (out-sample) 

adjusted model was associated with significantly higher -log10(P) values, for associations 

reaching conventional exome-wide significance (P=6×10−35, paired Wilcoxon signed-rank 

test) (Figure 2B; Supplementary Table 5).

Many of the gene-phenotype associations that became significant after PGS-adjustment 

were biologically-plausible findings (Supplementary Note, Supplementary Table 6). As 
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an example, for the phenotype height such associations included NPR3, LTBP2, P4HA1, 

FLNB, SEC24D and TTN (Figure 2c, Supplementary Note, Supplementary Figure 3). We 

further confirmed power improvements for positive control associations5 (Supplementary 

Note, Extended Data Figure 2). We found that h2
SNP and PGS R2 were both significantly 

associated with the per-trait improvement in number of significant associations after PGS-

adjustment, particularly for PGSCS models (Extended Data Figure 3 and Supplementary 

Figure 4).

To assess genomic inflation and false-positive rates, we then performed exome-wide RVAT 

analyzing synonymous variants with MAC<40. At liberal α cutoffs, we observed association 

rates that were marginally higher or equivalent to the expectation under the null (Figure 

3a, Supplementary Figure 1, Supplementary Table 7). At Bonferroni-corrected significance 

(α=4.3×10−8), we observed more hits than expected under the null (Supplementary Tables 

8–9). We found that all these associations involved IGLL5 and white blood cell traits 

(Supplementary Table 10), possibly reflecting true association12. After removing IGLL5 
from the analysis, synonymous association rates were well controlled at stringent α values 

(Supplementary Table 7).

Importantly we did not observe a clear pattern where synonymous association rates were 

strongly increased after PGS adjustment. Using paired Wilcoxon signed-rank tests, we found 

no significant increase in -log10(P) values for the synonymous RVAT at various α levels, 

across the different types of PGS adjusted models (P>0.05 for all tests by paired Wilcoxon 

rank test; Supplementary Figure 2 and Supplementary Table 11). For example, at the α=0.05 

level, estimated differences between models with PGS vs without PGS centered around 

0 (Figure 3c, Supplementary Table 11). Furthermore, in synonymous RVAT, per-trait λGC 

values did not increase after PGS adjustment across PGS types (Supplementary Figure 5, 

Supplementary Tables 12–13). All per-trait synonymous λGC values were within acceptable 

limits at λGC<1.05 (Figure 3b), and test statistics were not inflated visually (Supplementary 

Figure 6).

In secondary analyses, we found that RVAT at more lenient frequency thresholds 

(MAF<0.1%) also benefitted strongly from PGS adjustment (Supplementary Note, Extended 

Data Figure 4). We further found that leave-one-chromosome-out PGS performed similarly 

to all-chromosome-PGS (Supplementary Note, Extended Data Figure 5). In an analysis 

of 7 binary traits, we found minimal to no benefit for PGS-adjustment in logistic mixed-

models (Supplementary Note, Supplementary Tables 14–15). When assessing other RVAT 

software, we found that PGS-adjustment improved power in standard linear regression 

models, and in burden testing using fastGWA (refs.13,14) (Supplementary Note, Extended 

Data Figure 6, Supplementary Table 16). PGS adjustment also had power benefit in BOLT-

LMM (ref.15), where it also sped up model convergence (Supplementary Note, Extended 

Data Figure 7). PGS adjustment further showed power benefits for SKAT-O testing in 

speed-optimized SAIGE-GENE+ models (ref.16) (Extended Data Figure 8, Supplementary 

Table 16), although no power benefit was noted for whole-genome ridge regression models 

from REGENIE (ref.17) (Supplementary Note, Extended Data Figure 9).

Jurgens et al. Page 3

Nat Genet. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, we find that adjustment for common variant PGS can improve the yield 

in gene-based RVAT of quantitative traits, without markedly increasing false-positive rates 

and genomic inflation, consistent with recent findings for common variant analysis9,17. 

While our approach benefitted various RVAT models, our data show that PGS-adjustment is 

particularly useful when utilizing efficient sparse mixed-models (as implemented in STAAR, 

SAIGE-GENE+ and fastGWA) or when using simple linear models. Sparse mixed-models 

paired with PGS-adjustment may therefore offer an efficient and powerful alternative to 

computationally-intensive dense mixed-model approaches. Furthermore, PGSs derived from 

large external data may improve power in small sequencing studies, where polygenic effects 

may not be accurately derived internally.

The observed power increase likely reflects true biological variance being absorbed by 

PGS. Indeed, the genome-wide PGSCS performed better than PGSlead-SNP for out-of-sample 

GWAS data, with SNP-heritability and PGS R2 being strong positive predictors of yield 

improvement. We note that for in-sample GWAS, PGSCS did not perform as well as other 

PGS, likely owing to overfitting of this genome-wide model. We therefore recommend 

using lead-SNP scores or large out-of-sample GWAS data when available, or using cross-

validation approaches such as those used in REGENIE (ref.17). Finally, our analysis was 

focused on testing of rare variants (MAF<0.1%). For gene-based analyses that include 

low-frequency variants (0.1<MAF<1%), leave-one-chromosome-out PGS may be useful 

(Supplementary Note) if investigators want to avoid linkage disequilibrium between PGS 

variants and tested variants.

In sum, we show how adjusting for common variant effects can aid in rare variant 

association discovery. Our approach can be applied to efficiently enhance discovery yield in 

future rare variant analyses.

Methods

Study population

The UK Biobank is a large population-based prospective cohort study from the United 

Kingdom with rich phenotypic and genetic data on 500,000 individuals aged 40–69 at 

enrollment18. Available genetic data currently includes genome-wide imputed data for 

almost all participants10, as well as whole exome sequencing data on approximately 200,000 

individuals2. The UK Biobank resource was approved by the UK Biobank Research Ethics 

Committee and all participants provided written informed consent to participate. Use of UK 

Biobank data was performed under application number 17488 and was approved by the local 

Massachusetts General Hospital Institutional Review Board.

Phenotypes

In the present study, we analyzed 65 quantitative traits, including anthropometric traits, 

metabolic blood markers, blood pressure traits, and a variety of blood count traits. Details 

and the number of samples for each trait per analysis are presented in Supplementary Table 

1. All raw phenotypes were adjusted for lipid-lowering medication use (Supplementary 
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Note), and were subsequently rank-based inverse normalized to ensure normality before 

analyses.

Genetic datasets

We utilized both genome-wide imputed data and whole exome sequencing data in the 

present study. Specifically, all common variant analyses were performed using genome-

wide imputed data10. Briefly, genotyping was performed using Affymetrix UK Biobank 

Axiom (450,000 samples) and Affymetrix UK BiLEVE axiom (50,000 samples) arrays. 

Subsequently, the genetic data were imputed to the Haplotype Reference Consortium 

panel and UK10K + 1000 Genomes panels. We removed any samples that had withdrawn 

their consent, samples that were outliers for heterozygosity or missingness, individuals 

with putative sex chromosome aneuploidy, and individuals with a mismatch between self-

reported and genetically inferred sex. We then removed all individuals who were determined 

to not be of homogeneous European ancestry (Supplementary Note). To ensure we analyzed 

only high-quality common imputed variants, we removed imputed variants with minor allele 

frequency (MAF) <1% and INFO <0.3.

For all rare variant analyses, we utilized the whole exome sequencing data, which were 

available for 200,642 individuals2. The revised version of the IDT xGen Exome Research 

Panel v1.0 was used to capture exomes with over 20X coverage at 95% of sites. Variants 

were subsequently called per-sample using DeepVariant and combined using GLNexus 

(ref.19). We utilized the quality-control procedures described previously in Jurgens et 

al.4 In short, we set low-quality genotypes to missing, after which we removed variants 

based on call rate (<90%), Hardy-Weinberg equilibrium test (P < 1×10−15), presence in 

low-complexity regions, and minor allele count (≥1). Sample-level quality-control consisted 

of removal of samples that had withdrawn their consent, were duplicates, had a mismatch 

between sequencing and genotyping array data, had a mismatch between genetically inferred 

and self-reported sex, had low call rates or were outliers for a number of additional metrics 

(Jurgens et al.4). We finally restricted the exome cohort to individuals who also had imputed 

data available and were of European ancestry, leaving 188,062 samples.

Common variant association analyses

We first performed three genome-wide association analyses (GWAS) for each included 

trait using genome-wide imputed data (Figure 1). These included an out-of-sample GWAS 

within European samples who were independent of the exome cohort (not included in the 

exome cohort and unrelated to the exome cohort); an in-sample GWAS within the exome 

sequenced samples; and a total GWAS including all European individuals with imputed data. 

To perform the GWAS, we used linear whole-genome ridge regression models implemented 

in REGENIE (ref.17), adjusting for sex, age, age2, genotyping array and ancestral principal 

components 1 through 20. REGENIE produces results similar to linear mixed models in the 

presence of genetic relatedness17.

Polygenic score derivation

Using each of the GWAS summary results, we constructed polygenic scores (PGS) for each 

trait based on two differing methods20. We first constructed ‘lead SNP’ PGSs based only 

Jurgens et al. Page 5

Nat Genet. Author manuscript; available in PMC 2024 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on independent (r2<0.001) genome-wide significant (P<5×10−8) variants. We also used PRS-

CS-auto11 to construct genome-wide PGSs including millions of genetic variants (restricting 

to ~1.1 million HapMap variants). In brief, PRS-CS-auto applies a Bayesian regression 

framework to identify posterior variant effect sizes based on a continuous shrinkage prior, 

which is directly learnt from the data11. For both methods, the European ancestry subset 

of the UK Biobank dataset was used as a linkage-disequilibrium reference panel. In sum, 

two PGS were constructed for each trait based on out-sample GWAS data (PGSleadSNP 

[out-sample] and PGSCS [out-sample]), two PGS were constructed based on in-sample GWAS 

data (PGSleadSNP [in-sample] and PGSCS [in-sample]) and two PGS were constructed based on 

total GWAS data (PGSleadSNP [total] and PGSCS [total]).

Variance explained by PGS

We calculated the phenotypic variance explained by each PGS for each trait in the 

nullmodel. We did this by running ordinary linear regression for each trait among the 

unrelated subset of individuals with exome sequencing data, adjusting for the same fixed 

effects as described above for the rare variant analysis. R2 values were extracted from the 

model without PGS and from models with PGS added as a covariate. The variance explained 

by PGS for a given trait was defined as the improvement in R2 in the model with PGS as 

compared to the model with no PGS.

Rare variant association analyses

We used the whole exome sequencing data to run gene-based rare variant collapsing 

tests across the exome for each trait. We grouped and analyzed loss-of-function (LOF) 

and predicted-deleterious missense variants per gene (Supplementary Note). To minimize 

linkage-disequilibrium between common and rare variants, we only included variants 

with minor allele count (MAC) ≤40, which also had MAF<0.1% in each continental 

population in gnomAD version 2 exomes21. We utilized linear mixed models implemented 

in GENESIS22, adjusting for sex, age, age2, genotyping array, sequencing batch, ancestral 

principal components 1 through 20, and a sparse kinship matrix4. We subsequently repeated 

these analyses for each of the PGS, by adding the PGS to the model as an additional 

fixed-effect covariate. In cases where fitting of the mixed model failed, we reran models 

within unrelated individuals (Supplementary Table 1). Sample sizes for the rare variant 

analyses ranged from N=142,709 to N=187,890 (Supplementary Table 1). Only results for 

tests with ≥20 rare variant carriers were kept.

Assessment of rare variant discovery yield

We then evaluated the rare variant discovery power for models without PGS and those 

adjusted for PGS. We calculated the yield in number of gene associations for each 

model across all traits at various significance thresholds, including Bonferroni-corrected 

significance at α = 0.05/ (65 traits x ~10,743 genes) = 7.2×10−8, and at conventional 

exome-wide significance at α = 2.6×10−6. We then tested whether the addition of the 

PGS improved the significance of gene-phenotype associations. We used two-sided paired 

Wilcoxon signed rank tests to assess the improvement in -log10(P) values between two 

models, including gene-phenotype associations at various significance cutoffs (7.2×10−8, 

2.6×10−6, 1×10−5, 1×10−4, 1×10−3, 0.05). For a given comparison between two models, 
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we included any gene-phenotype pair reaching the cutoff in either model. To quantify the 

difference, d, in -log10(P) values, we repeated this analysis using paired T-tests. For paired 

T-tests, we removed any gene-phenotype pair for which the difference between both models 

fell outside of 4 standard deviations from the mean of differences. The significance threshold 

was determined at α = 0.05 / (6 cutoffs x 6 model comparisons) = 0.0014.

Secondary analyses of discovery power

We further performed analyses where we performed exome-wide gene-based tests including 

rare variants at more common frequency thresholds, described in the Supplementary Note. 

We also assessed the power change for PGS-adjustment across a range of binary traits 

(Supplementary Note). To assess how PGS-adjustment affects discovery power in other 

RVAT software, we evaluated adding PGS to collapsing tests in standard linear regression, 

as well as adding PGS to burden tests in fastGWA (ref.13,14), collapsing tests in BOLT-

LMM (ref.15) and SKAT-O tests in speed-optimized SAIGE-GENE+ models (ref.16,23). 

(Supplementary Note). We also assessed how addition of external PGS affected power 

in REGENIE, a recently proposed whole-genome ridge regression model that accounts 

for the polygenic effect using a fixed-effect variable similar to a PGS17 (Supplementary 

Note). Finally, we assessed a Leave-One-Chromosome-Out (LOCO) PGS and compared it 

to the full-PGSCS for two traits, height and LDL cholesterol, to evaluate whether the power 

improvement was due mainly to proximal or distal common variants (Supplementary Note).

Associations between trait heritability and PGS variance explained with yield improvement

We then assessed whether the improvement in RVAT associations after PGS-adjustment 

was associated with trait heritability or the variance explained by PGS. We used Linkage-

Disequilibrium Score Regression24 to estimate SNP-heritability (h2
SNP) for each of the 

65 traits, using the total sample GWAS results and using the baselineLD_2.2 file from 

the LDSC software as the linkage-disequilibrium reference. We then used ordinary linear 

regression to regress the change in number of trait RVAT associations on the estimated 

h2
SNP. Similarly, we used linear regression to regress the change in number of trait RVAT 

associations on the R2 of the PGS for its respective traits.

Assessment of false-positive rate using rare synonymous variation

To assess the false-positive error rate of our approach, we analyzed rare synonymous 

variation. Synonymous variants are generally not expected to affect the amino acid 

sequence encoded by genes, and therefore are strongly depleted of true genetic effects25. 

We grouped rare synonymous variants (MAC≤40 and MAF<0.1% in each continental 

population in gnomAD exomes) and ran exome-wide gene-based collapsing tests using 

GENESIS. We only included gene-based results if there were at least, cumulatively, 20 

carriers of qualifying rare variants for the gene (e.g. >=20 individuals carrying any of the 

qualifying variants of the mask). The significant association rate for synonymous variants 

was determined at various significance cutoffs for each model: α = 4.3×10−8 (Bonferroni-

corrected), 2.6×10−6, 1×10−5, 1×10−4, 1×10−3, and 0.05. As described for the deleterious 

variants above, we further utilized paired Wilcoxon rank tests and paired T-tests to evaluate 

the changes in -log10(P) values at different significance levels.
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Assessment of exome-wide inflation

Exome-wide test statistics were plotted in quantile-quantile (QQ) plots to visually assess 

inflation per trait, per model, per variant mask. Exome-wide inflation was further quantified 

using λ-values, defined as the empirical χ2 statistic at the median divided by the expected 

χ2 statistic at the median under the null. To assess whether λ-values differed between 

models without PGS and those adjusted for various PGS across the 65 traits, we utilized 

two-sided paired Wilcoxon rank tests and paired T-tests.

Data Availability

Summary statistics from the common variant association analyses, the rare 

variant association analyses, as well as the common variant weights used for 

polygenic score construction, have been made available for download through the 

Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/downloads.html). 

To download the GWAS summary statistics: https://personal.broadinstitute.org/ryank/

Jurgens_Pirruccello_2022_GWAS_Sumstats.zip. To download the PGS weights: 

https://personal.broadinstitute.org/ryank/Jurgens_Pirruccello_2022_PGS_Weights.zip. To 

download the RVAT summary statistics: https://personal.broadinstitute.org/ryank/

Jurgens_Pirruccello_2022_RVAT_Sumstats.zip. Summary statistics for the tests of the 

statistical properties of different RVAT models are included in the Supplementary 

Tables. Access to individual level UK Biobank data, both phenotypic and genetic, is 

available to bona fide researchers through application on the UK Biobank website 

(https://www.ukbiobank.ac.uk). The exome sequencing data can be found in the 

UK Biobank showcase portal https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=170. 

Additional information about registration for access to the data is available at http://

www.ukbiobank.ac.uk/register-apply/. Use of UK Biobank data was performed under 

application number 17488.

Other datasets utilized in this manuscript include: the dbNSFP database version 4.1a 

(https://sites.google.com/site/jpopgen/dbNSFP) and gnomAD exomes version 2.1 (https://

gnomad.broadinstitute.org/downloads).

Code Availability

Example scripts of our approach for the UK Biobank Research Analysis Platform 
(implementations of PGS-adjustment in SAIGE-GENE+ and BOLT-LMM) have been 

made available through the GitHub repository https://github.com/seanjosephjurgens/

RVAT_PGSadjust. Quality-control of individual level data was performed using Hail 

version 0.2 (https://hail.is) as well as PLINK version 2.0.a (https://www.cog-genomics.org/

plink/2.0/). Variant annotation was performed using VEP version 95 (https://github.com/

Ensembl/ensembl-vep). Main common variant association analyses (GWAS) were 

performed using REGENIE v2.0.2 (https://github.com/rgcgithub/regenie). Genome-wide 

polygenic scores were computed using PRS-CS (https://github.com/getian107/PRScs; 

githash: 43128be7fc9ca16ad8b85d8754c538bcfb7ec7b4). Main rare variant association 

analyses were performed using an adaptation of the R package GENESIS version 2.18 

(https://rdrr.io/bioc/GENESIS/man/GENESIS-package.html), which has previously been 
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made available by us through the GitHub repository https://github.com/seanjosephjurgens/

UKBB_200KWES_CVD. Analyses were run within R version 4.0 (https://www.r-

project.org).

Other RVAT software used in the present study include fastGWA implemented in GCTA 

version 1.94.0 (https://yanglab.westlake.edu.cn/software/gcta/#fastGWA), BOLT-LMM 

version 2.4 (https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html) 

and SAIGE-GENE+ version 1.0.9 (https://saigegit.github.io/SAIGE-doc/), and REGENIE 

v2.0.2 (https://github.com/rgcgithub/regenie).

Extended Data

Extended Data Figure 1: Number of significant lead variants from common variant GWAS and 
variance explained by subsequently derived PGS across the 65 traits.
Part a: Violin plots for the number of significant independent lead variants from common 

variant GWAS across 65 phenotypes. Results from out-of-sample GWAS (230k, red), in-

sample GWAS (190k, blue) and total GWAS (460k, purple) in the UK Biobank are shown. 

Part b: Violin plots for the phenotypic variance explained (R^2) by 6 types of PGS across 

the 65 phenotypes. Red shows two PGS derived from out-of-sample GWAS data, blue 

shows two PGS derived from completely in-sample GWAS data, while purple shows results 

for PGS derived from total GWAS data. All types of PGS explained variance for their 

respective traits, although we caution the interpretation of the magnitude of the R2 values 

for the in-sample and total PGS, as discovery samples were naturally also included in PGS 

testing. Boxplots: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers.
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Extended Data Figure 2: Regression of δ -log10(P) values after PGS-adjustment over the 
unadjusted -log10(P) values for positive control associations.
The y-axis represents the delta between PGS-adjusted -log10(P) and unadjusted -log10(P) 

values for positive control associations identified from Backman et al. (ref.5; Supplementary 

Note), while the x-axis represents the unadjusted -log10(P) values. Part a shows results for 

out-of-sample derived PGS, part b shows results for in-sample PGS, and part c shows results 

for the ‘total’ cohort derived PGS. Regression slopes and P-values from standard linear 

regression are added to the figure. The regression trend line is added in each plot. For all 

models, there is a trend towards a positive association between unadjusted -log10(P) and the 

subsequent improvement in RVAT power. The trend reached P<0.0083 (=0.05/6) for all PGS 

models except PGSCS (insample). Note: β, regression coefficient; δ, difference.
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Extended Data Figure 3: Correlation between SNP-heritability and the change in the number of 
significant rare variant associations after PGS adjustment across the 65 traits.
In each plot, the x-axis represents trait SNP-heritability (h2

SNP) estimated using Linkage 

Disequilibrium Score Regression. The y-axis represents the change in the number of RVAT 

associations reaching exome-wide significance (α=2.6×10−6) after adjusting for PGS, across 

the studied traits (N=65). RVAT yield change (defined as the difference in the number of 

significant associations after PGS adjustment compared to models without PGS) is regressed 

on h2
SNP using ordinary linear regression; the regression trend line is added in each plot. 

Part a shows results for out-of-sample derived PGS, part b shows results for in-sample PGS, 

and part c shows results for the ‘total’ cohort derived PGS. For all models, there is a trend 

towards a positive association between trait h2
SNP and change in RVAT yield (P<0.05 and 

β>0). The trend reached P<0.0083 (=0.05/6) for all PGS models except PGSCS (insample). 

Note: β, regression coefficient; α, significance cutoff.
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Extended Data Figure 4: Results for gene-based testing of LOF and missense variants at 
MAF<0.1%.
Data are presented in violin plots with overlaid boxplots. The first column shows results 

restricting to gene-based associations reaching Bonferroni-corrected significance, while the 

second column shows results for gene-based associations reaching conventional exome-wide 

significance. Part a shows results for all qualifying gene-based associations. The N gene-

trait pairs for distributions in the left panel equal 206, 217, 206, 213, 207 and 218 (from 

left to right), while the N values equal 321, 327, 310, 318, 320 and 335 (from left to right) 

in the right panel. Part b is restricted to associations that were identified using MAF<0.1% 

but which were not identified in the initial analysis where MAC<40 was applied. The N 

gene-trait pairs for distributions in the left panel equal 25, 33, 28, 33, 28 and 31 (from 

left to right), while the N values equal 57, 62, 57, 64, 56 and 58 (from left to right) in 

the right panel. The P-values from Wilcoxon signed rank tests and d values from paired 

T-tests (after removing outliers) are added above each violin. P-values are two-sided and 

unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group 

difference; δ, difference; α, significance cutoff.
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Extended Data Figure 5: Comparison of P-values between full-PGS-adjusted and LOCO-PGS-
adjusted models from height and LDL.
In these scatter plots, the y-axis shows -log10(P) values from gene-based testing with 

adjustment for the full out-of-sample PGSCS, while the x-axis shows the -log10(P) values 

for the leave-one-chromosome-out (LOCO) PGSCS. Part a shows results for the trait height, 

while part b shows results for the trait LDL cholesterol. The left panels show all gene-trait 

pair results, while the right panels all exome-wide significant signals (and are capped at 

Y=30 and X=30 for clarity).
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Extended Data Figure 6: Comparison of P-values between PGS-adjusted and unadjusted models 
within fastGWA.
The violin plots (with overlaid boxplots) show the distributions of differences in -log10(P) 

values between unadjusted and PGS adjusted models. The left panel results are restricted to 

associations reaching Bonferroni corrected significance in either analysis (PGS adjusted or 

unadjusted), while the right panel is restricted to association reaching conventional exome-

wide significance in either analysis. Estimated d values (difference values from paired 

T-test) and P-values (from paired Wilcoxon signed rank tests) are added above each violin. 

In all fastGWA runs, a sparsity cutoff of 0.05 was used, while 239,686 high-quality pruned 

common variants were used for computation of the relatedness matrix. In the left panel, 

the N gene-trait pairs equal 173, 177, 176 and 175 (from left to right), while in the right 

panel N values equal 257, 266, 258, 261 (from left to right). P-values are two-sided and 

unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group 

difference; δ, difference; α, significance cutoff.
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Extended Data Figure 7: Comparison of P-values between PGS-adjusted and unadjusted models 
within BOLT-LMM.
The violin plots (with overlaid boxplots) show the distributions of differences in -log10(P) 

values between unadjusted and PGS adjusted models. Panels in a show results for 

adjustment of out-of-sample PGS, where red indicates results for BOLT-LMM-Inf models 

and gold shows results for BOLT-LMM models. In the left panel, the N gene-trait pairs 

equal 176, 180, 175 and 182 (from left to right), while in the right panel the N values 

equal 262, 267, 271 and 282 (from left to right). Panels in b shows results for adjustment 

for in-sample PGS where blue indicates BOLT-LMM-Inf and gold indicated BOLT-LMM 

models. In the left panel, the N gene-trait pairs equal 175, 176, 177 and 174 (from left 

to right), while in the right panel the N values equal 256, 257, 269 and 268 (from left 

to right). In both a and b, the left panel results are restricted to associations reaching 

Bonferroni corrected significance in either analysis (PGS adjusted or unadjusted), while the 

right panel is restricted to association reaching conventional exome-wide significance in 
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either analysis. Estimated d values (difference values from paired T-test) and P-values (from 

paired Wilcoxon signed rank tests) are added above each violin. In all BOLT runs, 240,699 

high-quality pruned common variants were used for computation of the genetic relatedness 

matrix. P-values are two-sided and unadjusted for multiple testing. Boxplots: center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 

outliers. Note: d, estimated paired group difference; δ, difference; α, significance cutoff.

Extended Data Figure 8: Comparison of P-values between PGS-adjusted and unadjusted models 
for SKAT-O tests within SAIGE-GENE+.
The violin plots (with overlaid boxplots) show the distributions of differences in -log10(P) 

values between unadjusted and PGS adjusted models. The left panel results are restricted to 

associations reaching Bonferroni corrected significance in either analysis (PGS adjusted 

or unadjusted), while the right panel is restricted to association reaching conventional 

exome-wide significance in either analysis. Estimated d values (difference values from 

paired T-test) and P-values (from paired Wilcoxon signed rank tests) are added above each 

violin. In all SAIGE-GENE+ runs, the computationally efficient sparse matrix option was 

used with 0.05 cutoff, while ~240k high-quality pruned common variants (numbers differed 

slightly per trait) were used for computation of the relatedness matrix. In the left panel, the 

N gene-trait pairs equal 185, 186, 186 and 182 (from left to right), while in the right panel 

the N values equal 257, 266, 258 and 261 (from left to right). P-values are two-sided and 

unadjusted for multiple testing. Boxplots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range; points, outliers. Note: d, estimated paired group 

difference; δ, difference; α, significance cutoff.
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Extended Data Figure 9: Comparison of P-values between PGS-adjusted and unadjusted models 
from REGENIE.
The y-axis of this scatter plot shows the -log10(P) values from gene-based burden testing 

using REGENIE with adjustment for out-of-sample PGS, while the x-axis shows the 

unadjusted -log10(P) values from REGENIE. Tests are restricted to Bonferroni-correction 

significant associations. Part a shows results for PGSlead-SNP while part b shows results 

for PGSCS. The left panels show all qualifying results, while the right panels are capped 

at X=100 and Y=100 for clarity. Test statistics were very similar between adjusted and 

unadjusted models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Analysis Flowchart.
For common variant analyses across 65 quantitative traits, we performed GWAS among 

UK Biobank samples who were unrelated from individuals with whole-exome sequencing 

(WES) data (‘out-sample’), GWAS among UK Biobank samples with WES data (‘in-

sample’), and GWAS among all UK Biobank samples (‘total’). From each GWAS, we 

constructed PGS using clumping-and-thresholding methods and using PRS-CS (described in 

Ge et al. 2019; ref.11). We then performed exome-wide testing of rare variants within the 

WES samples, using models without PGS and adjusting for various PGS. LOF and missense 

variants were used to assess rare variant yields, while synonymous variants were used to 

assess inflation and false-positive rates. In the flowchart, blue boxes describe steps revolving 

around common variant analyses and PGS construction, while the red boxes highlight steps 

involving rare variant analyses. Note: λ, inflation factor computed as observed χ2 at the 

median over the expected under the null hypothesis.
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Figure 2: PGS adjustment improves discovery yield in analysis of rare deleterious variants.
Part a: Bar charts for the improvement in deleterious RVAT yield after PGS-adjustment at 

different alpha levels, expressed in percentage relative to the no PGS model. Part b: Violin 

plots for the difference (δ) in significance of tests from deleterious RVAT, comparing models 

with PGS vs models without PGS. Here, the δ in P-values (on the -log10 scale) are displayed 

for tests reaching P<2.6×10−6 (Methods). The P-values and distributions are derived from 

two-sided paired Wilcoxon signed rank tests (where N gene-trait pairs equals 263, 270, 

258, 260, 265 and 278 from left to right), while the d values plotted above the violins 

are derived from two-sided paired T-tests (after removing outliers). The left plot shows all 

results, while the right plot is capped at y=10 for clarity. Boxplots: center line, median; box 

limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Part c: 

Quantile-quantile plots for PGS-adjusted RVAT of the phenotype height. The left plot shows 

expected vs observed P-values for the model with no PGS-adjustment, while the second 

and third plots show results for PGSleadSNP (out-sample) and PGSCS (out-sample), respectively. 

Exome-wide significant genes are annotated with gene names; genes highlighted in bold 

were only identified after PGS-adjustment. Note: d, estimated paired group difference; δ, 

difference; α, significance cutoff; λ, inflation factor computed as observed χ2 at the median 

over the expected under the null hypothesis.
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Figure 3: PGS adjustment does not increase false-positive rates or genomic inflation in the 
analysis of rare synonymous variants.
Part a: Boxplots for per-trait association rate from synonymous RVAT at different alpha 

levels across the 65 traits. Per trait, a median of 18,060 genes were analyzed. Part b: 

Violin plots for genomic inflation factors for exome-wide RVAT of synonymous variants 

across the 65 traits. Part c: Violin plots for difference (δ) in significance of tests from 

synonymous variant RVAT, comparing models with PGS vs models without PGS. Here, the 

δ in P-values (on the -log10 scale) are displayed for tests reaching P<0.05 (Methods), with 

the contributing N gene-trait pairs equaling 75044, 77524, 75838, 89792, 77784 and 85187 

(from left to right). Boxplots: center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range; points, outliers. Note: δ, difference; α, significance 

cutoff; λ, inflation factor computed as observed χ2 at the median over the expected under 

the null hypothesis.
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